memory.c 13.0 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
/*
 * drivers/base/memory.c - basic Memory class support
 *
 * Written by Matt Tolentino <matthew.e.tolentino@intel.com>
 *            Dave Hansen <haveblue@us.ibm.com>
 *
 * This file provides the necessary infrastructure to represent
 * a SPARSEMEM-memory-model system's physical memory in /sysfs.
 * All arch-independent code that assumes MEMORY_HOTPLUG requires
 * SPARSEMEM should be contained here, or in mm/memory_hotplug.c.
 */

#include <linux/sysdev.h>
#include <linux/module.h>
#include <linux/init.h>
#include <linux/topology.h>
17
#include <linux/capability.h>
18 19 20 21 22
#include <linux/device.h>
#include <linux/memory.h>
#include <linux/kobject.h>
#include <linux/memory_hotplug.h>
#include <linux/mm.h>
23
#include <linux/mutex.h>
24 25
#include <linux/stat.h>

26 27 28 29 30 31
#include <asm/atomic.h>
#include <asm/uaccess.h>

#define MEMORY_CLASS_NAME	"memory"

static struct sysdev_class memory_sysdev_class = {
32
	.name = MEMORY_CLASS_NAME,
33 34
};

35
static const char *memory_uevent_name(struct kset *kset, struct kobject *kobj)
36 37 38 39
{
	return MEMORY_CLASS_NAME;
}

40
static int memory_uevent(struct kset *kset, struct kobject *obj, struct kobj_uevent_env *env)
41 42 43 44 45 46
{
	int retval = 0;

	return retval;
}

47 48 49
static struct kset_uevent_ops memory_uevent_ops = {
	.name		= memory_uevent_name,
	.uevent		= memory_uevent,
50 51
};

52
static BLOCKING_NOTIFIER_HEAD(memory_chain);
53

54
int register_memory_notifier(struct notifier_block *nb)
55
{
56
        return blocking_notifier_chain_register(&memory_chain, nb);
57
}
58
EXPORT_SYMBOL(register_memory_notifier);
59

60
void unregister_memory_notifier(struct notifier_block *nb)
61
{
62
        blocking_notifier_chain_unregister(&memory_chain, nb);
63
}
64
EXPORT_SYMBOL(unregister_memory_notifier);
65 66 67 68

/*
 * register_memory - Setup a sysfs device for a memory block
 */
69 70
static
int register_memory(struct memory_block *memory, struct mem_section *section)
71 72 73 74 75 76 77 78 79 80 81
{
	int error;

	memory->sysdev.cls = &memory_sysdev_class;
	memory->sysdev.id = __section_nr(section);

	error = sysdev_register(&memory->sysdev);
	return error;
}

static void
82
unregister_memory(struct memory_block *memory, struct mem_section *section)
83 84 85 86
{
	BUG_ON(memory->sysdev.cls != &memory_sysdev_class);
	BUG_ON(memory->sysdev.id != __section_nr(section));

87 88
	/* drop the ref. we got in remove_memory_block() */
	kobject_put(&memory->sysdev.kobj);
89 90 91 92 93 94 95 96
	sysdev_unregister(&memory->sysdev);
}

/*
 * use this as the physical section index that this memsection
 * uses.
 */

97 98
static ssize_t show_mem_phys_index(struct sys_device *dev,
			struct sysdev_attribute *attr, char *buf)
99 100 101 102 103 104
{
	struct memory_block *mem =
		container_of(dev, struct memory_block, sysdev);
	return sprintf(buf, "%08lx\n", mem->phys_index);
}

105 106 107
/*
 * Show whether the section of memory is likely to be hot-removable
 */
108 109
static ssize_t show_mem_removable(struct sys_device *dev,
			struct sysdev_attribute *attr, char *buf)
110 111 112 113 114 115 116 117 118 119 120
{
	unsigned long start_pfn;
	int ret;
	struct memory_block *mem =
		container_of(dev, struct memory_block, sysdev);

	start_pfn = section_nr_to_pfn(mem->phys_index);
	ret = is_mem_section_removable(start_pfn, PAGES_PER_SECTION);
	return sprintf(buf, "%d\n", ret);
}

121 122 123
/*
 * online, offline, going offline, etc.
 */
124 125
static ssize_t show_mem_state(struct sys_device *dev,
			struct sysdev_attribute *attr, char *buf)
126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154
{
	struct memory_block *mem =
		container_of(dev, struct memory_block, sysdev);
	ssize_t len = 0;

	/*
	 * We can probably put these states in a nice little array
	 * so that they're not open-coded
	 */
	switch (mem->state) {
		case MEM_ONLINE:
			len = sprintf(buf, "online\n");
			break;
		case MEM_OFFLINE:
			len = sprintf(buf, "offline\n");
			break;
		case MEM_GOING_OFFLINE:
			len = sprintf(buf, "going-offline\n");
			break;
		default:
			len = sprintf(buf, "ERROR-UNKNOWN-%ld\n",
					mem->state);
			WARN_ON(1);
			break;
	}

	return len;
}

155
int memory_notify(unsigned long val, void *v)
156
{
157
	return blocking_notifier_call_chain(&memory_chain, val, v);
158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209
}

/*
 * MEMORY_HOTPLUG depends on SPARSEMEM in mm/Kconfig, so it is
 * OK to have direct references to sparsemem variables in here.
 */
static int
memory_block_action(struct memory_block *mem, unsigned long action)
{
	int i;
	unsigned long psection;
	unsigned long start_pfn, start_paddr;
	struct page *first_page;
	int ret;
	int old_state = mem->state;

	psection = mem->phys_index;
	first_page = pfn_to_page(psection << PFN_SECTION_SHIFT);

	/*
	 * The probe routines leave the pages reserved, just
	 * as the bootmem code does.  Make sure they're still
	 * that way.
	 */
	if (action == MEM_ONLINE) {
		for (i = 0; i < PAGES_PER_SECTION; i++) {
			if (PageReserved(first_page+i))
				continue;

			printk(KERN_WARNING "section number %ld page number %d "
				"not reserved, was it already online? \n",
				psection, i);
			return -EBUSY;
		}
	}

	switch (action) {
		case MEM_ONLINE:
			start_pfn = page_to_pfn(first_page);
			ret = online_pages(start_pfn, PAGES_PER_SECTION);
			break;
		case MEM_OFFLINE:
			mem->state = MEM_GOING_OFFLINE;
			start_paddr = page_to_pfn(first_page) << PAGE_SHIFT;
			ret = remove_memory(start_paddr,
					    PAGES_PER_SECTION << PAGE_SHIFT);
			if (ret) {
				mem->state = old_state;
				break;
			}
			break;
		default:
A
Arjan van de Ven 已提交
210
			WARN(1, KERN_WARNING "%s(%p, %ld) unknown action: %ld\n",
211
					__func__, mem, action, action);
212 213 214 215 216 217 218 219 220 221
			ret = -EINVAL;
	}

	return ret;
}

static int memory_block_change_state(struct memory_block *mem,
		unsigned long to_state, unsigned long from_state_req)
{
	int ret = 0;
222
	mutex_lock(&mem->state_mutex);
223 224 225 226 227 228 229 230 231 232 233

	if (mem->state != from_state_req) {
		ret = -EINVAL;
		goto out;
	}

	ret = memory_block_action(mem, to_state);
	if (!ret)
		mem->state = to_state;

out:
234
	mutex_unlock(&mem->state_mutex);
235 236 237 238
	return ret;
}

static ssize_t
239 240
store_mem_state(struct sys_device *dev,
		struct sysdev_attribute *attr, const char *buf, size_t count)
241 242 243 244 245 246 247 248
{
	struct memory_block *mem;
	unsigned int phys_section_nr;
	int ret = -EINVAL;

	mem = container_of(dev, struct memory_block, sysdev);
	phys_section_nr = mem->phys_index;

249
	if (!present_section_nr(phys_section_nr))
250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270
		goto out;

	if (!strncmp(buf, "online", min((int)count, 6)))
		ret = memory_block_change_state(mem, MEM_ONLINE, MEM_OFFLINE);
	else if(!strncmp(buf, "offline", min((int)count, 7)))
		ret = memory_block_change_state(mem, MEM_OFFLINE, MEM_ONLINE);
out:
	if (ret)
		return ret;
	return count;
}

/*
 * phys_device is a bad name for this.  What I really want
 * is a way to differentiate between memory ranges that
 * are part of physical devices that constitute
 * a complete removable unit or fru.
 * i.e. do these ranges belong to the same physical device,
 * s.t. if I offline all of these sections I can then
 * remove the physical device?
 */
271 272
static ssize_t show_phys_device(struct sys_device *dev,
				struct sysdev_attribute *attr, char *buf)
273 274 275 276 277 278 279 280 281
{
	struct memory_block *mem =
		container_of(dev, struct memory_block, sysdev);
	return sprintf(buf, "%d\n", mem->phys_device);
}

static SYSDEV_ATTR(phys_index, 0444, show_mem_phys_index, NULL);
static SYSDEV_ATTR(state, 0644, show_mem_state, store_mem_state);
static SYSDEV_ATTR(phys_device, 0444, show_phys_device, NULL);
282
static SYSDEV_ATTR(removable, 0444, show_mem_removable, NULL);
283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301

#define mem_create_simple_file(mem, attr_name)	\
	sysdev_create_file(&mem->sysdev, &attr_##attr_name)
#define mem_remove_simple_file(mem, attr_name)	\
	sysdev_remove_file(&mem->sysdev, &attr_##attr_name)

/*
 * Block size attribute stuff
 */
static ssize_t
print_block_size(struct class *class, char *buf)
{
	return sprintf(buf, "%lx\n", (unsigned long)PAGES_PER_SECTION * PAGE_SIZE);
}

static CLASS_ATTR(block_size_bytes, 0444, print_block_size, NULL);

static int block_size_init(void)
{
302 303
	return sysfs_create_file(&memory_sysdev_class.kset.kobj,
				&class_attr_block_size_bytes.attr);
304 305 306 307 308 309 310 311 312 313
}

/*
 * Some architectures will have custom drivers to do this, and
 * will not need to do it from userspace.  The fake hot-add code
 * as well as ppc64 will do all of their discovery in userspace
 * and will require this interface.
 */
#ifdef CONFIG_ARCH_MEMORY_PROBE
static ssize_t
314
memory_probe_store(struct class *class, const char *buf, size_t count)
315 316
{
	u64 phys_addr;
317
	int nid;
318 319 320 321
	int ret;

	phys_addr = simple_strtoull(buf, NULL, 0);

322 323
	nid = memory_add_physaddr_to_nid(phys_addr);
	ret = add_memory(nid, phys_addr, PAGES_PER_SECTION << PAGE_SHIFT);
324 325 326 327 328 329

	if (ret)
		count = ret;

	return count;
}
330
static CLASS_ATTR(probe, S_IWUSR, NULL, memory_probe_store);
331 332 333

static int memory_probe_init(void)
{
334 335
	return sysfs_create_file(&memory_sysdev_class.kset.kobj,
				&class_attr_probe.attr);
336 337
}
#else
338 339 340 341
static inline int memory_probe_init(void)
{
	return 0;
}
342 343
#endif

344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401
#ifdef CONFIG_MEMORY_FAILURE
/*
 * Support for offlining pages of memory
 */

/* Soft offline a page */
static ssize_t
store_soft_offline_page(struct class *class, const char *buf, size_t count)
{
	int ret;
	u64 pfn;
	if (!capable(CAP_SYS_ADMIN))
		return -EPERM;
	if (strict_strtoull(buf, 0, &pfn) < 0)
		return -EINVAL;
	pfn >>= PAGE_SHIFT;
	if (!pfn_valid(pfn))
		return -ENXIO;
	ret = soft_offline_page(pfn_to_page(pfn), 0);
	return ret == 0 ? count : ret;
}

/* Forcibly offline a page, including killing processes. */
static ssize_t
store_hard_offline_page(struct class *class, const char *buf, size_t count)
{
	int ret;
	u64 pfn;
	if (!capable(CAP_SYS_ADMIN))
		return -EPERM;
	if (strict_strtoull(buf, 0, &pfn) < 0)
		return -EINVAL;
	pfn >>= PAGE_SHIFT;
	ret = __memory_failure(pfn, 0, 0);
	return ret ? ret : count;
}

static CLASS_ATTR(soft_offline_page, 0644, NULL, store_soft_offline_page);
static CLASS_ATTR(hard_offline_page, 0644, NULL, store_hard_offline_page);

static __init int memory_fail_init(void)
{
	int err;

	err = sysfs_create_file(&memory_sysdev_class.kset.kobj,
				&class_attr_soft_offline_page.attr);
	if (!err)
		err = sysfs_create_file(&memory_sysdev_class.kset.kobj,
				&class_attr_hard_offline_page.attr);
	return err;
}
#else
static inline int memory_fail_init(void)
{
	return 0;
}
#endif

402 403 404 405 406 407
/*
 * Note that phys_device is optional.  It is here to allow for
 * differentiation between which *physical* devices each
 * section belongs to...
 */

408 409 410
static int add_memory_block(int nid, struct mem_section *section,
			unsigned long state, int phys_device,
			enum mem_add_context context)
411
{
412
	struct memory_block *mem = kzalloc(sizeof(*mem), GFP_KERNEL);
413 414 415 416 417 418 419
	int ret = 0;

	if (!mem)
		return -ENOMEM;

	mem->phys_index = __section_nr(section);
	mem->state = state;
420
	mutex_init(&mem->state_mutex);
421 422
	mem->phys_device = phys_device;

423
	ret = register_memory(mem, section);
424 425 426 427 428 429
	if (!ret)
		ret = mem_create_simple_file(mem, phys_index);
	if (!ret)
		ret = mem_create_simple_file(mem, state);
	if (!ret)
		ret = mem_create_simple_file(mem, phys_device);
430 431
	if (!ret)
		ret = mem_create_simple_file(mem, removable);
432 433 434 435
	if (!ret) {
		if (context == HOTPLUG)
			ret = register_mem_sect_under_node(mem, nid);
	}
436 437 438 439 440 441 442 443 444 445 446 447

	return ret;
}

/*
 * For now, we have a linear search to go find the appropriate
 * memory_block corresponding to a particular phys_index. If
 * this gets to be a real problem, we can always use a radix
 * tree or something here.
 *
 * This could be made generic for all sysdev classes.
 */
448
struct memory_block *find_memory_block(struct mem_section *section)
449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476
{
	struct kobject *kobj;
	struct sys_device *sysdev;
	struct memory_block *mem;
	char name[sizeof(MEMORY_CLASS_NAME) + 9 + 1];

	/*
	 * This only works because we know that section == sysdev->id
	 * slightly redundant with sysdev_register()
	 */
	sprintf(&name[0], "%s%d", MEMORY_CLASS_NAME, __section_nr(section));

	kobj = kset_find_obj(&memory_sysdev_class.kset, name);
	if (!kobj)
		return NULL;

	sysdev = container_of(kobj, struct sys_device, kobj);
	mem = container_of(sysdev, struct memory_block, sysdev);

	return mem;
}

int remove_memory_block(unsigned long node_id, struct mem_section *section,
		int phys_device)
{
	struct memory_block *mem;

	mem = find_memory_block(section);
477
	unregister_mem_sect_under_nodes(mem);
478 479 480
	mem_remove_simple_file(mem, phys_index);
	mem_remove_simple_file(mem, state);
	mem_remove_simple_file(mem, phys_device);
481
	mem_remove_simple_file(mem, removable);
482
	unregister_memory(mem, section);
483 484 485 486 487 488 489 490

	return 0;
}

/*
 * need an interface for the VM to add new memory regions,
 * but without onlining it.
 */
491
int register_new_memory(int nid, struct mem_section *section)
492
{
493
	return add_memory_block(nid, section, MEM_OFFLINE, 0, HOTPLUG);
494 495 496 497
}

int unregister_memory_section(struct mem_section *section)
{
498
	if (!present_section(section))
499 500 501 502 503 504 505 506 507 508 509 510
		return -EINVAL;

	return remove_memory_block(0, section, 0);
}

/*
 * Initialize the sysfs support for memory devices...
 */
int __init memory_dev_init(void)
{
	unsigned int i;
	int ret;
511
	int err;
512

513
	memory_sysdev_class.kset.uevent_ops = &memory_uevent_ops;
514
	ret = sysdev_class_register(&memory_sysdev_class);
515 516
	if (ret)
		goto out;
517 518 519 520 521 522

	/*
	 * Create entries for memory sections that were found
	 * during boot and have been initialized
	 */
	for (i = 0; i < NR_MEM_SECTIONS; i++) {
523
		if (!present_section_nr(i))
524
			continue;
525 526
		err = add_memory_block(0, __nr_to_section(i), MEM_ONLINE,
					0, BOOT);
527 528
		if (!ret)
			ret = err;
529 530
	}

531
	err = memory_probe_init();
532 533 534
	if (!ret)
		ret = err;
	err = memory_fail_init();
535 536 537 538 539 540 541
	if (!ret)
		ret = err;
	err = block_size_init();
	if (!ret)
		ret = err;
out:
	if (ret)
542
		printk(KERN_ERR "%s() failed: %d\n", __func__, ret);
543 544
	return ret;
}