memory.c 18.8 KB
Newer Older
1
/*
2
 * Memory subsystem support
3 4 5 6 7 8 9 10 11 12 13 14 15
 *
 * Written by Matt Tolentino <matthew.e.tolentino@intel.com>
 *            Dave Hansen <haveblue@us.ibm.com>
 *
 * This file provides the necessary infrastructure to represent
 * a SPARSEMEM-memory-model system's physical memory in /sysfs.
 * All arch-independent code that assumes MEMORY_HOTPLUG requires
 * SPARSEMEM should be contained here, or in mm/memory_hotplug.c.
 */

#include <linux/module.h>
#include <linux/init.h>
#include <linux/topology.h>
16
#include <linux/capability.h>
17 18 19 20
#include <linux/device.h>
#include <linux/memory.h>
#include <linux/memory_hotplug.h>
#include <linux/mm.h>
21
#include <linux/mutex.h>
22
#include <linux/stat.h>
23
#include <linux/slab.h>
24

A
Arun Sharma 已提交
25
#include <linux/atomic.h>
26 27
#include <asm/uaccess.h>

28 29
static DEFINE_MUTEX(mem_sysfs_mutex);

30
#define MEMORY_CLASS_NAME	"memory"
31

32 33
#define to_memory_block(dev) container_of(dev, struct memory_block, dev)

34 35 36 37 38 39
static int sections_per_block;

static inline int base_memory_block_id(int section_nr)
{
	return section_nr / sections_per_block;
}
40

41 42 43
static int memory_subsys_online(struct device *dev);
static int memory_subsys_offline(struct device *dev);

44
static struct bus_type memory_subsys = {
45
	.name = MEMORY_CLASS_NAME,
46
	.dev_name = MEMORY_CLASS_NAME,
47 48
	.online = memory_subsys_online,
	.offline = memory_subsys_offline,
49 50
};

51
static BLOCKING_NOTIFIER_HEAD(memory_chain);
52

53
int register_memory_notifier(struct notifier_block *nb)
54
{
55
	return blocking_notifier_chain_register(&memory_chain, nb);
56
}
57
EXPORT_SYMBOL(register_memory_notifier);
58

59
void unregister_memory_notifier(struct notifier_block *nb)
60
{
61
	blocking_notifier_chain_unregister(&memory_chain, nb);
62
}
63
EXPORT_SYMBOL(unregister_memory_notifier);
64

65 66 67 68 69 70 71 72 73 74 75 76 77 78
static ATOMIC_NOTIFIER_HEAD(memory_isolate_chain);

int register_memory_isolate_notifier(struct notifier_block *nb)
{
	return atomic_notifier_chain_register(&memory_isolate_chain, nb);
}
EXPORT_SYMBOL(register_memory_isolate_notifier);

void unregister_memory_isolate_notifier(struct notifier_block *nb)
{
	atomic_notifier_chain_unregister(&memory_isolate_chain, nb);
}
EXPORT_SYMBOL(unregister_memory_isolate_notifier);

79 80
static void memory_block_release(struct device *dev)
{
81
	struct memory_block *mem = to_memory_block(dev);
82 83 84 85

	kfree(mem);
}

86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105
unsigned long __weak memory_block_size_bytes(void)
{
	return MIN_MEMORY_BLOCK_SIZE;
}

static unsigned long get_memory_block_size(void)
{
	unsigned long block_sz;

	block_sz = memory_block_size_bytes();

	/* Validate blk_sz is a power of 2 and not less than section size */
	if ((block_sz & (block_sz - 1)) || (block_sz < MIN_MEMORY_BLOCK_SIZE)) {
		WARN_ON(1);
		block_sz = MIN_MEMORY_BLOCK_SIZE;
	}

	return block_sz;
}

106 107 108 109 110
/*
 * use this as the physical section index that this memsection
 * uses.
 */

111 112
static ssize_t show_mem_start_phys_index(struct device *dev,
			struct device_attribute *attr, char *buf)
113
{
114
	struct memory_block *mem = to_memory_block(dev);
115 116 117 118 119 120
	unsigned long phys_index;

	phys_index = mem->start_section_nr / sections_per_block;
	return sprintf(buf, "%08lx\n", phys_index);
}

121 122 123
/*
 * Show whether the section of memory is likely to be hot-removable
 */
124 125
static ssize_t show_mem_removable(struct device *dev,
			struct device_attribute *attr, char *buf)
126
{
127 128
	unsigned long i, pfn;
	int ret = 1;
129
	struct memory_block *mem = to_memory_block(dev);
130

131
	for (i = 0; i < sections_per_block; i++) {
132 133
		if (!present_section_nr(mem->start_section_nr + i))
			continue;
134
		pfn = section_nr_to_pfn(mem->start_section_nr + i);
135 136 137
		ret &= is_mem_section_removable(pfn, PAGES_PER_SECTION);
	}

138 139 140
	return sprintf(buf, "%d\n", ret);
}

141 142 143
/*
 * online, offline, going offline, etc.
 */
144 145
static ssize_t show_mem_state(struct device *dev,
			struct device_attribute *attr, char *buf)
146
{
147
	struct memory_block *mem = to_memory_block(dev);
148 149 150 151 152 153 154
	ssize_t len = 0;

	/*
	 * We can probably put these states in a nice little array
	 * so that they're not open-coded
	 */
	switch (mem->state) {
155 156 157 158 159 160 161 162 163 164 165 166 167 168
	case MEM_ONLINE:
		len = sprintf(buf, "online\n");
		break;
	case MEM_OFFLINE:
		len = sprintf(buf, "offline\n");
		break;
	case MEM_GOING_OFFLINE:
		len = sprintf(buf, "going-offline\n");
		break;
	default:
		len = sprintf(buf, "ERROR-UNKNOWN-%ld\n",
				mem->state);
		WARN_ON(1);
		break;
169 170 171 172 173
	}

	return len;
}

174
int memory_notify(unsigned long val, void *v)
175
{
176
	return blocking_notifier_call_chain(&memory_chain, val, v);
177 178
}

179 180 181 182 183
int memory_isolate_notify(unsigned long val, void *v)
{
	return atomic_notifier_call_chain(&memory_isolate_chain, val, v);
}

184 185 186 187
/*
 * The probe routines leave the pages reserved, just as the bootmem code does.
 * Make sure they're still that way.
 */
188
static bool pages_correctly_reserved(unsigned long start_pfn)
189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218
{
	int i, j;
	struct page *page;
	unsigned long pfn = start_pfn;

	/*
	 * memmap between sections is not contiguous except with
	 * SPARSEMEM_VMEMMAP. We lookup the page once per section
	 * and assume memmap is contiguous within each section
	 */
	for (i = 0; i < sections_per_block; i++, pfn += PAGES_PER_SECTION) {
		if (WARN_ON_ONCE(!pfn_valid(pfn)))
			return false;
		page = pfn_to_page(pfn);

		for (j = 0; j < PAGES_PER_SECTION; j++) {
			if (PageReserved(page + j))
				continue;

			printk(KERN_WARNING "section number %ld page number %d "
				"not reserved, was it already online?\n",
				pfn_to_section_nr(pfn), j);

			return false;
		}
	}

	return true;
}

219 220 221
/*
 * MEMORY_HOTPLUG depends on SPARSEMEM in mm/Kconfig, so it is
 * OK to have direct references to sparsemem variables in here.
222
 * Must already be protected by mem_hotplug_begin().
223 224
 */
static int
225
memory_block_action(unsigned long phys_index, unsigned long action, int online_type)
226
{
227
	unsigned long start_pfn;
228
	unsigned long nr_pages = PAGES_PER_SECTION * sections_per_block;
229
	struct page *first_page;
230 231
	int ret;

232
	start_pfn = section_nr_to_pfn(phys_index);
233
	first_page = pfn_to_page(start_pfn);
234

235
	switch (action) {
236 237 238 239 240 241 242 243 244 245 246 247 248
	case MEM_ONLINE:
		if (!pages_correctly_reserved(start_pfn))
			return -EBUSY;

		ret = online_pages(start_pfn, nr_pages, online_type);
		break;
	case MEM_OFFLINE:
		ret = offline_pages(start_pfn, nr_pages);
		break;
	default:
		WARN(1, KERN_WARNING "%s(%ld, %ld) unknown action: "
		     "%ld\n", __func__, phys_index, action, action);
		ret = -EINVAL;
249 250 251 252 253
	}

	return ret;
}

254 255
static int memory_block_change_state(struct memory_block *mem,
		unsigned long to_state, unsigned long from_state_req)
256
{
257
	int ret = 0;
258

259 260
	if (mem->state != from_state_req)
		return -EINVAL;
261

262 263 264
	if (to_state == MEM_OFFLINE)
		mem->state = MEM_GOING_OFFLINE;

265 266 267
	ret = memory_block_action(mem->start_section_nr, to_state,
				mem->online_type);

268
	mem->state = ret ? from_state_req : to_state;
269

270 271
	return ret;
}
272

273
/* The device lock serializes operations on memory_subsys_[online|offline] */
274 275
static int memory_subsys_online(struct device *dev)
{
276
	struct memory_block *mem = to_memory_block(dev);
277
	int ret;
278

279 280
	if (mem->state == MEM_ONLINE)
		return 0;
281

282 283 284 285 286 287
	/*
	 * If we are called from store_mem_state(), online_type will be
	 * set >= 0 Otherwise we were called from the device online
	 * attribute and need to set the online_type.
	 */
	if (mem->online_type < 0)
288
		mem->online_type = MMOP_ONLINE_KEEP;
289

290
	/* Already under protection of mem_hotplug_begin() */
291
	ret = memory_block_change_state(mem, MEM_ONLINE, MEM_OFFLINE);
292

293 294
	/* clear online_type */
	mem->online_type = -1;
295 296 297 298 299

	return ret;
}

static int memory_subsys_offline(struct device *dev)
300
{
301
	struct memory_block *mem = to_memory_block(dev);
302

303 304
	if (mem->state == MEM_OFFLINE)
		return 0;
305

306 307 308 309
	/* Can't offline block with non-present sections */
	if (mem->section_count != sections_per_block)
		return -EINVAL;

310
	return memory_block_change_state(mem, MEM_OFFLINE, MEM_ONLINE);
311
}
312

313
static ssize_t
314 315
store_mem_state(struct device *dev,
		struct device_attribute *attr, const char *buf, size_t count)
316
{
317
	struct memory_block *mem = to_memory_block(dev);
318
	int ret, online_type;
319

320 321 322
	ret = lock_device_hotplug_sysfs();
	if (ret)
		return ret;
323

324
	if (sysfs_streq(buf, "online_kernel"))
325
		online_type = MMOP_ONLINE_KERNEL;
326
	else if (sysfs_streq(buf, "online_movable"))
327
		online_type = MMOP_ONLINE_MOVABLE;
328
	else if (sysfs_streq(buf, "online"))
329
		online_type = MMOP_ONLINE_KEEP;
330
	else if (sysfs_streq(buf, "offline"))
331
		online_type = MMOP_OFFLINE;
332 333 334 335
	else {
		ret = -EINVAL;
		goto err;
	}
336

337 338 339 340 341 342 343 344 345
	/*
	 * Memory hotplug needs to hold mem_hotplug_begin() for probe to find
	 * the correct memory block to online before doing device_online(dev),
	 * which will take dev->mutex.  Take the lock early to prevent an
	 * inversion, memory_subsys_online() callbacks will be implemented by
	 * assuming it's already protected.
	 */
	mem_hotplug_begin();

346
	switch (online_type) {
347 348 349
	case MMOP_ONLINE_KERNEL:
	case MMOP_ONLINE_MOVABLE:
	case MMOP_ONLINE_KEEP:
350 351 352
		mem->online_type = online_type;
		ret = device_online(&mem->dev);
		break;
353
	case MMOP_OFFLINE:
354 355 356 357
		ret = device_offline(&mem->dev);
		break;
	default:
		ret = -EINVAL; /* should never happen */
358 359
	}

360
	mem_hotplug_done();
361
err:
362
	unlock_device_hotplug();
363

364 365 366 367 368 369 370 371 372 373 374 375 376 377
	if (ret)
		return ret;
	return count;
}

/*
 * phys_device is a bad name for this.  What I really want
 * is a way to differentiate between memory ranges that
 * are part of physical devices that constitute
 * a complete removable unit or fru.
 * i.e. do these ranges belong to the same physical device,
 * s.t. if I offline all of these sections I can then
 * remove the physical device?
 */
378 379
static ssize_t show_phys_device(struct device *dev,
				struct device_attribute *attr, char *buf)
380
{
381
	struct memory_block *mem = to_memory_block(dev);
382 383 384
	return sprintf(buf, "%d\n", mem->phys_device);
}

385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423
#ifdef CONFIG_MEMORY_HOTREMOVE
static ssize_t show_valid_zones(struct device *dev,
				struct device_attribute *attr, char *buf)
{
	struct memory_block *mem = to_memory_block(dev);
	unsigned long start_pfn, end_pfn;
	unsigned long nr_pages = PAGES_PER_SECTION * sections_per_block;
	struct page *first_page;
	struct zone *zone;

	start_pfn = section_nr_to_pfn(mem->start_section_nr);
	end_pfn = start_pfn + nr_pages;
	first_page = pfn_to_page(start_pfn);

	/* The block contains more than one zone can not be offlined. */
	if (!test_pages_in_a_zone(start_pfn, end_pfn))
		return sprintf(buf, "none\n");

	zone = page_zone(first_page);

	if (zone_idx(zone) == ZONE_MOVABLE - 1) {
		/*The mem block is the last memoryblock of this zone.*/
		if (end_pfn == zone_end_pfn(zone))
			return sprintf(buf, "%s %s\n",
					zone->name, (zone + 1)->name);
	}

	if (zone_idx(zone) == ZONE_MOVABLE) {
		/*The mem block is the first memoryblock of ZONE_MOVABLE.*/
		if (start_pfn == zone->zone_start_pfn)
			return sprintf(buf, "%s %s\n",
					zone->name, (zone - 1)->name);
	}

	return sprintf(buf, "%s\n", zone->name);
}
static DEVICE_ATTR(valid_zones, 0444, show_valid_zones, NULL);
#endif

424 425 426 427
static DEVICE_ATTR(phys_index, 0444, show_mem_start_phys_index, NULL);
static DEVICE_ATTR(state, 0644, show_mem_state, store_mem_state);
static DEVICE_ATTR(phys_device, 0444, show_phys_device, NULL);
static DEVICE_ATTR(removable, 0444, show_mem_removable, NULL);
428 429 430 431 432

/*
 * Block size attribute stuff
 */
static ssize_t
433
print_block_size(struct device *dev, struct device_attribute *attr,
434
		 char *buf)
435
{
436
	return sprintf(buf, "%lx\n", get_memory_block_size());
437 438
}

439
static DEVICE_ATTR(block_size_bytes, 0444, print_block_size, NULL);
440 441 442 443 444 445 446 447 448

/*
 * Some architectures will have custom drivers to do this, and
 * will not need to do it from userspace.  The fake hot-add code
 * as well as ppc64 will do all of their discovery in userspace
 * and will require this interface.
 */
#ifdef CONFIG_ARCH_MEMORY_PROBE
static ssize_t
449
memory_probe_store(struct device *dev, struct device_attribute *attr,
450
		   const char *buf, size_t count)
451 452
{
	u64 phys_addr;
453
	int nid;
454
	int i, ret;
455
	unsigned long pages_per_block = PAGES_PER_SECTION * sections_per_block;
456

457 458 459
	ret = kstrtoull(buf, 0, &phys_addr);
	if (ret)
		return ret;
460

461 462 463
	if (phys_addr & ((pages_per_block << PAGE_SHIFT) - 1))
		return -EINVAL;

464 465 466 467 468
	for (i = 0; i < sections_per_block; i++) {
		nid = memory_add_physaddr_to_nid(phys_addr);
		ret = add_memory(nid, phys_addr,
				 PAGES_PER_SECTION << PAGE_SHIFT);
		if (ret)
469
			goto out;
470 471 472

		phys_addr += MIN_MEMORY_BLOCK_SIZE;
	}
473

474 475 476
	ret = count;
out:
	return ret;
477 478
}

479
static DEVICE_ATTR(probe, S_IWUSR, NULL, memory_probe_store);
480 481
#endif

482 483 484 485 486 487 488
#ifdef CONFIG_MEMORY_FAILURE
/*
 * Support for offlining pages of memory
 */

/* Soft offline a page */
static ssize_t
489 490
store_soft_offline_page(struct device *dev,
			struct device_attribute *attr,
491
			const char *buf, size_t count)
492 493 494 495 496
{
	int ret;
	u64 pfn;
	if (!capable(CAP_SYS_ADMIN))
		return -EPERM;
497
	if (kstrtoull(buf, 0, &pfn) < 0)
498 499 500 501 502 503 504 505 506 507
		return -EINVAL;
	pfn >>= PAGE_SHIFT;
	if (!pfn_valid(pfn))
		return -ENXIO;
	ret = soft_offline_page(pfn_to_page(pfn), 0);
	return ret == 0 ? count : ret;
}

/* Forcibly offline a page, including killing processes. */
static ssize_t
508 509
store_hard_offline_page(struct device *dev,
			struct device_attribute *attr,
510
			const char *buf, size_t count)
511 512 513 514 515
{
	int ret;
	u64 pfn;
	if (!capable(CAP_SYS_ADMIN))
		return -EPERM;
516
	if (kstrtoull(buf, 0, &pfn) < 0)
517 518
		return -EINVAL;
	pfn >>= PAGE_SHIFT;
519
	ret = memory_failure(pfn, 0, 0);
520 521 522
	return ret ? ret : count;
}

523 524
static DEVICE_ATTR(soft_offline_page, S_IWUSR, NULL, store_soft_offline_page);
static DEVICE_ATTR(hard_offline_page, S_IWUSR, NULL, store_hard_offline_page);
525 526
#endif

527 528 529 530 531
/*
 * Note that phys_device is optional.  It is here to allow for
 * differentiation between which *physical* devices each
 * section belongs to...
 */
532 533 534 535
int __weak arch_get_memory_phys_device(unsigned long start_pfn)
{
	return 0;
}
536

537 538 539 540
/*
 * A reference for the returned object is held and the reference for the
 * hinted object is released.
 */
541 542
struct memory_block *find_memory_block_hinted(struct mem_section *section,
					      struct memory_block *hint)
543
{
544
	int block_id = base_memory_block_id(__section_nr(section));
545 546
	struct device *hintdev = hint ? &hint->dev : NULL;
	struct device *dev;
547

548 549 550 551
	dev = subsys_find_device_by_id(&memory_subsys, block_id, hintdev);
	if (hint)
		put_device(&hint->dev);
	if (!dev)
552
		return NULL;
553
	return to_memory_block(dev);
554 555
}

556 557 558 559 560 561
/*
 * For now, we have a linear search to go find the appropriate
 * memory_block corresponding to a particular phys_index. If
 * this gets to be a real problem, we can always use a radix
 * tree or something here.
 *
562
 * This could be made generic for all device subsystems.
563 564 565 566 567 568
 */
struct memory_block *find_memory_block(struct mem_section *section)
{
	return find_memory_block_hinted(section, NULL);
}

569 570 571 572 573
static struct attribute *memory_memblk_attrs[] = {
	&dev_attr_phys_index.attr,
	&dev_attr_state.attr,
	&dev_attr_phys_device.attr,
	&dev_attr_removable.attr,
574 575 576
#ifdef CONFIG_MEMORY_HOTREMOVE
	&dev_attr_valid_zones.attr,
#endif
577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598
	NULL
};

static struct attribute_group memory_memblk_attr_group = {
	.attrs = memory_memblk_attrs,
};

static const struct attribute_group *memory_memblk_attr_groups[] = {
	&memory_memblk_attr_group,
	NULL,
};

/*
 * register_memory - Setup a sysfs device for a memory block
 */
static
int register_memory(struct memory_block *memory)
{
	memory->dev.bus = &memory_subsys;
	memory->dev.id = memory->start_section_nr / sections_per_block;
	memory->dev.release = memory_block_release;
	memory->dev.groups = memory_memblk_attr_groups;
599
	memory->dev.offline = memory->state == MEM_OFFLINE;
600

601
	return device_register(&memory->dev);
602 603
}

604 605
static int init_memory_block(struct memory_block **memory,
			     struct mem_section *section, unsigned long state)
606
{
607
	struct memory_block *mem;
608
	unsigned long start_pfn;
609
	int scn_nr;
610 611
	int ret = 0;

612
	mem = kzalloc(sizeof(*mem), GFP_KERNEL);
613 614 615
	if (!mem)
		return -ENOMEM;

616
	scn_nr = __section_nr(section);
617 618 619
	mem->start_section_nr =
			base_memory_block_id(scn_nr) * sections_per_block;
	mem->end_section_nr = mem->start_section_nr + sections_per_block - 1;
620
	mem->state = state;
621
	mem->section_count++;
622
	start_pfn = section_nr_to_pfn(mem->start_section_nr);
623 624
	mem->phys_device = arch_get_memory_phys_device(start_pfn);

625 626 627 628 629 630
	ret = register_memory(mem);

	*memory = mem;
	return ret;
}

631
static int add_memory_block(int base_section_nr)
632
{
633 634
	struct memory_block *mem;
	int i, ret, section_count = 0, section_nr;
635

636 637 638 639 640 641 642 643
	for (i = base_section_nr;
	     (i < base_section_nr + sections_per_block) && i < NR_MEM_SECTIONS;
	     i++) {
		if (!present_section_nr(i))
			continue;
		if (section_count == 0)
			section_nr = i;
		section_count++;
644 645
	}

646 647 648 649 650 651 652
	if (section_count == 0)
		return 0;
	ret = init_memory_block(&mem, __nr_to_section(section_nr), MEM_ONLINE);
	if (ret)
		return ret;
	mem->section_count = section_count;
	return 0;
653 654
}

655

656 657 658 659 660 661
/*
 * need an interface for the VM to add new memory regions,
 * but without onlining it.
 */
int register_new_memory(int nid, struct mem_section *section)
{
662 663
	int ret = 0;
	struct memory_block *mem;
664 665 666

	mutex_lock(&mem_sysfs_mutex);

667 668 669 670 671 672 673 674 675 676 677 678 679 680
	mem = find_memory_block(section);
	if (mem) {
		mem->section_count++;
		put_device(&mem->dev);
	} else {
		ret = init_memory_block(&mem, section, MEM_OFFLINE);
		if (ret)
			goto out;
	}

	if (mem->section_count == sections_per_block)
		ret = register_mem_sect_under_node(mem, nid);
out:
	mutex_unlock(&mem_sysfs_mutex);
681
	return ret;
682 683 684 685 686 687 688 689 690
}

#ifdef CONFIG_MEMORY_HOTREMOVE
static void
unregister_memory(struct memory_block *memory)
{
	BUG_ON(memory->dev.bus != &memory_subsys);

	/* drop the ref. we got in remove_memory_block() */
691
	put_device(&memory->dev);
692 693 694 695 696
	device_unregister(&memory->dev);
}

static int remove_memory_block(unsigned long node_id,
			       struct mem_section *section, int phys_device)
697 698 699
{
	struct memory_block *mem;

700
	mutex_lock(&mem_sysfs_mutex);
701
	mem = find_memory_block(section);
702
	unregister_mem_sect_under_nodes(mem, __section_nr(section));
703 704

	mem->section_count--;
705
	if (mem->section_count == 0)
706
		unregister_memory(mem);
707
	else
708
		put_device(&mem->dev);
709

710
	mutex_unlock(&mem_sysfs_mutex);
711 712 713 714 715
	return 0;
}

int unregister_memory_section(struct mem_section *section)
{
716
	if (!present_section(section))
717 718 719 720
		return -EINVAL;

	return remove_memory_block(0, section, 0);
}
721
#endif /* CONFIG_MEMORY_HOTREMOVE */
722

723 724 725 726 727 728
/* return true if the memory block is offlined, otherwise, return false */
bool is_memblock_offlined(struct memory_block *mem)
{
	return mem->state == MEM_OFFLINE;
}

729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751
static struct attribute *memory_root_attrs[] = {
#ifdef CONFIG_ARCH_MEMORY_PROBE
	&dev_attr_probe.attr,
#endif

#ifdef CONFIG_MEMORY_FAILURE
	&dev_attr_soft_offline_page.attr,
	&dev_attr_hard_offline_page.attr,
#endif

	&dev_attr_block_size_bytes.attr,
	NULL
};

static struct attribute_group memory_root_attr_group = {
	.attrs = memory_root_attrs,
};

static const struct attribute_group *memory_root_attr_groups[] = {
	&memory_root_attr_group,
	NULL,
};

752 753 754 755 756 757 758
/*
 * Initialize the sysfs support for memory devices...
 */
int __init memory_dev_init(void)
{
	unsigned int i;
	int ret;
759
	int err;
760
	unsigned long block_sz;
761

762
	ret = subsys_system_register(&memory_subsys, memory_root_attr_groups);
763 764
	if (ret)
		goto out;
765

766 767 768
	block_sz = get_memory_block_size();
	sections_per_block = block_sz / MIN_MEMORY_BLOCK_SIZE;

769 770 771 772
	/*
	 * Create entries for memory sections that were found
	 * during boot and have been initialized
	 */
773
	mutex_lock(&mem_sysfs_mutex);
774 775
	for (i = 0; i < NR_MEM_SECTIONS; i += sections_per_block) {
		err = add_memory_block(i);
776 777
		if (!ret)
			ret = err;
778
	}
779
	mutex_unlock(&mem_sysfs_mutex);
780

781 782
out:
	if (ret)
783
		printk(KERN_ERR "%s() failed: %d\n", __func__, ret);
784 785
	return ret;
}