memory.c 13.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
/*
 * drivers/base/memory.c - basic Memory class support
 *
 * Written by Matt Tolentino <matthew.e.tolentino@intel.com>
 *            Dave Hansen <haveblue@us.ibm.com>
 *
 * This file provides the necessary infrastructure to represent
 * a SPARSEMEM-memory-model system's physical memory in /sysfs.
 * All arch-independent code that assumes MEMORY_HOTPLUG requires
 * SPARSEMEM should be contained here, or in mm/memory_hotplug.c.
 */

#include <linux/sysdev.h>
#include <linux/module.h>
#include <linux/init.h>
#include <linux/topology.h>
17
#include <linux/capability.h>
18 19 20 21 22
#include <linux/device.h>
#include <linux/memory.h>
#include <linux/kobject.h>
#include <linux/memory_hotplug.h>
#include <linux/mm.h>
23
#include <linux/mutex.h>
24 25
#include <linux/stat.h>

26 27 28 29 30 31
#include <asm/atomic.h>
#include <asm/uaccess.h>

#define MEMORY_CLASS_NAME	"memory"

static struct sysdev_class memory_sysdev_class = {
32
	.name = MEMORY_CLASS_NAME,
33 34
};

35
static const char *memory_uevent_name(struct kset *kset, struct kobject *kobj)
36 37 38 39
{
	return MEMORY_CLASS_NAME;
}

40
static int memory_uevent(struct kset *kset, struct kobject *obj, struct kobj_uevent_env *env)
41 42 43 44 45 46
{
	int retval = 0;

	return retval;
}

47 48 49
static struct kset_uevent_ops memory_uevent_ops = {
	.name		= memory_uevent_name,
	.uevent		= memory_uevent,
50 51
};

52
static BLOCKING_NOTIFIER_HEAD(memory_chain);
53

54
int register_memory_notifier(struct notifier_block *nb)
55
{
56
        return blocking_notifier_chain_register(&memory_chain, nb);
57
}
58
EXPORT_SYMBOL(register_memory_notifier);
59

60
void unregister_memory_notifier(struct notifier_block *nb)
61
{
62
        blocking_notifier_chain_unregister(&memory_chain, nb);
63
}
64
EXPORT_SYMBOL(unregister_memory_notifier);
65

66 67 68 69 70 71 72 73 74 75 76 77 78 79
static ATOMIC_NOTIFIER_HEAD(memory_isolate_chain);

int register_memory_isolate_notifier(struct notifier_block *nb)
{
	return atomic_notifier_chain_register(&memory_isolate_chain, nb);
}
EXPORT_SYMBOL(register_memory_isolate_notifier);

void unregister_memory_isolate_notifier(struct notifier_block *nb)
{
	atomic_notifier_chain_unregister(&memory_isolate_chain, nb);
}
EXPORT_SYMBOL(unregister_memory_isolate_notifier);

80 81 82
/*
 * register_memory - Setup a sysfs device for a memory block
 */
83 84
static
int register_memory(struct memory_block *memory, struct mem_section *section)
85 86 87 88 89 90 91 92 93 94 95
{
	int error;

	memory->sysdev.cls = &memory_sysdev_class;
	memory->sysdev.id = __section_nr(section);

	error = sysdev_register(&memory->sysdev);
	return error;
}

static void
96
unregister_memory(struct memory_block *memory, struct mem_section *section)
97 98 99 100
{
	BUG_ON(memory->sysdev.cls != &memory_sysdev_class);
	BUG_ON(memory->sysdev.id != __section_nr(section));

101 102
	/* drop the ref. we got in remove_memory_block() */
	kobject_put(&memory->sysdev.kobj);
103 104 105 106 107 108 109 110
	sysdev_unregister(&memory->sysdev);
}

/*
 * use this as the physical section index that this memsection
 * uses.
 */

111 112
static ssize_t show_mem_phys_index(struct sys_device *dev,
			struct sysdev_attribute *attr, char *buf)
113 114 115 116 117 118
{
	struct memory_block *mem =
		container_of(dev, struct memory_block, sysdev);
	return sprintf(buf, "%08lx\n", mem->phys_index);
}

119 120 121
/*
 * Show whether the section of memory is likely to be hot-removable
 */
122 123
static ssize_t show_mem_removable(struct sys_device *dev,
			struct sysdev_attribute *attr, char *buf)
124 125 126 127 128 129 130 131 132 133 134
{
	unsigned long start_pfn;
	int ret;
	struct memory_block *mem =
		container_of(dev, struct memory_block, sysdev);

	start_pfn = section_nr_to_pfn(mem->phys_index);
	ret = is_mem_section_removable(start_pfn, PAGES_PER_SECTION);
	return sprintf(buf, "%d\n", ret);
}

135 136 137
/*
 * online, offline, going offline, etc.
 */
138 139
static ssize_t show_mem_state(struct sys_device *dev,
			struct sysdev_attribute *attr, char *buf)
140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168
{
	struct memory_block *mem =
		container_of(dev, struct memory_block, sysdev);
	ssize_t len = 0;

	/*
	 * We can probably put these states in a nice little array
	 * so that they're not open-coded
	 */
	switch (mem->state) {
		case MEM_ONLINE:
			len = sprintf(buf, "online\n");
			break;
		case MEM_OFFLINE:
			len = sprintf(buf, "offline\n");
			break;
		case MEM_GOING_OFFLINE:
			len = sprintf(buf, "going-offline\n");
			break;
		default:
			len = sprintf(buf, "ERROR-UNKNOWN-%ld\n",
					mem->state);
			WARN_ON(1);
			break;
	}

	return len;
}

169
int memory_notify(unsigned long val, void *v)
170
{
171
	return blocking_notifier_call_chain(&memory_chain, val, v);
172 173
}

174 175 176 177 178
int memory_isolate_notify(unsigned long val, void *v)
{
	return atomic_notifier_call_chain(&memory_isolate_chain, val, v);
}

179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228
/*
 * MEMORY_HOTPLUG depends on SPARSEMEM in mm/Kconfig, so it is
 * OK to have direct references to sparsemem variables in here.
 */
static int
memory_block_action(struct memory_block *mem, unsigned long action)
{
	int i;
	unsigned long psection;
	unsigned long start_pfn, start_paddr;
	struct page *first_page;
	int ret;
	int old_state = mem->state;

	psection = mem->phys_index;
	first_page = pfn_to_page(psection << PFN_SECTION_SHIFT);

	/*
	 * The probe routines leave the pages reserved, just
	 * as the bootmem code does.  Make sure they're still
	 * that way.
	 */
	if (action == MEM_ONLINE) {
		for (i = 0; i < PAGES_PER_SECTION; i++) {
			if (PageReserved(first_page+i))
				continue;

			printk(KERN_WARNING "section number %ld page number %d "
				"not reserved, was it already online? \n",
				psection, i);
			return -EBUSY;
		}
	}

	switch (action) {
		case MEM_ONLINE:
			start_pfn = page_to_pfn(first_page);
			ret = online_pages(start_pfn, PAGES_PER_SECTION);
			break;
		case MEM_OFFLINE:
			mem->state = MEM_GOING_OFFLINE;
			start_paddr = page_to_pfn(first_page) << PAGE_SHIFT;
			ret = remove_memory(start_paddr,
					    PAGES_PER_SECTION << PAGE_SHIFT);
			if (ret) {
				mem->state = old_state;
				break;
			}
			break;
		default:
A
Arjan van de Ven 已提交
229
			WARN(1, KERN_WARNING "%s(%p, %ld) unknown action: %ld\n",
230
					__func__, mem, action, action);
231 232 233 234 235 236 237 238 239 240
			ret = -EINVAL;
	}

	return ret;
}

static int memory_block_change_state(struct memory_block *mem,
		unsigned long to_state, unsigned long from_state_req)
{
	int ret = 0;
241
	mutex_lock(&mem->state_mutex);
242 243 244 245 246 247 248 249 250 251 252

	if (mem->state != from_state_req) {
		ret = -EINVAL;
		goto out;
	}

	ret = memory_block_action(mem, to_state);
	if (!ret)
		mem->state = to_state;

out:
253
	mutex_unlock(&mem->state_mutex);
254 255 256 257
	return ret;
}

static ssize_t
258 259
store_mem_state(struct sys_device *dev,
		struct sysdev_attribute *attr, const char *buf, size_t count)
260 261 262 263 264 265 266 267
{
	struct memory_block *mem;
	unsigned int phys_section_nr;
	int ret = -EINVAL;

	mem = container_of(dev, struct memory_block, sysdev);
	phys_section_nr = mem->phys_index;

268
	if (!present_section_nr(phys_section_nr))
269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289
		goto out;

	if (!strncmp(buf, "online", min((int)count, 6)))
		ret = memory_block_change_state(mem, MEM_ONLINE, MEM_OFFLINE);
	else if(!strncmp(buf, "offline", min((int)count, 7)))
		ret = memory_block_change_state(mem, MEM_OFFLINE, MEM_ONLINE);
out:
	if (ret)
		return ret;
	return count;
}

/*
 * phys_device is a bad name for this.  What I really want
 * is a way to differentiate between memory ranges that
 * are part of physical devices that constitute
 * a complete removable unit or fru.
 * i.e. do these ranges belong to the same physical device,
 * s.t. if I offline all of these sections I can then
 * remove the physical device?
 */
290 291
static ssize_t show_phys_device(struct sys_device *dev,
				struct sysdev_attribute *attr, char *buf)
292 293 294 295 296 297 298 299 300
{
	struct memory_block *mem =
		container_of(dev, struct memory_block, sysdev);
	return sprintf(buf, "%d\n", mem->phys_device);
}

static SYSDEV_ATTR(phys_index, 0444, show_mem_phys_index, NULL);
static SYSDEV_ATTR(state, 0644, show_mem_state, store_mem_state);
static SYSDEV_ATTR(phys_device, 0444, show_phys_device, NULL);
301
static SYSDEV_ATTR(removable, 0444, show_mem_removable, NULL);
302 303 304 305 306 307 308 309 310 311

#define mem_create_simple_file(mem, attr_name)	\
	sysdev_create_file(&mem->sysdev, &attr_##attr_name)
#define mem_remove_simple_file(mem, attr_name)	\
	sysdev_remove_file(&mem->sysdev, &attr_##attr_name)

/*
 * Block size attribute stuff
 */
static ssize_t
312 313
print_block_size(struct sysdev_class *class, struct sysdev_class_attribute *attr,
		 char *buf)
314
{
315
	return sprintf(buf, "%#lx\n", (unsigned long)PAGES_PER_SECTION * PAGE_SIZE);
316 317
}

318
static SYSDEV_CLASS_ATTR(block_size_bytes, 0444, print_block_size, NULL);
319 320 321

static int block_size_init(void)
{
322
	return sysfs_create_file(&memory_sysdev_class.kset.kobj,
323
				&attr_block_size_bytes.attr);
324 325 326 327 328 329 330 331 332 333
}

/*
 * Some architectures will have custom drivers to do this, and
 * will not need to do it from userspace.  The fake hot-add code
 * as well as ppc64 will do all of their discovery in userspace
 * and will require this interface.
 */
#ifdef CONFIG_ARCH_MEMORY_PROBE
static ssize_t
334
memory_probe_store(struct class *class, const char *buf, size_t count)
335 336
{
	u64 phys_addr;
337
	int nid;
338 339 340 341
	int ret;

	phys_addr = simple_strtoull(buf, NULL, 0);

342 343
	nid = memory_add_physaddr_to_nid(phys_addr);
	ret = add_memory(nid, phys_addr, PAGES_PER_SECTION << PAGE_SHIFT);
344 345 346 347 348 349

	if (ret)
		count = ret;

	return count;
}
350
static CLASS_ATTR(probe, S_IWUSR, NULL, memory_probe_store);
351 352 353

static int memory_probe_init(void)
{
354
	return sysfs_create_file(&memory_sysdev_class.kset.kobj,
355
				&class_attr_probe.attr);
356 357
}
#else
358 359 360 361
static inline int memory_probe_init(void)
{
	return 0;
}
362 363
#endif

364 365 366 367 368 369 370
#ifdef CONFIG_MEMORY_FAILURE
/*
 * Support for offlining pages of memory
 */

/* Soft offline a page */
static ssize_t
371
store_soft_offline_page(struct class *class, const char *buf, size_t count)
372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387
{
	int ret;
	u64 pfn;
	if (!capable(CAP_SYS_ADMIN))
		return -EPERM;
	if (strict_strtoull(buf, 0, &pfn) < 0)
		return -EINVAL;
	pfn >>= PAGE_SHIFT;
	if (!pfn_valid(pfn))
		return -ENXIO;
	ret = soft_offline_page(pfn_to_page(pfn), 0);
	return ret == 0 ? count : ret;
}

/* Forcibly offline a page, including killing processes. */
static ssize_t
388
store_hard_offline_page(struct class *class, const char *buf, size_t count)
389 390 391 392 393 394 395 396 397 398 399 400
{
	int ret;
	u64 pfn;
	if (!capable(CAP_SYS_ADMIN))
		return -EPERM;
	if (strict_strtoull(buf, 0, &pfn) < 0)
		return -EINVAL;
	pfn >>= PAGE_SHIFT;
	ret = __memory_failure(pfn, 0, 0);
	return ret ? ret : count;
}

401 402
static CLASS_ATTR(soft_offline_page, 0644, NULL, store_soft_offline_page);
static CLASS_ATTR(hard_offline_page, 0644, NULL, store_hard_offline_page);
403 404 405 406 407 408

static __init int memory_fail_init(void)
{
	int err;

	err = sysfs_create_file(&memory_sysdev_class.kset.kobj,
409
				&class_attr_soft_offline_page.attr);
410 411
	if (!err)
		err = sysfs_create_file(&memory_sysdev_class.kset.kobj,
412
				&class_attr_hard_offline_page.attr);
413 414 415 416 417 418 419 420 421
	return err;
}
#else
static inline int memory_fail_init(void)
{
	return 0;
}
#endif

422 423 424 425 426 427
/*
 * Note that phys_device is optional.  It is here to allow for
 * differentiation between which *physical* devices each
 * section belongs to...
 */

428 429 430
static int add_memory_block(int nid, struct mem_section *section,
			unsigned long state, int phys_device,
			enum mem_add_context context)
431
{
432
	struct memory_block *mem = kzalloc(sizeof(*mem), GFP_KERNEL);
433 434 435 436 437 438 439
	int ret = 0;

	if (!mem)
		return -ENOMEM;

	mem->phys_index = __section_nr(section);
	mem->state = state;
440
	mutex_init(&mem->state_mutex);
441 442
	mem->phys_device = phys_device;

443
	ret = register_memory(mem, section);
444 445 446 447 448 449
	if (!ret)
		ret = mem_create_simple_file(mem, phys_index);
	if (!ret)
		ret = mem_create_simple_file(mem, state);
	if (!ret)
		ret = mem_create_simple_file(mem, phys_device);
450 451
	if (!ret)
		ret = mem_create_simple_file(mem, removable);
452 453 454 455
	if (!ret) {
		if (context == HOTPLUG)
			ret = register_mem_sect_under_node(mem, nid);
	}
456 457 458 459 460 461 462 463 464 465 466 467

	return ret;
}

/*
 * For now, we have a linear search to go find the appropriate
 * memory_block corresponding to a particular phys_index. If
 * this gets to be a real problem, we can always use a radix
 * tree or something here.
 *
 * This could be made generic for all sysdev classes.
 */
468
struct memory_block *find_memory_block(struct mem_section *section)
469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496
{
	struct kobject *kobj;
	struct sys_device *sysdev;
	struct memory_block *mem;
	char name[sizeof(MEMORY_CLASS_NAME) + 9 + 1];

	/*
	 * This only works because we know that section == sysdev->id
	 * slightly redundant with sysdev_register()
	 */
	sprintf(&name[0], "%s%d", MEMORY_CLASS_NAME, __section_nr(section));

	kobj = kset_find_obj(&memory_sysdev_class.kset, name);
	if (!kobj)
		return NULL;

	sysdev = container_of(kobj, struct sys_device, kobj);
	mem = container_of(sysdev, struct memory_block, sysdev);

	return mem;
}

int remove_memory_block(unsigned long node_id, struct mem_section *section,
		int phys_device)
{
	struct memory_block *mem;

	mem = find_memory_block(section);
497
	unregister_mem_sect_under_nodes(mem);
498 499 500
	mem_remove_simple_file(mem, phys_index);
	mem_remove_simple_file(mem, state);
	mem_remove_simple_file(mem, phys_device);
501
	mem_remove_simple_file(mem, removable);
502
	unregister_memory(mem, section);
503 504 505 506 507 508 509 510

	return 0;
}

/*
 * need an interface for the VM to add new memory regions,
 * but without onlining it.
 */
511
int register_new_memory(int nid, struct mem_section *section)
512
{
513
	return add_memory_block(nid, section, MEM_OFFLINE, 0, HOTPLUG);
514 515 516 517
}

int unregister_memory_section(struct mem_section *section)
{
518
	if (!present_section(section))
519 520 521 522 523 524 525 526 527 528 529 530
		return -EINVAL;

	return remove_memory_block(0, section, 0);
}

/*
 * Initialize the sysfs support for memory devices...
 */
int __init memory_dev_init(void)
{
	unsigned int i;
	int ret;
531
	int err;
532

533
	memory_sysdev_class.kset.uevent_ops = &memory_uevent_ops;
534
	ret = sysdev_class_register(&memory_sysdev_class);
535 536
	if (ret)
		goto out;
537 538 539 540 541 542

	/*
	 * Create entries for memory sections that were found
	 * during boot and have been initialized
	 */
	for (i = 0; i < NR_MEM_SECTIONS; i++) {
543
		if (!present_section_nr(i))
544
			continue;
545 546
		err = add_memory_block(0, __nr_to_section(i), MEM_ONLINE,
					0, BOOT);
547 548
		if (!ret)
			ret = err;
549 550
	}

551
	err = memory_probe_init();
552 553 554
	if (!ret)
		ret = err;
	err = memory_fail_init();
555 556 557 558 559 560 561
	if (!ret)
		ret = err;
	err = block_size_init();
	if (!ret)
		ret = err;
out:
	if (ret)
562
		printk(KERN_ERR "%s() failed: %d\n", __func__, ret);
563 564
	return ret;
}