i40e_txrx.c 88.5 KB
Newer Older
1 2 3
/*******************************************************************************
 *
 * Intel Ethernet Controller XL710 Family Linux Driver
4
 * Copyright(c) 2013 - 2016 Intel Corporation.
5 6 7 8 9 10 11 12 13 14
 *
 * This program is free software; you can redistribute it and/or modify it
 * under the terms and conditions of the GNU General Public License,
 * version 2, as published by the Free Software Foundation.
 *
 * This program is distributed in the hope it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
 * more details.
 *
G
Greg Rose 已提交
15 16
 * You should have received a copy of the GNU General Public License along
 * with this program.  If not, see <http://www.gnu.org/licenses/>.
17 18 19 20 21 22 23 24 25 26
 *
 * The full GNU General Public License is included in this distribution in
 * the file called "COPYING".
 *
 * Contact Information:
 * e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
 * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
 *
 ******************************************************************************/

M
Mitch Williams 已提交
27
#include <linux/prefetch.h>
28
#include <net/busy_poll.h>
29
#include "i40e.h"
30
#include "i40e_prototype.h"
31 32 33 34 35 36 37 38 39 40 41

static inline __le64 build_ctob(u32 td_cmd, u32 td_offset, unsigned int size,
				u32 td_tag)
{
	return cpu_to_le64(I40E_TX_DESC_DTYPE_DATA |
			   ((u64)td_cmd  << I40E_TXD_QW1_CMD_SHIFT) |
			   ((u64)td_offset << I40E_TXD_QW1_OFFSET_SHIFT) |
			   ((u64)size  << I40E_TXD_QW1_TX_BUF_SZ_SHIFT) |
			   ((u64)td_tag  << I40E_TXD_QW1_L2TAG1_SHIFT));
}

42
#define I40E_TXD_CMD (I40E_TX_DESC_CMD_EOP | I40E_TX_DESC_CMD_RS)
43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73
/**
 * i40e_fdir - Generate a Flow Director descriptor based on fdata
 * @tx_ring: Tx ring to send buffer on
 * @fdata: Flow director filter data
 * @add: Indicate if we are adding a rule or deleting one
 *
 **/
static void i40e_fdir(struct i40e_ring *tx_ring,
		      struct i40e_fdir_filter *fdata, bool add)
{
	struct i40e_filter_program_desc *fdir_desc;
	struct i40e_pf *pf = tx_ring->vsi->back;
	u32 flex_ptype, dtype_cmd;
	u16 i;

	/* grab the next descriptor */
	i = tx_ring->next_to_use;
	fdir_desc = I40E_TX_FDIRDESC(tx_ring, i);

	i++;
	tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;

	flex_ptype = I40E_TXD_FLTR_QW0_QINDEX_MASK &
		     (fdata->q_index << I40E_TXD_FLTR_QW0_QINDEX_SHIFT);

	flex_ptype |= I40E_TXD_FLTR_QW0_FLEXOFF_MASK &
		      (fdata->flex_off << I40E_TXD_FLTR_QW0_FLEXOFF_SHIFT);

	flex_ptype |= I40E_TXD_FLTR_QW0_PCTYPE_MASK &
		      (fdata->pctype << I40E_TXD_FLTR_QW0_PCTYPE_SHIFT);

74 75 76
	flex_ptype |= I40E_TXD_FLTR_QW0_PCTYPE_MASK &
		      (fdata->flex_offset << I40E_TXD_FLTR_QW0_FLEXOFF_SHIFT);

77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108
	/* Use LAN VSI Id if not programmed by user */
	flex_ptype |= I40E_TXD_FLTR_QW0_DEST_VSI_MASK &
		      ((u32)(fdata->dest_vsi ? : pf->vsi[pf->lan_vsi]->id) <<
		       I40E_TXD_FLTR_QW0_DEST_VSI_SHIFT);

	dtype_cmd = I40E_TX_DESC_DTYPE_FILTER_PROG;

	dtype_cmd |= add ?
		     I40E_FILTER_PROGRAM_DESC_PCMD_ADD_UPDATE <<
		     I40E_TXD_FLTR_QW1_PCMD_SHIFT :
		     I40E_FILTER_PROGRAM_DESC_PCMD_REMOVE <<
		     I40E_TXD_FLTR_QW1_PCMD_SHIFT;

	dtype_cmd |= I40E_TXD_FLTR_QW1_DEST_MASK &
		     (fdata->dest_ctl << I40E_TXD_FLTR_QW1_DEST_SHIFT);

	dtype_cmd |= I40E_TXD_FLTR_QW1_FD_STATUS_MASK &
		     (fdata->fd_status << I40E_TXD_FLTR_QW1_FD_STATUS_SHIFT);

	if (fdata->cnt_index) {
		dtype_cmd |= I40E_TXD_FLTR_QW1_CNT_ENA_MASK;
		dtype_cmd |= I40E_TXD_FLTR_QW1_CNTINDEX_MASK &
			     ((u32)fdata->cnt_index <<
			      I40E_TXD_FLTR_QW1_CNTINDEX_SHIFT);
	}

	fdir_desc->qindex_flex_ptype_vsi = cpu_to_le32(flex_ptype);
	fdir_desc->rsvd = cpu_to_le32(0);
	fdir_desc->dtype_cmd_cntindex = cpu_to_le32(dtype_cmd);
	fdir_desc->fd_id = cpu_to_le32(fdata->fd_id);
}

109
#define I40E_FD_CLEAN_DELAY 10
110 111
/**
 * i40e_program_fdir_filter - Program a Flow Director filter
112 113
 * @fdir_data: Packet data that will be filter parameters
 * @raw_packet: the pre-allocated packet buffer for FDir
114
 * @pf: The PF pointer
115 116
 * @add: True for add/update, False for remove
 **/
117 118 119
static int i40e_program_fdir_filter(struct i40e_fdir_filter *fdir_data,
				    u8 *raw_packet, struct i40e_pf *pf,
				    bool add)
120
{
121
	struct i40e_tx_buffer *tx_buf, *first;
122 123 124 125 126 127 128 129 130
	struct i40e_tx_desc *tx_desc;
	struct i40e_ring *tx_ring;
	struct i40e_vsi *vsi;
	struct device *dev;
	dma_addr_t dma;
	u32 td_cmd = 0;
	u16 i;

	/* find existing FDIR VSI */
131
	vsi = i40e_find_vsi_by_type(pf, I40E_VSI_FDIR);
132 133 134
	if (!vsi)
		return -ENOENT;

135
	tx_ring = vsi->tx_rings[0];
136 137
	dev = tx_ring->dev;

138
	/* we need two descriptors to add/del a filter and we can wait */
139 140 141
	for (i = I40E_FD_CLEAN_DELAY; I40E_DESC_UNUSED(tx_ring) < 2; i--) {
		if (!i)
			return -EAGAIN;
142
		msleep_interruptible(1);
143
	}
144

145 146
	dma = dma_map_single(dev, raw_packet,
			     I40E_FDIR_MAX_RAW_PACKET_SIZE, DMA_TO_DEVICE);
147 148 149 150
	if (dma_mapping_error(dev, dma))
		goto dma_fail;

	/* grab the next descriptor */
151
	i = tx_ring->next_to_use;
152
	first = &tx_ring->tx_bi[i];
153
	i40e_fdir(tx_ring, fdir_data, add);
154 155

	/* Now program a dummy descriptor */
156 157
	i = tx_ring->next_to_use;
	tx_desc = I40E_TX_DESC(tx_ring, i);
158
	tx_buf = &tx_ring->tx_bi[i];
159

160 161 162
	tx_ring->next_to_use = ((i + 1) < tx_ring->count) ? i + 1 : 0;

	memset(tx_buf, 0, sizeof(struct i40e_tx_buffer));
163

164
	/* record length, and DMA address */
165
	dma_unmap_len_set(tx_buf, len, I40E_FDIR_MAX_RAW_PACKET_SIZE);
166 167
	dma_unmap_addr_set(tx_buf, dma, dma);

168
	tx_desc->buffer_addr = cpu_to_le64(dma);
169
	td_cmd = I40E_TXD_CMD | I40E_TX_DESC_CMD_DUMMY;
170

171 172 173
	tx_buf->tx_flags = I40E_TX_FLAGS_FD_SB;
	tx_buf->raw_buf = (void *)raw_packet;

174
	tx_desc->cmd_type_offset_bsz =
175
		build_ctob(td_cmd, 0, I40E_FDIR_MAX_RAW_PACKET_SIZE, 0);
176 177

	/* Force memory writes to complete before letting h/w
178
	 * know there are new descriptors to fetch.
179 180 181
	 */
	wmb();

182
	/* Mark the data descriptor to be watched */
183
	first->next_to_watch = tx_desc;
184

185 186 187 188 189 190 191
	writel(tx_ring->next_to_use, tx_ring->tail);
	return 0;

dma_fail:
	return -1;
}

192 193 194 195 196 197 198 199 200 201 202 203
#define IP_HEADER_OFFSET 14
#define I40E_UDPIP_DUMMY_PACKET_LEN 42
/**
 * i40e_add_del_fdir_udpv4 - Add/Remove UDPv4 filters
 * @vsi: pointer to the targeted VSI
 * @fd_data: the flow director data required for the FDir descriptor
 * @add: true adds a filter, false removes it
 *
 * Returns 0 if the filters were successfully added or removed
 **/
static int i40e_add_del_fdir_udpv4(struct i40e_vsi *vsi,
				   struct i40e_fdir_filter *fd_data,
204
				   bool add)
205 206 207 208
{
	struct i40e_pf *pf = vsi->back;
	struct udphdr *udp;
	struct iphdr *ip;
209
	u8 *raw_packet;
210 211 212 213 214
	int ret;
	static char packet[] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0x08, 0,
		0x45, 0, 0, 0x1c, 0, 0, 0x40, 0, 0x40, 0x11, 0, 0, 0, 0, 0, 0,
		0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0};

215 216 217
	raw_packet = kzalloc(I40E_FDIR_MAX_RAW_PACKET_SIZE, GFP_KERNEL);
	if (!raw_packet)
		return -ENOMEM;
218 219 220 221 222 223
	memcpy(raw_packet, packet, I40E_UDPIP_DUMMY_PACKET_LEN);

	ip = (struct iphdr *)(raw_packet + IP_HEADER_OFFSET);
	udp = (struct udphdr *)(raw_packet + IP_HEADER_OFFSET
	      + sizeof(struct iphdr));

224
	ip->daddr = fd_data->dst_ip;
225
	udp->dest = fd_data->dst_port;
226
	ip->saddr = fd_data->src_ip;
227 228
	udp->source = fd_data->src_port;

229 230 231 232 233 234 235 236
	if (fd_data->flex_filter) {
		u8 *payload = raw_packet + I40E_UDPIP_DUMMY_PACKET_LEN;
		__be16 pattern = fd_data->flex_word;
		u16 off = fd_data->flex_offset;

		*((__force __be16 *)(payload + off)) = pattern;
	}

237 238 239 240
	fd_data->pctype = I40E_FILTER_PCTYPE_NONF_IPV4_UDP;
	ret = i40e_program_fdir_filter(fd_data, raw_packet, pf, add);
	if (ret) {
		dev_info(&pf->pdev->dev,
241 242
			 "PCTYPE:%d, Filter command send failed for fd_id:%d (ret = %d)\n",
			 fd_data->pctype, fd_data->fd_id, ret);
243 244 245
		/* Free the packet buffer since it wasn't added to the ring */
		kfree(raw_packet);
		return -EOPNOTSUPP;
246
	} else if (I40E_DEBUG_FD & pf->hw.debug_mask) {
247 248 249 250 251 252 253 254
		if (add)
			dev_info(&pf->pdev->dev,
				 "Filter OK for PCTYPE %d loc = %d\n",
				 fd_data->pctype, fd_data->fd_id);
		else
			dev_info(&pf->pdev->dev,
				 "Filter deleted for PCTYPE %d loc = %d\n",
				 fd_data->pctype, fd_data->fd_id);
255
	}
256

257 258 259 260 261
	if (add)
		pf->fd_udp4_filter_cnt++;
	else
		pf->fd_udp4_filter_cnt--;

262
	return 0;
263 264 265 266 267 268 269 270 271 272 273 274 275
}

#define I40E_TCPIP_DUMMY_PACKET_LEN 54
/**
 * i40e_add_del_fdir_tcpv4 - Add/Remove TCPv4 filters
 * @vsi: pointer to the targeted VSI
 * @fd_data: the flow director data required for the FDir descriptor
 * @add: true adds a filter, false removes it
 *
 * Returns 0 if the filters were successfully added or removed
 **/
static int i40e_add_del_fdir_tcpv4(struct i40e_vsi *vsi,
				   struct i40e_fdir_filter *fd_data,
276
				   bool add)
277 278 279 280
{
	struct i40e_pf *pf = vsi->back;
	struct tcphdr *tcp;
	struct iphdr *ip;
281
	u8 *raw_packet;
282 283 284 285 286 287 288
	int ret;
	/* Dummy packet */
	static char packet[] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0x08, 0,
		0x45, 0, 0, 0x28, 0, 0, 0x40, 0, 0x40, 0x6, 0, 0, 0, 0, 0, 0,
		0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0x80, 0x11,
		0x0, 0x72, 0, 0, 0, 0};

289 290 291
	raw_packet = kzalloc(I40E_FDIR_MAX_RAW_PACKET_SIZE, GFP_KERNEL);
	if (!raw_packet)
		return -ENOMEM;
292 293 294 295 296 297
	memcpy(raw_packet, packet, I40E_TCPIP_DUMMY_PACKET_LEN);

	ip = (struct iphdr *)(raw_packet + IP_HEADER_OFFSET);
	tcp = (struct tcphdr *)(raw_packet + IP_HEADER_OFFSET
	      + sizeof(struct iphdr));

298
	ip->daddr = fd_data->dst_ip;
299
	tcp->dest = fd_data->dst_port;
300
	ip->saddr = fd_data->src_ip;
301 302
	tcp->source = fd_data->src_port;

303 304 305 306 307 308 309 310
	if (fd_data->flex_filter) {
		u8 *payload = raw_packet + I40E_TCPIP_DUMMY_PACKET_LEN;
		__be16 pattern = fd_data->flex_word;
		u16 off = fd_data->flex_offset;

		*((__force __be16 *)(payload + off)) = pattern;
	}

311
	fd_data->pctype = I40E_FILTER_PCTYPE_NONF_IPV4_TCP;
312 313 314
	ret = i40e_program_fdir_filter(fd_data, raw_packet, pf, add);
	if (ret) {
		dev_info(&pf->pdev->dev,
315 316
			 "PCTYPE:%d, Filter command send failed for fd_id:%d (ret = %d)\n",
			 fd_data->pctype, fd_data->fd_id, ret);
317 318 319
		/* Free the packet buffer since it wasn't added to the ring */
		kfree(raw_packet);
		return -EOPNOTSUPP;
320
	} else if (I40E_DEBUG_FD & pf->hw.debug_mask) {
321 322 323 324 325 326 327
		if (add)
			dev_info(&pf->pdev->dev, "Filter OK for PCTYPE %d loc = %d)\n",
				 fd_data->pctype, fd_data->fd_id);
		else
			dev_info(&pf->pdev->dev,
				 "Filter deleted for PCTYPE %d loc = %d\n",
				 fd_data->pctype, fd_data->fd_id);
328 329
	}

330
	if (add) {
331
		pf->fd_tcp4_filter_cnt++;
332 333 334 335 336
		if ((pf->flags & I40E_FLAG_FD_ATR_ENABLED) &&
		    I40E_DEBUG_FD & pf->hw.debug_mask)
			dev_info(&pf->pdev->dev, "Forcing ATR off, sideband rules for TCP/IPv4 flow being applied\n");
		pf->hw_disabled_flags |= I40E_FLAG_FD_ATR_ENABLED;
	} else {
337 338
		pf->fd_tcp4_filter_cnt--;
		if (pf->fd_tcp4_filter_cnt == 0) {
339 340 341 342 343 344 345
			if ((pf->flags & I40E_FLAG_FD_ATR_ENABLED) &&
			    I40E_DEBUG_FD & pf->hw.debug_mask)
				dev_info(&pf->pdev->dev, "ATR re-enabled due to no sideband TCP/IPv4 rules\n");
			pf->hw_disabled_flags &= ~I40E_FLAG_FD_ATR_ENABLED;
		}
	}

346
	return 0;
347 348
}

349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422
#define I40E_SCTPIP_DUMMY_PACKET_LEN 46
/**
 * i40e_add_del_fdir_sctpv4 - Add/Remove SCTPv4 Flow Director filters for
 * a specific flow spec
 * @vsi: pointer to the targeted VSI
 * @fd_data: the flow director data required for the FDir descriptor
 * @add: true adds a filter, false removes it
 *
 * Returns 0 if the filters were successfully added or removed
 **/
static int i40e_add_del_fdir_sctpv4(struct i40e_vsi *vsi,
				    struct i40e_fdir_filter *fd_data,
				    bool add)
{
	struct i40e_pf *pf = vsi->back;
	struct sctphdr *sctp;
	struct iphdr *ip;
	u8 *raw_packet;
	int ret;
	/* Dummy packet */
	static char packet[] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0x08, 0,
		0x45, 0, 0, 0x20, 0, 0, 0x40, 0, 0x40, 0x84, 0, 0, 0, 0, 0, 0,
		0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0};

	raw_packet = kzalloc(I40E_FDIR_MAX_RAW_PACKET_SIZE, GFP_KERNEL);
	if (!raw_packet)
		return -ENOMEM;
	memcpy(raw_packet, packet, I40E_SCTPIP_DUMMY_PACKET_LEN);

	ip = (struct iphdr *)(raw_packet + IP_HEADER_OFFSET);
	sctp = (struct sctphdr *)(raw_packet + IP_HEADER_OFFSET
	      + sizeof(struct iphdr));

	ip->daddr = fd_data->dst_ip;
	sctp->dest = fd_data->dst_port;
	ip->saddr = fd_data->src_ip;
	sctp->source = fd_data->src_port;

	if (fd_data->flex_filter) {
		u8 *payload = raw_packet + I40E_SCTPIP_DUMMY_PACKET_LEN;
		__be16 pattern = fd_data->flex_word;
		u16 off = fd_data->flex_offset;

		*((__force __be16 *)(payload + off)) = pattern;
	}

	fd_data->pctype = I40E_FILTER_PCTYPE_NONF_IPV4_SCTP;
	ret = i40e_program_fdir_filter(fd_data, raw_packet, pf, add);
	if (ret) {
		dev_info(&pf->pdev->dev,
			 "PCTYPE:%d, Filter command send failed for fd_id:%d (ret = %d)\n",
			 fd_data->pctype, fd_data->fd_id, ret);
		/* Free the packet buffer since it wasn't added to the ring */
		kfree(raw_packet);
		return -EOPNOTSUPP;
	} else if (I40E_DEBUG_FD & pf->hw.debug_mask) {
		if (add)
			dev_info(&pf->pdev->dev,
				 "Filter OK for PCTYPE %d loc = %d\n",
				 fd_data->pctype, fd_data->fd_id);
		else
			dev_info(&pf->pdev->dev,
				 "Filter deleted for PCTYPE %d loc = %d\n",
				 fd_data->pctype, fd_data->fd_id);
	}

	if (add)
		pf->fd_sctp4_filter_cnt++;
	else
		pf->fd_sctp4_filter_cnt--;

	return 0;
}

423 424 425 426 427 428 429 430 431 432 433 434
#define I40E_IP_DUMMY_PACKET_LEN 34
/**
 * i40e_add_del_fdir_ipv4 - Add/Remove IPv4 Flow Director filters for
 * a specific flow spec
 * @vsi: pointer to the targeted VSI
 * @fd_data: the flow director data required for the FDir descriptor
 * @add: true adds a filter, false removes it
 *
 * Returns 0 if the filters were successfully added or removed
 **/
static int i40e_add_del_fdir_ipv4(struct i40e_vsi *vsi,
				  struct i40e_fdir_filter *fd_data,
435
				  bool add)
436 437 438
{
	struct i40e_pf *pf = vsi->back;
	struct iphdr *ip;
439
	u8 *raw_packet;
440 441 442 443 444 445 446 447
	int ret;
	int i;
	static char packet[] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0x08, 0,
		0x45, 0, 0, 0x14, 0, 0, 0x40, 0, 0x40, 0x10, 0, 0, 0, 0, 0, 0,
		0, 0, 0, 0};

	for (i = I40E_FILTER_PCTYPE_NONF_IPV4_OTHER;
	     i <= I40E_FILTER_PCTYPE_FRAG_IPV4;	i++) {
448 449 450 451 452 453
		raw_packet = kzalloc(I40E_FDIR_MAX_RAW_PACKET_SIZE, GFP_KERNEL);
		if (!raw_packet)
			return -ENOMEM;
		memcpy(raw_packet, packet, I40E_IP_DUMMY_PACKET_LEN);
		ip = (struct iphdr *)(raw_packet + IP_HEADER_OFFSET);

454 455
		ip->saddr = fd_data->src_ip;
		ip->daddr = fd_data->dst_ip;
456 457
		ip->protocol = 0;

458 459 460 461 462 463 464 465
		if (fd_data->flex_filter) {
			u8 *payload = raw_packet + I40E_IP_DUMMY_PACKET_LEN;
			__be16 pattern = fd_data->flex_word;
			u16 off = fd_data->flex_offset;

			*((__force __be16 *)(payload + off)) = pattern;
		}

466 467 468 469
		fd_data->pctype = i;
		ret = i40e_program_fdir_filter(fd_data, raw_packet, pf, add);
		if (ret) {
			dev_info(&pf->pdev->dev,
470 471
				 "PCTYPE:%d, Filter command send failed for fd_id:%d (ret = %d)\n",
				 fd_data->pctype, fd_data->fd_id, ret);
472 473 474 475 476
			/* The packet buffer wasn't added to the ring so we
			 * need to free it now.
			 */
			kfree(raw_packet);
			return -EOPNOTSUPP;
477
		} else if (I40E_DEBUG_FD & pf->hw.debug_mask) {
478 479 480 481 482 483 484 485
			if (add)
				dev_info(&pf->pdev->dev,
					 "Filter OK for PCTYPE %d loc = %d\n",
					 fd_data->pctype, fd_data->fd_id);
			else
				dev_info(&pf->pdev->dev,
					 "Filter deleted for PCTYPE %d loc = %d\n",
					 fd_data->pctype, fd_data->fd_id);
486 487 488
		}
	}

489 490 491 492 493
	if (add)
		pf->fd_ip4_filter_cnt++;
	else
		pf->fd_ip4_filter_cnt--;

494
	return 0;
495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511
}

/**
 * i40e_add_del_fdir - Build raw packets to add/del fdir filter
 * @vsi: pointer to the targeted VSI
 * @cmd: command to get or set RX flow classification rules
 * @add: true adds a filter, false removes it
 *
 **/
int i40e_add_del_fdir(struct i40e_vsi *vsi,
		      struct i40e_fdir_filter *input, bool add)
{
	struct i40e_pf *pf = vsi->back;
	int ret;

	switch (input->flow_type & ~FLOW_EXT) {
	case TCP_V4_FLOW:
512
		ret = i40e_add_del_fdir_tcpv4(vsi, input, add);
513 514
		break;
	case UDP_V4_FLOW:
515
		ret = i40e_add_del_fdir_udpv4(vsi, input, add);
516
		break;
517 518 519
	case SCTP_V4_FLOW:
		ret = i40e_add_del_fdir_sctpv4(vsi, input, add);
		break;
520 521 522
	case IP_USER_FLOW:
		switch (input->ip4_proto) {
		case IPPROTO_TCP:
523
			ret = i40e_add_del_fdir_tcpv4(vsi, input, add);
524 525
			break;
		case IPPROTO_UDP:
526
			ret = i40e_add_del_fdir_udpv4(vsi, input, add);
527
			break;
528 529 530
		case IPPROTO_SCTP:
			ret = i40e_add_del_fdir_sctpv4(vsi, input, add);
			break;
531
		case IPPROTO_IP:
532
			ret = i40e_add_del_fdir_ipv4(vsi, input, add);
533
			break;
534 535
		default:
			/* We cannot support masking based on protocol */
536 537 538
			dev_info(&pf->pdev->dev, "Unsupported IPv4 protocol 0x%02x\n",
				 input->ip4_proto);
			return -EINVAL;
539 540 541
		}
		break;
	default:
542
		dev_info(&pf->pdev->dev, "Unsupported flow type 0x%02x\n",
543
			 input->flow_type);
544
		return -EINVAL;
545 546
	}

547 548 549 550 551 552
	/* The buffer allocated here will be normally be freed by
	 * i40e_clean_fdir_tx_irq() as it reclaims resources after transmit
	 * completion. In the event of an error adding the buffer to the FDIR
	 * ring, it will immediately be freed. It may also be freed by
	 * i40e_clean_tx_ring() when closing the VSI.
	 */
553 554 555
	return ret;
}

556 557 558
/**
 * i40e_fd_handle_status - check the Programming Status for FD
 * @rx_ring: the Rx ring for this descriptor
559
 * @rx_desc: the Rx descriptor for programming Status, not a packet descriptor.
560 561 562 563 564
 * @prog_id: the id originally used for programming
 *
 * This is used to verify if the FD programming or invalidation
 * requested by SW to the HW is successful or not and take actions accordingly.
 **/
565 566
static void i40e_fd_handle_status(struct i40e_ring *rx_ring,
				  union i40e_rx_desc *rx_desc, u8 prog_id)
567
{
568 569 570
	struct i40e_pf *pf = rx_ring->vsi->back;
	struct pci_dev *pdev = pf->pdev;
	u32 fcnt_prog, fcnt_avail;
571
	u32 error;
572
	u64 qw;
573

574
	qw = le64_to_cpu(rx_desc->wb.qword1.status_error_len);
575 576 577
	error = (qw & I40E_RX_PROG_STATUS_DESC_QW1_ERROR_MASK) >>
		I40E_RX_PROG_STATUS_DESC_QW1_ERROR_SHIFT;

578
	if (error == BIT(I40E_RX_PROG_STATUS_DESC_FD_TBL_FULL_SHIFT)) {
579
		pf->fd_inv = le32_to_cpu(rx_desc->wb.qword0.hi_dword.fd_id);
580 581 582
		if ((rx_desc->wb.qword0.hi_dword.fd_id != 0) ||
		    (I40E_DEBUG_FD & pf->hw.debug_mask))
			dev_warn(&pdev->dev, "ntuple filter loc = %d, could not be added\n",
583
				 pf->fd_inv);
584

585 586 587 588 589 590 591 592 593
		/* Check if the programming error is for ATR.
		 * If so, auto disable ATR and set a state for
		 * flush in progress. Next time we come here if flush is in
		 * progress do nothing, once flush is complete the state will
		 * be cleared.
		 */
		if (test_bit(__I40E_FD_FLUSH_REQUESTED, &pf->state))
			return;

594 595 596 597
		pf->fd_add_err++;
		/* store the current atr filter count */
		pf->fd_atr_cnt = i40e_get_current_atr_cnt(pf);

598
		if ((rx_desc->wb.qword0.hi_dword.fd_id == 0) &&
599 600
		    (pf->hw_disabled_flags & I40E_FLAG_FD_SB_ENABLED)) {
			pf->hw_disabled_flags |= I40E_FLAG_FD_ATR_ENABLED;
601 602 603
			set_bit(__I40E_FD_FLUSH_REQUESTED, &pf->state);
		}

604
		/* filter programming failed most likely due to table full */
605
		fcnt_prog = i40e_get_global_fd_count(pf);
606
		fcnt_avail = pf->fdir_pf_filter_count;
607 608 609 610 611
		/* If ATR is running fcnt_prog can quickly change,
		 * if we are very close to full, it makes sense to disable
		 * FD ATR/SB and then re-enable it when there is room.
		 */
		if (fcnt_prog >= (fcnt_avail - I40E_FDIR_BUFFER_FULL_MARGIN)) {
612
			if ((pf->flags & I40E_FLAG_FD_SB_ENABLED) &&
613
			    !(pf->hw_disabled_flags &
614
				     I40E_FLAG_FD_SB_ENABLED)) {
615 616
				if (I40E_DEBUG_FD & pf->hw.debug_mask)
					dev_warn(&pdev->dev, "FD filter space full, new ntuple rules will not be added\n");
617
				pf->hw_disabled_flags |=
618 619 620
							I40E_FLAG_FD_SB_ENABLED;
			}
		}
621
	} else if (error == BIT(I40E_RX_PROG_STATUS_DESC_NO_FD_ENTRY_SHIFT)) {
622
		if (I40E_DEBUG_FD & pf->hw.debug_mask)
623
			dev_info(&pdev->dev, "ntuple filter fd_id = %d, could not be removed\n",
624
				 rx_desc->wb.qword0.hi_dword.fd_id);
625
	}
626 627 628
}

/**
A
Alexander Duyck 已提交
629
 * i40e_unmap_and_free_tx_resource - Release a Tx buffer
630 631 632
 * @ring:      the ring that owns the buffer
 * @tx_buffer: the buffer to free
 **/
A
Alexander Duyck 已提交
633 634
static void i40e_unmap_and_free_tx_resource(struct i40e_ring *ring,
					    struct i40e_tx_buffer *tx_buffer)
635
{
A
Alexander Duyck 已提交
636
	if (tx_buffer->skb) {
637 638 639 640
		if (tx_buffer->tx_flags & I40E_TX_FLAGS_FD_SB)
			kfree(tx_buffer->raw_buf);
		else
			dev_kfree_skb_any(tx_buffer->skb);
A
Alexander Duyck 已提交
641
		if (dma_unmap_len(tx_buffer, len))
642
			dma_unmap_single(ring->dev,
643 644
					 dma_unmap_addr(tx_buffer, dma),
					 dma_unmap_len(tx_buffer, len),
645
					 DMA_TO_DEVICE);
A
Alexander Duyck 已提交
646 647 648 649 650
	} else if (dma_unmap_len(tx_buffer, len)) {
		dma_unmap_page(ring->dev,
			       dma_unmap_addr(tx_buffer, dma),
			       dma_unmap_len(tx_buffer, len),
			       DMA_TO_DEVICE);
651
	}
652

A
Alexander Duyck 已提交
653 654
	tx_buffer->next_to_watch = NULL;
	tx_buffer->skb = NULL;
655
	dma_unmap_len_set(tx_buffer, len, 0);
A
Alexander Duyck 已提交
656
	/* tx_buffer must be completely set up in the transmit path */
657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672
}

/**
 * i40e_clean_tx_ring - Free any empty Tx buffers
 * @tx_ring: ring to be cleaned
 **/
void i40e_clean_tx_ring(struct i40e_ring *tx_ring)
{
	unsigned long bi_size;
	u16 i;

	/* ring already cleared, nothing to do */
	if (!tx_ring->tx_bi)
		return;

	/* Free all the Tx ring sk_buffs */
A
Alexander Duyck 已提交
673 674
	for (i = 0; i < tx_ring->count; i++)
		i40e_unmap_and_free_tx_resource(tx_ring, &tx_ring->tx_bi[i]);
675 676 677 678 679 680 681 682 683

	bi_size = sizeof(struct i40e_tx_buffer) * tx_ring->count;
	memset(tx_ring->tx_bi, 0, bi_size);

	/* Zero out the descriptor ring */
	memset(tx_ring->desc, 0, tx_ring->size);

	tx_ring->next_to_use = 0;
	tx_ring->next_to_clean = 0;
684 685 686 687 688

	if (!tx_ring->netdev)
		return;

	/* cleanup Tx queue statistics */
689
	netdev_tx_reset_queue(txring_txq(tx_ring));
690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717
}

/**
 * i40e_free_tx_resources - Free Tx resources per queue
 * @tx_ring: Tx descriptor ring for a specific queue
 *
 * Free all transmit software resources
 **/
void i40e_free_tx_resources(struct i40e_ring *tx_ring)
{
	i40e_clean_tx_ring(tx_ring);
	kfree(tx_ring->tx_bi);
	tx_ring->tx_bi = NULL;

	if (tx_ring->desc) {
		dma_free_coherent(tx_ring->dev, tx_ring->size,
				  tx_ring->desc, tx_ring->dma);
		tx_ring->desc = NULL;
	}
}

/**
 * i40e_get_tx_pending - how many tx descriptors not processed
 * @tx_ring: the ring of descriptors
 *
 * Since there is no access to the ring head register
 * in XL710, we need to use our local copies
 **/
718
u32 i40e_get_tx_pending(struct i40e_ring *ring)
719
{
J
Jesse Brandeburg 已提交
720 721
	u32 head, tail;

722
	head = i40e_get_head(ring);
J
Jesse Brandeburg 已提交
723 724 725 726 727 728 729
	tail = readl(ring->tail);

	if (head != tail)
		return (head < tail) ?
			tail - head : (tail + ring->count - head);

	return 0;
730 731
}

732
#define WB_STRIDE 4
733

734 735
/**
 * i40e_clean_tx_irq - Reclaim resources after transmit completes
736 737 738
 * @vsi: the VSI we care about
 * @tx_ring: Tx ring to clean
 * @napi_budget: Used to determine if we are in netpoll
739 740 741
 *
 * Returns true if there's any budget left (e.g. the clean is finished)
 **/
742 743
static bool i40e_clean_tx_irq(struct i40e_vsi *vsi,
			      struct i40e_ring *tx_ring, int napi_budget)
744 745 746
{
	u16 i = tx_ring->next_to_clean;
	struct i40e_tx_buffer *tx_buf;
747
	struct i40e_tx_desc *tx_head;
748
	struct i40e_tx_desc *tx_desc;
749 750
	unsigned int total_bytes = 0, total_packets = 0;
	unsigned int budget = vsi->work_limit;
751 752 753

	tx_buf = &tx_ring->tx_bi[i];
	tx_desc = I40E_TX_DESC(tx_ring, i);
A
Alexander Duyck 已提交
754
	i -= tx_ring->count;
755

756 757
	tx_head = I40E_TX_DESC(tx_ring, i40e_get_head(tx_ring));

A
Alexander Duyck 已提交
758 759
	do {
		struct i40e_tx_desc *eop_desc = tx_buf->next_to_watch;
760 761 762 763 764

		/* if next_to_watch is not set then there is no work pending */
		if (!eop_desc)
			break;

A
Alexander Duyck 已提交
765 766 767
		/* prevent any other reads prior to eop_desc */
		read_barrier_depends();

768 769
		/* we have caught up to head, no work left to do */
		if (tx_head == tx_desc)
770 771
			break;

A
Alexander Duyck 已提交
772
		/* clear next_to_watch to prevent false hangs */
773 774
		tx_buf->next_to_watch = NULL;

A
Alexander Duyck 已提交
775 776 777
		/* update the statistics for this packet */
		total_bytes += tx_buf->bytecount;
		total_packets += tx_buf->gso_segs;
778

A
Alexander Duyck 已提交
779
		/* free the skb */
780
		napi_consume_skb(tx_buf->skb, napi_budget);
781

A
Alexander Duyck 已提交
782 783 784 785 786
		/* unmap skb header data */
		dma_unmap_single(tx_ring->dev,
				 dma_unmap_addr(tx_buf, dma),
				 dma_unmap_len(tx_buf, len),
				 DMA_TO_DEVICE);
787

A
Alexander Duyck 已提交
788 789 790
		/* clear tx_buffer data */
		tx_buf->skb = NULL;
		dma_unmap_len_set(tx_buf, len, 0);
791

A
Alexander Duyck 已提交
792 793
		/* unmap remaining buffers */
		while (tx_desc != eop_desc) {
794 795 796 797

			tx_buf++;
			tx_desc++;
			i++;
A
Alexander Duyck 已提交
798 799
			if (unlikely(!i)) {
				i -= tx_ring->count;
800 801 802 803
				tx_buf = tx_ring->tx_bi;
				tx_desc = I40E_TX_DESC(tx_ring, 0);
			}

A
Alexander Duyck 已提交
804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823
			/* unmap any remaining paged data */
			if (dma_unmap_len(tx_buf, len)) {
				dma_unmap_page(tx_ring->dev,
					       dma_unmap_addr(tx_buf, dma),
					       dma_unmap_len(tx_buf, len),
					       DMA_TO_DEVICE);
				dma_unmap_len_set(tx_buf, len, 0);
			}
		}

		/* move us one more past the eop_desc for start of next pkt */
		tx_buf++;
		tx_desc++;
		i++;
		if (unlikely(!i)) {
			i -= tx_ring->count;
			tx_buf = tx_ring->tx_bi;
			tx_desc = I40E_TX_DESC(tx_ring, 0);
		}

824 825
		prefetch(tx_desc);

A
Alexander Duyck 已提交
826 827 828 829 830
		/* update budget accounting */
		budget--;
	} while (likely(budget));

	i += tx_ring->count;
831
	tx_ring->next_to_clean = i;
832
	u64_stats_update_begin(&tx_ring->syncp);
833 834
	tx_ring->stats.bytes += total_bytes;
	tx_ring->stats.packets += total_packets;
835
	u64_stats_update_end(&tx_ring->syncp);
836 837
	tx_ring->q_vector->tx.total_bytes += total_bytes;
	tx_ring->q_vector->tx.total_packets += total_packets;
A
Alexander Duyck 已提交
838

839 840 841 842 843 844
	if (tx_ring->flags & I40E_TXR_FLAGS_WB_ON_ITR) {
		/* check to see if there are < 4 descriptors
		 * waiting to be written back, then kick the hardware to force
		 * them to be written back in case we stay in NAPI.
		 * In this mode on X722 we do not enable Interrupt.
		 */
845
		unsigned int j = i40e_get_tx_pending(tx_ring);
846 847

		if (budget &&
848
		    ((j / WB_STRIDE) == 0) && (j > 0) &&
849
		    !test_bit(__I40E_DOWN, &vsi->state) &&
850 851 852
		    (I40E_DESC_UNUSED(tx_ring) != tx_ring->count))
			tx_ring->arm_wb = true;
	}
853

854 855
	/* notify netdev of completed buffers */
	netdev_tx_completed_queue(txring_txq(tx_ring),
856 857
				  total_packets, total_bytes);

858 859 860 861 862 863 864 865 866
#define TX_WAKE_THRESHOLD (DESC_NEEDED * 2)
	if (unlikely(total_packets && netif_carrier_ok(tx_ring->netdev) &&
		     (I40E_DESC_UNUSED(tx_ring) >= TX_WAKE_THRESHOLD))) {
		/* Make sure that anybody stopping the queue after this
		 * sees the new next_to_clean.
		 */
		smp_mb();
		if (__netif_subqueue_stopped(tx_ring->netdev,
					     tx_ring->queue_index) &&
867
		   !test_bit(__I40E_DOWN, &vsi->state)) {
868 869 870 871 872 873
			netif_wake_subqueue(tx_ring->netdev,
					    tx_ring->queue_index);
			++tx_ring->tx_stats.restart_queue;
		}
	}

874 875 876 877
	return !!budget;
}

/**
878
 * i40e_enable_wb_on_itr - Arm hardware to do a wb, interrupts are not enabled
879
 * @vsi: the VSI we care about
880
 * @q_vector: the vector on which to enable writeback
881 882
 *
 **/
883 884
static void i40e_enable_wb_on_itr(struct i40e_vsi *vsi,
				  struct i40e_q_vector *q_vector)
885
{
886
	u16 flags = q_vector->tx.ring[0].flags;
887
	u32 val;
888

889 890
	if (!(flags & I40E_TXR_FLAGS_WB_ON_ITR))
		return;
891

892 893
	if (q_vector->arm_wb_state)
		return;
894

895 896 897
	if (vsi->back->flags & I40E_FLAG_MSIX_ENABLED) {
		val = I40E_PFINT_DYN_CTLN_WB_ON_ITR_MASK |
		      I40E_PFINT_DYN_CTLN_ITR_INDX_MASK; /* set noitr */
898

899 900 901 902 903 904
		wr32(&vsi->back->hw,
		     I40E_PFINT_DYN_CTLN(q_vector->v_idx + vsi->base_vector - 1),
		     val);
	} else {
		val = I40E_PFINT_DYN_CTL0_WB_ON_ITR_MASK |
		      I40E_PFINT_DYN_CTL0_ITR_INDX_MASK; /* set noitr */
905

906 907 908 909 910 911 912 913 914 915 916 917 918 919
		wr32(&vsi->back->hw, I40E_PFINT_DYN_CTL0, val);
	}
	q_vector->arm_wb_state = true;
}

/**
 * i40e_force_wb - Issue SW Interrupt so HW does a wb
 * @vsi: the VSI we care about
 * @q_vector: the vector  on which to force writeback
 *
 **/
void i40e_force_wb(struct i40e_vsi *vsi, struct i40e_q_vector *q_vector)
{
	if (vsi->back->flags & I40E_FLAG_MSIX_ENABLED) {
920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937
		u32 val = I40E_PFINT_DYN_CTLN_INTENA_MASK |
			  I40E_PFINT_DYN_CTLN_ITR_INDX_MASK | /* set noitr */
			  I40E_PFINT_DYN_CTLN_SWINT_TRIG_MASK |
			  I40E_PFINT_DYN_CTLN_SW_ITR_INDX_ENA_MASK;
			  /* allow 00 to be written to the index */

		wr32(&vsi->back->hw,
		     I40E_PFINT_DYN_CTLN(q_vector->v_idx +
					 vsi->base_vector - 1), val);
	} else {
		u32 val = I40E_PFINT_DYN_CTL0_INTENA_MASK |
			  I40E_PFINT_DYN_CTL0_ITR_INDX_MASK | /* set noitr */
			  I40E_PFINT_DYN_CTL0_SWINT_TRIG_MASK |
			  I40E_PFINT_DYN_CTL0_SW_ITR_INDX_ENA_MASK;
			/* allow 00 to be written to the index */

		wr32(&vsi->back->hw, I40E_PFINT_DYN_CTL0, val);
	}
938 939 940 941 942 943
}

/**
 * i40e_set_new_dynamic_itr - Find new ITR level
 * @rc: structure containing ring performance data
 *
944 945
 * Returns true if ITR changed, false if not
 *
946 947 948 949 950 951 952 953
 * Stores a new ITR value based on packets and byte counts during
 * the last interrupt.  The advantage of per interrupt computation
 * is faster updates and more accurate ITR for the current traffic
 * pattern.  Constants in this function were computed based on
 * theoretical maximum wire speed and thresholds were set based on
 * testing data as well as attempting to minimize response time
 * while increasing bulk throughput.
 **/
954
static bool i40e_set_new_dynamic_itr(struct i40e_ring_container *rc)
955 956
{
	enum i40e_latency_range new_latency_range = rc->latency_range;
957
	struct i40e_q_vector *qv = rc->ring->q_vector;
958 959
	u32 new_itr = rc->itr;
	int bytes_per_int;
960
	int usecs;
961 962

	if (rc->total_packets == 0 || !rc->itr)
963
		return false;
964 965

	/* simple throttlerate management
966
	 *   0-10MB/s   lowest (50000 ints/s)
967
	 *  10-20MB/s   low    (20000 ints/s)
968 969
	 *  20-1249MB/s bulk   (18000 ints/s)
	 *  > 40000 Rx packets per second (8000 ints/s)
970 971 972 973
	 *
	 * The math works out because the divisor is in 10^(-6) which
	 * turns the bytes/us input value into MB/s values, but
	 * make sure to use usecs, as the register values written
974 975
	 * are in 2 usec increments in the ITR registers, and make sure
	 * to use the smoothed values that the countdown timer gives us.
976
	 */
977
	usecs = (rc->itr << 1) * ITR_COUNTDOWN_START;
978
	bytes_per_int = rc->total_bytes / usecs;
979

980
	switch (new_latency_range) {
981 982 983 984 985 986 987 988 989 990 991
	case I40E_LOWEST_LATENCY:
		if (bytes_per_int > 10)
			new_latency_range = I40E_LOW_LATENCY;
		break;
	case I40E_LOW_LATENCY:
		if (bytes_per_int > 20)
			new_latency_range = I40E_BULK_LATENCY;
		else if (bytes_per_int <= 10)
			new_latency_range = I40E_LOWEST_LATENCY;
		break;
	case I40E_BULK_LATENCY:
992
	case I40E_ULTRA_LATENCY:
993 994 995
	default:
		if (bytes_per_int <= 20)
			new_latency_range = I40E_LOW_LATENCY;
996 997
		break;
	}
998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009

	/* this is to adjust RX more aggressively when streaming small
	 * packets.  The value of 40000 was picked as it is just beyond
	 * what the hardware can receive per second if in low latency
	 * mode.
	 */
#define RX_ULTRA_PACKET_RATE 40000

	if ((((rc->total_packets * 1000000) / usecs) > RX_ULTRA_PACKET_RATE) &&
	    (&qv->rx == rc))
		new_latency_range = I40E_ULTRA_LATENCY;

1010
	rc->latency_range = new_latency_range;
1011 1012 1013

	switch (new_latency_range) {
	case I40E_LOWEST_LATENCY:
1014
		new_itr = I40E_ITR_50K;
1015 1016 1017 1018 1019
		break;
	case I40E_LOW_LATENCY:
		new_itr = I40E_ITR_20K;
		break;
	case I40E_BULK_LATENCY:
1020 1021 1022
		new_itr = I40E_ITR_18K;
		break;
	case I40E_ULTRA_LATENCY:
1023 1024 1025 1026 1027 1028 1029 1030
		new_itr = I40E_ITR_8K;
		break;
	default:
		break;
	}

	rc->total_bytes = 0;
	rc->total_packets = 0;
1031 1032 1033 1034 1035 1036 1037

	if (new_itr != rc->itr) {
		rc->itr = new_itr;
		return true;
	}

	return false;
1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060
}

/**
 * i40e_clean_programming_status - clean the programming status descriptor
 * @rx_ring: the rx ring that has this descriptor
 * @rx_desc: the rx descriptor written back by HW
 *
 * Flow director should handle FD_FILTER_STATUS to check its filter programming
 * status being successful or not and take actions accordingly. FCoE should
 * handle its context/filter programming/invalidation status and take actions.
 *
 **/
static void i40e_clean_programming_status(struct i40e_ring *rx_ring,
					  union i40e_rx_desc *rx_desc)
{
	u64 qw;
	u8 id;

	qw = le64_to_cpu(rx_desc->wb.qword1.status_error_len);
	id = (qw & I40E_RX_PROG_STATUS_DESC_QW1_PROGID_MASK) >>
		  I40E_RX_PROG_STATUS_DESC_QW1_PROGID_SHIFT;

	if (id == I40E_RX_PROG_STATUS_DESC_FD_FILTER_STATUS)
1061
		i40e_fd_handle_status(rx_ring, rx_desc, id);
1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077
}

/**
 * i40e_setup_tx_descriptors - Allocate the Tx descriptors
 * @tx_ring: the tx ring to set up
 *
 * Return 0 on success, negative on error
 **/
int i40e_setup_tx_descriptors(struct i40e_ring *tx_ring)
{
	struct device *dev = tx_ring->dev;
	int bi_size;

	if (!dev)
		return -ENOMEM;

J
Jesse Brandeburg 已提交
1078 1079
	/* warn if we are about to overwrite the pointer */
	WARN_ON(tx_ring->tx_bi);
1080 1081 1082 1083 1084 1085 1086
	bi_size = sizeof(struct i40e_tx_buffer) * tx_ring->count;
	tx_ring->tx_bi = kzalloc(bi_size, GFP_KERNEL);
	if (!tx_ring->tx_bi)
		goto err;

	/* round up to nearest 4K */
	tx_ring->size = tx_ring->count * sizeof(struct i40e_tx_desc);
1087 1088 1089 1090
	/* add u32 for head writeback, align after this takes care of
	 * guaranteeing this is at least one cache line in size
	 */
	tx_ring->size += sizeof(u32);
1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122
	tx_ring->size = ALIGN(tx_ring->size, 4096);
	tx_ring->desc = dma_alloc_coherent(dev, tx_ring->size,
					   &tx_ring->dma, GFP_KERNEL);
	if (!tx_ring->desc) {
		dev_info(dev, "Unable to allocate memory for the Tx descriptor ring, size=%d\n",
			 tx_ring->size);
		goto err;
	}

	tx_ring->next_to_use = 0;
	tx_ring->next_to_clean = 0;
	return 0;

err:
	kfree(tx_ring->tx_bi);
	tx_ring->tx_bi = NULL;
	return -ENOMEM;
}

/**
 * i40e_clean_rx_ring - Free Rx buffers
 * @rx_ring: ring to be cleaned
 **/
void i40e_clean_rx_ring(struct i40e_ring *rx_ring)
{
	unsigned long bi_size;
	u16 i;

	/* ring already cleared, nothing to do */
	if (!rx_ring->rx_bi)
		return;

1123 1124 1125 1126 1127
	if (rx_ring->skb) {
		dev_kfree_skb(rx_ring->skb);
		rx_ring->skb = NULL;
	}

1128 1129
	/* Free all the Rx ring sk_buffs */
	for (i = 0; i < rx_ring->count; i++) {
1130 1131 1132 1133 1134
		struct i40e_rx_buffer *rx_bi = &rx_ring->rx_bi[i];

		if (!rx_bi->page)
			continue;

1135 1136 1137 1138 1139 1140
		/* Invalidate cache lines that may have been written to by
		 * device so that we avoid corrupting memory.
		 */
		dma_sync_single_range_for_cpu(rx_ring->dev,
					      rx_bi->dma,
					      rx_bi->page_offset,
1141
					      rx_ring->rx_buf_len,
1142 1143 1144 1145
					      DMA_FROM_DEVICE);

		/* free resources associated with mapping */
		dma_unmap_page_attrs(rx_ring->dev, rx_bi->dma,
1146
				     i40e_rx_pg_size(rx_ring),
1147 1148
				     DMA_FROM_DEVICE,
				     I40E_RX_DMA_ATTR);
1149

1150
		__page_frag_cache_drain(rx_bi->page, rx_bi->pagecnt_bias);
1151 1152 1153

		rx_bi->page = NULL;
		rx_bi->page_offset = 0;
1154 1155 1156 1157 1158 1159 1160 1161
	}

	bi_size = sizeof(struct i40e_rx_buffer) * rx_ring->count;
	memset(rx_ring->rx_bi, 0, bi_size);

	/* Zero out the descriptor ring */
	memset(rx_ring->desc, 0, rx_ring->size);

1162
	rx_ring->next_to_alloc = 0;
1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196
	rx_ring->next_to_clean = 0;
	rx_ring->next_to_use = 0;
}

/**
 * i40e_free_rx_resources - Free Rx resources
 * @rx_ring: ring to clean the resources from
 *
 * Free all receive software resources
 **/
void i40e_free_rx_resources(struct i40e_ring *rx_ring)
{
	i40e_clean_rx_ring(rx_ring);
	kfree(rx_ring->rx_bi);
	rx_ring->rx_bi = NULL;

	if (rx_ring->desc) {
		dma_free_coherent(rx_ring->dev, rx_ring->size,
				  rx_ring->desc, rx_ring->dma);
		rx_ring->desc = NULL;
	}
}

/**
 * i40e_setup_rx_descriptors - Allocate Rx descriptors
 * @rx_ring: Rx descriptor ring (for a specific queue) to setup
 *
 * Returns 0 on success, negative on failure
 **/
int i40e_setup_rx_descriptors(struct i40e_ring *rx_ring)
{
	struct device *dev = rx_ring->dev;
	int bi_size;

J
Jesse Brandeburg 已提交
1197 1198
	/* warn if we are about to overwrite the pointer */
	WARN_ON(rx_ring->rx_bi);
1199 1200 1201 1202 1203
	bi_size = sizeof(struct i40e_rx_buffer) * rx_ring->count;
	rx_ring->rx_bi = kzalloc(bi_size, GFP_KERNEL);
	if (!rx_ring->rx_bi)
		goto err;

1204
	u64_stats_init(&rx_ring->syncp);
1205

1206
	/* Round up to nearest 4K */
1207
	rx_ring->size = rx_ring->count * sizeof(union i40e_32byte_rx_desc);
1208 1209 1210 1211 1212 1213 1214 1215 1216 1217
	rx_ring->size = ALIGN(rx_ring->size, 4096);
	rx_ring->desc = dma_alloc_coherent(dev, rx_ring->size,
					   &rx_ring->dma, GFP_KERNEL);

	if (!rx_ring->desc) {
		dev_info(dev, "Unable to allocate memory for the Rx descriptor ring, size=%d\n",
			 rx_ring->size);
		goto err;
	}

1218
	rx_ring->next_to_alloc = 0;
1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236
	rx_ring->next_to_clean = 0;
	rx_ring->next_to_use = 0;

	return 0;
err:
	kfree(rx_ring->rx_bi);
	rx_ring->rx_bi = NULL;
	return -ENOMEM;
}

/**
 * i40e_release_rx_desc - Store the new tail and head values
 * @rx_ring: ring to bump
 * @val: new head index
 **/
static inline void i40e_release_rx_desc(struct i40e_ring *rx_ring, u32 val)
{
	rx_ring->next_to_use = val;
1237 1238 1239 1240

	/* update next to alloc since we have filled the ring */
	rx_ring->next_to_alloc = val;

1241 1242 1243 1244 1245 1246 1247 1248 1249
	/* Force memory writes to complete before letting h/w
	 * know there are new descriptors to fetch.  (Only
	 * applicable for weak-ordered memory model archs,
	 * such as IA-64).
	 */
	wmb();
	writel(val, rx_ring->tail);
}

1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260
/**
 * i40e_rx_offset - Return expected offset into page to access data
 * @rx_ring: Ring we are requesting offset of
 *
 * Returns the offset value for ring into the data buffer.
 */
static inline unsigned int i40e_rx_offset(struct i40e_ring *rx_ring)
{
	return ring_uses_build_skb(rx_ring) ? I40E_SKB_PAD : 0;
}

1261
/**
1262 1263 1264
 * i40e_alloc_mapped_page - recycle or make a new page
 * @rx_ring: ring to use
 * @bi: rx_buffer struct to modify
1265
 *
1266 1267
 * Returns true if the page was successfully allocated or
 * reused.
1268
 **/
1269 1270
static bool i40e_alloc_mapped_page(struct i40e_ring *rx_ring,
				   struct i40e_rx_buffer *bi)
1271
{
1272 1273
	struct page *page = bi->page;
	dma_addr_t dma;
1274

1275 1276 1277 1278 1279
	/* since we are recycling buffers we should seldom need to alloc */
	if (likely(page)) {
		rx_ring->rx_stats.page_reuse_count++;
		return true;
	}
1280

1281
	/* alloc new page for storage */
1282
	page = dev_alloc_pages(i40e_rx_pg_order(rx_ring));
1283 1284 1285 1286
	if (unlikely(!page)) {
		rx_ring->rx_stats.alloc_page_failed++;
		return false;
	}
1287

1288
	/* map page for use */
1289
	dma = dma_map_page_attrs(rx_ring->dev, page, 0,
1290
				 i40e_rx_pg_size(rx_ring),
1291 1292
				 DMA_FROM_DEVICE,
				 I40E_RX_DMA_ATTR);
1293

1294 1295
	/* if mapping failed free memory back to system since
	 * there isn't much point in holding memory we can't use
1296
	 */
1297
	if (dma_mapping_error(rx_ring->dev, dma)) {
1298
		__free_pages(page, i40e_rx_pg_order(rx_ring));
1299 1300
		rx_ring->rx_stats.alloc_page_failed++;
		return false;
1301 1302
	}

1303 1304
	bi->dma = dma;
	bi->page = page;
1305
	bi->page_offset = i40e_rx_offset(rx_ring);
1306 1307

	/* initialize pagecnt_bias to 1 representing we fully own page */
1308
	bi->pagecnt_bias = 1;
1309

1310 1311
	return true;
}
1312

1313 1314 1315 1316 1317 1318 1319 1320 1321 1322
/**
 * i40e_receive_skb - Send a completed packet up the stack
 * @rx_ring:  rx ring in play
 * @skb: packet to send up
 * @vlan_tag: vlan tag for packet
 **/
static void i40e_receive_skb(struct i40e_ring *rx_ring,
			     struct sk_buff *skb, u16 vlan_tag)
{
	struct i40e_q_vector *q_vector = rx_ring->q_vector;
1323

1324 1325 1326 1327 1328
	if ((rx_ring->netdev->features & NETIF_F_HW_VLAN_CTAG_RX) &&
	    (vlan_tag & VLAN_VID_MASK))
		__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vlan_tag);

	napi_gro_receive(&q_vector->napi, skb);
1329 1330 1331
}

/**
1332
 * i40e_alloc_rx_buffers - Replace used receive buffers
1333 1334
 * @rx_ring: ring to place buffers on
 * @cleaned_count: number of buffers to replace
1335
 *
1336
 * Returns false if all allocations were successful, true if any fail
1337
 **/
1338
bool i40e_alloc_rx_buffers(struct i40e_ring *rx_ring, u16 cleaned_count)
1339
{
1340
	u16 ntu = rx_ring->next_to_use;
1341 1342 1343 1344 1345
	union i40e_rx_desc *rx_desc;
	struct i40e_rx_buffer *bi;

	/* do nothing if no valid netdev defined */
	if (!rx_ring->netdev || !cleaned_count)
1346
		return false;
1347

1348 1349
	rx_desc = I40E_RX_DESC(rx_ring, ntu);
	bi = &rx_ring->rx_bi[ntu];
1350

1351 1352 1353
	do {
		if (!i40e_alloc_mapped_page(rx_ring, bi))
			goto no_buffers;
1354

1355 1356 1357
		/* sync the buffer for use by the device */
		dma_sync_single_range_for_device(rx_ring->dev, bi->dma,
						 bi->page_offset,
1358
						 rx_ring->rx_buf_len,
1359 1360
						 DMA_FROM_DEVICE);

1361 1362 1363 1364
		/* Refresh the desc even if buffer_addrs didn't change
		 * because each write-back erases this info.
		 */
		rx_desc->read.pkt_addr = cpu_to_le64(bi->dma + bi->page_offset);
1365

1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382
		rx_desc++;
		bi++;
		ntu++;
		if (unlikely(ntu == rx_ring->count)) {
			rx_desc = I40E_RX_DESC(rx_ring, 0);
			bi = rx_ring->rx_bi;
			ntu = 0;
		}

		/* clear the status bits for the next_to_use descriptor */
		rx_desc->wb.qword1.status_error_len = 0;

		cleaned_count--;
	} while (cleaned_count);

	if (rx_ring->next_to_use != ntu)
		i40e_release_rx_desc(rx_ring, ntu);
1383 1384 1385

	return false;

1386
no_buffers:
1387 1388
	if (rx_ring->next_to_use != ntu)
		i40e_release_rx_desc(rx_ring, ntu);
1389 1390 1391 1392 1393

	/* make sure to come back via polling to try again after
	 * allocation failure
	 */
	return true;
1394 1395 1396 1397 1398 1399
}

/**
 * i40e_rx_checksum - Indicate in skb if hw indicated a good cksum
 * @vsi: the VSI we care about
 * @skb: skb currently being received and modified
1400
 * @rx_desc: the receive descriptor
1401 1402 1403
 **/
static inline void i40e_rx_checksum(struct i40e_vsi *vsi,
				    struct sk_buff *skb,
1404
				    union i40e_rx_desc *rx_desc)
1405
{
1406 1407
	struct i40e_rx_ptype_decoded decoded;
	u32 rx_error, rx_status;
1408
	bool ipv4, ipv6;
1409 1410 1411 1412 1413 1414 1415 1416 1417 1418
	u8 ptype;
	u64 qword;

	qword = le64_to_cpu(rx_desc->wb.qword1.status_error_len);
	ptype = (qword & I40E_RXD_QW1_PTYPE_MASK) >> I40E_RXD_QW1_PTYPE_SHIFT;
	rx_error = (qword & I40E_RXD_QW1_ERROR_MASK) >>
		   I40E_RXD_QW1_ERROR_SHIFT;
	rx_status = (qword & I40E_RXD_QW1_STATUS_MASK) >>
		    I40E_RXD_QW1_STATUS_SHIFT;
	decoded = decode_rx_desc_ptype(ptype);
1419

1420 1421
	skb->ip_summed = CHECKSUM_NONE;

1422 1423
	skb_checksum_none_assert(skb);

1424
	/* Rx csum enabled and ip headers found? */
1425 1426 1427 1428
	if (!(vsi->netdev->features & NETIF_F_RXCSUM))
		return;

	/* did the hardware decode the packet and checksum? */
1429
	if (!(rx_status & BIT(I40E_RX_DESC_STATUS_L3L4P_SHIFT)))
1430 1431 1432 1433
		return;

	/* both known and outer_ip must be set for the below code to work */
	if (!(decoded.known && decoded.outer_ip))
1434 1435
		return;

1436 1437 1438 1439
	ipv4 = (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP) &&
	       (decoded.outer_ip_ver == I40E_RX_PTYPE_OUTER_IPV4);
	ipv6 = (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP) &&
	       (decoded.outer_ip_ver == I40E_RX_PTYPE_OUTER_IPV6);
1440 1441

	if (ipv4 &&
1442 1443
	    (rx_error & (BIT(I40E_RX_DESC_ERROR_IPE_SHIFT) |
			 BIT(I40E_RX_DESC_ERROR_EIPE_SHIFT))))
1444 1445
		goto checksum_fail;

J
Jesse Brandeburg 已提交
1446
	/* likely incorrect csum if alternate IP extension headers found */
1447
	if (ipv6 &&
1448
	    rx_status & BIT(I40E_RX_DESC_STATUS_IPV6EXADD_SHIFT))
1449
		/* don't increment checksum err here, non-fatal err */
1450 1451
		return;

1452
	/* there was some L4 error, count error and punt packet to the stack */
1453
	if (rx_error & BIT(I40E_RX_DESC_ERROR_L4E_SHIFT))
1454 1455 1456 1457 1458 1459
		goto checksum_fail;

	/* handle packets that were not able to be checksummed due
	 * to arrival speed, in this case the stack can compute
	 * the csum.
	 */
1460
	if (rx_error & BIT(I40E_RX_DESC_ERROR_PPRS_SHIFT))
1461 1462
		return;

1463 1464 1465
	/* If there is an outer header present that might contain a checksum
	 * we need to bump the checksum level by 1 to reflect the fact that
	 * we are indicating we validated the inner checksum.
1466
	 */
1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479
	if (decoded.tunnel_type >= I40E_RX_PTYPE_TUNNEL_IP_GRENAT)
		skb->csum_level = 1;

	/* Only report checksum unnecessary for TCP, UDP, or SCTP */
	switch (decoded.inner_prot) {
	case I40E_RX_PTYPE_INNER_PROT_TCP:
	case I40E_RX_PTYPE_INNER_PROT_UDP:
	case I40E_RX_PTYPE_INNER_PROT_SCTP:
		skb->ip_summed = CHECKSUM_UNNECESSARY;
		/* fall though */
	default:
		break;
	}
1480 1481 1482 1483 1484

	return;

checksum_fail:
	vsi->back->hw_csum_rx_error++;
1485 1486 1487
}

/**
1488
 * i40e_ptype_to_htype - get a hash type
1489 1490 1491 1492
 * @ptype: the ptype value from the descriptor
 *
 * Returns a hash type to be used by skb_set_hash
 **/
1493
static inline int i40e_ptype_to_htype(u8 ptype)
1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509
{
	struct i40e_rx_ptype_decoded decoded = decode_rx_desc_ptype(ptype);

	if (!decoded.known)
		return PKT_HASH_TYPE_NONE;

	if (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP &&
	    decoded.payload_layer == I40E_RX_PTYPE_PAYLOAD_LAYER_PAY4)
		return PKT_HASH_TYPE_L4;
	else if (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP &&
		 decoded.payload_layer == I40E_RX_PTYPE_PAYLOAD_LAYER_PAY3)
		return PKT_HASH_TYPE_L3;
	else
		return PKT_HASH_TYPE_L2;
}

1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520
/**
 * i40e_rx_hash - set the hash value in the skb
 * @ring: descriptor ring
 * @rx_desc: specific descriptor
 **/
static inline void i40e_rx_hash(struct i40e_ring *ring,
				union i40e_rx_desc *rx_desc,
				struct sk_buff *skb,
				u8 rx_ptype)
{
	u32 hash;
1521
	const __le64 rss_mask =
1522 1523 1524
		cpu_to_le64((u64)I40E_RX_DESC_FLTSTAT_RSS_HASH <<
			    I40E_RX_DESC_STATUS_FLTSTAT_SHIFT);

1525
	if (!(ring->netdev->features & NETIF_F_RXHASH))
1526 1527 1528 1529 1530 1531 1532 1533
		return;

	if ((rx_desc->wb.qword1.status_error_len & rss_mask) == rss_mask) {
		hash = le32_to_cpu(rx_desc->wb.qword0.hi_dword.rss);
		skb_set_hash(skb, hash, i40e_ptype_to_htype(rx_ptype));
	}
}

1534
/**
1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552
 * i40e_process_skb_fields - Populate skb header fields from Rx descriptor
 * @rx_ring: rx descriptor ring packet is being transacted on
 * @rx_desc: pointer to the EOP Rx descriptor
 * @skb: pointer to current skb being populated
 * @rx_ptype: the packet type decoded by hardware
 *
 * This function checks the ring, descriptor, and packet information in
 * order to populate the hash, checksum, VLAN, protocol, and
 * other fields within the skb.
 **/
static inline
void i40e_process_skb_fields(struct i40e_ring *rx_ring,
			     union i40e_rx_desc *rx_desc, struct sk_buff *skb,
			     u8 rx_ptype)
{
	u64 qword = le64_to_cpu(rx_desc->wb.qword1.status_error_len);
	u32 rx_status = (qword & I40E_RXD_QW1_STATUS_MASK) >>
			I40E_RXD_QW1_STATUS_SHIFT;
1553 1554
	u32 tsynvalid = rx_status & I40E_RXD_QW1_STATUS_TSYNVALID_MASK;
	u32 tsyn = (rx_status & I40E_RXD_QW1_STATUS_TSYNINDX_MASK) >>
1555 1556
		   I40E_RXD_QW1_STATUS_TSYNINDX_SHIFT;

1557
	if (unlikely(tsynvalid))
1558
		i40e_ptp_rx_hwtstamp(rx_ring->vsi->back, skb, tsyn);
1559 1560 1561 1562 1563 1564

	i40e_rx_hash(rx_ring, rx_desc, skb, rx_ptype);

	i40e_rx_checksum(rx_ring->vsi, skb, rx_desc);

	skb_record_rx_queue(skb, rx_ring->queue_index);
1565 1566 1567

	/* modifies the skb - consumes the enet header */
	skb->protocol = eth_type_trans(skb, rx_ring->netdev);
1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611
}

/**
 * i40e_cleanup_headers - Correct empty headers
 * @rx_ring: rx descriptor ring packet is being transacted on
 * @skb: pointer to current skb being fixed
 *
 * Also address the case where we are pulling data in on pages only
 * and as such no data is present in the skb header.
 *
 * In addition if skb is not at least 60 bytes we need to pad it so that
 * it is large enough to qualify as a valid Ethernet frame.
 *
 * Returns true if an error was encountered and skb was freed.
 **/
static bool i40e_cleanup_headers(struct i40e_ring *rx_ring, struct sk_buff *skb)
{
	/* if eth_skb_pad returns an error the skb was freed */
	if (eth_skb_pad(skb))
		return true;

	return false;
}

/**
 * i40e_reuse_rx_page - page flip buffer and store it back on the ring
 * @rx_ring: rx descriptor ring to store buffers on
 * @old_buff: donor buffer to have page reused
 *
 * Synchronizes page for reuse by the adapter
 **/
static void i40e_reuse_rx_page(struct i40e_ring *rx_ring,
			       struct i40e_rx_buffer *old_buff)
{
	struct i40e_rx_buffer *new_buff;
	u16 nta = rx_ring->next_to_alloc;

	new_buff = &rx_ring->rx_bi[nta];

	/* update, and store next to alloc */
	nta++;
	rx_ring->next_to_alloc = (nta < rx_ring->count) ? nta : 0;

	/* transfer page from old buffer to new buffer */
1612 1613 1614 1615
	new_buff->dma		= old_buff->dma;
	new_buff->page		= old_buff->page;
	new_buff->page_offset	= old_buff->page_offset;
	new_buff->pagecnt_bias	= old_buff->pagecnt_bias;
1616 1617 1618
}

/**
1619
 * i40e_page_is_reusable - check if any reuse is possible
1620
 * @page: page struct to check
1621 1622 1623
 *
 * A page is not reusable if it was allocated under low memory
 * conditions, or it's not in the same NUMA node as this CPU.
1624
 */
1625
static inline bool i40e_page_is_reusable(struct page *page)
1626
{
1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657
	return (page_to_nid(page) == numa_mem_id()) &&
		!page_is_pfmemalloc(page);
}

/**
 * i40e_can_reuse_rx_page - Determine if this page can be reused by
 * the adapter for another receive
 *
 * @rx_buffer: buffer containing the page
 *
 * If page is reusable, rx_buffer->page_offset is adjusted to point to
 * an unused region in the page.
 *
 * For small pages, @truesize will be a constant value, half the size
 * of the memory at page.  We'll attempt to alternate between high and
 * low halves of the page, with one half ready for use by the hardware
 * and the other half being consumed by the stack.  We use the page
 * ref count to determine whether the stack has finished consuming the
 * portion of this page that was passed up with a previous packet.  If
 * the page ref count is >1, we'll assume the "other" half page is
 * still busy, and this page cannot be reused.
 *
 * For larger pages, @truesize will be the actual space used by the
 * received packet (adjusted upward to an even multiple of the cache
 * line size).  This will advance through the page by the amount
 * actually consumed by the received packets while there is still
 * space for a buffer.  Each region of larger pages will be used at
 * most once, after which the page will not be reused.
 *
 * In either case, if the page is reusable its refcount is increased.
 **/
1658
static bool i40e_can_reuse_rx_page(struct i40e_rx_buffer *rx_buffer)
1659
{
1660 1661
	unsigned int pagecnt_bias = rx_buffer->pagecnt_bias;
	struct page *page = rx_buffer->page;
1662 1663 1664 1665 1666 1667 1668

	/* Is any reuse possible? */
	if (unlikely(!i40e_page_is_reusable(page)))
		return false;

#if (PAGE_SIZE < 8192)
	/* if we are only owner of page we can reuse it */
1669
	if (unlikely((page_count(page) - pagecnt_bias) > 1))
1670 1671
		return false;
#else
1672 1673 1674
#define I40E_LAST_OFFSET \
	(SKB_WITH_OVERHEAD(PAGE_SIZE) - I40E_RXBUFFER_2048)
	if (rx_buffer->page_offset > I40E_LAST_OFFSET)
1675 1676 1677
		return false;
#endif

1678 1679 1680 1681
	/* If we have drained the page fragment pool we need to update
	 * the pagecnt_bias and page count so that we fully restock the
	 * number of references the driver holds.
	 */
1682
	if (unlikely(!pagecnt_bias)) {
1683 1684 1685
		page_ref_add(page, USHRT_MAX);
		rx_buffer->pagecnt_bias = USHRT_MAX;
	}
1686

1687
	return true;
1688 1689 1690 1691 1692 1693 1694
}

/**
 * i40e_add_rx_frag - Add contents of Rx buffer to sk_buff
 * @rx_ring: rx descriptor ring to transact packets on
 * @rx_buffer: buffer containing page to add
 * @skb: sk_buff to place the data into
1695
 * @size: packet length from rx_desc
1696 1697
 *
 * This function will add the data contained in rx_buffer->page to the skb.
1698
 * It will just attach the page as a frag to the skb.
1699
 *
1700
 * The function will then update the page offset.
1701
 **/
1702
static void i40e_add_rx_frag(struct i40e_ring *rx_ring,
1703
			     struct i40e_rx_buffer *rx_buffer,
1704 1705
			     struct sk_buff *skb,
			     unsigned int size)
1706 1707
{
#if (PAGE_SIZE < 8192)
1708
	unsigned int truesize = i40e_rx_pg_size(rx_ring) / 2;
1709
#else
1710
	unsigned int truesize = SKB_DATA_ALIGN(size + i40e_rx_offset(rx_ring));
1711 1712
#endif

1713 1714
	skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, rx_buffer->page,
			rx_buffer->page_offset, size, truesize);
1715

1716 1717 1718 1719 1720 1721
	/* page is being used so we must update the page offset */
#if (PAGE_SIZE < 8192)
	rx_buffer->page_offset ^= truesize;
#else
	rx_buffer->page_offset += truesize;
#endif
1722 1723
}

1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746
/**
 * i40e_get_rx_buffer - Fetch Rx buffer and synchronize data for use
 * @rx_ring: rx descriptor ring to transact packets on
 * @size: size of buffer to add to skb
 *
 * This function will pull an Rx buffer from the ring and synchronize it
 * for use by the CPU.
 */
static struct i40e_rx_buffer *i40e_get_rx_buffer(struct i40e_ring *rx_ring,
						 const unsigned int size)
{
	struct i40e_rx_buffer *rx_buffer;

	rx_buffer = &rx_ring->rx_bi[rx_ring->next_to_clean];
	prefetchw(rx_buffer->page);

	/* we are reusing so sync this buffer for CPU use */
	dma_sync_single_range_for_cpu(rx_ring->dev,
				      rx_buffer->dma,
				      rx_buffer->page_offset,
				      size,
				      DMA_FROM_DEVICE);

1747 1748 1749
	/* We have pulled a buffer for use, so decrement pagecnt_bias */
	rx_buffer->pagecnt_bias--;

1750 1751 1752
	return rx_buffer;
}

1753
/**
1754
 * i40e_construct_skb - Allocate skb and populate it
1755
 * @rx_ring: rx descriptor ring to transact packets on
1756
 * @rx_buffer: rx buffer to pull data from
1757
 * @size: size of buffer to add to skb
1758
 *
1759 1760 1761
 * This function allocates an skb.  It then populates it with the page
 * data from the current receive descriptor, taking care to set up the
 * skb correctly.
1762
 */
1763 1764 1765
static struct sk_buff *i40e_construct_skb(struct i40e_ring *rx_ring,
					  struct i40e_rx_buffer *rx_buffer,
					  unsigned int size)
1766
{
1767 1768
	void *va = page_address(rx_buffer->page) + rx_buffer->page_offset;
#if (PAGE_SIZE < 8192)
1769
	unsigned int truesize = i40e_rx_pg_size(rx_ring) / 2;
1770 1771 1772 1773 1774
#else
	unsigned int truesize = SKB_DATA_ALIGN(size);
#endif
	unsigned int headlen;
	struct sk_buff *skb;
1775

1776 1777
	/* prefetch first cache line of first page */
	prefetch(va);
1778
#if L1_CACHE_BYTES < 128
1779
	prefetch(va + L1_CACHE_BYTES);
1780 1781
#endif

1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792
	/* allocate a skb to store the frags */
	skb = __napi_alloc_skb(&rx_ring->q_vector->napi,
			       I40E_RX_HDR_SIZE,
			       GFP_ATOMIC | __GFP_NOWARN);
	if (unlikely(!skb))
		return NULL;

	/* Determine available headroom for copy */
	headlen = size;
	if (headlen > I40E_RX_HDR_SIZE)
		headlen = eth_get_headlen(va, I40E_RX_HDR_SIZE);
1793

1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813
	/* align pull length to size of long to optimize memcpy performance */
	memcpy(__skb_put(skb, headlen), va, ALIGN(headlen, sizeof(long)));

	/* update all of the pointers */
	size -= headlen;
	if (size) {
		skb_add_rx_frag(skb, 0, rx_buffer->page,
				rx_buffer->page_offset + headlen,
				size, truesize);

		/* buffer is used by skb, update page_offset */
#if (PAGE_SIZE < 8192)
		rx_buffer->page_offset ^= truesize;
#else
		rx_buffer->page_offset += truesize;
#endif
	} else {
		/* buffer is unused, reset bias back to rx_buffer */
		rx_buffer->pagecnt_bias++;
	}
1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829

	return skb;
}

/**
 * i40e_put_rx_buffer - Clean up used buffer and either recycle or free
 * @rx_ring: rx descriptor ring to transact packets on
 * @rx_buffer: rx buffer to pull data from
 *
 * This function will clean up the contents of the rx_buffer.  It will
 * either recycle the bufer or unmap it and free the associated resources.
 */
static void i40e_put_rx_buffer(struct i40e_ring *rx_ring,
			       struct i40e_rx_buffer *rx_buffer)
{
	if (i40e_can_reuse_rx_page(rx_buffer)) {
1830 1831 1832 1833 1834
		/* hand second half of page back to the ring */
		i40e_reuse_rx_page(rx_ring, rx_buffer);
		rx_ring->rx_stats.page_reuse_count++;
	} else {
		/* we are not reusing the buffer so unmap it */
1835 1836
		dma_unmap_page_attrs(rx_ring->dev, rx_buffer->dma,
				     i40e_rx_pg_size(rx_ring),
1837
				     DMA_FROM_DEVICE, I40E_RX_DMA_ATTR);
1838 1839
		__page_frag_cache_drain(rx_buffer->page,
					rx_buffer->pagecnt_bias);
1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855
	}

	/* clear contents of buffer_info */
	rx_buffer->page = NULL;
}

/**
 * i40e_is_non_eop - process handling of non-EOP buffers
 * @rx_ring: Rx ring being processed
 * @rx_desc: Rx descriptor for current buffer
 * @skb: Current socket buffer containing buffer in progress
 *
 * This function updates next to clean.  If the buffer is an EOP buffer
 * this function exits returning false, otherwise it will place the
 * sk_buff in the next buffer to be chained and return true indicating
 * that this is in fact a non-EOP buffer.
1856
 **/
1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896
static bool i40e_is_non_eop(struct i40e_ring *rx_ring,
			    union i40e_rx_desc *rx_desc,
			    struct sk_buff *skb)
{
	u32 ntc = rx_ring->next_to_clean + 1;

	/* fetch, update, and store next to clean */
	ntc = (ntc < rx_ring->count) ? ntc : 0;
	rx_ring->next_to_clean = ntc;

	prefetch(I40E_RX_DESC(rx_ring, ntc));

#define staterrlen rx_desc->wb.qword1.status_error_len
	if (unlikely(i40e_rx_is_programming_status(le64_to_cpu(staterrlen)))) {
		i40e_clean_programming_status(rx_ring, rx_desc);
		return true;
	}
	/* if we are the last buffer then there is nothing else to do */
#define I40E_RXD_EOF BIT(I40E_RX_DESC_STATUS_EOF_SHIFT)
	if (likely(i40e_test_staterr(rx_desc, I40E_RXD_EOF)))
		return false;

	rx_ring->rx_stats.non_eop_descs++;

	return true;
}

/**
 * i40e_clean_rx_irq - Clean completed descriptors from Rx ring - bounce buf
 * @rx_ring: rx descriptor ring to transact packets on
 * @budget: Total limit on number of packets to process
 *
 * This function provides a "bounce buffer" approach to Rx interrupt
 * processing.  The advantage to this is that on systems that have
 * expensive overhead for IOMMU access this provides a means of avoiding
 * it by maintaining the mapping of the page to the system.
 *
 * Returns amount of work completed
 **/
static int i40e_clean_rx_irq(struct i40e_ring *rx_ring, int budget)
1897 1898
{
	unsigned int total_rx_bytes = 0, total_rx_packets = 0;
1899
	struct sk_buff *skb = rx_ring->skb;
1900
	u16 cleaned_count = I40E_DESC_UNUSED(rx_ring);
1901
	bool failure = false;
1902

1903
	while (likely(total_rx_packets < budget)) {
1904
		struct i40e_rx_buffer *rx_buffer;
1905
		union i40e_rx_desc *rx_desc;
1906
		unsigned int size;
1907
		u16 vlan_tag;
1908 1909 1910
		u8 rx_ptype;
		u64 qword;

1911 1912
		/* return some buffers to hardware, one at a time is too slow */
		if (cleaned_count >= I40E_RX_BUFFER_WRITE) {
1913
			failure = failure ||
1914
				  i40e_alloc_rx_buffers(rx_ring, cleaned_count);
1915 1916 1917
			cleaned_count = 0;
		}

1918 1919 1920 1921 1922
		rx_desc = I40E_RX_DESC(rx_ring, rx_ring->next_to_clean);

		/* status_error_len will always be zero for unused descriptors
		 * because it's cleared in cleanup, and overlaps with hdr_addr
		 * which is always zero because packet split isn't used, if the
1923
		 * hardware wrote DD then the length will be non-zero
1924
		 */
1925 1926 1927 1928
		qword = le64_to_cpu(rx_desc->wb.qword1.status_error_len);
		size = (qword & I40E_RXD_QW1_LENGTH_PBUF_MASK) >>
		       I40E_RXD_QW1_LENGTH_PBUF_SHIFT;
		if (!size)
1929 1930
			break;

1931
		/* This memory barrier is needed to keep us from reading
1932 1933
		 * any other fields out of the rx_desc until we have
		 * verified the descriptor has been written back.
1934
		 */
1935
		dma_rmb();
1936

1937 1938
		rx_buffer = i40e_get_rx_buffer(rx_ring, size);

1939 1940 1941 1942 1943 1944 1945 1946 1947 1948
		/* retrieve a buffer from the ring */
		if (skb)
			i40e_add_rx_frag(rx_ring, rx_buffer, skb, size);
		else
			skb = i40e_construct_skb(rx_ring, rx_buffer, size);

		/* exit if we failed to retrieve a buffer */
		if (!skb) {
			rx_ring->rx_stats.alloc_buff_failed++;
			rx_buffer->pagecnt_bias++;
1949
			break;
1950
		}
1951

1952
		i40e_put_rx_buffer(rx_ring, rx_buffer);
1953 1954
		cleaned_count++;

1955
		if (i40e_is_non_eop(rx_ring, rx_desc, skb))
1956 1957
			continue;

1958 1959 1960 1961 1962 1963
		/* ERR_MASK will only have valid bits if EOP set, and
		 * what we are doing here is actually checking
		 * I40E_RX_DESC_ERROR_RXE_SHIFT, since it is the zeroth bit in
		 * the error field
		 */
		if (unlikely(i40e_test_staterr(rx_desc, BIT(I40E_RXD_QW1_ERROR_SHIFT)))) {
1964
			dev_kfree_skb_any(skb);
1965
			skb = NULL;
1966 1967 1968
			continue;
		}

1969 1970
		if (i40e_cleanup_headers(rx_ring, skb)) {
			skb = NULL;
1971
			continue;
1972
		}
1973 1974 1975 1976

		/* probably a little skewed due to removing CRC */
		total_rx_bytes += skb->len;

1977 1978 1979 1980
		qword = le64_to_cpu(rx_desc->wb.qword1.status_error_len);
		rx_ptype = (qword & I40E_RXD_QW1_PTYPE_MASK) >>
			   I40E_RXD_QW1_PTYPE_SHIFT;

1981 1982
		/* populate checksum, VLAN, and protocol */
		i40e_process_skb_fields(rx_ring, rx_desc, skb, rx_ptype);
1983

1984 1985 1986
		vlan_tag = (qword & BIT(I40E_RX_DESC_STATUS_L2TAG1P_SHIFT)) ?
			   le16_to_cpu(rx_desc->wb.qword0.lo_dword.l2tag1) : 0;

1987
		i40e_receive_skb(rx_ring, skb, vlan_tag);
1988
		skb = NULL;
1989

1990 1991 1992
		/* update budget accounting */
		total_rx_packets++;
	}
1993

1994 1995
	rx_ring->skb = skb;

1996
	u64_stats_update_begin(&rx_ring->syncp);
1997 1998
	rx_ring->stats.packets += total_rx_packets;
	rx_ring->stats.bytes += total_rx_bytes;
1999
	u64_stats_update_end(&rx_ring->syncp);
2000 2001 2002
	rx_ring->q_vector->rx.total_packets += total_rx_packets;
	rx_ring->q_vector->rx.total_bytes += total_rx_bytes;

2003
	/* guarantee a trip back through this routine if there was a failure */
2004
	return failure ? budget : total_rx_packets;
2005 2006
}

2007 2008 2009 2010 2011
static u32 i40e_buildreg_itr(const int type, const u16 itr)
{
	u32 val;

	val = I40E_PFINT_DYN_CTLN_INTENA_MASK |
2012 2013 2014
	      /* Don't clear PBA because that can cause lost interrupts that
	       * came in while we were cleaning/polling
	       */
2015 2016 2017 2018 2019 2020 2021 2022
	      (type << I40E_PFINT_DYN_CTLN_ITR_INDX_SHIFT) |
	      (itr << I40E_PFINT_DYN_CTLN_INTERVAL_SHIFT);

	return val;
}

/* a small macro to shorten up some long lines */
#define INTREG I40E_PFINT_DYN_CTLN
2023
static inline int get_rx_itr(struct i40e_vsi *vsi, int idx)
2024
{
2025
	return vsi->rx_rings[idx]->rx_itr_setting;
2026 2027
}

2028
static inline int get_tx_itr(struct i40e_vsi *vsi, int idx)
2029
{
2030
	return vsi->tx_rings[idx]->tx_itr_setting;
2031
}
2032

2033 2034 2035 2036 2037 2038 2039 2040 2041 2042
/**
 * i40e_update_enable_itr - Update itr and re-enable MSIX interrupt
 * @vsi: the VSI we care about
 * @q_vector: q_vector for which itr is being updated and interrupt enabled
 *
 **/
static inline void i40e_update_enable_itr(struct i40e_vsi *vsi,
					  struct i40e_q_vector *q_vector)
{
	struct i40e_hw *hw = &vsi->back->hw;
2043 2044
	bool rx = false, tx = false;
	u32 rxval, txval;
2045
	int vector;
2046
	int idx = q_vector->v_idx;
2047
	int rx_itr_setting, tx_itr_setting;
2048 2049

	vector = (q_vector->v_idx + vsi->base_vector);
2050

2051 2052 2053
	/* avoid dynamic calculation if in countdown mode OR if
	 * all dynamic is disabled
	 */
2054 2055
	rxval = txval = i40e_buildreg_itr(I40E_ITR_NONE, 0);

2056 2057
	rx_itr_setting = get_rx_itr(vsi, idx);
	tx_itr_setting = get_tx_itr(vsi, idx);
2058

2059
	if (q_vector->itr_countdown > 0 ||
2060 2061
	    (!ITR_IS_DYNAMIC(rx_itr_setting) &&
	     !ITR_IS_DYNAMIC(tx_itr_setting))) {
2062 2063 2064
		goto enable_int;
	}

2065
	if (ITR_IS_DYNAMIC(tx_itr_setting)) {
2066 2067
		rx = i40e_set_new_dynamic_itr(&q_vector->rx);
		rxval = i40e_buildreg_itr(I40E_RX_ITR, q_vector->rx.itr);
2068
	}
2069

2070
	if (ITR_IS_DYNAMIC(tx_itr_setting)) {
2071 2072
		tx = i40e_set_new_dynamic_itr(&q_vector->tx);
		txval = i40e_buildreg_itr(I40E_TX_ITR, q_vector->tx.itr);
2073
	}
2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101

	if (rx || tx) {
		/* get the higher of the two ITR adjustments and
		 * use the same value for both ITR registers
		 * when in adaptive mode (Rx and/or Tx)
		 */
		u16 itr = max(q_vector->tx.itr, q_vector->rx.itr);

		q_vector->tx.itr = q_vector->rx.itr = itr;
		txval = i40e_buildreg_itr(I40E_TX_ITR, itr);
		tx = true;
		rxval = i40e_buildreg_itr(I40E_RX_ITR, itr);
		rx = true;
	}

	/* only need to enable the interrupt once, but need
	 * to possibly update both ITR values
	 */
	if (rx) {
		/* set the INTENA_MSK_MASK so that this first write
		 * won't actually enable the interrupt, instead just
		 * updating the ITR (it's bit 31 PF and VF)
		 */
		rxval |= BIT(31);
		/* don't check _DOWN because interrupt isn't being enabled */
		wr32(hw, INTREG(vector - 1), rxval);
	}

2102
enable_int:
2103 2104
	if (!test_bit(__I40E_DOWN, &vsi->state))
		wr32(hw, INTREG(vector - 1), txval);
2105 2106 2107 2108 2109

	if (q_vector->itr_countdown)
		q_vector->itr_countdown--;
	else
		q_vector->itr_countdown = ITR_COUNTDOWN_START;
2110 2111
}

2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125
/**
 * i40e_napi_poll - NAPI polling Rx/Tx cleanup routine
 * @napi: napi struct with our devices info in it
 * @budget: amount of work driver is allowed to do this pass, in packets
 *
 * This function will clean all queues associated with a q_vector.
 *
 * Returns the amount of work done
 **/
int i40e_napi_poll(struct napi_struct *napi, int budget)
{
	struct i40e_q_vector *q_vector =
			       container_of(napi, struct i40e_q_vector, napi);
	struct i40e_vsi *vsi = q_vector->vsi;
2126
	struct i40e_ring *ring;
2127
	bool clean_complete = true;
2128
	bool arm_wb = false;
2129
	int budget_per_ring;
2130
	int work_done = 0;
2131 2132 2133 2134 2135 2136

	if (test_bit(__I40E_DOWN, &vsi->state)) {
		napi_complete(napi);
		return 0;
	}

2137 2138 2139
	/* Since the actual Tx work is minimal, we can give the Tx a larger
	 * budget and be more aggressive about cleaning up the Tx descriptors.
	 */
2140
	i40e_for_each_ring(ring, q_vector->tx) {
2141
		if (!i40e_clean_tx_irq(vsi, ring, budget)) {
2142 2143 2144 2145
			clean_complete = false;
			continue;
		}
		arm_wb |= ring->arm_wb;
2146
		ring->arm_wb = false;
2147
	}
2148

2149 2150 2151 2152
	/* Handle case where we are called by netpoll with a budget of 0 */
	if (budget <= 0)
		goto tx_only;

2153 2154 2155 2156
	/* We attempt to distribute budget to each Rx queue fairly, but don't
	 * allow the budget to go below 1 because that would exit polling early.
	 */
	budget_per_ring = max(budget/q_vector->num_ringpairs, 1);
2157

2158
	i40e_for_each_ring(ring, q_vector->rx) {
2159
		int cleaned = i40e_clean_rx_irq(ring, budget_per_ring);
2160 2161

		work_done += cleaned;
2162 2163 2164
		/* if we clean as many as budgeted, we must not be done */
		if (cleaned >= budget_per_ring)
			clean_complete = false;
2165
	}
2166 2167

	/* If work not completed, return budget and polling will return */
2168
	if (!clean_complete) {
2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180
		const cpumask_t *aff_mask = &q_vector->affinity_mask;
		int cpu_id = smp_processor_id();

		/* It is possible that the interrupt affinity has changed but,
		 * if the cpu is pegged at 100%, polling will never exit while
		 * traffic continues and the interrupt will be stuck on this
		 * cpu.  We check to make sure affinity is correct before we
		 * continue to poll, otherwise we must stop polling so the
		 * interrupt can move to the correct cpu.
		 */
		if (likely(cpumask_test_cpu(cpu_id, aff_mask) ||
			   !(vsi->back->flags & I40E_FLAG_MSIX_ENABLED))) {
2181
tx_only:
2182 2183 2184 2185 2186
			if (arm_wb) {
				q_vector->tx.ring[0].tx_stats.tx_force_wb++;
				i40e_enable_wb_on_itr(vsi, q_vector);
			}
			return budget;
2187
		}
2188
	}
2189

2190 2191 2192
	if (vsi->back->flags & I40E_TXR_FLAGS_WB_ON_ITR)
		q_vector->arm_wb_state = false;

2193
	/* Work is done so exit the polling mode and re-enable the interrupt */
2194
	napi_complete_done(napi, work_done);
2195 2196 2197 2198 2199 2200 2201 2202

	/* If we're prematurely stopping polling to fix the interrupt
	 * affinity we want to make sure polling starts back up so we
	 * issue a call to i40e_force_wb which triggers a SW interrupt.
	 */
	if (!clean_complete)
		i40e_force_wb(vsi, q_vector);
	else if (!(vsi->back->flags & I40E_FLAG_MSIX_ENABLED))
2203
		i40e_irq_dynamic_enable_icr0(vsi->back, false);
2204 2205 2206
	else
		i40e_update_enable_itr(vsi, q_vector);

2207
	return min(work_done, budget - 1);
2208 2209 2210 2211 2212 2213
}

/**
 * i40e_atr - Add a Flow Director ATR filter
 * @tx_ring:  ring to add programming descriptor to
 * @skb:      send buffer
2214
 * @tx_flags: send tx flags
2215 2216
 **/
static void i40e_atr(struct i40e_ring *tx_ring, struct sk_buff *skb,
2217
		     u32 tx_flags)
2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228
{
	struct i40e_filter_program_desc *fdir_desc;
	struct i40e_pf *pf = tx_ring->vsi->back;
	union {
		unsigned char *network;
		struct iphdr *ipv4;
		struct ipv6hdr *ipv6;
	} hdr;
	struct tcphdr *th;
	unsigned int hlen;
	u32 flex_ptype, dtype_cmd;
2229
	int l4_proto;
2230
	u16 i;
2231 2232

	/* make sure ATR is enabled */
J
Jesse Brandeburg 已提交
2233
	if (!(pf->flags & I40E_FLAG_FD_ATR_ENABLED))
2234 2235
		return;

2236
	if ((pf->hw_disabled_flags & I40E_FLAG_FD_ATR_ENABLED))
2237 2238
		return;

2239 2240 2241 2242
	/* if sampling is disabled do nothing */
	if (!tx_ring->atr_sample_rate)
		return;

2243
	/* Currently only IPv4/IPv6 with TCP is supported */
2244 2245
	if (!(tx_flags & (I40E_TX_FLAGS_IPV4 | I40E_TX_FLAGS_IPV6)))
		return;
2246

2247 2248 2249
	/* snag network header to get L4 type and address */
	hdr.network = (tx_flags & I40E_TX_FLAGS_UDP_TUNNEL) ?
		      skb_inner_network_header(skb) : skb_network_header(skb);
2250

2251 2252 2253 2254
	/* Note: tx_flags gets modified to reflect inner protocols in
	 * tx_enable_csum function if encap is enabled.
	 */
	if (tx_flags & I40E_TX_FLAGS_IPV4) {
2255
		/* access ihl as u8 to avoid unaligned access on ia64 */
2256 2257
		hlen = (hdr.network[0] & 0x0F) << 2;
		l4_proto = hdr.ipv4->protocol;
2258
	} else {
2259 2260 2261
		hlen = hdr.network - skb->data;
		l4_proto = ipv6_find_hdr(skb, &hlen, IPPROTO_TCP, NULL, NULL);
		hlen -= hdr.network - skb->data;
2262 2263
	}

2264
	if (l4_proto != IPPROTO_TCP)
2265 2266
		return;

2267 2268
	th = (struct tcphdr *)(hdr.network + hlen);

2269
	/* Due to lack of space, no more new filters can be programmed */
2270
	if (th->syn && (pf->hw_disabled_flags & I40E_FLAG_FD_ATR_ENABLED))
2271
		return;
2272
	if (pf->flags & I40E_FLAG_HW_ATR_EVICT_CAPABLE) {
2273 2274 2275 2276 2277 2278
		/* HW ATR eviction will take care of removing filters on FIN
		 * and RST packets.
		 */
		if (th->fin || th->rst)
			return;
	}
2279 2280 2281

	tx_ring->atr_count++;

2282 2283 2284 2285 2286
	/* sample on all syn/fin/rst packets or once every atr sample rate */
	if (!th->fin &&
	    !th->syn &&
	    !th->rst &&
	    (tx_ring->atr_count < tx_ring->atr_sample_rate))
2287 2288 2289 2290 2291
		return;

	tx_ring->atr_count = 0;

	/* grab the next descriptor */
2292 2293 2294 2295 2296
	i = tx_ring->next_to_use;
	fdir_desc = I40E_TX_FDIRDESC(tx_ring, i);

	i++;
	tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
2297 2298 2299

	flex_ptype = (tx_ring->queue_index << I40E_TXD_FLTR_QW0_QINDEX_SHIFT) &
		      I40E_TXD_FLTR_QW0_QINDEX_MASK;
2300
	flex_ptype |= (tx_flags & I40E_TX_FLAGS_IPV4) ?
2301 2302 2303 2304 2305 2306 2307 2308 2309
		      (I40E_FILTER_PCTYPE_NONF_IPV4_TCP <<
		       I40E_TXD_FLTR_QW0_PCTYPE_SHIFT) :
		      (I40E_FILTER_PCTYPE_NONF_IPV6_TCP <<
		       I40E_TXD_FLTR_QW0_PCTYPE_SHIFT);

	flex_ptype |= tx_ring->vsi->id << I40E_TXD_FLTR_QW0_DEST_VSI_SHIFT;

	dtype_cmd = I40E_TX_DESC_DTYPE_FILTER_PROG;

2310
	dtype_cmd |= (th->fin || th->rst) ?
2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321
		     (I40E_FILTER_PROGRAM_DESC_PCMD_REMOVE <<
		      I40E_TXD_FLTR_QW1_PCMD_SHIFT) :
		     (I40E_FILTER_PROGRAM_DESC_PCMD_ADD_UPDATE <<
		      I40E_TXD_FLTR_QW1_PCMD_SHIFT);

	dtype_cmd |= I40E_FILTER_PROGRAM_DESC_DEST_DIRECT_PACKET_QINDEX <<
		     I40E_TXD_FLTR_QW1_DEST_SHIFT;

	dtype_cmd |= I40E_FILTER_PROGRAM_DESC_FD_STATUS_FD_ID <<
		     I40E_TXD_FLTR_QW1_FD_STATUS_SHIFT;

2322
	dtype_cmd |= I40E_TXD_FLTR_QW1_CNT_ENA_MASK;
2323
	if (!(tx_flags & I40E_TX_FLAGS_UDP_TUNNEL))
2324 2325 2326 2327 2328 2329 2330 2331 2332
		dtype_cmd |=
			((u32)I40E_FD_ATR_STAT_IDX(pf->hw.pf_id) <<
			I40E_TXD_FLTR_QW1_CNTINDEX_SHIFT) &
			I40E_TXD_FLTR_QW1_CNTINDEX_MASK;
	else
		dtype_cmd |=
			((u32)I40E_FD_ATR_TUNNEL_STAT_IDX(pf->hw.pf_id) <<
			I40E_TXD_FLTR_QW1_CNTINDEX_SHIFT) &
			I40E_TXD_FLTR_QW1_CNTINDEX_MASK;
2333

2334
	if (pf->flags & I40E_FLAG_HW_ATR_EVICT_CAPABLE)
2335 2336
		dtype_cmd |= I40E_TXD_FLTR_QW1_ATR_MASK;

2337
	fdir_desc->qindex_flex_ptype_vsi = cpu_to_le32(flex_ptype);
J
Jesse Brandeburg 已提交
2338
	fdir_desc->rsvd = cpu_to_le32(0);
2339
	fdir_desc->dtype_cmd_cntindex = cpu_to_le32(dtype_cmd);
J
Jesse Brandeburg 已提交
2340
	fdir_desc->fd_id = cpu_to_le32(0);
2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354
}

/**
 * i40e_tx_prepare_vlan_flags - prepare generic TX VLAN tagging flags for HW
 * @skb:     send buffer
 * @tx_ring: ring to send buffer on
 * @flags:   the tx flags to be set
 *
 * Checks the skb and set up correspondingly several generic transmit flags
 * related to VLAN tagging for the HW, such as VLAN, DCB, etc.
 *
 * Returns error code indicate the frame should be dropped upon error and the
 * otherwise  returns 0 to indicate the flags has been set properly.
 **/
2355 2356 2357
static inline int i40e_tx_prepare_vlan_flags(struct sk_buff *skb,
					     struct i40e_ring *tx_ring,
					     u32 *flags)
2358 2359 2360 2361
{
	__be16 protocol = skb->protocol;
	u32  tx_flags = 0;

2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374
	if (protocol == htons(ETH_P_8021Q) &&
	    !(tx_ring->netdev->features & NETIF_F_HW_VLAN_CTAG_TX)) {
		/* When HW VLAN acceleration is turned off by the user the
		 * stack sets the protocol to 8021q so that the driver
		 * can take any steps required to support the SW only
		 * VLAN handling.  In our case the driver doesn't need
		 * to take any further steps so just set the protocol
		 * to the encapsulated ethertype.
		 */
		skb->protocol = vlan_get_protocol(skb);
		goto out;
	}

2375
	/* if we have a HW VLAN tag being added, default to the HW one */
2376 2377
	if (skb_vlan_tag_present(skb)) {
		tx_flags |= skb_vlan_tag_get(skb) << I40E_TX_FLAGS_VLAN_SHIFT;
2378 2379
		tx_flags |= I40E_TX_FLAGS_HW_VLAN;
	/* else if it is a SW VLAN, check the next protocol and store the tag */
2380
	} else if (protocol == htons(ETH_P_8021Q)) {
2381
		struct vlan_hdr *vhdr, _vhdr;
J
Jesse Brandeburg 已提交
2382

2383 2384 2385 2386 2387 2388 2389 2390 2391
		vhdr = skb_header_pointer(skb, ETH_HLEN, sizeof(_vhdr), &_vhdr);
		if (!vhdr)
			return -EINVAL;

		protocol = vhdr->h_vlan_encapsulated_proto;
		tx_flags |= ntohs(vhdr->h_vlan_TCI) << I40E_TX_FLAGS_VLAN_SHIFT;
		tx_flags |= I40E_TX_FLAGS_SW_VLAN;
	}

2392 2393 2394
	if (!(tx_ring->vsi->back->flags & I40E_FLAG_DCB_ENABLED))
		goto out;

2395
	/* Insert 802.1p priority into VLAN header */
2396 2397
	if ((tx_flags & (I40E_TX_FLAGS_HW_VLAN | I40E_TX_FLAGS_SW_VLAN)) ||
	    (skb->priority != TC_PRIO_CONTROL)) {
2398 2399 2400 2401 2402
		tx_flags &= ~I40E_TX_FLAGS_VLAN_PRIO_MASK;
		tx_flags |= (skb->priority & 0x7) <<
				I40E_TX_FLAGS_VLAN_PRIO_SHIFT;
		if (tx_flags & I40E_TX_FLAGS_SW_VLAN) {
			struct vlan_ethhdr *vhdr;
2403 2404 2405 2406 2407
			int rc;

			rc = skb_cow_head(skb, 0);
			if (rc < 0)
				return rc;
2408 2409 2410 2411 2412 2413 2414
			vhdr = (struct vlan_ethhdr *)skb->data;
			vhdr->h_vlan_TCI = htons(tx_flags >>
						 I40E_TX_FLAGS_VLAN_SHIFT);
		} else {
			tx_flags |= I40E_TX_FLAGS_HW_VLAN;
		}
	}
2415 2416

out:
2417 2418 2419 2420 2421 2422
	*flags = tx_flags;
	return 0;
}

/**
 * i40e_tso - set up the tso context descriptor
2423
 * @first:    pointer to first Tx buffer for xmit
2424
 * @hdr_len:  ptr to the size of the packet header
2425
 * @cd_type_cmd_tso_mss: Quad Word 1
2426 2427 2428
 *
 * Returns 0 if no TSO can happen, 1 if tso is going, or error
 **/
2429 2430
static int i40e_tso(struct i40e_tx_buffer *first, u8 *hdr_len,
		    u64 *cd_type_cmd_tso_mss)
2431
{
2432
	struct sk_buff *skb = first->skb;
2433
	u64 cd_cmd, cd_tso_len, cd_mss;
2434 2435 2436 2437 2438
	union {
		struct iphdr *v4;
		struct ipv6hdr *v6;
		unsigned char *hdr;
	} ip;
2439 2440
	union {
		struct tcphdr *tcp;
2441
		struct udphdr *udp;
2442 2443 2444
		unsigned char *hdr;
	} l4;
	u32 paylen, l4_offset;
2445
	u16 gso_segs, gso_size;
2446 2447
	int err;

2448 2449 2450
	if (skb->ip_summed != CHECKSUM_PARTIAL)
		return 0;

2451 2452 2453
	if (!skb_is_gso(skb))
		return 0;

2454 2455 2456
	err = skb_cow_head(skb, 0);
	if (err < 0)
		return err;
2457

2458 2459
	ip.hdr = skb_network_header(skb);
	l4.hdr = skb_transport_header(skb);
2460

2461 2462 2463 2464
	/* initialize outer IP header fields */
	if (ip.v4->version == 4) {
		ip.v4->tot_len = 0;
		ip.v4->check = 0;
2465
	} else {
2466 2467 2468
		ip.v6->payload_len = 0;
	}

2469
	if (skb_shinfo(skb)->gso_type & (SKB_GSO_GRE |
2470
					 SKB_GSO_GRE_CSUM |
2471
					 SKB_GSO_IPXIP4 |
2472
					 SKB_GSO_IPXIP6 |
2473
					 SKB_GSO_UDP_TUNNEL |
2474
					 SKB_GSO_UDP_TUNNEL_CSUM)) {
2475 2476 2477 2478
		if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL) &&
		    (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_TUNNEL_CSUM)) {
			l4.udp->len = 0;

2479 2480 2481 2482
			/* determine offset of outer transport header */
			l4_offset = l4.hdr - skb->data;

			/* remove payload length from outer checksum */
2483
			paylen = skb->len - l4_offset;
2484 2485
			csum_replace_by_diff(&l4.udp->check,
					     (__force __wsum)htonl(paylen));
2486 2487
		}

2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498
		/* reset pointers to inner headers */
		ip.hdr = skb_inner_network_header(skb);
		l4.hdr = skb_inner_transport_header(skb);

		/* initialize inner IP header fields */
		if (ip.v4->version == 4) {
			ip.v4->tot_len = 0;
			ip.v4->check = 0;
		} else {
			ip.v6->payload_len = 0;
		}
2499 2500
	}

2501 2502 2503 2504
	/* determine offset of inner transport header */
	l4_offset = l4.hdr - skb->data;

	/* remove payload length from inner checksum */
2505
	paylen = skb->len - l4_offset;
2506
	csum_replace_by_diff(&l4.tcp->check, (__force __wsum)htonl(paylen));
2507 2508 2509

	/* compute length of segmentation header */
	*hdr_len = (l4.tcp->doff * 4) + l4_offset;
2510

2511 2512 2513 2514 2515 2516 2517 2518
	/* pull values out of skb_shinfo */
	gso_size = skb_shinfo(skb)->gso_size;
	gso_segs = skb_shinfo(skb)->gso_segs;

	/* update GSO size and bytecount with header size */
	first->gso_segs = gso_segs;
	first->bytecount += (first->gso_segs - 1) * *hdr_len;

2519 2520 2521
	/* find the field values */
	cd_cmd = I40E_TX_CTX_DESC_TSO;
	cd_tso_len = skb->len - *hdr_len;
2522
	cd_mss = gso_size;
2523 2524 2525
	*cd_type_cmd_tso_mss |= (cd_cmd << I40E_TXD_CTX_QW1_CMD_SHIFT) |
				(cd_tso_len << I40E_TXD_CTX_QW1_TSO_LEN_SHIFT) |
				(cd_mss << I40E_TXD_CTX_QW1_MSS_SHIFT);
2526 2527 2528
	return 1;
}

J
Jacob Keller 已提交
2529 2530 2531 2532 2533
/**
 * i40e_tsyn - set up the tsyn context descriptor
 * @tx_ring:  ptr to the ring to send
 * @skb:      ptr to the skb we're sending
 * @tx_flags: the collected send information
2534
 * @cd_type_cmd_tso_mss: Quad Word 1
J
Jacob Keller 已提交
2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553
 *
 * Returns 0 if no Tx timestamp can happen and 1 if the timestamp will happen
 **/
static int i40e_tsyn(struct i40e_ring *tx_ring, struct sk_buff *skb,
		     u32 tx_flags, u64 *cd_type_cmd_tso_mss)
{
	struct i40e_pf *pf;

	if (likely(!(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP)))
		return 0;

	/* Tx timestamps cannot be sampled when doing TSO */
	if (tx_flags & I40E_TX_FLAGS_TSO)
		return 0;

	/* only timestamp the outbound packet if the user has requested it and
	 * we are not already transmitting a packet to be timestamped
	 */
	pf = i40e_netdev_to_pf(tx_ring->netdev);
2554 2555 2556
	if (!(pf->flags & I40E_FLAG_PTP))
		return 0;

2557 2558
	if (pf->ptp_tx &&
	    !test_and_set_bit_lock(__I40E_PTP_TX_IN_PROGRESS, &pf->state)) {
J
Jacob Keller 已提交
2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570
		skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
		pf->ptp_tx_skb = skb_get(skb);
	} else {
		return 0;
	}

	*cd_type_cmd_tso_mss |= (u64)I40E_TX_CTX_DESC_TSYN <<
				I40E_TXD_CTX_QW1_CMD_SHIFT;

	return 1;
}

2571 2572 2573
/**
 * i40e_tx_enable_csum - Enable Tx checksum offloads
 * @skb: send buffer
2574
 * @tx_flags: pointer to Tx flags currently set
2575 2576
 * @td_cmd: Tx descriptor command bits to set
 * @td_offset: Tx descriptor header offsets to set
2577
 * @tx_ring: Tx descriptor ring
2578 2579
 * @cd_tunneling: ptr to context desc bits
 **/
2580 2581 2582 2583
static int i40e_tx_enable_csum(struct sk_buff *skb, u32 *tx_flags,
			       u32 *td_cmd, u32 *td_offset,
			       struct i40e_ring *tx_ring,
			       u32 *cd_tunneling)
2584
{
2585 2586 2587 2588 2589 2590 2591 2592 2593 2594
	union {
		struct iphdr *v4;
		struct ipv6hdr *v6;
		unsigned char *hdr;
	} ip;
	union {
		struct tcphdr *tcp;
		struct udphdr *udp;
		unsigned char *hdr;
	} l4;
2595
	unsigned char *exthdr;
2596
	u32 offset, cmd = 0;
2597
	__be16 frag_off;
2598 2599
	u8 l4_proto = 0;

2600 2601 2602
	if (skb->ip_summed != CHECKSUM_PARTIAL)
		return 0;

2603 2604
	ip.hdr = skb_network_header(skb);
	l4.hdr = skb_transport_header(skb);
2605

2606 2607 2608
	/* compute outer L2 header size */
	offset = ((ip.hdr - skb->data) / 2) << I40E_TX_DESC_LENGTH_MACLEN_SHIFT;

2609
	if (skb->encapsulation) {
2610
		u32 tunnel = 0;
2611 2612
		/* define outer network header type */
		if (*tx_flags & I40E_TX_FLAGS_IPV4) {
2613 2614 2615 2616
			tunnel |= (*tx_flags & I40E_TX_FLAGS_TSO) ?
				  I40E_TX_CTX_EXT_IP_IPV4 :
				  I40E_TX_CTX_EXT_IP_IPV4_NO_CSUM;

2617 2618
			l4_proto = ip.v4->protocol;
		} else if (*tx_flags & I40E_TX_FLAGS_IPV6) {
2619
			tunnel |= I40E_TX_CTX_EXT_IP_IPV6;
2620 2621

			exthdr = ip.hdr + sizeof(*ip.v6);
2622
			l4_proto = ip.v6->nexthdr;
2623 2624 2625
			if (l4.hdr != exthdr)
				ipv6_skip_exthdr(skb, exthdr - skb->data,
						 &l4_proto, &frag_off);
2626 2627 2628 2629
		}

		/* define outer transport */
		switch (l4_proto) {
2630
		case IPPROTO_UDP:
2631
			tunnel |= I40E_TXD_CTX_UDP_TUNNELING;
2632
			*tx_flags |= I40E_TX_FLAGS_UDP_TUNNEL;
2633
			break;
2634
		case IPPROTO_GRE:
2635
			tunnel |= I40E_TXD_CTX_GRE_TUNNELING;
2636
			*tx_flags |= I40E_TX_FLAGS_UDP_TUNNEL;
2637
			break;
2638 2639 2640 2641 2642
		case IPPROTO_IPIP:
		case IPPROTO_IPV6:
			*tx_flags |= I40E_TX_FLAGS_UDP_TUNNEL;
			l4.hdr = skb_inner_network_header(skb);
			break;
2643
		default:
2644 2645 2646 2647 2648
			if (*tx_flags & I40E_TX_FLAGS_TSO)
				return -1;

			skb_checksum_help(skb);
			return 0;
2649
		}
2650

2651 2652 2653 2654 2655 2656 2657
		/* compute outer L3 header size */
		tunnel |= ((l4.hdr - ip.hdr) / 4) <<
			  I40E_TXD_CTX_QW0_EXT_IPLEN_SHIFT;

		/* switch IP header pointer from outer to inner header */
		ip.hdr = skb_inner_network_header(skb);

2658 2659 2660 2661
		/* compute tunnel header size */
		tunnel |= ((ip.hdr - l4.hdr) / 2) <<
			  I40E_TXD_CTX_QW0_NATLEN_SHIFT;

2662 2663
		/* indicate if we need to offload outer UDP header */
		if ((*tx_flags & I40E_TX_FLAGS_TSO) &&
2664
		    !(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL) &&
2665 2666 2667
		    (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_TUNNEL_CSUM))
			tunnel |= I40E_TXD_CTX_QW0_L4T_CS_MASK;

2668 2669 2670
		/* record tunnel offload values */
		*cd_tunneling |= tunnel;

2671 2672
		/* switch L4 header pointer from outer to inner */
		l4.hdr = skb_inner_transport_header(skb);
2673
		l4_proto = 0;
2674

2675 2676 2677 2678 2679
		/* reset type as we transition from outer to inner headers */
		*tx_flags &= ~(I40E_TX_FLAGS_IPV4 | I40E_TX_FLAGS_IPV6);
		if (ip.v4->version == 4)
			*tx_flags |= I40E_TX_FLAGS_IPV4;
		if (ip.v6->version == 6)
2680
			*tx_flags |= I40E_TX_FLAGS_IPV6;
2681 2682 2683
	}

	/* Enable IP checksum offloads */
2684
	if (*tx_flags & I40E_TX_FLAGS_IPV4) {
2685
		l4_proto = ip.v4->protocol;
2686 2687 2688
		/* the stack computes the IP header already, the only time we
		 * need the hardware to recompute it is in the case of TSO.
		 */
2689 2690 2691
		cmd |= (*tx_flags & I40E_TX_FLAGS_TSO) ?
		       I40E_TX_DESC_CMD_IIPT_IPV4_CSUM :
		       I40E_TX_DESC_CMD_IIPT_IPV4;
2692
	} else if (*tx_flags & I40E_TX_FLAGS_IPV6) {
2693
		cmd |= I40E_TX_DESC_CMD_IIPT_IPV6;
2694 2695 2696 2697 2698 2699

		exthdr = ip.hdr + sizeof(*ip.v6);
		l4_proto = ip.v6->nexthdr;
		if (l4.hdr != exthdr)
			ipv6_skip_exthdr(skb, exthdr - skb->data,
					 &l4_proto, &frag_off);
2700
	}
2701

2702 2703
	/* compute inner L3 header size */
	offset |= ((l4.hdr - ip.hdr) / 4) << I40E_TX_DESC_LENGTH_IPLEN_SHIFT;
2704 2705

	/* Enable L4 checksum offloads */
2706
	switch (l4_proto) {
2707 2708
	case IPPROTO_TCP:
		/* enable checksum offloads */
2709 2710
		cmd |= I40E_TX_DESC_CMD_L4T_EOFT_TCP;
		offset |= l4.tcp->doff << I40E_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
2711 2712 2713
		break;
	case IPPROTO_SCTP:
		/* enable SCTP checksum offload */
2714 2715 2716
		cmd |= I40E_TX_DESC_CMD_L4T_EOFT_SCTP;
		offset |= (sizeof(struct sctphdr) >> 2) <<
			  I40E_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
2717 2718 2719
		break;
	case IPPROTO_UDP:
		/* enable UDP checksum offload */
2720 2721 2722
		cmd |= I40E_TX_DESC_CMD_L4T_EOFT_UDP;
		offset |= (sizeof(struct udphdr) >> 2) <<
			  I40E_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
2723 2724
		break;
	default:
2725 2726 2727 2728
		if (*tx_flags & I40E_TX_FLAGS_TSO)
			return -1;
		skb_checksum_help(skb);
		return 0;
2729
	}
2730 2731 2732

	*td_cmd |= cmd;
	*td_offset |= offset;
2733 2734

	return 1;
2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748
}

/**
 * i40e_create_tx_ctx Build the Tx context descriptor
 * @tx_ring:  ring to create the descriptor on
 * @cd_type_cmd_tso_mss: Quad Word 1
 * @cd_tunneling: Quad Word 0 - bits 0-31
 * @cd_l2tag2: Quad Word 0 - bits 32-63
 **/
static void i40e_create_tx_ctx(struct i40e_ring *tx_ring,
			       const u64 cd_type_cmd_tso_mss,
			       const u32 cd_tunneling, const u32 cd_l2tag2)
{
	struct i40e_tx_context_desc *context_desc;
2749
	int i = tx_ring->next_to_use;
2750

2751 2752
	if ((cd_type_cmd_tso_mss == I40E_TX_DESC_DTYPE_CONTEXT) &&
	    !cd_tunneling && !cd_l2tag2)
2753 2754 2755
		return;

	/* grab the next descriptor */
2756 2757 2758 2759
	context_desc = I40E_TX_CTXTDESC(tx_ring, i);

	i++;
	tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
2760 2761 2762 2763

	/* cpu_to_le32 and assign to struct fields */
	context_desc->tunneling_params = cpu_to_le32(cd_tunneling);
	context_desc->l2tag2 = cpu_to_le16(cd_l2tag2);
2764
	context_desc->rsvd = cpu_to_le16(0);
2765 2766 2767
	context_desc->type_cmd_tso_mss = cpu_to_le64(cd_type_cmd_tso_mss);
}

E
Eric Dumazet 已提交
2768 2769 2770 2771 2772 2773 2774
/**
 * __i40e_maybe_stop_tx - 2nd level check for tx stop conditions
 * @tx_ring: the ring to be checked
 * @size:    the size buffer we want to assure is available
 *
 * Returns -EBUSY if a stop is needed, else 0
 **/
2775
int __i40e_maybe_stop_tx(struct i40e_ring *tx_ring, int size)
E
Eric Dumazet 已提交
2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790
{
	netif_stop_subqueue(tx_ring->netdev, tx_ring->queue_index);
	/* Memory barrier before checking head and tail */
	smp_mb();

	/* Check again in a case another CPU has just made room available. */
	if (likely(I40E_DESC_UNUSED(tx_ring) < size))
		return -EBUSY;

	/* A reprieve! - use start_queue because it doesn't call schedule */
	netif_start_subqueue(tx_ring->netdev, tx_ring->queue_index);
	++tx_ring->tx_stats.restart_queue;
	return 0;
}

2791
/**
2792
 * __i40e_chk_linearize - Check if there are more than 8 buffers per packet
2793 2794
 * @skb:      send buffer
 *
2795 2796 2797 2798 2799 2800 2801 2802
 * Note: Our HW can't DMA more than 8 buffers to build a packet on the wire
 * and so we need to figure out the cases where we need to linearize the skb.
 *
 * For TSO we need to count the TSO header and segment payload separately.
 * As such we need to check cases where we have 7 fragments or more as we
 * can potentially require 9 DMA transactions, 1 for the TSO header, 1 for
 * the segment payload in the first descriptor, and another 7 for the
 * fragments.
2803
 **/
2804
bool __i40e_chk_linearize(struct sk_buff *skb)
2805
{
2806
	const struct skb_frag_struct *frag, *stale;
2807
	int nr_frags, sum;
2808

2809
	/* no need to check if number of frags is less than 7 */
2810
	nr_frags = skb_shinfo(skb)->nr_frags;
2811
	if (nr_frags < (I40E_MAX_BUFFER_TXD - 1))
2812
		return false;
2813

2814
	/* We need to walk through the list and validate that each group
2815
	 * of 6 fragments totals at least gso_size.
2816
	 */
2817
	nr_frags -= I40E_MAX_BUFFER_TXD - 2;
2818 2819 2820 2821 2822 2823 2824 2825
	frag = &skb_shinfo(skb)->frags[0];

	/* Initialize size to the negative value of gso_size minus 1.  We
	 * use this as the worst case scenerio in which the frag ahead
	 * of us only provides one byte which is why we are limited to 6
	 * descriptors for a single transmit as the header and previous
	 * fragment are already consuming 2 descriptors.
	 */
2826
	sum = 1 - skb_shinfo(skb)->gso_size;
2827

2828 2829 2830 2831 2832 2833
	/* Add size of frags 0 through 4 to create our initial sum */
	sum += skb_frag_size(frag++);
	sum += skb_frag_size(frag++);
	sum += skb_frag_size(frag++);
	sum += skb_frag_size(frag++);
	sum += skb_frag_size(frag++);
2834 2835 2836 2837 2838 2839

	/* Walk through fragments adding latest fragment, testing it, and
	 * then removing stale fragments from the sum.
	 */
	stale = &skb_shinfo(skb)->frags[0];
	for (;;) {
2840
		sum += skb_frag_size(frag++);
2841 2842 2843 2844 2845

		/* if sum is negative we failed to make sufficient progress */
		if (sum < 0)
			return true;

2846
		if (!nr_frags--)
2847 2848
			break;

2849
		sum -= skb_frag_size(stale++);
2850 2851
	}

2852
	return false;
2853 2854
}

2855 2856 2857 2858 2859 2860 2861 2862 2863 2864
/**
 * i40e_tx_map - Build the Tx descriptor
 * @tx_ring:  ring to send buffer on
 * @skb:      send buffer
 * @first:    first buffer info buffer to use
 * @tx_flags: collected send information
 * @hdr_len:  size of the packet header
 * @td_cmd:   the command field in the descriptor
 * @td_offset: offset for checksum or crc
 **/
2865 2866 2867
static inline void i40e_tx_map(struct i40e_ring *tx_ring, struct sk_buff *skb,
			       struct i40e_tx_buffer *first, u32 tx_flags,
			       const u8 hdr_len, u32 td_cmd, u32 td_offset)
2868 2869 2870
{
	unsigned int data_len = skb->data_len;
	unsigned int size = skb_headlen(skb);
A
Alexander Duyck 已提交
2871
	struct skb_frag_struct *frag;
2872 2873
	struct i40e_tx_buffer *tx_bi;
	struct i40e_tx_desc *tx_desc;
A
Alexander Duyck 已提交
2874
	u16 i = tx_ring->next_to_use;
2875 2876
	u32 td_tag = 0;
	dma_addr_t dma;
2877
	u16 desc_count = 1;
2878 2879 2880 2881 2882 2883 2884

	if (tx_flags & I40E_TX_FLAGS_HW_VLAN) {
		td_cmd |= I40E_TX_DESC_CMD_IL2TAG1;
		td_tag = (tx_flags & I40E_TX_FLAGS_VLAN_MASK) >>
			 I40E_TX_FLAGS_VLAN_SHIFT;
	}

A
Alexander Duyck 已提交
2885 2886 2887 2888
	first->tx_flags = tx_flags;

	dma = dma_map_single(tx_ring->dev, skb->data, size, DMA_TO_DEVICE);

2889
	tx_desc = I40E_TX_DESC(tx_ring, i);
A
Alexander Duyck 已提交
2890 2891 2892
	tx_bi = first;

	for (frag = &skb_shinfo(skb)->frags[0];; frag++) {
2893 2894
		unsigned int max_data = I40E_MAX_DATA_PER_TXD_ALIGNED;

A
Alexander Duyck 已提交
2895 2896 2897 2898 2899 2900 2901
		if (dma_mapping_error(tx_ring->dev, dma))
			goto dma_error;

		/* record length, and DMA address */
		dma_unmap_len_set(tx_bi, len, size);
		dma_unmap_addr_set(tx_bi, dma, dma);

2902 2903
		/* align size to end of page */
		max_data += -dma & (I40E_MAX_READ_REQ_SIZE - 1);
A
Alexander Duyck 已提交
2904 2905 2906
		tx_desc->buffer_addr = cpu_to_le64(dma);

		while (unlikely(size > I40E_MAX_DATA_PER_TXD)) {
2907 2908
			tx_desc->cmd_type_offset_bsz =
				build_ctob(td_cmd, td_offset,
2909
					   max_data, td_tag);
2910 2911 2912

			tx_desc++;
			i++;
2913 2914
			desc_count++;

2915 2916 2917 2918 2919
			if (i == tx_ring->count) {
				tx_desc = I40E_TX_DESC(tx_ring, 0);
				i = 0;
			}

2920 2921
			dma += max_data;
			size -= max_data;
2922

2923
			max_data = I40E_MAX_DATA_PER_TXD_ALIGNED;
A
Alexander Duyck 已提交
2924 2925
			tx_desc->buffer_addr = cpu_to_le64(dma);
		}
2926 2927 2928 2929

		if (likely(!data_len))
			break;

A
Alexander Duyck 已提交
2930 2931
		tx_desc->cmd_type_offset_bsz = build_ctob(td_cmd, td_offset,
							  size, td_tag);
2932 2933 2934

		tx_desc++;
		i++;
2935 2936
		desc_count++;

2937 2938 2939 2940 2941
		if (i == tx_ring->count) {
			tx_desc = I40E_TX_DESC(tx_ring, 0);
			i = 0;
		}

A
Alexander Duyck 已提交
2942 2943
		size = skb_frag_size(frag);
		data_len -= size;
2944

A
Alexander Duyck 已提交
2945 2946
		dma = skb_frag_dma_map(tx_ring->dev, frag, 0, size,
				       DMA_TO_DEVICE);
2947

A
Alexander Duyck 已提交
2948 2949
		tx_bi = &tx_ring->tx_bi[i];
	}
2950

2951
	netdev_tx_sent_queue(txring_txq(tx_ring), first->bytecount);
A
Alexander Duyck 已提交
2952 2953 2954 2955 2956 2957 2958

	i++;
	if (i == tx_ring->count)
		i = 0;

	tx_ring->next_to_use = i;

E
Eric Dumazet 已提交
2959
	i40e_maybe_stop_tx(tx_ring, DESC_NEEDED);
2960

2961 2962 2963 2964 2965 2966 2967 2968 2969
	/* write last descriptor with EOP bit */
	td_cmd |= I40E_TX_DESC_CMD_EOP;

	/* We can OR these values together as they both are checked against
	 * 4 below and at this point desc_count will be used as a boolean value
	 * after this if/else block.
	 */
	desc_count |= ++tx_ring->packet_stride;

2970
	/* Algorithm to optimize tail and RS bit setting:
2971 2972 2973 2974 2975 2976
	 * if queue is stopped
	 *	mark RS bit
	 *	reset packet counter
	 * else if xmit_more is supported and is true
	 *	advance packet counter to 4
	 *	reset desc_count to 0
2977
	 *
2978 2979 2980 2981 2982
	 * if desc_count >= 4
	 *	mark RS bit
	 *	reset packet counter
	 * if desc_count > 0
	 *	update tail
2983
	 *
2984
	 * Note: If there are less than 4 descriptors
2985 2986 2987
	 * pending and interrupts were disabled the service task will
	 * trigger a force WB.
	 */
2988 2989 2990 2991 2992 2993 2994 2995 2996 2997
	if (netif_xmit_stopped(txring_txq(tx_ring))) {
		goto do_rs;
	} else if (skb->xmit_more) {
		/* set stride to arm on next packet and reset desc_count */
		tx_ring->packet_stride = WB_STRIDE;
		desc_count = 0;
	} else if (desc_count >= WB_STRIDE) {
do_rs:
		/* write last descriptor with RS bit set */
		td_cmd |= I40E_TX_DESC_CMD_RS;
2998 2999 3000 3001
		tx_ring->packet_stride = 0;
	}

	tx_desc->cmd_type_offset_bsz =
3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013
			build_ctob(td_cmd, td_offset, size, td_tag);

	/* Force memory writes to complete before letting h/w know there
	 * are new descriptors to fetch.
	 *
	 * We also use this memory barrier to make certain all of the
	 * status bits have been updated before next_to_watch is written.
	 */
	wmb();

	/* set next_to_watch value indicating a packet is present */
	first->next_to_watch = tx_desc;
3014

A
Alexander Duyck 已提交
3015
	/* notify HW of packet */
3016
	if (desc_count) {
3017
		writel(i, tx_ring->tail);
3018 3019 3020 3021 3022

		/* we need this if more than one processor can write to our tail
		 * at a time, it synchronizes IO on IA64/Altix systems
		 */
		mmiowb();
3023
	}
3024

3025 3026 3027
	return;

dma_error:
A
Alexander Duyck 已提交
3028
	dev_info(tx_ring->dev, "TX DMA map failed\n");
3029 3030 3031 3032

	/* clear dma mappings for failed tx_bi map */
	for (;;) {
		tx_bi = &tx_ring->tx_bi[i];
A
Alexander Duyck 已提交
3033
		i40e_unmap_and_free_tx_resource(tx_ring, tx_bi);
3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061
		if (tx_bi == first)
			break;
		if (i == 0)
			i = tx_ring->count;
		i--;
	}

	tx_ring->next_to_use = i;
}

/**
 * i40e_xmit_frame_ring - Sends buffer on Tx ring
 * @skb:     send buffer
 * @tx_ring: ring to send buffer on
 *
 * Returns NETDEV_TX_OK if sent, else an error code
 **/
static netdev_tx_t i40e_xmit_frame_ring(struct sk_buff *skb,
					struct i40e_ring *tx_ring)
{
	u64 cd_type_cmd_tso_mss = I40E_TX_DESC_DTYPE_CONTEXT;
	u32 cd_tunneling = 0, cd_l2tag2 = 0;
	struct i40e_tx_buffer *first;
	u32 td_offset = 0;
	u32 tx_flags = 0;
	__be16 protocol;
	u32 td_cmd = 0;
	u8 hdr_len = 0;
3062
	int tso, count;
J
Jacob Keller 已提交
3063
	int tsyn;
J
Jesse Brandeburg 已提交
3064

3065 3066 3067
	/* prefetch the data, we'll need it later */
	prefetch(skb->data);

3068
	count = i40e_xmit_descriptor_count(skb);
3069
	if (i40e_chk_linearize(skb, count)) {
3070 3071 3072 3073
		if (__skb_linearize(skb)) {
			dev_kfree_skb_any(skb);
			return NETDEV_TX_OK;
		}
3074
		count = i40e_txd_use_count(skb->len);
3075 3076
		tx_ring->tx_stats.tx_linearize++;
	}
3077 3078 3079 3080 3081 3082 3083 3084 3085

	/* need: 1 descriptor per page * PAGE_SIZE/I40E_MAX_DATA_PER_TXD,
	 *       + 1 desc for skb_head_len/I40E_MAX_DATA_PER_TXD,
	 *       + 4 desc gap to avoid the cache line where head is,
	 *       + 1 desc for context descriptor,
	 * otherwise try next time
	 */
	if (i40e_maybe_stop_tx(tx_ring, count + 4 + 1)) {
		tx_ring->tx_stats.tx_busy++;
3086
		return NETDEV_TX_BUSY;
3087
	}
3088

3089 3090 3091 3092 3093 3094
	/* record the location of the first descriptor for this packet */
	first = &tx_ring->tx_bi[tx_ring->next_to_use];
	first->skb = skb;
	first->bytecount = skb->len;
	first->gso_segs = 1;

3095 3096 3097 3098 3099
	/* prepare the xmit flags */
	if (i40e_tx_prepare_vlan_flags(skb, tx_ring, &tx_flags))
		goto out_drop;

	/* obtain protocol of skb */
3100
	protocol = vlan_get_protocol(skb);
3101 3102

	/* setup IPv4/IPv6 offloads */
3103
	if (protocol == htons(ETH_P_IP))
3104
		tx_flags |= I40E_TX_FLAGS_IPV4;
3105
	else if (protocol == htons(ETH_P_IPV6))
3106 3107
		tx_flags |= I40E_TX_FLAGS_IPV6;

3108
	tso = i40e_tso(first, &hdr_len, &cd_type_cmd_tso_mss);
3109 3110 3111 3112 3113 3114

	if (tso < 0)
		goto out_drop;
	else if (tso)
		tx_flags |= I40E_TX_FLAGS_TSO;

3115 3116 3117 3118 3119 3120
	/* Always offload the checksum, since it's in the data descriptor */
	tso = i40e_tx_enable_csum(skb, &tx_flags, &td_cmd, &td_offset,
				  tx_ring, &cd_tunneling);
	if (tso < 0)
		goto out_drop;

J
Jacob Keller 已提交
3121 3122 3123 3124 3125
	tsyn = i40e_tsyn(tx_ring, skb, tx_flags, &cd_type_cmd_tso_mss);

	if (tsyn)
		tx_flags |= I40E_TX_FLAGS_TSYN;

3126 3127
	skb_tx_timestamp(skb);

3128 3129 3130
	/* always enable CRC insertion offload */
	td_cmd |= I40E_TX_DESC_CMD_ICRC;

3131 3132 3133 3134 3135 3136 3137
	i40e_create_tx_ctx(tx_ring, cd_type_cmd_tso_mss,
			   cd_tunneling, cd_l2tag2);

	/* Add Flow Director ATR if it's enabled.
	 *
	 * NOTE: this must always be directly before the data descriptor.
	 */
3138
	i40e_atr(tx_ring, skb, tx_flags);
3139 3140 3141 3142 3143 3144 3145

	i40e_tx_map(tx_ring, skb, first, tx_flags, hdr_len,
		    td_cmd, td_offset);

	return NETDEV_TX_OK;

out_drop:
3146 3147
	dev_kfree_skb_any(first->skb);
	first->skb = NULL;
3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161
	return NETDEV_TX_OK;
}

/**
 * i40e_lan_xmit_frame - Selects the correct VSI and Tx queue to send buffer
 * @skb:    send buffer
 * @netdev: network interface device structure
 *
 * Returns NETDEV_TX_OK if sent, else an error code
 **/
netdev_tx_t i40e_lan_xmit_frame(struct sk_buff *skb, struct net_device *netdev)
{
	struct i40e_netdev_priv *np = netdev_priv(netdev);
	struct i40e_vsi *vsi = np->vsi;
3162
	struct i40e_ring *tx_ring = vsi->tx_rings[skb->queue_mapping];
3163 3164 3165 3166

	/* hardware can't handle really short frames, hardware padding works
	 * beyond this point
	 */
3167 3168
	if (skb_put_padto(skb, I40E_MIN_TX_LEN))
		return NETDEV_TX_OK;
3169 3170 3171

	return i40e_xmit_frame_ring(skb, tx_ring);
}