sched.c 265.3 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
/*
 *  kernel/sched.c
 *
 *  Kernel scheduler and related syscalls
 *
 *  Copyright (C) 1991-2002  Linus Torvalds
 *
 *  1996-12-23  Modified by Dave Grothe to fix bugs in semaphores and
 *		make semaphores SMP safe
 *  1998-11-19	Implemented schedule_timeout() and related stuff
 *		by Andrea Arcangeli
 *  2002-01-04	New ultra-scalable O(1) scheduler by Ingo Molnar:
 *		hybrid priority-list and round-robin design with
 *		an array-switch method of distributing timeslices
 *		and per-CPU runqueues.  Cleanups and useful suggestions
 *		by Davide Libenzi, preemptible kernel bits by Robert Love.
 *  2003-09-03	Interactivity tuning by Con Kolivas.
 *  2004-04-02	Scheduler domains code by Nick Piggin
I
Ingo Molnar 已提交
19 20 21 22 23 24
 *  2007-04-15  Work begun on replacing all interactivity tuning with a
 *              fair scheduling design by Con Kolivas.
 *  2007-05-05  Load balancing (smp-nice) and other improvements
 *              by Peter Williams
 *  2007-05-06  Interactivity improvements to CFS by Mike Galbraith
 *  2007-07-01  Group scheduling enhancements by Srivatsa Vaddagiri
25 26
 *  2007-11-29  RT balancing improvements by Steven Rostedt, Gregory Haskins,
 *              Thomas Gleixner, Mike Kravetz
L
Linus Torvalds 已提交
27 28 29 30 31 32
 */

#include <linux/mm.h>
#include <linux/module.h>
#include <linux/nmi.h>
#include <linux/init.h>
33
#include <linux/uaccess.h>
L
Linus Torvalds 已提交
34 35 36 37
#include <linux/highmem.h>
#include <linux/smp_lock.h>
#include <asm/mmu_context.h>
#include <linux/interrupt.h>
38
#include <linux/capability.h>
L
Linus Torvalds 已提交
39 40
#include <linux/completion.h>
#include <linux/kernel_stat.h>
41
#include <linux/debug_locks.h>
42
#include <linux/perf_counter.h>
L
Linus Torvalds 已提交
43 44 45
#include <linux/security.h>
#include <linux/notifier.h>
#include <linux/profile.h>
46
#include <linux/freezer.h>
47
#include <linux/vmalloc.h>
L
Linus Torvalds 已提交
48 49
#include <linux/blkdev.h>
#include <linux/delay.h>
50
#include <linux/pid_namespace.h>
L
Linus Torvalds 已提交
51 52 53 54 55 56 57 58
#include <linux/smp.h>
#include <linux/threads.h>
#include <linux/timer.h>
#include <linux/rcupdate.h>
#include <linux/cpu.h>
#include <linux/cpuset.h>
#include <linux/percpu.h>
#include <linux/kthread.h>
59
#include <linux/proc_fs.h>
L
Linus Torvalds 已提交
60
#include <linux/seq_file.h>
61
#include <linux/sysctl.h>
L
Linus Torvalds 已提交
62 63
#include <linux/syscalls.h>
#include <linux/times.h>
64
#include <linux/tsacct_kern.h>
65
#include <linux/kprobes.h>
66
#include <linux/delayacct.h>
67
#include <linux/reciprocal_div.h>
68
#include <linux/unistd.h>
J
Jens Axboe 已提交
69
#include <linux/pagemap.h>
P
Peter Zijlstra 已提交
70
#include <linux/hrtimer.h>
R
Reynes Philippe 已提交
71
#include <linux/tick.h>
P
Peter Zijlstra 已提交
72 73
#include <linux/debugfs.h>
#include <linux/ctype.h>
74
#include <linux/ftrace.h>
L
Linus Torvalds 已提交
75

76
#include <asm/tlb.h>
77
#include <asm/irq_regs.h>
L
Linus Torvalds 已提交
78

79 80
#include "sched_cpupri.h"

81
#define CREATE_TRACE_POINTS
82
#include <trace/events/sched.h>
83

L
Linus Torvalds 已提交
84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102
/*
 * Convert user-nice values [ -20 ... 0 ... 19 ]
 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
 * and back.
 */
#define NICE_TO_PRIO(nice)	(MAX_RT_PRIO + (nice) + 20)
#define PRIO_TO_NICE(prio)	((prio) - MAX_RT_PRIO - 20)
#define TASK_NICE(p)		PRIO_TO_NICE((p)->static_prio)

/*
 * 'User priority' is the nice value converted to something we
 * can work with better when scaling various scheduler parameters,
 * it's a [ 0 ... 39 ] range.
 */
#define USER_PRIO(p)		((p)-MAX_RT_PRIO)
#define TASK_USER_PRIO(p)	USER_PRIO((p)->static_prio)
#define MAX_USER_PRIO		(USER_PRIO(MAX_PRIO))

/*
103
 * Helpers for converting nanosecond timing to jiffy resolution
L
Linus Torvalds 已提交
104
 */
105
#define NS_TO_JIFFIES(TIME)	((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
L
Linus Torvalds 已提交
106

I
Ingo Molnar 已提交
107 108 109
#define NICE_0_LOAD		SCHED_LOAD_SCALE
#define NICE_0_SHIFT		SCHED_LOAD_SHIFT

L
Linus Torvalds 已提交
110 111 112
/*
 * These are the 'tuning knobs' of the scheduler:
 *
D
Dmitry Adamushko 已提交
113
 * default timeslice is 100 msecs (used only for SCHED_RR tasks).
L
Linus Torvalds 已提交
114 115 116
 * Timeslices get refilled after they expire.
 */
#define DEF_TIMESLICE		(100 * HZ / 1000)
117

118 119 120 121 122
/*
 * single value that denotes runtime == period, ie unlimited time.
 */
#define RUNTIME_INF	((u64)~0ULL)

123
#ifdef CONFIG_SMP
124 125 126

static void double_rq_lock(struct rq *rq1, struct rq *rq2);

127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146
/*
 * Divide a load by a sched group cpu_power : (load / sg->__cpu_power)
 * Since cpu_power is a 'constant', we can use a reciprocal divide.
 */
static inline u32 sg_div_cpu_power(const struct sched_group *sg, u32 load)
{
	return reciprocal_divide(load, sg->reciprocal_cpu_power);
}

/*
 * Each time a sched group cpu_power is changed,
 * we must compute its reciprocal value
 */
static inline void sg_inc_cpu_power(struct sched_group *sg, u32 val)
{
	sg->__cpu_power += val;
	sg->reciprocal_cpu_power = reciprocal_value(sg->__cpu_power);
}
#endif

147 148
static inline int rt_policy(int policy)
{
149
	if (unlikely(policy == SCHED_FIFO || policy == SCHED_RR))
150 151 152 153 154 155 156 157 158
		return 1;
	return 0;
}

static inline int task_has_rt_policy(struct task_struct *p)
{
	return rt_policy(p->policy);
}

L
Linus Torvalds 已提交
159
/*
I
Ingo Molnar 已提交
160
 * This is the priority-queue data structure of the RT scheduling class:
L
Linus Torvalds 已提交
161
 */
I
Ingo Molnar 已提交
162 163 164 165 166
struct rt_prio_array {
	DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
	struct list_head queue[MAX_RT_PRIO];
};

167
struct rt_bandwidth {
I
Ingo Molnar 已提交
168 169 170 171 172
	/* nests inside the rq lock: */
	spinlock_t		rt_runtime_lock;
	ktime_t			rt_period;
	u64			rt_runtime;
	struct hrtimer		rt_period_timer;
173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205
};

static struct rt_bandwidth def_rt_bandwidth;

static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);

static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
{
	struct rt_bandwidth *rt_b =
		container_of(timer, struct rt_bandwidth, rt_period_timer);
	ktime_t now;
	int overrun;
	int idle = 0;

	for (;;) {
		now = hrtimer_cb_get_time(timer);
		overrun = hrtimer_forward(timer, now, rt_b->rt_period);

		if (!overrun)
			break;

		idle = do_sched_rt_period_timer(rt_b, overrun);
	}

	return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
}

static
void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
{
	rt_b->rt_period = ns_to_ktime(period);
	rt_b->rt_runtime = runtime;

P
Peter Zijlstra 已提交
206 207
	spin_lock_init(&rt_b->rt_runtime_lock);

208 209 210 211 212
	hrtimer_init(&rt_b->rt_period_timer,
			CLOCK_MONOTONIC, HRTIMER_MODE_REL);
	rt_b->rt_period_timer.function = sched_rt_period_timer;
}

213 214 215
static inline int rt_bandwidth_enabled(void)
{
	return sysctl_sched_rt_runtime >= 0;
216 217 218 219 220 221
}

static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
{
	ktime_t now;

222
	if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)
223 224 225 226 227 228 229
		return;

	if (hrtimer_active(&rt_b->rt_period_timer))
		return;

	spin_lock(&rt_b->rt_runtime_lock);
	for (;;) {
230 231 232
		unsigned long delta;
		ktime_t soft, hard;

233 234 235 236 237
		if (hrtimer_active(&rt_b->rt_period_timer))
			break;

		now = hrtimer_cb_get_time(&rt_b->rt_period_timer);
		hrtimer_forward(&rt_b->rt_period_timer, now, rt_b->rt_period);
238 239 240 241 242

		soft = hrtimer_get_softexpires(&rt_b->rt_period_timer);
		hard = hrtimer_get_expires(&rt_b->rt_period_timer);
		delta = ktime_to_ns(ktime_sub(hard, soft));
		__hrtimer_start_range_ns(&rt_b->rt_period_timer, soft, delta,
243
				HRTIMER_MODE_ABS_PINNED, 0);
244 245 246 247 248 249 250 251 252 253 254
	}
	spin_unlock(&rt_b->rt_runtime_lock);
}

#ifdef CONFIG_RT_GROUP_SCHED
static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
{
	hrtimer_cancel(&rt_b->rt_period_timer);
}
#endif

255 256 257 258 259 260
/*
 * sched_domains_mutex serializes calls to arch_init_sched_domains,
 * detach_destroy_domains and partition_sched_domains.
 */
static DEFINE_MUTEX(sched_domains_mutex);

261
#ifdef CONFIG_GROUP_SCHED
S
Srivatsa Vaddagiri 已提交
262

263 264
#include <linux/cgroup.h>

S
Srivatsa Vaddagiri 已提交
265 266
struct cfs_rq;

P
Peter Zijlstra 已提交
267 268
static LIST_HEAD(task_groups);

S
Srivatsa Vaddagiri 已提交
269
/* task group related information */
270
struct task_group {
271
#ifdef CONFIG_CGROUP_SCHED
272 273
	struct cgroup_subsys_state css;
#endif
274

275 276 277 278
#ifdef CONFIG_USER_SCHED
	uid_t uid;
#endif

279
#ifdef CONFIG_FAIR_GROUP_SCHED
S
Srivatsa Vaddagiri 已提交
280 281 282 283 284
	/* schedulable entities of this group on each cpu */
	struct sched_entity **se;
	/* runqueue "owned" by this group on each cpu */
	struct cfs_rq **cfs_rq;
	unsigned long shares;
285 286 287 288 289 290
#endif

#ifdef CONFIG_RT_GROUP_SCHED
	struct sched_rt_entity **rt_se;
	struct rt_rq **rt_rq;

291
	struct rt_bandwidth rt_bandwidth;
292
#endif
293

294
	struct rcu_head rcu;
P
Peter Zijlstra 已提交
295
	struct list_head list;
P
Peter Zijlstra 已提交
296 297 298 299

	struct task_group *parent;
	struct list_head siblings;
	struct list_head children;
S
Srivatsa Vaddagiri 已提交
300 301
};

D
Dhaval Giani 已提交
302
#ifdef CONFIG_USER_SCHED
303

304 305 306 307 308 309
/* Helper function to pass uid information to create_sched_user() */
void set_tg_uid(struct user_struct *user)
{
	user->tg->uid = user->uid;
}

310 311
/*
 * Root task group.
312 313
 *	Every UID task group (including init_task_group aka UID-0) will
 *	be a child to this group.
314 315 316
 */
struct task_group root_task_group;

317
#ifdef CONFIG_FAIR_GROUP_SCHED
S
Srivatsa Vaddagiri 已提交
318 319 320
/* Default task group's sched entity on each cpu */
static DEFINE_PER_CPU(struct sched_entity, init_sched_entity);
/* Default task group's cfs_rq on each cpu */
321
static DEFINE_PER_CPU(struct cfs_rq, init_tg_cfs_rq) ____cacheline_aligned_in_smp;
322
#endif /* CONFIG_FAIR_GROUP_SCHED */
323 324 325 326

#ifdef CONFIG_RT_GROUP_SCHED
static DEFINE_PER_CPU(struct sched_rt_entity, init_sched_rt_entity);
static DEFINE_PER_CPU(struct rt_rq, init_rt_rq) ____cacheline_aligned_in_smp;
327
#endif /* CONFIG_RT_GROUP_SCHED */
P
Peter Zijlstra 已提交
328
#else /* !CONFIG_USER_SCHED */
329
#define root_task_group init_task_group
P
Peter Zijlstra 已提交
330
#endif /* CONFIG_USER_SCHED */
P
Peter Zijlstra 已提交
331

332
/* task_group_lock serializes add/remove of task groups and also changes to
333 334
 * a task group's cpu shares.
 */
335
static DEFINE_SPINLOCK(task_group_lock);
336

337 338 339 340 341 342 343
#ifdef CONFIG_SMP
static int root_task_group_empty(void)
{
	return list_empty(&root_task_group.children);
}
#endif

344 345 346
#ifdef CONFIG_FAIR_GROUP_SCHED
#ifdef CONFIG_USER_SCHED
# define INIT_TASK_GROUP_LOAD	(2*NICE_0_LOAD)
347
#else /* !CONFIG_USER_SCHED */
348
# define INIT_TASK_GROUP_LOAD	NICE_0_LOAD
349
#endif /* CONFIG_USER_SCHED */
350

351
/*
352 353 354 355
 * A weight of 0 or 1 can cause arithmetics problems.
 * A weight of a cfs_rq is the sum of weights of which entities
 * are queued on this cfs_rq, so a weight of a entity should not be
 * too large, so as the shares value of a task group.
356 357 358
 * (The default weight is 1024 - so there's no practical
 *  limitation from this.)
 */
359
#define MIN_SHARES	2
360
#define MAX_SHARES	(1UL << 18)
361

362 363 364
static int init_task_group_load = INIT_TASK_GROUP_LOAD;
#endif

S
Srivatsa Vaddagiri 已提交
365
/* Default task group.
I
Ingo Molnar 已提交
366
 *	Every task in system belong to this group at bootup.
S
Srivatsa Vaddagiri 已提交
367
 */
368
struct task_group init_task_group;
S
Srivatsa Vaddagiri 已提交
369 370

/* return group to which a task belongs */
371
static inline struct task_group *task_group(struct task_struct *p)
S
Srivatsa Vaddagiri 已提交
372
{
373
	struct task_group *tg;
374

375
#ifdef CONFIG_USER_SCHED
376 377 378
	rcu_read_lock();
	tg = __task_cred(p)->user->tg;
	rcu_read_unlock();
379
#elif defined(CONFIG_CGROUP_SCHED)
380 381
	tg = container_of(task_subsys_state(p, cpu_cgroup_subsys_id),
				struct task_group, css);
382
#else
I
Ingo Molnar 已提交
383
	tg = &init_task_group;
384
#endif
385
	return tg;
S
Srivatsa Vaddagiri 已提交
386 387 388
}

/* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
P
Peter Zijlstra 已提交
389
static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
S
Srivatsa Vaddagiri 已提交
390
{
391
#ifdef CONFIG_FAIR_GROUP_SCHED
392 393
	p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
	p->se.parent = task_group(p)->se[cpu];
394
#endif
P
Peter Zijlstra 已提交
395

396
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
397 398
	p->rt.rt_rq  = task_group(p)->rt_rq[cpu];
	p->rt.parent = task_group(p)->rt_se[cpu];
399
#endif
S
Srivatsa Vaddagiri 已提交
400 401 402 403
}

#else

404 405 406 407 408 409 410
#ifdef CONFIG_SMP
static int root_task_group_empty(void)
{
	return 1;
}
#endif

P
Peter Zijlstra 已提交
411
static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
412 413 414 415
static inline struct task_group *task_group(struct task_struct *p)
{
	return NULL;
}
S
Srivatsa Vaddagiri 已提交
416

417
#endif	/* CONFIG_GROUP_SCHED */
S
Srivatsa Vaddagiri 已提交
418

I
Ingo Molnar 已提交
419 420 421 422 423 424
/* CFS-related fields in a runqueue */
struct cfs_rq {
	struct load_weight load;
	unsigned long nr_running;

	u64 exec_clock;
I
Ingo Molnar 已提交
425
	u64 min_vruntime;
I
Ingo Molnar 已提交
426 427 428

	struct rb_root tasks_timeline;
	struct rb_node *rb_leftmost;
429 430 431 432 433 434

	struct list_head tasks;
	struct list_head *balance_iterator;

	/*
	 * 'curr' points to currently running entity on this cfs_rq.
I
Ingo Molnar 已提交
435 436
	 * It is set to NULL otherwise (i.e when none are currently running).
	 */
P
Peter Zijlstra 已提交
437
	struct sched_entity *curr, *next, *last;
P
Peter Zijlstra 已提交
438

P
Peter Zijlstra 已提交
439
	unsigned int nr_spread_over;
P
Peter Zijlstra 已提交
440

441
#ifdef CONFIG_FAIR_GROUP_SCHED
I
Ingo Molnar 已提交
442 443
	struct rq *rq;	/* cpu runqueue to which this cfs_rq is attached */

I
Ingo Molnar 已提交
444 445
	/*
	 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
I
Ingo Molnar 已提交
446 447 448 449 450 451
	 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
	 * (like users, containers etc.)
	 *
	 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
	 * list is used during load balance.
	 */
I
Ingo Molnar 已提交
452 453
	struct list_head leaf_cfs_rq_list;
	struct task_group *tg;	/* group that "owns" this runqueue */
454 455 456

#ifdef CONFIG_SMP
	/*
457
	 * the part of load.weight contributed by tasks
458
	 */
459
	unsigned long task_weight;
460

461 462 463 464 465 466 467
	/*
	 *   h_load = weight * f(tg)
	 *
	 * Where f(tg) is the recursive weight fraction assigned to
	 * this group.
	 */
	unsigned long h_load;
468

469 470 471 472
	/*
	 * this cpu's part of tg->shares
	 */
	unsigned long shares;
473 474 475 476 477

	/*
	 * load.weight at the time we set shares
	 */
	unsigned long rq_weight;
478
#endif
I
Ingo Molnar 已提交
479 480
#endif
};
L
Linus Torvalds 已提交
481

I
Ingo Molnar 已提交
482 483 484
/* Real-Time classes' related field in a runqueue: */
struct rt_rq {
	struct rt_prio_array active;
485
	unsigned long rt_nr_running;
486
#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
487 488
	struct {
		int curr; /* highest queued rt task prio */
489
#ifdef CONFIG_SMP
490
		int next; /* next highest */
491
#endif
492
	} highest_prio;
P
Peter Zijlstra 已提交
493
#endif
P
Peter Zijlstra 已提交
494
#ifdef CONFIG_SMP
495
	unsigned long rt_nr_migratory;
496
	unsigned long rt_nr_total;
G
Gregory Haskins 已提交
497
	int overloaded;
498
	struct plist_head pushable_tasks;
P
Peter Zijlstra 已提交
499
#endif
P
Peter Zijlstra 已提交
500
	int rt_throttled;
P
Peter Zijlstra 已提交
501
	u64 rt_time;
P
Peter Zijlstra 已提交
502
	u64 rt_runtime;
I
Ingo Molnar 已提交
503
	/* Nests inside the rq lock: */
P
Peter Zijlstra 已提交
504
	spinlock_t rt_runtime_lock;
P
Peter Zijlstra 已提交
505

506
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
507 508
	unsigned long rt_nr_boosted;

P
Peter Zijlstra 已提交
509 510 511 512 513
	struct rq *rq;
	struct list_head leaf_rt_rq_list;
	struct task_group *tg;
	struct sched_rt_entity *rt_se;
#endif
I
Ingo Molnar 已提交
514 515
};

G
Gregory Haskins 已提交
516 517 518 519
#ifdef CONFIG_SMP

/*
 * We add the notion of a root-domain which will be used to define per-domain
I
Ingo Molnar 已提交
520 521
 * variables. Each exclusive cpuset essentially defines an island domain by
 * fully partitioning the member cpus from any other cpuset. Whenever a new
G
Gregory Haskins 已提交
522 523 524 525 526 527
 * exclusive cpuset is created, we also create and attach a new root-domain
 * object.
 *
 */
struct root_domain {
	atomic_t refcount;
528 529
	cpumask_var_t span;
	cpumask_var_t online;
530

I
Ingo Molnar 已提交
531
	/*
532 533 534
	 * The "RT overload" flag: it gets set if a CPU has more than
	 * one runnable RT task.
	 */
535
	cpumask_var_t rto_mask;
I
Ingo Molnar 已提交
536
	atomic_t rto_count;
537 538 539
#ifdef CONFIG_SMP
	struct cpupri cpupri;
#endif
540 541 542 543 544 545 546 547
#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
	/*
	 * Preferred wake up cpu nominated by sched_mc balance that will be
	 * used when most cpus are idle in the system indicating overall very
	 * low system utilisation. Triggered at POWERSAVINGS_BALANCE_WAKEUP(2)
	 */
	unsigned int sched_mc_preferred_wakeup_cpu;
#endif
G
Gregory Haskins 已提交
548 549
};

550 551 552 553
/*
 * By default the system creates a single root-domain with all cpus as
 * members (mimicking the global state we have today).
 */
G
Gregory Haskins 已提交
554 555 556 557
static struct root_domain def_root_domain;

#endif

L
Linus Torvalds 已提交
558 559 560 561 562 563 564
/*
 * This is the main, per-CPU runqueue data structure.
 *
 * Locking rule: those places that want to lock multiple runqueues
 * (such as the load balancing or the thread migration code), lock
 * acquire operations must be ordered by ascending &runqueue.
 */
565
struct rq {
566 567
	/* runqueue lock: */
	spinlock_t lock;
L
Linus Torvalds 已提交
568 569 570 571 572 573

	/*
	 * nr_running and cpu_load should be in the same cacheline because
	 * remote CPUs use both these fields when doing load calculation.
	 */
	unsigned long nr_running;
I
Ingo Molnar 已提交
574 575
	#define CPU_LOAD_IDX_MAX 5
	unsigned long cpu_load[CPU_LOAD_IDX_MAX];
576
#ifdef CONFIG_NO_HZ
577
	unsigned long last_tick_seen;
578 579
	unsigned char in_nohz_recently;
#endif
580 581
	/* capture load from *all* tasks on this cpu: */
	struct load_weight load;
I
Ingo Molnar 已提交
582 583
	unsigned long nr_load_updates;
	u64 nr_switches;
584
	u64 nr_migrations_in;
I
Ingo Molnar 已提交
585 586

	struct cfs_rq cfs;
P
Peter Zijlstra 已提交
587 588
	struct rt_rq rt;

I
Ingo Molnar 已提交
589
#ifdef CONFIG_FAIR_GROUP_SCHED
590 591
	/* list of leaf cfs_rq on this cpu: */
	struct list_head leaf_cfs_rq_list;
592 593
#endif
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
594
	struct list_head leaf_rt_rq_list;
L
Linus Torvalds 已提交
595 596 597 598 599 600 601 602 603 604
#endif

	/*
	 * This is part of a global counter where only the total sum
	 * over all CPUs matters. A task can increase this counter on
	 * one CPU and if it got migrated afterwards it may decrease
	 * it on another CPU. Always updated under the runqueue lock:
	 */
	unsigned long nr_uninterruptible;

605
	struct task_struct *curr, *idle;
606
	unsigned long next_balance;
L
Linus Torvalds 已提交
607
	struct mm_struct *prev_mm;
I
Ingo Molnar 已提交
608

609
	u64 clock;
I
Ingo Molnar 已提交
610

L
Linus Torvalds 已提交
611 612 613
	atomic_t nr_iowait;

#ifdef CONFIG_SMP
I
Ingo Molnar 已提交
614
	struct root_domain *rd;
L
Linus Torvalds 已提交
615 616
	struct sched_domain *sd;

617
	unsigned char idle_at_tick;
L
Linus Torvalds 已提交
618
	/* For active balancing */
619
	int post_schedule;
L
Linus Torvalds 已提交
620 621
	int active_balance;
	int push_cpu;
622 623
	/* cpu of this runqueue: */
	int cpu;
624
	int online;
L
Linus Torvalds 已提交
625

626
	unsigned long avg_load_per_task;
L
Linus Torvalds 已提交
627

628
	struct task_struct *migration_thread;
L
Linus Torvalds 已提交
629 630 631
	struct list_head migration_queue;
#endif

632 633 634 635
	/* calc_load related fields */
	unsigned long calc_load_update;
	long calc_load_active;

P
Peter Zijlstra 已提交
636
#ifdef CONFIG_SCHED_HRTICK
637 638 639 640
#ifdef CONFIG_SMP
	int hrtick_csd_pending;
	struct call_single_data hrtick_csd;
#endif
P
Peter Zijlstra 已提交
641 642 643
	struct hrtimer hrtick_timer;
#endif

L
Linus Torvalds 已提交
644 645 646
#ifdef CONFIG_SCHEDSTATS
	/* latency stats */
	struct sched_info rq_sched_info;
647 648
	unsigned long long rq_cpu_time;
	/* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
L
Linus Torvalds 已提交
649 650

	/* sys_sched_yield() stats */
651
	unsigned int yld_count;
L
Linus Torvalds 已提交
652 653

	/* schedule() stats */
654 655 656
	unsigned int sched_switch;
	unsigned int sched_count;
	unsigned int sched_goidle;
L
Linus Torvalds 已提交
657 658

	/* try_to_wake_up() stats */
659 660
	unsigned int ttwu_count;
	unsigned int ttwu_local;
I
Ingo Molnar 已提交
661 662

	/* BKL stats */
663
	unsigned int bkl_count;
L
Linus Torvalds 已提交
664 665 666
#endif
};

667
static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
L
Linus Torvalds 已提交
668

669
static inline void check_preempt_curr(struct rq *rq, struct task_struct *p, int sync)
I
Ingo Molnar 已提交
670
{
671
	rq->curr->sched_class->check_preempt_curr(rq, p, sync);
I
Ingo Molnar 已提交
672 673
}

674 675 676 677 678 679 680 681 682
static inline int cpu_of(struct rq *rq)
{
#ifdef CONFIG_SMP
	return rq->cpu;
#else
	return 0;
#endif
}

N
Nick Piggin 已提交
683 684
/*
 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
685
 * See detach_destroy_domains: synchronize_sched for details.
N
Nick Piggin 已提交
686 687 688 689
 *
 * The domain tree of any CPU may only be accessed from within
 * preempt-disabled sections.
 */
690 691
#define for_each_domain(cpu, __sd) \
	for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
L
Linus Torvalds 已提交
692 693 694 695 696

#define cpu_rq(cpu)		(&per_cpu(runqueues, (cpu)))
#define this_rq()		(&__get_cpu_var(runqueues))
#define task_rq(p)		cpu_rq(task_cpu(p))
#define cpu_curr(cpu)		(cpu_rq(cpu)->curr)
697
#define raw_rq()		(&__raw_get_cpu_var(runqueues))
L
Linus Torvalds 已提交
698

I
Ingo Molnar 已提交
699
inline void update_rq_clock(struct rq *rq)
700 701 702 703
{
	rq->clock = sched_clock_cpu(cpu_of(rq));
}

I
Ingo Molnar 已提交
704 705 706 707 708 709 710 711 712
/*
 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
 */
#ifdef CONFIG_SCHED_DEBUG
# define const_debug __read_mostly
#else
# define const_debug static const
#endif

I
Ingo Molnar 已提交
713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730
/**
 * runqueue_is_locked
 *
 * Returns true if the current cpu runqueue is locked.
 * This interface allows printk to be called with the runqueue lock
 * held and know whether or not it is OK to wake up the klogd.
 */
int runqueue_is_locked(void)
{
	int cpu = get_cpu();
	struct rq *rq = cpu_rq(cpu);
	int ret;

	ret = spin_is_locked(&rq->lock);
	put_cpu();
	return ret;
}

I
Ingo Molnar 已提交
731 732 733
/*
 * Debugging: various feature bits
 */
P
Peter Zijlstra 已提交
734 735 736 737

#define SCHED_FEAT(name, enabled)	\
	__SCHED_FEAT_##name ,

I
Ingo Molnar 已提交
738
enum {
P
Peter Zijlstra 已提交
739
#include "sched_features.h"
I
Ingo Molnar 已提交
740 741
};

P
Peter Zijlstra 已提交
742 743 744 745 746
#undef SCHED_FEAT

#define SCHED_FEAT(name, enabled)	\
	(1UL << __SCHED_FEAT_##name) * enabled |

I
Ingo Molnar 已提交
747
const_debug unsigned int sysctl_sched_features =
P
Peter Zijlstra 已提交
748 749 750 751 752 753 754 755 756
#include "sched_features.h"
	0;

#undef SCHED_FEAT

#ifdef CONFIG_SCHED_DEBUG
#define SCHED_FEAT(name, enabled)	\
	#name ,

757
static __read_mostly char *sched_feat_names[] = {
P
Peter Zijlstra 已提交
758 759 760 761 762 763
#include "sched_features.h"
	NULL
};

#undef SCHED_FEAT

L
Li Zefan 已提交
764
static int sched_feat_show(struct seq_file *m, void *v)
P
Peter Zijlstra 已提交
765 766 767 768
{
	int i;

	for (i = 0; sched_feat_names[i]; i++) {
L
Li Zefan 已提交
769 770 771
		if (!(sysctl_sched_features & (1UL << i)))
			seq_puts(m, "NO_");
		seq_printf(m, "%s ", sched_feat_names[i]);
P
Peter Zijlstra 已提交
772
	}
L
Li Zefan 已提交
773
	seq_puts(m, "\n");
P
Peter Zijlstra 已提交
774

L
Li Zefan 已提交
775
	return 0;
P
Peter Zijlstra 已提交
776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794
}

static ssize_t
sched_feat_write(struct file *filp, const char __user *ubuf,
		size_t cnt, loff_t *ppos)
{
	char buf[64];
	char *cmp = buf;
	int neg = 0;
	int i;

	if (cnt > 63)
		cnt = 63;

	if (copy_from_user(&buf, ubuf, cnt))
		return -EFAULT;

	buf[cnt] = 0;

I
Ingo Molnar 已提交
795
	if (strncmp(buf, "NO_", 3) == 0) {
P
Peter Zijlstra 已提交
796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819
		neg = 1;
		cmp += 3;
	}

	for (i = 0; sched_feat_names[i]; i++) {
		int len = strlen(sched_feat_names[i]);

		if (strncmp(cmp, sched_feat_names[i], len) == 0) {
			if (neg)
				sysctl_sched_features &= ~(1UL << i);
			else
				sysctl_sched_features |= (1UL << i);
			break;
		}
	}

	if (!sched_feat_names[i])
		return -EINVAL;

	filp->f_pos += cnt;

	return cnt;
}

L
Li Zefan 已提交
820 821 822 823 824
static int sched_feat_open(struct inode *inode, struct file *filp)
{
	return single_open(filp, sched_feat_show, NULL);
}

P
Peter Zijlstra 已提交
825
static struct file_operations sched_feat_fops = {
L
Li Zefan 已提交
826 827 828 829 830
	.open		= sched_feat_open,
	.write		= sched_feat_write,
	.read		= seq_read,
	.llseek		= seq_lseek,
	.release	= single_release,
P
Peter Zijlstra 已提交
831 832 833 834 835 836 837 838 839 840 841 842 843 844
};

static __init int sched_init_debug(void)
{
	debugfs_create_file("sched_features", 0644, NULL, NULL,
			&sched_feat_fops);

	return 0;
}
late_initcall(sched_init_debug);

#endif

#define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
I
Ingo Molnar 已提交
845

846 847 848 849 850 851
/*
 * Number of tasks to iterate in a single balance run.
 * Limited because this is done with IRQs disabled.
 */
const_debug unsigned int sysctl_sched_nr_migrate = 32;

P
Peter Zijlstra 已提交
852 853
/*
 * ratelimit for updating the group shares.
854
 * default: 0.25ms
P
Peter Zijlstra 已提交
855
 */
856
unsigned int sysctl_sched_shares_ratelimit = 250000;
P
Peter Zijlstra 已提交
857

858 859 860 861 862 863 864
/*
 * Inject some fuzzyness into changing the per-cpu group shares
 * this avoids remote rq-locks at the expense of fairness.
 * default: 4
 */
unsigned int sysctl_sched_shares_thresh = 4;

P
Peter Zijlstra 已提交
865
/*
P
Peter Zijlstra 已提交
866
 * period over which we measure -rt task cpu usage in us.
P
Peter Zijlstra 已提交
867 868
 * default: 1s
 */
P
Peter Zijlstra 已提交
869
unsigned int sysctl_sched_rt_period = 1000000;
P
Peter Zijlstra 已提交
870

871 872
static __read_mostly int scheduler_running;

P
Peter Zijlstra 已提交
873 874 875 876 877
/*
 * part of the period that we allow rt tasks to run in us.
 * default: 0.95s
 */
int sysctl_sched_rt_runtime = 950000;
P
Peter Zijlstra 已提交
878

879 880 881 882 883 884 885
static inline u64 global_rt_period(void)
{
	return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
}

static inline u64 global_rt_runtime(void)
{
886
	if (sysctl_sched_rt_runtime < 0)
887 888 889 890
		return RUNTIME_INF;

	return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
}
P
Peter Zijlstra 已提交
891

L
Linus Torvalds 已提交
892
#ifndef prepare_arch_switch
893 894 895 896 897 898
# define prepare_arch_switch(next)	do { } while (0)
#endif
#ifndef finish_arch_switch
# define finish_arch_switch(prev)	do { } while (0)
#endif

899 900 901 902 903
static inline int task_current(struct rq *rq, struct task_struct *p)
{
	return rq->curr == p;
}

904
#ifndef __ARCH_WANT_UNLOCKED_CTXSW
905
static inline int task_running(struct rq *rq, struct task_struct *p)
906
{
907
	return task_current(rq, p);
908 909
}

910
static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
911 912 913
{
}

914
static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
915
{
916 917 918 919
#ifdef CONFIG_DEBUG_SPINLOCK
	/* this is a valid case when another task releases the spinlock */
	rq->lock.owner = current;
#endif
920 921 922 923 924 925 926
	/*
	 * If we are tracking spinlock dependencies then we have to
	 * fix up the runqueue lock - which gets 'carried over' from
	 * prev into current:
	 */
	spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);

927 928 929 930
	spin_unlock_irq(&rq->lock);
}

#else /* __ARCH_WANT_UNLOCKED_CTXSW */
931
static inline int task_running(struct rq *rq, struct task_struct *p)
932 933 934 935
{
#ifdef CONFIG_SMP
	return p->oncpu;
#else
936
	return task_current(rq, p);
937 938 939
#endif
}

940
static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956
{
#ifdef CONFIG_SMP
	/*
	 * We can optimise this out completely for !SMP, because the
	 * SMP rebalancing from interrupt is the only thing that cares
	 * here.
	 */
	next->oncpu = 1;
#endif
#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
	spin_unlock_irq(&rq->lock);
#else
	spin_unlock(&rq->lock);
#endif
}

957
static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
958 959 960 961 962 963 964 965 966 967 968 969
{
#ifdef CONFIG_SMP
	/*
	 * After ->oncpu is cleared, the task can be moved to a different CPU.
	 * We must ensure this doesn't happen until the switch is completely
	 * finished.
	 */
	smp_wmb();
	prev->oncpu = 0;
#endif
#ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
	local_irq_enable();
L
Linus Torvalds 已提交
970
#endif
971 972
}
#endif /* __ARCH_WANT_UNLOCKED_CTXSW */
L
Linus Torvalds 已提交
973

974 975 976 977
/*
 * __task_rq_lock - lock the runqueue a given task resides on.
 * Must be called interrupts disabled.
 */
978
static inline struct rq *__task_rq_lock(struct task_struct *p)
979 980
	__acquires(rq->lock)
{
981 982 983 984 985
	for (;;) {
		struct rq *rq = task_rq(p);
		spin_lock(&rq->lock);
		if (likely(rq == task_rq(p)))
			return rq;
986 987 988 989
		spin_unlock(&rq->lock);
	}
}

L
Linus Torvalds 已提交
990 991
/*
 * task_rq_lock - lock the runqueue a given task resides on and disable
I
Ingo Molnar 已提交
992
 * interrupts. Note the ordering: we can safely lookup the task_rq without
L
Linus Torvalds 已提交
993 994
 * explicitly disabling preemption.
 */
995
static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
L
Linus Torvalds 已提交
996 997
	__acquires(rq->lock)
{
998
	struct rq *rq;
L
Linus Torvalds 已提交
999

1000 1001 1002 1003 1004 1005
	for (;;) {
		local_irq_save(*flags);
		rq = task_rq(p);
		spin_lock(&rq->lock);
		if (likely(rq == task_rq(p)))
			return rq;
L
Linus Torvalds 已提交
1006 1007 1008 1009
		spin_unlock_irqrestore(&rq->lock, *flags);
	}
}

1010 1011 1012 1013 1014 1015 1016 1017
void task_rq_unlock_wait(struct task_struct *p)
{
	struct rq *rq = task_rq(p);

	smp_mb(); /* spin-unlock-wait is not a full memory barrier */
	spin_unlock_wait(&rq->lock);
}

A
Alexey Dobriyan 已提交
1018
static void __task_rq_unlock(struct rq *rq)
1019 1020 1021 1022 1023
	__releases(rq->lock)
{
	spin_unlock(&rq->lock);
}

1024
static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
L
Linus Torvalds 已提交
1025 1026 1027 1028 1029 1030
	__releases(rq->lock)
{
	spin_unlock_irqrestore(&rq->lock, *flags);
}

/*
1031
 * this_rq_lock - lock this runqueue and disable interrupts.
L
Linus Torvalds 已提交
1032
 */
A
Alexey Dobriyan 已提交
1033
static struct rq *this_rq_lock(void)
L
Linus Torvalds 已提交
1034 1035
	__acquires(rq->lock)
{
1036
	struct rq *rq;
L
Linus Torvalds 已提交
1037 1038 1039 1040 1041 1042 1043 1044

	local_irq_disable();
	rq = this_rq();
	spin_lock(&rq->lock);

	return rq;
}

P
Peter Zijlstra 已提交
1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065
#ifdef CONFIG_SCHED_HRTICK
/*
 * Use HR-timers to deliver accurate preemption points.
 *
 * Its all a bit involved since we cannot program an hrt while holding the
 * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
 * reschedule event.
 *
 * When we get rescheduled we reprogram the hrtick_timer outside of the
 * rq->lock.
 */

/*
 * Use hrtick when:
 *  - enabled by features
 *  - hrtimer is actually high res
 */
static inline int hrtick_enabled(struct rq *rq)
{
	if (!sched_feat(HRTICK))
		return 0;
1066
	if (!cpu_active(cpu_of(rq)))
1067
		return 0;
P
Peter Zijlstra 已提交
1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087
	return hrtimer_is_hres_active(&rq->hrtick_timer);
}

static void hrtick_clear(struct rq *rq)
{
	if (hrtimer_active(&rq->hrtick_timer))
		hrtimer_cancel(&rq->hrtick_timer);
}

/*
 * High-resolution timer tick.
 * Runs from hardirq context with interrupts disabled.
 */
static enum hrtimer_restart hrtick(struct hrtimer *timer)
{
	struct rq *rq = container_of(timer, struct rq, hrtick_timer);

	WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());

	spin_lock(&rq->lock);
1088
	update_rq_clock(rq);
P
Peter Zijlstra 已提交
1089 1090 1091 1092 1093 1094
	rq->curr->sched_class->task_tick(rq, rq->curr, 1);
	spin_unlock(&rq->lock);

	return HRTIMER_NORESTART;
}

1095
#ifdef CONFIG_SMP
1096 1097 1098 1099
/*
 * called from hardirq (IPI) context
 */
static void __hrtick_start(void *arg)
1100
{
1101
	struct rq *rq = arg;
1102

1103 1104 1105 1106
	spin_lock(&rq->lock);
	hrtimer_restart(&rq->hrtick_timer);
	rq->hrtick_csd_pending = 0;
	spin_unlock(&rq->lock);
1107 1108
}

1109 1110 1111 1112 1113 1114
/*
 * Called to set the hrtick timer state.
 *
 * called with rq->lock held and irqs disabled
 */
static void hrtick_start(struct rq *rq, u64 delay)
1115
{
1116 1117
	struct hrtimer *timer = &rq->hrtick_timer;
	ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
1118

1119
	hrtimer_set_expires(timer, time);
1120 1121 1122 1123

	if (rq == this_rq()) {
		hrtimer_restart(timer);
	} else if (!rq->hrtick_csd_pending) {
1124
		__smp_call_function_single(cpu_of(rq), &rq->hrtick_csd, 0);
1125 1126
		rq->hrtick_csd_pending = 1;
	}
1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140
}

static int
hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
{
	int cpu = (int)(long)hcpu;

	switch (action) {
	case CPU_UP_CANCELED:
	case CPU_UP_CANCELED_FROZEN:
	case CPU_DOWN_PREPARE:
	case CPU_DOWN_PREPARE_FROZEN:
	case CPU_DEAD:
	case CPU_DEAD_FROZEN:
1141
		hrtick_clear(cpu_rq(cpu));
1142 1143 1144 1145 1146 1147
		return NOTIFY_OK;
	}

	return NOTIFY_DONE;
}

1148
static __init void init_hrtick(void)
1149 1150 1151
{
	hotcpu_notifier(hotplug_hrtick, 0);
}
1152 1153 1154 1155 1156 1157 1158 1159
#else
/*
 * Called to set the hrtick timer state.
 *
 * called with rq->lock held and irqs disabled
 */
static void hrtick_start(struct rq *rq, u64 delay)
{
1160
	__hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
1161
			HRTIMER_MODE_REL_PINNED, 0);
1162
}
1163

A
Andrew Morton 已提交
1164
static inline void init_hrtick(void)
P
Peter Zijlstra 已提交
1165 1166
{
}
1167
#endif /* CONFIG_SMP */
P
Peter Zijlstra 已提交
1168

1169
static void init_rq_hrtick(struct rq *rq)
P
Peter Zijlstra 已提交
1170
{
1171 1172
#ifdef CONFIG_SMP
	rq->hrtick_csd_pending = 0;
P
Peter Zijlstra 已提交
1173

1174 1175 1176 1177
	rq->hrtick_csd.flags = 0;
	rq->hrtick_csd.func = __hrtick_start;
	rq->hrtick_csd.info = rq;
#endif
P
Peter Zijlstra 已提交
1178

1179 1180
	hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
	rq->hrtick_timer.function = hrtick;
P
Peter Zijlstra 已提交
1181
}
A
Andrew Morton 已提交
1182
#else	/* CONFIG_SCHED_HRTICK */
P
Peter Zijlstra 已提交
1183 1184 1185 1186 1187 1188 1189 1190
static inline void hrtick_clear(struct rq *rq)
{
}

static inline void init_rq_hrtick(struct rq *rq)
{
}

1191 1192 1193
static inline void init_hrtick(void)
{
}
A
Andrew Morton 已提交
1194
#endif	/* CONFIG_SCHED_HRTICK */
P
Peter Zijlstra 已提交
1195

I
Ingo Molnar 已提交
1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208
/*
 * resched_task - mark a task 'to be rescheduled now'.
 *
 * On UP this means the setting of the need_resched flag, on SMP it
 * might also involve a cross-CPU call to trigger the scheduler on
 * the target CPU.
 */
#ifdef CONFIG_SMP

#ifndef tsk_is_polling
#define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
#endif

1209
static void resched_task(struct task_struct *p)
I
Ingo Molnar 已提交
1210 1211 1212 1213 1214
{
	int cpu;

	assert_spin_locked(&task_rq(p)->lock);

1215
	if (test_tsk_need_resched(p))
I
Ingo Molnar 已提交
1216 1217
		return;

1218
	set_tsk_need_resched(p);
I
Ingo Molnar 已提交
1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239

	cpu = task_cpu(p);
	if (cpu == smp_processor_id())
		return;

	/* NEED_RESCHED must be visible before we test polling */
	smp_mb();
	if (!tsk_is_polling(p))
		smp_send_reschedule(cpu);
}

static void resched_cpu(int cpu)
{
	struct rq *rq = cpu_rq(cpu);
	unsigned long flags;

	if (!spin_trylock_irqsave(&rq->lock, flags))
		return;
	resched_task(cpu_curr(cpu));
	spin_unlock_irqrestore(&rq->lock, flags);
}
1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273

#ifdef CONFIG_NO_HZ
/*
 * When add_timer_on() enqueues a timer into the timer wheel of an
 * idle CPU then this timer might expire before the next timer event
 * which is scheduled to wake up that CPU. In case of a completely
 * idle system the next event might even be infinite time into the
 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
 * leaves the inner idle loop so the newly added timer is taken into
 * account when the CPU goes back to idle and evaluates the timer
 * wheel for the next timer event.
 */
void wake_up_idle_cpu(int cpu)
{
	struct rq *rq = cpu_rq(cpu);

	if (cpu == smp_processor_id())
		return;

	/*
	 * This is safe, as this function is called with the timer
	 * wheel base lock of (cpu) held. When the CPU is on the way
	 * to idle and has not yet set rq->curr to idle then it will
	 * be serialized on the timer wheel base lock and take the new
	 * timer into account automatically.
	 */
	if (rq->curr != rq->idle)
		return;

	/*
	 * We can set TIF_RESCHED on the idle task of the other CPU
	 * lockless. The worst case is that the other CPU runs the
	 * idle task through an additional NOOP schedule()
	 */
1274
	set_tsk_need_resched(rq->idle);
1275 1276 1277 1278 1279 1280

	/* NEED_RESCHED must be visible before we test polling */
	smp_mb();
	if (!tsk_is_polling(rq->idle))
		smp_send_reschedule(cpu);
}
1281
#endif /* CONFIG_NO_HZ */
1282

1283
#else /* !CONFIG_SMP */
1284
static void resched_task(struct task_struct *p)
I
Ingo Molnar 已提交
1285 1286
{
	assert_spin_locked(&task_rq(p)->lock);
1287
	set_tsk_need_resched(p);
I
Ingo Molnar 已提交
1288
}
1289
#endif /* CONFIG_SMP */
I
Ingo Molnar 已提交
1290

1291 1292 1293 1294 1295 1296 1297 1298
#if BITS_PER_LONG == 32
# define WMULT_CONST	(~0UL)
#else
# define WMULT_CONST	(1UL << 32)
#endif

#define WMULT_SHIFT	32

I
Ingo Molnar 已提交
1299 1300 1301
/*
 * Shift right and round:
 */
I
Ingo Molnar 已提交
1302
#define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
I
Ingo Molnar 已提交
1303

1304 1305 1306
/*
 * delta *= weight / lw
 */
1307
static unsigned long
1308 1309 1310 1311 1312
calc_delta_mine(unsigned long delta_exec, unsigned long weight,
		struct load_weight *lw)
{
	u64 tmp;

1313 1314 1315 1316 1317 1318 1319
	if (!lw->inv_weight) {
		if (BITS_PER_LONG > 32 && unlikely(lw->weight >= WMULT_CONST))
			lw->inv_weight = 1;
		else
			lw->inv_weight = 1 + (WMULT_CONST-lw->weight/2)
				/ (lw->weight+1);
	}
1320 1321 1322 1323 1324

	tmp = (u64)delta_exec * weight;
	/*
	 * Check whether we'd overflow the 64-bit multiplication:
	 */
I
Ingo Molnar 已提交
1325
	if (unlikely(tmp > WMULT_CONST))
I
Ingo Molnar 已提交
1326
		tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
I
Ingo Molnar 已提交
1327 1328
			WMULT_SHIFT/2);
	else
I
Ingo Molnar 已提交
1329
		tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
1330

1331
	return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
1332 1333
}

1334
static inline void update_load_add(struct load_weight *lw, unsigned long inc)
1335 1336
{
	lw->weight += inc;
I
Ingo Molnar 已提交
1337
	lw->inv_weight = 0;
1338 1339
}

1340
static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
1341 1342
{
	lw->weight -= dec;
I
Ingo Molnar 已提交
1343
	lw->inv_weight = 0;
1344 1345
}

1346 1347 1348 1349
/*
 * To aid in avoiding the subversion of "niceness" due to uneven distribution
 * of tasks with abnormal "nice" values across CPUs the contribution that
 * each task makes to its run queue's load is weighted according to its
I
Ingo Molnar 已提交
1350
 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
1351 1352 1353 1354
 * scaled version of the new time slice allocation that they receive on time
 * slice expiry etc.
 */

P
Peter Zijlstra 已提交
1355 1356
#define WEIGHT_IDLEPRIO                3
#define WMULT_IDLEPRIO         1431655765
I
Ingo Molnar 已提交
1357 1358 1359 1360 1361 1362 1363 1364 1365

/*
 * Nice levels are multiplicative, with a gentle 10% change for every
 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
 * nice 1, it will get ~10% less CPU time than another CPU-bound task
 * that remained on nice 0.
 *
 * The "10% effect" is relative and cumulative: from _any_ nice level,
 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
1366 1367 1368
 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
 * If a task goes up by ~10% and another task goes down by ~10% then
 * the relative distance between them is ~25%.)
I
Ingo Molnar 已提交
1369 1370
 */
static const int prio_to_weight[40] = {
1371 1372 1373 1374 1375 1376 1377 1378
 /* -20 */     88761,     71755,     56483,     46273,     36291,
 /* -15 */     29154,     23254,     18705,     14949,     11916,
 /* -10 */      9548,      7620,      6100,      4904,      3906,
 /*  -5 */      3121,      2501,      1991,      1586,      1277,
 /*   0 */      1024,       820,       655,       526,       423,
 /*   5 */       335,       272,       215,       172,       137,
 /*  10 */       110,        87,        70,        56,        45,
 /*  15 */        36,        29,        23,        18,        15,
I
Ingo Molnar 已提交
1379 1380
};

1381 1382 1383 1384 1385 1386 1387
/*
 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
 *
 * In cases where the weight does not change often, we can use the
 * precalculated inverse to speed up arithmetics by turning divisions
 * into multiplications:
 */
I
Ingo Molnar 已提交
1388
static const u32 prio_to_wmult[40] = {
1389 1390 1391 1392 1393 1394 1395 1396
 /* -20 */     48388,     59856,     76040,     92818,    118348,
 /* -15 */    147320,    184698,    229616,    287308,    360437,
 /* -10 */    449829,    563644,    704093,    875809,   1099582,
 /*  -5 */   1376151,   1717300,   2157191,   2708050,   3363326,
 /*   0 */   4194304,   5237765,   6557202,   8165337,  10153587,
 /*   5 */  12820798,  15790321,  19976592,  24970740,  31350126,
 /*  10 */  39045157,  49367440,  61356676,  76695844,  95443717,
 /*  15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
I
Ingo Molnar 已提交
1397
};
1398

I
Ingo Molnar 已提交
1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411
static void activate_task(struct rq *rq, struct task_struct *p, int wakeup);

/*
 * runqueue iterator, to support SMP load-balancing between different
 * scheduling classes, without having to expose their internal data
 * structures to the load-balancing proper:
 */
struct rq_iterator {
	void *arg;
	struct task_struct *(*start)(void *);
	struct task_struct *(*next)(void *);
};

1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423
#ifdef CONFIG_SMP
static unsigned long
balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
	      unsigned long max_load_move, struct sched_domain *sd,
	      enum cpu_idle_type idle, int *all_pinned,
	      int *this_best_prio, struct rq_iterator *iterator);

static int
iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
		   struct sched_domain *sd, enum cpu_idle_type idle,
		   struct rq_iterator *iterator);
#endif
I
Ingo Molnar 已提交
1424

1425 1426 1427 1428 1429 1430 1431 1432
/* Time spent by the tasks of the cpu accounting group executing in ... */
enum cpuacct_stat_index {
	CPUACCT_STAT_USER,	/* ... user mode */
	CPUACCT_STAT_SYSTEM,	/* ... kernel mode */

	CPUACCT_STAT_NSTATS,
};

1433 1434
#ifdef CONFIG_CGROUP_CPUACCT
static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
1435 1436
static void cpuacct_update_stats(struct task_struct *tsk,
		enum cpuacct_stat_index idx, cputime_t val);
1437 1438
#else
static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
1439 1440
static inline void cpuacct_update_stats(struct task_struct *tsk,
		enum cpuacct_stat_index idx, cputime_t val) {}
1441 1442
#endif

1443 1444 1445 1446 1447 1448 1449 1450 1451 1452
static inline void inc_cpu_load(struct rq *rq, unsigned long load)
{
	update_load_add(&rq->load, load);
}

static inline void dec_cpu_load(struct rq *rq, unsigned long load)
{
	update_load_sub(&rq->load, load);
}

I
Ingo Molnar 已提交
1453
#if (defined(CONFIG_SMP) && defined(CONFIG_FAIR_GROUP_SCHED)) || defined(CONFIG_RT_GROUP_SCHED)
P
Peter Zijlstra 已提交
1454
typedef int (*tg_visitor)(struct task_group *, void *);
1455 1456 1457 1458 1459

/*
 * Iterate the full tree, calling @down when first entering a node and @up when
 * leaving it for the final time.
 */
P
Peter Zijlstra 已提交
1460
static int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
1461 1462
{
	struct task_group *parent, *child;
P
Peter Zijlstra 已提交
1463
	int ret;
1464 1465 1466 1467

	rcu_read_lock();
	parent = &root_task_group;
down:
P
Peter Zijlstra 已提交
1468 1469 1470
	ret = (*down)(parent, data);
	if (ret)
		goto out_unlock;
1471 1472 1473 1474 1475 1476 1477
	list_for_each_entry_rcu(child, &parent->children, siblings) {
		parent = child;
		goto down;

up:
		continue;
	}
P
Peter Zijlstra 已提交
1478 1479 1480
	ret = (*up)(parent, data);
	if (ret)
		goto out_unlock;
1481 1482 1483 1484 1485

	child = parent;
	parent = parent->parent;
	if (parent)
		goto up;
P
Peter Zijlstra 已提交
1486
out_unlock:
1487
	rcu_read_unlock();
P
Peter Zijlstra 已提交
1488 1489

	return ret;
1490 1491
}

P
Peter Zijlstra 已提交
1492 1493 1494
static int tg_nop(struct task_group *tg, void *data)
{
	return 0;
1495
}
P
Peter Zijlstra 已提交
1496 1497 1498 1499 1500 1501 1502 1503 1504 1505
#endif

#ifdef CONFIG_SMP
static unsigned long source_load(int cpu, int type);
static unsigned long target_load(int cpu, int type);
static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd);

static unsigned long cpu_avg_load_per_task(int cpu)
{
	struct rq *rq = cpu_rq(cpu);
1506
	unsigned long nr_running = ACCESS_ONCE(rq->nr_running);
P
Peter Zijlstra 已提交
1507

1508 1509
	if (nr_running)
		rq->avg_load_per_task = rq->load.weight / nr_running;
1510 1511
	else
		rq->avg_load_per_task = 0;
P
Peter Zijlstra 已提交
1512 1513 1514 1515 1516

	return rq->avg_load_per_task;
}

#ifdef CONFIG_FAIR_GROUP_SCHED
1517

1518 1519 1520 1521 1522 1523
struct update_shares_data {
	unsigned long rq_weight[NR_CPUS];
};

static DEFINE_PER_CPU(struct update_shares_data, update_shares_data);

1524 1525 1526 1527 1528
static void __set_se_shares(struct sched_entity *se, unsigned long shares);

/*
 * Calculate and set the cpu's group shares.
 */
1529 1530 1531 1532
static void update_group_shares_cpu(struct task_group *tg, int cpu,
				    unsigned long sd_shares,
				    unsigned long sd_rq_weight,
				    struct update_shares_data *usd)
1533
{
1534
	unsigned long shares, rq_weight;
P
Peter Zijlstra 已提交
1535
	int boost = 0;
1536

1537
	rq_weight = usd->rq_weight[cpu];
P
Peter Zijlstra 已提交
1538 1539 1540 1541
	if (!rq_weight) {
		boost = 1;
		rq_weight = NICE_0_LOAD;
	}
1542

1543
	/*
P
Peter Zijlstra 已提交
1544 1545 1546
	 *             \Sum_j shares_j * rq_weight_i
	 * shares_i =  -----------------------------
	 *                  \Sum_j rq_weight_j
1547
	 */
1548
	shares = (sd_shares * rq_weight) / sd_rq_weight;
1549
	shares = clamp_t(unsigned long, shares, MIN_SHARES, MAX_SHARES);
1550

1551 1552 1553 1554
	if (abs(shares - tg->se[cpu]->load.weight) >
			sysctl_sched_shares_thresh) {
		struct rq *rq = cpu_rq(cpu);
		unsigned long flags;
1555

1556
		spin_lock_irqsave(&rq->lock, flags);
1557
		tg->cfs_rq[cpu]->rq_weight = boost ? 0 : rq_weight;
P
Peter Zijlstra 已提交
1558
		tg->cfs_rq[cpu]->shares = boost ? 0 : shares;
1559 1560 1561
		__set_se_shares(tg->se[cpu], shares);
		spin_unlock_irqrestore(&rq->lock, flags);
	}
1562
}
1563 1564

/*
1565 1566 1567
 * Re-compute the task group their per cpu shares over the given domain.
 * This needs to be done in a bottom-up fashion because the rq weight of a
 * parent group depends on the shares of its child groups.
1568
 */
P
Peter Zijlstra 已提交
1569
static int tg_shares_up(struct task_group *tg, void *data)
1570
{
1571 1572
	unsigned long weight, rq_weight = 0, shares = 0;
	struct update_shares_data *usd;
P
Peter Zijlstra 已提交
1573
	struct sched_domain *sd = data;
1574
	unsigned long flags;
1575
	int i;
1576

1577 1578 1579 1580 1581 1582
	if (!tg->se[0])
		return 0;

	local_irq_save(flags);
	usd = &__get_cpu_var(update_shares_data);

1583
	for_each_cpu(i, sched_domain_span(sd)) {
1584 1585 1586
		weight = tg->cfs_rq[i]->load.weight;
		usd->rq_weight[i] = weight;

1587 1588 1589 1590 1591 1592 1593 1594
		/*
		 * If there are currently no tasks on the cpu pretend there
		 * is one of average load so that when a new task gets to
		 * run here it will not get delayed by group starvation.
		 */
		if (!weight)
			weight = NICE_0_LOAD;

1595
		rq_weight += weight;
1596
		shares += tg->cfs_rq[i]->shares;
1597 1598
	}

1599 1600 1601 1602 1603
	if ((!shares && rq_weight) || shares > tg->shares)
		shares = tg->shares;

	if (!sd->parent || !(sd->parent->flags & SD_LOAD_BALANCE))
		shares = tg->shares;
1604

P
Peter Zijlstra 已提交
1605
	for_each_cpu(i, sched_domain_span(sd))
1606 1607 1608
		update_group_shares_cpu(tg, i, shares, rq_weight, usd);

	local_irq_restore(flags);
P
Peter Zijlstra 已提交
1609 1610

	return 0;
1611 1612 1613
}

/*
1614 1615 1616
 * Compute the cpu's hierarchical load factor for each task group.
 * This needs to be done in a top-down fashion because the load of a child
 * group is a fraction of its parents load.
1617
 */
P
Peter Zijlstra 已提交
1618
static int tg_load_down(struct task_group *tg, void *data)
1619
{
1620
	unsigned long load;
P
Peter Zijlstra 已提交
1621
	long cpu = (long)data;
1622

1623 1624 1625 1626 1627 1628 1629
	if (!tg->parent) {
		load = cpu_rq(cpu)->load.weight;
	} else {
		load = tg->parent->cfs_rq[cpu]->h_load;
		load *= tg->cfs_rq[cpu]->shares;
		load /= tg->parent->cfs_rq[cpu]->load.weight + 1;
	}
1630

1631
	tg->cfs_rq[cpu]->h_load = load;
1632

P
Peter Zijlstra 已提交
1633
	return 0;
1634 1635
}

1636
static void update_shares(struct sched_domain *sd)
1637
{
1638 1639 1640 1641 1642 1643 1644 1645
	s64 elapsed;
	u64 now;

	if (root_task_group_empty())
		return;

	now = cpu_clock(raw_smp_processor_id());
	elapsed = now - sd->last_update;
P
Peter Zijlstra 已提交
1646 1647 1648

	if (elapsed >= (s64)(u64)sysctl_sched_shares_ratelimit) {
		sd->last_update = now;
P
Peter Zijlstra 已提交
1649
		walk_tg_tree(tg_nop, tg_shares_up, sd);
P
Peter Zijlstra 已提交
1650
	}
1651 1652
}

1653 1654
static void update_shares_locked(struct rq *rq, struct sched_domain *sd)
{
1655 1656 1657
	if (root_task_group_empty())
		return;

1658 1659 1660 1661 1662
	spin_unlock(&rq->lock);
	update_shares(sd);
	spin_lock(&rq->lock);
}

P
Peter Zijlstra 已提交
1663
static void update_h_load(long cpu)
1664
{
1665 1666 1667
	if (root_task_group_empty())
		return;

P
Peter Zijlstra 已提交
1668
	walk_tg_tree(tg_load_down, tg_nop, (void *)cpu);
1669 1670 1671 1672
}

#else

1673
static inline void update_shares(struct sched_domain *sd)
1674 1675 1676
{
}

1677 1678 1679 1680
static inline void update_shares_locked(struct rq *rq, struct sched_domain *sd)
{
}

1681 1682
#endif

1683 1684
#ifdef CONFIG_PREEMPT

1685
/*
1686 1687 1688 1689 1690 1691
 * fair double_lock_balance: Safely acquires both rq->locks in a fair
 * way at the expense of forcing extra atomic operations in all
 * invocations.  This assures that the double_lock is acquired using the
 * same underlying policy as the spinlock_t on this architecture, which
 * reduces latency compared to the unfair variant below.  However, it
 * also adds more overhead and therefore may reduce throughput.
1692
 */
1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712
static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
	__releases(this_rq->lock)
	__acquires(busiest->lock)
	__acquires(this_rq->lock)
{
	spin_unlock(&this_rq->lock);
	double_rq_lock(this_rq, busiest);

	return 1;
}

#else
/*
 * Unfair double_lock_balance: Optimizes throughput at the expense of
 * latency by eliminating extra atomic operations when the locks are
 * already in proper order on entry.  This favors lower cpu-ids and will
 * grant the double lock to lower cpus over higher ids under contention,
 * regardless of entry order into the function.
 */
static int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730
	__releases(this_rq->lock)
	__acquires(busiest->lock)
	__acquires(this_rq->lock)
{
	int ret = 0;

	if (unlikely(!spin_trylock(&busiest->lock))) {
		if (busiest < this_rq) {
			spin_unlock(&this_rq->lock);
			spin_lock(&busiest->lock);
			spin_lock_nested(&this_rq->lock, SINGLE_DEPTH_NESTING);
			ret = 1;
		} else
			spin_lock_nested(&busiest->lock, SINGLE_DEPTH_NESTING);
	}
	return ret;
}

1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746
#endif /* CONFIG_PREEMPT */

/*
 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
 */
static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
{
	if (unlikely(!irqs_disabled())) {
		/* printk() doesn't work good under rq->lock */
		spin_unlock(&this_rq->lock);
		BUG_ON(1);
	}

	return _double_lock_balance(this_rq, busiest);
}

1747 1748 1749 1750 1751 1752
static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
	__releases(busiest->lock)
{
	spin_unlock(&busiest->lock);
	lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
}
1753 1754
#endif

V
Vegard Nossum 已提交
1755
#ifdef CONFIG_FAIR_GROUP_SCHED
I
Ingo Molnar 已提交
1756 1757
static void cfs_rq_set_shares(struct cfs_rq *cfs_rq, unsigned long shares)
{
V
Vegard Nossum 已提交
1758
#ifdef CONFIG_SMP
I
Ingo Molnar 已提交
1759 1760 1761
	cfs_rq->shares = shares;
#endif
}
V
Vegard Nossum 已提交
1762
#endif
1763

1764 1765
static void calc_load_account_active(struct rq *this_rq);

I
Ingo Molnar 已提交
1766 1767
#include "sched_stats.h"
#include "sched_idletask.c"
1768 1769
#include "sched_fair.c"
#include "sched_rt.c"
I
Ingo Molnar 已提交
1770 1771 1772 1773 1774
#ifdef CONFIG_SCHED_DEBUG
# include "sched_debug.c"
#endif

#define sched_class_highest (&rt_sched_class)
1775 1776
#define for_each_class(class) \
   for (class = sched_class_highest; class; class = class->next)
I
Ingo Molnar 已提交
1777

1778
static void inc_nr_running(struct rq *rq)
1779 1780 1781 1782
{
	rq->nr_running++;
}

1783
static void dec_nr_running(struct rq *rq)
1784 1785 1786 1787
{
	rq->nr_running--;
}

1788 1789 1790
static void set_load_weight(struct task_struct *p)
{
	if (task_has_rt_policy(p)) {
I
Ingo Molnar 已提交
1791 1792 1793 1794
		p->se.load.weight = prio_to_weight[0] * 2;
		p->se.load.inv_weight = prio_to_wmult[0] >> 1;
		return;
	}
1795

I
Ingo Molnar 已提交
1796 1797 1798 1799 1800 1801 1802 1803
	/*
	 * SCHED_IDLE tasks get minimal weight:
	 */
	if (p->policy == SCHED_IDLE) {
		p->se.load.weight = WEIGHT_IDLEPRIO;
		p->se.load.inv_weight = WMULT_IDLEPRIO;
		return;
	}
1804

I
Ingo Molnar 已提交
1805 1806
	p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
	p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
1807 1808
}

1809 1810 1811 1812 1813 1814
static void update_avg(u64 *avg, u64 sample)
{
	s64 diff = sample - *avg;
	*avg += diff >> 3;
}

1815
static void enqueue_task(struct rq *rq, struct task_struct *p, int wakeup)
1816
{
P
Peter Zijlstra 已提交
1817 1818 1819
	if (wakeup)
		p->se.start_runtime = p->se.sum_exec_runtime;

I
Ingo Molnar 已提交
1820
	sched_info_queued(p);
1821
	p->sched_class->enqueue_task(rq, p, wakeup);
I
Ingo Molnar 已提交
1822
	p->se.on_rq = 1;
1823 1824
}

1825
static void dequeue_task(struct rq *rq, struct task_struct *p, int sleep)
1826
{
P
Peter Zijlstra 已提交
1827 1828 1829 1830 1831 1832 1833 1834 1835
	if (sleep) {
		if (p->se.last_wakeup) {
			update_avg(&p->se.avg_overlap,
				p->se.sum_exec_runtime - p->se.last_wakeup);
			p->se.last_wakeup = 0;
		} else {
			update_avg(&p->se.avg_wakeup,
				sysctl_sched_wakeup_granularity);
		}
1836 1837
	}

1838
	sched_info_dequeued(p);
1839
	p->sched_class->dequeue_task(rq, p, sleep);
I
Ingo Molnar 已提交
1840
	p->se.on_rq = 0;
1841 1842
}

1843
/*
I
Ingo Molnar 已提交
1844
 * __normal_prio - return the priority that is based on the static prio
1845 1846 1847
 */
static inline int __normal_prio(struct task_struct *p)
{
I
Ingo Molnar 已提交
1848
	return p->static_prio;
1849 1850
}

1851 1852 1853 1854 1855 1856 1857
/*
 * Calculate the expected normal priority: i.e. priority
 * without taking RT-inheritance into account. Might be
 * boosted by interactivity modifiers. Changes upon fork,
 * setprio syscalls, and whenever the interactivity
 * estimator recalculates.
 */
1858
static inline int normal_prio(struct task_struct *p)
1859 1860 1861
{
	int prio;

1862
	if (task_has_rt_policy(p))
1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875
		prio = MAX_RT_PRIO-1 - p->rt_priority;
	else
		prio = __normal_prio(p);
	return prio;
}

/*
 * Calculate the current priority, i.e. the priority
 * taken into account by the scheduler. This value might
 * be boosted by RT tasks, or might be boosted by
 * interactivity modifiers. Will be RT if the task got
 * RT-boosted. If not then it returns p->normal_prio.
 */
1876
static int effective_prio(struct task_struct *p)
1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888
{
	p->normal_prio = normal_prio(p);
	/*
	 * If we are RT tasks or we were boosted to RT priority,
	 * keep the priority unchanged. Otherwise, update priority
	 * to the normal priority:
	 */
	if (!rt_prio(p->prio))
		return p->normal_prio;
	return p->prio;
}

L
Linus Torvalds 已提交
1889
/*
I
Ingo Molnar 已提交
1890
 * activate_task - move a task to the runqueue.
L
Linus Torvalds 已提交
1891
 */
I
Ingo Molnar 已提交
1892
static void activate_task(struct rq *rq, struct task_struct *p, int wakeup)
L
Linus Torvalds 已提交
1893
{
1894
	if (task_contributes_to_load(p))
I
Ingo Molnar 已提交
1895
		rq->nr_uninterruptible--;
L
Linus Torvalds 已提交
1896

1897
	enqueue_task(rq, p, wakeup);
1898
	inc_nr_running(rq);
L
Linus Torvalds 已提交
1899 1900 1901 1902 1903
}

/*
 * deactivate_task - remove a task from the runqueue.
 */
1904
static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep)
L
Linus Torvalds 已提交
1905
{
1906
	if (task_contributes_to_load(p))
I
Ingo Molnar 已提交
1907 1908
		rq->nr_uninterruptible++;

1909
	dequeue_task(rq, p, sleep);
1910
	dec_nr_running(rq);
L
Linus Torvalds 已提交
1911 1912 1913 1914 1915 1916
}

/**
 * task_curr - is this task currently executing on a CPU?
 * @p: the task in question.
 */
1917
inline int task_curr(const struct task_struct *p)
L
Linus Torvalds 已提交
1918 1919 1920 1921
{
	return cpu_curr(task_cpu(p)) == p;
}

I
Ingo Molnar 已提交
1922 1923
static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
{
P
Peter Zijlstra 已提交
1924
	set_task_rq(p, cpu);
I
Ingo Molnar 已提交
1925
#ifdef CONFIG_SMP
1926 1927 1928 1929 1930 1931
	/*
	 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
	 * successfuly executed on another CPU. We must ensure that updates of
	 * per-task data have been completed by this moment.
	 */
	smp_wmb();
I
Ingo Molnar 已提交
1932 1933
	task_thread_info(p)->cpu = cpu;
#endif
1934 1935
}

1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947
static inline void check_class_changed(struct rq *rq, struct task_struct *p,
				       const struct sched_class *prev_class,
				       int oldprio, int running)
{
	if (prev_class != p->sched_class) {
		if (prev_class->switched_from)
			prev_class->switched_from(rq, p, running);
		p->sched_class->switched_to(rq, p, running);
	} else
		p->sched_class->prio_changed(rq, p, oldprio, running);
}

L
Linus Torvalds 已提交
1948
#ifdef CONFIG_SMP
I
Ingo Molnar 已提交
1949

1950 1951 1952 1953 1954 1955
/* Used instead of source_load when we know the type == 0 */
static unsigned long weighted_cpuload(const int cpu)
{
	return cpu_rq(cpu)->load.weight;
}

1956 1957 1958
/*
 * Is this task likely cache-hot:
 */
1959
static int
1960 1961 1962 1963
task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
{
	s64 delta;

1964 1965 1966
	/*
	 * Buddy candidates are cache hot:
	 */
P
Peter Zijlstra 已提交
1967 1968 1969
	if (sched_feat(CACHE_HOT_BUDDY) &&
			(&p->se == cfs_rq_of(&p->se)->next ||
			 &p->se == cfs_rq_of(&p->se)->last))
1970 1971
		return 1;

1972 1973 1974
	if (p->sched_class != &fair_sched_class)
		return 0;

1975 1976 1977 1978 1979
	if (sysctl_sched_migration_cost == -1)
		return 1;
	if (sysctl_sched_migration_cost == 0)
		return 0;

1980 1981 1982 1983 1984 1985
	delta = now - p->se.exec_start;

	return delta < (s64)sysctl_sched_migration_cost;
}


I
Ingo Molnar 已提交
1986
void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
I
Ingo Molnar 已提交
1987
{
I
Ingo Molnar 已提交
1988 1989
	int old_cpu = task_cpu(p);
	struct rq *old_rq = cpu_rq(old_cpu), *new_rq = cpu_rq(new_cpu);
1990 1991
	struct cfs_rq *old_cfsrq = task_cfs_rq(p),
		      *new_cfsrq = cpu_cfs_rq(old_cfsrq, new_cpu);
1992
	u64 clock_offset;
I
Ingo Molnar 已提交
1993 1994

	clock_offset = old_rq->clock - new_rq->clock;
I
Ingo Molnar 已提交
1995

1996
	trace_sched_migrate_task(p, new_cpu);
1997

I
Ingo Molnar 已提交
1998 1999 2000
#ifdef CONFIG_SCHEDSTATS
	if (p->se.wait_start)
		p->se.wait_start -= clock_offset;
I
Ingo Molnar 已提交
2001 2002 2003 2004
	if (p->se.sleep_start)
		p->se.sleep_start -= clock_offset;
	if (p->se.block_start)
		p->se.block_start -= clock_offset;
2005
#endif
2006
	if (old_cpu != new_cpu) {
2007
		p->se.nr_migrations++;
2008
		new_rq->nr_migrations_in++;
2009
#ifdef CONFIG_SCHEDSTATS
2010 2011
		if (task_hot(p, old_rq->clock, NULL))
			schedstat_inc(p, se.nr_forced2_migrations);
I
Ingo Molnar 已提交
2012
#endif
2013 2014
		perf_swcounter_event(PERF_COUNT_SW_CPU_MIGRATIONS,
				     1, 1, NULL, 0);
2015
	}
2016 2017
	p->se.vruntime -= old_cfsrq->min_vruntime -
					 new_cfsrq->min_vruntime;
I
Ingo Molnar 已提交
2018 2019

	__set_task_cpu(p, new_cpu);
I
Ingo Molnar 已提交
2020 2021
}

2022
struct migration_req {
L
Linus Torvalds 已提交
2023 2024
	struct list_head list;

2025
	struct task_struct *task;
L
Linus Torvalds 已提交
2026 2027 2028
	int dest_cpu;

	struct completion done;
2029
};
L
Linus Torvalds 已提交
2030 2031 2032 2033 2034

/*
 * The task's runqueue lock must be held.
 * Returns true if you have to wait for migration thread.
 */
2035
static int
2036
migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
L
Linus Torvalds 已提交
2037
{
2038
	struct rq *rq = task_rq(p);
L
Linus Torvalds 已提交
2039 2040 2041 2042 2043

	/*
	 * If the task is not on a runqueue (and not running), then
	 * it is sufficient to simply update the task's cpu field.
	 */
I
Ingo Molnar 已提交
2044
	if (!p->se.on_rq && !task_running(rq, p)) {
L
Linus Torvalds 已提交
2045 2046 2047 2048 2049 2050 2051 2052
		set_task_cpu(p, dest_cpu);
		return 0;
	}

	init_completion(&req->done);
	req->task = p;
	req->dest_cpu = dest_cpu;
	list_add(&req->list, &rq->migration_queue);
2053

L
Linus Torvalds 已提交
2054 2055 2056
	return 1;
}

2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099
/*
 * wait_task_context_switch -	wait for a thread to complete at least one
 *				context switch.
 *
 * @p must not be current.
 */
void wait_task_context_switch(struct task_struct *p)
{
	unsigned long nvcsw, nivcsw, flags;
	int running;
	struct rq *rq;

	nvcsw	= p->nvcsw;
	nivcsw	= p->nivcsw;
	for (;;) {
		/*
		 * The runqueue is assigned before the actual context
		 * switch. We need to take the runqueue lock.
		 *
		 * We could check initially without the lock but it is
		 * very likely that we need to take the lock in every
		 * iteration.
		 */
		rq = task_rq_lock(p, &flags);
		running = task_running(rq, p);
		task_rq_unlock(rq, &flags);

		if (likely(!running))
			break;
		/*
		 * The switch count is incremented before the actual
		 * context switch. We thus wait for two switches to be
		 * sure at least one completed.
		 */
		if ((p->nvcsw - nvcsw) > 1)
			break;
		if ((p->nivcsw - nivcsw) > 1)
			break;

		cpu_relax();
	}
}

L
Linus Torvalds 已提交
2100 2101 2102
/*
 * wait_task_inactive - wait for a thread to unschedule.
 *
R
Roland McGrath 已提交
2103 2104 2105 2106 2107 2108 2109
 * If @match_state is nonzero, it's the @p->state value just checked and
 * not expected to change.  If it changes, i.e. @p might have woken up,
 * then return zero.  When we succeed in waiting for @p to be off its CPU,
 * we return a positive number (its total switch count).  If a second call
 * a short while later returns the same number, the caller can be sure that
 * @p has remained unscheduled the whole time.
 *
L
Linus Torvalds 已提交
2110 2111 2112 2113 2114 2115
 * The caller must ensure that the task *will* unschedule sometime soon,
 * else this function might spin for a *long* time. This function can't
 * be called with interrupts off, or it may introduce deadlock with
 * smp_call_function() if an IPI is sent by the same process we are
 * waiting to become inactive.
 */
R
Roland McGrath 已提交
2116
unsigned long wait_task_inactive(struct task_struct *p, long match_state)
L
Linus Torvalds 已提交
2117 2118
{
	unsigned long flags;
I
Ingo Molnar 已提交
2119
	int running, on_rq;
R
Roland McGrath 已提交
2120
	unsigned long ncsw;
2121
	struct rq *rq;
L
Linus Torvalds 已提交
2122

2123 2124 2125 2126 2127 2128 2129 2130
	for (;;) {
		/*
		 * We do the initial early heuristics without holding
		 * any task-queue locks at all. We'll only try to get
		 * the runqueue lock when things look like they will
		 * work out!
		 */
		rq = task_rq(p);
2131

2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142
		/*
		 * If the task is actively running on another CPU
		 * still, just relax and busy-wait without holding
		 * any locks.
		 *
		 * NOTE! Since we don't hold any locks, it's not
		 * even sure that "rq" stays as the right runqueue!
		 * But we don't care, since "task_running()" will
		 * return false if the runqueue has changed and p
		 * is actually now running somewhere else!
		 */
R
Roland McGrath 已提交
2143 2144 2145
		while (task_running(rq, p)) {
			if (match_state && unlikely(p->state != match_state))
				return 0;
2146
			cpu_relax();
R
Roland McGrath 已提交
2147
		}
2148

2149 2150 2151 2152 2153 2154
		/*
		 * Ok, time to look more closely! We need the rq
		 * lock now, to be *sure*. If we're wrong, we'll
		 * just go back and repeat.
		 */
		rq = task_rq_lock(p, &flags);
2155
		trace_sched_wait_task(rq, p);
2156 2157
		running = task_running(rq, p);
		on_rq = p->se.on_rq;
R
Roland McGrath 已提交
2158
		ncsw = 0;
2159
		if (!match_state || p->state == match_state)
2160
			ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
2161
		task_rq_unlock(rq, &flags);
2162

R
Roland McGrath 已提交
2163 2164 2165 2166 2167 2168
		/*
		 * If it changed from the expected state, bail out now.
		 */
		if (unlikely(!ncsw))
			break;

2169 2170 2171 2172 2173 2174 2175 2176 2177 2178
		/*
		 * Was it really running after all now that we
		 * checked with the proper locks actually held?
		 *
		 * Oops. Go back and try again..
		 */
		if (unlikely(running)) {
			cpu_relax();
			continue;
		}
2179

2180 2181 2182 2183 2184
		/*
		 * It's not enough that it's not actively running,
		 * it must be off the runqueue _entirely_, and not
		 * preempted!
		 *
2185
		 * So if it was still runnable (but just not actively
2186 2187 2188 2189 2190 2191 2192
		 * running right now), it's preempted, and we should
		 * yield - it could be a while.
		 */
		if (unlikely(on_rq)) {
			schedule_timeout_uninterruptible(1);
			continue;
		}
2193

2194 2195 2196 2197 2198 2199 2200
		/*
		 * Ahh, all good. It wasn't running, and it wasn't
		 * runnable, which means that it will never become
		 * running in the future either. We're all done!
		 */
		break;
	}
R
Roland McGrath 已提交
2201 2202

	return ncsw;
L
Linus Torvalds 已提交
2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217
}

/***
 * kick_process - kick a running thread to enter/exit the kernel
 * @p: the to-be-kicked thread
 *
 * Cause a process which is running on another CPU to enter
 * kernel-mode, without any delay. (to get signals handled.)
 *
 * NOTE: this function doesnt have to take the runqueue lock,
 * because all it wants to ensure is that the remote task enters
 * the kernel. If the IPI races and the task has been migrated
 * to another CPU then no harm is done and the purpose has been
 * achieved as well.
 */
2218
void kick_process(struct task_struct *p)
L
Linus Torvalds 已提交
2219 2220 2221 2222 2223 2224 2225 2226 2227
{
	int cpu;

	preempt_disable();
	cpu = task_cpu(p);
	if ((cpu != smp_processor_id()) && task_curr(p))
		smp_send_reschedule(cpu);
	preempt_enable();
}
R
Rusty Russell 已提交
2228
EXPORT_SYMBOL_GPL(kick_process);
L
Linus Torvalds 已提交
2229 2230

/*
2231 2232
 * Return a low guess at the load of a migration-source cpu weighted
 * according to the scheduling class and "nice" value.
L
Linus Torvalds 已提交
2233 2234 2235 2236
 *
 * We want to under-estimate the load of migration sources, to
 * balance conservatively.
 */
A
Alexey Dobriyan 已提交
2237
static unsigned long source_load(int cpu, int type)
L
Linus Torvalds 已提交
2238
{
2239
	struct rq *rq = cpu_rq(cpu);
I
Ingo Molnar 已提交
2240
	unsigned long total = weighted_cpuload(cpu);
2241

2242
	if (type == 0 || !sched_feat(LB_BIAS))
I
Ingo Molnar 已提交
2243
		return total;
2244

I
Ingo Molnar 已提交
2245
	return min(rq->cpu_load[type-1], total);
L
Linus Torvalds 已提交
2246 2247 2248
}

/*
2249 2250
 * Return a high guess at the load of a migration-target cpu weighted
 * according to the scheduling class and "nice" value.
L
Linus Torvalds 已提交
2251
 */
A
Alexey Dobriyan 已提交
2252
static unsigned long target_load(int cpu, int type)
L
Linus Torvalds 已提交
2253
{
2254
	struct rq *rq = cpu_rq(cpu);
I
Ingo Molnar 已提交
2255
	unsigned long total = weighted_cpuload(cpu);
2256

2257
	if (type == 0 || !sched_feat(LB_BIAS))
I
Ingo Molnar 已提交
2258
		return total;
2259

I
Ingo Molnar 已提交
2260
	return max(rq->cpu_load[type-1], total);
2261 2262
}

N
Nick Piggin 已提交
2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279
/*
 * find_idlest_group finds and returns the least busy CPU group within the
 * domain.
 */
static struct sched_group *
find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
{
	struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups;
	unsigned long min_load = ULONG_MAX, this_load = 0;
	int load_idx = sd->forkexec_idx;
	int imbalance = 100 + (sd->imbalance_pct-100)/2;

	do {
		unsigned long load, avg_load;
		int local_group;
		int i;

2280
		/* Skip over this group if it has no CPUs allowed */
2281 2282
		if (!cpumask_intersects(sched_group_cpus(group),
					&p->cpus_allowed))
2283
			continue;
2284

2285 2286
		local_group = cpumask_test_cpu(this_cpu,
					       sched_group_cpus(group));
N
Nick Piggin 已提交
2287 2288 2289 2290

		/* Tally up the load of all CPUs in the group */
		avg_load = 0;

2291
		for_each_cpu(i, sched_group_cpus(group)) {
N
Nick Piggin 已提交
2292 2293 2294 2295 2296 2297 2298 2299 2300 2301
			/* Bias balancing toward cpus of our domain */
			if (local_group)
				load = source_load(i, load_idx);
			else
				load = target_load(i, load_idx);

			avg_load += load;
		}

		/* Adjust by relative CPU power of the group */
2302 2303
		avg_load = sg_div_cpu_power(group,
				avg_load * SCHED_LOAD_SCALE);
N
Nick Piggin 已提交
2304 2305 2306 2307 2308 2309 2310 2311

		if (local_group) {
			this_load = avg_load;
			this = group;
		} else if (avg_load < min_load) {
			min_load = avg_load;
			idlest = group;
		}
2312
	} while (group = group->next, group != sd->groups);
N
Nick Piggin 已提交
2313 2314 2315 2316 2317 2318 2319

	if (!idlest || 100*this_load < imbalance*min_load)
		return NULL;
	return idlest;
}

/*
2320
 * find_idlest_cpu - find the idlest cpu among the cpus in group.
N
Nick Piggin 已提交
2321
 */
I
Ingo Molnar 已提交
2322
static int
2323
find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
N
Nick Piggin 已提交
2324 2325 2326 2327 2328
{
	unsigned long load, min_load = ULONG_MAX;
	int idlest = -1;
	int i;

2329
	/* Traverse only the allowed CPUs */
2330
	for_each_cpu_and(i, sched_group_cpus(group), &p->cpus_allowed) {
2331
		load = weighted_cpuload(i);
N
Nick Piggin 已提交
2332 2333 2334 2335 2336 2337 2338 2339 2340 2341

		if (load < min_load || (load == min_load && i == this_cpu)) {
			min_load = load;
			idlest = i;
		}
	}

	return idlest;
}

N
Nick Piggin 已提交
2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356
/*
 * sched_balance_self: balance the current task (running on cpu) in domains
 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
 * SD_BALANCE_EXEC.
 *
 * Balance, ie. select the least loaded group.
 *
 * Returns the target CPU number, or the same CPU if no balancing is needed.
 *
 * preempt must be disabled.
 */
static int sched_balance_self(int cpu, int flag)
{
	struct task_struct *t = current;
	struct sched_domain *tmp, *sd = NULL;
N
Nick Piggin 已提交
2357

2358
	for_each_domain(cpu, tmp) {
I
Ingo Molnar 已提交
2359 2360 2361
		/*
		 * If power savings logic is enabled for a domain, stop there.
		 */
2362 2363
		if (tmp->flags & SD_POWERSAVINGS_BALANCE)
			break;
N
Nick Piggin 已提交
2364 2365
		if (tmp->flags & flag)
			sd = tmp;
2366
	}
N
Nick Piggin 已提交
2367

2368 2369 2370
	if (sd)
		update_shares(sd);

N
Nick Piggin 已提交
2371 2372
	while (sd) {
		struct sched_group *group;
2373 2374 2375 2376 2377 2378
		int new_cpu, weight;

		if (!(sd->flags & flag)) {
			sd = sd->child;
			continue;
		}
N
Nick Piggin 已提交
2379 2380

		group = find_idlest_group(sd, t, cpu);
2381 2382 2383 2384
		if (!group) {
			sd = sd->child;
			continue;
		}
N
Nick Piggin 已提交
2385

2386
		new_cpu = find_idlest_cpu(group, t, cpu);
2387 2388 2389 2390 2391
		if (new_cpu == -1 || new_cpu == cpu) {
			/* Now try balancing at a lower domain level of cpu */
			sd = sd->child;
			continue;
		}
N
Nick Piggin 已提交
2392

2393
		/* Now try balancing at a lower domain level of new_cpu */
N
Nick Piggin 已提交
2394
		cpu = new_cpu;
2395
		weight = cpumask_weight(sched_domain_span(sd));
N
Nick Piggin 已提交
2396 2397
		sd = NULL;
		for_each_domain(cpu, tmp) {
2398
			if (weight <= cpumask_weight(sched_domain_span(tmp)))
N
Nick Piggin 已提交
2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409
				break;
			if (tmp->flags & flag)
				sd = tmp;
		}
		/* while loop will break here if sd == NULL */
	}

	return cpu;
}

#endif /* CONFIG_SMP */
L
Linus Torvalds 已提交
2410

T
Thomas Gleixner 已提交
2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431
/**
 * task_oncpu_function_call - call a function on the cpu on which a task runs
 * @p:		the task to evaluate
 * @func:	the function to be called
 * @info:	the function call argument
 *
 * Calls the function @func when the task is currently running. This might
 * be on the current CPU, which just calls the function directly
 */
void task_oncpu_function_call(struct task_struct *p,
			      void (*func) (void *info), void *info)
{
	int cpu;

	preempt_disable();
	cpu = task_cpu(p);
	if (task_curr(p))
		smp_call_function_single(cpu, func, info, 1);
	preempt_enable();
}

L
Linus Torvalds 已提交
2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445
/***
 * try_to_wake_up - wake up a thread
 * @p: the to-be-woken-up thread
 * @state: the mask of task states that can be woken
 * @sync: do a synchronous wakeup?
 *
 * Put it on the run-queue if it's not already there. The "current"
 * thread is always on the run-queue (except when the actual
 * re-schedule is in progress), and as such you're allowed to do
 * the simpler "current->state = TASK_RUNNING" to mark yourself
 * runnable without the overhead of this.
 *
 * returns failure only if the task is already active.
 */
2446
static int try_to_wake_up(struct task_struct *p, unsigned int state, int sync)
L
Linus Torvalds 已提交
2447
{
2448
	int cpu, orig_cpu, this_cpu, success = 0;
L
Linus Torvalds 已提交
2449 2450
	unsigned long flags;
	long old_state;
2451
	struct rq *rq;
L
Linus Torvalds 已提交
2452

2453 2454 2455
	if (!sched_feat(SYNC_WAKEUPS))
		sync = 0;

P
Peter Zijlstra 已提交
2456
#ifdef CONFIG_SMP
2457
	if (sched_feat(LB_WAKEUP_UPDATE) && !root_task_group_empty()) {
P
Peter Zijlstra 已提交
2458 2459 2460 2461 2462 2463
		struct sched_domain *sd;

		this_cpu = raw_smp_processor_id();
		cpu = task_cpu(p);

		for_each_domain(this_cpu, sd) {
2464
			if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
P
Peter Zijlstra 已提交
2465 2466 2467 2468 2469 2470 2471
				update_shares(sd);
				break;
			}
		}
	}
#endif

2472
	smp_wmb();
L
Linus Torvalds 已提交
2473
	rq = task_rq_lock(p, &flags);
2474
	update_rq_clock(rq);
L
Linus Torvalds 已提交
2475 2476 2477 2478
	old_state = p->state;
	if (!(old_state & state))
		goto out;

I
Ingo Molnar 已提交
2479
	if (p->se.on_rq)
L
Linus Torvalds 已提交
2480 2481 2482
		goto out_running;

	cpu = task_cpu(p);
2483
	orig_cpu = cpu;
L
Linus Torvalds 已提交
2484 2485 2486 2487 2488 2489
	this_cpu = smp_processor_id();

#ifdef CONFIG_SMP
	if (unlikely(task_running(rq, p)))
		goto out_activate;

2490 2491 2492
	cpu = p->sched_class->select_task_rq(p, sync);
	if (cpu != orig_cpu) {
		set_task_cpu(p, cpu);
L
Linus Torvalds 已提交
2493 2494 2495 2496 2497 2498
		task_rq_unlock(rq, &flags);
		/* might preempt at this point */
		rq = task_rq_lock(p, &flags);
		old_state = p->state;
		if (!(old_state & state))
			goto out;
I
Ingo Molnar 已提交
2499
		if (p->se.on_rq)
L
Linus Torvalds 已提交
2500 2501 2502 2503 2504 2505
			goto out_running;

		this_cpu = smp_processor_id();
		cpu = task_cpu(p);
	}

2506 2507 2508 2509 2510 2511 2512
#ifdef CONFIG_SCHEDSTATS
	schedstat_inc(rq, ttwu_count);
	if (cpu == this_cpu)
		schedstat_inc(rq, ttwu_local);
	else {
		struct sched_domain *sd;
		for_each_domain(this_cpu, sd) {
2513
			if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
2514 2515 2516 2517 2518
				schedstat_inc(sd, ttwu_wake_remote);
				break;
			}
		}
	}
2519
#endif /* CONFIG_SCHEDSTATS */
2520

L
Linus Torvalds 已提交
2521 2522
out_activate:
#endif /* CONFIG_SMP */
2523 2524 2525 2526 2527 2528 2529 2530 2531
	schedstat_inc(p, se.nr_wakeups);
	if (sync)
		schedstat_inc(p, se.nr_wakeups_sync);
	if (orig_cpu != cpu)
		schedstat_inc(p, se.nr_wakeups_migrate);
	if (cpu == this_cpu)
		schedstat_inc(p, se.nr_wakeups_local);
	else
		schedstat_inc(p, se.nr_wakeups_remote);
I
Ingo Molnar 已提交
2532
	activate_task(rq, p, 1);
L
Linus Torvalds 已提交
2533 2534
	success = 1;

P
Peter Zijlstra 已提交
2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550
	/*
	 * Only attribute actual wakeups done by this task.
	 */
	if (!in_interrupt()) {
		struct sched_entity *se = &current->se;
		u64 sample = se->sum_exec_runtime;

		if (se->last_wakeup)
			sample -= se->last_wakeup;
		else
			sample -= se->start_runtime;
		update_avg(&se->avg_wakeup, sample);

		se->last_wakeup = se->sum_exec_runtime;
	}

L
Linus Torvalds 已提交
2551
out_running:
2552
	trace_sched_wakeup(rq, p, success);
2553
	check_preempt_curr(rq, p, sync);
I
Ingo Molnar 已提交
2554

L
Linus Torvalds 已提交
2555
	p->state = TASK_RUNNING;
2556 2557 2558 2559
#ifdef CONFIG_SMP
	if (p->sched_class->task_wake_up)
		p->sched_class->task_wake_up(rq, p);
#endif
L
Linus Torvalds 已提交
2560 2561 2562 2563 2564 2565
out:
	task_rq_unlock(rq, &flags);

	return success;
}

2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576
/**
 * wake_up_process - Wake up a specific process
 * @p: The process to be woken up.
 *
 * Attempt to wake up the nominated process and move it to the set of runnable
 * processes.  Returns 1 if the process was woken up, 0 if it was already
 * running.
 *
 * It may be assumed that this function implies a write memory barrier before
 * changing the task state if and only if any tasks are woken up.
 */
2577
int wake_up_process(struct task_struct *p)
L
Linus Torvalds 已提交
2578
{
2579
	return try_to_wake_up(p, TASK_ALL, 0);
L
Linus Torvalds 已提交
2580 2581 2582
}
EXPORT_SYMBOL(wake_up_process);

2583
int wake_up_state(struct task_struct *p, unsigned int state)
L
Linus Torvalds 已提交
2584 2585 2586 2587 2588 2589 2590
{
	return try_to_wake_up(p, state, 0);
}

/*
 * Perform scheduler related setup for a newly forked process p.
 * p is forked by current.
I
Ingo Molnar 已提交
2591 2592 2593 2594 2595 2596 2597
 *
 * __sched_fork() is basic setup used by init_idle() too:
 */
static void __sched_fork(struct task_struct *p)
{
	p->se.exec_start		= 0;
	p->se.sum_exec_runtime		= 0;
2598
	p->se.prev_sum_exec_runtime	= 0;
2599
	p->se.nr_migrations		= 0;
I
Ingo Molnar 已提交
2600 2601
	p->se.last_wakeup		= 0;
	p->se.avg_overlap		= 0;
P
Peter Zijlstra 已提交
2602 2603
	p->se.start_runtime		= 0;
	p->se.avg_wakeup		= sysctl_sched_wakeup_granularity;
I
Ingo Molnar 已提交
2604 2605

#ifdef CONFIG_SCHEDSTATS
2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636
	p->se.wait_start			= 0;
	p->se.wait_max				= 0;
	p->se.wait_count			= 0;
	p->se.wait_sum				= 0;

	p->se.sleep_start			= 0;
	p->se.sleep_max				= 0;
	p->se.sum_sleep_runtime			= 0;

	p->se.block_start			= 0;
	p->se.block_max				= 0;
	p->se.exec_max				= 0;
	p->se.slice_max				= 0;

	p->se.nr_migrations_cold		= 0;
	p->se.nr_failed_migrations_affine	= 0;
	p->se.nr_failed_migrations_running	= 0;
	p->se.nr_failed_migrations_hot		= 0;
	p->se.nr_forced_migrations		= 0;
	p->se.nr_forced2_migrations		= 0;

	p->se.nr_wakeups			= 0;
	p->se.nr_wakeups_sync			= 0;
	p->se.nr_wakeups_migrate		= 0;
	p->se.nr_wakeups_local			= 0;
	p->se.nr_wakeups_remote			= 0;
	p->se.nr_wakeups_affine			= 0;
	p->se.nr_wakeups_affine_attempts	= 0;
	p->se.nr_wakeups_passive		= 0;
	p->se.nr_wakeups_idle			= 0;

I
Ingo Molnar 已提交
2637
#endif
N
Nick Piggin 已提交
2638

P
Peter Zijlstra 已提交
2639
	INIT_LIST_HEAD(&p->rt.run_list);
I
Ingo Molnar 已提交
2640
	p->se.on_rq = 0;
2641
	INIT_LIST_HEAD(&p->se.group_node);
N
Nick Piggin 已提交
2642

2643 2644 2645 2646
#ifdef CONFIG_PREEMPT_NOTIFIERS
	INIT_HLIST_HEAD(&p->preempt_notifiers);
#endif

L
Linus Torvalds 已提交
2647 2648 2649 2650 2651 2652 2653
	/*
	 * We mark the process as running here, but have not actually
	 * inserted it onto the runqueue yet. This guarantees that
	 * nobody will actually run it, and a signal or other external
	 * event cannot wake it up and insert it on the runqueue either.
	 */
	p->state = TASK_RUNNING;
I
Ingo Molnar 已提交
2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667
}

/*
 * fork()/clone()-time setup:
 */
void sched_fork(struct task_struct *p, int clone_flags)
{
	int cpu = get_cpu();

	__sched_fork(p);

#ifdef CONFIG_SMP
	cpu = sched_balance_self(cpu, SD_BALANCE_FORK);
#endif
I
Ingo Molnar 已提交
2668
	set_task_cpu(p, cpu);
2669 2670

	/*
2671
	 * Make sure we do not leak PI boosting priority to the child.
2672
	 */
2673
	p->prio = current->normal_prio;
2674

2675 2676 2677 2678 2679 2680 2681 2682 2683 2684
	/*
	 * Revert to default priority/policy on fork if requested.
	 */
	if (unlikely(p->sched_reset_on_fork)) {
		if (p->policy == SCHED_FIFO || p->policy == SCHED_RR)
			p->policy = SCHED_NORMAL;

		if (p->normal_prio < DEFAULT_PRIO)
			p->prio = DEFAULT_PRIO;

2685 2686 2687 2688 2689
		if (PRIO_TO_NICE(p->static_prio) < 0) {
			p->static_prio = NICE_TO_PRIO(0);
			set_load_weight(p);
		}

2690 2691 2692 2693 2694 2695
		/*
		 * We don't need the reset flag anymore after the fork. It has
		 * fulfilled its duty:
		 */
		p->sched_reset_on_fork = 0;
	}
2696

H
Hiroshi Shimamoto 已提交
2697 2698
	if (!rt_prio(p->prio))
		p->sched_class = &fair_sched_class;
2699

2700
#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
I
Ingo Molnar 已提交
2701
	if (likely(sched_info_on()))
2702
		memset(&p->sched_info, 0, sizeof(p->sched_info));
L
Linus Torvalds 已提交
2703
#endif
2704
#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
2705 2706
	p->oncpu = 0;
#endif
L
Linus Torvalds 已提交
2707
#ifdef CONFIG_PREEMPT
2708
	/* Want to start with kernel preemption disabled. */
A
Al Viro 已提交
2709
	task_thread_info(p)->preempt_count = 1;
L
Linus Torvalds 已提交
2710
#endif
2711 2712
	plist_node_init(&p->pushable_tasks, MAX_PRIO);

N
Nick Piggin 已提交
2713
	put_cpu();
L
Linus Torvalds 已提交
2714 2715 2716 2717 2718 2719 2720 2721 2722
}

/*
 * wake_up_new_task - wake up a newly created task for the first time.
 *
 * This function will do some initial scheduler statistics housekeeping
 * that must be done for every newly created context, then puts the task
 * on the runqueue and wakes it.
 */
2723
void wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
L
Linus Torvalds 已提交
2724 2725
{
	unsigned long flags;
I
Ingo Molnar 已提交
2726
	struct rq *rq;
L
Linus Torvalds 已提交
2727 2728

	rq = task_rq_lock(p, &flags);
N
Nick Piggin 已提交
2729
	BUG_ON(p->state != TASK_RUNNING);
I
Ingo Molnar 已提交
2730
	update_rq_clock(rq);
L
Linus Torvalds 已提交
2731 2732 2733

	p->prio = effective_prio(p);

2734
	if (!p->sched_class->task_new || !current->se.on_rq) {
I
Ingo Molnar 已提交
2735
		activate_task(rq, p, 0);
L
Linus Torvalds 已提交
2736 2737
	} else {
		/*
I
Ingo Molnar 已提交
2738 2739
		 * Let the scheduling class do new task startup
		 * management (if any):
L
Linus Torvalds 已提交
2740
		 */
2741
		p->sched_class->task_new(rq, p);
2742
		inc_nr_running(rq);
L
Linus Torvalds 已提交
2743
	}
2744
	trace_sched_wakeup_new(rq, p, 1);
2745
	check_preempt_curr(rq, p, 0);
2746 2747 2748 2749
#ifdef CONFIG_SMP
	if (p->sched_class->task_wake_up)
		p->sched_class->task_wake_up(rq, p);
#endif
I
Ingo Molnar 已提交
2750
	task_rq_unlock(rq, &flags);
L
Linus Torvalds 已提交
2751 2752
}

2753 2754 2755
#ifdef CONFIG_PREEMPT_NOTIFIERS

/**
2756
 * preempt_notifier_register - tell me when current is being preempted & rescheduled
R
Randy Dunlap 已提交
2757
 * @notifier: notifier struct to register
2758 2759 2760 2761 2762 2763 2764 2765 2766
 */
void preempt_notifier_register(struct preempt_notifier *notifier)
{
	hlist_add_head(&notifier->link, &current->preempt_notifiers);
}
EXPORT_SYMBOL_GPL(preempt_notifier_register);

/**
 * preempt_notifier_unregister - no longer interested in preemption notifications
R
Randy Dunlap 已提交
2767
 * @notifier: notifier struct to unregister
2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796
 *
 * This is safe to call from within a preemption notifier.
 */
void preempt_notifier_unregister(struct preempt_notifier *notifier)
{
	hlist_del(&notifier->link);
}
EXPORT_SYMBOL_GPL(preempt_notifier_unregister);

static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
{
	struct preempt_notifier *notifier;
	struct hlist_node *node;

	hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
		notifier->ops->sched_in(notifier, raw_smp_processor_id());
}

static void
fire_sched_out_preempt_notifiers(struct task_struct *curr,
				 struct task_struct *next)
{
	struct preempt_notifier *notifier;
	struct hlist_node *node;

	hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
		notifier->ops->sched_out(notifier, next);
}

2797
#else /* !CONFIG_PREEMPT_NOTIFIERS */
2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808

static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
{
}

static void
fire_sched_out_preempt_notifiers(struct task_struct *curr,
				 struct task_struct *next)
{
}

2809
#endif /* CONFIG_PREEMPT_NOTIFIERS */
2810

2811 2812 2813
/**
 * prepare_task_switch - prepare to switch tasks
 * @rq: the runqueue preparing to switch
R
Randy Dunlap 已提交
2814
 * @prev: the current task that is being switched out
2815 2816 2817 2818 2819 2820 2821 2822 2823
 * @next: the task we are going to switch to.
 *
 * This is called with the rq lock held and interrupts off. It must
 * be paired with a subsequent finish_task_switch after the context
 * switch.
 *
 * prepare_task_switch sets up locking and calls architecture specific
 * hooks.
 */
2824 2825 2826
static inline void
prepare_task_switch(struct rq *rq, struct task_struct *prev,
		    struct task_struct *next)
2827
{
2828
	fire_sched_out_preempt_notifiers(prev, next);
2829 2830 2831 2832
	prepare_lock_switch(rq, next);
	prepare_arch_switch(next);
}

L
Linus Torvalds 已提交
2833 2834
/**
 * finish_task_switch - clean up after a task-switch
2835
 * @rq: runqueue associated with task-switch
L
Linus Torvalds 已提交
2836 2837
 * @prev: the thread we just switched away from.
 *
2838 2839 2840 2841
 * finish_task_switch must be called after the context switch, paired
 * with a prepare_task_switch call before the context switch.
 * finish_task_switch will reconcile locking set up by prepare_task_switch,
 * and do any other architecture-specific cleanup actions.
L
Linus Torvalds 已提交
2842 2843
 *
 * Note that we may have delayed dropping an mm in context_switch(). If
I
Ingo Molnar 已提交
2844
 * so, we finish that here outside of the runqueue lock. (Doing it
L
Linus Torvalds 已提交
2845 2846 2847
 * with the lock held can cause deadlocks; see schedule() for
 * details.)
 */
2848
static void finish_task_switch(struct rq *rq, struct task_struct *prev)
L
Linus Torvalds 已提交
2849 2850 2851
	__releases(rq->lock)
{
	struct mm_struct *mm = rq->prev_mm;
O
Oleg Nesterov 已提交
2852
	long prev_state;
L
Linus Torvalds 已提交
2853 2854 2855 2856 2857

	rq->prev_mm = NULL;

	/*
	 * A task struct has one reference for the use as "current".
2858
	 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
O
Oleg Nesterov 已提交
2859 2860
	 * schedule one last time. The schedule call will never return, and
	 * the scheduled task must drop that reference.
2861
	 * The test for TASK_DEAD must occur while the runqueue locks are
L
Linus Torvalds 已提交
2862 2863 2864 2865 2866
	 * still held, otherwise prev could be scheduled on another cpu, die
	 * there before we look at prev->state, and then the reference would
	 * be dropped twice.
	 *		Manfred Spraul <manfred@colorfullife.com>
	 */
O
Oleg Nesterov 已提交
2867
	prev_state = prev->state;
2868
	finish_arch_switch(prev);
T
Thomas Gleixner 已提交
2869
	perf_counter_task_sched_in(current, cpu_of(rq));
2870
	finish_lock_switch(rq, prev);
S
Steven Rostedt 已提交
2871

2872
	fire_sched_in_preempt_notifiers(current);
L
Linus Torvalds 已提交
2873 2874
	if (mm)
		mmdrop(mm);
2875
	if (unlikely(prev_state == TASK_DEAD)) {
2876 2877 2878
		/*
		 * Remove function-return probe instances associated with this
		 * task and put them back on the free list.
I
Ingo Molnar 已提交
2879
		 */
2880
		kprobe_flush_task(prev);
L
Linus Torvalds 已提交
2881
		put_task_struct(prev);
2882
	}
2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909
}

#ifdef CONFIG_SMP

/* assumes rq->lock is held */
static inline void pre_schedule(struct rq *rq, struct task_struct *prev)
{
	if (prev->sched_class->pre_schedule)
		prev->sched_class->pre_schedule(rq, prev);
}

/* rq->lock is NOT held, but preemption is disabled */
static inline void post_schedule(struct rq *rq)
{
	if (rq->post_schedule) {
		unsigned long flags;

		spin_lock_irqsave(&rq->lock, flags);
		if (rq->curr->sched_class->post_schedule)
			rq->curr->sched_class->post_schedule(rq);
		spin_unlock_irqrestore(&rq->lock, flags);

		rq->post_schedule = 0;
	}
}

#else
2910

2911 2912 2913 2914 2915 2916
static inline void pre_schedule(struct rq *rq, struct task_struct *p)
{
}

static inline void post_schedule(struct rq *rq)
{
L
Linus Torvalds 已提交
2917 2918
}

2919 2920
#endif

L
Linus Torvalds 已提交
2921 2922 2923 2924
/**
 * schedule_tail - first thing a freshly forked thread must call.
 * @prev: the thread we just switched away from.
 */
2925
asmlinkage void schedule_tail(struct task_struct *prev)
L
Linus Torvalds 已提交
2926 2927
	__releases(rq->lock)
{
2928
	struct rq *rq = this_rq();
2929

2930
	finish_task_switch(rq, prev);
2931

2932 2933 2934 2935 2936
	/*
	 * FIXME: do we need to worry about rq being invalidated by the
	 * task_switch?
	 */
	post_schedule(rq);
2937

2938 2939 2940 2941
#ifdef __ARCH_WANT_UNLOCKED_CTXSW
	/* In this case, finish_task_switch does not reenable preemption */
	preempt_enable();
#endif
L
Linus Torvalds 已提交
2942
	if (current->set_child_tid)
2943
		put_user(task_pid_vnr(current), current->set_child_tid);
L
Linus Torvalds 已提交
2944 2945 2946 2947 2948 2949
}

/*
 * context_switch - switch to the new MM and the new
 * thread's register state.
 */
2950
static inline void
2951
context_switch(struct rq *rq, struct task_struct *prev,
2952
	       struct task_struct *next)
L
Linus Torvalds 已提交
2953
{
I
Ingo Molnar 已提交
2954
	struct mm_struct *mm, *oldmm;
L
Linus Torvalds 已提交
2955

2956
	prepare_task_switch(rq, prev, next);
2957
	trace_sched_switch(rq, prev, next);
I
Ingo Molnar 已提交
2958 2959
	mm = next->mm;
	oldmm = prev->active_mm;
2960 2961 2962 2963 2964
	/*
	 * For paravirt, this is coupled with an exit in switch_to to
	 * combine the page table reload and the switch backend into
	 * one hypercall.
	 */
2965
	arch_start_context_switch(prev);
2966

I
Ingo Molnar 已提交
2967
	if (unlikely(!mm)) {
L
Linus Torvalds 已提交
2968 2969 2970 2971 2972 2973
		next->active_mm = oldmm;
		atomic_inc(&oldmm->mm_count);
		enter_lazy_tlb(oldmm, next);
	} else
		switch_mm(oldmm, mm, next);

I
Ingo Molnar 已提交
2974
	if (unlikely(!prev->mm)) {
L
Linus Torvalds 已提交
2975 2976 2977
		prev->active_mm = NULL;
		rq->prev_mm = oldmm;
	}
2978 2979 2980 2981 2982 2983 2984
	/*
	 * Since the runqueue lock will be released by the next
	 * task (which is an invalid locking op but in the case
	 * of the scheduler it's an obvious special-case), so we
	 * do an early lockdep release here:
	 */
#ifndef __ARCH_WANT_UNLOCKED_CTXSW
2985
	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
2986
#endif
L
Linus Torvalds 已提交
2987 2988 2989 2990

	/* Here we just switch the register state and the stack. */
	switch_to(prev, next, prev);

I
Ingo Molnar 已提交
2991 2992 2993 2994 2995 2996
	barrier();
	/*
	 * this_rq must be evaluated again because prev may have moved
	 * CPUs since it called schedule(), thus the 'rq' on its stack
	 * frame will be invalid.
	 */
2997
	finish_task_switch(this_rq(), prev);
L
Linus Torvalds 已提交
2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020
}

/*
 * nr_running, nr_uninterruptible and nr_context_switches:
 *
 * externally visible scheduler statistics: current number of runnable
 * threads, current number of uninterruptible-sleeping threads, total
 * number of context switches performed since bootup.
 */
unsigned long nr_running(void)
{
	unsigned long i, sum = 0;

	for_each_online_cpu(i)
		sum += cpu_rq(i)->nr_running;

	return sum;
}

unsigned long nr_uninterruptible(void)
{
	unsigned long i, sum = 0;

3021
	for_each_possible_cpu(i)
L
Linus Torvalds 已提交
3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035
		sum += cpu_rq(i)->nr_uninterruptible;

	/*
	 * Since we read the counters lockless, it might be slightly
	 * inaccurate. Do not allow it to go below zero though:
	 */
	if (unlikely((long)sum < 0))
		sum = 0;

	return sum;
}

unsigned long long nr_context_switches(void)
{
3036 3037
	int i;
	unsigned long long sum = 0;
L
Linus Torvalds 已提交
3038

3039
	for_each_possible_cpu(i)
L
Linus Torvalds 已提交
3040 3041 3042 3043 3044 3045 3046 3047 3048
		sum += cpu_rq(i)->nr_switches;

	return sum;
}

unsigned long nr_iowait(void)
{
	unsigned long i, sum = 0;

3049
	for_each_possible_cpu(i)
L
Linus Torvalds 已提交
3050 3051 3052 3053 3054
		sum += atomic_read(&cpu_rq(i)->nr_iowait);

	return sum;
}

3055 3056 3057 3058 3059 3060
/* Variables and functions for calc_load */
static atomic_long_t calc_load_tasks;
static unsigned long calc_load_update;
unsigned long avenrun[3];
EXPORT_SYMBOL(avenrun);

3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075
/**
 * get_avenrun - get the load average array
 * @loads:	pointer to dest load array
 * @offset:	offset to add
 * @shift:	shift count to shift the result left
 *
 * These values are estimates at best, so no need for locking.
 */
void get_avenrun(unsigned long *loads, unsigned long offset, int shift)
{
	loads[0] = (avenrun[0] + offset) << shift;
	loads[1] = (avenrun[1] + offset) << shift;
	loads[2] = (avenrun[2] + offset) << shift;
}

3076 3077
static unsigned long
calc_load(unsigned long load, unsigned long exp, unsigned long active)
3078
{
3079 3080 3081 3082
	load *= exp;
	load += active * (FIXED_1 - exp);
	return load >> FSHIFT;
}
3083

3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094
/*
 * calc_load - update the avenrun load estimates 10 ticks after the
 * CPUs have updated calc_load_tasks.
 */
void calc_global_load(void)
{
	unsigned long upd = calc_load_update + 10;
	long active;

	if (time_before(jiffies, upd))
		return;
3095

3096 3097
	active = atomic_long_read(&calc_load_tasks);
	active = active > 0 ? active * FIXED_1 : 0;
3098

3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120
	avenrun[0] = calc_load(avenrun[0], EXP_1, active);
	avenrun[1] = calc_load(avenrun[1], EXP_5, active);
	avenrun[2] = calc_load(avenrun[2], EXP_15, active);

	calc_load_update += LOAD_FREQ;
}

/*
 * Either called from update_cpu_load() or from a cpu going idle
 */
static void calc_load_account_active(struct rq *this_rq)
{
	long nr_active, delta;

	nr_active = this_rq->nr_running;
	nr_active += (long) this_rq->nr_uninterruptible;

	if (nr_active != this_rq->calc_load_active) {
		delta = nr_active - this_rq->calc_load_active;
		this_rq->calc_load_active = nr_active;
		atomic_long_add(delta, &calc_load_tasks);
	}
3121 3122
}

3123 3124 3125 3126 3127 3128 3129 3130 3131
/*
 * Externally visible per-cpu scheduler statistics:
 * cpu_nr_migrations(cpu) - number of migrations into that cpu
 */
u64 cpu_nr_migrations(int cpu)
{
	return cpu_rq(cpu)->nr_migrations_in;
}

3132
/*
I
Ingo Molnar 已提交
3133 3134
 * Update rq->cpu_load[] statistics. This function is usually called every
 * scheduler tick (TICK_NSEC).
3135
 */
I
Ingo Molnar 已提交
3136
static void update_cpu_load(struct rq *this_rq)
3137
{
3138
	unsigned long this_load = this_rq->load.weight;
I
Ingo Molnar 已提交
3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150
	int i, scale;

	this_rq->nr_load_updates++;

	/* Update our load: */
	for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
		unsigned long old_load, new_load;

		/* scale is effectively 1 << i now, and >> i divides by scale */

		old_load = this_rq->cpu_load[i];
		new_load = this_load;
I
Ingo Molnar 已提交
3151 3152 3153 3154 3155 3156 3157
		/*
		 * Round up the averaging division if load is increasing. This
		 * prevents us from getting stuck on 9 if the load is 10, for
		 * example.
		 */
		if (new_load > old_load)
			new_load += scale-1;
I
Ingo Molnar 已提交
3158 3159
		this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
	}
3160 3161 3162 3163 3164

	if (time_after_eq(jiffies, this_rq->calc_load_update)) {
		this_rq->calc_load_update += LOAD_FREQ;
		calc_load_account_active(this_rq);
	}
3165 3166
}

I
Ingo Molnar 已提交
3167 3168
#ifdef CONFIG_SMP

L
Linus Torvalds 已提交
3169 3170 3171 3172 3173 3174
/*
 * double_rq_lock - safely lock two runqueues
 *
 * Note this does not disable interrupts like task_rq_lock,
 * you need to do so manually before calling.
 */
3175
static void double_rq_lock(struct rq *rq1, struct rq *rq2)
L
Linus Torvalds 已提交
3176 3177 3178
	__acquires(rq1->lock)
	__acquires(rq2->lock)
{
3179
	BUG_ON(!irqs_disabled());
L
Linus Torvalds 已提交
3180 3181 3182 3183
	if (rq1 == rq2) {
		spin_lock(&rq1->lock);
		__acquire(rq2->lock);	/* Fake it out ;) */
	} else {
3184
		if (rq1 < rq2) {
L
Linus Torvalds 已提交
3185
			spin_lock(&rq1->lock);
3186
			spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
L
Linus Torvalds 已提交
3187 3188
		} else {
			spin_lock(&rq2->lock);
3189
			spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
L
Linus Torvalds 已提交
3190 3191
		}
	}
3192 3193
	update_rq_clock(rq1);
	update_rq_clock(rq2);
L
Linus Torvalds 已提交
3194 3195 3196 3197 3198 3199 3200 3201
}

/*
 * double_rq_unlock - safely unlock two runqueues
 *
 * Note this does not restore interrupts like task_rq_unlock,
 * you need to do so manually after calling.
 */
3202
static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
L
Linus Torvalds 已提交
3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215
	__releases(rq1->lock)
	__releases(rq2->lock)
{
	spin_unlock(&rq1->lock);
	if (rq1 != rq2)
		spin_unlock(&rq2->lock);
	else
		__release(rq2->lock);
}

/*
 * If dest_cpu is allowed for this process, migrate the task to it.
 * This is accomplished by forcing the cpu_allowed mask to only
I
Ingo Molnar 已提交
3216
 * allow dest_cpu, which will force the cpu onto dest_cpu. Then
L
Linus Torvalds 已提交
3217 3218
 * the cpu_allowed mask is restored.
 */
3219
static void sched_migrate_task(struct task_struct *p, int dest_cpu)
L
Linus Torvalds 已提交
3220
{
3221
	struct migration_req req;
L
Linus Torvalds 已提交
3222
	unsigned long flags;
3223
	struct rq *rq;
L
Linus Torvalds 已提交
3224 3225

	rq = task_rq_lock(p, &flags);
3226
	if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed)
3227
	    || unlikely(!cpu_active(dest_cpu)))
L
Linus Torvalds 已提交
3228 3229 3230 3231 3232 3233
		goto out;

	/* force the process onto the specified CPU */
	if (migrate_task(p, dest_cpu, &req)) {
		/* Need to wait for migration thread (might exit: take ref). */
		struct task_struct *mt = rq->migration_thread;
3234

L
Linus Torvalds 已提交
3235 3236 3237 3238 3239
		get_task_struct(mt);
		task_rq_unlock(rq, &flags);
		wake_up_process(mt);
		put_task_struct(mt);
		wait_for_completion(&req.done);
3240

L
Linus Torvalds 已提交
3241 3242 3243 3244 3245 3246 3247
		return;
	}
out:
	task_rq_unlock(rq, &flags);
}

/*
N
Nick Piggin 已提交
3248 3249
 * sched_exec - execve() is a valuable balancing opportunity, because at
 * this point the task has the smallest effective memory and cache footprint.
L
Linus Torvalds 已提交
3250 3251 3252 3253
 */
void sched_exec(void)
{
	int new_cpu, this_cpu = get_cpu();
N
Nick Piggin 已提交
3254
	new_cpu = sched_balance_self(this_cpu, SD_BALANCE_EXEC);
L
Linus Torvalds 已提交
3255
	put_cpu();
N
Nick Piggin 已提交
3256 3257
	if (new_cpu != this_cpu)
		sched_migrate_task(current, new_cpu);
L
Linus Torvalds 已提交
3258 3259 3260 3261 3262 3263
}

/*
 * pull_task - move a task from a remote runqueue to the local runqueue.
 * Both runqueues must be locked.
 */
I
Ingo Molnar 已提交
3264 3265
static void pull_task(struct rq *src_rq, struct task_struct *p,
		      struct rq *this_rq, int this_cpu)
L
Linus Torvalds 已提交
3266
{
3267
	deactivate_task(src_rq, p, 0);
L
Linus Torvalds 已提交
3268
	set_task_cpu(p, this_cpu);
I
Ingo Molnar 已提交
3269
	activate_task(this_rq, p, 0);
L
Linus Torvalds 已提交
3270 3271 3272 3273
	/*
	 * Note that idle threads have a prio of MAX_PRIO, for this test
	 * to be always true for them.
	 */
3274
	check_preempt_curr(this_rq, p, 0);
L
Linus Torvalds 已提交
3275 3276 3277 3278 3279
}

/*
 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
 */
3280
static
3281
int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
I
Ingo Molnar 已提交
3282
		     struct sched_domain *sd, enum cpu_idle_type idle,
I
Ingo Molnar 已提交
3283
		     int *all_pinned)
L
Linus Torvalds 已提交
3284
{
3285
	int tsk_cache_hot = 0;
L
Linus Torvalds 已提交
3286 3287 3288 3289 3290 3291
	/*
	 * We do not migrate tasks that are:
	 * 1) running (obviously), or
	 * 2) cannot be migrated to this CPU due to cpus_allowed, or
	 * 3) are cache-hot on their current CPU.
	 */
3292
	if (!cpumask_test_cpu(this_cpu, &p->cpus_allowed)) {
3293
		schedstat_inc(p, se.nr_failed_migrations_affine);
L
Linus Torvalds 已提交
3294
		return 0;
3295
	}
3296 3297
	*all_pinned = 0;

3298 3299
	if (task_running(rq, p)) {
		schedstat_inc(p, se.nr_failed_migrations_running);
3300
		return 0;
3301
	}
L
Linus Torvalds 已提交
3302

3303 3304 3305 3306 3307 3308
	/*
	 * Aggressive migration if:
	 * 1) task is cache cold, or
	 * 2) too many balance attempts have failed.
	 */

3309 3310 3311
	tsk_cache_hot = task_hot(p, rq->clock, sd);
	if (!tsk_cache_hot ||
		sd->nr_balance_failed > sd->cache_nice_tries) {
3312
#ifdef CONFIG_SCHEDSTATS
3313
		if (tsk_cache_hot) {
3314
			schedstat_inc(sd, lb_hot_gained[idle]);
3315 3316
			schedstat_inc(p, se.nr_forced_migrations);
		}
3317 3318 3319 3320
#endif
		return 1;
	}

3321
	if (tsk_cache_hot) {
3322
		schedstat_inc(p, se.nr_failed_migrations_hot);
3323
		return 0;
3324
	}
L
Linus Torvalds 已提交
3325 3326 3327
	return 1;
}

3328 3329 3330 3331 3332
static unsigned long
balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
	      unsigned long max_load_move, struct sched_domain *sd,
	      enum cpu_idle_type idle, int *all_pinned,
	      int *this_best_prio, struct rq_iterator *iterator)
L
Linus Torvalds 已提交
3333
{
3334
	int loops = 0, pulled = 0, pinned = 0;
I
Ingo Molnar 已提交
3335 3336
	struct task_struct *p;
	long rem_load_move = max_load_move;
L
Linus Torvalds 已提交
3337

3338
	if (max_load_move == 0)
L
Linus Torvalds 已提交
3339 3340
		goto out;

3341 3342
	pinned = 1;

L
Linus Torvalds 已提交
3343
	/*
I
Ingo Molnar 已提交
3344
	 * Start the load-balancing iterator:
L
Linus Torvalds 已提交
3345
	 */
I
Ingo Molnar 已提交
3346 3347
	p = iterator->start(iterator->arg);
next:
3348
	if (!p || loops++ > sysctl_sched_nr_migrate)
L
Linus Torvalds 已提交
3349
		goto out;
3350 3351

	if ((p->se.load.weight >> 1) > rem_load_move ||
I
Ingo Molnar 已提交
3352 3353 3354
	    !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
		p = iterator->next(iterator->arg);
		goto next;
L
Linus Torvalds 已提交
3355 3356
	}

I
Ingo Molnar 已提交
3357
	pull_task(busiest, p, this_rq, this_cpu);
L
Linus Torvalds 已提交
3358
	pulled++;
I
Ingo Molnar 已提交
3359
	rem_load_move -= p->se.load.weight;
L
Linus Torvalds 已提交
3360

3361 3362 3363 3364 3365 3366 3367 3368 3369 3370
#ifdef CONFIG_PREEMPT
	/*
	 * NEWIDLE balancing is a source of latency, so preemptible kernels
	 * will stop after the first task is pulled to minimize the critical
	 * section.
	 */
	if (idle == CPU_NEWLY_IDLE)
		goto out;
#endif

3371
	/*
3372
	 * We only want to steal up to the prescribed amount of weighted load.
3373
	 */
3374
	if (rem_load_move > 0) {
3375 3376
		if (p->prio < *this_best_prio)
			*this_best_prio = p->prio;
I
Ingo Molnar 已提交
3377 3378
		p = iterator->next(iterator->arg);
		goto next;
L
Linus Torvalds 已提交
3379 3380 3381
	}
out:
	/*
3382
	 * Right now, this is one of only two places pull_task() is called,
L
Linus Torvalds 已提交
3383 3384 3385 3386
	 * so we can safely collect pull_task() stats here rather than
	 * inside pull_task().
	 */
	schedstat_add(sd, lb_gained[idle], pulled);
3387 3388 3389

	if (all_pinned)
		*all_pinned = pinned;
3390 3391

	return max_load_move - rem_load_move;
L
Linus Torvalds 已提交
3392 3393
}

I
Ingo Molnar 已提交
3394
/*
P
Peter Williams 已提交
3395 3396 3397
 * move_tasks tries to move up to max_load_move weighted load from busiest to
 * this_rq, as part of a balancing operation within domain "sd".
 * Returns 1 if successful and 0 otherwise.
I
Ingo Molnar 已提交
3398 3399 3400 3401
 *
 * Called with both runqueues locked.
 */
static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
P
Peter Williams 已提交
3402
		      unsigned long max_load_move,
I
Ingo Molnar 已提交
3403 3404 3405
		      struct sched_domain *sd, enum cpu_idle_type idle,
		      int *all_pinned)
{
3406
	const struct sched_class *class = sched_class_highest;
P
Peter Williams 已提交
3407
	unsigned long total_load_moved = 0;
3408
	int this_best_prio = this_rq->curr->prio;
I
Ingo Molnar 已提交
3409 3410

	do {
P
Peter Williams 已提交
3411 3412
		total_load_moved +=
			class->load_balance(this_rq, this_cpu, busiest,
3413
				max_load_move - total_load_moved,
3414
				sd, idle, all_pinned, &this_best_prio);
I
Ingo Molnar 已提交
3415
		class = class->next;
3416

3417 3418 3419 3420 3421 3422
#ifdef CONFIG_PREEMPT
		/*
		 * NEWIDLE balancing is a source of latency, so preemptible
		 * kernels will stop after the first task is pulled to minimize
		 * the critical section.
		 */
3423 3424
		if (idle == CPU_NEWLY_IDLE && this_rq->nr_running)
			break;
3425
#endif
P
Peter Williams 已提交
3426
	} while (class && max_load_move > total_load_moved);
I
Ingo Molnar 已提交
3427

P
Peter Williams 已提交
3428 3429 3430
	return total_load_moved > 0;
}

3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456
static int
iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
		   struct sched_domain *sd, enum cpu_idle_type idle,
		   struct rq_iterator *iterator)
{
	struct task_struct *p = iterator->start(iterator->arg);
	int pinned = 0;

	while (p) {
		if (can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
			pull_task(busiest, p, this_rq, this_cpu);
			/*
			 * Right now, this is only the second place pull_task()
			 * is called, so we can safely collect pull_task()
			 * stats here rather than inside pull_task().
			 */
			schedstat_inc(sd, lb_gained[idle]);

			return 1;
		}
		p = iterator->next(iterator->arg);
	}

	return 0;
}

P
Peter Williams 已提交
3457 3458 3459 3460 3461 3462 3463 3464 3465 3466
/*
 * move_one_task tries to move exactly one task from busiest to this_rq, as
 * part of active balancing operations within "domain".
 * Returns 1 if successful and 0 otherwise.
 *
 * Called with both runqueues locked.
 */
static int move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
			 struct sched_domain *sd, enum cpu_idle_type idle)
{
3467
	const struct sched_class *class;
P
Peter Williams 已提交
3468

3469
	for_each_class(class) {
3470
		if (class->move_one_task(this_rq, this_cpu, busiest, sd, idle))
P
Peter Williams 已提交
3471
			return 1;
3472
	}
P
Peter Williams 已提交
3473 3474

	return 0;
I
Ingo Molnar 已提交
3475
}
3476
/********** Helpers for find_busiest_group ************************/
L
Linus Torvalds 已提交
3477
/*
3478 3479
 * sd_lb_stats - Structure to store the statistics of a sched_domain
 * 		during load balancing.
L
Linus Torvalds 已提交
3480
 */
3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498
struct sd_lb_stats {
	struct sched_group *busiest; /* Busiest group in this sd */
	struct sched_group *this;  /* Local group in this sd */
	unsigned long total_load;  /* Total load of all groups in sd */
	unsigned long total_pwr;   /*	Total power of all groups in sd */
	unsigned long avg_load;	   /* Average load across all groups in sd */

	/** Statistics of this group */
	unsigned long this_load;
	unsigned long this_load_per_task;
	unsigned long this_nr_running;

	/* Statistics of the busiest group */
	unsigned long max_load;
	unsigned long busiest_load_per_task;
	unsigned long busiest_nr_running;

	int group_imb; /* Is there imbalance in this sd */
3499
#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
3500 3501 3502 3503 3504 3505
	int power_savings_balance; /* Is powersave balance needed for this sd */
	struct sched_group *group_min; /* Least loaded group in sd */
	struct sched_group *group_leader; /* Group which relieves group_min */
	unsigned long min_load_per_task; /* load_per_task in group_min */
	unsigned long leader_nr_running; /* Nr running of group_leader */
	unsigned long min_nr_running; /* Nr running of group_min */
3506
#endif
3507
};
L
Linus Torvalds 已提交
3508

3509
/*
3510 3511 3512 3513 3514 3515 3516 3517 3518 3519
 * sg_lb_stats - stats of a sched_group required for load_balancing
 */
struct sg_lb_stats {
	unsigned long avg_load; /*Avg load across the CPUs of the group */
	unsigned long group_load; /* Total load over the CPUs of the group */
	unsigned long sum_nr_running; /* Nr tasks running in the group */
	unsigned long sum_weighted_load; /* Weighted load of group's tasks */
	unsigned long group_capacity;
	int group_imb; /* Is there an imbalance in the group ? */
};
3520

3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541
/**
 * group_first_cpu - Returns the first cpu in the cpumask of a sched_group.
 * @group: The group whose first cpu is to be returned.
 */
static inline unsigned int group_first_cpu(struct sched_group *group)
{
	return cpumask_first(sched_group_cpus(group));
}

/**
 * get_sd_load_idx - Obtain the load index for a given sched domain.
 * @sd: The sched_domain whose load_idx is to be obtained.
 * @idle: The Idle status of the CPU for whose sd load_icx is obtained.
 */
static inline int get_sd_load_idx(struct sched_domain *sd,
					enum cpu_idle_type idle)
{
	int load_idx;

	switch (idle) {
	case CPU_NOT_IDLE:
N
Nick Piggin 已提交
3542
		load_idx = sd->busy_idx;
3543 3544 3545
		break;

	case CPU_NEWLY_IDLE:
N
Nick Piggin 已提交
3546
		load_idx = sd->newidle_idx;
3547 3548
		break;
	default:
N
Nick Piggin 已提交
3549
		load_idx = sd->idle_idx;
3550 3551
		break;
	}
L
Linus Torvalds 已提交
3552

3553 3554
	return load_idx;
}
L
Linus Torvalds 已提交
3555 3556


3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580
#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
/**
 * init_sd_power_savings_stats - Initialize power savings statistics for
 * the given sched_domain, during load balancing.
 *
 * @sd: Sched domain whose power-savings statistics are to be initialized.
 * @sds: Variable containing the statistics for sd.
 * @idle: Idle status of the CPU at which we're performing load-balancing.
 */
static inline void init_sd_power_savings_stats(struct sched_domain *sd,
	struct sd_lb_stats *sds, enum cpu_idle_type idle)
{
	/*
	 * Busy processors will not participate in power savings
	 * balance.
	 */
	if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
		sds->power_savings_balance = 0;
	else {
		sds->power_savings_balance = 1;
		sds->min_nr_running = ULONG_MAX;
		sds->leader_nr_running = 0;
	}
}
3581

3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594
/**
 * update_sd_power_savings_stats - Update the power saving stats for a
 * sched_domain while performing load balancing.
 *
 * @group: sched_group belonging to the sched_domain under consideration.
 * @sds: Variable containing the statistics of the sched_domain
 * @local_group: Does group contain the CPU for which we're performing
 * 		load balancing ?
 * @sgs: Variable containing the statistics of the group.
 */
static inline void update_sd_power_savings_stats(struct sched_group *group,
	struct sd_lb_stats *sds, int local_group, struct sg_lb_stats *sgs)
{
3595

3596 3597
	if (!sds->power_savings_balance)
		return;
L
Linus Torvalds 已提交
3598

3599 3600 3601 3602 3603 3604 3605
	/*
	 * If the local group is idle or completely loaded
	 * no need to do power savings balance at this domain
	 */
	if (local_group && (sds->this_nr_running >= sgs->group_capacity ||
				!sds->this_nr_running))
		sds->power_savings_balance = 0;
3606

3607 3608 3609 3610 3611 3612 3613 3614
	/*
	 * If a group is already running at full capacity or idle,
	 * don't include that group in power savings calculations
	 */
	if (!sds->power_savings_balance ||
		sgs->sum_nr_running >= sgs->group_capacity ||
		!sgs->sum_nr_running)
		return;
N
Nick Piggin 已提交
3615

3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628
	/*
	 * Calculate the group which has the least non-idle load.
	 * This is the group from where we need to pick up the load
	 * for saving power
	 */
	if ((sgs->sum_nr_running < sds->min_nr_running) ||
	    (sgs->sum_nr_running == sds->min_nr_running &&
	     group_first_cpu(group) > group_first_cpu(sds->group_min))) {
		sds->group_min = group;
		sds->min_nr_running = sgs->sum_nr_running;
		sds->min_load_per_task = sgs->sum_weighted_load /
						sgs->sum_nr_running;
	}
3629

3630 3631 3632 3633 3634 3635 3636
	/*
	 * Calculate the group which is almost near its
	 * capacity but still has some space to pick up some load
	 * from other group and save more power
	 */
	if (sgs->sum_nr_running > sgs->group_capacity - 1)
		return;
L
Linus Torvalds 已提交
3637

3638 3639 3640 3641 3642 3643 3644
	if (sgs->sum_nr_running > sds->leader_nr_running ||
	    (sgs->sum_nr_running == sds->leader_nr_running &&
	     group_first_cpu(group) < group_first_cpu(sds->group_leader))) {
		sds->group_leader = group;
		sds->leader_nr_running = sgs->sum_nr_running;
	}
}
3645

3646
/**
3647
 * check_power_save_busiest_group - see if there is potential for some power-savings balance
3648 3649 3650 3651 3652
 * @sds: Variable containing the statistics of the sched_domain
 *	under consideration.
 * @this_cpu: Cpu at which we're currently performing load-balancing.
 * @imbalance: Variable to store the imbalance.
 *
3653 3654 3655 3656 3657
 * Description:
 * Check if we have potential to perform some power-savings balance.
 * If yes, set the busiest group to be the least loaded group in the
 * sched_domain, so that it's CPUs can be put to idle.
 *
3658 3659 3660 3661 3662 3663 3664 3665
 * Returns 1 if there is potential to perform power-savings balance.
 * Else returns 0.
 */
static inline int check_power_save_busiest_group(struct sd_lb_stats *sds,
					int this_cpu, unsigned long *imbalance)
{
	if (!sds->power_savings_balance)
		return 0;
L
Linus Torvalds 已提交
3666

3667 3668 3669
	if (sds->this != sds->group_leader ||
			sds->group_leader == sds->group_min)
		return 0;
3670

3671 3672
	*imbalance = sds->min_load_per_task;
	sds->busiest = sds->group_min;
L
Linus Torvalds 已提交
3673

3674 3675 3676 3677 3678 3679
	if (sched_mc_power_savings >= POWERSAVINGS_BALANCE_WAKEUP) {
		cpu_rq(this_cpu)->rd->sched_mc_preferred_wakeup_cpu =
			group_first_cpu(sds->group_leader);
	}

	return 1;
L
Linus Torvalds 已提交
3680

3681 3682 3683 3684 3685 3686 3687
}
#else /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
static inline void init_sd_power_savings_stats(struct sched_domain *sd,
	struct sd_lb_stats *sds, enum cpu_idle_type idle)
{
	return;
}
3688

3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701
static inline void update_sd_power_savings_stats(struct sched_group *group,
	struct sd_lb_stats *sds, int local_group, struct sg_lb_stats *sgs)
{
	return;
}

static inline int check_power_save_busiest_group(struct sd_lb_stats *sds,
					int this_cpu, unsigned long *imbalance)
{
	return 0;
}
#endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */

3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734
unsigned long __weak arch_smt_gain(struct sched_domain *sd, int cpu)
{
	unsigned long weight = cpumask_weight(sched_domain_span(sd));
	unsigned long smt_gain = sd->smt_gain;

	smt_gain /= weight;

	return smt_gain;
}

static void update_cpu_power(struct sched_domain *sd, int cpu)
{
	unsigned long weight = cpumask_weight(sched_domain_span(sd));
	unsigned long power = SCHED_LOAD_SCALE;
	struct sched_group *sdg = sd->groups;
	unsigned long old = sdg->__cpu_power;

	/* here we could scale based on cpufreq */

	if ((sd->flags & SD_SHARE_CPUPOWER) && weight > 1) {
		power *= arch_smt_gain(sd, cpu);
		power >>= SCHED_LOAD_SHIFT;
	}

	/* here we could scale based on RT time */

	if (power != old) {
		sdg->__cpu_power = power;
		sdg->reciprocal_cpu_power = reciprocal_value(power);
	}
}

static void update_group_power(struct sched_domain *sd, int cpu)
3735 3736 3737 3738 3739 3740
{
	struct sched_domain *child = sd->child;
	struct sched_group *group, *sdg = sd->groups;
	unsigned long power = sdg->__cpu_power;

	if (!child) {
3741
		update_cpu_power(sd, cpu);
3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755
		return;
	}

	sdg->__cpu_power = 0;

	group = child->groups;
	do {
		sdg->__cpu_power += group->__cpu_power;
		group = group->next;
	} while (group != child->groups);

	if (power != sdg->__cpu_power)
		sdg->reciprocal_cpu_power = reciprocal_value(sdg->__cpu_power);
}
3756

3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768
/**
 * update_sg_lb_stats - Update sched_group's statistics for load balancing.
 * @group: sched_group whose statistics are to be updated.
 * @this_cpu: Cpu for which load balance is currently performed.
 * @idle: Idle status of this_cpu
 * @load_idx: Load index of sched_domain of this_cpu for load calc.
 * @sd_idle: Idle status of the sched_domain containing group.
 * @local_group: Does group contain this_cpu.
 * @cpus: Set of cpus considered for load balancing.
 * @balance: Should we balance.
 * @sgs: variable to hold the statistics for this group.
 */
3769 3770
static inline void update_sg_lb_stats(struct sched_domain *sd,
			struct sched_group *group, int this_cpu,
3771 3772 3773 3774 3775 3776 3777 3778 3779 3780
			enum cpu_idle_type idle, int load_idx, int *sd_idle,
			int local_group, const struct cpumask *cpus,
			int *balance, struct sg_lb_stats *sgs)
{
	unsigned long load, max_cpu_load, min_cpu_load;
	int i;
	unsigned int balance_cpu = -1, first_idle_cpu = 0;
	unsigned long sum_avg_load_per_task;
	unsigned long avg_load_per_task;

3781
	if (local_group) {
3782
		balance_cpu = group_first_cpu(group);
3783
		if (balance_cpu == this_cpu)
3784
			update_group_power(sd, this_cpu);
3785
	}
3786 3787 3788 3789 3790

	/* Tally up the load of all CPUs in the group */
	sum_avg_load_per_task = avg_load_per_task = 0;
	max_cpu_load = 0;
	min_cpu_load = ~0UL;
3791

3792 3793
	for_each_cpu_and(i, sched_group_cpus(group), cpus) {
		struct rq *rq = cpu_rq(i);
3794

3795 3796
		if (*sd_idle && rq->nr_running)
			*sd_idle = 0;
3797

3798
		/* Bias balancing toward cpus of our domain */
L
Linus Torvalds 已提交
3799
		if (local_group) {
3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811
			if (idle_cpu(i) && !first_idle_cpu) {
				first_idle_cpu = 1;
				balance_cpu = i;
			}

			load = target_load(i, load_idx);
		} else {
			load = source_load(i, load_idx);
			if (load > max_cpu_load)
				max_cpu_load = load;
			if (min_cpu_load > load)
				min_cpu_load = load;
L
Linus Torvalds 已提交
3812
		}
3813

3814 3815 3816
		sgs->group_load += load;
		sgs->sum_nr_running += rq->nr_running;
		sgs->sum_weighted_load += weighted_cpuload(i);
3817

3818 3819
		sum_avg_load_per_task += cpu_avg_load_per_task(i);
	}
3820

3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831
	/*
	 * First idle cpu or the first cpu(busiest) in this sched group
	 * is eligible for doing load balancing at this and above
	 * domains. In the newly idle case, we will allow all the cpu's
	 * to do the newly idle load balance.
	 */
	if (idle != CPU_NEWLY_IDLE && local_group &&
	    balance_cpu != this_cpu && balance) {
		*balance = 0;
		return;
	}
3832

3833 3834 3835
	/* Adjust by relative CPU power of the group */
	sgs->avg_load = sg_div_cpu_power(group,
			sgs->group_load * SCHED_LOAD_SCALE);
3836

3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855

	/*
	 * Consider the group unbalanced when the imbalance is larger
	 * than the average weight of two tasks.
	 *
	 * APZ: with cgroup the avg task weight can vary wildly and
	 *      might not be a suitable number - should we keep a
	 *      normalized nr_running number somewhere that negates
	 *      the hierarchy?
	 */
	avg_load_per_task = sg_div_cpu_power(group,
			sum_avg_load_per_task * SCHED_LOAD_SCALE);

	if ((max_cpu_load - min_cpu_load) > 2*avg_load_per_task)
		sgs->group_imb = 1;

	sgs->group_capacity = group->__cpu_power / SCHED_LOAD_SCALE;

}
I
Ingo Molnar 已提交
3856

3857 3858 3859 3860 3861 3862 3863 3864 3865
/**
 * update_sd_lb_stats - Update sched_group's statistics for load balancing.
 * @sd: sched_domain whose statistics are to be updated.
 * @this_cpu: Cpu for which load balance is currently performed.
 * @idle: Idle status of this_cpu
 * @sd_idle: Idle status of the sched_domain containing group.
 * @cpus: Set of cpus considered for load balancing.
 * @balance: Should we balance.
 * @sds: variable to hold the statistics for this sched_domain.
L
Linus Torvalds 已提交
3866
 */
3867 3868 3869 3870
static inline void update_sd_lb_stats(struct sched_domain *sd, int this_cpu,
			enum cpu_idle_type idle, int *sd_idle,
			const struct cpumask *cpus, int *balance,
			struct sd_lb_stats *sds)
L
Linus Torvalds 已提交
3871
{
P
Peter Zijlstra 已提交
3872
	struct sched_domain *child = sd->child;
3873
	struct sched_group *group = sd->groups;
3874
	struct sg_lb_stats sgs;
P
Peter Zijlstra 已提交
3875 3876 3877 3878
	int load_idx, prefer_sibling = 0;

	if (child && child->flags & SD_PREFER_SIBLING)
		prefer_sibling = 1;
3879

3880
	init_sd_power_savings_stats(sd, sds, idle);
3881
	load_idx = get_sd_load_idx(sd, idle);
L
Linus Torvalds 已提交
3882 3883 3884 3885

	do {
		int local_group;

3886 3887
		local_group = cpumask_test_cpu(this_cpu,
					       sched_group_cpus(group));
3888
		memset(&sgs, 0, sizeof(sgs));
3889
		update_sg_lb_stats(sd, group, this_cpu, idle, load_idx, sd_idle,
3890
				local_group, cpus, balance, &sgs);
L
Linus Torvalds 已提交
3891

3892 3893
		if (local_group && balance && !(*balance))
			return;
3894

3895 3896
		sds->total_load += sgs.group_load;
		sds->total_pwr += group->__cpu_power;
L
Linus Torvalds 已提交
3897

P
Peter Zijlstra 已提交
3898 3899 3900 3901 3902 3903 3904 3905
		/*
		 * In case the child domain prefers tasks go to siblings
		 * first, lower the group capacity to one so that we'll try
		 * and move all the excess tasks away.
		 */
		if (prefer_sibling)
			sgs.group_capacity = 1;

L
Linus Torvalds 已提交
3906
		if (local_group) {
3907 3908 3909 3910 3911
			sds->this_load = sgs.avg_load;
			sds->this = group;
			sds->this_nr_running = sgs.sum_nr_running;
			sds->this_load_per_task = sgs.sum_weighted_load;
		} else if (sgs.avg_load > sds->max_load &&
3912 3913
			   (sgs.sum_nr_running > sgs.group_capacity ||
				sgs.group_imb)) {
3914 3915 3916 3917 3918
			sds->max_load = sgs.avg_load;
			sds->busiest = group;
			sds->busiest_nr_running = sgs.sum_nr_running;
			sds->busiest_load_per_task = sgs.sum_weighted_load;
			sds->group_imb = sgs.group_imb;
3919
		}
3920

3921
		update_sd_power_savings_stats(group, sds, local_group, &sgs);
L
Linus Torvalds 已提交
3922 3923
		group = group->next;
	} while (group != sd->groups);
3924
}
L
Linus Torvalds 已提交
3925

3926 3927
/**
 * fix_small_imbalance - Calculate the minor imbalance that exists
3928 3929
 *			amongst the groups of a sched_domain, during
 *			load balancing.
3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947
 * @sds: Statistics of the sched_domain whose imbalance is to be calculated.
 * @this_cpu: The cpu at whose sched_domain we're performing load-balance.
 * @imbalance: Variable to store the imbalance.
 */
static inline void fix_small_imbalance(struct sd_lb_stats *sds,
				int this_cpu, unsigned long *imbalance)
{
	unsigned long tmp, pwr_now = 0, pwr_move = 0;
	unsigned int imbn = 2;

	if (sds->this_nr_running) {
		sds->this_load_per_task /= sds->this_nr_running;
		if (sds->busiest_load_per_task >
				sds->this_load_per_task)
			imbn = 1;
	} else
		sds->this_load_per_task =
			cpu_avg_load_per_task(this_cpu);
L
Linus Torvalds 已提交
3948

3949 3950 3951 3952 3953
	if (sds->max_load - sds->this_load + sds->busiest_load_per_task >=
			sds->busiest_load_per_task * imbn) {
		*imbalance = sds->busiest_load_per_task;
		return;
	}
3954

L
Linus Torvalds 已提交
3955
	/*
3956 3957 3958
	 * OK, we don't have enough imbalance to justify moving tasks,
	 * however we may be able to increase total CPU power used by
	 * moving them.
L
Linus Torvalds 已提交
3959
	 */
3960

3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989
	pwr_now += sds->busiest->__cpu_power *
			min(sds->busiest_load_per_task, sds->max_load);
	pwr_now += sds->this->__cpu_power *
			min(sds->this_load_per_task, sds->this_load);
	pwr_now /= SCHED_LOAD_SCALE;

	/* Amount of load we'd subtract */
	tmp = sg_div_cpu_power(sds->busiest,
			sds->busiest_load_per_task * SCHED_LOAD_SCALE);
	if (sds->max_load > tmp)
		pwr_move += sds->busiest->__cpu_power *
			min(sds->busiest_load_per_task, sds->max_load - tmp);

	/* Amount of load we'd add */
	if (sds->max_load * sds->busiest->__cpu_power <
		sds->busiest_load_per_task * SCHED_LOAD_SCALE)
		tmp = sg_div_cpu_power(sds->this,
			sds->max_load * sds->busiest->__cpu_power);
	else
		tmp = sg_div_cpu_power(sds->this,
			sds->busiest_load_per_task * SCHED_LOAD_SCALE);
	pwr_move += sds->this->__cpu_power *
			min(sds->this_load_per_task, sds->this_load + tmp);
	pwr_move /= SCHED_LOAD_SCALE;

	/* Move if we gain throughput */
	if (pwr_move > pwr_now)
		*imbalance = sds->busiest_load_per_task;
}
3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001

/**
 * calculate_imbalance - Calculate the amount of imbalance present within the
 *			 groups of a given sched_domain during load balance.
 * @sds: statistics of the sched_domain whose imbalance is to be calculated.
 * @this_cpu: Cpu for which currently load balance is being performed.
 * @imbalance: The variable to store the imbalance.
 */
static inline void calculate_imbalance(struct sd_lb_stats *sds, int this_cpu,
		unsigned long *imbalance)
{
	unsigned long max_pull;
4002 4003 4004 4005 4006
	/*
	 * In the presence of smp nice balancing, certain scenarios can have
	 * max load less than avg load(as we skip the groups at or below
	 * its cpu_power, while calculating max_load..)
	 */
4007
	if (sds->max_load < sds->avg_load) {
4008
		*imbalance = 0;
4009
		return fix_small_imbalance(sds, this_cpu, imbalance);
4010
	}
4011 4012

	/* Don't want to pull so many tasks that a group would go idle */
4013 4014
	max_pull = min(sds->max_load - sds->avg_load,
			sds->max_load - sds->busiest_load_per_task);
4015

L
Linus Torvalds 已提交
4016
	/* How much load to actually move to equalise the imbalance */
4017 4018
	*imbalance = min(max_pull * sds->busiest->__cpu_power,
		(sds->avg_load - sds->this_load) * sds->this->__cpu_power)
L
Linus Torvalds 已提交
4019 4020
			/ SCHED_LOAD_SCALE;

4021 4022 4023 4024 4025 4026
	/*
	 * if *imbalance is less than the average load per runnable task
	 * there is no gaurantee that any tasks will be moved so we'll have
	 * a think about bumping its value to force at least one task to be
	 * moved
	 */
4027 4028
	if (*imbalance < sds->busiest_load_per_task)
		return fix_small_imbalance(sds, this_cpu, imbalance);
L
Linus Torvalds 已提交
4029

4030
}
4031
/******* find_busiest_group() helpers end here *********************/
L
Linus Torvalds 已提交
4032

4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056
/**
 * find_busiest_group - Returns the busiest group within the sched_domain
 * if there is an imbalance. If there isn't an imbalance, and
 * the user has opted for power-savings, it returns a group whose
 * CPUs can be put to idle by rebalancing those tasks elsewhere, if
 * such a group exists.
 *
 * Also calculates the amount of weighted load which should be moved
 * to restore balance.
 *
 * @sd: The sched_domain whose busiest group is to be returned.
 * @this_cpu: The cpu for which load balancing is currently being performed.
 * @imbalance: Variable which stores amount of weighted load which should
 *		be moved to restore balance/put a group to idle.
 * @idle: The idle status of this_cpu.
 * @sd_idle: The idleness of sd
 * @cpus: The set of CPUs under consideration for load-balancing.
 * @balance: Pointer to a variable indicating if this_cpu
 *	is the appropriate cpu to perform load balancing at this_level.
 *
 * Returns:	- the busiest group if imbalance exists.
 *		- If no imbalance and user has opted for power-savings balance,
 *		   return the least loaded group whose CPUs can be
 *		   put to idle by rebalancing its tasks onto our group.
4057 4058 4059 4060 4061 4062 4063
 */
static struct sched_group *
find_busiest_group(struct sched_domain *sd, int this_cpu,
		   unsigned long *imbalance, enum cpu_idle_type idle,
		   int *sd_idle, const struct cpumask *cpus, int *balance)
{
	struct sd_lb_stats sds;
L
Linus Torvalds 已提交
4064

4065
	memset(&sds, 0, sizeof(sds));
L
Linus Torvalds 已提交
4066

4067 4068 4069 4070 4071 4072 4073
	/*
	 * Compute the various statistics relavent for load balancing at
	 * this level.
	 */
	update_sd_lb_stats(sd, this_cpu, idle, sd_idle, cpus,
					balance, &sds);

4074 4075 4076 4077 4078 4079 4080 4081 4082 4083
	/* Cases where imbalance does not exist from POV of this_cpu */
	/* 1) this_cpu is not the appropriate cpu to perform load balancing
	 *    at this level.
	 * 2) There is no busy sibling group to pull from.
	 * 3) This group is the busiest group.
	 * 4) This group is more busy than the avg busieness at this
	 *    sched_domain.
	 * 5) The imbalance is within the specified limit.
	 * 6) Any rebalance would lead to ping-pong
	 */
4084 4085
	if (balance && !(*balance))
		goto ret;
L
Linus Torvalds 已提交
4086

4087 4088
	if (!sds.busiest || sds.busiest_nr_running == 0)
		goto out_balanced;
L
Linus Torvalds 已提交
4089

4090
	if (sds.this_load >= sds.max_load)
L
Linus Torvalds 已提交
4091 4092
		goto out_balanced;

4093
	sds.avg_load = (SCHED_LOAD_SCALE * sds.total_load) / sds.total_pwr;
L
Linus Torvalds 已提交
4094

4095 4096 4097 4098
	if (sds.this_load >= sds.avg_load)
		goto out_balanced;

	if (100 * sds.max_load <= sd->imbalance_pct * sds.this_load)
L
Linus Torvalds 已提交
4099 4100
		goto out_balanced;

4101 4102 4103 4104
	sds.busiest_load_per_task /= sds.busiest_nr_running;
	if (sds.group_imb)
		sds.busiest_load_per_task =
			min(sds.busiest_load_per_task, sds.avg_load);
4105

L
Linus Torvalds 已提交
4106 4107 4108 4109 4110 4111 4112 4113
	/*
	 * We're trying to get all the cpus to the average_load, so we don't
	 * want to push ourselves above the average load, nor do we wish to
	 * reduce the max loaded cpu below the average load, as either of these
	 * actions would just result in more rebalancing later, and ping-pong
	 * tasks around. Thus we look for the minimum possible imbalance.
	 * Negative imbalances (*we* are more loaded than anyone else) will
	 * be counted as no imbalance for these purposes -- we can't fix that
I
Ingo Molnar 已提交
4114
	 * by pulling tasks to us. Be careful of negative numbers as they'll
L
Linus Torvalds 已提交
4115 4116
	 * appear as very large values with unsigned longs.
	 */
4117
	if (sds.max_load <= sds.busiest_load_per_task)
4118 4119
		goto out_balanced;

4120 4121
	/* Looks like there is an imbalance. Compute it */
	calculate_imbalance(&sds, this_cpu, imbalance);
4122
	return sds.busiest;
L
Linus Torvalds 已提交
4123 4124

out_balanced:
4125 4126 4127 4128 4129 4130
	/*
	 * There is no obvious imbalance. But check if we can do some balancing
	 * to save power.
	 */
	if (check_power_save_busiest_group(&sds, this_cpu, imbalance))
		return sds.busiest;
4131
ret:
L
Linus Torvalds 已提交
4132 4133 4134 4135 4136 4137 4138
	*imbalance = 0;
	return NULL;
}

/*
 * find_busiest_queue - find the busiest runqueue among the cpus in group.
 */
4139
static struct rq *
I
Ingo Molnar 已提交
4140
find_busiest_queue(struct sched_group *group, enum cpu_idle_type idle,
4141
		   unsigned long imbalance, const struct cpumask *cpus)
L
Linus Torvalds 已提交
4142
{
4143
	struct rq *busiest = NULL, *rq;
4144
	unsigned long max_load = 0;
L
Linus Torvalds 已提交
4145 4146
	int i;

4147
	for_each_cpu(i, sched_group_cpus(group)) {
I
Ingo Molnar 已提交
4148
		unsigned long wl;
4149

4150
		if (!cpumask_test_cpu(i, cpus))
4151 4152
			continue;

4153
		rq = cpu_rq(i);
I
Ingo Molnar 已提交
4154
		wl = weighted_cpuload(i);
4155

I
Ingo Molnar 已提交
4156
		if (rq->nr_running == 1 && wl > imbalance)
4157
			continue;
L
Linus Torvalds 已提交
4158

I
Ingo Molnar 已提交
4159 4160
		if (wl > max_load) {
			max_load = wl;
4161
			busiest = rq;
L
Linus Torvalds 已提交
4162 4163 4164 4165 4166 4167
		}
	}

	return busiest;
}

4168 4169 4170 4171 4172 4173
/*
 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
 * so long as it is large enough.
 */
#define MAX_PINNED_INTERVAL	512

4174 4175 4176
/* Working cpumask for load_balance and load_balance_newidle. */
static DEFINE_PER_CPU(cpumask_var_t, load_balance_tmpmask);

L
Linus Torvalds 已提交
4177 4178 4179 4180
/*
 * Check this_cpu to ensure it is balanced within domain. Attempt to move
 * tasks if there is an imbalance.
 */
4181
static int load_balance(int this_cpu, struct rq *this_rq,
I
Ingo Molnar 已提交
4182
			struct sched_domain *sd, enum cpu_idle_type idle,
4183
			int *balance)
L
Linus Torvalds 已提交
4184
{
P
Peter Williams 已提交
4185
	int ld_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
L
Linus Torvalds 已提交
4186 4187
	struct sched_group *group;
	unsigned long imbalance;
4188
	struct rq *busiest;
4189
	unsigned long flags;
4190
	struct cpumask *cpus = __get_cpu_var(load_balance_tmpmask);
N
Nick Piggin 已提交
4191

4192
	cpumask_setall(cpus);
4193

4194 4195 4196
	/*
	 * When power savings policy is enabled for the parent domain, idle
	 * sibling can pick up load irrespective of busy siblings. In this case,
I
Ingo Molnar 已提交
4197
	 * let the state of idle sibling percolate up as CPU_IDLE, instead of
I
Ingo Molnar 已提交
4198
	 * portraying it as CPU_NOT_IDLE.
4199
	 */
I
Ingo Molnar 已提交
4200
	if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
4201
	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
N
Nick Piggin 已提交
4202
		sd_idle = 1;
L
Linus Torvalds 已提交
4203

4204
	schedstat_inc(sd, lb_count[idle]);
L
Linus Torvalds 已提交
4205

4206
redo:
4207
	update_shares(sd);
4208
	group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
4209
				   cpus, balance);
4210

4211
	if (*balance == 0)
4212 4213
		goto out_balanced;

L
Linus Torvalds 已提交
4214 4215 4216 4217 4218
	if (!group) {
		schedstat_inc(sd, lb_nobusyg[idle]);
		goto out_balanced;
	}

4219
	busiest = find_busiest_queue(group, idle, imbalance, cpus);
L
Linus Torvalds 已提交
4220 4221 4222 4223 4224
	if (!busiest) {
		schedstat_inc(sd, lb_nobusyq[idle]);
		goto out_balanced;
	}

N
Nick Piggin 已提交
4225
	BUG_ON(busiest == this_rq);
L
Linus Torvalds 已提交
4226 4227 4228

	schedstat_add(sd, lb_imbalance[idle], imbalance);

P
Peter Williams 已提交
4229
	ld_moved = 0;
L
Linus Torvalds 已提交
4230 4231 4232 4233
	if (busiest->nr_running > 1) {
		/*
		 * Attempt to move tasks. If find_busiest_group has found
		 * an imbalance but busiest->nr_running <= 1, the group is
P
Peter Williams 已提交
4234
		 * still unbalanced. ld_moved simply stays zero, so it is
L
Linus Torvalds 已提交
4235 4236
		 * correctly treated as an imbalance.
		 */
4237
		local_irq_save(flags);
N
Nick Piggin 已提交
4238
		double_rq_lock(this_rq, busiest);
P
Peter Williams 已提交
4239
		ld_moved = move_tasks(this_rq, this_cpu, busiest,
4240
				      imbalance, sd, idle, &all_pinned);
N
Nick Piggin 已提交
4241
		double_rq_unlock(this_rq, busiest);
4242
		local_irq_restore(flags);
4243

4244 4245 4246
		/*
		 * some other cpu did the load balance for us.
		 */
P
Peter Williams 已提交
4247
		if (ld_moved && this_cpu != smp_processor_id())
4248 4249
			resched_cpu(this_cpu);

4250
		/* All tasks on this runqueue were pinned by CPU affinity */
4251
		if (unlikely(all_pinned)) {
4252 4253
			cpumask_clear_cpu(cpu_of(busiest), cpus);
			if (!cpumask_empty(cpus))
4254
				goto redo;
4255
			goto out_balanced;
4256
		}
L
Linus Torvalds 已提交
4257
	}
4258

P
Peter Williams 已提交
4259
	if (!ld_moved) {
L
Linus Torvalds 已提交
4260 4261 4262 4263 4264
		schedstat_inc(sd, lb_failed[idle]);
		sd->nr_balance_failed++;

		if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {

4265
			spin_lock_irqsave(&busiest->lock, flags);
4266 4267 4268 4269

			/* don't kick the migration_thread, if the curr
			 * task on busiest cpu can't be moved to this_cpu
			 */
4270 4271
			if (!cpumask_test_cpu(this_cpu,
					      &busiest->curr->cpus_allowed)) {
4272
				spin_unlock_irqrestore(&busiest->lock, flags);
4273 4274 4275 4276
				all_pinned = 1;
				goto out_one_pinned;
			}

L
Linus Torvalds 已提交
4277 4278 4279
			if (!busiest->active_balance) {
				busiest->active_balance = 1;
				busiest->push_cpu = this_cpu;
4280
				active_balance = 1;
L
Linus Torvalds 已提交
4281
			}
4282
			spin_unlock_irqrestore(&busiest->lock, flags);
4283
			if (active_balance)
L
Linus Torvalds 已提交
4284 4285 4286 4287 4288 4289
				wake_up_process(busiest->migration_thread);

			/*
			 * We've kicked active balancing, reset the failure
			 * counter.
			 */
4290
			sd->nr_balance_failed = sd->cache_nice_tries+1;
L
Linus Torvalds 已提交
4291
		}
4292
	} else
L
Linus Torvalds 已提交
4293 4294
		sd->nr_balance_failed = 0;

4295
	if (likely(!active_balance)) {
L
Linus Torvalds 已提交
4296 4297
		/* We were unbalanced, so reset the balancing interval */
		sd->balance_interval = sd->min_interval;
4298 4299 4300 4301 4302 4303 4304 4305 4306
	} else {
		/*
		 * If we've begun active balancing, start to back off. This
		 * case may not be covered by the all_pinned logic if there
		 * is only 1 task on the busy runqueue (because we don't call
		 * move_tasks).
		 */
		if (sd->balance_interval < sd->max_interval)
			sd->balance_interval *= 2;
L
Linus Torvalds 已提交
4307 4308
	}

P
Peter Williams 已提交
4309
	if (!ld_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
4310
	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
4311 4312 4313
		ld_moved = -1;

	goto out;
L
Linus Torvalds 已提交
4314 4315 4316 4317

out_balanced:
	schedstat_inc(sd, lb_balanced[idle]);

4318
	sd->nr_balance_failed = 0;
4319 4320

out_one_pinned:
L
Linus Torvalds 已提交
4321
	/* tune up the balancing interval */
4322 4323
	if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
			(sd->balance_interval < sd->max_interval))
L
Linus Torvalds 已提交
4324 4325
		sd->balance_interval *= 2;

4326
	if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
4327
	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
4328 4329 4330 4331
		ld_moved = -1;
	else
		ld_moved = 0;
out:
4332 4333
	if (ld_moved)
		update_shares(sd);
4334
	return ld_moved;
L
Linus Torvalds 已提交
4335 4336 4337 4338 4339 4340
}

/*
 * Check this_cpu to ensure it is balanced within domain. Attempt to move
 * tasks if there is an imbalance.
 *
I
Ingo Molnar 已提交
4341
 * Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE).
L
Linus Torvalds 已提交
4342 4343
 * this_rq is locked.
 */
4344
static int
4345
load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd)
L
Linus Torvalds 已提交
4346 4347
{
	struct sched_group *group;
4348
	struct rq *busiest = NULL;
L
Linus Torvalds 已提交
4349
	unsigned long imbalance;
P
Peter Williams 已提交
4350
	int ld_moved = 0;
N
Nick Piggin 已提交
4351
	int sd_idle = 0;
4352
	int all_pinned = 0;
4353
	struct cpumask *cpus = __get_cpu_var(load_balance_tmpmask);
4354

4355
	cpumask_setall(cpus);
N
Nick Piggin 已提交
4356

4357 4358 4359 4360
	/*
	 * When power savings policy is enabled for the parent domain, idle
	 * sibling can pick up load irrespective of busy siblings. In this case,
	 * let the state of idle sibling percolate up as IDLE, instead of
I
Ingo Molnar 已提交
4361
	 * portraying it as CPU_NOT_IDLE.
4362 4363 4364
	 */
	if (sd->flags & SD_SHARE_CPUPOWER &&
	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
N
Nick Piggin 已提交
4365
		sd_idle = 1;
L
Linus Torvalds 已提交
4366

4367
	schedstat_inc(sd, lb_count[CPU_NEWLY_IDLE]);
4368
redo:
4369
	update_shares_locked(this_rq, sd);
I
Ingo Molnar 已提交
4370
	group = find_busiest_group(sd, this_cpu, &imbalance, CPU_NEWLY_IDLE,
4371
				   &sd_idle, cpus, NULL);
L
Linus Torvalds 已提交
4372
	if (!group) {
I
Ingo Molnar 已提交
4373
		schedstat_inc(sd, lb_nobusyg[CPU_NEWLY_IDLE]);
4374
		goto out_balanced;
L
Linus Torvalds 已提交
4375 4376
	}

4377
	busiest = find_busiest_queue(group, CPU_NEWLY_IDLE, imbalance, cpus);
N
Nick Piggin 已提交
4378
	if (!busiest) {
I
Ingo Molnar 已提交
4379
		schedstat_inc(sd, lb_nobusyq[CPU_NEWLY_IDLE]);
4380
		goto out_balanced;
L
Linus Torvalds 已提交
4381 4382
	}

N
Nick Piggin 已提交
4383 4384
	BUG_ON(busiest == this_rq);

I
Ingo Molnar 已提交
4385
	schedstat_add(sd, lb_imbalance[CPU_NEWLY_IDLE], imbalance);
4386

P
Peter Williams 已提交
4387
	ld_moved = 0;
4388 4389 4390
	if (busiest->nr_running > 1) {
		/* Attempt to move tasks */
		double_lock_balance(this_rq, busiest);
4391 4392
		/* this_rq->clock is already updated */
		update_rq_clock(busiest);
P
Peter Williams 已提交
4393
		ld_moved = move_tasks(this_rq, this_cpu, busiest,
4394 4395
					imbalance, sd, CPU_NEWLY_IDLE,
					&all_pinned);
4396
		double_unlock_balance(this_rq, busiest);
4397

4398
		if (unlikely(all_pinned)) {
4399 4400
			cpumask_clear_cpu(cpu_of(busiest), cpus);
			if (!cpumask_empty(cpus))
4401 4402
				goto redo;
		}
4403 4404
	}

P
Peter Williams 已提交
4405
	if (!ld_moved) {
4406
		int active_balance = 0;
4407

I
Ingo Molnar 已提交
4408
		schedstat_inc(sd, lb_failed[CPU_NEWLY_IDLE]);
4409 4410
		if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
		    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
N
Nick Piggin 已提交
4411
			return -1;
4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447

		if (sched_mc_power_savings < POWERSAVINGS_BALANCE_WAKEUP)
			return -1;

		if (sd->nr_balance_failed++ < 2)
			return -1;

		/*
		 * The only task running in a non-idle cpu can be moved to this
		 * cpu in an attempt to completely freeup the other CPU
		 * package. The same method used to move task in load_balance()
		 * have been extended for load_balance_newidle() to speedup
		 * consolidation at sched_mc=POWERSAVINGS_BALANCE_WAKEUP (2)
		 *
		 * The package power saving logic comes from
		 * find_busiest_group().  If there are no imbalance, then
		 * f_b_g() will return NULL.  However when sched_mc={1,2} then
		 * f_b_g() will select a group from which a running task may be
		 * pulled to this cpu in order to make the other package idle.
		 * If there is no opportunity to make a package idle and if
		 * there are no imbalance, then f_b_g() will return NULL and no
		 * action will be taken in load_balance_newidle().
		 *
		 * Under normal task pull operation due to imbalance, there
		 * will be more than one task in the source run queue and
		 * move_tasks() will succeed.  ld_moved will be true and this
		 * active balance code will not be triggered.
		 */

		/* Lock busiest in correct order while this_rq is held */
		double_lock_balance(this_rq, busiest);

		/*
		 * don't kick the migration_thread, if the curr
		 * task on busiest cpu can't be moved to this_cpu
		 */
4448
		if (!cpumask_test_cpu(this_cpu, &busiest->curr->cpus_allowed)) {
4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460
			double_unlock_balance(this_rq, busiest);
			all_pinned = 1;
			return ld_moved;
		}

		if (!busiest->active_balance) {
			busiest->active_balance = 1;
			busiest->push_cpu = this_cpu;
			active_balance = 1;
		}

		double_unlock_balance(this_rq, busiest);
4461 4462 4463 4464
		/*
		 * Should not call ttwu while holding a rq->lock
		 */
		spin_unlock(&this_rq->lock);
4465 4466
		if (active_balance)
			wake_up_process(busiest->migration_thread);
4467
		spin_lock(&this_rq->lock);
4468

N
Nick Piggin 已提交
4469
	} else
4470
		sd->nr_balance_failed = 0;
L
Linus Torvalds 已提交
4471

4472
	update_shares_locked(this_rq, sd);
P
Peter Williams 已提交
4473
	return ld_moved;
4474 4475

out_balanced:
I
Ingo Molnar 已提交
4476
	schedstat_inc(sd, lb_balanced[CPU_NEWLY_IDLE]);
4477
	if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
4478
	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
N
Nick Piggin 已提交
4479
		return -1;
4480
	sd->nr_balance_failed = 0;
4481

4482
	return 0;
L
Linus Torvalds 已提交
4483 4484 4485 4486 4487 4488
}

/*
 * idle_balance is called by schedule() if this_cpu is about to become
 * idle. Attempts to pull tasks from other CPUs.
 */
4489
static void idle_balance(int this_cpu, struct rq *this_rq)
L
Linus Torvalds 已提交
4490 4491
{
	struct sched_domain *sd;
4492
	int pulled_task = 0;
I
Ingo Molnar 已提交
4493
	unsigned long next_balance = jiffies + HZ;
L
Linus Torvalds 已提交
4494 4495

	for_each_domain(this_cpu, sd) {
4496 4497 4498 4499 4500 4501
		unsigned long interval;

		if (!(sd->flags & SD_LOAD_BALANCE))
			continue;

		if (sd->flags & SD_BALANCE_NEWIDLE)
4502
			/* If we've pulled tasks over stop searching: */
4503
			pulled_task = load_balance_newidle(this_cpu, this_rq,
4504
							   sd);
4505 4506 4507 4508 4509 4510

		interval = msecs_to_jiffies(sd->balance_interval);
		if (time_after(next_balance, sd->last_balance + interval))
			next_balance = sd->last_balance + interval;
		if (pulled_task)
			break;
L
Linus Torvalds 已提交
4511
	}
I
Ingo Molnar 已提交
4512
	if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
4513 4514 4515 4516 4517
		/*
		 * We are going idle. next_balance may be set based on
		 * a busy processor. So reset next_balance.
		 */
		this_rq->next_balance = next_balance;
I
Ingo Molnar 已提交
4518
	}
L
Linus Torvalds 已提交
4519 4520 4521 4522 4523 4524 4525 4526 4527 4528
}

/*
 * active_load_balance is run by migration threads. It pushes running tasks
 * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
 * running on each physical CPU where possible, and avoids physical /
 * logical imbalances.
 *
 * Called with busiest_rq locked.
 */
4529
static void active_load_balance(struct rq *busiest_rq, int busiest_cpu)
L
Linus Torvalds 已提交
4530
{
4531
	int target_cpu = busiest_rq->push_cpu;
4532 4533
	struct sched_domain *sd;
	struct rq *target_rq;
4534

4535
	/* Is there any task to move? */
4536 4537 4538 4539
	if (busiest_rq->nr_running <= 1)
		return;

	target_rq = cpu_rq(target_cpu);
L
Linus Torvalds 已提交
4540 4541

	/*
4542
	 * This condition is "impossible", if it occurs
I
Ingo Molnar 已提交
4543
	 * we need to fix it. Originally reported by
4544
	 * Bjorn Helgaas on a 128-cpu setup.
L
Linus Torvalds 已提交
4545
	 */
4546
	BUG_ON(busiest_rq == target_rq);
L
Linus Torvalds 已提交
4547

4548 4549
	/* move a task from busiest_rq to target_rq */
	double_lock_balance(busiest_rq, target_rq);
4550 4551
	update_rq_clock(busiest_rq);
	update_rq_clock(target_rq);
4552 4553

	/* Search for an sd spanning us and the target CPU. */
4554
	for_each_domain(target_cpu, sd) {
4555
		if ((sd->flags & SD_LOAD_BALANCE) &&
4556
		    cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
4557
				break;
4558
	}
4559

4560
	if (likely(sd)) {
4561
		schedstat_inc(sd, alb_count);
4562

P
Peter Williams 已提交
4563 4564
		if (move_one_task(target_rq, target_cpu, busiest_rq,
				  sd, CPU_IDLE))
4565 4566 4567 4568
			schedstat_inc(sd, alb_pushed);
		else
			schedstat_inc(sd, alb_failed);
	}
4569
	double_unlock_balance(busiest_rq, target_rq);
L
Linus Torvalds 已提交
4570 4571
}

4572 4573 4574
#ifdef CONFIG_NO_HZ
static struct {
	atomic_t load_balancer;
4575
	cpumask_var_t cpu_mask;
4576
	cpumask_var_t ilb_grp_nohz_mask;
4577 4578 4579 4580
} nohz ____cacheline_aligned = {
	.load_balancer = ATOMIC_INIT(-1),
};

4581 4582 4583 4584 4585
int get_nohz_load_balancer(void)
{
	return atomic_read(&nohz.load_balancer);
}

4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659 4660 4661 4662 4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696
#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
/**
 * lowest_flag_domain - Return lowest sched_domain containing flag.
 * @cpu:	The cpu whose lowest level of sched domain is to
 *		be returned.
 * @flag:	The flag to check for the lowest sched_domain
 *		for the given cpu.
 *
 * Returns the lowest sched_domain of a cpu which contains the given flag.
 */
static inline struct sched_domain *lowest_flag_domain(int cpu, int flag)
{
	struct sched_domain *sd;

	for_each_domain(cpu, sd)
		if (sd && (sd->flags & flag))
			break;

	return sd;
}

/**
 * for_each_flag_domain - Iterates over sched_domains containing the flag.
 * @cpu:	The cpu whose domains we're iterating over.
 * @sd:		variable holding the value of the power_savings_sd
 *		for cpu.
 * @flag:	The flag to filter the sched_domains to be iterated.
 *
 * Iterates over all the scheduler domains for a given cpu that has the 'flag'
 * set, starting from the lowest sched_domain to the highest.
 */
#define for_each_flag_domain(cpu, sd, flag) \
	for (sd = lowest_flag_domain(cpu, flag); \
		(sd && (sd->flags & flag)); sd = sd->parent)

/**
 * is_semi_idle_group - Checks if the given sched_group is semi-idle.
 * @ilb_group:	group to be checked for semi-idleness
 *
 * Returns:	1 if the group is semi-idle. 0 otherwise.
 *
 * We define a sched_group to be semi idle if it has atleast one idle-CPU
 * and atleast one non-idle CPU. This helper function checks if the given
 * sched_group is semi-idle or not.
 */
static inline int is_semi_idle_group(struct sched_group *ilb_group)
{
	cpumask_and(nohz.ilb_grp_nohz_mask, nohz.cpu_mask,
					sched_group_cpus(ilb_group));

	/*
	 * A sched_group is semi-idle when it has atleast one busy cpu
	 * and atleast one idle cpu.
	 */
	if (cpumask_empty(nohz.ilb_grp_nohz_mask))
		return 0;

	if (cpumask_equal(nohz.ilb_grp_nohz_mask, sched_group_cpus(ilb_group)))
		return 0;

	return 1;
}
/**
 * find_new_ilb - Finds the optimum idle load balancer for nomination.
 * @cpu:	The cpu which is nominating a new idle_load_balancer.
 *
 * Returns:	Returns the id of the idle load balancer if it exists,
 *		Else, returns >= nr_cpu_ids.
 *
 * This algorithm picks the idle load balancer such that it belongs to a
 * semi-idle powersavings sched_domain. The idea is to try and avoid
 * completely idle packages/cores just for the purpose of idle load balancing
 * when there are other idle cpu's which are better suited for that job.
 */
static int find_new_ilb(int cpu)
{
	struct sched_domain *sd;
	struct sched_group *ilb_group;

	/*
	 * Have idle load balancer selection from semi-idle packages only
	 * when power-aware load balancing is enabled
	 */
	if (!(sched_smt_power_savings || sched_mc_power_savings))
		goto out_done;

	/*
	 * Optimize for the case when we have no idle CPUs or only one
	 * idle CPU. Don't walk the sched_domain hierarchy in such cases
	 */
	if (cpumask_weight(nohz.cpu_mask) < 2)
		goto out_done;

	for_each_flag_domain(cpu, sd, SD_POWERSAVINGS_BALANCE) {
		ilb_group = sd->groups;

		do {
			if (is_semi_idle_group(ilb_group))
				return cpumask_first(nohz.ilb_grp_nohz_mask);

			ilb_group = ilb_group->next;

		} while (ilb_group != sd->groups);
	}

out_done:
	return cpumask_first(nohz.cpu_mask);
}
#else /*  (CONFIG_SCHED_MC || CONFIG_SCHED_SMT) */
static inline int find_new_ilb(int call_cpu)
{
4697
	return cpumask_first(nohz.cpu_mask);
4698 4699 4700
}
#endif

4701
/*
4702 4703 4704 4705 4706 4707 4708 4709 4710 4711
 * This routine will try to nominate the ilb (idle load balancing)
 * owner among the cpus whose ticks are stopped. ilb owner will do the idle
 * load balancing on behalf of all those cpus. If all the cpus in the system
 * go into this tickless mode, then there will be no ilb owner (as there is
 * no need for one) and all the cpus will sleep till the next wakeup event
 * arrives...
 *
 * For the ilb owner, tick is not stopped. And this tick will be used
 * for idle load balancing. ilb owner will still be part of
 * nohz.cpu_mask..
4712
 *
4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727
 * While stopping the tick, this cpu will become the ilb owner if there
 * is no other owner. And will be the owner till that cpu becomes busy
 * or if all cpus in the system stop their ticks at which point
 * there is no need for ilb owner.
 *
 * When the ilb owner becomes busy, it nominates another owner, during the
 * next busy scheduler_tick()
 */
int select_nohz_load_balancer(int stop_tick)
{
	int cpu = smp_processor_id();

	if (stop_tick) {
		cpu_rq(cpu)->in_nohz_recently = 1;

4728 4729 4730 4731 4732 4733 4734 4735
		if (!cpu_active(cpu)) {
			if (atomic_read(&nohz.load_balancer) != cpu)
				return 0;

			/*
			 * If we are going offline and still the leader,
			 * give up!
			 */
4736 4737
			if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
				BUG();
4738

4739 4740 4741
			return 0;
		}

4742 4743
		cpumask_set_cpu(cpu, nohz.cpu_mask);

4744
		/* time for ilb owner also to sleep */
4745
		if (cpumask_weight(nohz.cpu_mask) == num_online_cpus()) {
4746 4747 4748 4749 4750 4751 4752 4753 4754
			if (atomic_read(&nohz.load_balancer) == cpu)
				atomic_set(&nohz.load_balancer, -1);
			return 0;
		}

		if (atomic_read(&nohz.load_balancer) == -1) {
			/* make me the ilb owner */
			if (atomic_cmpxchg(&nohz.load_balancer, -1, cpu) == -1)
				return 1;
4755 4756 4757 4758 4759 4760 4761 4762 4763 4764 4765 4766 4767 4768 4769 4770
		} else if (atomic_read(&nohz.load_balancer) == cpu) {
			int new_ilb;

			if (!(sched_smt_power_savings ||
						sched_mc_power_savings))
				return 1;
			/*
			 * Check to see if there is a more power-efficient
			 * ilb.
			 */
			new_ilb = find_new_ilb(cpu);
			if (new_ilb < nr_cpu_ids && new_ilb != cpu) {
				atomic_set(&nohz.load_balancer, -1);
				resched_cpu(new_ilb);
				return 0;
			}
4771
			return 1;
4772
		}
4773
	} else {
4774
		if (!cpumask_test_cpu(cpu, nohz.cpu_mask))
4775 4776
			return 0;

4777
		cpumask_clear_cpu(cpu, nohz.cpu_mask);
4778 4779 4780 4781 4782 4783 4784 4785 4786 4787 4788 4789

		if (atomic_read(&nohz.load_balancer) == cpu)
			if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
				BUG();
	}
	return 0;
}
#endif

static DEFINE_SPINLOCK(balancing);

/*
4790 4791 4792 4793 4794
 * It checks each scheduling domain to see if it is due to be balanced,
 * and initiates a balancing operation if so.
 *
 * Balancing parameters are set up in arch_init_sched_domains.
 */
A
Alexey Dobriyan 已提交
4795
static void rebalance_domains(int cpu, enum cpu_idle_type idle)
4796
{
4797 4798
	int balance = 1;
	struct rq *rq = cpu_rq(cpu);
4799 4800
	unsigned long interval;
	struct sched_domain *sd;
4801
	/* Earliest time when we have to do rebalance again */
4802
	unsigned long next_balance = jiffies + 60*HZ;
4803
	int update_next_balance = 0;
4804
	int need_serialize;
L
Linus Torvalds 已提交
4805

4806
	for_each_domain(cpu, sd) {
L
Linus Torvalds 已提交
4807 4808 4809 4810
		if (!(sd->flags & SD_LOAD_BALANCE))
			continue;

		interval = sd->balance_interval;
I
Ingo Molnar 已提交
4811
		if (idle != CPU_IDLE)
L
Linus Torvalds 已提交
4812 4813 4814 4815 4816 4817
			interval *= sd->busy_factor;

		/* scale ms to jiffies */
		interval = msecs_to_jiffies(interval);
		if (unlikely(!interval))
			interval = 1;
I
Ingo Molnar 已提交
4818 4819 4820
		if (interval > HZ*NR_CPUS/10)
			interval = HZ*NR_CPUS/10;

4821
		need_serialize = sd->flags & SD_SERIALIZE;
L
Linus Torvalds 已提交
4822

4823
		if (need_serialize) {
4824 4825 4826 4827
			if (!spin_trylock(&balancing))
				goto out;
		}

4828
		if (time_after_eq(jiffies, sd->last_balance + interval)) {
4829
			if (load_balance(cpu, rq, sd, idle, &balance)) {
4830 4831
				/*
				 * We've pulled tasks over so either we're no
N
Nick Piggin 已提交
4832 4833 4834
				 * longer idle, or one of our SMT siblings is
				 * not idle.
				 */
I
Ingo Molnar 已提交
4835
				idle = CPU_NOT_IDLE;
L
Linus Torvalds 已提交
4836
			}
4837
			sd->last_balance = jiffies;
L
Linus Torvalds 已提交
4838
		}
4839
		if (need_serialize)
4840 4841
			spin_unlock(&balancing);
out:
4842
		if (time_after(next_balance, sd->last_balance + interval)) {
4843
			next_balance = sd->last_balance + interval;
4844 4845
			update_next_balance = 1;
		}
4846 4847 4848 4849 4850 4851 4852 4853

		/*
		 * Stop the load balance at this level. There is another
		 * CPU in our sched group which is doing load balancing more
		 * actively.
		 */
		if (!balance)
			break;
L
Linus Torvalds 已提交
4854
	}
4855 4856 4857 4858 4859 4860 4861 4862

	/*
	 * next_balance will be updated only when there is a need.
	 * When the cpu is attached to null domain for ex, it will not be
	 * updated.
	 */
	if (likely(update_next_balance))
		rq->next_balance = next_balance;
4863 4864 4865 4866 4867 4868 4869 4870 4871
}

/*
 * run_rebalance_domains is triggered when needed from the scheduler tick.
 * In CONFIG_NO_HZ case, the idle load balance owner will do the
 * rebalancing for all the cpus for whom scheduler ticks are stopped.
 */
static void run_rebalance_domains(struct softirq_action *h)
{
I
Ingo Molnar 已提交
4872 4873 4874 4875
	int this_cpu = smp_processor_id();
	struct rq *this_rq = cpu_rq(this_cpu);
	enum cpu_idle_type idle = this_rq->idle_at_tick ?
						CPU_IDLE : CPU_NOT_IDLE;
4876

I
Ingo Molnar 已提交
4877
	rebalance_domains(this_cpu, idle);
4878 4879 4880 4881 4882 4883 4884

#ifdef CONFIG_NO_HZ
	/*
	 * If this cpu is the owner for idle load balancing, then do the
	 * balancing on behalf of the other idle cpus whose ticks are
	 * stopped.
	 */
I
Ingo Molnar 已提交
4885 4886
	if (this_rq->idle_at_tick &&
	    atomic_read(&nohz.load_balancer) == this_cpu) {
4887 4888 4889
		struct rq *rq;
		int balance_cpu;

4890 4891 4892 4893
		for_each_cpu(balance_cpu, nohz.cpu_mask) {
			if (balance_cpu == this_cpu)
				continue;

4894 4895 4896 4897 4898 4899 4900 4901
			/*
			 * If this cpu gets work to do, stop the load balancing
			 * work being done for other cpus. Next load
			 * balancing owner will pick it up.
			 */
			if (need_resched())
				break;

4902
			rebalance_domains(balance_cpu, CPU_IDLE);
4903 4904

			rq = cpu_rq(balance_cpu);
I
Ingo Molnar 已提交
4905 4906
			if (time_after(this_rq->next_balance, rq->next_balance))
				this_rq->next_balance = rq->next_balance;
4907 4908 4909 4910 4911
		}
	}
#endif
}

4912 4913 4914 4915 4916
static inline int on_null_domain(int cpu)
{
	return !rcu_dereference(cpu_rq(cpu)->sd);
}

4917 4918 4919 4920 4921 4922 4923
/*
 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
 *
 * In case of CONFIG_NO_HZ, this is the place where we nominate a new
 * idle load balancing owner or decide to stop the periodic load balancing,
 * if the whole system is idle.
 */
I
Ingo Molnar 已提交
4924
static inline void trigger_load_balance(struct rq *rq, int cpu)
4925 4926 4927 4928 4929 4930 4931 4932 4933 4934 4935
{
#ifdef CONFIG_NO_HZ
	/*
	 * If we were in the nohz mode recently and busy at the current
	 * scheduler tick, then check if we need to nominate new idle
	 * load balancer.
	 */
	if (rq->in_nohz_recently && !rq->idle_at_tick) {
		rq->in_nohz_recently = 0;

		if (atomic_read(&nohz.load_balancer) == cpu) {
4936
			cpumask_clear_cpu(cpu, nohz.cpu_mask);
4937 4938 4939 4940
			atomic_set(&nohz.load_balancer, -1);
		}

		if (atomic_read(&nohz.load_balancer) == -1) {
4941
			int ilb = find_new_ilb(cpu);
4942

4943
			if (ilb < nr_cpu_ids)
4944 4945 4946 4947 4948 4949 4950 4951 4952
				resched_cpu(ilb);
		}
	}

	/*
	 * If this cpu is idle and doing idle load balancing for all the
	 * cpus with ticks stopped, is it time for that to stop?
	 */
	if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) == cpu &&
4953
	    cpumask_weight(nohz.cpu_mask) == num_online_cpus()) {
4954 4955 4956 4957 4958 4959 4960 4961 4962
		resched_cpu(cpu);
		return;
	}

	/*
	 * If this cpu is idle and the idle load balancing is done by
	 * someone else, then no need raise the SCHED_SOFTIRQ
	 */
	if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) != cpu &&
4963
	    cpumask_test_cpu(cpu, nohz.cpu_mask))
4964 4965
		return;
#endif
4966 4967 4968
	/* Don't need to rebalance while attached to NULL domain */
	if (time_after_eq(jiffies, rq->next_balance) &&
	    likely(!on_null_domain(cpu)))
4969
		raise_softirq(SCHED_SOFTIRQ);
L
Linus Torvalds 已提交
4970
}
I
Ingo Molnar 已提交
4971 4972 4973

#else	/* CONFIG_SMP */

L
Linus Torvalds 已提交
4974 4975 4976
/*
 * on UP we do not need to balance between CPUs:
 */
4977
static inline void idle_balance(int cpu, struct rq *rq)
L
Linus Torvalds 已提交
4978 4979
{
}
I
Ingo Molnar 已提交
4980

L
Linus Torvalds 已提交
4981 4982 4983 4984 4985 4986 4987
#endif

DEFINE_PER_CPU(struct kernel_stat, kstat);

EXPORT_PER_CPU_SYMBOL(kstat);

/*
4988
 * Return any ns on the sched_clock that have not yet been accounted in
4989
 * @p in case that task is currently running.
4990 4991
 *
 * Called with task_rq_lock() held on @rq.
L
Linus Torvalds 已提交
4992
 */
4993 4994 4995 4996 4997 4998 4999 5000 5001 5002 5003 5004 5005 5006
static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq)
{
	u64 ns = 0;

	if (task_current(rq, p)) {
		update_rq_clock(rq);
		ns = rq->clock - p->se.exec_start;
		if ((s64)ns < 0)
			ns = 0;
	}

	return ns;
}

5007
unsigned long long task_delta_exec(struct task_struct *p)
L
Linus Torvalds 已提交
5008 5009
{
	unsigned long flags;
5010
	struct rq *rq;
5011
	u64 ns = 0;
5012

5013
	rq = task_rq_lock(p, &flags);
5014 5015
	ns = do_task_delta_exec(p, rq);
	task_rq_unlock(rq, &flags);
5016

5017 5018
	return ns;
}
5019

5020 5021 5022 5023 5024 5025 5026 5027 5028 5029 5030 5031 5032 5033 5034 5035 5036
/*
 * Return accounted runtime for the task.
 * In case the task is currently running, return the runtime plus current's
 * pending runtime that have not been accounted yet.
 */
unsigned long long task_sched_runtime(struct task_struct *p)
{
	unsigned long flags;
	struct rq *rq;
	u64 ns = 0;

	rq = task_rq_lock(p, &flags);
	ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq);
	task_rq_unlock(rq, &flags);

	return ns;
}
5037

5038 5039 5040 5041 5042 5043 5044 5045 5046 5047 5048 5049 5050 5051 5052 5053 5054 5055 5056
/*
 * Return sum_exec_runtime for the thread group.
 * In case the task is currently running, return the sum plus current's
 * pending runtime that have not been accounted yet.
 *
 * Note that the thread group might have other running tasks as well,
 * so the return value not includes other pending runtime that other
 * running tasks might have.
 */
unsigned long long thread_group_sched_runtime(struct task_struct *p)
{
	struct task_cputime totals;
	unsigned long flags;
	struct rq *rq;
	u64 ns;

	rq = task_rq_lock(p, &flags);
	thread_group_cputime(p, &totals);
	ns = totals.sum_exec_runtime + do_task_delta_exec(p, rq);
5057
	task_rq_unlock(rq, &flags);
5058

L
Linus Torvalds 已提交
5059 5060 5061 5062 5063 5064 5065
	return ns;
}

/*
 * Account user cpu time to a process.
 * @p: the process that the cpu time gets accounted to
 * @cputime: the cpu time spent in user space since the last update
5066
 * @cputime_scaled: cputime scaled by cpu frequency
L
Linus Torvalds 已提交
5067
 */
5068 5069
void account_user_time(struct task_struct *p, cputime_t cputime,
		       cputime_t cputime_scaled)
L
Linus Torvalds 已提交
5070 5071 5072 5073
{
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
	cputime64_t tmp;

5074
	/* Add user time to process. */
L
Linus Torvalds 已提交
5075
	p->utime = cputime_add(p->utime, cputime);
5076
	p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
5077
	account_group_user_time(p, cputime);
L
Linus Torvalds 已提交
5078 5079 5080 5081 5082 5083 5084

	/* Add user time to cpustat. */
	tmp = cputime_to_cputime64(cputime);
	if (TASK_NICE(p) > 0)
		cpustat->nice = cputime64_add(cpustat->nice, tmp);
	else
		cpustat->user = cputime64_add(cpustat->user, tmp);
5085 5086

	cpuacct_update_stats(p, CPUACCT_STAT_USER, cputime);
5087 5088
	/* Account for user time used */
	acct_update_integrals(p);
L
Linus Torvalds 已提交
5089 5090
}

5091 5092 5093 5094
/*
 * Account guest cpu time to a process.
 * @p: the process that the cpu time gets accounted to
 * @cputime: the cpu time spent in virtual machine since the last update
5095
 * @cputime_scaled: cputime scaled by cpu frequency
5096
 */
5097 5098
static void account_guest_time(struct task_struct *p, cputime_t cputime,
			       cputime_t cputime_scaled)
5099 5100 5101 5102 5103 5104
{
	cputime64_t tmp;
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;

	tmp = cputime_to_cputime64(cputime);

5105
	/* Add guest time to process. */
5106
	p->utime = cputime_add(p->utime, cputime);
5107
	p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
5108
	account_group_user_time(p, cputime);
5109 5110
	p->gtime = cputime_add(p->gtime, cputime);

5111
	/* Add guest time to cpustat. */
5112 5113 5114 5115
	cpustat->user = cputime64_add(cpustat->user, tmp);
	cpustat->guest = cputime64_add(cpustat->guest, tmp);
}

L
Linus Torvalds 已提交
5116 5117 5118 5119 5120
/*
 * Account system cpu time to a process.
 * @p: the process that the cpu time gets accounted to
 * @hardirq_offset: the offset to subtract from hardirq_count()
 * @cputime: the cpu time spent in kernel space since the last update
5121
 * @cputime_scaled: cputime scaled by cpu frequency
L
Linus Torvalds 已提交
5122 5123
 */
void account_system_time(struct task_struct *p, int hardirq_offset,
5124
			 cputime_t cputime, cputime_t cputime_scaled)
L
Linus Torvalds 已提交
5125 5126 5127 5128
{
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
	cputime64_t tmp;

5129
	if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
5130
		account_guest_time(p, cputime, cputime_scaled);
5131 5132
		return;
	}
5133

5134
	/* Add system time to process. */
L
Linus Torvalds 已提交
5135
	p->stime = cputime_add(p->stime, cputime);
5136
	p->stimescaled = cputime_add(p->stimescaled, cputime_scaled);
5137
	account_group_system_time(p, cputime);
L
Linus Torvalds 已提交
5138 5139 5140 5141 5142 5143 5144 5145

	/* Add system time to cpustat. */
	tmp = cputime_to_cputime64(cputime);
	if (hardirq_count() - hardirq_offset)
		cpustat->irq = cputime64_add(cpustat->irq, tmp);
	else if (softirq_count())
		cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
	else
5146 5147
		cpustat->system = cputime64_add(cpustat->system, tmp);

5148 5149
	cpuacct_update_stats(p, CPUACCT_STAT_SYSTEM, cputime);

L
Linus Torvalds 已提交
5150 5151 5152 5153
	/* Account for system time used */
	acct_update_integrals(p);
}

5154
/*
L
Linus Torvalds 已提交
5155 5156
 * Account for involuntary wait time.
 * @steal: the cpu time spent in involuntary wait
5157
 */
5158
void account_steal_time(cputime_t cputime)
5159
{
5160 5161 5162 5163
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
	cputime64_t cputime64 = cputime_to_cputime64(cputime);

	cpustat->steal = cputime64_add(cpustat->steal, cputime64);
5164 5165
}

L
Linus Torvalds 已提交
5166
/*
5167 5168
 * Account for idle time.
 * @cputime: the cpu time spent in idle wait
L
Linus Torvalds 已提交
5169
 */
5170
void account_idle_time(cputime_t cputime)
L
Linus Torvalds 已提交
5171 5172
{
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
5173
	cputime64_t cputime64 = cputime_to_cputime64(cputime);
5174
	struct rq *rq = this_rq();
L
Linus Torvalds 已提交
5175

5176 5177 5178 5179
	if (atomic_read(&rq->nr_iowait) > 0)
		cpustat->iowait = cputime64_add(cpustat->iowait, cputime64);
	else
		cpustat->idle = cputime64_add(cpustat->idle, cputime64);
L
Linus Torvalds 已提交
5180 5181
}

5182 5183 5184 5185 5186 5187 5188 5189 5190 5191 5192 5193 5194 5195 5196
#ifndef CONFIG_VIRT_CPU_ACCOUNTING

/*
 * Account a single tick of cpu time.
 * @p: the process that the cpu time gets accounted to
 * @user_tick: indicates if the tick is a user or a system tick
 */
void account_process_tick(struct task_struct *p, int user_tick)
{
	cputime_t one_jiffy = jiffies_to_cputime(1);
	cputime_t one_jiffy_scaled = cputime_to_scaled(one_jiffy);
	struct rq *rq = this_rq();

	if (user_tick)
		account_user_time(p, one_jiffy, one_jiffy_scaled);
5197
	else if ((p != rq->idle) || (irq_count() != HARDIRQ_OFFSET))
5198 5199 5200 5201 5202 5203 5204 5205 5206 5207 5208 5209 5210 5211 5212 5213 5214 5215 5216 5217 5218 5219 5220
		account_system_time(p, HARDIRQ_OFFSET, one_jiffy,
				    one_jiffy_scaled);
	else
		account_idle_time(one_jiffy);
}

/*
 * Account multiple ticks of steal time.
 * @p: the process from which the cpu time has been stolen
 * @ticks: number of stolen ticks
 */
void account_steal_ticks(unsigned long ticks)
{
	account_steal_time(jiffies_to_cputime(ticks));
}

/*
 * Account multiple ticks of idle time.
 * @ticks: number of stolen ticks
 */
void account_idle_ticks(unsigned long ticks)
{
	account_idle_time(jiffies_to_cputime(ticks));
L
Linus Torvalds 已提交
5221 5222
}

5223 5224
#endif

5225 5226 5227 5228 5229 5230 5231 5232 5233 5234 5235 5236 5237 5238 5239 5240 5241 5242 5243 5244 5245 5246 5247 5248 5249 5250 5251 5252 5253 5254 5255 5256 5257 5258 5259 5260 5261 5262 5263 5264 5265 5266 5267 5268 5269 5270 5271 5272 5273 5274 5275 5276 5277 5278 5279 5280 5281 5282 5283
/*
 * Use precise platform statistics if available:
 */
#ifdef CONFIG_VIRT_CPU_ACCOUNTING
cputime_t task_utime(struct task_struct *p)
{
	return p->utime;
}

cputime_t task_stime(struct task_struct *p)
{
	return p->stime;
}
#else
cputime_t task_utime(struct task_struct *p)
{
	clock_t utime = cputime_to_clock_t(p->utime),
		total = utime + cputime_to_clock_t(p->stime);
	u64 temp;

	/*
	 * Use CFS's precise accounting:
	 */
	temp = (u64)nsec_to_clock_t(p->se.sum_exec_runtime);

	if (total) {
		temp *= utime;
		do_div(temp, total);
	}
	utime = (clock_t)temp;

	p->prev_utime = max(p->prev_utime, clock_t_to_cputime(utime));
	return p->prev_utime;
}

cputime_t task_stime(struct task_struct *p)
{
	clock_t stime;

	/*
	 * Use CFS's precise accounting. (we subtract utime from
	 * the total, to make sure the total observed by userspace
	 * grows monotonically - apps rely on that):
	 */
	stime = nsec_to_clock_t(p->se.sum_exec_runtime) -
			cputime_to_clock_t(task_utime(p));

	if (stime >= 0)
		p->prev_stime = max(p->prev_stime, clock_t_to_cputime(stime));

	return p->prev_stime;
}
#endif

inline cputime_t task_gtime(struct task_struct *p)
{
	return p->gtime;
}

5284 5285 5286 5287 5288 5289 5290 5291 5292 5293 5294
/*
 * This function gets called by the timer code, with HZ frequency.
 * We call it with interrupts disabled.
 *
 * It also gets called by the fork code, when changing the parent's
 * timeslices.
 */
void scheduler_tick(void)
{
	int cpu = smp_processor_id();
	struct rq *rq = cpu_rq(cpu);
I
Ingo Molnar 已提交
5295
	struct task_struct *curr = rq->curr;
5296 5297

	sched_clock_tick();
I
Ingo Molnar 已提交
5298 5299

	spin_lock(&rq->lock);
5300
	update_rq_clock(rq);
5301
	update_cpu_load(rq);
P
Peter Zijlstra 已提交
5302
	curr->sched_class->task_tick(rq, curr, 0);
I
Ingo Molnar 已提交
5303
	spin_unlock(&rq->lock);
5304

5305 5306
	perf_counter_task_tick(curr, cpu);

5307
#ifdef CONFIG_SMP
I
Ingo Molnar 已提交
5308 5309
	rq->idle_at_tick = idle_cpu(cpu);
	trigger_load_balance(rq, cpu);
5310
#endif
L
Linus Torvalds 已提交
5311 5312
}

5313
notrace unsigned long get_parent_ip(unsigned long addr)
5314 5315 5316 5317 5318 5319 5320 5321
{
	if (in_lock_functions(addr)) {
		addr = CALLER_ADDR2;
		if (in_lock_functions(addr))
			addr = CALLER_ADDR3;
	}
	return addr;
}
L
Linus Torvalds 已提交
5322

5323 5324 5325
#if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
				defined(CONFIG_PREEMPT_TRACER))

5326
void __kprobes add_preempt_count(int val)
L
Linus Torvalds 已提交
5327
{
5328
#ifdef CONFIG_DEBUG_PREEMPT
L
Linus Torvalds 已提交
5329 5330 5331
	/*
	 * Underflow?
	 */
5332 5333
	if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
		return;
5334
#endif
L
Linus Torvalds 已提交
5335
	preempt_count() += val;
5336
#ifdef CONFIG_DEBUG_PREEMPT
L
Linus Torvalds 已提交
5337 5338 5339
	/*
	 * Spinlock count overflowing soon?
	 */
5340 5341
	DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
				PREEMPT_MASK - 10);
5342 5343 5344
#endif
	if (preempt_count() == val)
		trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
L
Linus Torvalds 已提交
5345 5346 5347
}
EXPORT_SYMBOL(add_preempt_count);

5348
void __kprobes sub_preempt_count(int val)
L
Linus Torvalds 已提交
5349
{
5350
#ifdef CONFIG_DEBUG_PREEMPT
L
Linus Torvalds 已提交
5351 5352 5353
	/*
	 * Underflow?
	 */
5354
	if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
5355
		return;
L
Linus Torvalds 已提交
5356 5357 5358
	/*
	 * Is the spinlock portion underflowing?
	 */
5359 5360 5361
	if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
			!(preempt_count() & PREEMPT_MASK)))
		return;
5362
#endif
5363

5364 5365
	if (preempt_count() == val)
		trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
L
Linus Torvalds 已提交
5366 5367 5368 5369 5370 5371 5372
	preempt_count() -= val;
}
EXPORT_SYMBOL(sub_preempt_count);

#endif

/*
I
Ingo Molnar 已提交
5373
 * Print scheduling while atomic bug:
L
Linus Torvalds 已提交
5374
 */
I
Ingo Molnar 已提交
5375
static noinline void __schedule_bug(struct task_struct *prev)
L
Linus Torvalds 已提交
5376
{
5377 5378 5379 5380 5381
	struct pt_regs *regs = get_irq_regs();

	printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
		prev->comm, prev->pid, preempt_count());

I
Ingo Molnar 已提交
5382
	debug_show_held_locks(prev);
5383
	print_modules();
I
Ingo Molnar 已提交
5384 5385
	if (irqs_disabled())
		print_irqtrace_events(prev);
5386 5387 5388 5389 5390

	if (regs)
		show_regs(regs);
	else
		dump_stack();
I
Ingo Molnar 已提交
5391
}
L
Linus Torvalds 已提交
5392

I
Ingo Molnar 已提交
5393 5394 5395 5396 5397
/*
 * Various schedule()-time debugging checks and statistics:
 */
static inline void schedule_debug(struct task_struct *prev)
{
L
Linus Torvalds 已提交
5398
	/*
I
Ingo Molnar 已提交
5399
	 * Test if we are atomic. Since do_exit() needs to call into
L
Linus Torvalds 已提交
5400 5401 5402
	 * schedule() atomically, we ignore that path for now.
	 * Otherwise, whine if we are scheduling when we should not be.
	 */
5403
	if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
I
Ingo Molnar 已提交
5404 5405
		__schedule_bug(prev);

L
Linus Torvalds 已提交
5406 5407
	profile_hit(SCHED_PROFILING, __builtin_return_address(0));

5408
	schedstat_inc(this_rq(), sched_count);
I
Ingo Molnar 已提交
5409 5410
#ifdef CONFIG_SCHEDSTATS
	if (unlikely(prev->lock_depth >= 0)) {
5411 5412
		schedstat_inc(this_rq(), bkl_count);
		schedstat_inc(prev, sched_info.bkl_count);
I
Ingo Molnar 已提交
5413 5414
	}
#endif
I
Ingo Molnar 已提交
5415 5416
}

M
Mike Galbraith 已提交
5417 5418 5419 5420 5421 5422 5423 5424 5425 5426 5427 5428 5429 5430 5431 5432 5433 5434 5435 5436 5437 5438
static void put_prev_task(struct rq *rq, struct task_struct *prev)
{
	if (prev->state == TASK_RUNNING) {
		u64 runtime = prev->se.sum_exec_runtime;

		runtime -= prev->se.prev_sum_exec_runtime;
		runtime = min_t(u64, runtime, 2*sysctl_sched_migration_cost);

		/*
		 * In order to avoid avg_overlap growing stale when we are
		 * indeed overlapping and hence not getting put to sleep, grow
		 * the avg_overlap on preemption.
		 *
		 * We use the average preemption runtime because that
		 * correlates to the amount of cache footprint a task can
		 * build up.
		 */
		update_avg(&prev->se.avg_overlap, runtime);
	}
	prev->sched_class->put_prev_task(rq, prev);
}

I
Ingo Molnar 已提交
5439 5440 5441 5442
/*
 * Pick up the highest-prio task:
 */
static inline struct task_struct *
5443
pick_next_task(struct rq *rq)
I
Ingo Molnar 已提交
5444
{
5445
	const struct sched_class *class;
I
Ingo Molnar 已提交
5446
	struct task_struct *p;
L
Linus Torvalds 已提交
5447 5448

	/*
I
Ingo Molnar 已提交
5449 5450
	 * Optimization: we know that if all tasks are in
	 * the fair class we can call that function directly:
L
Linus Torvalds 已提交
5451
	 */
I
Ingo Molnar 已提交
5452
	if (likely(rq->nr_running == rq->cfs.nr_running)) {
5453
		p = fair_sched_class.pick_next_task(rq);
I
Ingo Molnar 已提交
5454 5455
		if (likely(p))
			return p;
L
Linus Torvalds 已提交
5456 5457
	}

I
Ingo Molnar 已提交
5458 5459
	class = sched_class_highest;
	for ( ; ; ) {
5460
		p = class->pick_next_task(rq);
I
Ingo Molnar 已提交
5461 5462 5463 5464 5465 5466 5467 5468 5469
		if (p)
			return p;
		/*
		 * Will never be NULL as the idle class always
		 * returns a non-NULL p:
		 */
		class = class->next;
	}
}
L
Linus Torvalds 已提交
5470

I
Ingo Molnar 已提交
5471 5472 5473
/*
 * schedule() is the main scheduler function.
 */
5474
asmlinkage void __sched schedule(void)
I
Ingo Molnar 已提交
5475 5476
{
	struct task_struct *prev, *next;
5477
	unsigned long *switch_count;
I
Ingo Molnar 已提交
5478
	struct rq *rq;
5479
	int cpu;
I
Ingo Molnar 已提交
5480

5481 5482
need_resched:
	preempt_disable();
I
Ingo Molnar 已提交
5483 5484 5485 5486 5487 5488 5489 5490 5491 5492
	cpu = smp_processor_id();
	rq = cpu_rq(cpu);
	rcu_qsctr_inc(cpu);
	prev = rq->curr;
	switch_count = &prev->nivcsw;

	release_kernel_lock(prev);
need_resched_nonpreemptible:

	schedule_debug(prev);
L
Linus Torvalds 已提交
5493

5494
	if (sched_feat(HRTICK))
M
Mike Galbraith 已提交
5495
		hrtick_clear(rq);
P
Peter Zijlstra 已提交
5496

5497
	spin_lock_irq(&rq->lock);
5498
	update_rq_clock(rq);
5499
	clear_tsk_need_resched(prev);
L
Linus Torvalds 已提交
5500 5501

	if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
5502
		if (unlikely(signal_pending_state(prev->state, prev)))
L
Linus Torvalds 已提交
5503
			prev->state = TASK_RUNNING;
5504
		else
5505
			deactivate_task(rq, prev, 1);
I
Ingo Molnar 已提交
5506
		switch_count = &prev->nvcsw;
L
Linus Torvalds 已提交
5507 5508
	}

5509
	pre_schedule(rq, prev);
5510

I
Ingo Molnar 已提交
5511
	if (unlikely(!rq->nr_running))
L
Linus Torvalds 已提交
5512 5513
		idle_balance(cpu, rq);

M
Mike Galbraith 已提交
5514
	put_prev_task(rq, prev);
5515
	next = pick_next_task(rq);
L
Linus Torvalds 已提交
5516 5517

	if (likely(prev != next)) {
5518
		sched_info_switch(prev, next);
5519
		perf_counter_task_sched_out(prev, next, cpu);
5520

L
Linus Torvalds 已提交
5521 5522 5523 5524
		rq->nr_switches++;
		rq->curr = next;
		++*switch_count;

5525
		context_switch(rq, prev, next); /* unlocks the rq */
P
Peter Zijlstra 已提交
5526 5527 5528 5529 5530 5531
		/*
		 * the context switch might have flipped the stack from under
		 * us, hence refresh the local variables.
		 */
		cpu = smp_processor_id();
		rq = cpu_rq(cpu);
5532
	} else
L
Linus Torvalds 已提交
5533
		spin_unlock_irq(&rq->lock);
5534

5535
	post_schedule(rq);
L
Linus Torvalds 已提交
5536

P
Peter Zijlstra 已提交
5537
	if (unlikely(reacquire_kernel_lock(current) < 0))
L
Linus Torvalds 已提交
5538
		goto need_resched_nonpreemptible;
P
Peter Zijlstra 已提交
5539

L
Linus Torvalds 已提交
5540
	preempt_enable_no_resched();
5541
	if (need_resched())
L
Linus Torvalds 已提交
5542 5543 5544 5545
		goto need_resched;
}
EXPORT_SYMBOL(schedule);

5546 5547 5548 5549 5550 5551 5552 5553 5554 5555 5556 5557 5558 5559 5560 5561 5562 5563 5564 5565 5566 5567 5568 5569 5570 5571 5572 5573 5574 5575 5576 5577 5578 5579 5580 5581 5582 5583 5584 5585 5586 5587 5588 5589 5590 5591 5592 5593 5594 5595 5596 5597 5598 5599 5600 5601 5602 5603 5604 5605 5606
#ifdef CONFIG_SMP
/*
 * Look out! "owner" is an entirely speculative pointer
 * access and not reliable.
 */
int mutex_spin_on_owner(struct mutex *lock, struct thread_info *owner)
{
	unsigned int cpu;
	struct rq *rq;

	if (!sched_feat(OWNER_SPIN))
		return 0;

#ifdef CONFIG_DEBUG_PAGEALLOC
	/*
	 * Need to access the cpu field knowing that
	 * DEBUG_PAGEALLOC could have unmapped it if
	 * the mutex owner just released it and exited.
	 */
	if (probe_kernel_address(&owner->cpu, cpu))
		goto out;
#else
	cpu = owner->cpu;
#endif

	/*
	 * Even if the access succeeded (likely case),
	 * the cpu field may no longer be valid.
	 */
	if (cpu >= nr_cpumask_bits)
		goto out;

	/*
	 * We need to validate that we can do a
	 * get_cpu() and that we have the percpu area.
	 */
	if (!cpu_online(cpu))
		goto out;

	rq = cpu_rq(cpu);

	for (;;) {
		/*
		 * Owner changed, break to re-assess state.
		 */
		if (lock->owner != owner)
			break;

		/*
		 * Is that owner really running on that cpu?
		 */
		if (task_thread_info(rq->curr) != owner || need_resched())
			return 0;

		cpu_relax();
	}
out:
	return 1;
}
#endif

L
Linus Torvalds 已提交
5607 5608
#ifdef CONFIG_PREEMPT
/*
5609
 * this is the entry point to schedule() from in-kernel preemption
I
Ingo Molnar 已提交
5610
 * off of preempt_enable. Kernel preemptions off return from interrupt
L
Linus Torvalds 已提交
5611 5612 5613 5614 5615
 * occur there and call schedule directly.
 */
asmlinkage void __sched preempt_schedule(void)
{
	struct thread_info *ti = current_thread_info();
5616

L
Linus Torvalds 已提交
5617 5618
	/*
	 * If there is a non-zero preempt_count or interrupts are disabled,
I
Ingo Molnar 已提交
5619
	 * we do not want to preempt the current task. Just return..
L
Linus Torvalds 已提交
5620
	 */
N
Nick Piggin 已提交
5621
	if (likely(ti->preempt_count || irqs_disabled()))
L
Linus Torvalds 已提交
5622 5623
		return;

5624 5625 5626 5627
	do {
		add_preempt_count(PREEMPT_ACTIVE);
		schedule();
		sub_preempt_count(PREEMPT_ACTIVE);
L
Linus Torvalds 已提交
5628

5629 5630 5631 5632 5633
		/*
		 * Check again in case we missed a preemption opportunity
		 * between schedule and now.
		 */
		barrier();
5634
	} while (need_resched());
L
Linus Torvalds 已提交
5635 5636 5637 5638
}
EXPORT_SYMBOL(preempt_schedule);

/*
5639
 * this is the entry point to schedule() from kernel preemption
L
Linus Torvalds 已提交
5640 5641 5642 5643 5644 5645 5646
 * off of irq context.
 * Note, that this is called and return with irqs disabled. This will
 * protect us against recursive calling from irq.
 */
asmlinkage void __sched preempt_schedule_irq(void)
{
	struct thread_info *ti = current_thread_info();
5647

5648
	/* Catch callers which need to be fixed */
L
Linus Torvalds 已提交
5649 5650
	BUG_ON(ti->preempt_count || !irqs_disabled());

5651 5652 5653 5654 5655 5656
	do {
		add_preempt_count(PREEMPT_ACTIVE);
		local_irq_enable();
		schedule();
		local_irq_disable();
		sub_preempt_count(PREEMPT_ACTIVE);
L
Linus Torvalds 已提交
5657

5658 5659 5660 5661 5662
		/*
		 * Check again in case we missed a preemption opportunity
		 * between schedule and now.
		 */
		barrier();
5663
	} while (need_resched());
L
Linus Torvalds 已提交
5664 5665 5666 5667
}

#endif /* CONFIG_PREEMPT */

I
Ingo Molnar 已提交
5668 5669
int default_wake_function(wait_queue_t *curr, unsigned mode, int sync,
			  void *key)
L
Linus Torvalds 已提交
5670
{
5671
	return try_to_wake_up(curr->private, mode, sync);
L
Linus Torvalds 已提交
5672 5673 5674 5675
}
EXPORT_SYMBOL(default_wake_function);

/*
I
Ingo Molnar 已提交
5676 5677
 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
L
Linus Torvalds 已提交
5678 5679 5680
 * number) then we wake all the non-exclusive tasks and one exclusive task.
 *
 * There are circumstances in which we can try to wake a task which has already
I
Ingo Molnar 已提交
5681
 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
L
Linus Torvalds 已提交
5682 5683
 * zero in this (rare) case, and we handle it by continuing to scan the queue.
 */
5684
static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
5685
			int nr_exclusive, int sync, void *key)
L
Linus Torvalds 已提交
5686
{
5687
	wait_queue_t *curr, *next;
L
Linus Torvalds 已提交
5688

5689
	list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
5690 5691
		unsigned flags = curr->flags;

L
Linus Torvalds 已提交
5692
		if (curr->func(curr, mode, sync, key) &&
5693
				(flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
L
Linus Torvalds 已提交
5694 5695 5696 5697 5698 5699 5700 5701 5702
			break;
	}
}

/**
 * __wake_up - wake up threads blocked on a waitqueue.
 * @q: the waitqueue
 * @mode: which threads
 * @nr_exclusive: how many wake-one or wake-many threads to wake up
5703
 * @key: is directly passed to the wakeup function
5704 5705 5706
 *
 * It may be assumed that this function implies a write memory barrier before
 * changing the task state if and only if any tasks are woken up.
L
Linus Torvalds 已提交
5707
 */
5708
void __wake_up(wait_queue_head_t *q, unsigned int mode,
I
Ingo Molnar 已提交
5709
			int nr_exclusive, void *key)
L
Linus Torvalds 已提交
5710 5711 5712 5713 5714 5715 5716 5717 5718 5719 5720 5721
{
	unsigned long flags;

	spin_lock_irqsave(&q->lock, flags);
	__wake_up_common(q, mode, nr_exclusive, 0, key);
	spin_unlock_irqrestore(&q->lock, flags);
}
EXPORT_SYMBOL(__wake_up);

/*
 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
 */
5722
void __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
L
Linus Torvalds 已提交
5723 5724 5725 5726
{
	__wake_up_common(q, mode, 1, 0, NULL);
}

5727 5728 5729 5730 5731
void __wake_up_locked_key(wait_queue_head_t *q, unsigned int mode, void *key)
{
	__wake_up_common(q, mode, 1, 0, key);
}

L
Linus Torvalds 已提交
5732
/**
5733
 * __wake_up_sync_key - wake up threads blocked on a waitqueue.
L
Linus Torvalds 已提交
5734 5735 5736
 * @q: the waitqueue
 * @mode: which threads
 * @nr_exclusive: how many wake-one or wake-many threads to wake up
5737
 * @key: opaque value to be passed to wakeup targets
L
Linus Torvalds 已提交
5738 5739 5740 5741 5742 5743 5744
 *
 * The sync wakeup differs that the waker knows that it will schedule
 * away soon, so while the target thread will be woken up, it will not
 * be migrated to another CPU - ie. the two threads are 'synchronized'
 * with each other. This can prevent needless bouncing between CPUs.
 *
 * On UP it can prevent extra preemption.
5745 5746 5747
 *
 * It may be assumed that this function implies a write memory barrier before
 * changing the task state if and only if any tasks are woken up.
L
Linus Torvalds 已提交
5748
 */
5749 5750
void __wake_up_sync_key(wait_queue_head_t *q, unsigned int mode,
			int nr_exclusive, void *key)
L
Linus Torvalds 已提交
5751 5752 5753 5754 5755 5756 5757 5758 5759 5760 5761
{
	unsigned long flags;
	int sync = 1;

	if (unlikely(!q))
		return;

	if (unlikely(!nr_exclusive))
		sync = 0;

	spin_lock_irqsave(&q->lock, flags);
5762
	__wake_up_common(q, mode, nr_exclusive, sync, key);
L
Linus Torvalds 已提交
5763 5764
	spin_unlock_irqrestore(&q->lock, flags);
}
5765 5766 5767 5768 5769 5770 5771 5772 5773
EXPORT_SYMBOL_GPL(__wake_up_sync_key);

/*
 * __wake_up_sync - see __wake_up_sync_key()
 */
void __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
{
	__wake_up_sync_key(q, mode, nr_exclusive, NULL);
}
L
Linus Torvalds 已提交
5774 5775
EXPORT_SYMBOL_GPL(__wake_up_sync);	/* For internal use only */

5776 5777 5778 5779 5780 5781 5782 5783
/**
 * complete: - signals a single thread waiting on this completion
 * @x:  holds the state of this particular completion
 *
 * This will wake up a single thread waiting on this completion. Threads will be
 * awakened in the same order in which they were queued.
 *
 * See also complete_all(), wait_for_completion() and related routines.
5784 5785 5786
 *
 * It may be assumed that this function implies a write memory barrier before
 * changing the task state if and only if any tasks are woken up.
5787
 */
5788
void complete(struct completion *x)
L
Linus Torvalds 已提交
5789 5790 5791 5792 5793
{
	unsigned long flags;

	spin_lock_irqsave(&x->wait.lock, flags);
	x->done++;
5794
	__wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
L
Linus Torvalds 已提交
5795 5796 5797 5798
	spin_unlock_irqrestore(&x->wait.lock, flags);
}
EXPORT_SYMBOL(complete);

5799 5800 5801 5802 5803
/**
 * complete_all: - signals all threads waiting on this completion
 * @x:  holds the state of this particular completion
 *
 * This will wake up all threads waiting on this particular completion event.
5804 5805 5806
 *
 * It may be assumed that this function implies a write memory barrier before
 * changing the task state if and only if any tasks are woken up.
5807
 */
5808
void complete_all(struct completion *x)
L
Linus Torvalds 已提交
5809 5810 5811 5812 5813
{
	unsigned long flags;

	spin_lock_irqsave(&x->wait.lock, flags);
	x->done += UINT_MAX/2;
5814
	__wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
L
Linus Torvalds 已提交
5815 5816 5817 5818
	spin_unlock_irqrestore(&x->wait.lock, flags);
}
EXPORT_SYMBOL(complete_all);

5819 5820
static inline long __sched
do_wait_for_common(struct completion *x, long timeout, int state)
L
Linus Torvalds 已提交
5821 5822 5823 5824 5825 5826 5827
{
	if (!x->done) {
		DECLARE_WAITQUEUE(wait, current);

		wait.flags |= WQ_FLAG_EXCLUSIVE;
		__add_wait_queue_tail(&x->wait, &wait);
		do {
5828
			if (signal_pending_state(state, current)) {
5829 5830
				timeout = -ERESTARTSYS;
				break;
5831 5832
			}
			__set_current_state(state);
L
Linus Torvalds 已提交
5833 5834 5835
			spin_unlock_irq(&x->wait.lock);
			timeout = schedule_timeout(timeout);
			spin_lock_irq(&x->wait.lock);
5836
		} while (!x->done && timeout);
L
Linus Torvalds 已提交
5837
		__remove_wait_queue(&x->wait, &wait);
5838 5839
		if (!x->done)
			return timeout;
L
Linus Torvalds 已提交
5840 5841
	}
	x->done--;
5842
	return timeout ?: 1;
L
Linus Torvalds 已提交
5843 5844
}

5845 5846
static long __sched
wait_for_common(struct completion *x, long timeout, int state)
L
Linus Torvalds 已提交
5847 5848 5849 5850
{
	might_sleep();

	spin_lock_irq(&x->wait.lock);
5851
	timeout = do_wait_for_common(x, timeout, state);
L
Linus Torvalds 已提交
5852
	spin_unlock_irq(&x->wait.lock);
5853 5854
	return timeout;
}
L
Linus Torvalds 已提交
5855

5856 5857 5858 5859 5860 5861 5862 5863 5864 5865
/**
 * wait_for_completion: - waits for completion of a task
 * @x:  holds the state of this particular completion
 *
 * This waits to be signaled for completion of a specific task. It is NOT
 * interruptible and there is no timeout.
 *
 * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
 * and interrupt capability. Also see complete().
 */
5866
void __sched wait_for_completion(struct completion *x)
5867 5868
{
	wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
L
Linus Torvalds 已提交
5869
}
5870
EXPORT_SYMBOL(wait_for_completion);
L
Linus Torvalds 已提交
5871

5872 5873 5874 5875 5876 5877 5878 5879 5880
/**
 * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
 * @x:  holds the state of this particular completion
 * @timeout:  timeout value in jiffies
 *
 * This waits for either a completion of a specific task to be signaled or for a
 * specified timeout to expire. The timeout is in jiffies. It is not
 * interruptible.
 */
5881
unsigned long __sched
5882
wait_for_completion_timeout(struct completion *x, unsigned long timeout)
L
Linus Torvalds 已提交
5883
{
5884
	return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
L
Linus Torvalds 已提交
5885
}
5886
EXPORT_SYMBOL(wait_for_completion_timeout);
L
Linus Torvalds 已提交
5887

5888 5889 5890 5891 5892 5893 5894
/**
 * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
 * @x:  holds the state of this particular completion
 *
 * This waits for completion of a specific task to be signaled. It is
 * interruptible.
 */
5895
int __sched wait_for_completion_interruptible(struct completion *x)
I
Ingo Molnar 已提交
5896
{
5897 5898 5899 5900
	long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
	if (t == -ERESTARTSYS)
		return t;
	return 0;
I
Ingo Molnar 已提交
5901
}
5902
EXPORT_SYMBOL(wait_for_completion_interruptible);
L
Linus Torvalds 已提交
5903

5904 5905 5906 5907 5908 5909 5910 5911
/**
 * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
 * @x:  holds the state of this particular completion
 * @timeout:  timeout value in jiffies
 *
 * This waits for either a completion of a specific task to be signaled or for a
 * specified timeout to expire. It is interruptible. The timeout is in jiffies.
 */
5912
unsigned long __sched
5913 5914
wait_for_completion_interruptible_timeout(struct completion *x,
					  unsigned long timeout)
I
Ingo Molnar 已提交
5915
{
5916
	return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
I
Ingo Molnar 已提交
5917
}
5918
EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
L
Linus Torvalds 已提交
5919

5920 5921 5922 5923 5924 5925 5926
/**
 * wait_for_completion_killable: - waits for completion of a task (killable)
 * @x:  holds the state of this particular completion
 *
 * This waits to be signaled for completion of a specific task. It can be
 * interrupted by a kill signal.
 */
M
Matthew Wilcox 已提交
5927 5928 5929 5930 5931 5932 5933 5934 5935
int __sched wait_for_completion_killable(struct completion *x)
{
	long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
	if (t == -ERESTARTSYS)
		return t;
	return 0;
}
EXPORT_SYMBOL(wait_for_completion_killable);

5936 5937 5938 5939 5940 5941 5942 5943 5944 5945 5946 5947 5948 5949 5950 5951 5952 5953 5954 5955 5956 5957 5958 5959 5960 5961 5962 5963 5964 5965 5966 5967 5968 5969 5970 5971 5972 5973 5974 5975 5976 5977 5978 5979 5980 5981
/**
 *	try_wait_for_completion - try to decrement a completion without blocking
 *	@x:	completion structure
 *
 *	Returns: 0 if a decrement cannot be done without blocking
 *		 1 if a decrement succeeded.
 *
 *	If a completion is being used as a counting completion,
 *	attempt to decrement the counter without blocking. This
 *	enables us to avoid waiting if the resource the completion
 *	is protecting is not available.
 */
bool try_wait_for_completion(struct completion *x)
{
	int ret = 1;

	spin_lock_irq(&x->wait.lock);
	if (!x->done)
		ret = 0;
	else
		x->done--;
	spin_unlock_irq(&x->wait.lock);
	return ret;
}
EXPORT_SYMBOL(try_wait_for_completion);

/**
 *	completion_done - Test to see if a completion has any waiters
 *	@x:	completion structure
 *
 *	Returns: 0 if there are waiters (wait_for_completion() in progress)
 *		 1 if there are no waiters.
 *
 */
bool completion_done(struct completion *x)
{
	int ret = 1;

	spin_lock_irq(&x->wait.lock);
	if (!x->done)
		ret = 0;
	spin_unlock_irq(&x->wait.lock);
	return ret;
}
EXPORT_SYMBOL(completion_done);

5982 5983
static long __sched
sleep_on_common(wait_queue_head_t *q, int state, long timeout)
L
Linus Torvalds 已提交
5984
{
I
Ingo Molnar 已提交
5985 5986 5987 5988
	unsigned long flags;
	wait_queue_t wait;

	init_waitqueue_entry(&wait, current);
L
Linus Torvalds 已提交
5989

5990
	__set_current_state(state);
L
Linus Torvalds 已提交
5991

5992 5993 5994 5995 5996 5997 5998 5999 6000 6001 6002 6003 6004 6005
	spin_lock_irqsave(&q->lock, flags);
	__add_wait_queue(q, &wait);
	spin_unlock(&q->lock);
	timeout = schedule_timeout(timeout);
	spin_lock_irq(&q->lock);
	__remove_wait_queue(q, &wait);
	spin_unlock_irqrestore(&q->lock, flags);

	return timeout;
}

void __sched interruptible_sleep_on(wait_queue_head_t *q)
{
	sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
L
Linus Torvalds 已提交
6006 6007 6008
}
EXPORT_SYMBOL(interruptible_sleep_on);

I
Ingo Molnar 已提交
6009
long __sched
I
Ingo Molnar 已提交
6010
interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
L
Linus Torvalds 已提交
6011
{
6012
	return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
L
Linus Torvalds 已提交
6013 6014 6015
}
EXPORT_SYMBOL(interruptible_sleep_on_timeout);

I
Ingo Molnar 已提交
6016
void __sched sleep_on(wait_queue_head_t *q)
L
Linus Torvalds 已提交
6017
{
6018
	sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
L
Linus Torvalds 已提交
6019 6020 6021
}
EXPORT_SYMBOL(sleep_on);

I
Ingo Molnar 已提交
6022
long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
L
Linus Torvalds 已提交
6023
{
6024
	return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
L
Linus Torvalds 已提交
6025 6026 6027
}
EXPORT_SYMBOL(sleep_on_timeout);

6028 6029 6030 6031 6032 6033 6034 6035 6036 6037 6038 6039
#ifdef CONFIG_RT_MUTEXES

/*
 * rt_mutex_setprio - set the current priority of a task
 * @p: task
 * @prio: prio value (kernel-internal form)
 *
 * This function changes the 'effective' priority of a task. It does
 * not touch ->normal_prio like __setscheduler().
 *
 * Used by the rt_mutex code to implement priority inheritance logic.
 */
6040
void rt_mutex_setprio(struct task_struct *p, int prio)
6041 6042
{
	unsigned long flags;
6043
	int oldprio, on_rq, running;
6044
	struct rq *rq;
6045
	const struct sched_class *prev_class = p->sched_class;
6046 6047 6048 6049

	BUG_ON(prio < 0 || prio > MAX_PRIO);

	rq = task_rq_lock(p, &flags);
I
Ingo Molnar 已提交
6050
	update_rq_clock(rq);
6051

6052
	oldprio = p->prio;
I
Ingo Molnar 已提交
6053
	on_rq = p->se.on_rq;
6054
	running = task_current(rq, p);
6055
	if (on_rq)
6056
		dequeue_task(rq, p, 0);
6057 6058
	if (running)
		p->sched_class->put_prev_task(rq, p);
I
Ingo Molnar 已提交
6059 6060 6061 6062 6063 6064

	if (rt_prio(prio))
		p->sched_class = &rt_sched_class;
	else
		p->sched_class = &fair_sched_class;

6065 6066
	p->prio = prio;

6067 6068
	if (running)
		p->sched_class->set_curr_task(rq);
I
Ingo Molnar 已提交
6069
	if (on_rq) {
6070
		enqueue_task(rq, p, 0);
6071 6072

		check_class_changed(rq, p, prev_class, oldprio, running);
6073 6074 6075 6076 6077 6078
	}
	task_rq_unlock(rq, &flags);
}

#endif

6079
void set_user_nice(struct task_struct *p, long nice)
L
Linus Torvalds 已提交
6080
{
I
Ingo Molnar 已提交
6081
	int old_prio, delta, on_rq;
L
Linus Torvalds 已提交
6082
	unsigned long flags;
6083
	struct rq *rq;
L
Linus Torvalds 已提交
6084 6085 6086 6087 6088 6089 6090 6091

	if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
		return;
	/*
	 * We have to be careful, if called from sys_setpriority(),
	 * the task might be in the middle of scheduling on another CPU.
	 */
	rq = task_rq_lock(p, &flags);
I
Ingo Molnar 已提交
6092
	update_rq_clock(rq);
L
Linus Torvalds 已提交
6093 6094 6095 6096
	/*
	 * The RT priorities are set via sched_setscheduler(), but we still
	 * allow the 'normal' nice value to be set - but as expected
	 * it wont have any effect on scheduling until the task is
I
Ingo Molnar 已提交
6097
	 * SCHED_FIFO/SCHED_RR:
L
Linus Torvalds 已提交
6098
	 */
6099
	if (task_has_rt_policy(p)) {
L
Linus Torvalds 已提交
6100 6101 6102
		p->static_prio = NICE_TO_PRIO(nice);
		goto out_unlock;
	}
I
Ingo Molnar 已提交
6103
	on_rq = p->se.on_rq;
6104
	if (on_rq)
6105
		dequeue_task(rq, p, 0);
L
Linus Torvalds 已提交
6106 6107

	p->static_prio = NICE_TO_PRIO(nice);
6108
	set_load_weight(p);
6109 6110 6111
	old_prio = p->prio;
	p->prio = effective_prio(p);
	delta = p->prio - old_prio;
L
Linus Torvalds 已提交
6112

I
Ingo Molnar 已提交
6113
	if (on_rq) {
6114
		enqueue_task(rq, p, 0);
L
Linus Torvalds 已提交
6115
		/*
6116 6117
		 * If the task increased its priority or is running and
		 * lowered its priority, then reschedule its CPU:
L
Linus Torvalds 已提交
6118
		 */
6119
		if (delta < 0 || (delta > 0 && task_running(rq, p)))
L
Linus Torvalds 已提交
6120 6121 6122 6123 6124 6125 6126
			resched_task(rq->curr);
	}
out_unlock:
	task_rq_unlock(rq, &flags);
}
EXPORT_SYMBOL(set_user_nice);

M
Matt Mackall 已提交
6127 6128 6129 6130 6131
/*
 * can_nice - check if a task can reduce its nice value
 * @p: task
 * @nice: nice value
 */
6132
int can_nice(const struct task_struct *p, const int nice)
M
Matt Mackall 已提交
6133
{
6134 6135
	/* convert nice value [19,-20] to rlimit style value [1,40] */
	int nice_rlim = 20 - nice;
6136

M
Matt Mackall 已提交
6137 6138 6139 6140
	return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
		capable(CAP_SYS_NICE));
}

L
Linus Torvalds 已提交
6141 6142 6143 6144 6145 6146 6147 6148 6149
#ifdef __ARCH_WANT_SYS_NICE

/*
 * sys_nice - change the priority of the current process.
 * @increment: priority increment
 *
 * sys_setpriority is a more generic, but much slower function that
 * does similar things.
 */
6150
SYSCALL_DEFINE1(nice, int, increment)
L
Linus Torvalds 已提交
6151
{
6152
	long nice, retval;
L
Linus Torvalds 已提交
6153 6154 6155 6156 6157 6158

	/*
	 * Setpriority might change our priority at the same moment.
	 * We don't have to worry. Conceptually one call occurs first
	 * and we have a single winner.
	 */
M
Matt Mackall 已提交
6159 6160
	if (increment < -40)
		increment = -40;
L
Linus Torvalds 已提交
6161 6162 6163
	if (increment > 40)
		increment = 40;

6164
	nice = TASK_NICE(current) + increment;
L
Linus Torvalds 已提交
6165 6166 6167 6168 6169
	if (nice < -20)
		nice = -20;
	if (nice > 19)
		nice = 19;

M
Matt Mackall 已提交
6170 6171 6172
	if (increment < 0 && !can_nice(current, nice))
		return -EPERM;

L
Linus Torvalds 已提交
6173 6174 6175 6176 6177 6178 6179 6180 6181 6182 6183 6184 6185 6186 6187 6188 6189 6190
	retval = security_task_setnice(current, nice);
	if (retval)
		return retval;

	set_user_nice(current, nice);
	return 0;
}

#endif

/**
 * task_prio - return the priority value of a given task.
 * @p: the task in question.
 *
 * This is the priority value as seen by users in /proc.
 * RT tasks are offset by -200. Normal tasks are centered
 * around 0, value goes from -16 to +15.
 */
6191
int task_prio(const struct task_struct *p)
L
Linus Torvalds 已提交
6192 6193 6194 6195 6196 6197 6198 6199
{
	return p->prio - MAX_RT_PRIO;
}

/**
 * task_nice - return the nice value of a given task.
 * @p: the task in question.
 */
6200
int task_nice(const struct task_struct *p)
L
Linus Torvalds 已提交
6201 6202 6203
{
	return TASK_NICE(p);
}
P
Pavel Roskin 已提交
6204
EXPORT_SYMBOL(task_nice);
L
Linus Torvalds 已提交
6205 6206 6207 6208 6209 6210 6211 6212 6213 6214 6215 6216 6217 6218

/**
 * idle_cpu - is a given cpu idle currently?
 * @cpu: the processor in question.
 */
int idle_cpu(int cpu)
{
	return cpu_curr(cpu) == cpu_rq(cpu)->idle;
}

/**
 * idle_task - return the idle task for a given cpu.
 * @cpu: the processor in question.
 */
6219
struct task_struct *idle_task(int cpu)
L
Linus Torvalds 已提交
6220 6221 6222 6223 6224 6225 6226 6227
{
	return cpu_rq(cpu)->idle;
}

/**
 * find_process_by_pid - find a process with a matching PID value.
 * @pid: the pid in question.
 */
A
Alexey Dobriyan 已提交
6228
static struct task_struct *find_process_by_pid(pid_t pid)
L
Linus Torvalds 已提交
6229
{
6230
	return pid ? find_task_by_vpid(pid) : current;
L
Linus Torvalds 已提交
6231 6232 6233
}

/* Actually do priority change: must hold rq lock. */
I
Ingo Molnar 已提交
6234 6235
static void
__setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
L
Linus Torvalds 已提交
6236
{
I
Ingo Molnar 已提交
6237
	BUG_ON(p->se.on_rq);
6238

L
Linus Torvalds 已提交
6239
	p->policy = policy;
I
Ingo Molnar 已提交
6240 6241 6242 6243 6244 6245 6246 6247 6248 6249 6250 6251
	switch (p->policy) {
	case SCHED_NORMAL:
	case SCHED_BATCH:
	case SCHED_IDLE:
		p->sched_class = &fair_sched_class;
		break;
	case SCHED_FIFO:
	case SCHED_RR:
		p->sched_class = &rt_sched_class;
		break;
	}

L
Linus Torvalds 已提交
6252
	p->rt_priority = prio;
6253 6254 6255
	p->normal_prio = normal_prio(p);
	/* we are holding p->pi_lock already */
	p->prio = rt_mutex_getprio(p);
6256
	set_load_weight(p);
L
Linus Torvalds 已提交
6257 6258
}

6259 6260 6261 6262 6263 6264 6265 6266 6267 6268 6269 6270 6271 6272 6273 6274
/*
 * check the target process has a UID that matches the current process's
 */
static bool check_same_owner(struct task_struct *p)
{
	const struct cred *cred = current_cred(), *pcred;
	bool match;

	rcu_read_lock();
	pcred = __task_cred(p);
	match = (cred->euid == pcred->euid ||
		 cred->euid == pcred->uid);
	rcu_read_unlock();
	return match;
}

6275 6276
static int __sched_setscheduler(struct task_struct *p, int policy,
				struct sched_param *param, bool user)
L
Linus Torvalds 已提交
6277
{
6278
	int retval, oldprio, oldpolicy = -1, on_rq, running;
L
Linus Torvalds 已提交
6279
	unsigned long flags;
6280
	const struct sched_class *prev_class = p->sched_class;
6281
	struct rq *rq;
6282
	int reset_on_fork;
L
Linus Torvalds 已提交
6283

6284 6285
	/* may grab non-irq protected spin_locks */
	BUG_ON(in_interrupt());
L
Linus Torvalds 已提交
6286 6287
recheck:
	/* double check policy once rq lock held */
6288 6289
	if (policy < 0) {
		reset_on_fork = p->sched_reset_on_fork;
L
Linus Torvalds 已提交
6290
		policy = oldpolicy = p->policy;
6291 6292 6293 6294 6295 6296 6297 6298 6299 6300
	} else {
		reset_on_fork = !!(policy & SCHED_RESET_ON_FORK);
		policy &= ~SCHED_RESET_ON_FORK;

		if (policy != SCHED_FIFO && policy != SCHED_RR &&
				policy != SCHED_NORMAL && policy != SCHED_BATCH &&
				policy != SCHED_IDLE)
			return -EINVAL;
	}

L
Linus Torvalds 已提交
6301 6302
	/*
	 * Valid priorities for SCHED_FIFO and SCHED_RR are
I
Ingo Molnar 已提交
6303 6304
	 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
	 * SCHED_BATCH and SCHED_IDLE is 0.
L
Linus Torvalds 已提交
6305 6306
	 */
	if (param->sched_priority < 0 ||
I
Ingo Molnar 已提交
6307
	    (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
6308
	    (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
L
Linus Torvalds 已提交
6309
		return -EINVAL;
6310
	if (rt_policy(policy) != (param->sched_priority != 0))
L
Linus Torvalds 已提交
6311 6312
		return -EINVAL;

6313 6314 6315
	/*
	 * Allow unprivileged RT tasks to decrease priority:
	 */
6316
	if (user && !capable(CAP_SYS_NICE)) {
6317
		if (rt_policy(policy)) {
6318 6319 6320 6321 6322 6323 6324 6325 6326 6327 6328 6329 6330 6331 6332 6333
			unsigned long rlim_rtprio;

			if (!lock_task_sighand(p, &flags))
				return -ESRCH;
			rlim_rtprio = p->signal->rlim[RLIMIT_RTPRIO].rlim_cur;
			unlock_task_sighand(p, &flags);

			/* can't set/change the rt policy */
			if (policy != p->policy && !rlim_rtprio)
				return -EPERM;

			/* can't increase priority */
			if (param->sched_priority > p->rt_priority &&
			    param->sched_priority > rlim_rtprio)
				return -EPERM;
		}
I
Ingo Molnar 已提交
6334 6335 6336 6337 6338 6339
		/*
		 * Like positive nice levels, dont allow tasks to
		 * move out of SCHED_IDLE either:
		 */
		if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
			return -EPERM;
6340

6341
		/* can't change other user's priorities */
6342
		if (!check_same_owner(p))
6343
			return -EPERM;
6344 6345 6346 6347

		/* Normal users shall not reset the sched_reset_on_fork flag */
		if (p->sched_reset_on_fork && !reset_on_fork)
			return -EPERM;
6348
	}
L
Linus Torvalds 已提交
6349

6350
	if (user) {
6351
#ifdef CONFIG_RT_GROUP_SCHED
6352 6353 6354 6355
		/*
		 * Do not allow realtime tasks into groups that have no runtime
		 * assigned.
		 */
P
Peter Zijlstra 已提交
6356 6357
		if (rt_bandwidth_enabled() && rt_policy(policy) &&
				task_group(p)->rt_bandwidth.rt_runtime == 0)
6358
			return -EPERM;
6359 6360
#endif

6361 6362 6363 6364 6365
		retval = security_task_setscheduler(p, policy, param);
		if (retval)
			return retval;
	}

6366 6367 6368 6369 6370
	/*
	 * make sure no PI-waiters arrive (or leave) while we are
	 * changing the priority of the task:
	 */
	spin_lock_irqsave(&p->pi_lock, flags);
L
Linus Torvalds 已提交
6371 6372 6373 6374
	/*
	 * To be able to change p->policy safely, the apropriate
	 * runqueue lock must be held.
	 */
6375
	rq = __task_rq_lock(p);
L
Linus Torvalds 已提交
6376 6377 6378
	/* recheck policy now with rq lock held */
	if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
		policy = oldpolicy = -1;
6379 6380
		__task_rq_unlock(rq);
		spin_unlock_irqrestore(&p->pi_lock, flags);
L
Linus Torvalds 已提交
6381 6382
		goto recheck;
	}
I
Ingo Molnar 已提交
6383
	update_rq_clock(rq);
I
Ingo Molnar 已提交
6384
	on_rq = p->se.on_rq;
6385
	running = task_current(rq, p);
6386
	if (on_rq)
6387
		deactivate_task(rq, p, 0);
6388 6389
	if (running)
		p->sched_class->put_prev_task(rq, p);
6390

6391 6392
	p->sched_reset_on_fork = reset_on_fork;

L
Linus Torvalds 已提交
6393
	oldprio = p->prio;
I
Ingo Molnar 已提交
6394
	__setscheduler(rq, p, policy, param->sched_priority);
6395

6396 6397
	if (running)
		p->sched_class->set_curr_task(rq);
I
Ingo Molnar 已提交
6398 6399
	if (on_rq) {
		activate_task(rq, p, 0);
6400 6401

		check_class_changed(rq, p, prev_class, oldprio, running);
L
Linus Torvalds 已提交
6402
	}
6403 6404 6405
	__task_rq_unlock(rq);
	spin_unlock_irqrestore(&p->pi_lock, flags);

6406 6407
	rt_mutex_adjust_pi(p);

L
Linus Torvalds 已提交
6408 6409
	return 0;
}
6410 6411 6412 6413 6414 6415 6416 6417 6418 6419 6420 6421 6422 6423

/**
 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
 * @p: the task in question.
 * @policy: new policy.
 * @param: structure containing the new RT priority.
 *
 * NOTE that the task may be already dead.
 */
int sched_setscheduler(struct task_struct *p, int policy,
		       struct sched_param *param)
{
	return __sched_setscheduler(p, policy, param, true);
}
L
Linus Torvalds 已提交
6424 6425
EXPORT_SYMBOL_GPL(sched_setscheduler);

6426 6427 6428 6429 6430 6431 6432 6433 6434 6435 6436 6437 6438 6439 6440 6441 6442
/**
 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
 * @p: the task in question.
 * @policy: new policy.
 * @param: structure containing the new RT priority.
 *
 * Just like sched_setscheduler, only don't bother checking if the
 * current context has permission.  For example, this is needed in
 * stop_machine(): we create temporary high priority worker threads,
 * but our caller might not have that capability.
 */
int sched_setscheduler_nocheck(struct task_struct *p, int policy,
			       struct sched_param *param)
{
	return __sched_setscheduler(p, policy, param, false);
}

I
Ingo Molnar 已提交
6443 6444
static int
do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
L
Linus Torvalds 已提交
6445 6446 6447
{
	struct sched_param lparam;
	struct task_struct *p;
6448
	int retval;
L
Linus Torvalds 已提交
6449 6450 6451 6452 6453

	if (!param || pid < 0)
		return -EINVAL;
	if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
		return -EFAULT;
6454 6455 6456

	rcu_read_lock();
	retval = -ESRCH;
L
Linus Torvalds 已提交
6457
	p = find_process_by_pid(pid);
6458 6459 6460
	if (p != NULL)
		retval = sched_setscheduler(p, policy, &lparam);
	rcu_read_unlock();
6461

L
Linus Torvalds 已提交
6462 6463 6464 6465 6466 6467 6468 6469 6470
	return retval;
}

/**
 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
 * @pid: the pid in question.
 * @policy: new policy.
 * @param: structure containing the new RT priority.
 */
6471 6472
SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
		struct sched_param __user *, param)
L
Linus Torvalds 已提交
6473
{
6474 6475 6476 6477
	/* negative values for policy are not valid */
	if (policy < 0)
		return -EINVAL;

L
Linus Torvalds 已提交
6478 6479 6480 6481 6482 6483 6484 6485
	return do_sched_setscheduler(pid, policy, param);
}

/**
 * sys_sched_setparam - set/change the RT priority of a thread
 * @pid: the pid in question.
 * @param: structure containing the new RT priority.
 */
6486
SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
L
Linus Torvalds 已提交
6487 6488 6489 6490 6491 6492 6493 6494
{
	return do_sched_setscheduler(pid, -1, param);
}

/**
 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
 * @pid: the pid in question.
 */
6495
SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
L
Linus Torvalds 已提交
6496
{
6497
	struct task_struct *p;
6498
	int retval;
L
Linus Torvalds 已提交
6499 6500

	if (pid < 0)
6501
		return -EINVAL;
L
Linus Torvalds 已提交
6502 6503 6504 6505 6506 6507 6508

	retval = -ESRCH;
	read_lock(&tasklist_lock);
	p = find_process_by_pid(pid);
	if (p) {
		retval = security_task_getscheduler(p);
		if (!retval)
6509 6510
			retval = p->policy
				| (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
L
Linus Torvalds 已提交
6511 6512 6513 6514 6515 6516
	}
	read_unlock(&tasklist_lock);
	return retval;
}

/**
6517
 * sys_sched_getparam - get the RT priority of a thread
L
Linus Torvalds 已提交
6518 6519 6520
 * @pid: the pid in question.
 * @param: structure containing the RT priority.
 */
6521
SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
L
Linus Torvalds 已提交
6522 6523
{
	struct sched_param lp;
6524
	struct task_struct *p;
6525
	int retval;
L
Linus Torvalds 已提交
6526 6527

	if (!param || pid < 0)
6528
		return -EINVAL;
L
Linus Torvalds 已提交
6529 6530 6531 6532 6533 6534 6535 6536 6537 6538 6539 6540 6541 6542 6543 6544 6545 6546 6547 6548 6549 6550 6551 6552 6553 6554

	read_lock(&tasklist_lock);
	p = find_process_by_pid(pid);
	retval = -ESRCH;
	if (!p)
		goto out_unlock;

	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

	lp.sched_priority = p->rt_priority;
	read_unlock(&tasklist_lock);

	/*
	 * This one might sleep, we cannot do it with a spinlock held ...
	 */
	retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;

	return retval;

out_unlock:
	read_unlock(&tasklist_lock);
	return retval;
}

6555
long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
L
Linus Torvalds 已提交
6556
{
6557
	cpumask_var_t cpus_allowed, new_mask;
6558 6559
	struct task_struct *p;
	int retval;
L
Linus Torvalds 已提交
6560

6561
	get_online_cpus();
L
Linus Torvalds 已提交
6562 6563 6564 6565 6566
	read_lock(&tasklist_lock);

	p = find_process_by_pid(pid);
	if (!p) {
		read_unlock(&tasklist_lock);
6567
		put_online_cpus();
L
Linus Torvalds 已提交
6568 6569 6570 6571 6572
		return -ESRCH;
	}

	/*
	 * It is not safe to call set_cpus_allowed with the
I
Ingo Molnar 已提交
6573
	 * tasklist_lock held. We will bump the task_struct's
L
Linus Torvalds 已提交
6574 6575 6576 6577 6578
	 * usage count and then drop tasklist_lock.
	 */
	get_task_struct(p);
	read_unlock(&tasklist_lock);

6579 6580 6581 6582 6583 6584 6585 6586
	if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
		retval = -ENOMEM;
		goto out_put_task;
	}
	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
		retval = -ENOMEM;
		goto out_free_cpus_allowed;
	}
L
Linus Torvalds 已提交
6587
	retval = -EPERM;
6588
	if (!check_same_owner(p) && !capable(CAP_SYS_NICE))
L
Linus Torvalds 已提交
6589 6590
		goto out_unlock;

6591 6592 6593 6594
	retval = security_task_setscheduler(p, 0, NULL);
	if (retval)
		goto out_unlock;

6595 6596
	cpuset_cpus_allowed(p, cpus_allowed);
	cpumask_and(new_mask, in_mask, cpus_allowed);
P
Paul Menage 已提交
6597
 again:
6598
	retval = set_cpus_allowed_ptr(p, new_mask);
L
Linus Torvalds 已提交
6599

P
Paul Menage 已提交
6600
	if (!retval) {
6601 6602
		cpuset_cpus_allowed(p, cpus_allowed);
		if (!cpumask_subset(new_mask, cpus_allowed)) {
P
Paul Menage 已提交
6603 6604 6605 6606 6607
			/*
			 * We must have raced with a concurrent cpuset
			 * update. Just reset the cpus_allowed to the
			 * cpuset's cpus_allowed
			 */
6608
			cpumask_copy(new_mask, cpus_allowed);
P
Paul Menage 已提交
6609 6610 6611
			goto again;
		}
	}
L
Linus Torvalds 已提交
6612
out_unlock:
6613 6614 6615 6616
	free_cpumask_var(new_mask);
out_free_cpus_allowed:
	free_cpumask_var(cpus_allowed);
out_put_task:
L
Linus Torvalds 已提交
6617
	put_task_struct(p);
6618
	put_online_cpus();
L
Linus Torvalds 已提交
6619 6620 6621 6622
	return retval;
}

static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
6623
			     struct cpumask *new_mask)
L
Linus Torvalds 已提交
6624
{
6625 6626 6627 6628 6629
	if (len < cpumask_size())
		cpumask_clear(new_mask);
	else if (len > cpumask_size())
		len = cpumask_size();

L
Linus Torvalds 已提交
6630 6631 6632 6633 6634 6635 6636 6637 6638
	return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
}

/**
 * sys_sched_setaffinity - set the cpu affinity of a process
 * @pid: pid of the process
 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
 * @user_mask_ptr: user-space pointer to the new cpu mask
 */
6639 6640
SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
		unsigned long __user *, user_mask_ptr)
L
Linus Torvalds 已提交
6641
{
6642
	cpumask_var_t new_mask;
L
Linus Torvalds 已提交
6643 6644
	int retval;

6645 6646
	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
		return -ENOMEM;
L
Linus Torvalds 已提交
6647

6648 6649 6650 6651 6652
	retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
	if (retval == 0)
		retval = sched_setaffinity(pid, new_mask);
	free_cpumask_var(new_mask);
	return retval;
L
Linus Torvalds 已提交
6653 6654
}

6655
long sched_getaffinity(pid_t pid, struct cpumask *mask)
L
Linus Torvalds 已提交
6656
{
6657
	struct task_struct *p;
L
Linus Torvalds 已提交
6658 6659
	int retval;

6660
	get_online_cpus();
L
Linus Torvalds 已提交
6661 6662 6663 6664 6665 6666 6667
	read_lock(&tasklist_lock);

	retval = -ESRCH;
	p = find_process_by_pid(pid);
	if (!p)
		goto out_unlock;

6668 6669 6670 6671
	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

6672
	cpumask_and(mask, &p->cpus_allowed, cpu_online_mask);
L
Linus Torvalds 已提交
6673 6674 6675

out_unlock:
	read_unlock(&tasklist_lock);
6676
	put_online_cpus();
L
Linus Torvalds 已提交
6677

6678
	return retval;
L
Linus Torvalds 已提交
6679 6680 6681 6682 6683 6684 6685 6686
}

/**
 * sys_sched_getaffinity - get the cpu affinity of a process
 * @pid: pid of the process
 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
 * @user_mask_ptr: user-space pointer to hold the current cpu mask
 */
6687 6688
SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
		unsigned long __user *, user_mask_ptr)
L
Linus Torvalds 已提交
6689 6690
{
	int ret;
6691
	cpumask_var_t mask;
L
Linus Torvalds 已提交
6692

6693
	if (len < cpumask_size())
L
Linus Torvalds 已提交
6694 6695
		return -EINVAL;

6696 6697
	if (!alloc_cpumask_var(&mask, GFP_KERNEL))
		return -ENOMEM;
L
Linus Torvalds 已提交
6698

6699 6700 6701 6702 6703 6704 6705 6706
	ret = sched_getaffinity(pid, mask);
	if (ret == 0) {
		if (copy_to_user(user_mask_ptr, mask, cpumask_size()))
			ret = -EFAULT;
		else
			ret = cpumask_size();
	}
	free_cpumask_var(mask);
L
Linus Torvalds 已提交
6707

6708
	return ret;
L
Linus Torvalds 已提交
6709 6710 6711 6712 6713
}

/**
 * sys_sched_yield - yield the current processor to other threads.
 *
I
Ingo Molnar 已提交
6714 6715
 * This function yields the current CPU to other tasks. If there are no
 * other threads running on this CPU then this function will return.
L
Linus Torvalds 已提交
6716
 */
6717
SYSCALL_DEFINE0(sched_yield)
L
Linus Torvalds 已提交
6718
{
6719
	struct rq *rq = this_rq_lock();
L
Linus Torvalds 已提交
6720

6721
	schedstat_inc(rq, yld_count);
6722
	current->sched_class->yield_task(rq);
L
Linus Torvalds 已提交
6723 6724 6725 6726 6727 6728

	/*
	 * Since we are going to call schedule() anyway, there's
	 * no need to preempt or enable interrupts:
	 */
	__release(rq->lock);
6729
	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
L
Linus Torvalds 已提交
6730 6731 6732 6733 6734 6735 6736 6737
	_raw_spin_unlock(&rq->lock);
	preempt_enable_no_resched();

	schedule();

	return 0;
}

P
Peter Zijlstra 已提交
6738 6739 6740 6741 6742
static inline int should_resched(void)
{
	return need_resched() && !(preempt_count() & PREEMPT_ACTIVE);
}

A
Andrew Morton 已提交
6743
static void __cond_resched(void)
L
Linus Torvalds 已提交
6744
{
6745 6746 6747
	add_preempt_count(PREEMPT_ACTIVE);
	schedule();
	sub_preempt_count(PREEMPT_ACTIVE);
L
Linus Torvalds 已提交
6748 6749
}

6750
int __sched _cond_resched(void)
L
Linus Torvalds 已提交
6751
{
P
Peter Zijlstra 已提交
6752
	if (should_resched()) {
L
Linus Torvalds 已提交
6753 6754 6755 6756 6757
		__cond_resched();
		return 1;
	}
	return 0;
}
6758
EXPORT_SYMBOL(_cond_resched);
L
Linus Torvalds 已提交
6759 6760

/*
6761
 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
L
Linus Torvalds 已提交
6762 6763
 * call schedule, and on return reacquire the lock.
 *
I
Ingo Molnar 已提交
6764
 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
L
Linus Torvalds 已提交
6765 6766 6767
 * operations here to prevent schedule() from being called twice (once via
 * spin_unlock(), once by hand).
 */
6768
int __cond_resched_lock(spinlock_t *lock)
L
Linus Torvalds 已提交
6769
{
P
Peter Zijlstra 已提交
6770
	int resched = should_resched();
J
Jan Kara 已提交
6771 6772
	int ret = 0;

N
Nick Piggin 已提交
6773
	if (spin_needbreak(lock) || resched) {
L
Linus Torvalds 已提交
6774
		spin_unlock(lock);
P
Peter Zijlstra 已提交
6775
		if (resched)
N
Nick Piggin 已提交
6776 6777 6778
			__cond_resched();
		else
			cpu_relax();
J
Jan Kara 已提交
6779
		ret = 1;
L
Linus Torvalds 已提交
6780 6781
		spin_lock(lock);
	}
J
Jan Kara 已提交
6782
	return ret;
L
Linus Torvalds 已提交
6783
}
6784
EXPORT_SYMBOL(__cond_resched_lock);
L
Linus Torvalds 已提交
6785

6786
int __sched __cond_resched_softirq(void)
L
Linus Torvalds 已提交
6787 6788 6789
{
	BUG_ON(!in_softirq());

P
Peter Zijlstra 已提交
6790
	if (should_resched()) {
6791
		local_bh_enable();
L
Linus Torvalds 已提交
6792 6793 6794 6795 6796 6797
		__cond_resched();
		local_bh_disable();
		return 1;
	}
	return 0;
}
6798
EXPORT_SYMBOL(__cond_resched_softirq);
L
Linus Torvalds 已提交
6799 6800 6801 6802

/**
 * yield - yield the current processor to other threads.
 *
6803
 * This is a shortcut for kernel-space yielding - it marks the
L
Linus Torvalds 已提交
6804 6805 6806 6807 6808 6809 6810 6811 6812 6813
 * thread runnable and calls sys_sched_yield().
 */
void __sched yield(void)
{
	set_current_state(TASK_RUNNING);
	sys_sched_yield();
}
EXPORT_SYMBOL(yield);

/*
I
Ingo Molnar 已提交
6814
 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
L
Linus Torvalds 已提交
6815 6816 6817 6818 6819 6820 6821
 * that process accounting knows that this is a task in IO wait state.
 *
 * But don't do that if it is a deliberate, throttling IO wait (this task
 * has set its backing_dev_info: the queue against which it should throttle)
 */
void __sched io_schedule(void)
{
6822
	struct rq *rq = raw_rq();
L
Linus Torvalds 已提交
6823

6824
	delayacct_blkio_start();
L
Linus Torvalds 已提交
6825
	atomic_inc(&rq->nr_iowait);
6826
	current->in_iowait = 1;
L
Linus Torvalds 已提交
6827
	schedule();
6828
	current->in_iowait = 0;
L
Linus Torvalds 已提交
6829
	atomic_dec(&rq->nr_iowait);
6830
	delayacct_blkio_end();
L
Linus Torvalds 已提交
6831 6832 6833 6834 6835
}
EXPORT_SYMBOL(io_schedule);

long __sched io_schedule_timeout(long timeout)
{
6836
	struct rq *rq = raw_rq();
L
Linus Torvalds 已提交
6837 6838
	long ret;

6839
	delayacct_blkio_start();
L
Linus Torvalds 已提交
6840
	atomic_inc(&rq->nr_iowait);
6841
	current->in_iowait = 1;
L
Linus Torvalds 已提交
6842
	ret = schedule_timeout(timeout);
6843
	current->in_iowait = 0;
L
Linus Torvalds 已提交
6844
	atomic_dec(&rq->nr_iowait);
6845
	delayacct_blkio_end();
L
Linus Torvalds 已提交
6846 6847 6848 6849 6850 6851 6852 6853 6854 6855
	return ret;
}

/**
 * sys_sched_get_priority_max - return maximum RT priority.
 * @policy: scheduling class.
 *
 * this syscall returns the maximum rt_priority that can be used
 * by a given scheduling class.
 */
6856
SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
L
Linus Torvalds 已提交
6857 6858 6859 6860 6861 6862 6863 6864 6865
{
	int ret = -EINVAL;

	switch (policy) {
	case SCHED_FIFO:
	case SCHED_RR:
		ret = MAX_USER_RT_PRIO-1;
		break;
	case SCHED_NORMAL:
6866
	case SCHED_BATCH:
I
Ingo Molnar 已提交
6867
	case SCHED_IDLE:
L
Linus Torvalds 已提交
6868 6869 6870 6871 6872 6873 6874 6875 6876 6877 6878 6879 6880
		ret = 0;
		break;
	}
	return ret;
}

/**
 * sys_sched_get_priority_min - return minimum RT priority.
 * @policy: scheduling class.
 *
 * this syscall returns the minimum rt_priority that can be used
 * by a given scheduling class.
 */
6881
SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
L
Linus Torvalds 已提交
6882 6883 6884 6885 6886 6887 6888 6889 6890
{
	int ret = -EINVAL;

	switch (policy) {
	case SCHED_FIFO:
	case SCHED_RR:
		ret = 1;
		break;
	case SCHED_NORMAL:
6891
	case SCHED_BATCH:
I
Ingo Molnar 已提交
6892
	case SCHED_IDLE:
L
Linus Torvalds 已提交
6893 6894 6895 6896 6897 6898 6899 6900 6901 6902 6903 6904 6905
		ret = 0;
	}
	return ret;
}

/**
 * sys_sched_rr_get_interval - return the default timeslice of a process.
 * @pid: pid of the process.
 * @interval: userspace pointer to the timeslice value.
 *
 * this syscall writes the default timeslice value of a given process
 * into the user-space timespec buffer. A value of '0' means infinity.
 */
6906
SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
6907
		struct timespec __user *, interval)
L
Linus Torvalds 已提交
6908
{
6909
	struct task_struct *p;
D
Dmitry Adamushko 已提交
6910
	unsigned int time_slice;
6911
	int retval;
L
Linus Torvalds 已提交
6912 6913 6914
	struct timespec t;

	if (pid < 0)
6915
		return -EINVAL;
L
Linus Torvalds 已提交
6916 6917 6918 6919 6920 6921 6922 6923 6924 6925 6926

	retval = -ESRCH;
	read_lock(&tasklist_lock);
	p = find_process_by_pid(pid);
	if (!p)
		goto out_unlock;

	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

6927 6928 6929 6930 6931 6932
	/*
	 * Time slice is 0 for SCHED_FIFO tasks and for SCHED_OTHER
	 * tasks that are on an otherwise idle runqueue:
	 */
	time_slice = 0;
	if (p->policy == SCHED_RR) {
D
Dmitry Adamushko 已提交
6933
		time_slice = DEF_TIMESLICE;
6934
	} else if (p->policy != SCHED_FIFO) {
D
Dmitry Adamushko 已提交
6935 6936 6937 6938 6939
		struct sched_entity *se = &p->se;
		unsigned long flags;
		struct rq *rq;

		rq = task_rq_lock(p, &flags);
6940 6941
		if (rq->cfs.load.weight)
			time_slice = NS_TO_JIFFIES(sched_slice(&rq->cfs, se));
D
Dmitry Adamushko 已提交
6942 6943
		task_rq_unlock(rq, &flags);
	}
L
Linus Torvalds 已提交
6944
	read_unlock(&tasklist_lock);
D
Dmitry Adamushko 已提交
6945
	jiffies_to_timespec(time_slice, &t);
L
Linus Torvalds 已提交
6946 6947
	retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
	return retval;
6948

L
Linus Torvalds 已提交
6949 6950 6951 6952 6953
out_unlock:
	read_unlock(&tasklist_lock);
	return retval;
}

6954
static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
6955

6956
void sched_show_task(struct task_struct *p)
L
Linus Torvalds 已提交
6957 6958
{
	unsigned long free = 0;
6959
	unsigned state;
L
Linus Torvalds 已提交
6960 6961

	state = p->state ? __ffs(p->state) + 1 : 0;
I
Ingo Molnar 已提交
6962
	printk(KERN_INFO "%-13.13s %c", p->comm,
6963
		state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
6964
#if BITS_PER_LONG == 32
L
Linus Torvalds 已提交
6965
	if (state == TASK_RUNNING)
I
Ingo Molnar 已提交
6966
		printk(KERN_CONT " running  ");
L
Linus Torvalds 已提交
6967
	else
I
Ingo Molnar 已提交
6968
		printk(KERN_CONT " %08lx ", thread_saved_pc(p));
L
Linus Torvalds 已提交
6969 6970
#else
	if (state == TASK_RUNNING)
I
Ingo Molnar 已提交
6971
		printk(KERN_CONT "  running task    ");
L
Linus Torvalds 已提交
6972
	else
I
Ingo Molnar 已提交
6973
		printk(KERN_CONT " %016lx ", thread_saved_pc(p));
L
Linus Torvalds 已提交
6974 6975
#endif
#ifdef CONFIG_DEBUG_STACK_USAGE
6976
	free = stack_not_used(p);
L
Linus Torvalds 已提交
6977
#endif
6978 6979 6980
	printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
		task_pid_nr(p), task_pid_nr(p->real_parent),
		(unsigned long)task_thread_info(p)->flags);
L
Linus Torvalds 已提交
6981

6982
	show_stack(p, NULL);
L
Linus Torvalds 已提交
6983 6984
}

I
Ingo Molnar 已提交
6985
void show_state_filter(unsigned long state_filter)
L
Linus Torvalds 已提交
6986
{
6987
	struct task_struct *g, *p;
L
Linus Torvalds 已提交
6988

6989 6990 6991
#if BITS_PER_LONG == 32
	printk(KERN_INFO
		"  task                PC stack   pid father\n");
L
Linus Torvalds 已提交
6992
#else
6993 6994
	printk(KERN_INFO
		"  task                        PC stack   pid father\n");
L
Linus Torvalds 已提交
6995 6996 6997 6998 6999 7000 7001 7002
#endif
	read_lock(&tasklist_lock);
	do_each_thread(g, p) {
		/*
		 * reset the NMI-timeout, listing all files on a slow
		 * console might take alot of time:
		 */
		touch_nmi_watchdog();
I
Ingo Molnar 已提交
7003
		if (!state_filter || (p->state & state_filter))
7004
			sched_show_task(p);
L
Linus Torvalds 已提交
7005 7006
	} while_each_thread(g, p);

7007 7008
	touch_all_softlockup_watchdogs();

I
Ingo Molnar 已提交
7009 7010 7011
#ifdef CONFIG_SCHED_DEBUG
	sysrq_sched_debug_show();
#endif
L
Linus Torvalds 已提交
7012
	read_unlock(&tasklist_lock);
I
Ingo Molnar 已提交
7013 7014 7015 7016 7017
	/*
	 * Only show locks if all tasks are dumped:
	 */
	if (state_filter == -1)
		debug_show_all_locks();
L
Linus Torvalds 已提交
7018 7019
}

I
Ingo Molnar 已提交
7020 7021
void __cpuinit init_idle_bootup_task(struct task_struct *idle)
{
I
Ingo Molnar 已提交
7022
	idle->sched_class = &idle_sched_class;
I
Ingo Molnar 已提交
7023 7024
}

7025 7026 7027 7028 7029 7030 7031 7032
/**
 * init_idle - set up an idle thread for a given CPU
 * @idle: task in question
 * @cpu: cpu the idle task belongs to
 *
 * NOTE: this function does not set the idle thread's NEED_RESCHED
 * flag, to make booting more robust.
 */
7033
void __cpuinit init_idle(struct task_struct *idle, int cpu)
L
Linus Torvalds 已提交
7034
{
7035
	struct rq *rq = cpu_rq(cpu);
L
Linus Torvalds 已提交
7036 7037
	unsigned long flags;

7038 7039
	spin_lock_irqsave(&rq->lock, flags);

I
Ingo Molnar 已提交
7040 7041 7042
	__sched_fork(idle);
	idle->se.exec_start = sched_clock();

7043
	idle->prio = idle->normal_prio = MAX_PRIO;
7044
	cpumask_copy(&idle->cpus_allowed, cpumask_of(cpu));
I
Ingo Molnar 已提交
7045
	__set_task_cpu(idle, cpu);
L
Linus Torvalds 已提交
7046 7047

	rq->curr = rq->idle = idle;
7048 7049 7050
#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
	idle->oncpu = 1;
#endif
L
Linus Torvalds 已提交
7051 7052 7053
	spin_unlock_irqrestore(&rq->lock, flags);

	/* Set the preempt count _outside_ the spinlocks! */
7054 7055 7056
#if defined(CONFIG_PREEMPT)
	task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
#else
A
Al Viro 已提交
7057
	task_thread_info(idle)->preempt_count = 0;
7058
#endif
I
Ingo Molnar 已提交
7059 7060 7061 7062
	/*
	 * The idle tasks have their own, simple scheduling class:
	 */
	idle->sched_class = &idle_sched_class;
7063
	ftrace_graph_init_task(idle);
L
Linus Torvalds 已提交
7064 7065 7066 7067 7068 7069 7070
}

/*
 * In a system that switches off the HZ timer nohz_cpu_mask
 * indicates which cpus entered this state. This is used
 * in the rcu update to wait only for active cpus. For system
 * which do not switch off the HZ timer nohz_cpu_mask should
7071
 * always be CPU_BITS_NONE.
L
Linus Torvalds 已提交
7072
 */
7073
cpumask_var_t nohz_cpu_mask;
L
Linus Torvalds 已提交
7074

I
Ingo Molnar 已提交
7075 7076 7077 7078 7079 7080 7081 7082 7083 7084 7085 7086 7087 7088 7089 7090 7091 7092 7093 7094 7095 7096 7097
/*
 * Increase the granularity value when there are more CPUs,
 * because with more CPUs the 'effective latency' as visible
 * to users decreases. But the relationship is not linear,
 * so pick a second-best guess by going with the log2 of the
 * number of CPUs.
 *
 * This idea comes from the SD scheduler of Con Kolivas:
 */
static inline void sched_init_granularity(void)
{
	unsigned int factor = 1 + ilog2(num_online_cpus());
	const unsigned long limit = 200000000;

	sysctl_sched_min_granularity *= factor;
	if (sysctl_sched_min_granularity > limit)
		sysctl_sched_min_granularity = limit;

	sysctl_sched_latency *= factor;
	if (sysctl_sched_latency > limit)
		sysctl_sched_latency = limit;

	sysctl_sched_wakeup_granularity *= factor;
7098 7099

	sysctl_sched_shares_ratelimit *= factor;
I
Ingo Molnar 已提交
7100 7101
}

L
Linus Torvalds 已提交
7102 7103 7104 7105
#ifdef CONFIG_SMP
/*
 * This is how migration works:
 *
7106
 * 1) we queue a struct migration_req structure in the source CPU's
L
Linus Torvalds 已提交
7107 7108 7109 7110 7111 7112 7113 7114 7115 7116 7117 7118 7119 7120 7121 7122 7123 7124
 *    runqueue and wake up that CPU's migration thread.
 * 2) we down() the locked semaphore => thread blocks.
 * 3) migration thread wakes up (implicitly it forces the migrated
 *    thread off the CPU)
 * 4) it gets the migration request and checks whether the migrated
 *    task is still in the wrong runqueue.
 * 5) if it's in the wrong runqueue then the migration thread removes
 *    it and puts it into the right queue.
 * 6) migration thread up()s the semaphore.
 * 7) we wake up and the migration is done.
 */

/*
 * Change a given task's CPU affinity. Migrate the thread to a
 * proper CPU and schedule it away if the CPU it's executing on
 * is removed from the allowed bitmask.
 *
 * NOTE: the caller must have a valid reference to the task, the
I
Ingo Molnar 已提交
7125
 * task must not exit() & deallocate itself prematurely. The
L
Linus Torvalds 已提交
7126 7127
 * call is not atomic; no spinlocks may be held.
 */
7128
int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
L
Linus Torvalds 已提交
7129
{
7130
	struct migration_req req;
L
Linus Torvalds 已提交
7131
	unsigned long flags;
7132
	struct rq *rq;
7133
	int ret = 0;
L
Linus Torvalds 已提交
7134 7135

	rq = task_rq_lock(p, &flags);
7136
	if (!cpumask_intersects(new_mask, cpu_online_mask)) {
L
Linus Torvalds 已提交
7137 7138 7139 7140
		ret = -EINVAL;
		goto out;
	}

7141
	if (unlikely((p->flags & PF_THREAD_BOUND) && p != current &&
7142
		     !cpumask_equal(&p->cpus_allowed, new_mask))) {
7143 7144 7145 7146
		ret = -EINVAL;
		goto out;
	}

7147
	if (p->sched_class->set_cpus_allowed)
7148
		p->sched_class->set_cpus_allowed(p, new_mask);
7149
	else {
7150 7151
		cpumask_copy(&p->cpus_allowed, new_mask);
		p->rt.nr_cpus_allowed = cpumask_weight(new_mask);
7152 7153
	}

L
Linus Torvalds 已提交
7154
	/* Can the task run on the task's current CPU? If so, we're done */
7155
	if (cpumask_test_cpu(task_cpu(p), new_mask))
L
Linus Torvalds 已提交
7156 7157
		goto out;

R
Rusty Russell 已提交
7158
	if (migrate_task(p, cpumask_any_and(cpu_online_mask, new_mask), &req)) {
L
Linus Torvalds 已提交
7159
		/* Need help from migration thread: drop lock and wait. */
7160 7161 7162
		struct task_struct *mt = rq->migration_thread;

		get_task_struct(mt);
L
Linus Torvalds 已提交
7163 7164
		task_rq_unlock(rq, &flags);
		wake_up_process(rq->migration_thread);
7165
		put_task_struct(mt);
L
Linus Torvalds 已提交
7166 7167 7168 7169 7170 7171
		wait_for_completion(&req.done);
		tlb_migrate_finish(p->mm);
		return 0;
	}
out:
	task_rq_unlock(rq, &flags);
7172

L
Linus Torvalds 已提交
7173 7174
	return ret;
}
7175
EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
L
Linus Torvalds 已提交
7176 7177

/*
I
Ingo Molnar 已提交
7178
 * Move (not current) task off this cpu, onto dest cpu. We're doing
L
Linus Torvalds 已提交
7179 7180 7181 7182 7183 7184
 * this because either it can't run here any more (set_cpus_allowed()
 * away from this CPU, or CPU going down), or because we're
 * attempting to rebalance this task on exec (sched_exec).
 *
 * So we race with normal scheduler movements, but that's OK, as long
 * as the task is no longer on this CPU.
7185 7186
 *
 * Returns non-zero if task was successfully migrated.
L
Linus Torvalds 已提交
7187
 */
7188
static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
L
Linus Torvalds 已提交
7189
{
7190
	struct rq *rq_dest, *rq_src;
I
Ingo Molnar 已提交
7191
	int ret = 0, on_rq;
L
Linus Torvalds 已提交
7192

7193
	if (unlikely(!cpu_active(dest_cpu)))
7194
		return ret;
L
Linus Torvalds 已提交
7195 7196 7197 7198 7199 7200 7201

	rq_src = cpu_rq(src_cpu);
	rq_dest = cpu_rq(dest_cpu);

	double_rq_lock(rq_src, rq_dest);
	/* Already moved. */
	if (task_cpu(p) != src_cpu)
L
Linus Torvalds 已提交
7202
		goto done;
L
Linus Torvalds 已提交
7203
	/* Affinity changed (again). */
7204
	if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
L
Linus Torvalds 已提交
7205
		goto fail;
L
Linus Torvalds 已提交
7206

I
Ingo Molnar 已提交
7207
	on_rq = p->se.on_rq;
7208
	if (on_rq)
7209
		deactivate_task(rq_src, p, 0);
7210

L
Linus Torvalds 已提交
7211
	set_task_cpu(p, dest_cpu);
I
Ingo Molnar 已提交
7212 7213
	if (on_rq) {
		activate_task(rq_dest, p, 0);
7214
		check_preempt_curr(rq_dest, p, 0);
L
Linus Torvalds 已提交
7215
	}
L
Linus Torvalds 已提交
7216
done:
7217
	ret = 1;
L
Linus Torvalds 已提交
7218
fail:
L
Linus Torvalds 已提交
7219
	double_rq_unlock(rq_src, rq_dest);
7220
	return ret;
L
Linus Torvalds 已提交
7221 7222 7223 7224 7225 7226 7227
}

/*
 * migration_thread - this is a highprio system thread that performs
 * thread migration by bumping thread off CPU then 'pushing' onto
 * another runqueue.
 */
I
Ingo Molnar 已提交
7228
static int migration_thread(void *data)
L
Linus Torvalds 已提交
7229 7230
{
	int cpu = (long)data;
7231
	struct rq *rq;
L
Linus Torvalds 已提交
7232 7233 7234 7235 7236 7237

	rq = cpu_rq(cpu);
	BUG_ON(rq->migration_thread != current);

	set_current_state(TASK_INTERRUPTIBLE);
	while (!kthread_should_stop()) {
7238
		struct migration_req *req;
L
Linus Torvalds 已提交
7239 7240 7241 7242 7243 7244
		struct list_head *head;

		spin_lock_irq(&rq->lock);

		if (cpu_is_offline(cpu)) {
			spin_unlock_irq(&rq->lock);
7245
			break;
L
Linus Torvalds 已提交
7246 7247 7248 7249 7250 7251 7252 7253 7254 7255 7256 7257 7258 7259 7260
		}

		if (rq->active_balance) {
			active_load_balance(rq, cpu);
			rq->active_balance = 0;
		}

		head = &rq->migration_queue;

		if (list_empty(head)) {
			spin_unlock_irq(&rq->lock);
			schedule();
			set_current_state(TASK_INTERRUPTIBLE);
			continue;
		}
7261
		req = list_entry(head->next, struct migration_req, list);
L
Linus Torvalds 已提交
7262 7263
		list_del_init(head->next);

N
Nick Piggin 已提交
7264 7265 7266
		spin_unlock(&rq->lock);
		__migrate_task(req->task, cpu, req->dest_cpu);
		local_irq_enable();
L
Linus Torvalds 已提交
7267 7268 7269 7270 7271 7272 7273 7274 7275

		complete(&req->done);
	}
	__set_current_state(TASK_RUNNING);

	return 0;
}

#ifdef CONFIG_HOTPLUG_CPU
7276 7277 7278 7279 7280 7281 7282 7283 7284 7285 7286

static int __migrate_task_irq(struct task_struct *p, int src_cpu, int dest_cpu)
{
	int ret;

	local_irq_disable();
	ret = __migrate_task(p, src_cpu, dest_cpu);
	local_irq_enable();
	return ret;
}

7287
/*
7288
 * Figure out where task on dead CPU should go, use force if necessary.
7289
 */
7290
static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
L
Linus Torvalds 已提交
7291
{
7292
	int dest_cpu;
7293
	const struct cpumask *nodemask = cpumask_of_node(cpu_to_node(dead_cpu));
7294 7295 7296 7297 7298 7299 7300 7301 7302 7303 7304 7305 7306 7307 7308 7309

again:
	/* Look for allowed, online CPU in same node. */
	for_each_cpu_and(dest_cpu, nodemask, cpu_online_mask)
		if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
			goto move;

	/* Any allowed, online CPU? */
	dest_cpu = cpumask_any_and(&p->cpus_allowed, cpu_online_mask);
	if (dest_cpu < nr_cpu_ids)
		goto move;

	/* No more Mr. Nice Guy. */
	if (dest_cpu >= nr_cpu_ids) {
		cpuset_cpus_allowed_locked(p, &p->cpus_allowed);
		dest_cpu = cpumask_any_and(cpu_online_mask, &p->cpus_allowed);
L
Linus Torvalds 已提交
7310

7311 7312 7313 7314 7315 7316 7317 7318 7319
		/*
		 * Don't tell them about moving exiting tasks or
		 * kernel threads (both mm NULL), since they never
		 * leave kernel.
		 */
		if (p->mm && printk_ratelimit()) {
			printk(KERN_INFO "process %d (%s) no "
			       "longer affine to cpu%d\n",
			       task_pid_nr(p), p->comm, dead_cpu);
7320
		}
7321 7322 7323 7324 7325 7326
	}

move:
	/* It can have affinity changed while we were choosing. */
	if (unlikely(!__migrate_task_irq(p, dead_cpu, dest_cpu)))
		goto again;
L
Linus Torvalds 已提交
7327 7328 7329 7330 7331 7332 7333 7334 7335
}

/*
 * While a dead CPU has no uninterruptible tasks queued at this point,
 * it might still have a nonzero ->nr_uninterruptible counter, because
 * for performance reasons the counter is not stricly tracking tasks to
 * their home CPUs. So we just add the counter to another CPU's counter,
 * to keep the global sum constant after CPU-down:
 */
7336
static void migrate_nr_uninterruptible(struct rq *rq_src)
L
Linus Torvalds 已提交
7337
{
R
Rusty Russell 已提交
7338
	struct rq *rq_dest = cpu_rq(cpumask_any(cpu_online_mask));
L
Linus Torvalds 已提交
7339 7340 7341 7342 7343 7344 7345 7346 7347 7348 7349 7350 7351
	unsigned long flags;

	local_irq_save(flags);
	double_rq_lock(rq_src, rq_dest);
	rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
	rq_src->nr_uninterruptible = 0;
	double_rq_unlock(rq_src, rq_dest);
	local_irq_restore(flags);
}

/* Run through task list and migrate tasks from the dead cpu. */
static void migrate_live_tasks(int src_cpu)
{
7352
	struct task_struct *p, *t;
L
Linus Torvalds 已提交
7353

7354
	read_lock(&tasklist_lock);
L
Linus Torvalds 已提交
7355

7356 7357
	do_each_thread(t, p) {
		if (p == current)
L
Linus Torvalds 已提交
7358 7359
			continue;

7360 7361 7362
		if (task_cpu(p) == src_cpu)
			move_task_off_dead_cpu(src_cpu, p);
	} while_each_thread(t, p);
L
Linus Torvalds 已提交
7363

7364
	read_unlock(&tasklist_lock);
L
Linus Torvalds 已提交
7365 7366
}

I
Ingo Molnar 已提交
7367 7368
/*
 * Schedules idle task to be the next runnable task on current CPU.
7369 7370
 * It does so by boosting its priority to highest possible.
 * Used by CPU offline code.
L
Linus Torvalds 已提交
7371 7372 7373
 */
void sched_idle_next(void)
{
7374
	int this_cpu = smp_processor_id();
7375
	struct rq *rq = cpu_rq(this_cpu);
L
Linus Torvalds 已提交
7376 7377 7378 7379
	struct task_struct *p = rq->idle;
	unsigned long flags;

	/* cpu has to be offline */
7380
	BUG_ON(cpu_online(this_cpu));
L
Linus Torvalds 已提交
7381

7382 7383 7384
	/*
	 * Strictly not necessary since rest of the CPUs are stopped by now
	 * and interrupts disabled on the current cpu.
L
Linus Torvalds 已提交
7385 7386 7387
	 */
	spin_lock_irqsave(&rq->lock, flags);

I
Ingo Molnar 已提交
7388
	__setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
7389

7390 7391
	update_rq_clock(rq);
	activate_task(rq, p, 0);
L
Linus Torvalds 已提交
7392 7393 7394 7395

	spin_unlock_irqrestore(&rq->lock, flags);
}

7396 7397
/*
 * Ensures that the idle task is using init_mm right before its cpu goes
L
Linus Torvalds 已提交
7398 7399 7400 7401 7402 7403 7404 7405 7406 7407 7408 7409 7410
 * offline.
 */
void idle_task_exit(void)
{
	struct mm_struct *mm = current->active_mm;

	BUG_ON(cpu_online(smp_processor_id()));

	if (mm != &init_mm)
		switch_mm(mm, &init_mm, current);
	mmdrop(mm);
}

7411
/* called under rq->lock with disabled interrupts */
7412
static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
L
Linus Torvalds 已提交
7413
{
7414
	struct rq *rq = cpu_rq(dead_cpu);
L
Linus Torvalds 已提交
7415 7416

	/* Must be exiting, otherwise would be on tasklist. */
E
Eugene Teo 已提交
7417
	BUG_ON(!p->exit_state);
L
Linus Torvalds 已提交
7418 7419

	/* Cannot have done final schedule yet: would have vanished. */
7420
	BUG_ON(p->state == TASK_DEAD);
L
Linus Torvalds 已提交
7421

7422
	get_task_struct(p);
L
Linus Torvalds 已提交
7423 7424 7425

	/*
	 * Drop lock around migration; if someone else moves it,
I
Ingo Molnar 已提交
7426
	 * that's OK. No task can be added to this CPU, so iteration is
L
Linus Torvalds 已提交
7427 7428
	 * fine.
	 */
7429
	spin_unlock_irq(&rq->lock);
7430
	move_task_off_dead_cpu(dead_cpu, p);
7431
	spin_lock_irq(&rq->lock);
L
Linus Torvalds 已提交
7432

7433
	put_task_struct(p);
L
Linus Torvalds 已提交
7434 7435 7436 7437 7438
}

/* release_task() removes task from tasklist, so we won't find dead tasks. */
static void migrate_dead_tasks(unsigned int dead_cpu)
{
7439
	struct rq *rq = cpu_rq(dead_cpu);
I
Ingo Molnar 已提交
7440
	struct task_struct *next;
7441

I
Ingo Molnar 已提交
7442 7443 7444
	for ( ; ; ) {
		if (!rq->nr_running)
			break;
I
Ingo Molnar 已提交
7445
		update_rq_clock(rq);
7446
		next = pick_next_task(rq);
I
Ingo Molnar 已提交
7447 7448
		if (!next)
			break;
D
Dmitry Adamushko 已提交
7449
		next->sched_class->put_prev_task(rq, next);
I
Ingo Molnar 已提交
7450
		migrate_dead(dead_cpu, next);
7451

L
Linus Torvalds 已提交
7452 7453
	}
}
7454 7455 7456 7457 7458 7459 7460

/*
 * remove the tasks which were accounted by rq from calc_load_tasks.
 */
static void calc_global_load_remove(struct rq *rq)
{
	atomic_long_sub(rq->calc_load_active, &calc_load_tasks);
7461
	rq->calc_load_active = 0;
7462
}
L
Linus Torvalds 已提交
7463 7464
#endif /* CONFIG_HOTPLUG_CPU */

7465 7466 7467
#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)

static struct ctl_table sd_ctl_dir[] = {
7468 7469
	{
		.procname	= "sched_domain",
7470
		.mode		= 0555,
7471
	},
I
Ingo Molnar 已提交
7472
	{0, },
7473 7474 7475
};

static struct ctl_table sd_ctl_root[] = {
7476
	{
7477
		.ctl_name	= CTL_KERN,
7478
		.procname	= "kernel",
7479
		.mode		= 0555,
7480 7481
		.child		= sd_ctl_dir,
	},
I
Ingo Molnar 已提交
7482
	{0, },
7483 7484 7485 7486 7487
};

static struct ctl_table *sd_alloc_ctl_entry(int n)
{
	struct ctl_table *entry =
7488
		kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
7489 7490 7491 7492

	return entry;
}

7493 7494
static void sd_free_ctl_entry(struct ctl_table **tablep)
{
7495
	struct ctl_table *entry;
7496

7497 7498 7499
	/*
	 * In the intermediate directories, both the child directory and
	 * procname are dynamically allocated and could fail but the mode
I
Ingo Molnar 已提交
7500
	 * will always be set. In the lowest directory the names are
7501 7502 7503
	 * static strings and all have proc handlers.
	 */
	for (entry = *tablep; entry->mode; entry++) {
7504 7505
		if (entry->child)
			sd_free_ctl_entry(&entry->child);
7506 7507 7508
		if (entry->proc_handler == NULL)
			kfree(entry->procname);
	}
7509 7510 7511 7512 7513

	kfree(*tablep);
	*tablep = NULL;
}

7514
static void
7515
set_table_entry(struct ctl_table *entry,
7516 7517 7518 7519 7520 7521 7522 7523 7524 7525 7526 7527 7528
		const char *procname, void *data, int maxlen,
		mode_t mode, proc_handler *proc_handler)
{
	entry->procname = procname;
	entry->data = data;
	entry->maxlen = maxlen;
	entry->mode = mode;
	entry->proc_handler = proc_handler;
}

static struct ctl_table *
sd_alloc_ctl_domain_table(struct sched_domain *sd)
{
7529
	struct ctl_table *table = sd_alloc_ctl_entry(13);
7530

7531 7532 7533
	if (table == NULL)
		return NULL;

7534
	set_table_entry(&table[0], "min_interval", &sd->min_interval,
7535
		sizeof(long), 0644, proc_doulongvec_minmax);
7536
	set_table_entry(&table[1], "max_interval", &sd->max_interval,
7537
		sizeof(long), 0644, proc_doulongvec_minmax);
7538
	set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
7539
		sizeof(int), 0644, proc_dointvec_minmax);
7540
	set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
7541
		sizeof(int), 0644, proc_dointvec_minmax);
7542
	set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
7543
		sizeof(int), 0644, proc_dointvec_minmax);
7544
	set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
7545
		sizeof(int), 0644, proc_dointvec_minmax);
7546
	set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
7547
		sizeof(int), 0644, proc_dointvec_minmax);
7548
	set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
7549
		sizeof(int), 0644, proc_dointvec_minmax);
7550
	set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
7551
		sizeof(int), 0644, proc_dointvec_minmax);
7552
	set_table_entry(&table[9], "cache_nice_tries",
7553 7554
		&sd->cache_nice_tries,
		sizeof(int), 0644, proc_dointvec_minmax);
7555
	set_table_entry(&table[10], "flags", &sd->flags,
7556
		sizeof(int), 0644, proc_dointvec_minmax);
7557 7558 7559
	set_table_entry(&table[11], "name", sd->name,
		CORENAME_MAX_SIZE, 0444, proc_dostring);
	/* &table[12] is terminator */
7560 7561 7562 7563

	return table;
}

7564
static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
7565 7566 7567 7568 7569 7570 7571 7572 7573
{
	struct ctl_table *entry, *table;
	struct sched_domain *sd;
	int domain_num = 0, i;
	char buf[32];

	for_each_domain(cpu, sd)
		domain_num++;
	entry = table = sd_alloc_ctl_entry(domain_num + 1);
7574 7575
	if (table == NULL)
		return NULL;
7576 7577 7578 7579 7580

	i = 0;
	for_each_domain(cpu, sd) {
		snprintf(buf, 32, "domain%d", i);
		entry->procname = kstrdup(buf, GFP_KERNEL);
7581
		entry->mode = 0555;
7582 7583 7584 7585 7586 7587 7588 7589
		entry->child = sd_alloc_ctl_domain_table(sd);
		entry++;
		i++;
	}
	return table;
}

static struct ctl_table_header *sd_sysctl_header;
7590
static void register_sched_domain_sysctl(void)
7591 7592 7593 7594 7595
{
	int i, cpu_num = num_online_cpus();
	struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
	char buf[32];

7596 7597 7598
	WARN_ON(sd_ctl_dir[0].child);
	sd_ctl_dir[0].child = entry;

7599 7600 7601
	if (entry == NULL)
		return;

7602
	for_each_online_cpu(i) {
7603 7604
		snprintf(buf, 32, "cpu%d", i);
		entry->procname = kstrdup(buf, GFP_KERNEL);
7605
		entry->mode = 0555;
7606
		entry->child = sd_alloc_ctl_cpu_table(i);
7607
		entry++;
7608
	}
7609 7610

	WARN_ON(sd_sysctl_header);
7611 7612
	sd_sysctl_header = register_sysctl_table(sd_ctl_root);
}
7613

7614
/* may be called multiple times per register */
7615 7616
static void unregister_sched_domain_sysctl(void)
{
7617 7618
	if (sd_sysctl_header)
		unregister_sysctl_table(sd_sysctl_header);
7619
	sd_sysctl_header = NULL;
7620 7621
	if (sd_ctl_dir[0].child)
		sd_free_ctl_entry(&sd_ctl_dir[0].child);
7622
}
7623
#else
7624 7625 7626 7627
static void register_sched_domain_sysctl(void)
{
}
static void unregister_sched_domain_sysctl(void)
7628 7629 7630 7631
{
}
#endif

7632 7633 7634 7635 7636
static void set_rq_online(struct rq *rq)
{
	if (!rq->online) {
		const struct sched_class *class;

7637
		cpumask_set_cpu(rq->cpu, rq->rd->online);
7638 7639 7640 7641 7642 7643 7644 7645 7646 7647 7648 7649 7650 7651 7652 7653 7654 7655 7656
		rq->online = 1;

		for_each_class(class) {
			if (class->rq_online)
				class->rq_online(rq);
		}
	}
}

static void set_rq_offline(struct rq *rq)
{
	if (rq->online) {
		const struct sched_class *class;

		for_each_class(class) {
			if (class->rq_offline)
				class->rq_offline(rq);
		}

7657
		cpumask_clear_cpu(rq->cpu, rq->rd->online);
7658 7659 7660 7661
		rq->online = 0;
	}
}

L
Linus Torvalds 已提交
7662 7663 7664 7665
/*
 * migration_call - callback that gets triggered when a CPU is added.
 * Here we can start up the necessary migration thread for the new CPU.
 */
7666 7667
static int __cpuinit
migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
L
Linus Torvalds 已提交
7668 7669
{
	struct task_struct *p;
7670
	int cpu = (long)hcpu;
L
Linus Torvalds 已提交
7671
	unsigned long flags;
7672
	struct rq *rq;
L
Linus Torvalds 已提交
7673 7674

	switch (action) {
7675

L
Linus Torvalds 已提交
7676
	case CPU_UP_PREPARE:
7677
	case CPU_UP_PREPARE_FROZEN:
I
Ingo Molnar 已提交
7678
		p = kthread_create(migration_thread, hcpu, "migration/%d", cpu);
L
Linus Torvalds 已提交
7679 7680 7681 7682 7683
		if (IS_ERR(p))
			return NOTIFY_BAD;
		kthread_bind(p, cpu);
		/* Must be high prio: stop_machine expects to yield to it. */
		rq = task_rq_lock(p, &flags);
I
Ingo Molnar 已提交
7684
		__setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
L
Linus Torvalds 已提交
7685
		task_rq_unlock(rq, &flags);
7686
		get_task_struct(p);
L
Linus Torvalds 已提交
7687
		cpu_rq(cpu)->migration_thread = p;
7688
		rq->calc_load_update = calc_load_update;
L
Linus Torvalds 已提交
7689
		break;
7690

L
Linus Torvalds 已提交
7691
	case CPU_ONLINE:
7692
	case CPU_ONLINE_FROZEN:
7693
		/* Strictly unnecessary, as first user will wake it. */
L
Linus Torvalds 已提交
7694
		wake_up_process(cpu_rq(cpu)->migration_thread);
7695 7696 7697 7698 7699

		/* Update our root-domain */
		rq = cpu_rq(cpu);
		spin_lock_irqsave(&rq->lock, flags);
		if (rq->rd) {
7700
			BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
7701 7702

			set_rq_online(rq);
7703 7704
		}
		spin_unlock_irqrestore(&rq->lock, flags);
L
Linus Torvalds 已提交
7705
		break;
7706

L
Linus Torvalds 已提交
7707 7708
#ifdef CONFIG_HOTPLUG_CPU
	case CPU_UP_CANCELED:
7709
	case CPU_UP_CANCELED_FROZEN:
7710 7711
		if (!cpu_rq(cpu)->migration_thread)
			break;
I
Ingo Molnar 已提交
7712
		/* Unbind it from offline cpu so it can run. Fall thru. */
7713
		kthread_bind(cpu_rq(cpu)->migration_thread,
R
Rusty Russell 已提交
7714
			     cpumask_any(cpu_online_mask));
L
Linus Torvalds 已提交
7715
		kthread_stop(cpu_rq(cpu)->migration_thread);
7716
		put_task_struct(cpu_rq(cpu)->migration_thread);
L
Linus Torvalds 已提交
7717 7718
		cpu_rq(cpu)->migration_thread = NULL;
		break;
7719

L
Linus Torvalds 已提交
7720
	case CPU_DEAD:
7721
	case CPU_DEAD_FROZEN:
7722
		cpuset_lock(); /* around calls to cpuset_cpus_allowed_lock() */
L
Linus Torvalds 已提交
7723 7724 7725
		migrate_live_tasks(cpu);
		rq = cpu_rq(cpu);
		kthread_stop(rq->migration_thread);
7726
		put_task_struct(rq->migration_thread);
L
Linus Torvalds 已提交
7727 7728
		rq->migration_thread = NULL;
		/* Idle task back to normal (off runqueue, low prio) */
7729
		spin_lock_irq(&rq->lock);
I
Ingo Molnar 已提交
7730
		update_rq_clock(rq);
7731
		deactivate_task(rq, rq->idle, 0);
L
Linus Torvalds 已提交
7732
		rq->idle->static_prio = MAX_PRIO;
I
Ingo Molnar 已提交
7733 7734
		__setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
		rq->idle->sched_class = &idle_sched_class;
L
Linus Torvalds 已提交
7735
		migrate_dead_tasks(cpu);
7736
		spin_unlock_irq(&rq->lock);
7737
		cpuset_unlock();
L
Linus Torvalds 已提交
7738 7739
		migrate_nr_uninterruptible(rq);
		BUG_ON(rq->nr_running != 0);
7740
		calc_global_load_remove(rq);
I
Ingo Molnar 已提交
7741 7742 7743 7744 7745
		/*
		 * No need to migrate the tasks: it was best-effort if
		 * they didn't take sched_hotcpu_mutex. Just wake up
		 * the requestors.
		 */
L
Linus Torvalds 已提交
7746 7747
		spin_lock_irq(&rq->lock);
		while (!list_empty(&rq->migration_queue)) {
7748 7749
			struct migration_req *req;

L
Linus Torvalds 已提交
7750
			req = list_entry(rq->migration_queue.next,
7751
					 struct migration_req, list);
L
Linus Torvalds 已提交
7752
			list_del_init(&req->list);
B
Brian King 已提交
7753
			spin_unlock_irq(&rq->lock);
L
Linus Torvalds 已提交
7754
			complete(&req->done);
B
Brian King 已提交
7755
			spin_lock_irq(&rq->lock);
L
Linus Torvalds 已提交
7756 7757 7758
		}
		spin_unlock_irq(&rq->lock);
		break;
G
Gregory Haskins 已提交
7759

7760 7761
	case CPU_DYING:
	case CPU_DYING_FROZEN:
G
Gregory Haskins 已提交
7762 7763 7764 7765
		/* Update our root-domain */
		rq = cpu_rq(cpu);
		spin_lock_irqsave(&rq->lock, flags);
		if (rq->rd) {
7766
			BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
7767
			set_rq_offline(rq);
G
Gregory Haskins 已提交
7768 7769 7770
		}
		spin_unlock_irqrestore(&rq->lock, flags);
		break;
L
Linus Torvalds 已提交
7771 7772 7773 7774 7775
#endif
	}
	return NOTIFY_OK;
}

7776 7777 7778 7779
/*
 * Register at high priority so that task migration (migrate_all_tasks)
 * happens before everything else.  This has to be lower priority than
 * the notifier in the perf_counter subsystem, though.
L
Linus Torvalds 已提交
7780
 */
7781
static struct notifier_block __cpuinitdata migration_notifier = {
L
Linus Torvalds 已提交
7782 7783 7784 7785
	.notifier_call = migration_call,
	.priority = 10
};

7786
static int __init migration_init(void)
L
Linus Torvalds 已提交
7787 7788
{
	void *cpu = (void *)(long)smp_processor_id();
7789
	int err;
7790 7791

	/* Start one for the boot CPU: */
7792 7793
	err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
	BUG_ON(err == NOTIFY_BAD);
L
Linus Torvalds 已提交
7794 7795
	migration_call(&migration_notifier, CPU_ONLINE, cpu);
	register_cpu_notifier(&migration_notifier);
7796

7797
	return 0;
L
Linus Torvalds 已提交
7798
}
7799
early_initcall(migration_init);
L
Linus Torvalds 已提交
7800 7801 7802
#endif

#ifdef CONFIG_SMP
7803

7804
#ifdef CONFIG_SCHED_DEBUG
I
Ingo Molnar 已提交
7805

7806
static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
7807
				  struct cpumask *groupmask)
L
Linus Torvalds 已提交
7808
{
I
Ingo Molnar 已提交
7809
	struct sched_group *group = sd->groups;
7810
	char str[256];
L
Linus Torvalds 已提交
7811

R
Rusty Russell 已提交
7812
	cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
7813
	cpumask_clear(groupmask);
I
Ingo Molnar 已提交
7814 7815 7816 7817 7818 7819 7820 7821 7822

	printk(KERN_DEBUG "%*s domain %d: ", level, "", level);

	if (!(sd->flags & SD_LOAD_BALANCE)) {
		printk("does not load-balance\n");
		if (sd->parent)
			printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
					" has parent");
		return -1;
N
Nick Piggin 已提交
7823 7824
	}

7825
	printk(KERN_CONT "span %s level %s\n", str, sd->name);
I
Ingo Molnar 已提交
7826

7827
	if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
I
Ingo Molnar 已提交
7828 7829 7830
		printk(KERN_ERR "ERROR: domain->span does not contain "
				"CPU%d\n", cpu);
	}
7831
	if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
I
Ingo Molnar 已提交
7832 7833 7834
		printk(KERN_ERR "ERROR: domain->groups does not contain"
				" CPU%d\n", cpu);
	}
L
Linus Torvalds 已提交
7835

I
Ingo Molnar 已提交
7836
	printk(KERN_DEBUG "%*s groups:", level + 1, "");
L
Linus Torvalds 已提交
7837
	do {
I
Ingo Molnar 已提交
7838 7839 7840
		if (!group) {
			printk("\n");
			printk(KERN_ERR "ERROR: group is NULL\n");
L
Linus Torvalds 已提交
7841 7842 7843
			break;
		}

I
Ingo Molnar 已提交
7844 7845 7846 7847 7848 7849
		if (!group->__cpu_power) {
			printk(KERN_CONT "\n");
			printk(KERN_ERR "ERROR: domain->cpu_power not "
					"set\n");
			break;
		}
L
Linus Torvalds 已提交
7850

7851
		if (!cpumask_weight(sched_group_cpus(group))) {
I
Ingo Molnar 已提交
7852 7853 7854 7855
			printk(KERN_CONT "\n");
			printk(KERN_ERR "ERROR: empty group\n");
			break;
		}
L
Linus Torvalds 已提交
7856

7857
		if (cpumask_intersects(groupmask, sched_group_cpus(group))) {
I
Ingo Molnar 已提交
7858 7859 7860 7861
			printk(KERN_CONT "\n");
			printk(KERN_ERR "ERROR: repeated CPUs\n");
			break;
		}
L
Linus Torvalds 已提交
7862

7863
		cpumask_or(groupmask, groupmask, sched_group_cpus(group));
L
Linus Torvalds 已提交
7864

R
Rusty Russell 已提交
7865
		cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
7866 7867 7868 7869 7870 7871

		printk(KERN_CONT " %s", str);
		if (group->__cpu_power != SCHED_LOAD_SCALE) {
			printk(KERN_CONT " (__cpu_power = %d)",
				group->__cpu_power);
		}
L
Linus Torvalds 已提交
7872

I
Ingo Molnar 已提交
7873 7874 7875
		group = group->next;
	} while (group != sd->groups);
	printk(KERN_CONT "\n");
L
Linus Torvalds 已提交
7876

7877
	if (!cpumask_equal(sched_domain_span(sd), groupmask))
I
Ingo Molnar 已提交
7878
		printk(KERN_ERR "ERROR: groups don't span domain->span\n");
L
Linus Torvalds 已提交
7879

7880 7881
	if (sd->parent &&
	    !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
I
Ingo Molnar 已提交
7882 7883 7884 7885
		printk(KERN_ERR "ERROR: parent span is not a superset "
			"of domain->span\n");
	return 0;
}
L
Linus Torvalds 已提交
7886

I
Ingo Molnar 已提交
7887 7888
static void sched_domain_debug(struct sched_domain *sd, int cpu)
{
7889
	cpumask_var_t groupmask;
I
Ingo Molnar 已提交
7890
	int level = 0;
L
Linus Torvalds 已提交
7891

I
Ingo Molnar 已提交
7892 7893 7894 7895
	if (!sd) {
		printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
		return;
	}
L
Linus Torvalds 已提交
7896

I
Ingo Molnar 已提交
7897 7898
	printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);

7899
	if (!alloc_cpumask_var(&groupmask, GFP_KERNEL)) {
7900 7901 7902 7903
		printk(KERN_DEBUG "Cannot load-balance (out of memory)\n");
		return;
	}

I
Ingo Molnar 已提交
7904
	for (;;) {
7905
		if (sched_domain_debug_one(sd, cpu, level, groupmask))
I
Ingo Molnar 已提交
7906
			break;
L
Linus Torvalds 已提交
7907 7908
		level++;
		sd = sd->parent;
7909
		if (!sd)
I
Ingo Molnar 已提交
7910 7911
			break;
	}
7912
	free_cpumask_var(groupmask);
L
Linus Torvalds 已提交
7913
}
7914
#else /* !CONFIG_SCHED_DEBUG */
7915
# define sched_domain_debug(sd, cpu) do { } while (0)
7916
#endif /* CONFIG_SCHED_DEBUG */
L
Linus Torvalds 已提交
7917

7918
static int sd_degenerate(struct sched_domain *sd)
7919
{
7920
	if (cpumask_weight(sched_domain_span(sd)) == 1)
7921 7922 7923 7924 7925 7926
		return 1;

	/* Following flags need at least 2 groups */
	if (sd->flags & (SD_LOAD_BALANCE |
			 SD_BALANCE_NEWIDLE |
			 SD_BALANCE_FORK |
7927 7928 7929
			 SD_BALANCE_EXEC |
			 SD_SHARE_CPUPOWER |
			 SD_SHARE_PKG_RESOURCES)) {
7930 7931 7932 7933 7934 7935 7936 7937 7938 7939 7940 7941 7942
		if (sd->groups != sd->groups->next)
			return 0;
	}

	/* Following flags don't use groups */
	if (sd->flags & (SD_WAKE_IDLE |
			 SD_WAKE_AFFINE |
			 SD_WAKE_BALANCE))
		return 0;

	return 1;
}

7943 7944
static int
sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
7945 7946 7947 7948 7949 7950
{
	unsigned long cflags = sd->flags, pflags = parent->flags;

	if (sd_degenerate(parent))
		return 1;

7951
	if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
7952 7953 7954 7955 7956 7957 7958 7959 7960 7961 7962
		return 0;

	/* Does parent contain flags not in child? */
	/* WAKE_BALANCE is a subset of WAKE_AFFINE */
	if (cflags & SD_WAKE_AFFINE)
		pflags &= ~SD_WAKE_BALANCE;
	/* Flags needing groups don't count if only 1 group in parent */
	if (parent->groups == parent->groups->next) {
		pflags &= ~(SD_LOAD_BALANCE |
				SD_BALANCE_NEWIDLE |
				SD_BALANCE_FORK |
7963 7964 7965
				SD_BALANCE_EXEC |
				SD_SHARE_CPUPOWER |
				SD_SHARE_PKG_RESOURCES);
7966 7967
		if (nr_node_ids == 1)
			pflags &= ~SD_SERIALIZE;
7968 7969 7970 7971 7972 7973 7974
	}
	if (~cflags & pflags)
		return 0;

	return 1;
}

7975 7976
static void free_rootdomain(struct root_domain *rd)
{
7977 7978
	cpupri_cleanup(&rd->cpupri);

7979 7980 7981 7982 7983 7984
	free_cpumask_var(rd->rto_mask);
	free_cpumask_var(rd->online);
	free_cpumask_var(rd->span);
	kfree(rd);
}

G
Gregory Haskins 已提交
7985 7986
static void rq_attach_root(struct rq *rq, struct root_domain *rd)
{
I
Ingo Molnar 已提交
7987
	struct root_domain *old_rd = NULL;
G
Gregory Haskins 已提交
7988 7989 7990 7991 7992
	unsigned long flags;

	spin_lock_irqsave(&rq->lock, flags);

	if (rq->rd) {
I
Ingo Molnar 已提交
7993
		old_rd = rq->rd;
G
Gregory Haskins 已提交
7994

7995
		if (cpumask_test_cpu(rq->cpu, old_rd->online))
7996
			set_rq_offline(rq);
G
Gregory Haskins 已提交
7997

7998
		cpumask_clear_cpu(rq->cpu, old_rd->span);
7999

I
Ingo Molnar 已提交
8000 8001 8002 8003 8004 8005 8006
		/*
		 * If we dont want to free the old_rt yet then
		 * set old_rd to NULL to skip the freeing later
		 * in this function:
		 */
		if (!atomic_dec_and_test(&old_rd->refcount))
			old_rd = NULL;
G
Gregory Haskins 已提交
8007 8008 8009 8010 8011
	}

	atomic_inc(&rd->refcount);
	rq->rd = rd;

8012
	cpumask_set_cpu(rq->cpu, rd->span);
8013
	if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
8014
		set_rq_online(rq);
G
Gregory Haskins 已提交
8015 8016

	spin_unlock_irqrestore(&rq->lock, flags);
I
Ingo Molnar 已提交
8017 8018 8019

	if (old_rd)
		free_rootdomain(old_rd);
G
Gregory Haskins 已提交
8020 8021
}

L
Li Zefan 已提交
8022
static int init_rootdomain(struct root_domain *rd, bool bootmem)
G
Gregory Haskins 已提交
8023
{
8024 8025
	gfp_t gfp = GFP_KERNEL;

G
Gregory Haskins 已提交
8026 8027
	memset(rd, 0, sizeof(*rd));

8028 8029
	if (bootmem)
		gfp = GFP_NOWAIT;
8030

8031
	if (!alloc_cpumask_var(&rd->span, gfp))
8032
		goto out;
8033
	if (!alloc_cpumask_var(&rd->online, gfp))
8034
		goto free_span;
8035
	if (!alloc_cpumask_var(&rd->rto_mask, gfp))
8036
		goto free_online;
8037

P
Pekka Enberg 已提交
8038
	if (cpupri_init(&rd->cpupri, bootmem) != 0)
8039
		goto free_rto_mask;
8040
	return 0;
8041

8042 8043
free_rto_mask:
	free_cpumask_var(rd->rto_mask);
8044 8045 8046 8047
free_online:
	free_cpumask_var(rd->online);
free_span:
	free_cpumask_var(rd->span);
8048
out:
8049
	return -ENOMEM;
G
Gregory Haskins 已提交
8050 8051 8052 8053
}

static void init_defrootdomain(void)
{
8054 8055
	init_rootdomain(&def_root_domain, true);

G
Gregory Haskins 已提交
8056 8057 8058
	atomic_set(&def_root_domain.refcount, 1);
}

8059
static struct root_domain *alloc_rootdomain(void)
G
Gregory Haskins 已提交
8060 8061 8062 8063 8064 8065 8066
{
	struct root_domain *rd;

	rd = kmalloc(sizeof(*rd), GFP_KERNEL);
	if (!rd)
		return NULL;

8067 8068 8069 8070
	if (init_rootdomain(rd, false) != 0) {
		kfree(rd);
		return NULL;
	}
G
Gregory Haskins 已提交
8071 8072 8073 8074

	return rd;
}

L
Linus Torvalds 已提交
8075
/*
I
Ingo Molnar 已提交
8076
 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
L
Linus Torvalds 已提交
8077 8078
 * hold the hotplug lock.
 */
I
Ingo Molnar 已提交
8079 8080
static void
cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
L
Linus Torvalds 已提交
8081
{
8082
	struct rq *rq = cpu_rq(cpu);
8083 8084 8085
	struct sched_domain *tmp;

	/* Remove the sched domains which do not contribute to scheduling. */
8086
	for (tmp = sd; tmp; ) {
8087 8088 8089
		struct sched_domain *parent = tmp->parent;
		if (!parent)
			break;
8090

8091
		if (sd_parent_degenerate(tmp, parent)) {
8092
			tmp->parent = parent->parent;
8093 8094
			if (parent->parent)
				parent->parent->child = tmp;
8095 8096
		} else
			tmp = tmp->parent;
8097 8098
	}

8099
	if (sd && sd_degenerate(sd)) {
8100
		sd = sd->parent;
8101 8102 8103
		if (sd)
			sd->child = NULL;
	}
L
Linus Torvalds 已提交
8104 8105 8106

	sched_domain_debug(sd, cpu);

G
Gregory Haskins 已提交
8107
	rq_attach_root(rq, rd);
N
Nick Piggin 已提交
8108
	rcu_assign_pointer(rq->sd, sd);
L
Linus Torvalds 已提交
8109 8110 8111
}

/* cpus with isolated domains */
8112
static cpumask_var_t cpu_isolated_map;
L
Linus Torvalds 已提交
8113 8114 8115 8116

/* Setup the mask of cpus configured for isolated domains */
static int __init isolated_cpu_setup(char *str)
{
R
Rusty Russell 已提交
8117
	cpulist_parse(str, cpu_isolated_map);
L
Linus Torvalds 已提交
8118 8119 8120
	return 1;
}

I
Ingo Molnar 已提交
8121
__setup("isolcpus=", isolated_cpu_setup);
L
Linus Torvalds 已提交
8122 8123

/*
8124 8125
 * init_sched_build_groups takes the cpumask we wish to span, and a pointer
 * to a function which identifies what group(along with sched group) a CPU
8126 8127
 * belongs to. The return value of group_fn must be a >= 0 and < nr_cpu_ids
 * (due to the fact that we keep track of groups covered with a struct cpumask).
L
Linus Torvalds 已提交
8128 8129 8130 8131 8132
 *
 * init_sched_build_groups will build a circular linked list of the groups
 * covered by the given span, and will set each group's ->cpumask correctly,
 * and ->cpu_power to 0.
 */
8133
static void
8134 8135 8136
init_sched_build_groups(const struct cpumask *span,
			const struct cpumask *cpu_map,
			int (*group_fn)(int cpu, const struct cpumask *cpu_map,
8137
					struct sched_group **sg,
8138 8139
					struct cpumask *tmpmask),
			struct cpumask *covered, struct cpumask *tmpmask)
L
Linus Torvalds 已提交
8140 8141 8142 8143
{
	struct sched_group *first = NULL, *last = NULL;
	int i;

8144
	cpumask_clear(covered);
8145

8146
	for_each_cpu(i, span) {
8147
		struct sched_group *sg;
8148
		int group = group_fn(i, cpu_map, &sg, tmpmask);
L
Linus Torvalds 已提交
8149 8150
		int j;

8151
		if (cpumask_test_cpu(i, covered))
L
Linus Torvalds 已提交
8152 8153
			continue;

8154
		cpumask_clear(sched_group_cpus(sg));
8155
		sg->__cpu_power = 0;
L
Linus Torvalds 已提交
8156

8157
		for_each_cpu(j, span) {
8158
			if (group_fn(j, cpu_map, NULL, tmpmask) != group)
L
Linus Torvalds 已提交
8159 8160
				continue;

8161
			cpumask_set_cpu(j, covered);
8162
			cpumask_set_cpu(j, sched_group_cpus(sg));
L
Linus Torvalds 已提交
8163 8164 8165 8166 8167 8168 8169 8170 8171 8172
		}
		if (!first)
			first = sg;
		if (last)
			last->next = sg;
		last = sg;
	}
	last->next = first;
}

8173
#define SD_NODES_PER_DOMAIN 16
L
Linus Torvalds 已提交
8174

8175
#ifdef CONFIG_NUMA
8176

8177 8178 8179 8180 8181
/**
 * find_next_best_node - find the next node to include in a sched_domain
 * @node: node whose sched_domain we're building
 * @used_nodes: nodes already in the sched_domain
 *
I
Ingo Molnar 已提交
8182
 * Find the next node to include in a given scheduling domain. Simply
8183 8184 8185 8186
 * finds the closest node not already in the @used_nodes map.
 *
 * Should use nodemask_t.
 */
8187
static int find_next_best_node(int node, nodemask_t *used_nodes)
8188 8189 8190 8191 8192
{
	int i, n, val, min_val, best_node = 0;

	min_val = INT_MAX;

8193
	for (i = 0; i < nr_node_ids; i++) {
8194
		/* Start at @node */
8195
		n = (node + i) % nr_node_ids;
8196 8197 8198 8199 8200

		if (!nr_cpus_node(n))
			continue;

		/* Skip already used nodes */
8201
		if (node_isset(n, *used_nodes))
8202 8203 8204 8205 8206 8207 8208 8209 8210 8211 8212
			continue;

		/* Simple min distance search */
		val = node_distance(node, n);

		if (val < min_val) {
			min_val = val;
			best_node = n;
		}
	}

8213
	node_set(best_node, *used_nodes);
8214 8215 8216 8217 8218 8219
	return best_node;
}

/**
 * sched_domain_node_span - get a cpumask for a node's sched_domain
 * @node: node whose cpumask we're constructing
8220
 * @span: resulting cpumask
8221
 *
I
Ingo Molnar 已提交
8222
 * Given a node, construct a good cpumask for its sched_domain to span. It
8223 8224 8225
 * should be one that prevents unnecessary balancing, but also spreads tasks
 * out optimally.
 */
8226
static void sched_domain_node_span(int node, struct cpumask *span)
8227
{
8228
	nodemask_t used_nodes;
8229
	int i;
8230

8231
	cpumask_clear(span);
8232
	nodes_clear(used_nodes);
8233

8234
	cpumask_or(span, span, cpumask_of_node(node));
8235
	node_set(node, used_nodes);
8236 8237

	for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
8238
		int next_node = find_next_best_node(node, &used_nodes);
8239

8240
		cpumask_or(span, span, cpumask_of_node(next_node));
8241 8242
	}
}
8243
#endif /* CONFIG_NUMA */
8244

8245
int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
8246

8247 8248
/*
 * The cpus mask in sched_group and sched_domain hangs off the end.
8249 8250 8251
 *
 * ( See the the comments in include/linux/sched.h:struct sched_group
 *   and struct sched_domain. )
8252 8253 8254 8255 8256 8257 8258 8259 8260 8261 8262
 */
struct static_sched_group {
	struct sched_group sg;
	DECLARE_BITMAP(cpus, CONFIG_NR_CPUS);
};

struct static_sched_domain {
	struct sched_domain sd;
	DECLARE_BITMAP(span, CONFIG_NR_CPUS);
};

8263 8264 8265 8266 8267 8268 8269 8270 8271 8272 8273 8274 8275 8276 8277 8278
struct s_data {
#ifdef CONFIG_NUMA
	int			sd_allnodes;
	cpumask_var_t		domainspan;
	cpumask_var_t		covered;
	cpumask_var_t		notcovered;
#endif
	cpumask_var_t		nodemask;
	cpumask_var_t		this_sibling_map;
	cpumask_var_t		this_core_map;
	cpumask_var_t		send_covered;
	cpumask_var_t		tmpmask;
	struct sched_group	**sched_group_nodes;
	struct root_domain	*rd;
};

8279 8280 8281 8282 8283 8284 8285 8286 8287 8288 8289 8290 8291 8292 8293 8294 8295
enum s_alloc {
	sa_sched_groups = 0,
	sa_rootdomain,
	sa_tmpmask,
	sa_send_covered,
	sa_this_core_map,
	sa_this_sibling_map,
	sa_nodemask,
	sa_sched_group_nodes,
#ifdef CONFIG_NUMA
	sa_notcovered,
	sa_covered,
	sa_domainspan,
#endif
	sa_none,
};

8296
/*
8297
 * SMT sched-domains:
8298
 */
L
Linus Torvalds 已提交
8299
#ifdef CONFIG_SCHED_SMT
8300 8301
static DEFINE_PER_CPU(struct static_sched_domain, cpu_domains);
static DEFINE_PER_CPU(struct static_sched_group, sched_group_cpus);
8302

I
Ingo Molnar 已提交
8303
static int
8304 8305
cpu_to_cpu_group(int cpu, const struct cpumask *cpu_map,
		 struct sched_group **sg, struct cpumask *unused)
L
Linus Torvalds 已提交
8306
{
8307
	if (sg)
8308
		*sg = &per_cpu(sched_group_cpus, cpu).sg;
L
Linus Torvalds 已提交
8309 8310
	return cpu;
}
8311
#endif /* CONFIG_SCHED_SMT */
L
Linus Torvalds 已提交
8312

8313 8314 8315
/*
 * multi-core sched-domains:
 */
8316
#ifdef CONFIG_SCHED_MC
8317 8318
static DEFINE_PER_CPU(struct static_sched_domain, core_domains);
static DEFINE_PER_CPU(struct static_sched_group, sched_group_core);
8319
#endif /* CONFIG_SCHED_MC */
8320 8321

#if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
I
Ingo Molnar 已提交
8322
static int
8323 8324
cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
		  struct sched_group **sg, struct cpumask *mask)
8325
{
8326
	int group;
8327

8328
	cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
8329
	group = cpumask_first(mask);
8330
	if (sg)
8331
		*sg = &per_cpu(sched_group_core, group).sg;
8332
	return group;
8333 8334
}
#elif defined(CONFIG_SCHED_MC)
I
Ingo Molnar 已提交
8335
static int
8336 8337
cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
		  struct sched_group **sg, struct cpumask *unused)
8338
{
8339
	if (sg)
8340
		*sg = &per_cpu(sched_group_core, cpu).sg;
8341 8342 8343 8344
	return cpu;
}
#endif

8345 8346
static DEFINE_PER_CPU(struct static_sched_domain, phys_domains);
static DEFINE_PER_CPU(struct static_sched_group, sched_group_phys);
8347

I
Ingo Molnar 已提交
8348
static int
8349 8350
cpu_to_phys_group(int cpu, const struct cpumask *cpu_map,
		  struct sched_group **sg, struct cpumask *mask)
L
Linus Torvalds 已提交
8351
{
8352
	int group;
8353
#ifdef CONFIG_SCHED_MC
8354
	cpumask_and(mask, cpu_coregroup_mask(cpu), cpu_map);
8355
	group = cpumask_first(mask);
8356
#elif defined(CONFIG_SCHED_SMT)
8357
	cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
8358
	group = cpumask_first(mask);
L
Linus Torvalds 已提交
8359
#else
8360
	group = cpu;
L
Linus Torvalds 已提交
8361
#endif
8362
	if (sg)
8363
		*sg = &per_cpu(sched_group_phys, group).sg;
8364
	return group;
L
Linus Torvalds 已提交
8365 8366 8367 8368
}

#ifdef CONFIG_NUMA
/*
8369 8370 8371
 * The init_sched_build_groups can't handle what we want to do with node
 * groups, so roll our own. Now each node has its own list of groups which
 * gets dynamically allocated.
L
Linus Torvalds 已提交
8372
 */
8373
static DEFINE_PER_CPU(struct static_sched_domain, node_domains);
8374
static struct sched_group ***sched_group_nodes_bycpu;
L
Linus Torvalds 已提交
8375

8376
static DEFINE_PER_CPU(struct static_sched_domain, allnodes_domains);
8377
static DEFINE_PER_CPU(struct static_sched_group, sched_group_allnodes);
8378

8379 8380 8381
static int cpu_to_allnodes_group(int cpu, const struct cpumask *cpu_map,
				 struct sched_group **sg,
				 struct cpumask *nodemask)
8382
{
8383 8384
	int group;

8385
	cpumask_and(nodemask, cpumask_of_node(cpu_to_node(cpu)), cpu_map);
8386
	group = cpumask_first(nodemask);
8387 8388

	if (sg)
8389
		*sg = &per_cpu(sched_group_allnodes, group).sg;
8390
	return group;
L
Linus Torvalds 已提交
8391
}
8392

8393 8394 8395 8396 8397 8398 8399
static void init_numa_sched_groups_power(struct sched_group *group_head)
{
	struct sched_group *sg = group_head;
	int j;

	if (!sg)
		return;
8400
	do {
8401
		for_each_cpu(j, sched_group_cpus(sg)) {
8402
			struct sched_domain *sd;
8403

8404
			sd = &per_cpu(phys_domains, j).sd;
8405
			if (j != group_first_cpu(sd->groups)) {
8406 8407 8408 8409 8410 8411
				/*
				 * Only add "power" once for each
				 * physical package.
				 */
				continue;
			}
8412

8413 8414 8415 8416
			sg_inc_cpu_power(sg, sd->groups->__cpu_power);
		}
		sg = sg->next;
	} while (sg != group_head);
8417
}
8418 8419 8420 8421 8422 8423 8424 8425 8426 8427 8428 8429 8430 8431 8432 8433 8434 8435 8436 8437 8438 8439 8440 8441 8442 8443 8444 8445 8446 8447 8448 8449 8450 8451 8452 8453 8454 8455 8456 8457 8458 8459 8460 8461 8462 8463 8464 8465 8466 8467 8468 8469 8470 8471 8472 8473 8474 8475 8476 8477 8478 8479 8480 8481 8482

static int build_numa_sched_groups(struct s_data *d,
				   const struct cpumask *cpu_map, int num)
{
	struct sched_domain *sd;
	struct sched_group *sg, *prev;
	int n, j;

	cpumask_clear(d->covered);
	cpumask_and(d->nodemask, cpumask_of_node(num), cpu_map);
	if (cpumask_empty(d->nodemask)) {
		d->sched_group_nodes[num] = NULL;
		goto out;
	}

	sched_domain_node_span(num, d->domainspan);
	cpumask_and(d->domainspan, d->domainspan, cpu_map);

	sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(),
			  GFP_KERNEL, num);
	if (!sg) {
		printk(KERN_WARNING "Can not alloc domain group for node %d\n",
		       num);
		return -ENOMEM;
	}
	d->sched_group_nodes[num] = sg;

	for_each_cpu(j, d->nodemask) {
		sd = &per_cpu(node_domains, j).sd;
		sd->groups = sg;
	}

	sg->__cpu_power = 0;
	cpumask_copy(sched_group_cpus(sg), d->nodemask);
	sg->next = sg;
	cpumask_or(d->covered, d->covered, d->nodemask);

	prev = sg;
	for (j = 0; j < nr_node_ids; j++) {
		n = (num + j) % nr_node_ids;
		cpumask_complement(d->notcovered, d->covered);
		cpumask_and(d->tmpmask, d->notcovered, cpu_map);
		cpumask_and(d->tmpmask, d->tmpmask, d->domainspan);
		if (cpumask_empty(d->tmpmask))
			break;
		cpumask_and(d->tmpmask, d->tmpmask, cpumask_of_node(n));
		if (cpumask_empty(d->tmpmask))
			continue;
		sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(),
				  GFP_KERNEL, num);
		if (!sg) {
			printk(KERN_WARNING
			       "Can not alloc domain group for node %d\n", j);
			return -ENOMEM;
		}
		sg->__cpu_power = 0;
		cpumask_copy(sched_group_cpus(sg), d->tmpmask);
		sg->next = prev->next;
		cpumask_or(d->covered, d->covered, d->tmpmask);
		prev->next = sg;
		prev = sg;
	}
out:
	return 0;
}
8483
#endif /* CONFIG_NUMA */
L
Linus Torvalds 已提交
8484

8485
#ifdef CONFIG_NUMA
8486
/* Free memory allocated for various sched_group structures */
8487 8488
static void free_sched_groups(const struct cpumask *cpu_map,
			      struct cpumask *nodemask)
8489
{
8490
	int cpu, i;
8491

8492
	for_each_cpu(cpu, cpu_map) {
8493 8494 8495 8496 8497 8498
		struct sched_group **sched_group_nodes
			= sched_group_nodes_bycpu[cpu];

		if (!sched_group_nodes)
			continue;

8499
		for (i = 0; i < nr_node_ids; i++) {
8500 8501
			struct sched_group *oldsg, *sg = sched_group_nodes[i];

8502
			cpumask_and(nodemask, cpumask_of_node(i), cpu_map);
8503
			if (cpumask_empty(nodemask))
8504 8505 8506 8507 8508 8509 8510 8511 8512 8513 8514 8515 8516 8517 8518 8519
				continue;

			if (sg == NULL)
				continue;
			sg = sg->next;
next_sg:
			oldsg = sg;
			sg = sg->next;
			kfree(oldsg);
			if (oldsg != sched_group_nodes[i])
				goto next_sg;
		}
		kfree(sched_group_nodes);
		sched_group_nodes_bycpu[cpu] = NULL;
	}
}
8520
#else /* !CONFIG_NUMA */
8521 8522
static void free_sched_groups(const struct cpumask *cpu_map,
			      struct cpumask *nodemask)
8523 8524
{
}
8525
#endif /* CONFIG_NUMA */
8526

8527 8528 8529 8530 8531 8532 8533 8534 8535 8536 8537 8538 8539 8540
/*
 * Initialize sched groups cpu_power.
 *
 * cpu_power indicates the capacity of sched group, which is used while
 * distributing the load between different sched groups in a sched domain.
 * Typically cpu_power for all the groups in a sched domain will be same unless
 * there are asymmetries in the topology. If there are asymmetries, group
 * having more cpu_power will pickup more load compared to the group having
 * less cpu_power.
 */
static void init_sched_groups_power(int cpu, struct sched_domain *sd)
{
	struct sched_domain *child;
	struct sched_group *group;
8541 8542
	long power;
	int weight;
8543 8544 8545

	WARN_ON(!sd || !sd->groups);

8546
	if (cpu != group_first_cpu(sd->groups))
8547 8548 8549 8550
		return;

	child = sd->child;

8551 8552
	sd->groups->__cpu_power = 0;

8553 8554 8555 8556 8557
	if (!child) {
		power = SCHED_LOAD_SCALE;
		weight = cpumask_weight(sched_domain_span(sd));
		/*
		 * SMT siblings share the power of a single core.
P
Peter Zijlstra 已提交
8558 8559 8560
		 * Usually multiple threads get a better yield out of
		 * that one core than a single thread would have,
		 * reflect that in sd->smt_gain.
8561
		 */
P
Peter Zijlstra 已提交
8562 8563
		if ((sd->flags & SD_SHARE_CPUPOWER) && weight > 1) {
			power *= sd->smt_gain;
8564
			power /= weight;
P
Peter Zijlstra 已提交
8565 8566
			power >>= SCHED_LOAD_SHIFT;
		}
8567
		sg_inc_cpu_power(sd->groups, power);
8568 8569 8570 8571
		return;
	}

	/*
8572
	 * Add cpu_power of each child group to this groups cpu_power.
8573 8574 8575
	 */
	group = child->groups;
	do {
8576
		sg_inc_cpu_power(sd->groups, group->__cpu_power);
8577 8578 8579 8580
		group = group->next;
	} while (group != child->groups);
}

8581 8582 8583 8584 8585
/*
 * Initializers for schedule domains
 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
 */

8586 8587 8588 8589 8590 8591
#ifdef CONFIG_SCHED_DEBUG
# define SD_INIT_NAME(sd, type)		sd->name = #type
#else
# define SD_INIT_NAME(sd, type)		do { } while (0)
#endif

8592
#define	SD_INIT(sd, type)	sd_init_##type(sd)
8593

8594 8595 8596 8597 8598
#define SD_INIT_FUNC(type)	\
static noinline void sd_init_##type(struct sched_domain *sd)	\
{								\
	memset(sd, 0, sizeof(*sd));				\
	*sd = SD_##type##_INIT;					\
8599
	sd->level = SD_LV_##type;				\
8600
	SD_INIT_NAME(sd, type);					\
8601 8602 8603 8604 8605 8606 8607 8608 8609 8610 8611 8612 8613 8614
}

SD_INIT_FUNC(CPU)
#ifdef CONFIG_NUMA
 SD_INIT_FUNC(ALLNODES)
 SD_INIT_FUNC(NODE)
#endif
#ifdef CONFIG_SCHED_SMT
 SD_INIT_FUNC(SIBLING)
#endif
#ifdef CONFIG_SCHED_MC
 SD_INIT_FUNC(MC)
#endif

8615 8616 8617 8618
static int default_relax_domain_level = -1;

static int __init setup_relax_domain_level(char *str)
{
8619 8620 8621 8622 8623 8624
	unsigned long val;

	val = simple_strtoul(str, NULL, 0);
	if (val < SD_LV_MAX)
		default_relax_domain_level = val;

8625 8626 8627 8628 8629 8630 8631 8632 8633 8634 8635 8636 8637 8638 8639 8640 8641 8642 8643 8644 8645 8646 8647 8648 8649
	return 1;
}
__setup("relax_domain_level=", setup_relax_domain_level);

static void set_domain_attribute(struct sched_domain *sd,
				 struct sched_domain_attr *attr)
{
	int request;

	if (!attr || attr->relax_domain_level < 0) {
		if (default_relax_domain_level < 0)
			return;
		else
			request = default_relax_domain_level;
	} else
		request = attr->relax_domain_level;
	if (request < sd->level) {
		/* turn off idle balance on this domain */
		sd->flags &= ~(SD_WAKE_IDLE|SD_BALANCE_NEWIDLE);
	} else {
		/* turn on idle balance on this domain */
		sd->flags |= (SD_WAKE_IDLE_FAR|SD_BALANCE_NEWIDLE);
	}
}

8650 8651 8652 8653 8654 8655 8656 8657 8658 8659 8660 8661 8662 8663 8664 8665 8666 8667 8668 8669
static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
				 const struct cpumask *cpu_map)
{
	switch (what) {
	case sa_sched_groups:
		free_sched_groups(cpu_map, d->tmpmask); /* fall through */
		d->sched_group_nodes = NULL;
	case sa_rootdomain:
		free_rootdomain(d->rd); /* fall through */
	case sa_tmpmask:
		free_cpumask_var(d->tmpmask); /* fall through */
	case sa_send_covered:
		free_cpumask_var(d->send_covered); /* fall through */
	case sa_this_core_map:
		free_cpumask_var(d->this_core_map); /* fall through */
	case sa_this_sibling_map:
		free_cpumask_var(d->this_sibling_map); /* fall through */
	case sa_nodemask:
		free_cpumask_var(d->nodemask); /* fall through */
	case sa_sched_group_nodes:
8670
#ifdef CONFIG_NUMA
8671 8672 8673 8674 8675 8676 8677
		kfree(d->sched_group_nodes); /* fall through */
	case sa_notcovered:
		free_cpumask_var(d->notcovered); /* fall through */
	case sa_covered:
		free_cpumask_var(d->covered); /* fall through */
	case sa_domainspan:
		free_cpumask_var(d->domainspan); /* fall through */
8678
#endif
8679 8680 8681 8682
	case sa_none:
		break;
	}
}
8683

8684 8685 8686
static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
						   const struct cpumask *cpu_map)
{
8687
#ifdef CONFIG_NUMA
8688 8689 8690 8691 8692 8693 8694 8695 8696 8697
	if (!alloc_cpumask_var(&d->domainspan, GFP_KERNEL))
		return sa_none;
	if (!alloc_cpumask_var(&d->covered, GFP_KERNEL))
		return sa_domainspan;
	if (!alloc_cpumask_var(&d->notcovered, GFP_KERNEL))
		return sa_covered;
	/* Allocate the per-node list of sched groups */
	d->sched_group_nodes = kcalloc(nr_node_ids,
				      sizeof(struct sched_group *), GFP_KERNEL);
	if (!d->sched_group_nodes) {
8698
		printk(KERN_WARNING "Can not alloc sched group node list\n");
8699
		return sa_notcovered;
8700
	}
8701
	sched_group_nodes_bycpu[cpumask_first(cpu_map)] = d->sched_group_nodes;
8702
#endif
8703 8704 8705 8706 8707 8708 8709 8710 8711 8712 8713 8714
	if (!alloc_cpumask_var(&d->nodemask, GFP_KERNEL))
		return sa_sched_group_nodes;
	if (!alloc_cpumask_var(&d->this_sibling_map, GFP_KERNEL))
		return sa_nodemask;
	if (!alloc_cpumask_var(&d->this_core_map, GFP_KERNEL))
		return sa_this_sibling_map;
	if (!alloc_cpumask_var(&d->send_covered, GFP_KERNEL))
		return sa_this_core_map;
	if (!alloc_cpumask_var(&d->tmpmask, GFP_KERNEL))
		return sa_send_covered;
	d->rd = alloc_rootdomain();
	if (!d->rd) {
G
Gregory Haskins 已提交
8715
		printk(KERN_WARNING "Cannot alloc root domain\n");
8716
		return sa_tmpmask;
G
Gregory Haskins 已提交
8717
	}
8718 8719
	return sa_rootdomain;
}
G
Gregory Haskins 已提交
8720

8721 8722 8723 8724
static struct sched_domain *__build_numa_sched_domains(struct s_data *d,
	const struct cpumask *cpu_map, struct sched_domain_attr *attr, int i)
{
	struct sched_domain *sd = NULL;
8725
#ifdef CONFIG_NUMA
8726
	struct sched_domain *parent;
8727

8728 8729 8730 8731 8732
	d->sd_allnodes = 0;
	if (cpumask_weight(cpu_map) >
	    SD_NODES_PER_DOMAIN * cpumask_weight(d->nodemask)) {
		sd = &per_cpu(allnodes_domains, i).sd;
		SD_INIT(sd, ALLNODES);
8733
		set_domain_attribute(sd, attr);
8734 8735 8736 8737 8738 8739 8740 8741 8742 8743 8744 8745 8746 8747
		cpumask_copy(sched_domain_span(sd), cpu_map);
		cpu_to_allnodes_group(i, cpu_map, &sd->groups, d->tmpmask);
		d->sd_allnodes = 1;
	}
	parent = sd;

	sd = &per_cpu(node_domains, i).sd;
	SD_INIT(sd, NODE);
	set_domain_attribute(sd, attr);
	sched_domain_node_span(cpu_to_node(i), sched_domain_span(sd));
	sd->parent = parent;
	if (parent)
		parent->child = sd;
	cpumask_and(sched_domain_span(sd), sched_domain_span(sd), cpu_map);
L
Linus Torvalds 已提交
8748
#endif
8749 8750
	return sd;
}
L
Linus Torvalds 已提交
8751

8752 8753 8754 8755 8756 8757 8758 8759 8760 8761 8762 8763 8764 8765 8766
static struct sched_domain *__build_cpu_sched_domain(struct s_data *d,
	const struct cpumask *cpu_map, struct sched_domain_attr *attr,
	struct sched_domain *parent, int i)
{
	struct sched_domain *sd;
	sd = &per_cpu(phys_domains, i).sd;
	SD_INIT(sd, CPU);
	set_domain_attribute(sd, attr);
	cpumask_copy(sched_domain_span(sd), d->nodemask);
	sd->parent = parent;
	if (parent)
		parent->child = sd;
	cpu_to_phys_group(i, cpu_map, &sd->groups, d->tmpmask);
	return sd;
}
L
Linus Torvalds 已提交
8767

8768 8769 8770 8771 8772
static struct sched_domain *__build_mc_sched_domain(struct s_data *d,
	const struct cpumask *cpu_map, struct sched_domain_attr *attr,
	struct sched_domain *parent, int i)
{
	struct sched_domain *sd = parent;
8773
#ifdef CONFIG_SCHED_MC
8774 8775 8776 8777 8778 8779 8780
	sd = &per_cpu(core_domains, i).sd;
	SD_INIT(sd, MC);
	set_domain_attribute(sd, attr);
	cpumask_and(sched_domain_span(sd), cpu_map, cpu_coregroup_mask(i));
	sd->parent = parent;
	parent->child = sd;
	cpu_to_core_group(i, cpu_map, &sd->groups, d->tmpmask);
8781
#endif
8782 8783
	return sd;
}
8784

8785 8786 8787 8788 8789
static struct sched_domain *__build_smt_sched_domain(struct s_data *d,
	const struct cpumask *cpu_map, struct sched_domain_attr *attr,
	struct sched_domain *parent, int i)
{
	struct sched_domain *sd = parent;
L
Linus Torvalds 已提交
8790
#ifdef CONFIG_SCHED_SMT
8791 8792 8793 8794 8795 8796 8797
	sd = &per_cpu(cpu_domains, i).sd;
	SD_INIT(sd, SIBLING);
	set_domain_attribute(sd, attr);
	cpumask_and(sched_domain_span(sd), cpu_map, topology_thread_cpumask(i));
	sd->parent = parent;
	parent->child = sd;
	cpu_to_cpu_group(i, cpu_map, &sd->groups, d->tmpmask);
L
Linus Torvalds 已提交
8798
#endif
8799 8800
	return sd;
}
L
Linus Torvalds 已提交
8801

8802 8803 8804 8805
static void build_sched_groups(struct s_data *d, enum sched_domain_level l,
			       const struct cpumask *cpu_map, int cpu)
{
	switch (l) {
L
Linus Torvalds 已提交
8806
#ifdef CONFIG_SCHED_SMT
8807 8808 8809 8810 8811 8812 8813 8814
	case SD_LV_SIBLING: /* set up CPU (sibling) groups */
		cpumask_and(d->this_sibling_map, cpu_map,
			    topology_thread_cpumask(cpu));
		if (cpu == cpumask_first(d->this_sibling_map))
			init_sched_build_groups(d->this_sibling_map, cpu_map,
						&cpu_to_cpu_group,
						d->send_covered, d->tmpmask);
		break;
L
Linus Torvalds 已提交
8815
#endif
8816
#ifdef CONFIG_SCHED_MC
8817 8818 8819 8820 8821 8822 8823
	case SD_LV_MC: /* set up multi-core groups */
		cpumask_and(d->this_core_map, cpu_map, cpu_coregroup_mask(cpu));
		if (cpu == cpumask_first(d->this_core_map))
			init_sched_build_groups(d->this_core_map, cpu_map,
						&cpu_to_core_group,
						d->send_covered, d->tmpmask);
		break;
8824
#endif
8825 8826 8827 8828 8829 8830 8831
	case SD_LV_CPU: /* set up physical groups */
		cpumask_and(d->nodemask, cpumask_of_node(cpu), cpu_map);
		if (!cpumask_empty(d->nodemask))
			init_sched_build_groups(d->nodemask, cpu_map,
						&cpu_to_phys_group,
						d->send_covered, d->tmpmask);
		break;
L
Linus Torvalds 已提交
8832
#ifdef CONFIG_NUMA
8833 8834 8835 8836 8837
	case SD_LV_ALLNODES:
		init_sched_build_groups(cpu_map, cpu_map, &cpu_to_allnodes_group,
					d->send_covered, d->tmpmask);
		break;
#endif
8838 8839
	default:
		break;
8840
	}
8841
}
8842

8843 8844 8845 8846 8847 8848 8849 8850 8851
/*
 * Build sched domains for a given set of cpus and attach the sched domains
 * to the individual cpus
 */
static int __build_sched_domains(const struct cpumask *cpu_map,
				 struct sched_domain_attr *attr)
{
	enum s_alloc alloc_state = sa_none;
	struct s_data d;
8852
	struct sched_domain *sd;
8853
	int i;
8854
#ifdef CONFIG_NUMA
8855
	d.sd_allnodes = 0;
8856
#endif
8857

8858 8859 8860 8861
	alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
	if (alloc_state != sa_rootdomain)
		goto error;
	alloc_state = sa_sched_groups;
8862

L
Linus Torvalds 已提交
8863
	/*
8864
	 * Set up domains for cpus specified by the cpu_map.
L
Linus Torvalds 已提交
8865
	 */
8866
	for_each_cpu(i, cpu_map) {
8867 8868
		cpumask_and(d.nodemask, cpumask_of_node(cpu_to_node(i)),
			    cpu_map);
I
Ingo Molnar 已提交
8869

8870
		sd = __build_numa_sched_domains(&d, cpu_map, attr, i);
8871
		sd = __build_cpu_sched_domain(&d, cpu_map, attr, sd, i);
8872
		sd = __build_mc_sched_domain(&d, cpu_map, attr, sd, i);
8873
		sd = __build_smt_sched_domain(&d, cpu_map, attr, sd, i);
L
Linus Torvalds 已提交
8874
	}
8875

8876
	for_each_cpu(i, cpu_map) {
8877
		build_sched_groups(&d, SD_LV_SIBLING, cpu_map, i);
8878
		build_sched_groups(&d, SD_LV_MC, cpu_map, i);
L
Linus Torvalds 已提交
8879
	}
8880

L
Linus Torvalds 已提交
8881
	/* Set up physical groups */
8882 8883
	for (i = 0; i < nr_node_ids; i++)
		build_sched_groups(&d, SD_LV_CPU, cpu_map, i);
8884

L
Linus Torvalds 已提交
8885 8886
#ifdef CONFIG_NUMA
	/* Set up node groups */
8887 8888
	if (d.sd_allnodes)
		build_sched_groups(&d, SD_LV_ALLNODES, cpu_map, 0);
8889

8890 8891
	for (i = 0; i < nr_node_ids; i++)
		if (build_numa_sched_groups(&d, cpu_map, i))
8892
			goto error;
L
Linus Torvalds 已提交
8893 8894 8895
#endif

	/* Calculate CPU power for physical packages and nodes */
8896
#ifdef CONFIG_SCHED_SMT
8897
	for_each_cpu(i, cpu_map) {
8898
		sd = &per_cpu(cpu_domains, i).sd;
8899
		init_sched_groups_power(i, sd);
8900
	}
L
Linus Torvalds 已提交
8901
#endif
8902
#ifdef CONFIG_SCHED_MC
8903
	for_each_cpu(i, cpu_map) {
8904
		sd = &per_cpu(core_domains, i).sd;
8905
		init_sched_groups_power(i, sd);
8906 8907
	}
#endif
8908

8909
	for_each_cpu(i, cpu_map) {
8910
		sd = &per_cpu(phys_domains, i).sd;
8911
		init_sched_groups_power(i, sd);
L
Linus Torvalds 已提交
8912 8913
	}

8914
#ifdef CONFIG_NUMA
8915
	for (i = 0; i < nr_node_ids; i++)
8916
		init_numa_sched_groups_power(d.sched_group_nodes[i]);
8917

8918
	if (d.sd_allnodes) {
8919
		struct sched_group *sg;
8920

8921
		cpu_to_allnodes_group(cpumask_first(cpu_map), cpu_map, &sg,
8922
								d.tmpmask);
8923 8924
		init_numa_sched_groups_power(sg);
	}
8925 8926
#endif

L
Linus Torvalds 已提交
8927
	/* Attach the domains */
8928
	for_each_cpu(i, cpu_map) {
L
Linus Torvalds 已提交
8929
#ifdef CONFIG_SCHED_SMT
8930
		sd = &per_cpu(cpu_domains, i).sd;
8931
#elif defined(CONFIG_SCHED_MC)
8932
		sd = &per_cpu(core_domains, i).sd;
L
Linus Torvalds 已提交
8933
#else
8934
		sd = &per_cpu(phys_domains, i).sd;
L
Linus Torvalds 已提交
8935
#endif
8936
		cpu_attach_domain(sd, d.rd, i);
L
Linus Torvalds 已提交
8937
	}
8938

8939 8940 8941
	d.sched_group_nodes = NULL; /* don't free this we still need it */
	__free_domain_allocs(&d, sa_tmpmask, cpu_map);
	return 0;
8942 8943

error:
8944 8945
	__free_domain_allocs(&d, alloc_state, cpu_map);
	return -ENOMEM;
L
Linus Torvalds 已提交
8946
}
P
Paul Jackson 已提交
8947

8948
static int build_sched_domains(const struct cpumask *cpu_map)
8949 8950 8951 8952
{
	return __build_sched_domains(cpu_map, NULL);
}

8953
static struct cpumask *doms_cur;	/* current sched domains */
P
Paul Jackson 已提交
8954
static int ndoms_cur;		/* number of sched domains in 'doms_cur' */
I
Ingo Molnar 已提交
8955 8956
static struct sched_domain_attr *dattr_cur;
				/* attribues of custom domains in 'doms_cur' */
P
Paul Jackson 已提交
8957 8958 8959

/*
 * Special case: If a kmalloc of a doms_cur partition (array of
8960 8961
 * cpumask) fails, then fallback to a single sched domain,
 * as determined by the single cpumask fallback_doms.
P
Paul Jackson 已提交
8962
 */
8963
static cpumask_var_t fallback_doms;
P
Paul Jackson 已提交
8964

8965 8966 8967 8968 8969 8970
/*
 * arch_update_cpu_topology lets virtualized architectures update the
 * cpu core maps. It is supposed to return 1 if the topology changed
 * or 0 if it stayed the same.
 */
int __attribute__((weak)) arch_update_cpu_topology(void)
8971
{
8972
	return 0;
8973 8974
}

8975
/*
I
Ingo Molnar 已提交
8976
 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
P
Paul Jackson 已提交
8977 8978
 * For now this just excludes isolated cpus, but could be used to
 * exclude other special cases in the future.
8979
 */
8980
static int arch_init_sched_domains(const struct cpumask *cpu_map)
8981
{
8982 8983
	int err;

8984
	arch_update_cpu_topology();
P
Paul Jackson 已提交
8985
	ndoms_cur = 1;
8986
	doms_cur = kmalloc(cpumask_size(), GFP_KERNEL);
P
Paul Jackson 已提交
8987
	if (!doms_cur)
8988
		doms_cur = fallback_doms;
8989
	cpumask_andnot(doms_cur, cpu_map, cpu_isolated_map);
8990
	dattr_cur = NULL;
8991
	err = build_sched_domains(doms_cur);
8992
	register_sched_domain_sysctl();
8993 8994

	return err;
8995 8996
}

8997 8998
static void arch_destroy_sched_domains(const struct cpumask *cpu_map,
				       struct cpumask *tmpmask)
L
Linus Torvalds 已提交
8999
{
9000
	free_sched_groups(cpu_map, tmpmask);
9001
}
L
Linus Torvalds 已提交
9002

9003 9004 9005 9006
/*
 * Detach sched domains from a group of cpus specified in cpu_map
 * These cpus will now be attached to the NULL domain
 */
9007
static void detach_destroy_domains(const struct cpumask *cpu_map)
9008
{
9009 9010
	/* Save because hotplug lock held. */
	static DECLARE_BITMAP(tmpmask, CONFIG_NR_CPUS);
9011 9012
	int i;

9013
	for_each_cpu(i, cpu_map)
G
Gregory Haskins 已提交
9014
		cpu_attach_domain(NULL, &def_root_domain, i);
9015
	synchronize_sched();
9016
	arch_destroy_sched_domains(cpu_map, to_cpumask(tmpmask));
9017 9018
}

9019 9020 9021 9022 9023 9024 9025 9026 9027 9028 9029 9030 9031 9032 9033 9034
/* handle null as "default" */
static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
			struct sched_domain_attr *new, int idx_new)
{
	struct sched_domain_attr tmp;

	/* fast path */
	if (!new && !cur)
		return 1;

	tmp = SD_ATTR_INIT;
	return !memcmp(cur ? (cur + idx_cur) : &tmp,
			new ? (new + idx_new) : &tmp,
			sizeof(struct sched_domain_attr));
}

P
Paul Jackson 已提交
9035 9036
/*
 * Partition sched domains as specified by the 'ndoms_new'
I
Ingo Molnar 已提交
9037
 * cpumasks in the array doms_new[] of cpumasks. This compares
P
Paul Jackson 已提交
9038 9039 9040
 * doms_new[] to the current sched domain partitioning, doms_cur[].
 * It destroys each deleted domain and builds each new domain.
 *
9041
 * 'doms_new' is an array of cpumask's of length 'ndoms_new'.
I
Ingo Molnar 已提交
9042 9043 9044
 * The masks don't intersect (don't overlap.) We should setup one
 * sched domain for each mask. CPUs not in any of the cpumasks will
 * not be load balanced. If the same cpumask appears both in the
P
Paul Jackson 已提交
9045 9046 9047
 * current 'doms_cur' domains and in the new 'doms_new', we can leave
 * it as it is.
 *
I
Ingo Molnar 已提交
9048 9049
 * The passed in 'doms_new' should be kmalloc'd. This routine takes
 * ownership of it and will kfree it when done with it. If the caller
9050 9051 9052 9053
 * failed the kmalloc call, then it can pass in doms_new == NULL &&
 * ndoms_new == 1, and partition_sched_domains() will fallback to
 * the single partition 'fallback_doms', it also forces the domains
 * to be rebuilt.
P
Paul Jackson 已提交
9054
 *
9055
 * If doms_new == NULL it will be replaced with cpu_online_mask.
9056 9057
 * ndoms_new == 0 is a special case for destroying existing domains,
 * and it will not create the default domain.
9058
 *
P
Paul Jackson 已提交
9059 9060
 * Call with hotplug lock held
 */
9061 9062
/* FIXME: Change to struct cpumask *doms_new[] */
void partition_sched_domains(int ndoms_new, struct cpumask *doms_new,
9063
			     struct sched_domain_attr *dattr_new)
P
Paul Jackson 已提交
9064
{
9065
	int i, j, n;
9066
	int new_topology;
P
Paul Jackson 已提交
9067

9068
	mutex_lock(&sched_domains_mutex);
9069

9070 9071 9072
	/* always unregister in case we don't destroy any domains */
	unregister_sched_domain_sysctl();

9073 9074 9075
	/* Let architecture update cpu core mappings. */
	new_topology = arch_update_cpu_topology();

9076
	n = doms_new ? ndoms_new : 0;
P
Paul Jackson 已提交
9077 9078 9079

	/* Destroy deleted domains */
	for (i = 0; i < ndoms_cur; i++) {
9080
		for (j = 0; j < n && !new_topology; j++) {
9081
			if (cpumask_equal(&doms_cur[i], &doms_new[j])
9082
			    && dattrs_equal(dattr_cur, i, dattr_new, j))
P
Paul Jackson 已提交
9083 9084 9085 9086 9087 9088 9089 9090
				goto match1;
		}
		/* no match - a current sched domain not in new doms_new[] */
		detach_destroy_domains(doms_cur + i);
match1:
		;
	}

9091 9092
	if (doms_new == NULL) {
		ndoms_cur = 0;
9093
		doms_new = fallback_doms;
9094
		cpumask_andnot(&doms_new[0], cpu_online_mask, cpu_isolated_map);
9095
		WARN_ON_ONCE(dattr_new);
9096 9097
	}

P
Paul Jackson 已提交
9098 9099
	/* Build new domains */
	for (i = 0; i < ndoms_new; i++) {
9100
		for (j = 0; j < ndoms_cur && !new_topology; j++) {
9101
			if (cpumask_equal(&doms_new[i], &doms_cur[j])
9102
			    && dattrs_equal(dattr_new, i, dattr_cur, j))
P
Paul Jackson 已提交
9103 9104 9105
				goto match2;
		}
		/* no match - add a new doms_new */
9106 9107
		__build_sched_domains(doms_new + i,
					dattr_new ? dattr_new + i : NULL);
P
Paul Jackson 已提交
9108 9109 9110 9111 9112
match2:
		;
	}

	/* Remember the new sched domains */
9113
	if (doms_cur != fallback_doms)
P
Paul Jackson 已提交
9114
		kfree(doms_cur);
9115
	kfree(dattr_cur);	/* kfree(NULL) is safe */
P
Paul Jackson 已提交
9116
	doms_cur = doms_new;
9117
	dattr_cur = dattr_new;
P
Paul Jackson 已提交
9118
	ndoms_cur = ndoms_new;
9119 9120

	register_sched_domain_sysctl();
9121

9122
	mutex_unlock(&sched_domains_mutex);
P
Paul Jackson 已提交
9123 9124
}

9125
#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
9126
static void arch_reinit_sched_domains(void)
9127
{
9128
	get_online_cpus();
9129 9130 9131 9132

	/* Destroy domains first to force the rebuild */
	partition_sched_domains(0, NULL, NULL);

9133
	rebuild_sched_domains();
9134
	put_online_cpus();
9135 9136 9137 9138
}

static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
{
9139
	unsigned int level = 0;
9140

9141 9142 9143 9144 9145 9146 9147 9148 9149 9150 9151
	if (sscanf(buf, "%u", &level) != 1)
		return -EINVAL;

	/*
	 * level is always be positive so don't check for
	 * level < POWERSAVINGS_BALANCE_NONE which is 0
	 * What happens on 0 or 1 byte write,
	 * need to check for count as well?
	 */

	if (level >= MAX_POWERSAVINGS_BALANCE_LEVELS)
9152 9153 9154
		return -EINVAL;

	if (smt)
9155
		sched_smt_power_savings = level;
9156
	else
9157
		sched_mc_power_savings = level;
9158

9159
	arch_reinit_sched_domains();
9160

9161
	return count;
9162 9163 9164
}

#ifdef CONFIG_SCHED_MC
9165 9166
static ssize_t sched_mc_power_savings_show(struct sysdev_class *class,
					   char *page)
9167 9168 9169
{
	return sprintf(page, "%u\n", sched_mc_power_savings);
}
9170
static ssize_t sched_mc_power_savings_store(struct sysdev_class *class,
9171
					    const char *buf, size_t count)
9172 9173 9174
{
	return sched_power_savings_store(buf, count, 0);
}
9175 9176 9177
static SYSDEV_CLASS_ATTR(sched_mc_power_savings, 0644,
			 sched_mc_power_savings_show,
			 sched_mc_power_savings_store);
9178 9179 9180
#endif

#ifdef CONFIG_SCHED_SMT
9181 9182
static ssize_t sched_smt_power_savings_show(struct sysdev_class *dev,
					    char *page)
9183 9184 9185
{
	return sprintf(page, "%u\n", sched_smt_power_savings);
}
9186
static ssize_t sched_smt_power_savings_store(struct sysdev_class *dev,
9187
					     const char *buf, size_t count)
9188 9189 9190
{
	return sched_power_savings_store(buf, count, 1);
}
9191 9192
static SYSDEV_CLASS_ATTR(sched_smt_power_savings, 0644,
		   sched_smt_power_savings_show,
A
Adrian Bunk 已提交
9193 9194 9195
		   sched_smt_power_savings_store);
#endif

9196
int __init sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
A
Adrian Bunk 已提交
9197 9198 9199 9200 9201 9202 9203 9204 9205 9206 9207 9208 9209 9210 9211
{
	int err = 0;

#ifdef CONFIG_SCHED_SMT
	if (smt_capable())
		err = sysfs_create_file(&cls->kset.kobj,
					&attr_sched_smt_power_savings.attr);
#endif
#ifdef CONFIG_SCHED_MC
	if (!err && mc_capable())
		err = sysfs_create_file(&cls->kset.kobj,
					&attr_sched_mc_power_savings.attr);
#endif
	return err;
}
9212
#endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
9213

9214
#ifndef CONFIG_CPUSETS
L
Linus Torvalds 已提交
9215
/*
9216 9217
 * Add online and remove offline CPUs from the scheduler domains.
 * When cpusets are enabled they take over this function.
L
Linus Torvalds 已提交
9218 9219 9220
 */
static int update_sched_domains(struct notifier_block *nfb,
				unsigned long action, void *hcpu)
9221 9222 9223 9224 9225 9226
{
	switch (action) {
	case CPU_ONLINE:
	case CPU_ONLINE_FROZEN:
	case CPU_DEAD:
	case CPU_DEAD_FROZEN:
9227
		partition_sched_domains(1, NULL, NULL);
9228 9229 9230 9231 9232 9233 9234 9235 9236 9237
		return NOTIFY_OK;

	default:
		return NOTIFY_DONE;
	}
}
#endif

static int update_runtime(struct notifier_block *nfb,
				unsigned long action, void *hcpu)
L
Linus Torvalds 已提交
9238
{
P
Peter Zijlstra 已提交
9239 9240
	int cpu = (int)(long)hcpu;

L
Linus Torvalds 已提交
9241 9242
	switch (action) {
	case CPU_DOWN_PREPARE:
9243
	case CPU_DOWN_PREPARE_FROZEN:
P
Peter Zijlstra 已提交
9244
		disable_runtime(cpu_rq(cpu));
L
Linus Torvalds 已提交
9245 9246 9247
		return NOTIFY_OK;

	case CPU_DOWN_FAILED:
9248
	case CPU_DOWN_FAILED_FROZEN:
L
Linus Torvalds 已提交
9249
	case CPU_ONLINE:
9250
	case CPU_ONLINE_FROZEN:
P
Peter Zijlstra 已提交
9251
		enable_runtime(cpu_rq(cpu));
9252 9253
		return NOTIFY_OK;

L
Linus Torvalds 已提交
9254 9255 9256 9257 9258 9259 9260
	default:
		return NOTIFY_DONE;
	}
}

void __init sched_init_smp(void)
{
9261 9262 9263
	cpumask_var_t non_isolated_cpus;

	alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
9264

9265 9266 9267 9268 9269
#if defined(CONFIG_NUMA)
	sched_group_nodes_bycpu = kzalloc(nr_cpu_ids * sizeof(void **),
								GFP_KERNEL);
	BUG_ON(sched_group_nodes_bycpu == NULL);
#endif
9270
	get_online_cpus();
9271
	mutex_lock(&sched_domains_mutex);
9272 9273 9274 9275
	arch_init_sched_domains(cpu_online_mask);
	cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
	if (cpumask_empty(non_isolated_cpus))
		cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
9276
	mutex_unlock(&sched_domains_mutex);
9277
	put_online_cpus();
9278 9279

#ifndef CONFIG_CPUSETS
L
Linus Torvalds 已提交
9280 9281
	/* XXX: Theoretical race here - CPU may be hotplugged now */
	hotcpu_notifier(update_sched_domains, 0);
9282 9283 9284 9285 9286
#endif

	/* RT runtime code needs to handle some hotplug events */
	hotcpu_notifier(update_runtime, 0);

9287
	init_hrtick();
9288 9289

	/* Move init over to a non-isolated CPU */
9290
	if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
9291
		BUG();
I
Ingo Molnar 已提交
9292
	sched_init_granularity();
9293
	free_cpumask_var(non_isolated_cpus);
9294 9295

	alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
9296
	init_sched_rt_class();
L
Linus Torvalds 已提交
9297 9298 9299 9300
}
#else
void __init sched_init_smp(void)
{
I
Ingo Molnar 已提交
9301
	sched_init_granularity();
L
Linus Torvalds 已提交
9302 9303 9304
}
#endif /* CONFIG_SMP */

9305 9306
const_debug unsigned int sysctl_timer_migration = 1;

L
Linus Torvalds 已提交
9307 9308 9309 9310 9311 9312 9313
int in_sched_functions(unsigned long addr)
{
	return in_lock_functions(addr) ||
		(addr >= (unsigned long)__sched_text_start
		&& addr < (unsigned long)__sched_text_end);
}

A
Alexey Dobriyan 已提交
9314
static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
I
Ingo Molnar 已提交
9315 9316
{
	cfs_rq->tasks_timeline = RB_ROOT;
9317
	INIT_LIST_HEAD(&cfs_rq->tasks);
I
Ingo Molnar 已提交
9318 9319 9320
#ifdef CONFIG_FAIR_GROUP_SCHED
	cfs_rq->rq = rq;
#endif
P
Peter Zijlstra 已提交
9321
	cfs_rq->min_vruntime = (u64)(-(1LL << 20));
I
Ingo Molnar 已提交
9322 9323
}

P
Peter Zijlstra 已提交
9324 9325 9326 9327 9328 9329 9330 9331 9332 9333 9334 9335 9336
static void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
{
	struct rt_prio_array *array;
	int i;

	array = &rt_rq->active;
	for (i = 0; i < MAX_RT_PRIO; i++) {
		INIT_LIST_HEAD(array->queue + i);
		__clear_bit(i, array->bitmap);
	}
	/* delimiter for bitsearch: */
	__set_bit(MAX_RT_PRIO, array->bitmap);

9337
#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
9338
	rt_rq->highest_prio.curr = MAX_RT_PRIO;
9339
#ifdef CONFIG_SMP
9340
	rt_rq->highest_prio.next = MAX_RT_PRIO;
P
Peter Zijlstra 已提交
9341 9342
#endif
#endif
P
Peter Zijlstra 已提交
9343 9344 9345
#ifdef CONFIG_SMP
	rt_rq->rt_nr_migratory = 0;
	rt_rq->overloaded = 0;
9346
	plist_head_init(&rt_rq->pushable_tasks, &rq->lock);
P
Peter Zijlstra 已提交
9347 9348 9349 9350
#endif

	rt_rq->rt_time = 0;
	rt_rq->rt_throttled = 0;
P
Peter Zijlstra 已提交
9351 9352
	rt_rq->rt_runtime = 0;
	spin_lock_init(&rt_rq->rt_runtime_lock);
P
Peter Zijlstra 已提交
9353

9354
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
9355
	rt_rq->rt_nr_boosted = 0;
P
Peter Zijlstra 已提交
9356 9357
	rt_rq->rq = rq;
#endif
P
Peter Zijlstra 已提交
9358 9359
}

P
Peter Zijlstra 已提交
9360
#ifdef CONFIG_FAIR_GROUP_SCHED
9361 9362 9363
static void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
				struct sched_entity *se, int cpu, int add,
				struct sched_entity *parent)
P
Peter Zijlstra 已提交
9364
{
9365
	struct rq *rq = cpu_rq(cpu);
P
Peter Zijlstra 已提交
9366 9367 9368 9369 9370 9371 9372
	tg->cfs_rq[cpu] = cfs_rq;
	init_cfs_rq(cfs_rq, rq);
	cfs_rq->tg = tg;
	if (add)
		list_add(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);

	tg->se[cpu] = se;
D
Dhaval Giani 已提交
9373 9374 9375 9376
	/* se could be NULL for init_task_group */
	if (!se)
		return;

9377 9378 9379 9380 9381
	if (!parent)
		se->cfs_rq = &rq->cfs;
	else
		se->cfs_rq = parent->my_q;

P
Peter Zijlstra 已提交
9382 9383
	se->my_q = cfs_rq;
	se->load.weight = tg->shares;
9384
	se->load.inv_weight = 0;
9385
	se->parent = parent;
P
Peter Zijlstra 已提交
9386
}
9387
#endif
P
Peter Zijlstra 已提交
9388

9389
#ifdef CONFIG_RT_GROUP_SCHED
9390 9391 9392
static void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
		struct sched_rt_entity *rt_se, int cpu, int add,
		struct sched_rt_entity *parent)
P
Peter Zijlstra 已提交
9393
{
9394 9395
	struct rq *rq = cpu_rq(cpu);

P
Peter Zijlstra 已提交
9396 9397 9398 9399
	tg->rt_rq[cpu] = rt_rq;
	init_rt_rq(rt_rq, rq);
	rt_rq->tg = tg;
	rt_rq->rt_se = rt_se;
P
Peter Zijlstra 已提交
9400
	rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
P
Peter Zijlstra 已提交
9401 9402 9403 9404
	if (add)
		list_add(&rt_rq->leaf_rt_rq_list, &rq->leaf_rt_rq_list);

	tg->rt_se[cpu] = rt_se;
D
Dhaval Giani 已提交
9405 9406 9407
	if (!rt_se)
		return;

9408 9409 9410 9411 9412
	if (!parent)
		rt_se->rt_rq = &rq->rt;
	else
		rt_se->rt_rq = parent->my_q;

P
Peter Zijlstra 已提交
9413
	rt_se->my_q = rt_rq;
9414
	rt_se->parent = parent;
P
Peter Zijlstra 已提交
9415 9416 9417 9418
	INIT_LIST_HEAD(&rt_se->run_list);
}
#endif

L
Linus Torvalds 已提交
9419 9420
void __init sched_init(void)
{
I
Ingo Molnar 已提交
9421
	int i, j;
9422 9423 9424 9425 9426 9427 9428
	unsigned long alloc_size = 0, ptr;

#ifdef CONFIG_FAIR_GROUP_SCHED
	alloc_size += 2 * nr_cpu_ids * sizeof(void **);
#endif
#ifdef CONFIG_RT_GROUP_SCHED
	alloc_size += 2 * nr_cpu_ids * sizeof(void **);
9429 9430 9431
#endif
#ifdef CONFIG_USER_SCHED
	alloc_size *= 2;
9432 9433
#endif
#ifdef CONFIG_CPUMASK_OFFSTACK
9434
	alloc_size += num_possible_cpus() * cpumask_size();
9435 9436 9437 9438 9439 9440
#endif
	/*
	 * As sched_init() is called before page_alloc is setup,
	 * we use alloc_bootmem().
	 */
	if (alloc_size) {
9441
		ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
9442 9443 9444 9445 9446 9447 9448

#ifdef CONFIG_FAIR_GROUP_SCHED
		init_task_group.se = (struct sched_entity **)ptr;
		ptr += nr_cpu_ids * sizeof(void **);

		init_task_group.cfs_rq = (struct cfs_rq **)ptr;
		ptr += nr_cpu_ids * sizeof(void **);
9449 9450 9451 9452 9453 9454 9455

#ifdef CONFIG_USER_SCHED
		root_task_group.se = (struct sched_entity **)ptr;
		ptr += nr_cpu_ids * sizeof(void **);

		root_task_group.cfs_rq = (struct cfs_rq **)ptr;
		ptr += nr_cpu_ids * sizeof(void **);
9456 9457
#endif /* CONFIG_USER_SCHED */
#endif /* CONFIG_FAIR_GROUP_SCHED */
9458 9459 9460 9461 9462
#ifdef CONFIG_RT_GROUP_SCHED
		init_task_group.rt_se = (struct sched_rt_entity **)ptr;
		ptr += nr_cpu_ids * sizeof(void **);

		init_task_group.rt_rq = (struct rt_rq **)ptr;
9463 9464 9465 9466 9467 9468 9469 9470
		ptr += nr_cpu_ids * sizeof(void **);

#ifdef CONFIG_USER_SCHED
		root_task_group.rt_se = (struct sched_rt_entity **)ptr;
		ptr += nr_cpu_ids * sizeof(void **);

		root_task_group.rt_rq = (struct rt_rq **)ptr;
		ptr += nr_cpu_ids * sizeof(void **);
9471 9472
#endif /* CONFIG_USER_SCHED */
#endif /* CONFIG_RT_GROUP_SCHED */
9473 9474 9475 9476 9477 9478
#ifdef CONFIG_CPUMASK_OFFSTACK
		for_each_possible_cpu(i) {
			per_cpu(load_balance_tmpmask, i) = (void *)ptr;
			ptr += cpumask_size();
		}
#endif /* CONFIG_CPUMASK_OFFSTACK */
9479
	}
I
Ingo Molnar 已提交
9480

G
Gregory Haskins 已提交
9481 9482 9483 9484
#ifdef CONFIG_SMP
	init_defrootdomain();
#endif

9485 9486 9487 9488 9489 9490
	init_rt_bandwidth(&def_rt_bandwidth,
			global_rt_period(), global_rt_runtime());

#ifdef CONFIG_RT_GROUP_SCHED
	init_rt_bandwidth(&init_task_group.rt_bandwidth,
			global_rt_period(), global_rt_runtime());
9491 9492 9493
#ifdef CONFIG_USER_SCHED
	init_rt_bandwidth(&root_task_group.rt_bandwidth,
			global_rt_period(), RUNTIME_INF);
9494 9495
#endif /* CONFIG_USER_SCHED */
#endif /* CONFIG_RT_GROUP_SCHED */
9496

9497
#ifdef CONFIG_GROUP_SCHED
P
Peter Zijlstra 已提交
9498
	list_add(&init_task_group.list, &task_groups);
P
Peter Zijlstra 已提交
9499 9500 9501 9502 9503 9504
	INIT_LIST_HEAD(&init_task_group.children);

#ifdef CONFIG_USER_SCHED
	INIT_LIST_HEAD(&root_task_group.children);
	init_task_group.parent = &root_task_group;
	list_add(&init_task_group.siblings, &root_task_group.children);
9505 9506
#endif /* CONFIG_USER_SCHED */
#endif /* CONFIG_GROUP_SCHED */
P
Peter Zijlstra 已提交
9507

9508
	for_each_possible_cpu(i) {
9509
		struct rq *rq;
L
Linus Torvalds 已提交
9510 9511 9512

		rq = cpu_rq(i);
		spin_lock_init(&rq->lock);
N
Nick Piggin 已提交
9513
		rq->nr_running = 0;
9514 9515
		rq->calc_load_active = 0;
		rq->calc_load_update = jiffies + LOAD_FREQ;
I
Ingo Molnar 已提交
9516
		init_cfs_rq(&rq->cfs, rq);
P
Peter Zijlstra 已提交
9517
		init_rt_rq(&rq->rt, rq);
I
Ingo Molnar 已提交
9518
#ifdef CONFIG_FAIR_GROUP_SCHED
9519
		init_task_group.shares = init_task_group_load;
P
Peter Zijlstra 已提交
9520
		INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
D
Dhaval Giani 已提交
9521 9522 9523 9524 9525 9526 9527 9528 9529 9530 9531 9532 9533 9534 9535
#ifdef CONFIG_CGROUP_SCHED
		/*
		 * How much cpu bandwidth does init_task_group get?
		 *
		 * In case of task-groups formed thr' the cgroup filesystem, it
		 * gets 100% of the cpu resources in the system. This overall
		 * system cpu resource is divided among the tasks of
		 * init_task_group and its child task-groups in a fair manner,
		 * based on each entity's (task or task-group's) weight
		 * (se->load.weight).
		 *
		 * In other words, if init_task_group has 10 tasks of weight
		 * 1024) and two child groups A0 and A1 (of weight 1024 each),
		 * then A0's share of the cpu resource is:
		 *
9536
		 *	A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
D
Dhaval Giani 已提交
9537 9538 9539 9540
		 *
		 * We achieve this by letting init_task_group's tasks sit
		 * directly in rq->cfs (i.e init_task_group->se[] = NULL).
		 */
9541
		init_tg_cfs_entry(&init_task_group, &rq->cfs, NULL, i, 1, NULL);
D
Dhaval Giani 已提交
9542
#elif defined CONFIG_USER_SCHED
9543 9544
		root_task_group.shares = NICE_0_LOAD;
		init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, 0, NULL);
D
Dhaval Giani 已提交
9545 9546 9547 9548 9549 9550 9551 9552
		/*
		 * In case of task-groups formed thr' the user id of tasks,
		 * init_task_group represents tasks belonging to root user.
		 * Hence it forms a sibling of all subsequent groups formed.
		 * In this case, init_task_group gets only a fraction of overall
		 * system cpu resource, based on the weight assigned to root
		 * user's cpu share (INIT_TASK_GROUP_LOAD). This is accomplished
		 * by letting tasks of init_task_group sit in a separate cfs_rq
9553
		 * (init_tg_cfs_rq) and having one entity represent this group of
D
Dhaval Giani 已提交
9554 9555
		 * tasks in rq->cfs (i.e init_task_group->se[] != NULL).
		 */
9556
		init_tg_cfs_entry(&init_task_group,
9557
				&per_cpu(init_tg_cfs_rq, i),
9558 9559
				&per_cpu(init_sched_entity, i), i, 1,
				root_task_group.se[i]);
P
Peter Zijlstra 已提交
9560

9561
#endif
D
Dhaval Giani 已提交
9562 9563 9564
#endif /* CONFIG_FAIR_GROUP_SCHED */

		rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
9565
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
9566
		INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
D
Dhaval Giani 已提交
9567
#ifdef CONFIG_CGROUP_SCHED
9568
		init_tg_rt_entry(&init_task_group, &rq->rt, NULL, i, 1, NULL);
D
Dhaval Giani 已提交
9569
#elif defined CONFIG_USER_SCHED
9570
		init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, 0, NULL);
9571
		init_tg_rt_entry(&init_task_group,
P
Peter Zijlstra 已提交
9572
				&per_cpu(init_rt_rq, i),
9573 9574
				&per_cpu(init_sched_rt_entity, i), i, 1,
				root_task_group.rt_se[i]);
D
Dhaval Giani 已提交
9575
#endif
I
Ingo Molnar 已提交
9576
#endif
L
Linus Torvalds 已提交
9577

I
Ingo Molnar 已提交
9578 9579
		for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
			rq->cpu_load[j] = 0;
L
Linus Torvalds 已提交
9580
#ifdef CONFIG_SMP
N
Nick Piggin 已提交
9581
		rq->sd = NULL;
G
Gregory Haskins 已提交
9582
		rq->rd = NULL;
9583
		rq->post_schedule = 0;
L
Linus Torvalds 已提交
9584
		rq->active_balance = 0;
I
Ingo Molnar 已提交
9585
		rq->next_balance = jiffies;
L
Linus Torvalds 已提交
9586
		rq->push_cpu = 0;
9587
		rq->cpu = i;
9588
		rq->online = 0;
L
Linus Torvalds 已提交
9589 9590
		rq->migration_thread = NULL;
		INIT_LIST_HEAD(&rq->migration_queue);
9591
		rq_attach_root(rq, &def_root_domain);
L
Linus Torvalds 已提交
9592
#endif
P
Peter Zijlstra 已提交
9593
		init_rq_hrtick(rq);
L
Linus Torvalds 已提交
9594 9595 9596
		atomic_set(&rq->nr_iowait, 0);
	}

9597
	set_load_weight(&init_task);
9598

9599 9600 9601 9602
#ifdef CONFIG_PREEMPT_NOTIFIERS
	INIT_HLIST_HEAD(&init_task.preempt_notifiers);
#endif

9603
#ifdef CONFIG_SMP
9604
	open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
9605 9606
#endif

9607 9608 9609 9610
#ifdef CONFIG_RT_MUTEXES
	plist_head_init(&init_task.pi_waiters, &init_task.pi_lock);
#endif

L
Linus Torvalds 已提交
9611 9612 9613 9614 9615 9616 9617 9618 9619 9620 9621 9622 9623
	/*
	 * The boot idle thread does lazy MMU switching as well:
	 */
	atomic_inc(&init_mm.mm_count);
	enter_lazy_tlb(&init_mm, current);

	/*
	 * Make us the idle thread. Technically, schedule() should not be
	 * called from this thread, however somewhere below it might be,
	 * but because we are the idle thread, we just pick up running again
	 * when this runqueue becomes "idle".
	 */
	init_idle(current, smp_processor_id());
9624 9625 9626

	calc_load_update = jiffies + LOAD_FREQ;

I
Ingo Molnar 已提交
9627 9628 9629 9630
	/*
	 * During early bootup we pretend to be a normal task:
	 */
	current->sched_class = &fair_sched_class;
9631

9632
	/* Allocate the nohz_cpu_mask if CONFIG_CPUMASK_OFFSTACK */
9633
	alloc_cpumask_var(&nohz_cpu_mask, GFP_NOWAIT);
9634
#ifdef CONFIG_SMP
9635
#ifdef CONFIG_NO_HZ
9636 9637
	alloc_cpumask_var(&nohz.cpu_mask, GFP_NOWAIT);
	alloc_cpumask_var(&nohz.ilb_grp_nohz_mask, GFP_NOWAIT);
9638
#endif
9639
	alloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
9640
#endif /* SMP */
9641

9642 9643
	perf_counter_init();

9644
	scheduler_running = 1;
L
Linus Torvalds 已提交
9645 9646 9647
}

#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
9648 9649 9650 9651 9652 9653 9654 9655
static inline int preempt_count_equals(int preempt_offset)
{
	int nested = preempt_count() & ~PREEMPT_ACTIVE;

	return (nested == PREEMPT_INATOMIC_BASE + preempt_offset);
}

void __might_sleep(char *file, int line, int preempt_offset)
L
Linus Torvalds 已提交
9656
{
9657
#ifdef in_atomic
L
Linus Torvalds 已提交
9658 9659
	static unsigned long prev_jiffy;	/* ratelimiting */

9660 9661
	if ((preempt_count_equals(preempt_offset) && !irqs_disabled()) ||
	    system_state != SYSTEM_RUNNING || oops_in_progress)
I
Ingo Molnar 已提交
9662 9663 9664 9665 9666 9667 9668 9669 9670 9671 9672 9673 9674 9675 9676 9677 9678
		return;
	if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
		return;
	prev_jiffy = jiffies;

	printk(KERN_ERR
		"BUG: sleeping function called from invalid context at %s:%d\n",
			file, line);
	printk(KERN_ERR
		"in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
			in_atomic(), irqs_disabled(),
			current->pid, current->comm);

	debug_show_held_locks(current);
	if (irqs_disabled())
		print_irqtrace_events(current);
	dump_stack();
L
Linus Torvalds 已提交
9679 9680 9681 9682 9683 9684
#endif
}
EXPORT_SYMBOL(__might_sleep);
#endif

#ifdef CONFIG_MAGIC_SYSRQ
9685 9686 9687
static void normalize_task(struct rq *rq, struct task_struct *p)
{
	int on_rq;
9688

9689 9690 9691 9692 9693 9694 9695 9696 9697 9698 9699
	update_rq_clock(rq);
	on_rq = p->se.on_rq;
	if (on_rq)
		deactivate_task(rq, p, 0);
	__setscheduler(rq, p, SCHED_NORMAL, 0);
	if (on_rq) {
		activate_task(rq, p, 0);
		resched_task(rq->curr);
	}
}

L
Linus Torvalds 已提交
9700 9701
void normalize_rt_tasks(void)
{
9702
	struct task_struct *g, *p;
L
Linus Torvalds 已提交
9703
	unsigned long flags;
9704
	struct rq *rq;
L
Linus Torvalds 已提交
9705

9706
	read_lock_irqsave(&tasklist_lock, flags);
9707
	do_each_thread(g, p) {
9708 9709 9710 9711 9712 9713
		/*
		 * Only normalize user tasks:
		 */
		if (!p->mm)
			continue;

I
Ingo Molnar 已提交
9714 9715
		p->se.exec_start		= 0;
#ifdef CONFIG_SCHEDSTATS
I
Ingo Molnar 已提交
9716 9717 9718
		p->se.wait_start		= 0;
		p->se.sleep_start		= 0;
		p->se.block_start		= 0;
I
Ingo Molnar 已提交
9719
#endif
I
Ingo Molnar 已提交
9720 9721 9722 9723 9724 9725 9726 9727

		if (!rt_task(p)) {
			/*
			 * Renice negative nice level userspace
			 * tasks back to 0:
			 */
			if (TASK_NICE(p) < 0 && p->mm)
				set_user_nice(p, 0);
L
Linus Torvalds 已提交
9728
			continue;
I
Ingo Molnar 已提交
9729
		}
L
Linus Torvalds 已提交
9730

9731
		spin_lock(&p->pi_lock);
9732
		rq = __task_rq_lock(p);
L
Linus Torvalds 已提交
9733

9734
		normalize_task(rq, p);
9735

9736
		__task_rq_unlock(rq);
9737
		spin_unlock(&p->pi_lock);
9738 9739
	} while_each_thread(g, p);

9740
	read_unlock_irqrestore(&tasklist_lock, flags);
L
Linus Torvalds 已提交
9741 9742 9743
}

#endif /* CONFIG_MAGIC_SYSRQ */
9744 9745 9746 9747 9748 9749 9750 9751 9752 9753 9754 9755 9756 9757 9758 9759 9760 9761

#ifdef CONFIG_IA64
/*
 * These functions are only useful for the IA64 MCA handling.
 *
 * They can only be called when the whole system has been
 * stopped - every CPU needs to be quiescent, and no scheduling
 * activity can take place. Using them for anything else would
 * be a serious bug, and as a result, they aren't even visible
 * under any other configuration.
 */

/**
 * curr_task - return the current task for a given cpu.
 * @cpu: the processor in question.
 *
 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
 */
9762
struct task_struct *curr_task(int cpu)
9763 9764 9765 9766 9767 9768 9769 9770 9771 9772
{
	return cpu_curr(cpu);
}

/**
 * set_curr_task - set the current task for a given cpu.
 * @cpu: the processor in question.
 * @p: the task pointer to set.
 *
 * Description: This function must only be used when non-maskable interrupts
I
Ingo Molnar 已提交
9773 9774
 * are serviced on a separate stack. It allows the architecture to switch the
 * notion of the current task on a cpu in a non-blocking manner. This function
9775 9776 9777 9778 9779 9780 9781
 * must be called with all CPU's synchronized, and interrupts disabled, the
 * and caller must save the original value of the current task (see
 * curr_task() above) and restore that value before reenabling interrupts and
 * re-starting the system.
 *
 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
 */
9782
void set_curr_task(int cpu, struct task_struct *p)
9783 9784 9785 9786 9787
{
	cpu_curr(cpu) = p;
}

#endif
S
Srivatsa Vaddagiri 已提交
9788

9789 9790
#ifdef CONFIG_FAIR_GROUP_SCHED
static void free_fair_sched_group(struct task_group *tg)
P
Peter Zijlstra 已提交
9791 9792 9793 9794 9795 9796 9797 9798 9799 9800 9801 9802 9803 9804
{
	int i;

	for_each_possible_cpu(i) {
		if (tg->cfs_rq)
			kfree(tg->cfs_rq[i]);
		if (tg->se)
			kfree(tg->se[i]);
	}

	kfree(tg->cfs_rq);
	kfree(tg->se);
}

9805 9806
static
int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
S
Srivatsa Vaddagiri 已提交
9807 9808
{
	struct cfs_rq *cfs_rq;
9809
	struct sched_entity *se;
9810
	struct rq *rq;
S
Srivatsa Vaddagiri 已提交
9811 9812
	int i;

9813
	tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
S
Srivatsa Vaddagiri 已提交
9814 9815
	if (!tg->cfs_rq)
		goto err;
9816
	tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
S
Srivatsa Vaddagiri 已提交
9817 9818
	if (!tg->se)
		goto err;
9819 9820

	tg->shares = NICE_0_LOAD;
S
Srivatsa Vaddagiri 已提交
9821 9822

	for_each_possible_cpu(i) {
9823
		rq = cpu_rq(i);
S
Srivatsa Vaddagiri 已提交
9824

9825 9826
		cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
				      GFP_KERNEL, cpu_to_node(i));
S
Srivatsa Vaddagiri 已提交
9827 9828 9829
		if (!cfs_rq)
			goto err;

9830 9831
		se = kzalloc_node(sizeof(struct sched_entity),
				  GFP_KERNEL, cpu_to_node(i));
S
Srivatsa Vaddagiri 已提交
9832 9833 9834
		if (!se)
			goto err;

9835
		init_tg_cfs_entry(tg, cfs_rq, se, i, 0, parent->se[i]);
9836 9837 9838 9839 9840 9841 9842 9843 9844 9845 9846 9847 9848 9849 9850 9851 9852 9853
	}

	return 1;

 err:
	return 0;
}

static inline void register_fair_sched_group(struct task_group *tg, int cpu)
{
	list_add_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list,
			&cpu_rq(cpu)->leaf_cfs_rq_list);
}

static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
{
	list_del_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list);
}
9854
#else /* !CONFG_FAIR_GROUP_SCHED */
9855 9856 9857 9858
static inline void free_fair_sched_group(struct task_group *tg)
{
}

9859 9860
static inline
int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
9861 9862 9863 9864 9865 9866 9867 9868 9869 9870 9871
{
	return 1;
}

static inline void register_fair_sched_group(struct task_group *tg, int cpu)
{
}

static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
{
}
9872
#endif /* CONFIG_FAIR_GROUP_SCHED */
9873 9874

#ifdef CONFIG_RT_GROUP_SCHED
9875 9876 9877 9878
static void free_rt_sched_group(struct task_group *tg)
{
	int i;

9879 9880
	destroy_rt_bandwidth(&tg->rt_bandwidth);

9881 9882 9883 9884 9885 9886 9887 9888 9889 9890 9891
	for_each_possible_cpu(i) {
		if (tg->rt_rq)
			kfree(tg->rt_rq[i]);
		if (tg->rt_se)
			kfree(tg->rt_se[i]);
	}

	kfree(tg->rt_rq);
	kfree(tg->rt_se);
}

9892 9893
static
int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
9894 9895
{
	struct rt_rq *rt_rq;
9896
	struct sched_rt_entity *rt_se;
9897 9898 9899
	struct rq *rq;
	int i;

9900
	tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
9901 9902
	if (!tg->rt_rq)
		goto err;
9903
	tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
9904 9905 9906
	if (!tg->rt_se)
		goto err;

9907 9908
	init_rt_bandwidth(&tg->rt_bandwidth,
			ktime_to_ns(def_rt_bandwidth.rt_period), 0);
9909 9910 9911 9912

	for_each_possible_cpu(i) {
		rq = cpu_rq(i);

9913 9914
		rt_rq = kzalloc_node(sizeof(struct rt_rq),
				     GFP_KERNEL, cpu_to_node(i));
P
Peter Zijlstra 已提交
9915 9916
		if (!rt_rq)
			goto err;
S
Srivatsa Vaddagiri 已提交
9917

9918 9919
		rt_se = kzalloc_node(sizeof(struct sched_rt_entity),
				     GFP_KERNEL, cpu_to_node(i));
P
Peter Zijlstra 已提交
9920 9921
		if (!rt_se)
			goto err;
S
Srivatsa Vaddagiri 已提交
9922

9923
		init_tg_rt_entry(tg, rt_rq, rt_se, i, 0, parent->rt_se[i]);
S
Srivatsa Vaddagiri 已提交
9924 9925
	}

9926 9927 9928 9929 9930 9931 9932 9933 9934 9935 9936 9937 9938 9939 9940 9941
	return 1;

 err:
	return 0;
}

static inline void register_rt_sched_group(struct task_group *tg, int cpu)
{
	list_add_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list,
			&cpu_rq(cpu)->leaf_rt_rq_list);
}

static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
{
	list_del_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list);
}
9942
#else /* !CONFIG_RT_GROUP_SCHED */
9943 9944 9945 9946
static inline void free_rt_sched_group(struct task_group *tg)
{
}

9947 9948
static inline
int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
9949 9950 9951 9952 9953 9954 9955 9956 9957 9958 9959
{
	return 1;
}

static inline void register_rt_sched_group(struct task_group *tg, int cpu)
{
}

static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
{
}
9960
#endif /* CONFIG_RT_GROUP_SCHED */
9961

9962
#ifdef CONFIG_GROUP_SCHED
9963 9964 9965 9966 9967 9968 9969 9970
static void free_sched_group(struct task_group *tg)
{
	free_fair_sched_group(tg);
	free_rt_sched_group(tg);
	kfree(tg);
}

/* allocate runqueue etc for a new task group */
9971
struct task_group *sched_create_group(struct task_group *parent)
9972 9973 9974 9975 9976 9977 9978 9979 9980
{
	struct task_group *tg;
	unsigned long flags;
	int i;

	tg = kzalloc(sizeof(*tg), GFP_KERNEL);
	if (!tg)
		return ERR_PTR(-ENOMEM);

9981
	if (!alloc_fair_sched_group(tg, parent))
9982 9983
		goto err;

9984
	if (!alloc_rt_sched_group(tg, parent))
9985 9986
		goto err;

9987
	spin_lock_irqsave(&task_group_lock, flags);
9988
	for_each_possible_cpu(i) {
9989 9990
		register_fair_sched_group(tg, i);
		register_rt_sched_group(tg, i);
9991
	}
P
Peter Zijlstra 已提交
9992
	list_add_rcu(&tg->list, &task_groups);
P
Peter Zijlstra 已提交
9993 9994 9995 9996 9997

	WARN_ON(!parent); /* root should already exist */

	tg->parent = parent;
	INIT_LIST_HEAD(&tg->children);
9998
	list_add_rcu(&tg->siblings, &parent->children);
9999
	spin_unlock_irqrestore(&task_group_lock, flags);
S
Srivatsa Vaddagiri 已提交
10000

10001
	return tg;
S
Srivatsa Vaddagiri 已提交
10002 10003

err:
P
Peter Zijlstra 已提交
10004
	free_sched_group(tg);
S
Srivatsa Vaddagiri 已提交
10005 10006 10007
	return ERR_PTR(-ENOMEM);
}

10008
/* rcu callback to free various structures associated with a task group */
P
Peter Zijlstra 已提交
10009
static void free_sched_group_rcu(struct rcu_head *rhp)
S
Srivatsa Vaddagiri 已提交
10010 10011
{
	/* now it should be safe to free those cfs_rqs */
P
Peter Zijlstra 已提交
10012
	free_sched_group(container_of(rhp, struct task_group, rcu));
S
Srivatsa Vaddagiri 已提交
10013 10014
}

10015
/* Destroy runqueue etc associated with a task group */
10016
void sched_destroy_group(struct task_group *tg)
S
Srivatsa Vaddagiri 已提交
10017
{
10018
	unsigned long flags;
10019
	int i;
S
Srivatsa Vaddagiri 已提交
10020

10021
	spin_lock_irqsave(&task_group_lock, flags);
10022
	for_each_possible_cpu(i) {
10023 10024
		unregister_fair_sched_group(tg, i);
		unregister_rt_sched_group(tg, i);
10025
	}
P
Peter Zijlstra 已提交
10026
	list_del_rcu(&tg->list);
P
Peter Zijlstra 已提交
10027
	list_del_rcu(&tg->siblings);
10028
	spin_unlock_irqrestore(&task_group_lock, flags);
10029 10030

	/* wait for possible concurrent references to cfs_rqs complete */
P
Peter Zijlstra 已提交
10031
	call_rcu(&tg->rcu, free_sched_group_rcu);
S
Srivatsa Vaddagiri 已提交
10032 10033
}

10034
/* change task's runqueue when it moves between groups.
I
Ingo Molnar 已提交
10035 10036 10037
 *	The caller of this function should have put the task in its new group
 *	by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
 *	reflect its new group.
10038 10039
 */
void sched_move_task(struct task_struct *tsk)
S
Srivatsa Vaddagiri 已提交
10040 10041 10042 10043 10044 10045 10046 10047 10048
{
	int on_rq, running;
	unsigned long flags;
	struct rq *rq;

	rq = task_rq_lock(tsk, &flags);

	update_rq_clock(rq);

10049
	running = task_current(rq, tsk);
S
Srivatsa Vaddagiri 已提交
10050 10051
	on_rq = tsk->se.on_rq;

10052
	if (on_rq)
S
Srivatsa Vaddagiri 已提交
10053
		dequeue_task(rq, tsk, 0);
10054 10055
	if (unlikely(running))
		tsk->sched_class->put_prev_task(rq, tsk);
S
Srivatsa Vaddagiri 已提交
10056

P
Peter Zijlstra 已提交
10057
	set_task_rq(tsk, task_cpu(tsk));
S
Srivatsa Vaddagiri 已提交
10058

P
Peter Zijlstra 已提交
10059 10060 10061 10062 10063
#ifdef CONFIG_FAIR_GROUP_SCHED
	if (tsk->sched_class->moved_group)
		tsk->sched_class->moved_group(tsk);
#endif

10064 10065 10066
	if (unlikely(running))
		tsk->sched_class->set_curr_task(rq);
	if (on_rq)
10067
		enqueue_task(rq, tsk, 0);
S
Srivatsa Vaddagiri 已提交
10068 10069 10070

	task_rq_unlock(rq, &flags);
}
10071
#endif /* CONFIG_GROUP_SCHED */
S
Srivatsa Vaddagiri 已提交
10072

10073
#ifdef CONFIG_FAIR_GROUP_SCHED
10074
static void __set_se_shares(struct sched_entity *se, unsigned long shares)
S
Srivatsa Vaddagiri 已提交
10075 10076 10077 10078 10079
{
	struct cfs_rq *cfs_rq = se->cfs_rq;
	int on_rq;

	on_rq = se->on_rq;
10080
	if (on_rq)
S
Srivatsa Vaddagiri 已提交
10081 10082 10083
		dequeue_entity(cfs_rq, se, 0);

	se->load.weight = shares;
10084
	se->load.inv_weight = 0;
S
Srivatsa Vaddagiri 已提交
10085

10086
	if (on_rq)
S
Srivatsa Vaddagiri 已提交
10087
		enqueue_entity(cfs_rq, se, 0);
10088
}
10089

10090 10091 10092 10093 10094 10095 10096 10097 10098
static void set_se_shares(struct sched_entity *se, unsigned long shares)
{
	struct cfs_rq *cfs_rq = se->cfs_rq;
	struct rq *rq = cfs_rq->rq;
	unsigned long flags;

	spin_lock_irqsave(&rq->lock, flags);
	__set_se_shares(se, shares);
	spin_unlock_irqrestore(&rq->lock, flags);
S
Srivatsa Vaddagiri 已提交
10099 10100
}

10101 10102
static DEFINE_MUTEX(shares_mutex);

10103
int sched_group_set_shares(struct task_group *tg, unsigned long shares)
S
Srivatsa Vaddagiri 已提交
10104 10105
{
	int i;
10106
	unsigned long flags;
10107

10108 10109 10110 10111 10112 10113
	/*
	 * We can't change the weight of the root cgroup.
	 */
	if (!tg->se[0])
		return -EINVAL;

10114 10115
	if (shares < MIN_SHARES)
		shares = MIN_SHARES;
10116 10117
	else if (shares > MAX_SHARES)
		shares = MAX_SHARES;
10118

10119
	mutex_lock(&shares_mutex);
10120
	if (tg->shares == shares)
10121
		goto done;
S
Srivatsa Vaddagiri 已提交
10122

10123
	spin_lock_irqsave(&task_group_lock, flags);
10124 10125
	for_each_possible_cpu(i)
		unregister_fair_sched_group(tg, i);
P
Peter Zijlstra 已提交
10126
	list_del_rcu(&tg->siblings);
10127
	spin_unlock_irqrestore(&task_group_lock, flags);
10128 10129 10130 10131 10132 10133 10134 10135

	/* wait for any ongoing reference to this group to finish */
	synchronize_sched();

	/*
	 * Now we are free to modify the group's share on each cpu
	 * w/o tripping rebalance_share or load_balance_fair.
	 */
10136
	tg->shares = shares;
10137 10138 10139 10140 10141
	for_each_possible_cpu(i) {
		/*
		 * force a rebalance
		 */
		cfs_rq_set_shares(tg->cfs_rq[i], 0);
10142
		set_se_shares(tg->se[i], shares);
10143
	}
S
Srivatsa Vaddagiri 已提交
10144

10145 10146 10147 10148
	/*
	 * Enable load balance activity on this group, by inserting it back on
	 * each cpu's rq->leaf_cfs_rq_list.
	 */
10149
	spin_lock_irqsave(&task_group_lock, flags);
10150 10151
	for_each_possible_cpu(i)
		register_fair_sched_group(tg, i);
P
Peter Zijlstra 已提交
10152
	list_add_rcu(&tg->siblings, &tg->parent->children);
10153
	spin_unlock_irqrestore(&task_group_lock, flags);
10154
done:
10155
	mutex_unlock(&shares_mutex);
10156
	return 0;
S
Srivatsa Vaddagiri 已提交
10157 10158
}

10159 10160 10161 10162
unsigned long sched_group_shares(struct task_group *tg)
{
	return tg->shares;
}
10163
#endif
10164

10165
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
10166
/*
P
Peter Zijlstra 已提交
10167
 * Ensure that the real time constraints are schedulable.
P
Peter Zijlstra 已提交
10168
 */
P
Peter Zijlstra 已提交
10169 10170 10171 10172 10173
static DEFINE_MUTEX(rt_constraints_mutex);

static unsigned long to_ratio(u64 period, u64 runtime)
{
	if (runtime == RUNTIME_INF)
P
Peter Zijlstra 已提交
10174
		return 1ULL << 20;
P
Peter Zijlstra 已提交
10175

P
Peter Zijlstra 已提交
10176
	return div64_u64(runtime << 20, period);
P
Peter Zijlstra 已提交
10177 10178
}

P
Peter Zijlstra 已提交
10179 10180
/* Must be called with tasklist_lock held */
static inline int tg_has_rt_tasks(struct task_group *tg)
10181
{
P
Peter Zijlstra 已提交
10182
	struct task_struct *g, *p;
10183

P
Peter Zijlstra 已提交
10184 10185 10186 10187
	do_each_thread(g, p) {
		if (rt_task(p) && rt_rq_of_se(&p->rt)->tg == tg)
			return 1;
	} while_each_thread(g, p);
10188

P
Peter Zijlstra 已提交
10189 10190
	return 0;
}
10191

P
Peter Zijlstra 已提交
10192 10193 10194 10195 10196
struct rt_schedulable_data {
	struct task_group *tg;
	u64 rt_period;
	u64 rt_runtime;
};
10197

P
Peter Zijlstra 已提交
10198 10199 10200 10201 10202 10203
static int tg_schedulable(struct task_group *tg, void *data)
{
	struct rt_schedulable_data *d = data;
	struct task_group *child;
	unsigned long total, sum = 0;
	u64 period, runtime;
10204

P
Peter Zijlstra 已提交
10205 10206
	period = ktime_to_ns(tg->rt_bandwidth.rt_period);
	runtime = tg->rt_bandwidth.rt_runtime;
10207

P
Peter Zijlstra 已提交
10208 10209 10210
	if (tg == d->tg) {
		period = d->rt_period;
		runtime = d->rt_runtime;
10211 10212
	}

10213 10214 10215 10216 10217 10218 10219
#ifdef CONFIG_USER_SCHED
	if (tg == &root_task_group) {
		period = global_rt_period();
		runtime = global_rt_runtime();
	}
#endif

10220 10221 10222 10223 10224
	/*
	 * Cannot have more runtime than the period.
	 */
	if (runtime > period && runtime != RUNTIME_INF)
		return -EINVAL;
P
Peter Zijlstra 已提交
10225

10226 10227 10228
	/*
	 * Ensure we don't starve existing RT tasks.
	 */
P
Peter Zijlstra 已提交
10229 10230
	if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
		return -EBUSY;
P
Peter Zijlstra 已提交
10231

P
Peter Zijlstra 已提交
10232
	total = to_ratio(period, runtime);
P
Peter Zijlstra 已提交
10233

10234 10235 10236 10237 10238
	/*
	 * Nobody can have more than the global setting allows.
	 */
	if (total > to_ratio(global_rt_period(), global_rt_runtime()))
		return -EINVAL;
P
Peter Zijlstra 已提交
10239

10240 10241 10242
	/*
	 * The sum of our children's runtime should not exceed our own.
	 */
P
Peter Zijlstra 已提交
10243 10244 10245
	list_for_each_entry_rcu(child, &tg->children, siblings) {
		period = ktime_to_ns(child->rt_bandwidth.rt_period);
		runtime = child->rt_bandwidth.rt_runtime;
P
Peter Zijlstra 已提交
10246

P
Peter Zijlstra 已提交
10247 10248 10249 10250
		if (child == d->tg) {
			period = d->rt_period;
			runtime = d->rt_runtime;
		}
P
Peter Zijlstra 已提交
10251

P
Peter Zijlstra 已提交
10252
		sum += to_ratio(period, runtime);
P
Peter Zijlstra 已提交
10253
	}
P
Peter Zijlstra 已提交
10254

P
Peter Zijlstra 已提交
10255 10256 10257 10258
	if (sum > total)
		return -EINVAL;

	return 0;
P
Peter Zijlstra 已提交
10259 10260
}

P
Peter Zijlstra 已提交
10261
static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
10262
{
P
Peter Zijlstra 已提交
10263 10264 10265 10266 10267 10268 10269
	struct rt_schedulable_data data = {
		.tg = tg,
		.rt_period = period,
		.rt_runtime = runtime,
	};

	return walk_tg_tree(tg_schedulable, tg_nop, &data);
10270 10271
}

10272 10273
static int tg_set_bandwidth(struct task_group *tg,
		u64 rt_period, u64 rt_runtime)
P
Peter Zijlstra 已提交
10274
{
P
Peter Zijlstra 已提交
10275
	int i, err = 0;
P
Peter Zijlstra 已提交
10276 10277

	mutex_lock(&rt_constraints_mutex);
10278
	read_lock(&tasklist_lock);
P
Peter Zijlstra 已提交
10279 10280
	err = __rt_schedulable(tg, rt_period, rt_runtime);
	if (err)
P
Peter Zijlstra 已提交
10281
		goto unlock;
P
Peter Zijlstra 已提交
10282 10283

	spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
10284 10285
	tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
	tg->rt_bandwidth.rt_runtime = rt_runtime;
P
Peter Zijlstra 已提交
10286 10287 10288 10289 10290 10291 10292 10293 10294

	for_each_possible_cpu(i) {
		struct rt_rq *rt_rq = tg->rt_rq[i];

		spin_lock(&rt_rq->rt_runtime_lock);
		rt_rq->rt_runtime = rt_runtime;
		spin_unlock(&rt_rq->rt_runtime_lock);
	}
	spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
P
Peter Zijlstra 已提交
10295
 unlock:
10296
	read_unlock(&tasklist_lock);
P
Peter Zijlstra 已提交
10297 10298 10299
	mutex_unlock(&rt_constraints_mutex);

	return err;
P
Peter Zijlstra 已提交
10300 10301
}

10302 10303 10304 10305 10306 10307 10308 10309 10310 10311 10312 10313
int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
{
	u64 rt_runtime, rt_period;

	rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
	rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
	if (rt_runtime_us < 0)
		rt_runtime = RUNTIME_INF;

	return tg_set_bandwidth(tg, rt_period, rt_runtime);
}

P
Peter Zijlstra 已提交
10314 10315 10316 10317
long sched_group_rt_runtime(struct task_group *tg)
{
	u64 rt_runtime_us;

10318
	if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
P
Peter Zijlstra 已提交
10319 10320
		return -1;

10321
	rt_runtime_us = tg->rt_bandwidth.rt_runtime;
P
Peter Zijlstra 已提交
10322 10323 10324
	do_div(rt_runtime_us, NSEC_PER_USEC);
	return rt_runtime_us;
}
10325 10326 10327 10328 10329 10330 10331 10332

int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
{
	u64 rt_runtime, rt_period;

	rt_period = (u64)rt_period_us * NSEC_PER_USEC;
	rt_runtime = tg->rt_bandwidth.rt_runtime;

10333 10334 10335
	if (rt_period == 0)
		return -EINVAL;

10336 10337 10338 10339 10340 10341 10342 10343 10344 10345 10346 10347 10348 10349
	return tg_set_bandwidth(tg, rt_period, rt_runtime);
}

long sched_group_rt_period(struct task_group *tg)
{
	u64 rt_period_us;

	rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
	do_div(rt_period_us, NSEC_PER_USEC);
	return rt_period_us;
}

static int sched_rt_global_constraints(void)
{
10350
	u64 runtime, period;
10351 10352
	int ret = 0;

10353 10354 10355
	if (sysctl_sched_rt_period <= 0)
		return -EINVAL;

10356 10357 10358 10359 10360 10361 10362 10363
	runtime = global_rt_runtime();
	period = global_rt_period();

	/*
	 * Sanity check on the sysctl variables.
	 */
	if (runtime > period && runtime != RUNTIME_INF)
		return -EINVAL;
10364

10365
	mutex_lock(&rt_constraints_mutex);
P
Peter Zijlstra 已提交
10366
	read_lock(&tasklist_lock);
10367
	ret = __rt_schedulable(NULL, 0, 0);
P
Peter Zijlstra 已提交
10368
	read_unlock(&tasklist_lock);
10369 10370 10371 10372
	mutex_unlock(&rt_constraints_mutex);

	return ret;
}
10373 10374 10375 10376 10377 10378 10379 10380 10381 10382

int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
{
	/* Don't accept realtime tasks when there is no way for them to run */
	if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
		return 0;

	return 1;
}

10383
#else /* !CONFIG_RT_GROUP_SCHED */
10384 10385
static int sched_rt_global_constraints(void)
{
P
Peter Zijlstra 已提交
10386 10387 10388
	unsigned long flags;
	int i;

10389 10390 10391
	if (sysctl_sched_rt_period <= 0)
		return -EINVAL;

10392 10393 10394 10395 10396 10397 10398
	/*
	 * There's always some RT tasks in the root group
	 * -- migration, kstopmachine etc..
	 */
	if (sysctl_sched_rt_runtime == 0)
		return -EBUSY;

P
Peter Zijlstra 已提交
10399 10400 10401 10402 10403 10404 10405 10406 10407 10408
	spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
	for_each_possible_cpu(i) {
		struct rt_rq *rt_rq = &cpu_rq(i)->rt;

		spin_lock(&rt_rq->rt_runtime_lock);
		rt_rq->rt_runtime = global_rt_runtime();
		spin_unlock(&rt_rq->rt_runtime_lock);
	}
	spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);

10409 10410
	return 0;
}
10411
#endif /* CONFIG_RT_GROUP_SCHED */
10412 10413 10414 10415 10416 10417 10418 10419 10420 10421 10422 10423 10424 10425 10426 10427 10428 10429 10430 10431 10432 10433 10434 10435 10436 10437 10438 10439 10440 10441

int sched_rt_handler(struct ctl_table *table, int write,
		struct file *filp, void __user *buffer, size_t *lenp,
		loff_t *ppos)
{
	int ret;
	int old_period, old_runtime;
	static DEFINE_MUTEX(mutex);

	mutex_lock(&mutex);
	old_period = sysctl_sched_rt_period;
	old_runtime = sysctl_sched_rt_runtime;

	ret = proc_dointvec(table, write, filp, buffer, lenp, ppos);

	if (!ret && write) {
		ret = sched_rt_global_constraints();
		if (ret) {
			sysctl_sched_rt_period = old_period;
			sysctl_sched_rt_runtime = old_runtime;
		} else {
			def_rt_bandwidth.rt_runtime = global_rt_runtime();
			def_rt_bandwidth.rt_period =
				ns_to_ktime(global_rt_period());
		}
	}
	mutex_unlock(&mutex);

	return ret;
}
10442

10443
#ifdef CONFIG_CGROUP_SCHED
10444 10445

/* return corresponding task_group object of a cgroup */
10446
static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
10447
{
10448 10449
	return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
			    struct task_group, css);
10450 10451 10452
}

static struct cgroup_subsys_state *
10453
cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
10454
{
10455
	struct task_group *tg, *parent;
10456

10457
	if (!cgrp->parent) {
10458 10459 10460 10461
		/* This is early initialization for the top cgroup */
		return &init_task_group.css;
	}

10462 10463
	parent = cgroup_tg(cgrp->parent);
	tg = sched_create_group(parent);
10464 10465 10466 10467 10468 10469
	if (IS_ERR(tg))
		return ERR_PTR(-ENOMEM);

	return &tg->css;
}

I
Ingo Molnar 已提交
10470 10471
static void
cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
10472
{
10473
	struct task_group *tg = cgroup_tg(cgrp);
10474 10475 10476 10477

	sched_destroy_group(tg);
}

I
Ingo Molnar 已提交
10478 10479 10480
static int
cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
		      struct task_struct *tsk)
10481
{
10482
#ifdef CONFIG_RT_GROUP_SCHED
10483
	if (!sched_rt_can_attach(cgroup_tg(cgrp), tsk))
10484 10485
		return -EINVAL;
#else
10486 10487 10488
	/* We don't support RT-tasks being in separate groups */
	if (tsk->sched_class != &fair_sched_class)
		return -EINVAL;
10489
#endif
10490 10491 10492 10493 10494

	return 0;
}

static void
10495
cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
10496 10497 10498 10499 10500
			struct cgroup *old_cont, struct task_struct *tsk)
{
	sched_move_task(tsk);
}

10501
#ifdef CONFIG_FAIR_GROUP_SCHED
10502
static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
10503
				u64 shareval)
10504
{
10505
	return sched_group_set_shares(cgroup_tg(cgrp), shareval);
10506 10507
}

10508
static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
10509
{
10510
	struct task_group *tg = cgroup_tg(cgrp);
10511 10512 10513

	return (u64) tg->shares;
}
10514
#endif /* CONFIG_FAIR_GROUP_SCHED */
10515

10516
#ifdef CONFIG_RT_GROUP_SCHED
M
Mirco Tischler 已提交
10517
static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
10518
				s64 val)
P
Peter Zijlstra 已提交
10519
{
10520
	return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
P
Peter Zijlstra 已提交
10521 10522
}

10523
static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
P
Peter Zijlstra 已提交
10524
{
10525
	return sched_group_rt_runtime(cgroup_tg(cgrp));
P
Peter Zijlstra 已提交
10526
}
10527 10528 10529 10530 10531 10532 10533 10534 10535 10536 10537

static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
		u64 rt_period_us)
{
	return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
}

static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
{
	return sched_group_rt_period(cgroup_tg(cgrp));
}
10538
#endif /* CONFIG_RT_GROUP_SCHED */
P
Peter Zijlstra 已提交
10539

10540
static struct cftype cpu_files[] = {
10541
#ifdef CONFIG_FAIR_GROUP_SCHED
10542 10543
	{
		.name = "shares",
10544 10545
		.read_u64 = cpu_shares_read_u64,
		.write_u64 = cpu_shares_write_u64,
10546
	},
10547 10548
#endif
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
10549
	{
P
Peter Zijlstra 已提交
10550
		.name = "rt_runtime_us",
10551 10552
		.read_s64 = cpu_rt_runtime_read,
		.write_s64 = cpu_rt_runtime_write,
P
Peter Zijlstra 已提交
10553
	},
10554 10555
	{
		.name = "rt_period_us",
10556 10557
		.read_u64 = cpu_rt_period_read_uint,
		.write_u64 = cpu_rt_period_write_uint,
10558
	},
10559
#endif
10560 10561 10562 10563
};

static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
{
10564
	return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
10565 10566 10567
}

struct cgroup_subsys cpu_cgroup_subsys = {
I
Ingo Molnar 已提交
10568 10569 10570 10571 10572 10573 10574
	.name		= "cpu",
	.create		= cpu_cgroup_create,
	.destroy	= cpu_cgroup_destroy,
	.can_attach	= cpu_cgroup_can_attach,
	.attach		= cpu_cgroup_attach,
	.populate	= cpu_cgroup_populate,
	.subsys_id	= cpu_cgroup_subsys_id,
10575 10576 10577
	.early_init	= 1,
};

10578
#endif	/* CONFIG_CGROUP_SCHED */
10579 10580 10581 10582 10583 10584 10585 10586 10587 10588

#ifdef CONFIG_CGROUP_CPUACCT

/*
 * CPU accounting code for task groups.
 *
 * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
 * (balbir@in.ibm.com).
 */

10589
/* track cpu usage of a group of tasks and its child groups */
10590 10591 10592 10593
struct cpuacct {
	struct cgroup_subsys_state css;
	/* cpuusage holds pointer to a u64-type object on every cpu */
	u64 *cpuusage;
10594
	struct percpu_counter cpustat[CPUACCT_STAT_NSTATS];
10595
	struct cpuacct *parent;
10596 10597 10598 10599 10600
};

struct cgroup_subsys cpuacct_subsys;

/* return cpu accounting group corresponding to this container */
10601
static inline struct cpuacct *cgroup_ca(struct cgroup *cgrp)
10602
{
10603
	return container_of(cgroup_subsys_state(cgrp, cpuacct_subsys_id),
10604 10605 10606 10607 10608 10609 10610 10611 10612 10613 10614 10615
			    struct cpuacct, css);
}

/* return cpu accounting group to which this task belongs */
static inline struct cpuacct *task_ca(struct task_struct *tsk)
{
	return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
			    struct cpuacct, css);
}

/* create a new cpu accounting group */
static struct cgroup_subsys_state *cpuacct_create(
10616
	struct cgroup_subsys *ss, struct cgroup *cgrp)
10617 10618
{
	struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL);
10619
	int i;
10620 10621

	if (!ca)
10622
		goto out;
10623 10624

	ca->cpuusage = alloc_percpu(u64);
10625 10626 10627 10628 10629 10630
	if (!ca->cpuusage)
		goto out_free_ca;

	for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
		if (percpu_counter_init(&ca->cpustat[i], 0))
			goto out_free_counters;
10631

10632 10633 10634
	if (cgrp->parent)
		ca->parent = cgroup_ca(cgrp->parent);

10635
	return &ca->css;
10636 10637 10638 10639 10640 10641 10642 10643 10644

out_free_counters:
	while (--i >= 0)
		percpu_counter_destroy(&ca->cpustat[i]);
	free_percpu(ca->cpuusage);
out_free_ca:
	kfree(ca);
out:
	return ERR_PTR(-ENOMEM);
10645 10646 10647
}

/* destroy an existing cpu accounting group */
I
Ingo Molnar 已提交
10648
static void
10649
cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
10650
{
10651
	struct cpuacct *ca = cgroup_ca(cgrp);
10652
	int i;
10653

10654 10655
	for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
		percpu_counter_destroy(&ca->cpustat[i]);
10656 10657 10658 10659
	free_percpu(ca->cpuusage);
	kfree(ca);
}

10660 10661
static u64 cpuacct_cpuusage_read(struct cpuacct *ca, int cpu)
{
10662
	u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
10663 10664 10665 10666 10667 10668 10669 10670 10671 10672 10673 10674 10675 10676 10677 10678 10679 10680
	u64 data;

#ifndef CONFIG_64BIT
	/*
	 * Take rq->lock to make 64-bit read safe on 32-bit platforms.
	 */
	spin_lock_irq(&cpu_rq(cpu)->lock);
	data = *cpuusage;
	spin_unlock_irq(&cpu_rq(cpu)->lock);
#else
	data = *cpuusage;
#endif

	return data;
}

static void cpuacct_cpuusage_write(struct cpuacct *ca, int cpu, u64 val)
{
10681
	u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
10682 10683 10684 10685 10686 10687 10688 10689 10690 10691 10692 10693 10694

#ifndef CONFIG_64BIT
	/*
	 * Take rq->lock to make 64-bit write safe on 32-bit platforms.
	 */
	spin_lock_irq(&cpu_rq(cpu)->lock);
	*cpuusage = val;
	spin_unlock_irq(&cpu_rq(cpu)->lock);
#else
	*cpuusage = val;
#endif
}

10695
/* return total cpu usage (in nanoseconds) of a group */
10696
static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
10697
{
10698
	struct cpuacct *ca = cgroup_ca(cgrp);
10699 10700 10701
	u64 totalcpuusage = 0;
	int i;

10702 10703
	for_each_present_cpu(i)
		totalcpuusage += cpuacct_cpuusage_read(ca, i);
10704 10705 10706 10707

	return totalcpuusage;
}

10708 10709 10710 10711 10712 10713 10714 10715 10716 10717 10718 10719
static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
								u64 reset)
{
	struct cpuacct *ca = cgroup_ca(cgrp);
	int err = 0;
	int i;

	if (reset) {
		err = -EINVAL;
		goto out;
	}

10720 10721
	for_each_present_cpu(i)
		cpuacct_cpuusage_write(ca, i, 0);
10722 10723 10724 10725 10726

out:
	return err;
}

10727 10728 10729 10730 10731 10732 10733 10734 10735 10736 10737 10738 10739 10740 10741
static int cpuacct_percpu_seq_read(struct cgroup *cgroup, struct cftype *cft,
				   struct seq_file *m)
{
	struct cpuacct *ca = cgroup_ca(cgroup);
	u64 percpu;
	int i;

	for_each_present_cpu(i) {
		percpu = cpuacct_cpuusage_read(ca, i);
		seq_printf(m, "%llu ", (unsigned long long) percpu);
	}
	seq_printf(m, "\n");
	return 0;
}

10742 10743 10744 10745 10746 10747 10748 10749 10750 10751 10752 10753 10754 10755 10756 10757 10758 10759 10760
static const char *cpuacct_stat_desc[] = {
	[CPUACCT_STAT_USER] = "user",
	[CPUACCT_STAT_SYSTEM] = "system",
};

static int cpuacct_stats_show(struct cgroup *cgrp, struct cftype *cft,
		struct cgroup_map_cb *cb)
{
	struct cpuacct *ca = cgroup_ca(cgrp);
	int i;

	for (i = 0; i < CPUACCT_STAT_NSTATS; i++) {
		s64 val = percpu_counter_read(&ca->cpustat[i]);
		val = cputime64_to_clock_t(val);
		cb->fill(cb, cpuacct_stat_desc[i], val);
	}
	return 0;
}

10761 10762 10763
static struct cftype files[] = {
	{
		.name = "usage",
10764 10765
		.read_u64 = cpuusage_read,
		.write_u64 = cpuusage_write,
10766
	},
10767 10768 10769 10770
	{
		.name = "usage_percpu",
		.read_seq_string = cpuacct_percpu_seq_read,
	},
10771 10772 10773 10774
	{
		.name = "stat",
		.read_map = cpuacct_stats_show,
	},
10775 10776
};

10777
static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cgrp)
10778
{
10779
	return cgroup_add_files(cgrp, ss, files, ARRAY_SIZE(files));
10780 10781 10782 10783 10784 10785 10786 10787 10788 10789
}

/*
 * charge this task's execution time to its accounting group.
 *
 * called with rq->lock held.
 */
static void cpuacct_charge(struct task_struct *tsk, u64 cputime)
{
	struct cpuacct *ca;
10790
	int cpu;
10791

L
Li Zefan 已提交
10792
	if (unlikely(!cpuacct_subsys.active))
10793 10794
		return;

10795
	cpu = task_cpu(tsk);
10796 10797 10798

	rcu_read_lock();

10799 10800
	ca = task_ca(tsk);

10801
	for (; ca; ca = ca->parent) {
10802
		u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
10803 10804
		*cpuusage += cputime;
	}
10805 10806

	rcu_read_unlock();
10807 10808
}

10809 10810 10811 10812 10813 10814 10815 10816 10817 10818 10819 10820 10821 10822 10823 10824 10825 10826 10827 10828 10829
/*
 * Charge the system/user time to the task's accounting group.
 */
static void cpuacct_update_stats(struct task_struct *tsk,
		enum cpuacct_stat_index idx, cputime_t val)
{
	struct cpuacct *ca;

	if (unlikely(!cpuacct_subsys.active))
		return;

	rcu_read_lock();
	ca = task_ca(tsk);

	do {
		percpu_counter_add(&ca->cpustat[idx], val);
		ca = ca->parent;
	} while (ca);
	rcu_read_unlock();
}

10830 10831 10832 10833 10834 10835 10836 10837
struct cgroup_subsys cpuacct_subsys = {
	.name = "cpuacct",
	.create = cpuacct_create,
	.destroy = cpuacct_destroy,
	.populate = cpuacct_populate,
	.subsys_id = cpuacct_subsys_id,
};
#endif	/* CONFIG_CGROUP_CPUACCT */