memory.c 19.7 KB
Newer Older
1
/*
2
 * Memory subsystem support
3 4 5 6 7 8 9 10 11 12 13 14 15
 *
 * Written by Matt Tolentino <matthew.e.tolentino@intel.com>
 *            Dave Hansen <haveblue@us.ibm.com>
 *
 * This file provides the necessary infrastructure to represent
 * a SPARSEMEM-memory-model system's physical memory in /sysfs.
 * All arch-independent code that assumes MEMORY_HOTPLUG requires
 * SPARSEMEM should be contained here, or in mm/memory_hotplug.c.
 */

#include <linux/module.h>
#include <linux/init.h>
#include <linux/topology.h>
16
#include <linux/capability.h>
17 18 19 20
#include <linux/device.h>
#include <linux/memory.h>
#include <linux/memory_hotplug.h>
#include <linux/mm.h>
21
#include <linux/mutex.h>
22
#include <linux/stat.h>
23
#include <linux/slab.h>
24

A
Arun Sharma 已提交
25
#include <linux/atomic.h>
26 27
#include <asm/uaccess.h>

28 29
static DEFINE_MUTEX(mem_sysfs_mutex);

30
#define MEMORY_CLASS_NAME	"memory"
31

32 33
#define to_memory_block(dev) container_of(dev, struct memory_block, dev)

34 35 36 37 38 39
static int sections_per_block;

static inline int base_memory_block_id(int section_nr)
{
	return section_nr / sections_per_block;
}
40

41 42 43
static int memory_subsys_online(struct device *dev);
static int memory_subsys_offline(struct device *dev);

44
static struct bus_type memory_subsys = {
45
	.name = MEMORY_CLASS_NAME,
46
	.dev_name = MEMORY_CLASS_NAME,
47 48
	.online = memory_subsys_online,
	.offline = memory_subsys_offline,
49 50
};

51
static BLOCKING_NOTIFIER_HEAD(memory_chain);
52

53
int register_memory_notifier(struct notifier_block *nb)
54
{
55
	return blocking_notifier_chain_register(&memory_chain, nb);
56
}
57
EXPORT_SYMBOL(register_memory_notifier);
58

59
void unregister_memory_notifier(struct notifier_block *nb)
60
{
61
	blocking_notifier_chain_unregister(&memory_chain, nb);
62
}
63
EXPORT_SYMBOL(unregister_memory_notifier);
64

65 66 67 68 69 70 71 72 73 74 75 76 77 78
static ATOMIC_NOTIFIER_HEAD(memory_isolate_chain);

int register_memory_isolate_notifier(struct notifier_block *nb)
{
	return atomic_notifier_chain_register(&memory_isolate_chain, nb);
}
EXPORT_SYMBOL(register_memory_isolate_notifier);

void unregister_memory_isolate_notifier(struct notifier_block *nb)
{
	atomic_notifier_chain_unregister(&memory_isolate_chain, nb);
}
EXPORT_SYMBOL(unregister_memory_isolate_notifier);

79 80
static void memory_block_release(struct device *dev)
{
81
	struct memory_block *mem = to_memory_block(dev);
82 83 84 85

	kfree(mem);
}

86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105
unsigned long __weak memory_block_size_bytes(void)
{
	return MIN_MEMORY_BLOCK_SIZE;
}

static unsigned long get_memory_block_size(void)
{
	unsigned long block_sz;

	block_sz = memory_block_size_bytes();

	/* Validate blk_sz is a power of 2 and not less than section size */
	if ((block_sz & (block_sz - 1)) || (block_sz < MIN_MEMORY_BLOCK_SIZE)) {
		WARN_ON(1);
		block_sz = MIN_MEMORY_BLOCK_SIZE;
	}

	return block_sz;
}

106 107 108 109 110
/*
 * use this as the physical section index that this memsection
 * uses.
 */

111 112
static ssize_t show_mem_start_phys_index(struct device *dev,
			struct device_attribute *attr, char *buf)
113
{
114
	struct memory_block *mem = to_memory_block(dev);
115 116 117 118 119 120
	unsigned long phys_index;

	phys_index = mem->start_section_nr / sections_per_block;
	return sprintf(buf, "%08lx\n", phys_index);
}

121 122 123
/*
 * Show whether the section of memory is likely to be hot-removable
 */
124 125
static ssize_t show_mem_removable(struct device *dev,
			struct device_attribute *attr, char *buf)
126
{
127 128
	unsigned long i, pfn;
	int ret = 1;
129
	struct memory_block *mem = to_memory_block(dev);
130

131
	for (i = 0; i < sections_per_block; i++) {
132 133
		if (!present_section_nr(mem->start_section_nr + i))
			continue;
134
		pfn = section_nr_to_pfn(mem->start_section_nr + i);
135 136 137
		ret &= is_mem_section_removable(pfn, PAGES_PER_SECTION);
	}

138 139 140
	return sprintf(buf, "%d\n", ret);
}

141 142 143
/*
 * online, offline, going offline, etc.
 */
144 145
static ssize_t show_mem_state(struct device *dev,
			struct device_attribute *attr, char *buf)
146
{
147
	struct memory_block *mem = to_memory_block(dev);
148 149 150 151 152 153 154
	ssize_t len = 0;

	/*
	 * We can probably put these states in a nice little array
	 * so that they're not open-coded
	 */
	switch (mem->state) {
155 156 157 158 159 160 161 162 163 164 165 166 167 168
	case MEM_ONLINE:
		len = sprintf(buf, "online\n");
		break;
	case MEM_OFFLINE:
		len = sprintf(buf, "offline\n");
		break;
	case MEM_GOING_OFFLINE:
		len = sprintf(buf, "going-offline\n");
		break;
	default:
		len = sprintf(buf, "ERROR-UNKNOWN-%ld\n",
				mem->state);
		WARN_ON(1);
		break;
169 170 171 172 173
	}

	return len;
}

174
int memory_notify(unsigned long val, void *v)
175
{
176
	return blocking_notifier_call_chain(&memory_chain, val, v);
177 178
}

179 180 181 182 183
int memory_isolate_notify(unsigned long val, void *v)
{
	return atomic_notifier_call_chain(&memory_isolate_chain, val, v);
}

184 185 186 187
/*
 * The probe routines leave the pages reserved, just as the bootmem code does.
 * Make sure they're still that way.
 */
188
static bool pages_correctly_reserved(unsigned long start_pfn)
189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218
{
	int i, j;
	struct page *page;
	unsigned long pfn = start_pfn;

	/*
	 * memmap between sections is not contiguous except with
	 * SPARSEMEM_VMEMMAP. We lookup the page once per section
	 * and assume memmap is contiguous within each section
	 */
	for (i = 0; i < sections_per_block; i++, pfn += PAGES_PER_SECTION) {
		if (WARN_ON_ONCE(!pfn_valid(pfn)))
			return false;
		page = pfn_to_page(pfn);

		for (j = 0; j < PAGES_PER_SECTION; j++) {
			if (PageReserved(page + j))
				continue;

			printk(KERN_WARNING "section number %ld page number %d "
				"not reserved, was it already online?\n",
				pfn_to_section_nr(pfn), j);

			return false;
		}
	}

	return true;
}

219 220 221
/*
 * MEMORY_HOTPLUG depends on SPARSEMEM in mm/Kconfig, so it is
 * OK to have direct references to sparsemem variables in here.
222
 * Must already be protected by mem_hotplug_begin().
223 224
 */
static int
225
memory_block_action(unsigned long phys_index, unsigned long action, int online_type)
226
{
227
	unsigned long start_pfn;
228
	unsigned long nr_pages = PAGES_PER_SECTION * sections_per_block;
229
	struct page *first_page;
230 231
	int ret;

232
	start_pfn = section_nr_to_pfn(phys_index);
233
	first_page = pfn_to_page(start_pfn);
234

235
	switch (action) {
236 237 238 239 240 241 242 243 244 245 246 247 248
	case MEM_ONLINE:
		if (!pages_correctly_reserved(start_pfn))
			return -EBUSY;

		ret = online_pages(start_pfn, nr_pages, online_type);
		break;
	case MEM_OFFLINE:
		ret = offline_pages(start_pfn, nr_pages);
		break;
	default:
		WARN(1, KERN_WARNING "%s(%ld, %ld) unknown action: "
		     "%ld\n", __func__, phys_index, action, action);
		ret = -EINVAL;
249 250 251 252 253
	}

	return ret;
}

254
int memory_block_change_state(struct memory_block *mem,
255
		unsigned long to_state, unsigned long from_state_req)
256
{
257
	int ret = 0;
258

259 260
	if (mem->state != from_state_req)
		return -EINVAL;
261

262 263 264
	if (to_state == MEM_OFFLINE)
		mem->state = MEM_GOING_OFFLINE;

265 266 267
	ret = memory_block_action(mem->start_section_nr, to_state,
				mem->online_type);

268
	mem->state = ret ? from_state_req : to_state;
269

270 271
	return ret;
}
272

273
/* The device lock serializes operations on memory_subsys_[online|offline] */
274 275
static int memory_subsys_online(struct device *dev)
{
276
	struct memory_block *mem = to_memory_block(dev);
277
	int ret;
278

279 280
	if (mem->state == MEM_ONLINE)
		return 0;
281

282 283 284 285 286 287
	/*
	 * If we are called from store_mem_state(), online_type will be
	 * set >= 0 Otherwise we were called from the device online
	 * attribute and need to set the online_type.
	 */
	if (mem->online_type < 0)
288
		mem->online_type = MMOP_ONLINE_KEEP;
289

290
	/* Already under protection of mem_hotplug_begin() */
291
	ret = memory_block_change_state(mem, MEM_ONLINE, MEM_OFFLINE);
292

293 294
	/* clear online_type */
	mem->online_type = -1;
295 296 297 298 299

	return ret;
}

static int memory_subsys_offline(struct device *dev)
300
{
301
	struct memory_block *mem = to_memory_block(dev);
302

303 304
	if (mem->state == MEM_OFFLINE)
		return 0;
305

306 307 308 309
	/* Can't offline block with non-present sections */
	if (mem->section_count != sections_per_block)
		return -EINVAL;

310
	return memory_block_change_state(mem, MEM_OFFLINE, MEM_ONLINE);
311
}
312

313
static ssize_t
314 315
store_mem_state(struct device *dev,
		struct device_attribute *attr, const char *buf, size_t count)
316
{
317
	struct memory_block *mem = to_memory_block(dev);
318
	int ret, online_type;
319

320 321 322
	ret = lock_device_hotplug_sysfs();
	if (ret)
		return ret;
323

324
	if (sysfs_streq(buf, "online_kernel"))
325
		online_type = MMOP_ONLINE_KERNEL;
326
	else if (sysfs_streq(buf, "online_movable"))
327
		online_type = MMOP_ONLINE_MOVABLE;
328
	else if (sysfs_streq(buf, "online"))
329
		online_type = MMOP_ONLINE_KEEP;
330
	else if (sysfs_streq(buf, "offline"))
331
		online_type = MMOP_OFFLINE;
332 333 334 335
	else {
		ret = -EINVAL;
		goto err;
	}
336

337 338 339 340 341 342 343 344 345
	/*
	 * Memory hotplug needs to hold mem_hotplug_begin() for probe to find
	 * the correct memory block to online before doing device_online(dev),
	 * which will take dev->mutex.  Take the lock early to prevent an
	 * inversion, memory_subsys_online() callbacks will be implemented by
	 * assuming it's already protected.
	 */
	mem_hotplug_begin();

346
	switch (online_type) {
347 348 349
	case MMOP_ONLINE_KERNEL:
	case MMOP_ONLINE_MOVABLE:
	case MMOP_ONLINE_KEEP:
350 351 352
		mem->online_type = online_type;
		ret = device_online(&mem->dev);
		break;
353
	case MMOP_OFFLINE:
354 355 356 357
		ret = device_offline(&mem->dev);
		break;
	default:
		ret = -EINVAL; /* should never happen */
358 359
	}

360
	mem_hotplug_done();
361
err:
362
	unlock_device_hotplug();
363

364 365 366 367 368 369 370 371 372 373 374 375 376 377
	if (ret)
		return ret;
	return count;
}

/*
 * phys_device is a bad name for this.  What I really want
 * is a way to differentiate between memory ranges that
 * are part of physical devices that constitute
 * a complete removable unit or fru.
 * i.e. do these ranges belong to the same physical device,
 * s.t. if I offline all of these sections I can then
 * remove the physical device?
 */
378 379
static ssize_t show_phys_device(struct device *dev,
				struct device_attribute *attr, char *buf)
380
{
381
	struct memory_block *mem = to_memory_block(dev);
382 383 384
	return sprintf(buf, "%d\n", mem->phys_device);
}

385 386 387 388 389 390 391 392 393
#ifdef CONFIG_MEMORY_HOTREMOVE
static ssize_t show_valid_zones(struct device *dev,
				struct device_attribute *attr, char *buf)
{
	struct memory_block *mem = to_memory_block(dev);
	unsigned long start_pfn, end_pfn;
	unsigned long nr_pages = PAGES_PER_SECTION * sections_per_block;
	struct page *first_page;
	struct zone *zone;
394
	int zone_shift = 0;
395 396 397 398 399 400 401 402 403 404 405

	start_pfn = section_nr_to_pfn(mem->start_section_nr);
	end_pfn = start_pfn + nr_pages;
	first_page = pfn_to_page(start_pfn);

	/* The block contains more than one zone can not be offlined. */
	if (!test_pages_in_a_zone(start_pfn, end_pfn))
		return sprintf(buf, "none\n");

	zone = page_zone(first_page);

406 407 408 409 410 411 412 413
	/* MMOP_ONLINE_KEEP */
	sprintf(buf, "%s", zone->name);

	/* MMOP_ONLINE_KERNEL */
	zone_shift = zone_can_shift(start_pfn, nr_pages, ZONE_NORMAL);
	if (zone_shift) {
		strcat(buf, " ");
		strcat(buf, (zone + zone_shift)->name);
414 415
	}

416 417 418 419 420
	/* MMOP_ONLINE_MOVABLE */
	zone_shift = zone_can_shift(start_pfn, nr_pages, ZONE_MOVABLE);
	if (zone_shift) {
		strcat(buf, " ");
		strcat(buf, (zone + zone_shift)->name);
421 422
	}

423 424 425
	strcat(buf, "\n");

	return strlen(buf);
426 427 428 429
}
static DEVICE_ATTR(valid_zones, 0444, show_valid_zones, NULL);
#endif

430 431 432 433
static DEVICE_ATTR(phys_index, 0444, show_mem_start_phys_index, NULL);
static DEVICE_ATTR(state, 0644, show_mem_state, store_mem_state);
static DEVICE_ATTR(phys_device, 0444, show_phys_device, NULL);
static DEVICE_ATTR(removable, 0444, show_mem_removable, NULL);
434 435 436 437 438

/*
 * Block size attribute stuff
 */
static ssize_t
439
print_block_size(struct device *dev, struct device_attribute *attr,
440
		 char *buf)
441
{
442
	return sprintf(buf, "%lx\n", get_memory_block_size());
443 444
}

445
static DEVICE_ATTR(block_size_bytes, 0444, print_block_size, NULL);
446

447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477
/*
 * Memory auto online policy.
 */

static ssize_t
show_auto_online_blocks(struct device *dev, struct device_attribute *attr,
			char *buf)
{
	if (memhp_auto_online)
		return sprintf(buf, "online\n");
	else
		return sprintf(buf, "offline\n");
}

static ssize_t
store_auto_online_blocks(struct device *dev, struct device_attribute *attr,
			 const char *buf, size_t count)
{
	if (sysfs_streq(buf, "online"))
		memhp_auto_online = true;
	else if (sysfs_streq(buf, "offline"))
		memhp_auto_online = false;
	else
		return -EINVAL;

	return count;
}

static DEVICE_ATTR(auto_online_blocks, 0644, show_auto_online_blocks,
		   store_auto_online_blocks);

478 479 480 481 482 483 484 485
/*
 * Some architectures will have custom drivers to do this, and
 * will not need to do it from userspace.  The fake hot-add code
 * as well as ppc64 will do all of their discovery in userspace
 * and will require this interface.
 */
#ifdef CONFIG_ARCH_MEMORY_PROBE
static ssize_t
486
memory_probe_store(struct device *dev, struct device_attribute *attr,
487
		   const char *buf, size_t count)
488 489
{
	u64 phys_addr;
490
	int nid, ret;
491
	unsigned long pages_per_block = PAGES_PER_SECTION * sections_per_block;
492

493 494 495
	ret = kstrtoull(buf, 0, &phys_addr);
	if (ret)
		return ret;
496

497 498 499
	if (phys_addr & ((pages_per_block << PAGE_SHIFT) - 1))
		return -EINVAL;

500 501 502
	nid = memory_add_physaddr_to_nid(phys_addr);
	ret = add_memory(nid, phys_addr,
			 MIN_MEMORY_BLOCK_SIZE * sections_per_block);
503

504 505
	if (ret)
		goto out;
506

507 508 509
	ret = count;
out:
	return ret;
510 511
}

512
static DEVICE_ATTR(probe, S_IWUSR, NULL, memory_probe_store);
513 514
#endif

515 516 517 518 519 520 521
#ifdef CONFIG_MEMORY_FAILURE
/*
 * Support for offlining pages of memory
 */

/* Soft offline a page */
static ssize_t
522 523
store_soft_offline_page(struct device *dev,
			struct device_attribute *attr,
524
			const char *buf, size_t count)
525 526 527 528 529
{
	int ret;
	u64 pfn;
	if (!capable(CAP_SYS_ADMIN))
		return -EPERM;
530
	if (kstrtoull(buf, 0, &pfn) < 0)
531 532 533 534 535 536 537 538 539 540
		return -EINVAL;
	pfn >>= PAGE_SHIFT;
	if (!pfn_valid(pfn))
		return -ENXIO;
	ret = soft_offline_page(pfn_to_page(pfn), 0);
	return ret == 0 ? count : ret;
}

/* Forcibly offline a page, including killing processes. */
static ssize_t
541 542
store_hard_offline_page(struct device *dev,
			struct device_attribute *attr,
543
			const char *buf, size_t count)
544 545 546 547 548
{
	int ret;
	u64 pfn;
	if (!capable(CAP_SYS_ADMIN))
		return -EPERM;
549
	if (kstrtoull(buf, 0, &pfn) < 0)
550 551
		return -EINVAL;
	pfn >>= PAGE_SHIFT;
552
	ret = memory_failure(pfn, 0, 0);
553 554 555
	return ret ? ret : count;
}

556 557
static DEVICE_ATTR(soft_offline_page, S_IWUSR, NULL, store_soft_offline_page);
static DEVICE_ATTR(hard_offline_page, S_IWUSR, NULL, store_hard_offline_page);
558 559
#endif

560 561 562 563 564
/*
 * Note that phys_device is optional.  It is here to allow for
 * differentiation between which *physical* devices each
 * section belongs to...
 */
565 566 567 568
int __weak arch_get_memory_phys_device(unsigned long start_pfn)
{
	return 0;
}
569

570 571 572 573
/*
 * A reference for the returned object is held and the reference for the
 * hinted object is released.
 */
574 575
struct memory_block *find_memory_block_hinted(struct mem_section *section,
					      struct memory_block *hint)
576
{
577
	int block_id = base_memory_block_id(__section_nr(section));
578 579
	struct device *hintdev = hint ? &hint->dev : NULL;
	struct device *dev;
580

581 582 583 584
	dev = subsys_find_device_by_id(&memory_subsys, block_id, hintdev);
	if (hint)
		put_device(&hint->dev);
	if (!dev)
585
		return NULL;
586
	return to_memory_block(dev);
587 588
}

589 590 591 592 593 594
/*
 * For now, we have a linear search to go find the appropriate
 * memory_block corresponding to a particular phys_index. If
 * this gets to be a real problem, we can always use a radix
 * tree or something here.
 *
595
 * This could be made generic for all device subsystems.
596 597 598 599 600 601
 */
struct memory_block *find_memory_block(struct mem_section *section)
{
	return find_memory_block_hinted(section, NULL);
}

602 603 604 605 606
static struct attribute *memory_memblk_attrs[] = {
	&dev_attr_phys_index.attr,
	&dev_attr_state.attr,
	&dev_attr_phys_device.attr,
	&dev_attr_removable.attr,
607 608 609
#ifdef CONFIG_MEMORY_HOTREMOVE
	&dev_attr_valid_zones.attr,
#endif
610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631
	NULL
};

static struct attribute_group memory_memblk_attr_group = {
	.attrs = memory_memblk_attrs,
};

static const struct attribute_group *memory_memblk_attr_groups[] = {
	&memory_memblk_attr_group,
	NULL,
};

/*
 * register_memory - Setup a sysfs device for a memory block
 */
static
int register_memory(struct memory_block *memory)
{
	memory->dev.bus = &memory_subsys;
	memory->dev.id = memory->start_section_nr / sections_per_block;
	memory->dev.release = memory_block_release;
	memory->dev.groups = memory_memblk_attr_groups;
632
	memory->dev.offline = memory->state == MEM_OFFLINE;
633

634
	return device_register(&memory->dev);
635 636
}

637 638
static int init_memory_block(struct memory_block **memory,
			     struct mem_section *section, unsigned long state)
639
{
640
	struct memory_block *mem;
641
	unsigned long start_pfn;
642
	int scn_nr;
643 644
	int ret = 0;

645
	mem = kzalloc(sizeof(*mem), GFP_KERNEL);
646 647 648
	if (!mem)
		return -ENOMEM;

649
	scn_nr = __section_nr(section);
650 651 652
	mem->start_section_nr =
			base_memory_block_id(scn_nr) * sections_per_block;
	mem->end_section_nr = mem->start_section_nr + sections_per_block - 1;
653
	mem->state = state;
654
	start_pfn = section_nr_to_pfn(mem->start_section_nr);
655 656
	mem->phys_device = arch_get_memory_phys_device(start_pfn);

657 658 659 660 661 662
	ret = register_memory(mem);

	*memory = mem;
	return ret;
}

663
static int add_memory_block(int base_section_nr)
664
{
665 666
	struct memory_block *mem;
	int i, ret, section_count = 0, section_nr;
667

668 669 670 671 672 673 674 675
	for (i = base_section_nr;
	     (i < base_section_nr + sections_per_block) && i < NR_MEM_SECTIONS;
	     i++) {
		if (!present_section_nr(i))
			continue;
		if (section_count == 0)
			section_nr = i;
		section_count++;
676 677
	}

678 679 680 681 682 683 684
	if (section_count == 0)
		return 0;
	ret = init_memory_block(&mem, __nr_to_section(section_nr), MEM_ONLINE);
	if (ret)
		return ret;
	mem->section_count = section_count;
	return 0;
685 686
}

687 688 689 690 691 692 693
static bool is_zone_device_section(struct mem_section *ms)
{
	struct page *page;

	page = sparse_decode_mem_map(ms->section_mem_map, __section_nr(ms));
	return is_zone_device_page(page);
}
694

695 696 697 698 699 700
/*
 * need an interface for the VM to add new memory regions,
 * but without onlining it.
 */
int register_new_memory(int nid, struct mem_section *section)
{
701 702
	int ret = 0;
	struct memory_block *mem;
703

704 705 706
	if (is_zone_device_section(section))
		return 0;

707 708
	mutex_lock(&mem_sysfs_mutex);

709 710 711 712 713 714 715 716
	mem = find_memory_block(section);
	if (mem) {
		mem->section_count++;
		put_device(&mem->dev);
	} else {
		ret = init_memory_block(&mem, section, MEM_OFFLINE);
		if (ret)
			goto out;
717
		mem->section_count++;
718 719 720 721 722 723
	}

	if (mem->section_count == sections_per_block)
		ret = register_mem_sect_under_node(mem, nid);
out:
	mutex_unlock(&mem_sysfs_mutex);
724
	return ret;
725 726 727 728 729 730 731 732 733
}

#ifdef CONFIG_MEMORY_HOTREMOVE
static void
unregister_memory(struct memory_block *memory)
{
	BUG_ON(memory->dev.bus != &memory_subsys);

	/* drop the ref. we got in remove_memory_block() */
734
	put_device(&memory->dev);
735 736 737
	device_unregister(&memory->dev);
}

738
static int remove_memory_section(unsigned long node_id,
739
			       struct mem_section *section, int phys_device)
740 741 742
{
	struct memory_block *mem;

743 744 745
	if (is_zone_device_section(section))
		return 0;

746
	mutex_lock(&mem_sysfs_mutex);
747
	mem = find_memory_block(section);
748
	unregister_mem_sect_under_nodes(mem, __section_nr(section));
749 750

	mem->section_count--;
751
	if (mem->section_count == 0)
752
		unregister_memory(mem);
753
	else
754
		put_device(&mem->dev);
755

756
	mutex_unlock(&mem_sysfs_mutex);
757 758 759 760 761
	return 0;
}

int unregister_memory_section(struct mem_section *section)
{
762
	if (!present_section(section))
763 764
		return -EINVAL;

765
	return remove_memory_section(0, section, 0);
766
}
767
#endif /* CONFIG_MEMORY_HOTREMOVE */
768

769 770 771 772 773 774
/* return true if the memory block is offlined, otherwise, return false */
bool is_memblock_offlined(struct memory_block *mem)
{
	return mem->state == MEM_OFFLINE;
}

775 776 777 778 779 780 781 782 783 784 785
static struct attribute *memory_root_attrs[] = {
#ifdef CONFIG_ARCH_MEMORY_PROBE
	&dev_attr_probe.attr,
#endif

#ifdef CONFIG_MEMORY_FAILURE
	&dev_attr_soft_offline_page.attr,
	&dev_attr_hard_offline_page.attr,
#endif

	&dev_attr_block_size_bytes.attr,
786
	&dev_attr_auto_online_blocks.attr,
787 788 789 790 791 792 793 794 795 796 797 798
	NULL
};

static struct attribute_group memory_root_attr_group = {
	.attrs = memory_root_attrs,
};

static const struct attribute_group *memory_root_attr_groups[] = {
	&memory_root_attr_group,
	NULL,
};

799 800 801 802 803 804 805
/*
 * Initialize the sysfs support for memory devices...
 */
int __init memory_dev_init(void)
{
	unsigned int i;
	int ret;
806
	int err;
807
	unsigned long block_sz;
808

809
	ret = subsys_system_register(&memory_subsys, memory_root_attr_groups);
810 811
	if (ret)
		goto out;
812

813 814 815
	block_sz = get_memory_block_size();
	sections_per_block = block_sz / MIN_MEMORY_BLOCK_SIZE;

816 817 818 819
	/*
	 * Create entries for memory sections that were found
	 * during boot and have been initialized
	 */
820
	mutex_lock(&mem_sysfs_mutex);
821 822
	for (i = 0; i < NR_MEM_SECTIONS; i += sections_per_block) {
		err = add_memory_block(i);
823 824
		if (!ret)
			ret = err;
825
	}
826
	mutex_unlock(&mem_sysfs_mutex);
827

828 829
out:
	if (ret)
830
		printk(KERN_ERR "%s() failed: %d\n", __func__, ret);
831 832
	return ret;
}