regmap.c 68.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12
/*
 * Register map access API
 *
 * Copyright 2011 Wolfson Microelectronics plc
 *
 * Author: Mark Brown <broonie@opensource.wolfsonmicro.com>
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License version 2 as
 * published by the Free Software Foundation.
 */

13
#include <linux/device.h>
14
#include <linux/slab.h>
15
#include <linux/export.h>
16 17
#include <linux/mutex.h>
#include <linux/err.h>
18
#include <linux/of.h>
19
#include <linux/rbtree.h>
20
#include <linux/sched.h>
21
#include <linux/delay.h>
22
#include <linux/log2.h>
23

M
Mark Brown 已提交
24
#define CREATE_TRACE_POINTS
25
#include "trace.h"
M
Mark Brown 已提交
26

27
#include "internal.h"
28

29 30 31 32 33 34 35 36 37 38
/*
 * Sometimes for failures during very early init the trace
 * infrastructure isn't available early enough to be used.  For this
 * sort of problem defining LOG_DEVICE will add printks for basic
 * register I/O on a specific device.
 */
#undef LOG_DEVICE

static int _regmap_update_bits(struct regmap *map, unsigned int reg,
			       unsigned int mask, unsigned int val,
39
			       bool *change, bool force_write);
40

41 42
static int _regmap_bus_reg_read(void *context, unsigned int reg,
				unsigned int *val);
43 44
static int _regmap_bus_read(void *context, unsigned int reg,
			    unsigned int *val);
45 46
static int _regmap_bus_formatted_write(void *context, unsigned int reg,
				       unsigned int val);
47 48
static int _regmap_bus_reg_write(void *context, unsigned int reg,
				 unsigned int val);
49 50
static int _regmap_bus_raw_write(void *context, unsigned int reg,
				 unsigned int val);
51

52 53 54 55 56 57 58 59 60 61 62 63 64 65
bool regmap_reg_in_ranges(unsigned int reg,
			  const struct regmap_range *ranges,
			  unsigned int nranges)
{
	const struct regmap_range *r;
	int i;

	for (i = 0, r = ranges; i < nranges; i++, r++)
		if (regmap_reg_in_range(reg, r))
			return true;
	return false;
}
EXPORT_SYMBOL_GPL(regmap_reg_in_ranges);

66 67
bool regmap_check_range_table(struct regmap *map, unsigned int reg,
			      const struct regmap_access_table *table)
68 69 70 71 72 73 74 75 76 77 78 79
{
	/* Check "no ranges" first */
	if (regmap_reg_in_ranges(reg, table->no_ranges, table->n_no_ranges))
		return false;

	/* In case zero "yes ranges" are supplied, any reg is OK */
	if (!table->n_yes_ranges)
		return true;

	return regmap_reg_in_ranges(reg, table->yes_ranges,
				    table->n_yes_ranges);
}
80
EXPORT_SYMBOL_GPL(regmap_check_range_table);
81

82 83 84 85 86 87 88 89
bool regmap_writeable(struct regmap *map, unsigned int reg)
{
	if (map->max_register && reg > map->max_register)
		return false;

	if (map->writeable_reg)
		return map->writeable_reg(map->dev, reg);

90
	if (map->wr_table)
91
		return regmap_check_range_table(map, reg, map->wr_table);
92

93 94 95 96 97
	return true;
}

bool regmap_readable(struct regmap *map, unsigned int reg)
{
98 99 100
	if (!map->reg_read)
		return false;

101 102 103
	if (map->max_register && reg > map->max_register)
		return false;

104 105 106
	if (map->format.format_write)
		return false;

107 108 109
	if (map->readable_reg)
		return map->readable_reg(map->dev, reg);

110
	if (map->rd_table)
111
		return regmap_check_range_table(map, reg, map->rd_table);
112

113 114 115 116 117
	return true;
}

bool regmap_volatile(struct regmap *map, unsigned int reg)
{
118
	if (!map->format.format_write && !regmap_readable(map, reg))
119 120 121 122 123
		return false;

	if (map->volatile_reg)
		return map->volatile_reg(map->dev, reg);

124
	if (map->volatile_table)
125
		return regmap_check_range_table(map, reg, map->volatile_table);
126

127 128 129 130
	if (map->cache_ops)
		return false;
	else
		return true;
131 132 133 134
}

bool regmap_precious(struct regmap *map, unsigned int reg)
{
135
	if (!regmap_readable(map, reg))
136 137 138 139 140
		return false;

	if (map->precious_reg)
		return map->precious_reg(map->dev, reg);

141
	if (map->precious_table)
142
		return regmap_check_range_table(map, reg, map->precious_table);
143

144 145 146
	return false;
}

147
static bool regmap_volatile_range(struct regmap *map, unsigned int reg,
P
Paul Bolle 已提交
148
	size_t num)
149 150 151 152 153 154 155 156 157 158
{
	unsigned int i;

	for (i = 0; i < num; i++)
		if (!regmap_volatile(map, reg + i))
			return false;

	return true;
}

159 160 161 162 163 164 165 166
static void regmap_format_2_6_write(struct regmap *map,
				     unsigned int reg, unsigned int val)
{
	u8 *out = map->work_buf;

	*out = (reg << 6) | val;
}

167 168 169 170 171 172 173 174 175 176 177 178 179 180
static void regmap_format_4_12_write(struct regmap *map,
				     unsigned int reg, unsigned int val)
{
	__be16 *out = map->work_buf;
	*out = cpu_to_be16((reg << 12) | val);
}

static void regmap_format_7_9_write(struct regmap *map,
				    unsigned int reg, unsigned int val)
{
	__be16 *out = map->work_buf;
	*out = cpu_to_be16((reg << 9) | val);
}

181 182 183 184 185 186 187 188 189 190
static void regmap_format_10_14_write(struct regmap *map,
				    unsigned int reg, unsigned int val)
{
	u8 *out = map->work_buf;

	out[2] = val;
	out[1] = (val >> 8) | (reg << 6);
	out[0] = reg >> 2;
}

191
static void regmap_format_8(void *buf, unsigned int val, unsigned int shift)
192 193 194
{
	u8 *b = buf;

195
	b[0] = val << shift;
196 197
}

198
static void regmap_format_16_be(void *buf, unsigned int val, unsigned int shift)
199 200 201
{
	__be16 *b = buf;

202
	b[0] = cpu_to_be16(val << shift);
203 204
}

205 206 207 208 209 210 211
static void regmap_format_16_le(void *buf, unsigned int val, unsigned int shift)
{
	__le16 *b = buf;

	b[0] = cpu_to_le16(val << shift);
}

212 213 214 215 216 217
static void regmap_format_16_native(void *buf, unsigned int val,
				    unsigned int shift)
{
	*(u16 *)buf = val << shift;
}

218
static void regmap_format_24(void *buf, unsigned int val, unsigned int shift)
219 220 221
{
	u8 *b = buf;

222 223
	val <<= shift;

224 225 226 227 228
	b[0] = val >> 16;
	b[1] = val >> 8;
	b[2] = val;
}

229
static void regmap_format_32_be(void *buf, unsigned int val, unsigned int shift)
230 231 232
{
	__be32 *b = buf;

233
	b[0] = cpu_to_be32(val << shift);
234 235
}

236 237 238 239 240 241 242
static void regmap_format_32_le(void *buf, unsigned int val, unsigned int shift)
{
	__le32 *b = buf;

	b[0] = cpu_to_le32(val << shift);
}

243 244 245 246 247 248
static void regmap_format_32_native(void *buf, unsigned int val,
				    unsigned int shift)
{
	*(u32 *)buf = val << shift;
}

X
Xiubo Li 已提交
249 250 251 252 253
#ifdef CONFIG_64BIT
static void regmap_format_64_be(void *buf, unsigned int val, unsigned int shift)
{
	__be64 *b = buf;

254
	b[0] = cpu_to_be64((u64)val << shift);
X
Xiubo Li 已提交
255 256 257 258 259 260
}

static void regmap_format_64_le(void *buf, unsigned int val, unsigned int shift)
{
	__le64 *b = buf;

261
	b[0] = cpu_to_le64((u64)val << shift);
X
Xiubo Li 已提交
262 263 264 265 266
}

static void regmap_format_64_native(void *buf, unsigned int val,
				    unsigned int shift)
{
267
	*(u64 *)buf = (u64)val << shift;
X
Xiubo Li 已提交
268 269 270
}
#endif

271
static void regmap_parse_inplace_noop(void *buf)
272
{
273 274 275 276 277
}

static unsigned int regmap_parse_8(const void *buf)
{
	const u8 *b = buf;
278 279 280 281

	return b[0];
}

282 283 284 285 286 287 288
static unsigned int regmap_parse_16_be(const void *buf)
{
	const __be16 *b = buf;

	return be16_to_cpu(b[0]);
}

289 290 291 292 293 294 295
static unsigned int regmap_parse_16_le(const void *buf)
{
	const __le16 *b = buf;

	return le16_to_cpu(b[0]);
}

296
static void regmap_parse_16_be_inplace(void *buf)
297 298 299 300 301 302
{
	__be16 *b = buf;

	b[0] = be16_to_cpu(b[0]);
}

303 304 305 306 307 308 309
static void regmap_parse_16_le_inplace(void *buf)
{
	__le16 *b = buf;

	b[0] = le16_to_cpu(b[0]);
}

310
static unsigned int regmap_parse_16_native(const void *buf)
311 312 313 314
{
	return *(u16 *)buf;
}

315
static unsigned int regmap_parse_24(const void *buf)
316
{
317
	const u8 *b = buf;
318 319 320 321 322 323 324
	unsigned int ret = b[2];
	ret |= ((unsigned int)b[1]) << 8;
	ret |= ((unsigned int)b[0]) << 16;

	return ret;
}

325 326 327 328 329 330 331
static unsigned int regmap_parse_32_be(const void *buf)
{
	const __be32 *b = buf;

	return be32_to_cpu(b[0]);
}

332 333 334 335 336 337 338
static unsigned int regmap_parse_32_le(const void *buf)
{
	const __le32 *b = buf;

	return le32_to_cpu(b[0]);
}

339
static void regmap_parse_32_be_inplace(void *buf)
340 341 342 343 344 345
{
	__be32 *b = buf;

	b[0] = be32_to_cpu(b[0]);
}

346 347 348 349 350 351 352
static void regmap_parse_32_le_inplace(void *buf)
{
	__le32 *b = buf;

	b[0] = le32_to_cpu(b[0]);
}

353
static unsigned int regmap_parse_32_native(const void *buf)
354 355 356 357
{
	return *(u32 *)buf;
}

X
Xiubo Li 已提交
358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392
#ifdef CONFIG_64BIT
static unsigned int regmap_parse_64_be(const void *buf)
{
	const __be64 *b = buf;

	return be64_to_cpu(b[0]);
}

static unsigned int regmap_parse_64_le(const void *buf)
{
	const __le64 *b = buf;

	return le64_to_cpu(b[0]);
}

static void regmap_parse_64_be_inplace(void *buf)
{
	__be64 *b = buf;

	b[0] = be64_to_cpu(b[0]);
}

static void regmap_parse_64_le_inplace(void *buf)
{
	__le64 *b = buf;

	b[0] = le64_to_cpu(b[0]);
}

static unsigned int regmap_parse_64_native(const void *buf)
{
	return *(u64 *)buf;
}
#endif

393
static void regmap_lock_mutex(void *__map)
394
{
395
	struct regmap *map = __map;
396 397 398
	mutex_lock(&map->mutex);
}

399
static void regmap_unlock_mutex(void *__map)
400
{
401
	struct regmap *map = __map;
402 403 404
	mutex_unlock(&map->mutex);
}

405
static void regmap_lock_spinlock(void *__map)
406
__acquires(&map->spinlock)
407
{
408
	struct regmap *map = __map;
409 410 411 412
	unsigned long flags;

	spin_lock_irqsave(&map->spinlock, flags);
	map->spinlock_flags = flags;
413 414
}

415
static void regmap_unlock_spinlock(void *__map)
416
__releases(&map->spinlock)
417
{
418
	struct regmap *map = __map;
419
	spin_unlock_irqrestore(&map->spinlock, map->spinlock_flags);
420 421
}

M
Mark Brown 已提交
422 423 424 425 426 427 428 429 430
static void dev_get_regmap_release(struct device *dev, void *res)
{
	/*
	 * We don't actually have anything to do here; the goal here
	 * is not to manage the regmap but to provide a simple way to
	 * get the regmap back given a struct device.
	 */
}

431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491
static bool _regmap_range_add(struct regmap *map,
			      struct regmap_range_node *data)
{
	struct rb_root *root = &map->range_tree;
	struct rb_node **new = &(root->rb_node), *parent = NULL;

	while (*new) {
		struct regmap_range_node *this =
			container_of(*new, struct regmap_range_node, node);

		parent = *new;
		if (data->range_max < this->range_min)
			new = &((*new)->rb_left);
		else if (data->range_min > this->range_max)
			new = &((*new)->rb_right);
		else
			return false;
	}

	rb_link_node(&data->node, parent, new);
	rb_insert_color(&data->node, root);

	return true;
}

static struct regmap_range_node *_regmap_range_lookup(struct regmap *map,
						      unsigned int reg)
{
	struct rb_node *node = map->range_tree.rb_node;

	while (node) {
		struct regmap_range_node *this =
			container_of(node, struct regmap_range_node, node);

		if (reg < this->range_min)
			node = node->rb_left;
		else if (reg > this->range_max)
			node = node->rb_right;
		else
			return this;
	}

	return NULL;
}

static void regmap_range_exit(struct regmap *map)
{
	struct rb_node *next;
	struct regmap_range_node *range_node;

	next = rb_first(&map->range_tree);
	while (next) {
		range_node = rb_entry(next, struct regmap_range_node, node);
		next = rb_next(&range_node->node);
		rb_erase(&range_node->node, &map->range_tree);
		kfree(range_node);
	}

	kfree(map->selector_work_buf);
}

492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513
int regmap_attach_dev(struct device *dev, struct regmap *map,
		      const struct regmap_config *config)
{
	struct regmap **m;

	map->dev = dev;

	regmap_debugfs_init(map, config->name);

	/* Add a devres resource for dev_get_regmap() */
	m = devres_alloc(dev_get_regmap_release, sizeof(*m), GFP_KERNEL);
	if (!m) {
		regmap_debugfs_exit(map);
		return -ENOMEM;
	}
	*m = map;
	devres_add(dev, m);

	return 0;
}
EXPORT_SYMBOL_GPL(regmap_attach_dev);

514 515 516 517 518 519 520 521 522 523 524 525 526 527 528
static enum regmap_endian regmap_get_reg_endian(const struct regmap_bus *bus,
					const struct regmap_config *config)
{
	enum regmap_endian endian;

	/* Retrieve the endianness specification from the regmap config */
	endian = config->reg_format_endian;

	/* If the regmap config specified a non-default value, use that */
	if (endian != REGMAP_ENDIAN_DEFAULT)
		return endian;

	/* Retrieve the endianness specification from the bus config */
	if (bus && bus->reg_format_endian_default)
		endian = bus->reg_format_endian_default;
529

530 531 532 533 534 535 536 537
	/* If the bus specified a non-default value, use that */
	if (endian != REGMAP_ENDIAN_DEFAULT)
		return endian;

	/* Use this if no other value was found */
	return REGMAP_ENDIAN_BIG;
}

538 539 540
enum regmap_endian regmap_get_val_endian(struct device *dev,
					 const struct regmap_bus *bus,
					 const struct regmap_config *config)
541
{
542
	struct device_node *np;
543
	enum regmap_endian endian;
544

545
	/* Retrieve the endianness specification from the regmap config */
546
	endian = config->val_format_endian;
547

548
	/* If the regmap config specified a non-default value, use that */
549 550
	if (endian != REGMAP_ENDIAN_DEFAULT)
		return endian;
551

552 553 554
	/* If the dev and dev->of_node exist try to get endianness from DT */
	if (dev && dev->of_node) {
		np = dev->of_node;
555

556 557 558 559 560
		/* Parse the device's DT node for an endianness specification */
		if (of_property_read_bool(np, "big-endian"))
			endian = REGMAP_ENDIAN_BIG;
		else if (of_property_read_bool(np, "little-endian"))
			endian = REGMAP_ENDIAN_LITTLE;
561 562
		else if (of_property_read_bool(np, "native-endian"))
			endian = REGMAP_ENDIAN_NATIVE;
563 564 565 566 567

		/* If the endianness was specified in DT, use that */
		if (endian != REGMAP_ENDIAN_DEFAULT)
			return endian;
	}
568 569

	/* Retrieve the endianness specification from the bus config */
570 571
	if (bus && bus->val_format_endian_default)
		endian = bus->val_format_endian_default;
572

573
	/* If the bus specified a non-default value, use that */
574 575
	if (endian != REGMAP_ENDIAN_DEFAULT)
		return endian;
576 577

	/* Use this if no other value was found */
578
	return REGMAP_ENDIAN_BIG;
579
}
580
EXPORT_SYMBOL_GPL(regmap_get_val_endian);
581

582 583 584 585 586 587
struct regmap *__regmap_init(struct device *dev,
			     const struct regmap_bus *bus,
			     void *bus_context,
			     const struct regmap_config *config,
			     struct lock_class_key *lock_key,
			     const char *lock_name)
588
{
589
	struct regmap *map;
590
	int ret = -EINVAL;
591
	enum regmap_endian reg_endian, val_endian;
592
	int i, j;
593

594
	if (!config)
595
		goto err;
596 597 598 599 600 601 602

	map = kzalloc(sizeof(*map), GFP_KERNEL);
	if (map == NULL) {
		ret = -ENOMEM;
		goto err;
	}

603 604 605 606
	if (config->lock && config->unlock) {
		map->lock = config->lock;
		map->unlock = config->unlock;
		map->lock_arg = config->lock_arg;
607
	} else {
608 609
		if ((bus && bus->fast_io) ||
		    config->fast_io) {
610 611 612
			spin_lock_init(&map->spinlock);
			map->lock = regmap_lock_spinlock;
			map->unlock = regmap_unlock_spinlock;
613 614
			lockdep_set_class_and_name(&map->spinlock,
						   lock_key, lock_name);
615 616 617 618
		} else {
			mutex_init(&map->mutex);
			map->lock = regmap_lock_mutex;
			map->unlock = regmap_unlock_mutex;
619 620
			lockdep_set_class_and_name(&map->mutex,
						   lock_key, lock_name);
621 622
		}
		map->lock_arg = map;
623
	}
624 625 626 627 628 629 630 631 632 633

	/*
	 * When we write in fast-paths with regmap_bulk_write() don't allocate
	 * scratch buffers with sleeping allocations.
	 */
	if ((bus && bus->fast_io) || config->fast_io)
		map->alloc_flags = GFP_ATOMIC;
	else
		map->alloc_flags = GFP_KERNEL;

634
	map->format.reg_bytes = DIV_ROUND_UP(config->reg_bits, 8);
635
	map->format.pad_bytes = config->pad_bits / 8;
636
	map->format.val_bytes = DIV_ROUND_UP(config->val_bits, 8);
637 638
	map->format.buf_size = DIV_ROUND_UP(config->reg_bits +
			config->val_bits + config->pad_bits, 8);
639
	map->reg_shift = config->pad_bits % 8;
640 641 642 643
	if (config->reg_stride)
		map->reg_stride = config->reg_stride;
	else
		map->reg_stride = 1;
644 645 646 647
	if (is_power_of_2(map->reg_stride))
		map->reg_stride_order = ilog2(map->reg_stride);
	else
		map->reg_stride_order = -1;
648 649
	map->use_single_read = config->use_single_rw || !bus || !bus->read;
	map->use_single_write = config->use_single_rw || !bus || !bus->write;
650
	map->can_multi_write = config->can_multi_write && bus && bus->write;
651 652 653 654
	if (bus) {
		map->max_raw_read = bus->max_raw_read;
		map->max_raw_write = bus->max_raw_write;
	}
655 656
	map->dev = dev;
	map->bus = bus;
657
	map->bus_context = bus_context;
658
	map->max_register = config->max_register;
659 660 661 662
	map->wr_table = config->wr_table;
	map->rd_table = config->rd_table;
	map->volatile_table = config->volatile_table;
	map->precious_table = config->precious_table;
663 664 665
	map->writeable_reg = config->writeable_reg;
	map->readable_reg = config->readable_reg;
	map->volatile_reg = config->volatile_reg;
666
	map->precious_reg = config->precious_reg;
667
	map->cache_type = config->cache_type;
M
Mark Brown 已提交
668
	map->name = config->name;
669

670 671
	spin_lock_init(&map->async_lock);
	INIT_LIST_HEAD(&map->async_list);
M
Mark Brown 已提交
672
	INIT_LIST_HEAD(&map->async_free);
673 674
	init_waitqueue_head(&map->async_waitq);

675 676 677
	if (config->read_flag_mask || config->write_flag_mask) {
		map->read_flag_mask = config->read_flag_mask;
		map->write_flag_mask = config->write_flag_mask;
678
	} else if (bus) {
679 680 681
		map->read_flag_mask = bus->read_flag_mask;
	}

682 683 684 685
	if (!bus) {
		map->reg_read  = config->reg_read;
		map->reg_write = config->reg_write;

686 687 688 689 690 691
		map->defer_caching = false;
		goto skip_format_initialization;
	} else if (!bus->read || !bus->write) {
		map->reg_read = _regmap_bus_reg_read;
		map->reg_write = _regmap_bus_reg_write;

692 693 694 695
		map->defer_caching = false;
		goto skip_format_initialization;
	} else {
		map->reg_read  = _regmap_bus_read;
696
		map->reg_update_bits = bus->reg_update_bits;
697
	}
698

699 700
	reg_endian = regmap_get_reg_endian(bus, config);
	val_endian = regmap_get_val_endian(dev, bus, config);
701

702
	switch (config->reg_bits + map->reg_shift) {
703 704 705 706 707 708 709 710 711 712
	case 2:
		switch (config->val_bits) {
		case 6:
			map->format.format_write = regmap_format_2_6_write;
			break;
		default:
			goto err_map;
		}
		break;

713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732
	case 4:
		switch (config->val_bits) {
		case 12:
			map->format.format_write = regmap_format_4_12_write;
			break;
		default:
			goto err_map;
		}
		break;

	case 7:
		switch (config->val_bits) {
		case 9:
			map->format.format_write = regmap_format_7_9_write;
			break;
		default:
			goto err_map;
		}
		break;

733 734 735 736 737 738 739 740 741 742
	case 10:
		switch (config->val_bits) {
		case 14:
			map->format.format_write = regmap_format_10_14_write;
			break;
		default:
			goto err_map;
		}
		break;

743 744 745 746 747
	case 8:
		map->format.format_reg = regmap_format_8;
		break;

	case 16:
748 749 750 751 752 753 754 755 756 757
		switch (reg_endian) {
		case REGMAP_ENDIAN_BIG:
			map->format.format_reg = regmap_format_16_be;
			break;
		case REGMAP_ENDIAN_NATIVE:
			map->format.format_reg = regmap_format_16_native;
			break;
		default:
			goto err_map;
		}
758 759
		break;

760 761 762 763 764 765
	case 24:
		if (reg_endian != REGMAP_ENDIAN_BIG)
			goto err_map;
		map->format.format_reg = regmap_format_24;
		break;

766
	case 32:
767 768 769 770 771 772 773 774 775 776
		switch (reg_endian) {
		case REGMAP_ENDIAN_BIG:
			map->format.format_reg = regmap_format_32_be;
			break;
		case REGMAP_ENDIAN_NATIVE:
			map->format.format_reg = regmap_format_32_native;
			break;
		default:
			goto err_map;
		}
777 778
		break;

X
Xiubo Li 已提交
779 780 781 782 783 784 785 786 787 788 789 790 791 792 793
#ifdef CONFIG_64BIT
	case 64:
		switch (reg_endian) {
		case REGMAP_ENDIAN_BIG:
			map->format.format_reg = regmap_format_64_be;
			break;
		case REGMAP_ENDIAN_NATIVE:
			map->format.format_reg = regmap_format_64_native;
			break;
		default:
			goto err_map;
		}
		break;
#endif

794 795 796 797
	default:
		goto err_map;
	}

798 799 800
	if (val_endian == REGMAP_ENDIAN_NATIVE)
		map->format.parse_inplace = regmap_parse_inplace_noop;

801 802 803 804
	switch (config->val_bits) {
	case 8:
		map->format.format_val = regmap_format_8;
		map->format.parse_val = regmap_parse_8;
805
		map->format.parse_inplace = regmap_parse_inplace_noop;
806 807
		break;
	case 16:
808 809 810 811
		switch (val_endian) {
		case REGMAP_ENDIAN_BIG:
			map->format.format_val = regmap_format_16_be;
			map->format.parse_val = regmap_parse_16_be;
812
			map->format.parse_inplace = regmap_parse_16_be_inplace;
813
			break;
814 815 816 817 818
		case REGMAP_ENDIAN_LITTLE:
			map->format.format_val = regmap_format_16_le;
			map->format.parse_val = regmap_parse_16_le;
			map->format.parse_inplace = regmap_parse_16_le_inplace;
			break;
819 820 821 822 823 824 825
		case REGMAP_ENDIAN_NATIVE:
			map->format.format_val = regmap_format_16_native;
			map->format.parse_val = regmap_parse_16_native;
			break;
		default:
			goto err_map;
		}
826
		break;
827
	case 24:
828 829
		if (val_endian != REGMAP_ENDIAN_BIG)
			goto err_map;
830 831 832
		map->format.format_val = regmap_format_24;
		map->format.parse_val = regmap_parse_24;
		break;
833
	case 32:
834 835 836 837
		switch (val_endian) {
		case REGMAP_ENDIAN_BIG:
			map->format.format_val = regmap_format_32_be;
			map->format.parse_val = regmap_parse_32_be;
838
			map->format.parse_inplace = regmap_parse_32_be_inplace;
839
			break;
840 841 842 843 844
		case REGMAP_ENDIAN_LITTLE:
			map->format.format_val = regmap_format_32_le;
			map->format.parse_val = regmap_parse_32_le;
			map->format.parse_inplace = regmap_parse_32_le_inplace;
			break;
845 846 847 848 849 850 851
		case REGMAP_ENDIAN_NATIVE:
			map->format.format_val = regmap_format_32_native;
			map->format.parse_val = regmap_parse_32_native;
			break;
		default:
			goto err_map;
		}
852
		break;
X
Xiubo Li 已提交
853
#ifdef CONFIG_64BIT
D
Dan Carpenter 已提交
854
	case 64:
X
Xiubo Li 已提交
855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874
		switch (val_endian) {
		case REGMAP_ENDIAN_BIG:
			map->format.format_val = regmap_format_64_be;
			map->format.parse_val = regmap_parse_64_be;
			map->format.parse_inplace = regmap_parse_64_be_inplace;
			break;
		case REGMAP_ENDIAN_LITTLE:
			map->format.format_val = regmap_format_64_le;
			map->format.parse_val = regmap_parse_64_le;
			map->format.parse_inplace = regmap_parse_64_le_inplace;
			break;
		case REGMAP_ENDIAN_NATIVE:
			map->format.format_val = regmap_format_64_native;
			map->format.parse_val = regmap_parse_64_native;
			break;
		default:
			goto err_map;
		}
		break;
#endif
875 876
	}

877 878 879 880
	if (map->format.format_write) {
		if ((reg_endian != REGMAP_ENDIAN_BIG) ||
		    (val_endian != REGMAP_ENDIAN_BIG))
			goto err_map;
881
		map->use_single_write = true;
882
	}
883

884 885 886 887
	if (!map->format.format_write &&
	    !(map->format.format_reg && map->format.format_val))
		goto err_map;

888
	map->work_buf = kzalloc(map->format.buf_size, GFP_KERNEL);
889 890
	if (map->work_buf == NULL) {
		ret = -ENOMEM;
891
		goto err_map;
892 893
	}

894 895
	if (map->format.format_write) {
		map->defer_caching = false;
896
		map->reg_write = _regmap_bus_formatted_write;
897 898
	} else if (map->format.format_val) {
		map->defer_caching = true;
899
		map->reg_write = _regmap_bus_raw_write;
900 901 902
	}

skip_format_initialization:
903

904
	map->range_tree = RB_ROOT;
M
Mark Brown 已提交
905
	for (i = 0; i < config->num_ranges; i++) {
906 907 908 909
		const struct regmap_range_cfg *range_cfg = &config->ranges[i];
		struct regmap_range_node *new;

		/* Sanity check */
910 911 912
		if (range_cfg->range_max < range_cfg->range_min) {
			dev_err(map->dev, "Invalid range %d: %d < %d\n", i,
				range_cfg->range_max, range_cfg->range_min);
913
			goto err_range;
914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932
		}

		if (range_cfg->range_max > map->max_register) {
			dev_err(map->dev, "Invalid range %d: %d > %d\n", i,
				range_cfg->range_max, map->max_register);
			goto err_range;
		}

		if (range_cfg->selector_reg > map->max_register) {
			dev_err(map->dev,
				"Invalid range %d: selector out of map\n", i);
			goto err_range;
		}

		if (range_cfg->window_len == 0) {
			dev_err(map->dev, "Invalid range %d: window_len 0\n",
				i);
			goto err_range;
		}
933 934 935

		/* Make sure, that this register range has no selector
		   or data window within its boundary */
M
Mark Brown 已提交
936
		for (j = 0; j < config->num_ranges; j++) {
937 938 939 940 941
			unsigned sel_reg = config->ranges[j].selector_reg;
			unsigned win_min = config->ranges[j].window_start;
			unsigned win_max = win_min +
					   config->ranges[j].window_len - 1;

942 943 944 945
			/* Allow data window inside its own virtual range */
			if (j == i)
				continue;

946 947
			if (range_cfg->range_min <= sel_reg &&
			    sel_reg <= range_cfg->range_max) {
948 949 950
				dev_err(map->dev,
					"Range %d: selector for %d in window\n",
					i, j);
951 952 953 954 955
				goto err_range;
			}

			if (!(win_max < range_cfg->range_min ||
			      win_min > range_cfg->range_max)) {
956 957 958
				dev_err(map->dev,
					"Range %d: window for %d in window\n",
					i, j);
959 960 961 962 963 964 965 966 967 968
				goto err_range;
			}
		}

		new = kzalloc(sizeof(*new), GFP_KERNEL);
		if (new == NULL) {
			ret = -ENOMEM;
			goto err_range;
		}

969
		new->map = map;
M
Mark Brown 已提交
970
		new->name = range_cfg->name;
971 972 973 974 975 976 977 978
		new->range_min = range_cfg->range_min;
		new->range_max = range_cfg->range_max;
		new->selector_reg = range_cfg->selector_reg;
		new->selector_mask = range_cfg->selector_mask;
		new->selector_shift = range_cfg->selector_shift;
		new->window_start = range_cfg->window_start;
		new->window_len = range_cfg->window_len;

N
Nenghua Cao 已提交
979
		if (!_regmap_range_add(map, new)) {
980
			dev_err(map->dev, "Failed to add range %d\n", i);
981 982 983 984 985 986 987 988 989 990 991 992 993
			kfree(new);
			goto err_range;
		}

		if (map->selector_work_buf == NULL) {
			map->selector_work_buf =
				kzalloc(map->format.buf_size, GFP_KERNEL);
			if (map->selector_work_buf == NULL) {
				ret = -ENOMEM;
				goto err_range;
			}
		}
	}
994

995
	ret = regcache_init(map, config);
996
	if (ret != 0)
997 998
		goto err_range;

999
	if (dev) {
1000 1001 1002
		ret = regmap_attach_dev(dev, map, config);
		if (ret != 0)
			goto err_regcache;
1003
	}
M
Mark Brown 已提交
1004

1005 1006
	return map;

1007
err_regcache:
M
Mark Brown 已提交
1008
	regcache_exit(map);
1009 1010
err_range:
	regmap_range_exit(map);
1011
	kfree(map->work_buf);
1012 1013 1014 1015 1016
err_map:
	kfree(map);
err:
	return ERR_PTR(ret);
}
1017
EXPORT_SYMBOL_GPL(__regmap_init);
1018

1019 1020 1021 1022 1023
static void devm_regmap_release(struct device *dev, void *res)
{
	regmap_exit(*(struct regmap **)res);
}

1024 1025 1026 1027 1028 1029
struct regmap *__devm_regmap_init(struct device *dev,
				  const struct regmap_bus *bus,
				  void *bus_context,
				  const struct regmap_config *config,
				  struct lock_class_key *lock_key,
				  const char *lock_name)
1030 1031 1032 1033 1034 1035 1036
{
	struct regmap **ptr, *regmap;

	ptr = devres_alloc(devm_regmap_release, sizeof(*ptr), GFP_KERNEL);
	if (!ptr)
		return ERR_PTR(-ENOMEM);

1037 1038
	regmap = __regmap_init(dev, bus, bus_context, config,
			       lock_key, lock_name);
1039 1040 1041 1042 1043 1044 1045 1046 1047
	if (!IS_ERR(regmap)) {
		*ptr = regmap;
		devres_add(dev, ptr);
	} else {
		devres_free(ptr);
	}

	return regmap;
}
1048
EXPORT_SYMBOL_GPL(__devm_regmap_init);
1049

1050 1051 1052 1053 1054 1055
static void regmap_field_init(struct regmap_field *rm_field,
	struct regmap *regmap, struct reg_field reg_field)
{
	rm_field->regmap = regmap;
	rm_field->reg = reg_field.reg;
	rm_field->shift = reg_field.lsb;
1056
	rm_field->mask = GENMASK(reg_field.msb, reg_field.lsb);
1057 1058
	rm_field->id_size = reg_field.id_size;
	rm_field->id_offset = reg_field.id_offset;
1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139
}

/**
 * devm_regmap_field_alloc(): Allocate and initialise a register field
 * in a register map.
 *
 * @dev: Device that will be interacted with
 * @regmap: regmap bank in which this register field is located.
 * @reg_field: Register field with in the bank.
 *
 * The return value will be an ERR_PTR() on error or a valid pointer
 * to a struct regmap_field. The regmap_field will be automatically freed
 * by the device management code.
 */
struct regmap_field *devm_regmap_field_alloc(struct device *dev,
		struct regmap *regmap, struct reg_field reg_field)
{
	struct regmap_field *rm_field = devm_kzalloc(dev,
					sizeof(*rm_field), GFP_KERNEL);
	if (!rm_field)
		return ERR_PTR(-ENOMEM);

	regmap_field_init(rm_field, regmap, reg_field);

	return rm_field;

}
EXPORT_SYMBOL_GPL(devm_regmap_field_alloc);

/**
 * devm_regmap_field_free(): Free register field allocated using
 * devm_regmap_field_alloc. Usally drivers need not call this function,
 * as the memory allocated via devm will be freed as per device-driver
 * life-cyle.
 *
 * @dev: Device that will be interacted with
 * @field: regmap field which should be freed.
 */
void devm_regmap_field_free(struct device *dev,
	struct regmap_field *field)
{
	devm_kfree(dev, field);
}
EXPORT_SYMBOL_GPL(devm_regmap_field_free);

/**
 * regmap_field_alloc(): Allocate and initialise a register field
 * in a register map.
 *
 * @regmap: regmap bank in which this register field is located.
 * @reg_field: Register field with in the bank.
 *
 * The return value will be an ERR_PTR() on error or a valid pointer
 * to a struct regmap_field. The regmap_field should be freed by the
 * user once its finished working with it using regmap_field_free().
 */
struct regmap_field *regmap_field_alloc(struct regmap *regmap,
		struct reg_field reg_field)
{
	struct regmap_field *rm_field = kzalloc(sizeof(*rm_field), GFP_KERNEL);

	if (!rm_field)
		return ERR_PTR(-ENOMEM);

	regmap_field_init(rm_field, regmap, reg_field);

	return rm_field;
}
EXPORT_SYMBOL_GPL(regmap_field_alloc);

/**
 * regmap_field_free(): Free register field allocated using regmap_field_alloc
 *
 * @field: regmap field which should be freed.
 */
void regmap_field_free(struct regmap_field *field)
{
	kfree(field);
}
EXPORT_SYMBOL_GPL(regmap_field_free);

1140 1141 1142 1143 1144 1145 1146 1147 1148 1149
/**
 * regmap_reinit_cache(): Reinitialise the current register cache
 *
 * @map: Register map to operate on.
 * @config: New configuration.  Only the cache data will be used.
 *
 * Discard any existing register cache for the map and initialize a
 * new cache.  This can be used to restore the cache to defaults or to
 * update the cache configuration to reflect runtime discovery of the
 * hardware.
1150 1151 1152
 *
 * No explicit locking is done here, the user needs to ensure that
 * this function will not race with other calls to regmap.
1153 1154 1155 1156
 */
int regmap_reinit_cache(struct regmap *map, const struct regmap_config *config)
{
	regcache_exit(map);
1157
	regmap_debugfs_exit(map);
1158 1159 1160 1161 1162 1163 1164 1165

	map->max_register = config->max_register;
	map->writeable_reg = config->writeable_reg;
	map->readable_reg = config->readable_reg;
	map->volatile_reg = config->volatile_reg;
	map->precious_reg = config->precious_reg;
	map->cache_type = config->cache_type;

1166
	regmap_debugfs_init(map, config->name);
1167

1168 1169 1170
	map->cache_bypass = false;
	map->cache_only = false;

1171
	return regcache_init(map, config);
1172
}
1173
EXPORT_SYMBOL_GPL(regmap_reinit_cache);
1174

1175 1176 1177 1178 1179
/**
 * regmap_exit(): Free a previously allocated register map
 */
void regmap_exit(struct regmap *map)
{
M
Mark Brown 已提交
1180 1181
	struct regmap_async *async;

1182
	regcache_exit(map);
1183
	regmap_debugfs_exit(map);
1184
	regmap_range_exit(map);
1185
	if (map->bus && map->bus->free_context)
1186
		map->bus->free_context(map->bus_context);
1187
	kfree(map->work_buf);
M
Mark Brown 已提交
1188 1189 1190 1191 1192 1193 1194 1195
	while (!list_empty(&map->async_free)) {
		async = list_first_entry_or_null(&map->async_free,
						 struct regmap_async,
						 list);
		list_del(&async->list);
		kfree(async->work_buf);
		kfree(async);
	}
1196 1197 1198 1199
	kfree(map);
}
EXPORT_SYMBOL_GPL(regmap_exit);

M
Mark Brown 已提交
1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237
static int dev_get_regmap_match(struct device *dev, void *res, void *data)
{
	struct regmap **r = res;
	if (!r || !*r) {
		WARN_ON(!r || !*r);
		return 0;
	}

	/* If the user didn't specify a name match any */
	if (data)
		return (*r)->name == data;
	else
		return 1;
}

/**
 * dev_get_regmap(): Obtain the regmap (if any) for a device
 *
 * @dev: Device to retrieve the map for
 * @name: Optional name for the register map, usually NULL.
 *
 * Returns the regmap for the device if one is present, or NULL.  If
 * name is specified then it must match the name specified when
 * registering the device, if it is NULL then the first regmap found
 * will be used.  Devices with multiple register maps are very rare,
 * generic code should normally not need to specify a name.
 */
struct regmap *dev_get_regmap(struct device *dev, const char *name)
{
	struct regmap **r = devres_find(dev, dev_get_regmap_release,
					dev_get_regmap_match, (void *)name);

	if (!r)
		return NULL;
	return *r;
}
EXPORT_SYMBOL_GPL(dev_get_regmap);

T
Tuomas Tynkkynen 已提交
1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248
/**
 * regmap_get_device(): Obtain the device from a regmap
 *
 * @map: Register map to operate on.
 *
 * Returns the underlying device that the regmap has been created for.
 */
struct device *regmap_get_device(struct regmap *map)
{
	return map->dev;
}
1249
EXPORT_SYMBOL_GPL(regmap_get_device);
T
Tuomas Tynkkynen 已提交
1250

1251
static int _regmap_select_page(struct regmap *map, unsigned int *reg,
1252
			       struct regmap_range_node *range,
1253 1254 1255 1256 1257 1258 1259 1260
			       unsigned int val_num)
{
	void *orig_work_buf;
	unsigned int win_offset;
	unsigned int win_page;
	bool page_chg;
	int ret;

1261 1262
	win_offset = (*reg - range->range_min) % range->window_len;
	win_page = (*reg - range->range_min) / range->window_len;
1263

1264 1265 1266 1267
	if (val_num > 1) {
		/* Bulk write shouldn't cross range boundary */
		if (*reg + val_num - 1 > range->range_max)
			return -EINVAL;
1268

1269 1270 1271 1272
		/* ... or single page boundary */
		if (val_num > range->window_len - win_offset)
			return -EINVAL;
	}
1273

1274 1275 1276 1277 1278 1279 1280 1281
	/* It is possible to have selector register inside data window.
	   In that case, selector register is located on every page and
	   it needs no page switching, when accessed alone. */
	if (val_num > 1 ||
	    range->window_start + win_offset != range->selector_reg) {
		/* Use separate work_buf during page switching */
		orig_work_buf = map->work_buf;
		map->work_buf = map->selector_work_buf;
1282

1283 1284 1285
		ret = _regmap_update_bits(map, range->selector_reg,
					  range->selector_mask,
					  win_page << range->selector_shift,
1286
					  &page_chg, false);
1287

1288
		map->work_buf = orig_work_buf;
1289

1290
		if (ret != 0)
1291
			return ret;
1292 1293
	}

1294 1295
	*reg = range->window_start + win_offset;

1296 1297 1298
	return 0;
}

1299
int _regmap_raw_write(struct regmap *map, unsigned int reg,
1300
		      const void *val, size_t val_len)
1301
{
1302
	struct regmap_range_node *range;
1303
	unsigned long flags;
1304
	u8 *u8 = map->work_buf;
1305 1306
	void *work_val = map->work_buf + map->format.reg_bytes +
		map->format.pad_bytes;
1307 1308 1309
	void *buf;
	int ret = -ENOTSUPP;
	size_t len;
1310 1311
	int i;

1312
	WARN_ON(!map->bus);
1313

1314 1315 1316
	/* Check for unwritable registers before we start */
	if (map->writeable_reg)
		for (i = 0; i < val_len / map->format.val_bytes; i++)
1317
			if (!map->writeable_reg(map->dev,
1318
					       reg + regmap_get_offset(map, i)))
1319
				return -EINVAL;
1320

1321 1322 1323 1324
	if (!map->cache_bypass && map->format.parse_val) {
		unsigned int ival;
		int val_bytes = map->format.val_bytes;
		for (i = 0; i < val_len / val_bytes; i++) {
1325
			ival = map->format.parse_val(val + (i * val_bytes));
1326 1327
			ret = regcache_write(map,
					     reg + regmap_get_offset(map, i),
1328
					     ival);
1329 1330
			if (ret) {
				dev_err(map->dev,
1331
					"Error in caching of register: %x ret: %d\n",
1332 1333 1334 1335 1336 1337 1338 1339 1340 1341
					reg + i, ret);
				return ret;
			}
		}
		if (map->cache_only) {
			map->cache_dirty = true;
			return 0;
		}
	}

1342 1343
	range = _regmap_range_lookup(map, reg);
	if (range) {
1344 1345 1346 1347 1348 1349
		int val_num = val_len / map->format.val_bytes;
		int win_offset = (reg - range->range_min) % range->window_len;
		int win_residue = range->window_len - win_offset;

		/* If the write goes beyond the end of the window split it */
		while (val_num > win_residue) {
1350
			dev_dbg(map->dev, "Writing window %d/%zu\n",
1351 1352
				win_residue, val_len / map->format.val_bytes);
			ret = _regmap_raw_write(map, reg, val, win_residue *
1353
						map->format.val_bytes);
1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367
			if (ret != 0)
				return ret;

			reg += win_residue;
			val_num -= win_residue;
			val += win_residue * map->format.val_bytes;
			val_len -= win_residue * map->format.val_bytes;

			win_offset = (reg - range->range_min) %
				range->window_len;
			win_residue = range->window_len - win_offset;
		}

		ret = _regmap_select_page(map, &reg, range, val_num);
1368
		if (ret != 0)
1369 1370
			return ret;
	}
1371

1372
	map->format.format_reg(map->work_buf, reg, map->reg_shift);
1373

1374 1375
	u8[0] |= map->write_flag_mask;

1376 1377 1378 1379 1380 1381 1382 1383 1384 1385
	/*
	 * Essentially all I/O mechanisms will be faster with a single
	 * buffer to write.  Since register syncs often generate raw
	 * writes of single registers optimise that case.
	 */
	if (val != work_val && val_len == map->format.val_bytes) {
		memcpy(work_val, val, map->format.val_bytes);
		val = work_val;
	}

1386
	if (map->async && map->bus->async_write) {
M
Mark Brown 已提交
1387
		struct regmap_async *async;
1388

1389
		trace_regmap_async_write_start(map, reg, val_len);
1390

M
Mark Brown 已提交
1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409
		spin_lock_irqsave(&map->async_lock, flags);
		async = list_first_entry_or_null(&map->async_free,
						 struct regmap_async,
						 list);
		if (async)
			list_del(&async->list);
		spin_unlock_irqrestore(&map->async_lock, flags);

		if (!async) {
			async = map->bus->async_alloc();
			if (!async)
				return -ENOMEM;

			async->work_buf = kzalloc(map->format.buf_size,
						  GFP_KERNEL | GFP_DMA);
			if (!async->work_buf) {
				kfree(async);
				return -ENOMEM;
			}
1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421
		}

		async->map = map;

		/* If the caller supplied the value we can use it safely. */
		memcpy(async->work_buf, map->work_buf, map->format.pad_bytes +
		       map->format.reg_bytes + map->format.val_bytes);

		spin_lock_irqsave(&map->async_lock, flags);
		list_add_tail(&async->list, &map->async_list);
		spin_unlock_irqrestore(&map->async_lock, flags);

1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433
		if (val != work_val)
			ret = map->bus->async_write(map->bus_context,
						    async->work_buf,
						    map->format.reg_bytes +
						    map->format.pad_bytes,
						    val, val_len, async);
		else
			ret = map->bus->async_write(map->bus_context,
						    async->work_buf,
						    map->format.reg_bytes +
						    map->format.pad_bytes +
						    val_len, NULL, 0, async);
1434 1435 1436 1437 1438 1439

		if (ret != 0) {
			dev_err(map->dev, "Failed to schedule write: %d\n",
				ret);

			spin_lock_irqsave(&map->async_lock, flags);
M
Mark Brown 已提交
1440
			list_move(&async->list, &map->async_free);
1441 1442
			spin_unlock_irqrestore(&map->async_lock, flags);
		}
M
Mark Brown 已提交
1443 1444

		return ret;
1445 1446
	}

1447
	trace_regmap_hw_write_start(map, reg, val_len / map->format.val_bytes);
M
Mark Brown 已提交
1448

1449 1450 1451 1452
	/* If we're doing a single register write we can probably just
	 * send the work_buf directly, otherwise try to do a gather
	 * write.
	 */
1453
	if (val == work_val)
1454
		ret = map->bus->write(map->bus_context, map->work_buf,
1455 1456 1457
				      map->format.reg_bytes +
				      map->format.pad_bytes +
				      val_len);
1458
	else if (map->bus->gather_write)
1459
		ret = map->bus->gather_write(map->bus_context, map->work_buf,
1460 1461
					     map->format.reg_bytes +
					     map->format.pad_bytes,
1462 1463
					     val, val_len);

1464
	/* If that didn't work fall back on linearising by hand. */
1465
	if (ret == -ENOTSUPP) {
1466 1467
		len = map->format.reg_bytes + map->format.pad_bytes + val_len;
		buf = kzalloc(len, GFP_KERNEL);
1468 1469 1470 1471
		if (!buf)
			return -ENOMEM;

		memcpy(buf, map->work_buf, map->format.reg_bytes);
1472 1473
		memcpy(buf + map->format.reg_bytes + map->format.pad_bytes,
		       val, val_len);
1474
		ret = map->bus->write(map->bus_context, buf, len);
1475 1476 1477 1478

		kfree(buf);
	}

1479
	trace_regmap_hw_write_done(map, reg, val_len / map->format.val_bytes);
M
Mark Brown 已提交
1480

1481 1482 1483
	return ret;
}

1484 1485 1486 1487 1488 1489 1490
/**
 * regmap_can_raw_write - Test if regmap_raw_write() is supported
 *
 * @map: Map to check.
 */
bool regmap_can_raw_write(struct regmap *map)
{
1491 1492
	return map->bus && map->bus->write && map->format.format_val &&
		map->format.format_reg;
1493 1494 1495
}
EXPORT_SYMBOL_GPL(regmap_can_raw_write);

1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517
/**
 * regmap_get_raw_read_max - Get the maximum size we can read
 *
 * @map: Map to check.
 */
size_t regmap_get_raw_read_max(struct regmap *map)
{
	return map->max_raw_read;
}
EXPORT_SYMBOL_GPL(regmap_get_raw_read_max);

/**
 * regmap_get_raw_write_max - Get the maximum size we can read
 *
 * @map: Map to check.
 */
size_t regmap_get_raw_write_max(struct regmap *map)
{
	return map->max_raw_write;
}
EXPORT_SYMBOL_GPL(regmap_get_raw_write_max);

1518 1519 1520 1521 1522 1523 1524
static int _regmap_bus_formatted_write(void *context, unsigned int reg,
				       unsigned int val)
{
	int ret;
	struct regmap_range_node *range;
	struct regmap *map = context;

1525
	WARN_ON(!map->bus || !map->format.format_write);
1526 1527 1528 1529 1530 1531 1532 1533 1534 1535

	range = _regmap_range_lookup(map, reg);
	if (range) {
		ret = _regmap_select_page(map, &reg, range, 1);
		if (ret != 0)
			return ret;
	}

	map->format.format_write(map, reg, val);

1536
	trace_regmap_hw_write_start(map, reg, 1);
1537 1538 1539 1540

	ret = map->bus->write(map->bus_context, map->work_buf,
			      map->format.buf_size);

1541
	trace_regmap_hw_write_done(map, reg, 1);
1542 1543 1544 1545

	return ret;
}

1546 1547 1548 1549 1550 1551 1552 1553
static int _regmap_bus_reg_write(void *context, unsigned int reg,
				 unsigned int val)
{
	struct regmap *map = context;

	return map->bus->reg_write(map->bus_context, reg, val);
}

1554 1555 1556 1557 1558
static int _regmap_bus_raw_write(void *context, unsigned int reg,
				 unsigned int val)
{
	struct regmap *map = context;

1559
	WARN_ON(!map->bus || !map->format.format_val);
1560 1561 1562 1563 1564 1565 1566

	map->format.format_val(map->work_buf + map->format.reg_bytes
			       + map->format.pad_bytes, val, 0);
	return _regmap_raw_write(map, reg,
				 map->work_buf +
				 map->format.reg_bytes +
				 map->format.pad_bytes,
1567
				 map->format.val_bytes);
1568 1569
}

1570 1571 1572 1573 1574
static inline void *_regmap_map_get_context(struct regmap *map)
{
	return (map->bus) ? map : map->bus_context;
}

1575 1576
int _regmap_write(struct regmap *map, unsigned int reg,
		  unsigned int val)
1577
{
M
Mark Brown 已提交
1578
	int ret;
1579
	void *context = _regmap_map_get_context(map);
1580

1581 1582 1583
	if (!regmap_writeable(map, reg))
		return -EIO;

1584
	if (!map->cache_bypass && !map->defer_caching) {
1585 1586 1587
		ret = regcache_write(map, reg, val);
		if (ret != 0)
			return ret;
1588 1589
		if (map->cache_only) {
			map->cache_dirty = true;
1590
			return 0;
1591
		}
1592 1593
	}

1594
#ifdef LOG_DEVICE
1595
	if (map->dev && strcmp(dev_name(map->dev), LOG_DEVICE) == 0)
1596 1597 1598
		dev_info(map->dev, "%x <= %x\n", reg, val);
#endif

1599
	trace_regmap_reg_write(map, reg, val);
M
Mark Brown 已提交
1600

1601
	return map->reg_write(context, reg, val);
1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617
}

/**
 * regmap_write(): Write a value to a single register
 *
 * @map: Register map to write to
 * @reg: Register to write to
 * @val: Value to be written
 *
 * A value of zero will be returned on success, a negative errno will
 * be returned in error cases.
 */
int regmap_write(struct regmap *map, unsigned int reg, unsigned int val)
{
	int ret;

1618
	if (!IS_ALIGNED(reg, map->reg_stride))
1619 1620
		return -EINVAL;

1621
	map->lock(map->lock_arg);
1622 1623 1624

	ret = _regmap_write(map, reg, val);

1625
	map->unlock(map->lock_arg);
1626 1627 1628 1629 1630

	return ret;
}
EXPORT_SYMBOL_GPL(regmap_write);

1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644
/**
 * regmap_write_async(): Write a value to a single register asynchronously
 *
 * @map: Register map to write to
 * @reg: Register to write to
 * @val: Value to be written
 *
 * A value of zero will be returned on success, a negative errno will
 * be returned in error cases.
 */
int regmap_write_async(struct regmap *map, unsigned int reg, unsigned int val)
{
	int ret;

1645
	if (!IS_ALIGNED(reg, map->reg_stride))
1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661
		return -EINVAL;

	map->lock(map->lock_arg);

	map->async = true;

	ret = _regmap_write(map, reg, val);

	map->async = false;

	map->unlock(map->lock_arg);

	return ret;
}
EXPORT_SYMBOL_GPL(regmap_write_async);

1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682
/**
 * regmap_raw_write(): Write raw values to one or more registers
 *
 * @map: Register map to write to
 * @reg: Initial register to write to
 * @val: Block of data to be written, laid out for direct transmission to the
 *       device
 * @val_len: Length of data pointed to by val.
 *
 * This function is intended to be used for things like firmware
 * download where a large block of data needs to be transferred to the
 * device.  No formatting will be done on the data provided.
 *
 * A value of zero will be returned on success, a negative errno will
 * be returned in error cases.
 */
int regmap_raw_write(struct regmap *map, unsigned int reg,
		     const void *val, size_t val_len)
{
	int ret;

1683
	if (!regmap_can_raw_write(map))
1684
		return -EINVAL;
1685 1686
	if (val_len % map->format.val_bytes)
		return -EINVAL;
1687 1688
	if (map->max_raw_write && map->max_raw_write > val_len)
		return -E2BIG;
1689

1690
	map->lock(map->lock_arg);
1691

1692
	ret = _regmap_raw_write(map, reg, val, val_len);
1693

1694
	map->unlock(map->lock_arg);
1695 1696 1697 1698 1699

	return ret;
}
EXPORT_SYMBOL_GPL(regmap_raw_write);

1700
/**
1701 1702 1703
 * regmap_field_update_bits_base():
 *	Perform a read/modify/write cycle on the register field
 *	with change, async, force option
1704 1705 1706 1707
 *
 * @field: Register field to write to
 * @mask: Bitmask to change
 * @val: Value to be written
1708 1709 1710
 * @change: Boolean indicating if a write was done
 * @async: Boolean indicating asynchronously
 * @force: Boolean indicating use force update
1711 1712 1713 1714
 *
 * A value of zero will be returned on success, a negative errno will
 * be returned in error cases.
 */
1715 1716 1717
int regmap_field_update_bits_base(struct regmap_field *field,
				  unsigned int mask, unsigned int val,
				  bool *change, bool async, bool force)
1718 1719 1720
{
	mask = (mask << field->shift) & field->mask;

1721 1722 1723
	return regmap_update_bits_base(field->regmap, field->reg,
				       mask, val << field->shift,
				       change, async, force);
1724
}
1725
EXPORT_SYMBOL_GPL(regmap_field_update_bits_base);
1726

1727
/**
1728 1729 1730
 * regmap_fields_update_bits_base():
 *	Perform a read/modify/write cycle on the register field
 *	with change, async, force option
1731 1732 1733 1734 1735
 *
 * @field: Register field to write to
 * @id: port ID
 * @mask: Bitmask to change
 * @val: Value to be written
1736 1737 1738
 * @change: Boolean indicating if a write was done
 * @async: Boolean indicating asynchronously
 * @force: Boolean indicating use force update
1739 1740 1741 1742
 *
 * A value of zero will be returned on success, a negative errno will
 * be returned in error cases.
 */
1743 1744 1745
int regmap_fields_update_bits_base(struct regmap_field *field,  unsigned int id,
				   unsigned int mask, unsigned int val,
				   bool *change, bool async, bool force)
1746 1747 1748 1749 1750 1751
{
	if (id >= field->id_size)
		return -EINVAL;

	mask = (mask << field->shift) & field->mask;

1752 1753 1754 1755
	return regmap_update_bits_base(field->regmap,
				       field->reg + (field->id_offset * id),
				       mask, val << field->shift,
				       change, async, force);
1756
}
1757
EXPORT_SYMBOL_GPL(regmap_fields_update_bits_base);
1758

1759 1760 1761 1762 1763 1764 1765 1766 1767
/*
 * regmap_bulk_write(): Write multiple registers to the device
 *
 * @map: Register map to write to
 * @reg: First register to be write from
 * @val: Block of data to be written, in native register size for device
 * @val_count: Number of registers to write
 *
 * This function is intended to be used for writing a large block of
1768
 * data to the device either in single transfer or multiple transfer.
1769 1770 1771 1772 1773 1774 1775 1776 1777
 *
 * A value of zero will be returned on success, a negative errno will
 * be returned in error cases.
 */
int regmap_bulk_write(struct regmap *map, unsigned int reg, const void *val,
		     size_t val_count)
{
	int ret = 0, i;
	size_t val_bytes = map->format.val_bytes;
1778
	size_t total_size = val_bytes * val_count;
1779

1780
	if (!IS_ALIGNED(reg, map->reg_stride))
1781
		return -EINVAL;
1782

1783 1784
	/*
	 * Some devices don't support bulk write, for
1785 1786 1787 1788 1789
	 * them we have a series of single write operations in the first two if
	 * blocks.
	 *
	 * The first if block is used for memory mapped io. It does not allow
	 * val_bytes of 3 for example.
1790 1791
	 * The second one is for busses that do not provide raw I/O.
	 * The third one is used for busses which do not have these limitations
1792
	 * and can write arbitrary value lengths.
1793
	 */
1794
	if (!map->bus) {
1795
		map->lock(map->lock_arg);
1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817
		for (i = 0; i < val_count; i++) {
			unsigned int ival;

			switch (val_bytes) {
			case 1:
				ival = *(u8 *)(val + (i * val_bytes));
				break;
			case 2:
				ival = *(u16 *)(val + (i * val_bytes));
				break;
			case 4:
				ival = *(u32 *)(val + (i * val_bytes));
				break;
#ifdef CONFIG_64BIT
			case 8:
				ival = *(u64 *)(val + (i * val_bytes));
				break;
#endif
			default:
				ret = -EINVAL;
				goto out;
			}
1818

1819 1820 1821
			ret = _regmap_write(map,
					    reg + regmap_get_offset(map, i),
					    ival);
1822 1823 1824
			if (ret != 0)
				goto out;
		}
1825 1826
out:
		map->unlock(map->lock_arg);
1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852
	} else if (map->bus && !map->format.parse_inplace) {
		const u8 *u8 = val;
		const u16 *u16 = val;
		const u32 *u32 = val;
		unsigned int ival;

		for (i = 0; i < val_count; i++) {
			switch (map->format.val_bytes) {
			case 4:
				ival = u32[i];
				break;
			case 2:
				ival = u16[i];
				break;
			case 1:
				ival = u8[i];
				break;
			default:
				return -EINVAL;
			}

			ret = regmap_write(map, reg + (i * map->reg_stride),
					   ival);
			if (ret)
				return ret;
		}
1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866
	} else if (map->use_single_write ||
		   (map->max_raw_write && map->max_raw_write < total_size)) {
		int chunk_stride = map->reg_stride;
		size_t chunk_size = val_bytes;
		size_t chunk_count = val_count;

		if (!map->use_single_write) {
			chunk_size = map->max_raw_write;
			if (chunk_size % val_bytes)
				chunk_size -= chunk_size % val_bytes;
			chunk_count = total_size / chunk_size;
			chunk_stride *= chunk_size / val_bytes;
		}

1867
		map->lock(map->lock_arg);
1868 1869
		/* Write as many bytes as possible with chunk_size */
		for (i = 0; i < chunk_count; i++) {
1870
			ret = _regmap_raw_write(map,
1871 1872 1873
						reg + (i * chunk_stride),
						val + (i * chunk_size),
						chunk_size);
1874 1875 1876
			if (ret)
				break;
		}
1877 1878 1879 1880 1881 1882 1883

		/* Write remaining bytes */
		if (!ret && chunk_size * i < total_size) {
			ret = _regmap_raw_write(map, reg + (i * chunk_stride),
						val + (i * chunk_size),
						total_size - i * chunk_size);
		}
1884
		map->unlock(map->lock_arg);
1885
	} else {
1886 1887
		void *wval;

1888 1889 1890
		if (!val_count)
			return -EINVAL;

1891
		wval = kmemdup(val, val_count * val_bytes, map->alloc_flags);
1892 1893
		if (!wval) {
			dev_err(map->dev, "Error in memory allocation\n");
1894
			return -ENOMEM;
1895 1896
		}
		for (i = 0; i < val_count * val_bytes; i += val_bytes)
1897
			map->format.parse_inplace(wval + i);
1898

1899
		map->lock(map->lock_arg);
1900
		ret = _regmap_raw_write(map, reg, wval, val_bytes * val_count);
1901
		map->unlock(map->lock_arg);
1902 1903

		kfree(wval);
1904
	}
1905 1906 1907 1908
	return ret;
}
EXPORT_SYMBOL_GPL(regmap_bulk_write);

1909 1910 1911 1912 1913
/*
 * _regmap_raw_multi_reg_write()
 *
 * the (register,newvalue) pairs in regs have not been formatted, but
 * they are all in the same page and have been changed to being page
X
Xiubo Li 已提交
1914
 * relative. The page register has been written if that was necessary.
1915 1916
 */
static int _regmap_raw_multi_reg_write(struct regmap *map,
1917
				       const struct reg_sequence *regs,
1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929
				       size_t num_regs)
{
	int ret;
	void *buf;
	int i;
	u8 *u8;
	size_t val_bytes = map->format.val_bytes;
	size_t reg_bytes = map->format.reg_bytes;
	size_t pad_bytes = map->format.pad_bytes;
	size_t pair_size = reg_bytes + pad_bytes + val_bytes;
	size_t len = pair_size * num_regs;

1930 1931 1932
	if (!len)
		return -EINVAL;

1933 1934 1935 1936 1937 1938 1939 1940 1941
	buf = kzalloc(len, GFP_KERNEL);
	if (!buf)
		return -ENOMEM;

	/* We have to linearise by hand. */

	u8 = buf;

	for (i = 0; i < num_regs; i++) {
1942 1943
		unsigned int reg = regs[i].reg;
		unsigned int val = regs[i].def;
1944
		trace_regmap_hw_write_start(map, reg, 1);
1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958
		map->format.format_reg(u8, reg, map->reg_shift);
		u8 += reg_bytes + pad_bytes;
		map->format.format_val(u8, val, 0);
		u8 += val_bytes;
	}
	u8 = buf;
	*u8 |= map->write_flag_mask;

	ret = map->bus->write(map->bus_context, buf, len);

	kfree(buf);

	for (i = 0; i < num_regs; i++) {
		int reg = regs[i].reg;
1959
		trace_regmap_hw_write_done(map, reg, 1);
1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973
	}
	return ret;
}

static unsigned int _regmap_register_page(struct regmap *map,
					  unsigned int reg,
					  struct regmap_range_node *range)
{
	unsigned int win_page = (reg - range->range_min) / range->window_len;

	return win_page;
}

static int _regmap_range_multi_paged_reg_write(struct regmap *map,
1974
					       struct reg_sequence *regs,
1975 1976 1977 1978
					       size_t num_regs)
{
	int ret;
	int i, n;
1979
	struct reg_sequence *base;
1980
	unsigned int this_page = 0;
1981
	unsigned int page_change = 0;
1982 1983 1984
	/*
	 * the set of registers are not neccessarily in order, but
	 * since the order of write must be preserved this algorithm
1985 1986
	 * chops the set each time the page changes. This also applies
	 * if there is a delay required at any point in the sequence.
1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001
	 */
	base = regs;
	for (i = 0, n = 0; i < num_regs; i++, n++) {
		unsigned int reg = regs[i].reg;
		struct regmap_range_node *range;

		range = _regmap_range_lookup(map, reg);
		if (range) {
			unsigned int win_page = _regmap_register_page(map, reg,
								      range);

			if (i == 0)
				this_page = win_page;
			if (win_page != this_page) {
				this_page = win_page;
2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021
				page_change = 1;
			}
		}

		/* If we have both a page change and a delay make sure to
		 * write the regs and apply the delay before we change the
		 * page.
		 */

		if (page_change || regs[i].delay_us) {

				/* For situations where the first write requires
				 * a delay we need to make sure we don't call
				 * raw_multi_reg_write with n=0
				 * This can't occur with page breaks as we
				 * never write on the first iteration
				 */
				if (regs[i].delay_us && i == 0)
					n = 1;

2022 2023 2024
				ret = _regmap_raw_multi_reg_write(map, base, n);
				if (ret != 0)
					return ret;
2025 2026 2027 2028

				if (regs[i].delay_us)
					udelay(regs[i].delay_us);

2029 2030
				base += n;
				n = 0;
2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041

				if (page_change) {
					ret = _regmap_select_page(map,
								  &base[n].reg,
								  range, 1);
					if (ret != 0)
						return ret;

					page_change = 0;
				}

2042
		}
2043

2044 2045 2046 2047 2048 2049
	}
	if (n > 0)
		return _regmap_raw_multi_reg_write(map, base, n);
	return 0;
}

2050
static int _regmap_multi_reg_write(struct regmap *map,
2051
				   const struct reg_sequence *regs,
2052
				   size_t num_regs)
2053
{
2054 2055 2056 2057 2058 2059 2060 2061
	int i;
	int ret;

	if (!map->can_multi_write) {
		for (i = 0; i < num_regs; i++) {
			ret = _regmap_write(map, regs[i].reg, regs[i].def);
			if (ret != 0)
				return ret;
2062 2063 2064

			if (regs[i].delay_us)
				udelay(regs[i].delay_us);
2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076
		}
		return 0;
	}

	if (!map->format.parse_inplace)
		return -EINVAL;

	if (map->writeable_reg)
		for (i = 0; i < num_regs; i++) {
			int reg = regs[i].reg;
			if (!map->writeable_reg(map->dev, reg))
				return -EINVAL;
2077
			if (!IS_ALIGNED(reg, map->reg_stride))
2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099
				return -EINVAL;
		}

	if (!map->cache_bypass) {
		for (i = 0; i < num_regs; i++) {
			unsigned int val = regs[i].def;
			unsigned int reg = regs[i].reg;
			ret = regcache_write(map, reg, val);
			if (ret) {
				dev_err(map->dev,
				"Error in caching of register: %x ret: %d\n",
								reg, ret);
				return ret;
			}
		}
		if (map->cache_only) {
			map->cache_dirty = true;
			return 0;
		}
	}

	WARN_ON(!map->bus);
2100 2101

	for (i = 0; i < num_regs; i++) {
2102 2103
		unsigned int reg = regs[i].reg;
		struct regmap_range_node *range;
2104 2105 2106 2107

		/* Coalesce all the writes between a page break or a delay
		 * in a sequence
		 */
2108
		range = _regmap_range_lookup(map, reg);
2109
		if (range || regs[i].delay_us) {
2110 2111
			size_t len = sizeof(struct reg_sequence)*num_regs;
			struct reg_sequence *base = kmemdup(regs, len,
2112 2113 2114 2115 2116 2117 2118
							   GFP_KERNEL);
			if (!base)
				return -ENOMEM;
			ret = _regmap_range_multi_paged_reg_write(map, base,
								  num_regs);
			kfree(base);

2119 2120 2121
			return ret;
		}
	}
2122
	return _regmap_raw_multi_reg_write(map, regs, num_regs);
2123 2124
}

2125 2126 2127
/*
 * regmap_multi_reg_write(): Write multiple registers to the device
 *
2128 2129
 * where the set of register,value pairs are supplied in any order,
 * possibly not all in a single range.
2130 2131 2132 2133 2134
 *
 * @map: Register map to write to
 * @regs: Array of structures containing register,value to be written
 * @num_regs: Number of registers to write
 *
2135 2136 2137 2138 2139
 * The 'normal' block write mode will send ultimately send data on the
 * target bus as R,V1,V2,V3,..,Vn where successively higer registers are
 * addressed. However, this alternative block multi write mode will send
 * the data as R1,V1,R2,V2,..,Rn,Vn on the target bus. The target device
 * must of course support the mode.
2140
 *
2141 2142
 * A value of zero will be returned on success, a negative errno will be
 * returned in error cases.
2143
 */
2144
int regmap_multi_reg_write(struct regmap *map, const struct reg_sequence *regs,
2145
			   int num_regs)
2146
{
2147
	int ret;
2148 2149 2150

	map->lock(map->lock_arg);

2151 2152
	ret = _regmap_multi_reg_write(map, regs, num_regs);

2153 2154 2155 2156 2157 2158
	map->unlock(map->lock_arg);

	return ret;
}
EXPORT_SYMBOL_GPL(regmap_multi_reg_write);

2159 2160 2161 2162
/*
 * regmap_multi_reg_write_bypassed(): Write multiple registers to the
 *                                    device but not the cache
 *
2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175
 * where the set of register are supplied in any order
 *
 * @map: Register map to write to
 * @regs: Array of structures containing register,value to be written
 * @num_regs: Number of registers to write
 *
 * This function is intended to be used for writing a large block of data
 * atomically to the device in single transfer for those I2C client devices
 * that implement this alternative block write mode.
 *
 * A value of zero will be returned on success, a negative errno will
 * be returned in error cases.
 */
2176
int regmap_multi_reg_write_bypassed(struct regmap *map,
2177
				    const struct reg_sequence *regs,
2178
				    int num_regs)
2179
{
2180 2181
	int ret;
	bool bypass;
2182 2183 2184

	map->lock(map->lock_arg);

2185 2186 2187 2188 2189 2190 2191
	bypass = map->cache_bypass;
	map->cache_bypass = true;

	ret = _regmap_multi_reg_write(map, regs, num_regs);

	map->cache_bypass = bypass;

2192 2193 2194 2195
	map->unlock(map->lock_arg);

	return ret;
}
2196
EXPORT_SYMBOL_GPL(regmap_multi_reg_write_bypassed);
2197

2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226
/**
 * regmap_raw_write_async(): Write raw values to one or more registers
 *                           asynchronously
 *
 * @map: Register map to write to
 * @reg: Initial register to write to
 * @val: Block of data to be written, laid out for direct transmission to the
 *       device.  Must be valid until regmap_async_complete() is called.
 * @val_len: Length of data pointed to by val.
 *
 * This function is intended to be used for things like firmware
 * download where a large block of data needs to be transferred to the
 * device.  No formatting will be done on the data provided.
 *
 * If supported by the underlying bus the write will be scheduled
 * asynchronously, helping maximise I/O speed on higher speed buses
 * like SPI.  regmap_async_complete() can be called to ensure that all
 * asynchrnous writes have been completed.
 *
 * A value of zero will be returned on success, a negative errno will
 * be returned in error cases.
 */
int regmap_raw_write_async(struct regmap *map, unsigned int reg,
			   const void *val, size_t val_len)
{
	int ret;

	if (val_len % map->format.val_bytes)
		return -EINVAL;
2227
	if (!IS_ALIGNED(reg, map->reg_stride))
2228 2229 2230 2231
		return -EINVAL;

	map->lock(map->lock_arg);

2232 2233 2234 2235 2236
	map->async = true;

	ret = _regmap_raw_write(map, reg, val, val_len);

	map->async = false;
2237 2238 2239 2240 2241 2242 2243

	map->unlock(map->lock_arg);

	return ret;
}
EXPORT_SYMBOL_GPL(regmap_raw_write_async);

2244 2245 2246
static int _regmap_raw_read(struct regmap *map, unsigned int reg, void *val,
			    unsigned int val_len)
{
2247
	struct regmap_range_node *range;
2248 2249 2250
	u8 *u8 = map->work_buf;
	int ret;

2251
	WARN_ON(!map->bus);
2252

2253 2254 2255
	if (!map->bus || !map->bus->read)
		return -EINVAL;

2256 2257 2258 2259
	range = _regmap_range_lookup(map, reg);
	if (range) {
		ret = _regmap_select_page(map, &reg, range,
					  val_len / map->format.val_bytes);
2260
		if (ret != 0)
2261 2262
			return ret;
	}
2263

2264
	map->format.format_reg(map->work_buf, reg, map->reg_shift);
2265 2266

	/*
2267
	 * Some buses or devices flag reads by setting the high bits in the
X
Xiubo Li 已提交
2268
	 * register address; since it's always the high bits for all
2269 2270 2271
	 * current formats we can do this here rather than in
	 * formatting.  This may break if we get interesting formats.
	 */
2272
	u8[0] |= map->read_flag_mask;
2273

2274
	trace_regmap_hw_read_start(map, reg, val_len / map->format.val_bytes);
M
Mark Brown 已提交
2275

2276
	ret = map->bus->read(map->bus_context, map->work_buf,
2277
			     map->format.reg_bytes + map->format.pad_bytes,
M
Mark Brown 已提交
2278
			     val, val_len);
2279

2280
	trace_regmap_hw_read_done(map, reg, val_len / map->format.val_bytes);
M
Mark Brown 已提交
2281 2282

	return ret;
2283 2284
}

2285 2286 2287 2288 2289 2290 2291 2292
static int _regmap_bus_reg_read(void *context, unsigned int reg,
				unsigned int *val)
{
	struct regmap *map = context;

	return map->bus->reg_read(map->bus_context, reg, val);
}

2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308
static int _regmap_bus_read(void *context, unsigned int reg,
			    unsigned int *val)
{
	int ret;
	struct regmap *map = context;

	if (!map->format.parse_val)
		return -EINVAL;

	ret = _regmap_raw_read(map, reg, map->work_buf, map->format.val_bytes);
	if (ret == 0)
		*val = map->format.parse_val(map->work_buf);

	return ret;
}

2309 2310 2311 2312
static int _regmap_read(struct regmap *map, unsigned int reg,
			unsigned int *val)
{
	int ret;
2313 2314
	void *context = _regmap_map_get_context(map);

2315 2316 2317 2318 2319 2320 2321 2322 2323
	if (!map->cache_bypass) {
		ret = regcache_read(map, reg, val);
		if (ret == 0)
			return 0;
	}

	if (map->cache_only)
		return -EBUSY;

2324 2325 2326
	if (!regmap_readable(map, reg))
		return -EIO;

2327
	ret = map->reg_read(context, reg, val);
M
Mark Brown 已提交
2328
	if (ret == 0) {
2329
#ifdef LOG_DEVICE
2330
		if (map->dev && strcmp(dev_name(map->dev), LOG_DEVICE) == 0)
2331 2332 2333
			dev_info(map->dev, "%x => %x\n", reg, *val);
#endif

2334
		trace_regmap_reg_read(map, reg, *val);
2335

2336 2337 2338
		if (!map->cache_bypass)
			regcache_write(map, reg, *val);
	}
2339

2340 2341 2342 2343 2344 2345
	return ret;
}

/**
 * regmap_read(): Read a value from a single register
 *
2346
 * @map: Register map to read from
2347 2348 2349 2350 2351 2352 2353 2354 2355 2356
 * @reg: Register to be read from
 * @val: Pointer to store read value
 *
 * A value of zero will be returned on success, a negative errno will
 * be returned in error cases.
 */
int regmap_read(struct regmap *map, unsigned int reg, unsigned int *val)
{
	int ret;

2357
	if (!IS_ALIGNED(reg, map->reg_stride))
2358 2359
		return -EINVAL;

2360
	map->lock(map->lock_arg);
2361 2362 2363

	ret = _regmap_read(map, reg, val);

2364
	map->unlock(map->lock_arg);
2365 2366 2367 2368 2369 2370 2371 2372

	return ret;
}
EXPORT_SYMBOL_GPL(regmap_read);

/**
 * regmap_raw_read(): Read raw data from the device
 *
2373
 * @map: Register map to read from
2374 2375 2376 2377 2378 2379 2380 2381 2382 2383
 * @reg: First register to be read from
 * @val: Pointer to store read value
 * @val_len: Size of data to read
 *
 * A value of zero will be returned on success, a negative errno will
 * be returned in error cases.
 */
int regmap_raw_read(struct regmap *map, unsigned int reg, void *val,
		    size_t val_len)
{
2384 2385 2386 2387
	size_t val_bytes = map->format.val_bytes;
	size_t val_count = val_len / val_bytes;
	unsigned int v;
	int ret, i;
2388

2389 2390
	if (!map->bus)
		return -EINVAL;
2391 2392
	if (val_len % map->format.val_bytes)
		return -EINVAL;
2393
	if (!IS_ALIGNED(reg, map->reg_stride))
2394
		return -EINVAL;
2395 2396
	if (val_count == 0)
		return -EINVAL;
2397

2398
	map->lock(map->lock_arg);
2399

2400 2401
	if (regmap_volatile_range(map, reg, val_count) || map->cache_bypass ||
	    map->cache_type == REGCACHE_NONE) {
2402 2403 2404 2405
		if (!map->bus->read) {
			ret = -ENOTSUPP;
			goto out;
		}
2406 2407 2408 2409
		if (map->max_raw_read && map->max_raw_read < val_len) {
			ret = -E2BIG;
			goto out;
		}
2410

2411 2412 2413 2414 2415 2416 2417 2418
		/* Physical block read if there's no cache involved */
		ret = _regmap_raw_read(map, reg, val, val_len);

	} else {
		/* Otherwise go word by word for the cache; should be low
		 * cost as we expect to hit the cache.
		 */
		for (i = 0; i < val_count; i++) {
2419
			ret = _regmap_read(map, reg + regmap_get_offset(map, i),
2420
					   &v);
2421 2422 2423
			if (ret != 0)
				goto out;

2424
			map->format.format_val(val + (i * val_bytes), v, 0);
2425 2426
		}
	}
2427

2428
 out:
2429
	map->unlock(map->lock_arg);
2430 2431 2432 2433 2434

	return ret;
}
EXPORT_SYMBOL_GPL(regmap_raw_read);

2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459
/**
 * regmap_field_read(): Read a value to a single register field
 *
 * @field: Register field to read from
 * @val: Pointer to store read value
 *
 * A value of zero will be returned on success, a negative errno will
 * be returned in error cases.
 */
int regmap_field_read(struct regmap_field *field, unsigned int *val)
{
	int ret;
	unsigned int reg_val;
	ret = regmap_read(field->regmap, field->reg, &reg_val);
	if (ret != 0)
		return ret;

	reg_val &= field->mask;
	reg_val >>= field->shift;
	*val = reg_val;

	return ret;
}
EXPORT_SYMBOL_GPL(regmap_field_read);

2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492
/**
 * regmap_fields_read(): Read a value to a single register field with port ID
 *
 * @field: Register field to read from
 * @id: port ID
 * @val: Pointer to store read value
 *
 * A value of zero will be returned on success, a negative errno will
 * be returned in error cases.
 */
int regmap_fields_read(struct regmap_field *field, unsigned int id,
		       unsigned int *val)
{
	int ret;
	unsigned int reg_val;

	if (id >= field->id_size)
		return -EINVAL;

	ret = regmap_read(field->regmap,
			  field->reg + (field->id_offset * id),
			  &reg_val);
	if (ret != 0)
		return ret;

	reg_val &= field->mask;
	reg_val >>= field->shift;
	*val = reg_val;

	return ret;
}
EXPORT_SYMBOL_GPL(regmap_fields_read);

2493 2494 2495
/**
 * regmap_bulk_read(): Read multiple registers from the device
 *
2496
 * @map: Register map to read from
2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508
 * @reg: First register to be read from
 * @val: Pointer to store read value, in native register size for device
 * @val_count: Number of registers to read
 *
 * A value of zero will be returned on success, a negative errno will
 * be returned in error cases.
 */
int regmap_bulk_read(struct regmap *map, unsigned int reg, void *val,
		     size_t val_count)
{
	int ret, i;
	size_t val_bytes = map->format.val_bytes;
2509
	bool vol = regmap_volatile_range(map, reg, val_count);
2510

2511
	if (!IS_ALIGNED(reg, map->reg_stride))
2512
		return -EINVAL;
2513

2514
	if (map->bus && map->format.parse_inplace && (vol || map->cache_type == REGCACHE_NONE)) {
2515 2516 2517 2518
		/*
		 * Some devices does not support bulk read, for
		 * them we have a series of single read operations.
		 */
2519 2520 2521 2522
		size_t total_size = val_bytes * val_count;

		if (!map->use_single_read &&
		    (!map->max_raw_read || map->max_raw_read > total_size)) {
2523 2524 2525 2526
			ret = regmap_raw_read(map, reg, val,
					      val_bytes * val_count);
			if (ret != 0)
				return ret;
2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563
		} else {
			/*
			 * Some devices do not support bulk read or do not
			 * support large bulk reads, for them we have a series
			 * of read operations.
			 */
			int chunk_stride = map->reg_stride;
			size_t chunk_size = val_bytes;
			size_t chunk_count = val_count;

			if (!map->use_single_read) {
				chunk_size = map->max_raw_read;
				if (chunk_size % val_bytes)
					chunk_size -= chunk_size % val_bytes;
				chunk_count = total_size / chunk_size;
				chunk_stride *= chunk_size / val_bytes;
			}

			/* Read bytes that fit into a multiple of chunk_size */
			for (i = 0; i < chunk_count; i++) {
				ret = regmap_raw_read(map,
						      reg + (i * chunk_stride),
						      val + (i * chunk_size),
						      chunk_size);
				if (ret != 0)
					return ret;
			}

			/* Read remaining bytes */
			if (chunk_size * i < total_size) {
				ret = regmap_raw_read(map,
						      reg + (i * chunk_stride),
						      val + (i * chunk_size),
						      total_size - i * chunk_size);
				if (ret != 0)
					return ret;
			}
2564
		}
2565 2566

		for (i = 0; i < val_count * val_bytes; i += val_bytes)
2567
			map->format.parse_inplace(val + i);
2568 2569
	} else {
		for (i = 0; i < val_count; i++) {
2570
			unsigned int ival;
2571
			ret = regmap_read(map, reg + regmap_get_offset(map, i),
2572
					  &ival);
2573 2574
			if (ret != 0)
				return ret;
2575 2576 2577 2578 2579 2580 2581 2582 2583 2584

			if (map->format.format_val) {
				map->format.format_val(val + (i * val_bytes), ival, 0);
			} else {
				/* Devices providing read and write
				 * operations can use the bulk I/O
				 * functions if they define a val_bytes,
				 * we assume that the values are native
				 * endian.
				 */
2585
#ifdef CONFIG_64BIT
X
Xiubo Li 已提交
2586
				u64 *u64 = val;
2587
#endif
2588 2589 2590 2591 2592
				u32 *u32 = val;
				u16 *u16 = val;
				u8 *u8 = val;

				switch (map->format.val_bytes) {
X
Xiubo Li 已提交
2593 2594 2595 2596 2597
#ifdef CONFIG_64BIT
				case 8:
					u64[i] = ival;
					break;
#endif
2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610
				case 4:
					u32[i] = ival;
					break;
				case 2:
					u16[i] = ival;
					break;
				case 1:
					u8[i] = ival;
					break;
				default:
					return -EINVAL;
				}
			}
2611 2612
		}
	}
2613 2614 2615 2616 2617

	return 0;
}
EXPORT_SYMBOL_GPL(regmap_bulk_read);

2618 2619
static int _regmap_update_bits(struct regmap *map, unsigned int reg,
			       unsigned int mask, unsigned int val,
2620
			       bool *change, bool force_write)
2621 2622
{
	int ret;
2623
	unsigned int tmp, orig;
2624

2625 2626
	if (change)
		*change = false;
2627

2628 2629 2630
	if (regmap_volatile(map, reg) && map->reg_update_bits) {
		ret = map->reg_update_bits(map->bus_context, reg, mask, val);
		if (ret == 0 && change)
2631
			*change = true;
2632
	} else {
2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644
		ret = _regmap_read(map, reg, &orig);
		if (ret != 0)
			return ret;

		tmp = orig & ~mask;
		tmp |= val & mask;

		if (force_write || (tmp != orig)) {
			ret = _regmap_write(map, reg, tmp);
			if (ret == 0 && change)
				*change = true;
		}
2645
	}
2646 2647 2648

	return ret;
}
2649 2650

/**
2651 2652 2653
 * regmap_update_bits_base:
 *	Perform a read/modify/write cycle on the
 *	register map with change, async, force option
2654 2655 2656 2657 2658 2659
 *
 * @map: Register map to update
 * @reg: Register to update
 * @mask: Bitmask to change
 * @val: New value for bitmask
 * @change: Boolean indicating if a write was done
2660 2661
 * @async: Boolean indicating asynchronously
 * @force: Boolean indicating use force update
2662
 *
2663
 * if async was true,
2664 2665 2666 2667 2668 2669
 * With most buses the read must be done synchronously so this is most
 * useful for devices with a cache which do not need to interact with
 * the hardware to determine the current register value.
 *
 * Returns zero for success, a negative number on error.
 */
2670 2671 2672
int regmap_update_bits_base(struct regmap *map, unsigned int reg,
			    unsigned int mask, unsigned int val,
			    bool *change, bool async, bool force)
2673 2674 2675 2676 2677
{
	int ret;

	map->lock(map->lock_arg);

2678
	map->async = async;
2679

2680
	ret = _regmap_update_bits(map, reg, mask, val, change, force);
2681 2682 2683 2684 2685 2686 2687

	map->async = false;

	map->unlock(map->lock_arg);

	return ret;
}
2688
EXPORT_SYMBOL_GPL(regmap_update_bits_base);
2689

2690 2691 2692 2693 2694
void regmap_async_complete_cb(struct regmap_async *async, int ret)
{
	struct regmap *map = async->map;
	bool wake;

2695
	trace_regmap_async_io_complete(map);
2696

2697
	spin_lock(&map->async_lock);
M
Mark Brown 已提交
2698
	list_move(&async->list, &map->async_free);
2699 2700 2701 2702 2703 2704 2705 2706 2707 2708
	wake = list_empty(&map->async_list);

	if (ret != 0)
		map->async_ret = ret;

	spin_unlock(&map->async_lock);

	if (wake)
		wake_up(&map->async_waitq);
}
2709
EXPORT_SYMBOL_GPL(regmap_async_complete_cb);
2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736

static int regmap_async_is_done(struct regmap *map)
{
	unsigned long flags;
	int ret;

	spin_lock_irqsave(&map->async_lock, flags);
	ret = list_empty(&map->async_list);
	spin_unlock_irqrestore(&map->async_lock, flags);

	return ret;
}

/**
 * regmap_async_complete: Ensure all asynchronous I/O has completed.
 *
 * @map: Map to operate on.
 *
 * Blocks until any pending asynchronous I/O has completed.  Returns
 * an error code for any failed I/O operations.
 */
int regmap_async_complete(struct regmap *map)
{
	unsigned long flags;
	int ret;

	/* Nothing to do with no async support */
2737
	if (!map->bus || !map->bus->async_write)
2738 2739
		return 0;

2740
	trace_regmap_async_complete_start(map);
2741

2742 2743 2744 2745 2746 2747 2748
	wait_event(map->async_waitq, regmap_async_is_done(map));

	spin_lock_irqsave(&map->async_lock, flags);
	ret = map->async_ret;
	map->async_ret = 0;
	spin_unlock_irqrestore(&map->async_lock, flags);

2749
	trace_regmap_async_complete_done(map);
2750

2751 2752
	return ret;
}
2753
EXPORT_SYMBOL_GPL(regmap_async_complete);
2754

M
Mark Brown 已提交
2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767
/**
 * regmap_register_patch: Register and apply register updates to be applied
 *                        on device initialistion
 *
 * @map: Register map to apply updates to.
 * @regs: Values to update.
 * @num_regs: Number of entries in regs.
 *
 * Register a set of register updates to be applied to the device
 * whenever the device registers are synchronised with the cache and
 * apply them immediately.  Typically this is used to apply
 * corrections to be applied to the device defaults on startup, such
 * as the updates some vendors provide to undocumented registers.
2768 2769 2770
 *
 * The caller must ensure that this function cannot be called
 * concurrently with either itself or regcache_sync().
M
Mark Brown 已提交
2771
 */
2772
int regmap_register_patch(struct regmap *map, const struct reg_sequence *regs,
M
Mark Brown 已提交
2773 2774
			  int num_regs)
{
2775
	struct reg_sequence *p;
2776
	int ret;
M
Mark Brown 已提交
2777 2778
	bool bypass;

2779 2780 2781 2782
	if (WARN_ONCE(num_regs <= 0, "invalid registers number (%d)\n",
	    num_regs))
		return 0;

2783
	p = krealloc(map->patch,
2784
		     sizeof(struct reg_sequence) * (map->patch_regs + num_regs),
2785 2786 2787 2788 2789
		     GFP_KERNEL);
	if (p) {
		memcpy(p + map->patch_regs, regs, num_regs * sizeof(*regs));
		map->patch = p;
		map->patch_regs += num_regs;
M
Mark Brown 已提交
2790
	} else {
2791
		return -ENOMEM;
M
Mark Brown 已提交
2792 2793
	}

2794
	map->lock(map->lock_arg);
M
Mark Brown 已提交
2795 2796 2797 2798

	bypass = map->cache_bypass;

	map->cache_bypass = true;
2799
	map->async = true;
M
Mark Brown 已提交
2800

2801
	ret = _regmap_multi_reg_write(map, regs, num_regs);
M
Mark Brown 已提交
2802

2803
	map->async = false;
M
Mark Brown 已提交
2804 2805
	map->cache_bypass = bypass;

2806
	map->unlock(map->lock_arg);
M
Mark Brown 已提交
2807

2808 2809
	regmap_async_complete(map);

M
Mark Brown 已提交
2810 2811 2812 2813
	return ret;
}
EXPORT_SYMBOL_GPL(regmap_register_patch);

2814
/*
2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828
 * regmap_get_val_bytes(): Report the size of a register value
 *
 * Report the size of a register value, mainly intended to for use by
 * generic infrastructure built on top of regmap.
 */
int regmap_get_val_bytes(struct regmap *map)
{
	if (map->format.format_write)
		return -EINVAL;

	return map->format.val_bytes;
}
EXPORT_SYMBOL_GPL(regmap_get_val_bytes);

2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840
/**
 * regmap_get_max_register(): Report the max register value
 *
 * Report the max register value, mainly intended to for use by
 * generic infrastructure built on top of regmap.
 */
int regmap_get_max_register(struct regmap *map)
{
	return map->max_register ? map->max_register : -EINVAL;
}
EXPORT_SYMBOL_GPL(regmap_get_max_register);

2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852
/**
 * regmap_get_reg_stride(): Report the register address stride
 *
 * Report the register address stride, mainly intended to for use by
 * generic infrastructure built on top of regmap.
 */
int regmap_get_reg_stride(struct regmap *map)
{
	return map->reg_stride;
}
EXPORT_SYMBOL_GPL(regmap_get_reg_stride);

N
Nenghua Cao 已提交
2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864
int regmap_parse_val(struct regmap *map, const void *buf,
			unsigned int *val)
{
	if (!map->format.parse_val)
		return -EINVAL;

	*val = map->format.parse_val(buf);

	return 0;
}
EXPORT_SYMBOL_GPL(regmap_parse_val);

2865 2866 2867 2868 2869 2870 2871
static int __init regmap_initcall(void)
{
	regmap_debugfs_initcall();

	return 0;
}
postcore_initcall(regmap_initcall);