memory.c 18.5 KB
Newer Older
1
/*
2
 * Memory subsystem support
3 4 5 6 7 8 9 10 11 12 13 14 15
 *
 * Written by Matt Tolentino <matthew.e.tolentino@intel.com>
 *            Dave Hansen <haveblue@us.ibm.com>
 *
 * This file provides the necessary infrastructure to represent
 * a SPARSEMEM-memory-model system's physical memory in /sysfs.
 * All arch-independent code that assumes MEMORY_HOTPLUG requires
 * SPARSEMEM should be contained here, or in mm/memory_hotplug.c.
 */

#include <linux/module.h>
#include <linux/init.h>
#include <linux/topology.h>
16
#include <linux/capability.h>
17 18 19 20
#include <linux/device.h>
#include <linux/memory.h>
#include <linux/memory_hotplug.h>
#include <linux/mm.h>
21
#include <linux/mutex.h>
22
#include <linux/stat.h>
23
#include <linux/slab.h>
24

A
Arun Sharma 已提交
25
#include <linux/atomic.h>
26 27
#include <asm/uaccess.h>

28 29
static DEFINE_MUTEX(mem_sysfs_mutex);

30
#define MEMORY_CLASS_NAME	"memory"
31

32 33
#define to_memory_block(dev) container_of(dev, struct memory_block, dev)

34 35 36 37 38 39
static int sections_per_block;

static inline int base_memory_block_id(int section_nr)
{
	return section_nr / sections_per_block;
}
40

41 42 43
static int memory_subsys_online(struct device *dev);
static int memory_subsys_offline(struct device *dev);

44
static struct bus_type memory_subsys = {
45
	.name = MEMORY_CLASS_NAME,
46
	.dev_name = MEMORY_CLASS_NAME,
47 48
	.online = memory_subsys_online,
	.offline = memory_subsys_offline,
49 50
};

51
static BLOCKING_NOTIFIER_HEAD(memory_chain);
52

53
int register_memory_notifier(struct notifier_block *nb)
54
{
55
	return blocking_notifier_chain_register(&memory_chain, nb);
56
}
57
EXPORT_SYMBOL(register_memory_notifier);
58

59
void unregister_memory_notifier(struct notifier_block *nb)
60
{
61
	blocking_notifier_chain_unregister(&memory_chain, nb);
62
}
63
EXPORT_SYMBOL(unregister_memory_notifier);
64

65 66 67 68 69 70 71 72 73 74 75 76 77 78
static ATOMIC_NOTIFIER_HEAD(memory_isolate_chain);

int register_memory_isolate_notifier(struct notifier_block *nb)
{
	return atomic_notifier_chain_register(&memory_isolate_chain, nb);
}
EXPORT_SYMBOL(register_memory_isolate_notifier);

void unregister_memory_isolate_notifier(struct notifier_block *nb)
{
	atomic_notifier_chain_unregister(&memory_isolate_chain, nb);
}
EXPORT_SYMBOL(unregister_memory_isolate_notifier);

79 80
static void memory_block_release(struct device *dev)
{
81
	struct memory_block *mem = to_memory_block(dev);
82 83 84 85

	kfree(mem);
}

86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105
unsigned long __weak memory_block_size_bytes(void)
{
	return MIN_MEMORY_BLOCK_SIZE;
}

static unsigned long get_memory_block_size(void)
{
	unsigned long block_sz;

	block_sz = memory_block_size_bytes();

	/* Validate blk_sz is a power of 2 and not less than section size */
	if ((block_sz & (block_sz - 1)) || (block_sz < MIN_MEMORY_BLOCK_SIZE)) {
		WARN_ON(1);
		block_sz = MIN_MEMORY_BLOCK_SIZE;
	}

	return block_sz;
}

106 107 108 109 110
/*
 * use this as the physical section index that this memsection
 * uses.
 */

111 112
static ssize_t show_mem_start_phys_index(struct device *dev,
			struct device_attribute *attr, char *buf)
113
{
114
	struct memory_block *mem = to_memory_block(dev);
115 116 117 118 119 120
	unsigned long phys_index;

	phys_index = mem->start_section_nr / sections_per_block;
	return sprintf(buf, "%08lx\n", phys_index);
}

121 122 123
/*
 * Show whether the section of memory is likely to be hot-removable
 */
124 125
static ssize_t show_mem_removable(struct device *dev,
			struct device_attribute *attr, char *buf)
126
{
127 128
	unsigned long i, pfn;
	int ret = 1;
129
	struct memory_block *mem = to_memory_block(dev);
130

131
	for (i = 0; i < sections_per_block; i++) {
132 133
		if (!present_section_nr(mem->start_section_nr + i))
			continue;
134
		pfn = section_nr_to_pfn(mem->start_section_nr + i);
135 136 137
		ret &= is_mem_section_removable(pfn, PAGES_PER_SECTION);
	}

138 139 140
	return sprintf(buf, "%d\n", ret);
}

141 142 143
/*
 * online, offline, going offline, etc.
 */
144 145
static ssize_t show_mem_state(struct device *dev,
			struct device_attribute *attr, char *buf)
146
{
147
	struct memory_block *mem = to_memory_block(dev);
148 149 150 151 152 153 154
	ssize_t len = 0;

	/*
	 * We can probably put these states in a nice little array
	 * so that they're not open-coded
	 */
	switch (mem->state) {
155 156 157 158 159 160 161 162 163 164 165 166 167 168
	case MEM_ONLINE:
		len = sprintf(buf, "online\n");
		break;
	case MEM_OFFLINE:
		len = sprintf(buf, "offline\n");
		break;
	case MEM_GOING_OFFLINE:
		len = sprintf(buf, "going-offline\n");
		break;
	default:
		len = sprintf(buf, "ERROR-UNKNOWN-%ld\n",
				mem->state);
		WARN_ON(1);
		break;
169 170 171 172 173
	}

	return len;
}

174
int memory_notify(unsigned long val, void *v)
175
{
176
	return blocking_notifier_call_chain(&memory_chain, val, v);
177 178
}

179 180 181 182 183
int memory_isolate_notify(unsigned long val, void *v)
{
	return atomic_notifier_call_chain(&memory_isolate_chain, val, v);
}

184 185 186 187
/*
 * The probe routines leave the pages reserved, just as the bootmem code does.
 * Make sure they're still that way.
 */
188
static bool pages_correctly_reserved(unsigned long start_pfn)
189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218
{
	int i, j;
	struct page *page;
	unsigned long pfn = start_pfn;

	/*
	 * memmap between sections is not contiguous except with
	 * SPARSEMEM_VMEMMAP. We lookup the page once per section
	 * and assume memmap is contiguous within each section
	 */
	for (i = 0; i < sections_per_block; i++, pfn += PAGES_PER_SECTION) {
		if (WARN_ON_ONCE(!pfn_valid(pfn)))
			return false;
		page = pfn_to_page(pfn);

		for (j = 0; j < PAGES_PER_SECTION; j++) {
			if (PageReserved(page + j))
				continue;

			printk(KERN_WARNING "section number %ld page number %d "
				"not reserved, was it already online?\n",
				pfn_to_section_nr(pfn), j);

			return false;
		}
	}

	return true;
}

219 220 221 222 223
/*
 * MEMORY_HOTPLUG depends on SPARSEMEM in mm/Kconfig, so it is
 * OK to have direct references to sparsemem variables in here.
 */
static int
224
memory_block_action(unsigned long phys_index, unsigned long action, int online_type)
225
{
226
	unsigned long start_pfn;
227
	unsigned long nr_pages = PAGES_PER_SECTION * sections_per_block;
228
	struct page *first_page;
229 230
	int ret;

231 232
	start_pfn = phys_index << PFN_SECTION_SHIFT;
	first_page = pfn_to_page(start_pfn);
233

234
	switch (action) {
235 236 237 238 239 240 241 242 243 244 245 246 247
	case MEM_ONLINE:
		if (!pages_correctly_reserved(start_pfn))
			return -EBUSY;

		ret = online_pages(start_pfn, nr_pages, online_type);
		break;
	case MEM_OFFLINE:
		ret = offline_pages(start_pfn, nr_pages);
		break;
	default:
		WARN(1, KERN_WARNING "%s(%ld, %ld) unknown action: "
		     "%ld\n", __func__, phys_index, action, action);
		ret = -EINVAL;
248 249 250 251 252
	}

	return ret;
}

253 254
static int memory_block_change_state(struct memory_block *mem,
		unsigned long to_state, unsigned long from_state_req)
255
{
256
	int ret = 0;
257

258 259
	if (mem->state != from_state_req)
		return -EINVAL;
260

261 262 263
	if (to_state == MEM_OFFLINE)
		mem->state = MEM_GOING_OFFLINE;

264 265 266
	ret = memory_block_action(mem->start_section_nr, to_state,
				mem->online_type);

267
	mem->state = ret ? from_state_req : to_state;
268

269 270
	return ret;
}
271

272
/* The device lock serializes operations on memory_subsys_[online|offline] */
273 274
static int memory_subsys_online(struct device *dev)
{
275
	struct memory_block *mem = to_memory_block(dev);
276
	int ret;
277

278 279
	if (mem->state == MEM_ONLINE)
		return 0;
280

281 282 283 284 285 286
	/*
	 * If we are called from store_mem_state(), online_type will be
	 * set >= 0 Otherwise we were called from the device online
	 * attribute and need to set the online_type.
	 */
	if (mem->online_type < 0)
287
		mem->online_type = MMOP_ONLINE_KEEP;
288

289
	ret = memory_block_change_state(mem, MEM_ONLINE, MEM_OFFLINE);
290

291 292
	/* clear online_type */
	mem->online_type = -1;
293 294 295 296 297

	return ret;
}

static int memory_subsys_offline(struct device *dev)
298
{
299
	struct memory_block *mem = to_memory_block(dev);
300

301 302
	if (mem->state == MEM_OFFLINE)
		return 0;
303

304
	return memory_block_change_state(mem, MEM_OFFLINE, MEM_ONLINE);
305
}
306

307
static ssize_t
308 309
store_mem_state(struct device *dev,
		struct device_attribute *attr, const char *buf, size_t count)
310
{
311
	struct memory_block *mem = to_memory_block(dev);
312
	int ret, online_type;
313

314 315 316
	ret = lock_device_hotplug_sysfs();
	if (ret)
		return ret;
317

318
	if (sysfs_streq(buf, "online_kernel"))
319
		online_type = MMOP_ONLINE_KERNEL;
320
	else if (sysfs_streq(buf, "online_movable"))
321
		online_type = MMOP_ONLINE_MOVABLE;
322
	else if (sysfs_streq(buf, "online"))
323
		online_type = MMOP_ONLINE_KEEP;
324
	else if (sysfs_streq(buf, "offline"))
325
		online_type = MMOP_OFFLINE;
326 327 328 329
	else {
		ret = -EINVAL;
		goto err;
	}
330 331

	switch (online_type) {
332 333 334
	case MMOP_ONLINE_KERNEL:
	case MMOP_ONLINE_MOVABLE:
	case MMOP_ONLINE_KEEP:
335 336 337 338 339 340 341 342 343 344
		/*
		 * mem->online_type is not protected so there can be a
		 * race here.  However, when racing online, the first
		 * will succeed and the second will just return as the
		 * block will already be online.  The online type
		 * could be either one, but that is expected.
		 */
		mem->online_type = online_type;
		ret = device_online(&mem->dev);
		break;
345
	case MMOP_OFFLINE:
346 347 348 349
		ret = device_offline(&mem->dev);
		break;
	default:
		ret = -EINVAL; /* should never happen */
350 351
	}

352
err:
353
	unlock_device_hotplug();
354

355 356 357 358 359 360 361 362 363 364 365 366 367 368
	if (ret)
		return ret;
	return count;
}

/*
 * phys_device is a bad name for this.  What I really want
 * is a way to differentiate between memory ranges that
 * are part of physical devices that constitute
 * a complete removable unit or fru.
 * i.e. do these ranges belong to the same physical device,
 * s.t. if I offline all of these sections I can then
 * remove the physical device?
 */
369 370
static ssize_t show_phys_device(struct device *dev,
				struct device_attribute *attr, char *buf)
371
{
372
	struct memory_block *mem = to_memory_block(dev);
373 374 375
	return sprintf(buf, "%d\n", mem->phys_device);
}

376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414
#ifdef CONFIG_MEMORY_HOTREMOVE
static ssize_t show_valid_zones(struct device *dev,
				struct device_attribute *attr, char *buf)
{
	struct memory_block *mem = to_memory_block(dev);
	unsigned long start_pfn, end_pfn;
	unsigned long nr_pages = PAGES_PER_SECTION * sections_per_block;
	struct page *first_page;
	struct zone *zone;

	start_pfn = section_nr_to_pfn(mem->start_section_nr);
	end_pfn = start_pfn + nr_pages;
	first_page = pfn_to_page(start_pfn);

	/* The block contains more than one zone can not be offlined. */
	if (!test_pages_in_a_zone(start_pfn, end_pfn))
		return sprintf(buf, "none\n");

	zone = page_zone(first_page);

	if (zone_idx(zone) == ZONE_MOVABLE - 1) {
		/*The mem block is the last memoryblock of this zone.*/
		if (end_pfn == zone_end_pfn(zone))
			return sprintf(buf, "%s %s\n",
					zone->name, (zone + 1)->name);
	}

	if (zone_idx(zone) == ZONE_MOVABLE) {
		/*The mem block is the first memoryblock of ZONE_MOVABLE.*/
		if (start_pfn == zone->zone_start_pfn)
			return sprintf(buf, "%s %s\n",
					zone->name, (zone - 1)->name);
	}

	return sprintf(buf, "%s\n", zone->name);
}
static DEVICE_ATTR(valid_zones, 0444, show_valid_zones, NULL);
#endif

415 416 417 418
static DEVICE_ATTR(phys_index, 0444, show_mem_start_phys_index, NULL);
static DEVICE_ATTR(state, 0644, show_mem_state, store_mem_state);
static DEVICE_ATTR(phys_device, 0444, show_phys_device, NULL);
static DEVICE_ATTR(removable, 0444, show_mem_removable, NULL);
419 420 421 422 423

/*
 * Block size attribute stuff
 */
static ssize_t
424
print_block_size(struct device *dev, struct device_attribute *attr,
425
		 char *buf)
426
{
427
	return sprintf(buf, "%lx\n", get_memory_block_size());
428 429
}

430
static DEVICE_ATTR(block_size_bytes, 0444, print_block_size, NULL);
431 432 433 434 435 436 437 438 439

/*
 * Some architectures will have custom drivers to do this, and
 * will not need to do it from userspace.  The fake hot-add code
 * as well as ppc64 will do all of their discovery in userspace
 * and will require this interface.
 */
#ifdef CONFIG_ARCH_MEMORY_PROBE
static ssize_t
440
memory_probe_store(struct device *dev, struct device_attribute *attr,
441
		   const char *buf, size_t count)
442 443
{
	u64 phys_addr;
444
	int nid;
445
	int i, ret;
446
	unsigned long pages_per_block = PAGES_PER_SECTION * sections_per_block;
447

448 449 450
	ret = kstrtoull(buf, 0, &phys_addr);
	if (ret)
		return ret;
451

452 453 454
	if (phys_addr & ((pages_per_block << PAGE_SHIFT) - 1))
		return -EINVAL;

455 456 457 458 459
	for (i = 0; i < sections_per_block; i++) {
		nid = memory_add_physaddr_to_nid(phys_addr);
		ret = add_memory(nid, phys_addr,
				 PAGES_PER_SECTION << PAGE_SHIFT);
		if (ret)
460
			goto out;
461 462 463

		phys_addr += MIN_MEMORY_BLOCK_SIZE;
	}
464

465 466 467
	ret = count;
out:
	return ret;
468 469
}

470
static DEVICE_ATTR(probe, S_IWUSR, NULL, memory_probe_store);
471 472
#endif

473 474 475 476 477 478 479
#ifdef CONFIG_MEMORY_FAILURE
/*
 * Support for offlining pages of memory
 */

/* Soft offline a page */
static ssize_t
480 481
store_soft_offline_page(struct device *dev,
			struct device_attribute *attr,
482
			const char *buf, size_t count)
483 484 485 486 487
{
	int ret;
	u64 pfn;
	if (!capable(CAP_SYS_ADMIN))
		return -EPERM;
488
	if (kstrtoull(buf, 0, &pfn) < 0)
489 490 491 492 493 494 495 496 497 498
		return -EINVAL;
	pfn >>= PAGE_SHIFT;
	if (!pfn_valid(pfn))
		return -ENXIO;
	ret = soft_offline_page(pfn_to_page(pfn), 0);
	return ret == 0 ? count : ret;
}

/* Forcibly offline a page, including killing processes. */
static ssize_t
499 500
store_hard_offline_page(struct device *dev,
			struct device_attribute *attr,
501
			const char *buf, size_t count)
502 503 504 505 506
{
	int ret;
	u64 pfn;
	if (!capable(CAP_SYS_ADMIN))
		return -EPERM;
507
	if (kstrtoull(buf, 0, &pfn) < 0)
508 509
		return -EINVAL;
	pfn >>= PAGE_SHIFT;
510
	ret = memory_failure(pfn, 0, 0);
511 512 513
	return ret ? ret : count;
}

514 515
static DEVICE_ATTR(soft_offline_page, S_IWUSR, NULL, store_soft_offline_page);
static DEVICE_ATTR(hard_offline_page, S_IWUSR, NULL, store_hard_offline_page);
516 517
#endif

518 519 520 521 522
/*
 * Note that phys_device is optional.  It is here to allow for
 * differentiation between which *physical* devices each
 * section belongs to...
 */
523 524 525 526
int __weak arch_get_memory_phys_device(unsigned long start_pfn)
{
	return 0;
}
527

528 529 530 531
/*
 * A reference for the returned object is held and the reference for the
 * hinted object is released.
 */
532 533
struct memory_block *find_memory_block_hinted(struct mem_section *section,
					      struct memory_block *hint)
534
{
535
	int block_id = base_memory_block_id(__section_nr(section));
536 537
	struct device *hintdev = hint ? &hint->dev : NULL;
	struct device *dev;
538

539 540 541 542
	dev = subsys_find_device_by_id(&memory_subsys, block_id, hintdev);
	if (hint)
		put_device(&hint->dev);
	if (!dev)
543
		return NULL;
544
	return to_memory_block(dev);
545 546
}

547 548 549 550 551 552
/*
 * For now, we have a linear search to go find the appropriate
 * memory_block corresponding to a particular phys_index. If
 * this gets to be a real problem, we can always use a radix
 * tree or something here.
 *
553
 * This could be made generic for all device subsystems.
554 555 556 557 558 559
 */
struct memory_block *find_memory_block(struct mem_section *section)
{
	return find_memory_block_hinted(section, NULL);
}

560 561 562 563 564
static struct attribute *memory_memblk_attrs[] = {
	&dev_attr_phys_index.attr,
	&dev_attr_state.attr,
	&dev_attr_phys_device.attr,
	&dev_attr_removable.attr,
565 566 567
#ifdef CONFIG_MEMORY_HOTREMOVE
	&dev_attr_valid_zones.attr,
#endif
568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589
	NULL
};

static struct attribute_group memory_memblk_attr_group = {
	.attrs = memory_memblk_attrs,
};

static const struct attribute_group *memory_memblk_attr_groups[] = {
	&memory_memblk_attr_group,
	NULL,
};

/*
 * register_memory - Setup a sysfs device for a memory block
 */
static
int register_memory(struct memory_block *memory)
{
	memory->dev.bus = &memory_subsys;
	memory->dev.id = memory->start_section_nr / sections_per_block;
	memory->dev.release = memory_block_release;
	memory->dev.groups = memory_memblk_attr_groups;
590
	memory->dev.offline = memory->state == MEM_OFFLINE;
591

592
	return device_register(&memory->dev);
593 594
}

595 596
static int init_memory_block(struct memory_block **memory,
			     struct mem_section *section, unsigned long state)
597
{
598
	struct memory_block *mem;
599
	unsigned long start_pfn;
600
	int scn_nr;
601 602
	int ret = 0;

603
	mem = kzalloc(sizeof(*mem), GFP_KERNEL);
604 605 606
	if (!mem)
		return -ENOMEM;

607
	scn_nr = __section_nr(section);
608 609 610
	mem->start_section_nr =
			base_memory_block_id(scn_nr) * sections_per_block;
	mem->end_section_nr = mem->start_section_nr + sections_per_block - 1;
611
	mem->state = state;
612
	mem->section_count++;
613
	start_pfn = section_nr_to_pfn(mem->start_section_nr);
614 615
	mem->phys_device = arch_get_memory_phys_device(start_pfn);

616 617 618 619 620 621
	ret = register_memory(mem);

	*memory = mem;
	return ret;
}

622
static int add_memory_block(int base_section_nr)
623
{
624 625
	struct memory_block *mem;
	int i, ret, section_count = 0, section_nr;
626

627 628 629 630 631 632 633 634
	for (i = base_section_nr;
	     (i < base_section_nr + sections_per_block) && i < NR_MEM_SECTIONS;
	     i++) {
		if (!present_section_nr(i))
			continue;
		if (section_count == 0)
			section_nr = i;
		section_count++;
635 636
	}

637 638 639 640 641 642 643
	if (section_count == 0)
		return 0;
	ret = init_memory_block(&mem, __nr_to_section(section_nr), MEM_ONLINE);
	if (ret)
		return ret;
	mem->section_count = section_count;
	return 0;
644 645
}

646

647 648 649 650 651 652
/*
 * need an interface for the VM to add new memory regions,
 * but without onlining it.
 */
int register_new_memory(int nid, struct mem_section *section)
{
653 654
	int ret = 0;
	struct memory_block *mem;
655 656 657

	mutex_lock(&mem_sysfs_mutex);

658 659 660 661 662 663 664 665 666 667 668 669 670 671
	mem = find_memory_block(section);
	if (mem) {
		mem->section_count++;
		put_device(&mem->dev);
	} else {
		ret = init_memory_block(&mem, section, MEM_OFFLINE);
		if (ret)
			goto out;
	}

	if (mem->section_count == sections_per_block)
		ret = register_mem_sect_under_node(mem, nid);
out:
	mutex_unlock(&mem_sysfs_mutex);
672
	return ret;
673 674 675 676 677 678 679 680 681
}

#ifdef CONFIG_MEMORY_HOTREMOVE
static void
unregister_memory(struct memory_block *memory)
{
	BUG_ON(memory->dev.bus != &memory_subsys);

	/* drop the ref. we got in remove_memory_block() */
682
	put_device(&memory->dev);
683 684 685 686 687
	device_unregister(&memory->dev);
}

static int remove_memory_block(unsigned long node_id,
			       struct mem_section *section, int phys_device)
688 689 690
{
	struct memory_block *mem;

691
	mutex_lock(&mem_sysfs_mutex);
692
	mem = find_memory_block(section);
693
	unregister_mem_sect_under_nodes(mem, __section_nr(section));
694 695

	mem->section_count--;
696
	if (mem->section_count == 0)
697
		unregister_memory(mem);
698
	else
699
		put_device(&mem->dev);
700

701
	mutex_unlock(&mem_sysfs_mutex);
702 703 704 705 706
	return 0;
}

int unregister_memory_section(struct mem_section *section)
{
707
	if (!present_section(section))
708 709 710 711
		return -EINVAL;

	return remove_memory_block(0, section, 0);
}
712
#endif /* CONFIG_MEMORY_HOTREMOVE */
713

714 715 716 717 718 719
/* return true if the memory block is offlined, otherwise, return false */
bool is_memblock_offlined(struct memory_block *mem)
{
	return mem->state == MEM_OFFLINE;
}

720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742
static struct attribute *memory_root_attrs[] = {
#ifdef CONFIG_ARCH_MEMORY_PROBE
	&dev_attr_probe.attr,
#endif

#ifdef CONFIG_MEMORY_FAILURE
	&dev_attr_soft_offline_page.attr,
	&dev_attr_hard_offline_page.attr,
#endif

	&dev_attr_block_size_bytes.attr,
	NULL
};

static struct attribute_group memory_root_attr_group = {
	.attrs = memory_root_attrs,
};

static const struct attribute_group *memory_root_attr_groups[] = {
	&memory_root_attr_group,
	NULL,
};

743 744 745 746 747 748 749
/*
 * Initialize the sysfs support for memory devices...
 */
int __init memory_dev_init(void)
{
	unsigned int i;
	int ret;
750
	int err;
751
	unsigned long block_sz;
752

753
	ret = subsys_system_register(&memory_subsys, memory_root_attr_groups);
754 755
	if (ret)
		goto out;
756

757 758 759
	block_sz = get_memory_block_size();
	sections_per_block = block_sz / MIN_MEMORY_BLOCK_SIZE;

760 761 762 763
	/*
	 * Create entries for memory sections that were found
	 * during boot and have been initialized
	 */
764
	mutex_lock(&mem_sysfs_mutex);
765 766
	for (i = 0; i < NR_MEM_SECTIONS; i += sections_per_block) {
		err = add_memory_block(i);
767 768
		if (!ret)
			ret = err;
769
	}
770
	mutex_unlock(&mem_sysfs_mutex);
771

772 773
out:
	if (ret)
774
		printk(KERN_ERR "%s() failed: %d\n", __func__, ret);
775 776
	return ret;
}