sched.c 235.6 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
/*
 *  kernel/sched.c
 *
 *  Kernel scheduler and related syscalls
 *
 *  Copyright (C) 1991-2002  Linus Torvalds
 *
 *  1996-12-23  Modified by Dave Grothe to fix bugs in semaphores and
 *		make semaphores SMP safe
 *  1998-11-19	Implemented schedule_timeout() and related stuff
 *		by Andrea Arcangeli
 *  2002-01-04	New ultra-scalable O(1) scheduler by Ingo Molnar:
 *		hybrid priority-list and round-robin design with
 *		an array-switch method of distributing timeslices
 *		and per-CPU runqueues.  Cleanups and useful suggestions
 *		by Davide Libenzi, preemptible kernel bits by Robert Love.
 *  2003-09-03	Interactivity tuning by Con Kolivas.
 *  2004-04-02	Scheduler domains code by Nick Piggin
I
Ingo Molnar 已提交
19 20 21 22 23 24
 *  2007-04-15  Work begun on replacing all interactivity tuning with a
 *              fair scheduling design by Con Kolivas.
 *  2007-05-05  Load balancing (smp-nice) and other improvements
 *              by Peter Williams
 *  2007-05-06  Interactivity improvements to CFS by Mike Galbraith
 *  2007-07-01  Group scheduling enhancements by Srivatsa Vaddagiri
25 26
 *  2007-11-29  RT balancing improvements by Steven Rostedt, Gregory Haskins,
 *              Thomas Gleixner, Mike Kravetz
L
Linus Torvalds 已提交
27 28 29 30 31 32
 */

#include <linux/mm.h>
#include <linux/module.h>
#include <linux/nmi.h>
#include <linux/init.h>
33
#include <linux/uaccess.h>
L
Linus Torvalds 已提交
34 35 36 37
#include <linux/highmem.h>
#include <linux/smp_lock.h>
#include <asm/mmu_context.h>
#include <linux/interrupt.h>
38
#include <linux/capability.h>
L
Linus Torvalds 已提交
39 40
#include <linux/completion.h>
#include <linux/kernel_stat.h>
41
#include <linux/debug_locks.h>
L
Linus Torvalds 已提交
42 43 44
#include <linux/security.h>
#include <linux/notifier.h>
#include <linux/profile.h>
45
#include <linux/freezer.h>
46
#include <linux/vmalloc.h>
L
Linus Torvalds 已提交
47 48
#include <linux/blkdev.h>
#include <linux/delay.h>
49
#include <linux/pid_namespace.h>
L
Linus Torvalds 已提交
50 51 52 53 54 55 56 57
#include <linux/smp.h>
#include <linux/threads.h>
#include <linux/timer.h>
#include <linux/rcupdate.h>
#include <linux/cpu.h>
#include <linux/cpuset.h>
#include <linux/percpu.h>
#include <linux/kthread.h>
58
#include <linux/proc_fs.h>
L
Linus Torvalds 已提交
59
#include <linux/seq_file.h>
60
#include <linux/sysctl.h>
L
Linus Torvalds 已提交
61 62
#include <linux/syscalls.h>
#include <linux/times.h>
63
#include <linux/tsacct_kern.h>
64
#include <linux/kprobes.h>
65
#include <linux/delayacct.h>
66
#include <linux/reciprocal_div.h>
67
#include <linux/unistd.h>
J
Jens Axboe 已提交
68
#include <linux/pagemap.h>
P
Peter Zijlstra 已提交
69
#include <linux/hrtimer.h>
R
Reynes Philippe 已提交
70
#include <linux/tick.h>
71
#include <linux/bootmem.h>
P
Peter Zijlstra 已提交
72 73
#include <linux/debugfs.h>
#include <linux/ctype.h>
74
#include <linux/ftrace.h>
75
#include <trace/sched.h>
L
Linus Torvalds 已提交
76

77
#include <asm/tlb.h>
78
#include <asm/irq_regs.h>
L
Linus Torvalds 已提交
79

80 81
#include "sched_cpupri.h"

L
Linus Torvalds 已提交
82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100
/*
 * Convert user-nice values [ -20 ... 0 ... 19 ]
 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
 * and back.
 */
#define NICE_TO_PRIO(nice)	(MAX_RT_PRIO + (nice) + 20)
#define PRIO_TO_NICE(prio)	((prio) - MAX_RT_PRIO - 20)
#define TASK_NICE(p)		PRIO_TO_NICE((p)->static_prio)

/*
 * 'User priority' is the nice value converted to something we
 * can work with better when scaling various scheduler parameters,
 * it's a [ 0 ... 39 ] range.
 */
#define USER_PRIO(p)		((p)-MAX_RT_PRIO)
#define TASK_USER_PRIO(p)	USER_PRIO((p)->static_prio)
#define MAX_USER_PRIO		(USER_PRIO(MAX_PRIO))

/*
101
 * Helpers for converting nanosecond timing to jiffy resolution
L
Linus Torvalds 已提交
102
 */
103
#define NS_TO_JIFFIES(TIME)	((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
L
Linus Torvalds 已提交
104

I
Ingo Molnar 已提交
105 106 107
#define NICE_0_LOAD		SCHED_LOAD_SCALE
#define NICE_0_SHIFT		SCHED_LOAD_SHIFT

L
Linus Torvalds 已提交
108 109 110
/*
 * These are the 'tuning knobs' of the scheduler:
 *
D
Dmitry Adamushko 已提交
111
 * default timeslice is 100 msecs (used only for SCHED_RR tasks).
L
Linus Torvalds 已提交
112 113 114
 * Timeslices get refilled after they expire.
 */
#define DEF_TIMESLICE		(100 * HZ / 1000)
115

116 117 118 119 120
/*
 * single value that denotes runtime == period, ie unlimited time.
 */
#define RUNTIME_INF	((u64)~0ULL)

121 122 123 124 125 126
DEFINE_TRACE(sched_wait_task);
DEFINE_TRACE(sched_wakeup);
DEFINE_TRACE(sched_wakeup_new);
DEFINE_TRACE(sched_switch);
DEFINE_TRACE(sched_migrate_task);

127
#ifdef CONFIG_SMP
128 129 130

static void double_rq_lock(struct rq *rq1, struct rq *rq2);

131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150
/*
 * Divide a load by a sched group cpu_power : (load / sg->__cpu_power)
 * Since cpu_power is a 'constant', we can use a reciprocal divide.
 */
static inline u32 sg_div_cpu_power(const struct sched_group *sg, u32 load)
{
	return reciprocal_divide(load, sg->reciprocal_cpu_power);
}

/*
 * Each time a sched group cpu_power is changed,
 * we must compute its reciprocal value
 */
static inline void sg_inc_cpu_power(struct sched_group *sg, u32 val)
{
	sg->__cpu_power += val;
	sg->reciprocal_cpu_power = reciprocal_value(sg->__cpu_power);
}
#endif

151 152
static inline int rt_policy(int policy)
{
153
	if (unlikely(policy == SCHED_FIFO || policy == SCHED_RR))
154 155 156 157 158 159 160 161 162
		return 1;
	return 0;
}

static inline int task_has_rt_policy(struct task_struct *p)
{
	return rt_policy(p->policy);
}

L
Linus Torvalds 已提交
163
/*
I
Ingo Molnar 已提交
164
 * This is the priority-queue data structure of the RT scheduling class:
L
Linus Torvalds 已提交
165
 */
I
Ingo Molnar 已提交
166 167 168 169 170
struct rt_prio_array {
	DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
	struct list_head queue[MAX_RT_PRIO];
};

171
struct rt_bandwidth {
I
Ingo Molnar 已提交
172 173 174 175 176
	/* nests inside the rq lock: */
	spinlock_t		rt_runtime_lock;
	ktime_t			rt_period;
	u64			rt_runtime;
	struct hrtimer		rt_period_timer;
177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209
};

static struct rt_bandwidth def_rt_bandwidth;

static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);

static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
{
	struct rt_bandwidth *rt_b =
		container_of(timer, struct rt_bandwidth, rt_period_timer);
	ktime_t now;
	int overrun;
	int idle = 0;

	for (;;) {
		now = hrtimer_cb_get_time(timer);
		overrun = hrtimer_forward(timer, now, rt_b->rt_period);

		if (!overrun)
			break;

		idle = do_sched_rt_period_timer(rt_b, overrun);
	}

	return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
}

static
void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
{
	rt_b->rt_period = ns_to_ktime(period);
	rt_b->rt_runtime = runtime;

P
Peter Zijlstra 已提交
210 211
	spin_lock_init(&rt_b->rt_runtime_lock);

212 213 214 215 216
	hrtimer_init(&rt_b->rt_period_timer,
			CLOCK_MONOTONIC, HRTIMER_MODE_REL);
	rt_b->rt_period_timer.function = sched_rt_period_timer;
}

217 218 219
static inline int rt_bandwidth_enabled(void)
{
	return sysctl_sched_rt_runtime >= 0;
220 221 222 223 224 225
}

static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
{
	ktime_t now;

226
	if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)
227 228 229 230 231 232 233 234 235 236 237 238
		return;

	if (hrtimer_active(&rt_b->rt_period_timer))
		return;

	spin_lock(&rt_b->rt_runtime_lock);
	for (;;) {
		if (hrtimer_active(&rt_b->rt_period_timer))
			break;

		now = hrtimer_cb_get_time(&rt_b->rt_period_timer);
		hrtimer_forward(&rt_b->rt_period_timer, now, rt_b->rt_period);
239 240
		hrtimer_start_expires(&rt_b->rt_period_timer,
				HRTIMER_MODE_ABS);
241 242 243 244 245 246 247 248 249 250 251
	}
	spin_unlock(&rt_b->rt_runtime_lock);
}

#ifdef CONFIG_RT_GROUP_SCHED
static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
{
	hrtimer_cancel(&rt_b->rt_period_timer);
}
#endif

252 253 254 255 256 257
/*
 * sched_domains_mutex serializes calls to arch_init_sched_domains,
 * detach_destroy_domains and partition_sched_domains.
 */
static DEFINE_MUTEX(sched_domains_mutex);

258
#ifdef CONFIG_GROUP_SCHED
S
Srivatsa Vaddagiri 已提交
259

260 261
#include <linux/cgroup.h>

S
Srivatsa Vaddagiri 已提交
262 263
struct cfs_rq;

P
Peter Zijlstra 已提交
264 265
static LIST_HEAD(task_groups);

S
Srivatsa Vaddagiri 已提交
266
/* task group related information */
267
struct task_group {
268
#ifdef CONFIG_CGROUP_SCHED
269 270
	struct cgroup_subsys_state css;
#endif
271

272 273 274 275
#ifdef CONFIG_USER_SCHED
	uid_t uid;
#endif

276
#ifdef CONFIG_FAIR_GROUP_SCHED
S
Srivatsa Vaddagiri 已提交
277 278 279 280 281
	/* schedulable entities of this group on each cpu */
	struct sched_entity **se;
	/* runqueue "owned" by this group on each cpu */
	struct cfs_rq **cfs_rq;
	unsigned long shares;
282 283 284 285 286 287
#endif

#ifdef CONFIG_RT_GROUP_SCHED
	struct sched_rt_entity **rt_se;
	struct rt_rq **rt_rq;

288
	struct rt_bandwidth rt_bandwidth;
289
#endif
290

291
	struct rcu_head rcu;
P
Peter Zijlstra 已提交
292
	struct list_head list;
P
Peter Zijlstra 已提交
293 294 295 296

	struct task_group *parent;
	struct list_head siblings;
	struct list_head children;
S
Srivatsa Vaddagiri 已提交
297 298
};

D
Dhaval Giani 已提交
299
#ifdef CONFIG_USER_SCHED
300

301 302 303 304 305 306
/* Helper function to pass uid information to create_sched_user() */
void set_tg_uid(struct user_struct *user)
{
	user->tg->uid = user->uid;
}

307 308 309 310 311 312 313
/*
 * Root task group.
 * 	Every UID task group (including init_task_group aka UID-0) will
 * 	be a child to this group.
 */
struct task_group root_task_group;

314
#ifdef CONFIG_FAIR_GROUP_SCHED
S
Srivatsa Vaddagiri 已提交
315 316 317 318
/* Default task group's sched entity on each cpu */
static DEFINE_PER_CPU(struct sched_entity, init_sched_entity);
/* Default task group's cfs_rq on each cpu */
static DEFINE_PER_CPU(struct cfs_rq, init_cfs_rq) ____cacheline_aligned_in_smp;
319
#endif /* CONFIG_FAIR_GROUP_SCHED */
320 321 322 323

#ifdef CONFIG_RT_GROUP_SCHED
static DEFINE_PER_CPU(struct sched_rt_entity, init_sched_rt_entity);
static DEFINE_PER_CPU(struct rt_rq, init_rt_rq) ____cacheline_aligned_in_smp;
324
#endif /* CONFIG_RT_GROUP_SCHED */
P
Peter Zijlstra 已提交
325
#else /* !CONFIG_USER_SCHED */
326
#define root_task_group init_task_group
P
Peter Zijlstra 已提交
327
#endif /* CONFIG_USER_SCHED */
P
Peter Zijlstra 已提交
328

329
/* task_group_lock serializes add/remove of task groups and also changes to
330 331
 * a task group's cpu shares.
 */
332
static DEFINE_SPINLOCK(task_group_lock);
333

334 335 336 337 338 339 340
#ifdef CONFIG_SMP
static int root_task_group_empty(void)
{
	return list_empty(&root_task_group.children);
}
#endif

341 342 343
#ifdef CONFIG_FAIR_GROUP_SCHED
#ifdef CONFIG_USER_SCHED
# define INIT_TASK_GROUP_LOAD	(2*NICE_0_LOAD)
344
#else /* !CONFIG_USER_SCHED */
345
# define INIT_TASK_GROUP_LOAD	NICE_0_LOAD
346
#endif /* CONFIG_USER_SCHED */
347

348
/*
349 350 351 352
 * A weight of 0 or 1 can cause arithmetics problems.
 * A weight of a cfs_rq is the sum of weights of which entities
 * are queued on this cfs_rq, so a weight of a entity should not be
 * too large, so as the shares value of a task group.
353 354 355
 * (The default weight is 1024 - so there's no practical
 *  limitation from this.)
 */
356
#define MIN_SHARES	2
357
#define MAX_SHARES	(1UL << 18)
358

359 360 361
static int init_task_group_load = INIT_TASK_GROUP_LOAD;
#endif

S
Srivatsa Vaddagiri 已提交
362
/* Default task group.
I
Ingo Molnar 已提交
363
 *	Every task in system belong to this group at bootup.
S
Srivatsa Vaddagiri 已提交
364
 */
365
struct task_group init_task_group;
S
Srivatsa Vaddagiri 已提交
366 367

/* return group to which a task belongs */
368
static inline struct task_group *task_group(struct task_struct *p)
S
Srivatsa Vaddagiri 已提交
369
{
370
	struct task_group *tg;
371

372
#ifdef CONFIG_USER_SCHED
373 374 375
	rcu_read_lock();
	tg = __task_cred(p)->user->tg;
	rcu_read_unlock();
376
#elif defined(CONFIG_CGROUP_SCHED)
377 378
	tg = container_of(task_subsys_state(p, cpu_cgroup_subsys_id),
				struct task_group, css);
379
#else
I
Ingo Molnar 已提交
380
	tg = &init_task_group;
381
#endif
382
	return tg;
S
Srivatsa Vaddagiri 已提交
383 384 385
}

/* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
P
Peter Zijlstra 已提交
386
static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
S
Srivatsa Vaddagiri 已提交
387
{
388
#ifdef CONFIG_FAIR_GROUP_SCHED
389 390
	p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
	p->se.parent = task_group(p)->se[cpu];
391
#endif
P
Peter Zijlstra 已提交
392

393
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
394 395
	p->rt.rt_rq  = task_group(p)->rt_rq[cpu];
	p->rt.parent = task_group(p)->rt_se[cpu];
396
#endif
S
Srivatsa Vaddagiri 已提交
397 398 399 400
}

#else

401 402 403 404 405 406 407
#ifdef CONFIG_SMP
static int root_task_group_empty(void)
{
	return 1;
}
#endif

P
Peter Zijlstra 已提交
408
static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
409 410 411 412
static inline struct task_group *task_group(struct task_struct *p)
{
	return NULL;
}
S
Srivatsa Vaddagiri 已提交
413

414
#endif	/* CONFIG_GROUP_SCHED */
S
Srivatsa Vaddagiri 已提交
415

I
Ingo Molnar 已提交
416 417 418 419 420 421
/* CFS-related fields in a runqueue */
struct cfs_rq {
	struct load_weight load;
	unsigned long nr_running;

	u64 exec_clock;
I
Ingo Molnar 已提交
422
	u64 min_vruntime;
I
Ingo Molnar 已提交
423 424 425

	struct rb_root tasks_timeline;
	struct rb_node *rb_leftmost;
426 427 428 429 430 431

	struct list_head tasks;
	struct list_head *balance_iterator;

	/*
	 * 'curr' points to currently running entity on this cfs_rq.
I
Ingo Molnar 已提交
432 433
	 * It is set to NULL otherwise (i.e when none are currently running).
	 */
P
Peter Zijlstra 已提交
434
	struct sched_entity *curr, *next, *last;
P
Peter Zijlstra 已提交
435

P
Peter Zijlstra 已提交
436
	unsigned int nr_spread_over;
P
Peter Zijlstra 已提交
437

438
#ifdef CONFIG_FAIR_GROUP_SCHED
I
Ingo Molnar 已提交
439 440
	struct rq *rq;	/* cpu runqueue to which this cfs_rq is attached */

I
Ingo Molnar 已提交
441 442
	/*
	 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
I
Ingo Molnar 已提交
443 444 445 446 447 448
	 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
	 * (like users, containers etc.)
	 *
	 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
	 * list is used during load balance.
	 */
I
Ingo Molnar 已提交
449 450
	struct list_head leaf_cfs_rq_list;
	struct task_group *tg;	/* group that "owns" this runqueue */
451 452 453

#ifdef CONFIG_SMP
	/*
454
	 * the part of load.weight contributed by tasks
455
	 */
456
	unsigned long task_weight;
457

458 459 460 461 462 463 464
	/*
	 *   h_load = weight * f(tg)
	 *
	 * Where f(tg) is the recursive weight fraction assigned to
	 * this group.
	 */
	unsigned long h_load;
465

466 467 468 469
	/*
	 * this cpu's part of tg->shares
	 */
	unsigned long shares;
470 471 472 473 474

	/*
	 * load.weight at the time we set shares
	 */
	unsigned long rq_weight;
475
#endif
I
Ingo Molnar 已提交
476 477
#endif
};
L
Linus Torvalds 已提交
478

I
Ingo Molnar 已提交
479 480 481
/* Real-Time classes' related field in a runqueue: */
struct rt_rq {
	struct rt_prio_array active;
482
	unsigned long rt_nr_running;
483
#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
484 485
	struct {
		int curr; /* highest queued rt task prio */
486
#ifdef CONFIG_SMP
487
		int next; /* next highest */
488
#endif
489
	} highest_prio;
P
Peter Zijlstra 已提交
490
#endif
P
Peter Zijlstra 已提交
491
#ifdef CONFIG_SMP
492
	unsigned long rt_nr_migratory;
G
Gregory Haskins 已提交
493
	int overloaded;
494
	struct plist_head pushable_tasks;
P
Peter Zijlstra 已提交
495
#endif
P
Peter Zijlstra 已提交
496
	int rt_throttled;
P
Peter Zijlstra 已提交
497
	u64 rt_time;
P
Peter Zijlstra 已提交
498
	u64 rt_runtime;
I
Ingo Molnar 已提交
499
	/* Nests inside the rq lock: */
P
Peter Zijlstra 已提交
500
	spinlock_t rt_runtime_lock;
P
Peter Zijlstra 已提交
501

502
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
503 504
	unsigned long rt_nr_boosted;

P
Peter Zijlstra 已提交
505 506 507 508 509
	struct rq *rq;
	struct list_head leaf_rt_rq_list;
	struct task_group *tg;
	struct sched_rt_entity *rt_se;
#endif
I
Ingo Molnar 已提交
510 511
};

G
Gregory Haskins 已提交
512 513 514 515
#ifdef CONFIG_SMP

/*
 * We add the notion of a root-domain which will be used to define per-domain
I
Ingo Molnar 已提交
516 517
 * variables. Each exclusive cpuset essentially defines an island domain by
 * fully partitioning the member cpus from any other cpuset. Whenever a new
G
Gregory Haskins 已提交
518 519 520 521 522 523
 * exclusive cpuset is created, we also create and attach a new root-domain
 * object.
 *
 */
struct root_domain {
	atomic_t refcount;
524 525
	cpumask_var_t span;
	cpumask_var_t online;
526

I
Ingo Molnar 已提交
527
	/*
528 529 530
	 * The "RT overload" flag: it gets set if a CPU has more than
	 * one runnable RT task.
	 */
531
	cpumask_var_t rto_mask;
I
Ingo Molnar 已提交
532
	atomic_t rto_count;
533 534 535
#ifdef CONFIG_SMP
	struct cpupri cpupri;
#endif
536 537 538 539 540 541 542 543
#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
	/*
	 * Preferred wake up cpu nominated by sched_mc balance that will be
	 * used when most cpus are idle in the system indicating overall very
	 * low system utilisation. Triggered at POWERSAVINGS_BALANCE_WAKEUP(2)
	 */
	unsigned int sched_mc_preferred_wakeup_cpu;
#endif
G
Gregory Haskins 已提交
544 545
};

546 547 548 549
/*
 * By default the system creates a single root-domain with all cpus as
 * members (mimicking the global state we have today).
 */
G
Gregory Haskins 已提交
550 551 552 553
static struct root_domain def_root_domain;

#endif

L
Linus Torvalds 已提交
554 555 556 557 558 559 560
/*
 * This is the main, per-CPU runqueue data structure.
 *
 * Locking rule: those places that want to lock multiple runqueues
 * (such as the load balancing or the thread migration code), lock
 * acquire operations must be ordered by ascending &runqueue.
 */
561
struct rq {
562 563
	/* runqueue lock: */
	spinlock_t lock;
L
Linus Torvalds 已提交
564 565 566 567 568 569

	/*
	 * nr_running and cpu_load should be in the same cacheline because
	 * remote CPUs use both these fields when doing load calculation.
	 */
	unsigned long nr_running;
I
Ingo Molnar 已提交
570 571
	#define CPU_LOAD_IDX_MAX 5
	unsigned long cpu_load[CPU_LOAD_IDX_MAX];
572
#ifdef CONFIG_NO_HZ
573
	unsigned long last_tick_seen;
574 575
	unsigned char in_nohz_recently;
#endif
576 577
	/* capture load from *all* tasks on this cpu: */
	struct load_weight load;
I
Ingo Molnar 已提交
578 579 580 581
	unsigned long nr_load_updates;
	u64 nr_switches;

	struct cfs_rq cfs;
P
Peter Zijlstra 已提交
582 583
	struct rt_rq rt;

I
Ingo Molnar 已提交
584
#ifdef CONFIG_FAIR_GROUP_SCHED
585 586
	/* list of leaf cfs_rq on this cpu: */
	struct list_head leaf_cfs_rq_list;
587 588
#endif
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
589
	struct list_head leaf_rt_rq_list;
L
Linus Torvalds 已提交
590 591 592 593 594 595 596 597 598 599
#endif

	/*
	 * This is part of a global counter where only the total sum
	 * over all CPUs matters. A task can increase this counter on
	 * one CPU and if it got migrated afterwards it may decrease
	 * it on another CPU. Always updated under the runqueue lock:
	 */
	unsigned long nr_uninterruptible;

600
	struct task_struct *curr, *idle;
601
	unsigned long next_balance;
L
Linus Torvalds 已提交
602
	struct mm_struct *prev_mm;
I
Ingo Molnar 已提交
603

604
	u64 clock;
I
Ingo Molnar 已提交
605

L
Linus Torvalds 已提交
606 607 608
	atomic_t nr_iowait;

#ifdef CONFIG_SMP
I
Ingo Molnar 已提交
609
	struct root_domain *rd;
L
Linus Torvalds 已提交
610 611
	struct sched_domain *sd;

612
	unsigned char idle_at_tick;
L
Linus Torvalds 已提交
613 614 615
	/* For active balancing */
	int active_balance;
	int push_cpu;
616 617
	/* cpu of this runqueue: */
	int cpu;
618
	int online;
L
Linus Torvalds 已提交
619

620
	unsigned long avg_load_per_task;
L
Linus Torvalds 已提交
621

622
	struct task_struct *migration_thread;
L
Linus Torvalds 已提交
623 624 625
	struct list_head migration_queue;
#endif

P
Peter Zijlstra 已提交
626
#ifdef CONFIG_SCHED_HRTICK
627 628 629 630
#ifdef CONFIG_SMP
	int hrtick_csd_pending;
	struct call_single_data hrtick_csd;
#endif
P
Peter Zijlstra 已提交
631 632 633
	struct hrtimer hrtick_timer;
#endif

L
Linus Torvalds 已提交
634 635 636
#ifdef CONFIG_SCHEDSTATS
	/* latency stats */
	struct sched_info rq_sched_info;
637 638
	unsigned long long rq_cpu_time;
	/* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
L
Linus Torvalds 已提交
639 640

	/* sys_sched_yield() stats */
641
	unsigned int yld_count;
L
Linus Torvalds 已提交
642 643

	/* schedule() stats */
644 645 646
	unsigned int sched_switch;
	unsigned int sched_count;
	unsigned int sched_goidle;
L
Linus Torvalds 已提交
647 648

	/* try_to_wake_up() stats */
649 650
	unsigned int ttwu_count;
	unsigned int ttwu_local;
I
Ingo Molnar 已提交
651 652

	/* BKL stats */
653
	unsigned int bkl_count;
L
Linus Torvalds 已提交
654 655 656
#endif
};

657
static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
L
Linus Torvalds 已提交
658

659
static inline void check_preempt_curr(struct rq *rq, struct task_struct *p, int sync)
I
Ingo Molnar 已提交
660
{
661
	rq->curr->sched_class->check_preempt_curr(rq, p, sync);
I
Ingo Molnar 已提交
662 663
}

664 665 666 667 668 669 670 671 672
static inline int cpu_of(struct rq *rq)
{
#ifdef CONFIG_SMP
	return rq->cpu;
#else
	return 0;
#endif
}

N
Nick Piggin 已提交
673 674
/*
 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
675
 * See detach_destroy_domains: synchronize_sched for details.
N
Nick Piggin 已提交
676 677 678 679
 *
 * The domain tree of any CPU may only be accessed from within
 * preempt-disabled sections.
 */
680 681
#define for_each_domain(cpu, __sd) \
	for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
L
Linus Torvalds 已提交
682 683 684 685 686 687

#define cpu_rq(cpu)		(&per_cpu(runqueues, (cpu)))
#define this_rq()		(&__get_cpu_var(runqueues))
#define task_rq(p)		cpu_rq(task_cpu(p))
#define cpu_curr(cpu)		(cpu_rq(cpu)->curr)

688 689 690 691 692
static inline void update_rq_clock(struct rq *rq)
{
	rq->clock = sched_clock_cpu(cpu_of(rq));
}

I
Ingo Molnar 已提交
693 694 695 696 697 698 699 700 701
/*
 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
 */
#ifdef CONFIG_SCHED_DEBUG
# define const_debug __read_mostly
#else
# define const_debug static const
#endif

I
Ingo Molnar 已提交
702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719
/**
 * runqueue_is_locked
 *
 * Returns true if the current cpu runqueue is locked.
 * This interface allows printk to be called with the runqueue lock
 * held and know whether or not it is OK to wake up the klogd.
 */
int runqueue_is_locked(void)
{
	int cpu = get_cpu();
	struct rq *rq = cpu_rq(cpu);
	int ret;

	ret = spin_is_locked(&rq->lock);
	put_cpu();
	return ret;
}

I
Ingo Molnar 已提交
720 721 722
/*
 * Debugging: various feature bits
 */
P
Peter Zijlstra 已提交
723 724 725 726

#define SCHED_FEAT(name, enabled)	\
	__SCHED_FEAT_##name ,

I
Ingo Molnar 已提交
727
enum {
P
Peter Zijlstra 已提交
728
#include "sched_features.h"
I
Ingo Molnar 已提交
729 730
};

P
Peter Zijlstra 已提交
731 732 733 734 735
#undef SCHED_FEAT

#define SCHED_FEAT(name, enabled)	\
	(1UL << __SCHED_FEAT_##name) * enabled |

I
Ingo Molnar 已提交
736
const_debug unsigned int sysctl_sched_features =
P
Peter Zijlstra 已提交
737 738 739 740 741 742 743 744 745
#include "sched_features.h"
	0;

#undef SCHED_FEAT

#ifdef CONFIG_SCHED_DEBUG
#define SCHED_FEAT(name, enabled)	\
	#name ,

746
static __read_mostly char *sched_feat_names[] = {
P
Peter Zijlstra 已提交
747 748 749 750 751 752
#include "sched_features.h"
	NULL
};

#undef SCHED_FEAT

L
Li Zefan 已提交
753
static int sched_feat_show(struct seq_file *m, void *v)
P
Peter Zijlstra 已提交
754 755 756 757
{
	int i;

	for (i = 0; sched_feat_names[i]; i++) {
L
Li Zefan 已提交
758 759 760
		if (!(sysctl_sched_features & (1UL << i)))
			seq_puts(m, "NO_");
		seq_printf(m, "%s ", sched_feat_names[i]);
P
Peter Zijlstra 已提交
761
	}
L
Li Zefan 已提交
762
	seq_puts(m, "\n");
P
Peter Zijlstra 已提交
763

L
Li Zefan 已提交
764
	return 0;
P
Peter Zijlstra 已提交
765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783
}

static ssize_t
sched_feat_write(struct file *filp, const char __user *ubuf,
		size_t cnt, loff_t *ppos)
{
	char buf[64];
	char *cmp = buf;
	int neg = 0;
	int i;

	if (cnt > 63)
		cnt = 63;

	if (copy_from_user(&buf, ubuf, cnt))
		return -EFAULT;

	buf[cnt] = 0;

I
Ingo Molnar 已提交
784
	if (strncmp(buf, "NO_", 3) == 0) {
P
Peter Zijlstra 已提交
785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808
		neg = 1;
		cmp += 3;
	}

	for (i = 0; sched_feat_names[i]; i++) {
		int len = strlen(sched_feat_names[i]);

		if (strncmp(cmp, sched_feat_names[i], len) == 0) {
			if (neg)
				sysctl_sched_features &= ~(1UL << i);
			else
				sysctl_sched_features |= (1UL << i);
			break;
		}
	}

	if (!sched_feat_names[i])
		return -EINVAL;

	filp->f_pos += cnt;

	return cnt;
}

L
Li Zefan 已提交
809 810 811 812 813
static int sched_feat_open(struct inode *inode, struct file *filp)
{
	return single_open(filp, sched_feat_show, NULL);
}

P
Peter Zijlstra 已提交
814
static struct file_operations sched_feat_fops = {
L
Li Zefan 已提交
815 816 817 818 819
	.open		= sched_feat_open,
	.write		= sched_feat_write,
	.read		= seq_read,
	.llseek		= seq_lseek,
	.release	= single_release,
P
Peter Zijlstra 已提交
820 821 822 823 824 825 826 827 828 829 830 831 832 833
};

static __init int sched_init_debug(void)
{
	debugfs_create_file("sched_features", 0644, NULL, NULL,
			&sched_feat_fops);

	return 0;
}
late_initcall(sched_init_debug);

#endif

#define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
I
Ingo Molnar 已提交
834

835 836 837 838 839 840
/*
 * Number of tasks to iterate in a single balance run.
 * Limited because this is done with IRQs disabled.
 */
const_debug unsigned int sysctl_sched_nr_migrate = 32;

P
Peter Zijlstra 已提交
841 842
/*
 * ratelimit for updating the group shares.
843
 * default: 0.25ms
P
Peter Zijlstra 已提交
844
 */
845
unsigned int sysctl_sched_shares_ratelimit = 250000;
P
Peter Zijlstra 已提交
846

847 848 849 850 851 852 853
/*
 * Inject some fuzzyness into changing the per-cpu group shares
 * this avoids remote rq-locks at the expense of fairness.
 * default: 4
 */
unsigned int sysctl_sched_shares_thresh = 4;

P
Peter Zijlstra 已提交
854
/*
P
Peter Zijlstra 已提交
855
 * period over which we measure -rt task cpu usage in us.
P
Peter Zijlstra 已提交
856 857
 * default: 1s
 */
P
Peter Zijlstra 已提交
858
unsigned int sysctl_sched_rt_period = 1000000;
P
Peter Zijlstra 已提交
859

860 861
static __read_mostly int scheduler_running;

P
Peter Zijlstra 已提交
862 863 864 865 866
/*
 * part of the period that we allow rt tasks to run in us.
 * default: 0.95s
 */
int sysctl_sched_rt_runtime = 950000;
P
Peter Zijlstra 已提交
867

868 869 870 871 872 873 874
static inline u64 global_rt_period(void)
{
	return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
}

static inline u64 global_rt_runtime(void)
{
875
	if (sysctl_sched_rt_runtime < 0)
876 877 878 879
		return RUNTIME_INF;

	return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
}
P
Peter Zijlstra 已提交
880

L
Linus Torvalds 已提交
881
#ifndef prepare_arch_switch
882 883 884 885 886 887
# define prepare_arch_switch(next)	do { } while (0)
#endif
#ifndef finish_arch_switch
# define finish_arch_switch(prev)	do { } while (0)
#endif

888 889 890 891 892
static inline int task_current(struct rq *rq, struct task_struct *p)
{
	return rq->curr == p;
}

893
#ifndef __ARCH_WANT_UNLOCKED_CTXSW
894
static inline int task_running(struct rq *rq, struct task_struct *p)
895
{
896
	return task_current(rq, p);
897 898
}

899
static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
900 901 902
{
}

903
static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
904
{
905 906 907 908
#ifdef CONFIG_DEBUG_SPINLOCK
	/* this is a valid case when another task releases the spinlock */
	rq->lock.owner = current;
#endif
909 910 911 912 913 914 915
	/*
	 * If we are tracking spinlock dependencies then we have to
	 * fix up the runqueue lock - which gets 'carried over' from
	 * prev into current:
	 */
	spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);

916 917 918 919
	spin_unlock_irq(&rq->lock);
}

#else /* __ARCH_WANT_UNLOCKED_CTXSW */
920
static inline int task_running(struct rq *rq, struct task_struct *p)
921 922 923 924
{
#ifdef CONFIG_SMP
	return p->oncpu;
#else
925
	return task_current(rq, p);
926 927 928
#endif
}

929
static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945
{
#ifdef CONFIG_SMP
	/*
	 * We can optimise this out completely for !SMP, because the
	 * SMP rebalancing from interrupt is the only thing that cares
	 * here.
	 */
	next->oncpu = 1;
#endif
#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
	spin_unlock_irq(&rq->lock);
#else
	spin_unlock(&rq->lock);
#endif
}

946
static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
947 948 949 950 951 952 953 954 955 956 957 958
{
#ifdef CONFIG_SMP
	/*
	 * After ->oncpu is cleared, the task can be moved to a different CPU.
	 * We must ensure this doesn't happen until the switch is completely
	 * finished.
	 */
	smp_wmb();
	prev->oncpu = 0;
#endif
#ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
	local_irq_enable();
L
Linus Torvalds 已提交
959
#endif
960 961
}
#endif /* __ARCH_WANT_UNLOCKED_CTXSW */
L
Linus Torvalds 已提交
962

963 964 965 966
/*
 * __task_rq_lock - lock the runqueue a given task resides on.
 * Must be called interrupts disabled.
 */
967
static inline struct rq *__task_rq_lock(struct task_struct *p)
968 969
	__acquires(rq->lock)
{
970 971 972 973 974
	for (;;) {
		struct rq *rq = task_rq(p);
		spin_lock(&rq->lock);
		if (likely(rq == task_rq(p)))
			return rq;
975 976 977 978
		spin_unlock(&rq->lock);
	}
}

L
Linus Torvalds 已提交
979 980
/*
 * task_rq_lock - lock the runqueue a given task resides on and disable
I
Ingo Molnar 已提交
981
 * interrupts. Note the ordering: we can safely lookup the task_rq without
L
Linus Torvalds 已提交
982 983
 * explicitly disabling preemption.
 */
984
static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
L
Linus Torvalds 已提交
985 986
	__acquires(rq->lock)
{
987
	struct rq *rq;
L
Linus Torvalds 已提交
988

989 990 991 992 993 994
	for (;;) {
		local_irq_save(*flags);
		rq = task_rq(p);
		spin_lock(&rq->lock);
		if (likely(rq == task_rq(p)))
			return rq;
L
Linus Torvalds 已提交
995 996 997 998
		spin_unlock_irqrestore(&rq->lock, *flags);
	}
}

999 1000 1001 1002 1003 1004 1005 1006
void task_rq_unlock_wait(struct task_struct *p)
{
	struct rq *rq = task_rq(p);

	smp_mb(); /* spin-unlock-wait is not a full memory barrier */
	spin_unlock_wait(&rq->lock);
}

A
Alexey Dobriyan 已提交
1007
static void __task_rq_unlock(struct rq *rq)
1008 1009 1010 1011 1012
	__releases(rq->lock)
{
	spin_unlock(&rq->lock);
}

1013
static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
L
Linus Torvalds 已提交
1014 1015 1016 1017 1018 1019
	__releases(rq->lock)
{
	spin_unlock_irqrestore(&rq->lock, *flags);
}

/*
1020
 * this_rq_lock - lock this runqueue and disable interrupts.
L
Linus Torvalds 已提交
1021
 */
A
Alexey Dobriyan 已提交
1022
static struct rq *this_rq_lock(void)
L
Linus Torvalds 已提交
1023 1024
	__acquires(rq->lock)
{
1025
	struct rq *rq;
L
Linus Torvalds 已提交
1026 1027 1028 1029 1030 1031 1032 1033

	local_irq_disable();
	rq = this_rq();
	spin_lock(&rq->lock);

	return rq;
}

P
Peter Zijlstra 已提交
1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054
#ifdef CONFIG_SCHED_HRTICK
/*
 * Use HR-timers to deliver accurate preemption points.
 *
 * Its all a bit involved since we cannot program an hrt while holding the
 * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
 * reschedule event.
 *
 * When we get rescheduled we reprogram the hrtick_timer outside of the
 * rq->lock.
 */

/*
 * Use hrtick when:
 *  - enabled by features
 *  - hrtimer is actually high res
 */
static inline int hrtick_enabled(struct rq *rq)
{
	if (!sched_feat(HRTICK))
		return 0;
1055
	if (!cpu_active(cpu_of(rq)))
1056
		return 0;
P
Peter Zijlstra 已提交
1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076
	return hrtimer_is_hres_active(&rq->hrtick_timer);
}

static void hrtick_clear(struct rq *rq)
{
	if (hrtimer_active(&rq->hrtick_timer))
		hrtimer_cancel(&rq->hrtick_timer);
}

/*
 * High-resolution timer tick.
 * Runs from hardirq context with interrupts disabled.
 */
static enum hrtimer_restart hrtick(struct hrtimer *timer)
{
	struct rq *rq = container_of(timer, struct rq, hrtick_timer);

	WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());

	spin_lock(&rq->lock);
1077
	update_rq_clock(rq);
P
Peter Zijlstra 已提交
1078 1079 1080 1081 1082 1083
	rq->curr->sched_class->task_tick(rq, rq->curr, 1);
	spin_unlock(&rq->lock);

	return HRTIMER_NORESTART;
}

1084
#ifdef CONFIG_SMP
1085 1086 1087 1088
/*
 * called from hardirq (IPI) context
 */
static void __hrtick_start(void *arg)
1089
{
1090
	struct rq *rq = arg;
1091

1092 1093 1094 1095
	spin_lock(&rq->lock);
	hrtimer_restart(&rq->hrtick_timer);
	rq->hrtick_csd_pending = 0;
	spin_unlock(&rq->lock);
1096 1097
}

1098 1099 1100 1101 1102 1103
/*
 * Called to set the hrtick timer state.
 *
 * called with rq->lock held and irqs disabled
 */
static void hrtick_start(struct rq *rq, u64 delay)
1104
{
1105 1106
	struct hrtimer *timer = &rq->hrtick_timer;
	ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
1107

1108
	hrtimer_set_expires(timer, time);
1109 1110 1111 1112 1113 1114 1115

	if (rq == this_rq()) {
		hrtimer_restart(timer);
	} else if (!rq->hrtick_csd_pending) {
		__smp_call_function_single(cpu_of(rq), &rq->hrtick_csd);
		rq->hrtick_csd_pending = 1;
	}
1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129
}

static int
hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
{
	int cpu = (int)(long)hcpu;

	switch (action) {
	case CPU_UP_CANCELED:
	case CPU_UP_CANCELED_FROZEN:
	case CPU_DOWN_PREPARE:
	case CPU_DOWN_PREPARE_FROZEN:
	case CPU_DEAD:
	case CPU_DEAD_FROZEN:
1130
		hrtick_clear(cpu_rq(cpu));
1131 1132 1133 1134 1135 1136
		return NOTIFY_OK;
	}

	return NOTIFY_DONE;
}

1137
static __init void init_hrtick(void)
1138 1139 1140
{
	hotcpu_notifier(hotplug_hrtick, 0);
}
1141 1142 1143 1144 1145 1146 1147 1148 1149 1150
#else
/*
 * Called to set the hrtick timer state.
 *
 * called with rq->lock held and irqs disabled
 */
static void hrtick_start(struct rq *rq, u64 delay)
{
	hrtimer_start(&rq->hrtick_timer, ns_to_ktime(delay), HRTIMER_MODE_REL);
}
1151

A
Andrew Morton 已提交
1152
static inline void init_hrtick(void)
P
Peter Zijlstra 已提交
1153 1154
{
}
1155
#endif /* CONFIG_SMP */
P
Peter Zijlstra 已提交
1156

1157
static void init_rq_hrtick(struct rq *rq)
P
Peter Zijlstra 已提交
1158
{
1159 1160
#ifdef CONFIG_SMP
	rq->hrtick_csd_pending = 0;
P
Peter Zijlstra 已提交
1161

1162 1163 1164 1165
	rq->hrtick_csd.flags = 0;
	rq->hrtick_csd.func = __hrtick_start;
	rq->hrtick_csd.info = rq;
#endif
P
Peter Zijlstra 已提交
1166

1167 1168
	hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
	rq->hrtick_timer.function = hrtick;
P
Peter Zijlstra 已提交
1169
}
A
Andrew Morton 已提交
1170
#else	/* CONFIG_SCHED_HRTICK */
P
Peter Zijlstra 已提交
1171 1172 1173 1174 1175 1176 1177 1178
static inline void hrtick_clear(struct rq *rq)
{
}

static inline void init_rq_hrtick(struct rq *rq)
{
}

1179 1180 1181
static inline void init_hrtick(void)
{
}
A
Andrew Morton 已提交
1182
#endif	/* CONFIG_SCHED_HRTICK */
P
Peter Zijlstra 已提交
1183

I
Ingo Molnar 已提交
1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196
/*
 * resched_task - mark a task 'to be rescheduled now'.
 *
 * On UP this means the setting of the need_resched flag, on SMP it
 * might also involve a cross-CPU call to trigger the scheduler on
 * the target CPU.
 */
#ifdef CONFIG_SMP

#ifndef tsk_is_polling
#define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
#endif

1197
static void resched_task(struct task_struct *p)
I
Ingo Molnar 已提交
1198 1199 1200 1201 1202
{
	int cpu;

	assert_spin_locked(&task_rq(p)->lock);

1203
	if (test_tsk_need_resched(p))
I
Ingo Molnar 已提交
1204 1205
		return;

1206
	set_tsk_need_resched(p);
I
Ingo Molnar 已提交
1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227

	cpu = task_cpu(p);
	if (cpu == smp_processor_id())
		return;

	/* NEED_RESCHED must be visible before we test polling */
	smp_mb();
	if (!tsk_is_polling(p))
		smp_send_reschedule(cpu);
}

static void resched_cpu(int cpu)
{
	struct rq *rq = cpu_rq(cpu);
	unsigned long flags;

	if (!spin_trylock_irqsave(&rq->lock, flags))
		return;
	resched_task(cpu_curr(cpu));
	spin_unlock_irqrestore(&rq->lock, flags);
}
1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261

#ifdef CONFIG_NO_HZ
/*
 * When add_timer_on() enqueues a timer into the timer wheel of an
 * idle CPU then this timer might expire before the next timer event
 * which is scheduled to wake up that CPU. In case of a completely
 * idle system the next event might even be infinite time into the
 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
 * leaves the inner idle loop so the newly added timer is taken into
 * account when the CPU goes back to idle and evaluates the timer
 * wheel for the next timer event.
 */
void wake_up_idle_cpu(int cpu)
{
	struct rq *rq = cpu_rq(cpu);

	if (cpu == smp_processor_id())
		return;

	/*
	 * This is safe, as this function is called with the timer
	 * wheel base lock of (cpu) held. When the CPU is on the way
	 * to idle and has not yet set rq->curr to idle then it will
	 * be serialized on the timer wheel base lock and take the new
	 * timer into account automatically.
	 */
	if (rq->curr != rq->idle)
		return;

	/*
	 * We can set TIF_RESCHED on the idle task of the other CPU
	 * lockless. The worst case is that the other CPU runs the
	 * idle task through an additional NOOP schedule()
	 */
1262
	set_tsk_need_resched(rq->idle);
1263 1264 1265 1266 1267 1268

	/* NEED_RESCHED must be visible before we test polling */
	smp_mb();
	if (!tsk_is_polling(rq->idle))
		smp_send_reschedule(cpu);
}
1269
#endif /* CONFIG_NO_HZ */
1270

1271
#else /* !CONFIG_SMP */
1272
static void resched_task(struct task_struct *p)
I
Ingo Molnar 已提交
1273 1274
{
	assert_spin_locked(&task_rq(p)->lock);
1275
	set_tsk_need_resched(p);
I
Ingo Molnar 已提交
1276
}
1277
#endif /* CONFIG_SMP */
I
Ingo Molnar 已提交
1278

1279 1280 1281 1282 1283 1284 1285 1286
#if BITS_PER_LONG == 32
# define WMULT_CONST	(~0UL)
#else
# define WMULT_CONST	(1UL << 32)
#endif

#define WMULT_SHIFT	32

I
Ingo Molnar 已提交
1287 1288 1289
/*
 * Shift right and round:
 */
I
Ingo Molnar 已提交
1290
#define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
I
Ingo Molnar 已提交
1291

1292 1293 1294
/*
 * delta *= weight / lw
 */
1295
static unsigned long
1296 1297 1298 1299 1300
calc_delta_mine(unsigned long delta_exec, unsigned long weight,
		struct load_weight *lw)
{
	u64 tmp;

1301 1302 1303 1304 1305 1306 1307
	if (!lw->inv_weight) {
		if (BITS_PER_LONG > 32 && unlikely(lw->weight >= WMULT_CONST))
			lw->inv_weight = 1;
		else
			lw->inv_weight = 1 + (WMULT_CONST-lw->weight/2)
				/ (lw->weight+1);
	}
1308 1309 1310 1311 1312

	tmp = (u64)delta_exec * weight;
	/*
	 * Check whether we'd overflow the 64-bit multiplication:
	 */
I
Ingo Molnar 已提交
1313
	if (unlikely(tmp > WMULT_CONST))
I
Ingo Molnar 已提交
1314
		tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
I
Ingo Molnar 已提交
1315 1316
			WMULT_SHIFT/2);
	else
I
Ingo Molnar 已提交
1317
		tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
1318

1319
	return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
1320 1321
}

1322
static inline void update_load_add(struct load_weight *lw, unsigned long inc)
1323 1324
{
	lw->weight += inc;
I
Ingo Molnar 已提交
1325
	lw->inv_weight = 0;
1326 1327
}

1328
static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
1329 1330
{
	lw->weight -= dec;
I
Ingo Molnar 已提交
1331
	lw->inv_weight = 0;
1332 1333
}

1334 1335 1336 1337
/*
 * To aid in avoiding the subversion of "niceness" due to uneven distribution
 * of tasks with abnormal "nice" values across CPUs the contribution that
 * each task makes to its run queue's load is weighted according to its
I
Ingo Molnar 已提交
1338
 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
1339 1340 1341 1342
 * scaled version of the new time slice allocation that they receive on time
 * slice expiry etc.
 */

P
Peter Zijlstra 已提交
1343 1344
#define WEIGHT_IDLEPRIO                3
#define WMULT_IDLEPRIO         1431655765
I
Ingo Molnar 已提交
1345 1346 1347 1348 1349 1350 1351 1352 1353

/*
 * Nice levels are multiplicative, with a gentle 10% change for every
 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
 * nice 1, it will get ~10% less CPU time than another CPU-bound task
 * that remained on nice 0.
 *
 * The "10% effect" is relative and cumulative: from _any_ nice level,
 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
1354 1355 1356
 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
 * If a task goes up by ~10% and another task goes down by ~10% then
 * the relative distance between them is ~25%.)
I
Ingo Molnar 已提交
1357 1358
 */
static const int prio_to_weight[40] = {
1359 1360 1361 1362 1363 1364 1365 1366
 /* -20 */     88761,     71755,     56483,     46273,     36291,
 /* -15 */     29154,     23254,     18705,     14949,     11916,
 /* -10 */      9548,      7620,      6100,      4904,      3906,
 /*  -5 */      3121,      2501,      1991,      1586,      1277,
 /*   0 */      1024,       820,       655,       526,       423,
 /*   5 */       335,       272,       215,       172,       137,
 /*  10 */       110,        87,        70,        56,        45,
 /*  15 */        36,        29,        23,        18,        15,
I
Ingo Molnar 已提交
1367 1368
};

1369 1370 1371 1372 1373 1374 1375
/*
 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
 *
 * In cases where the weight does not change often, we can use the
 * precalculated inverse to speed up arithmetics by turning divisions
 * into multiplications:
 */
I
Ingo Molnar 已提交
1376
static const u32 prio_to_wmult[40] = {
1377 1378 1379 1380 1381 1382 1383 1384
 /* -20 */     48388,     59856,     76040,     92818,    118348,
 /* -15 */    147320,    184698,    229616,    287308,    360437,
 /* -10 */    449829,    563644,    704093,    875809,   1099582,
 /*  -5 */   1376151,   1717300,   2157191,   2708050,   3363326,
 /*   0 */   4194304,   5237765,   6557202,   8165337,  10153587,
 /*   5 */  12820798,  15790321,  19976592,  24970740,  31350126,
 /*  10 */  39045157,  49367440,  61356676,  76695844,  95443717,
 /*  15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
I
Ingo Molnar 已提交
1385
};
1386

I
Ingo Molnar 已提交
1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399
static void activate_task(struct rq *rq, struct task_struct *p, int wakeup);

/*
 * runqueue iterator, to support SMP load-balancing between different
 * scheduling classes, without having to expose their internal data
 * structures to the load-balancing proper:
 */
struct rq_iterator {
	void *arg;
	struct task_struct *(*start)(void *);
	struct task_struct *(*next)(void *);
};

1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411
#ifdef CONFIG_SMP
static unsigned long
balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
	      unsigned long max_load_move, struct sched_domain *sd,
	      enum cpu_idle_type idle, int *all_pinned,
	      int *this_best_prio, struct rq_iterator *iterator);

static int
iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
		   struct sched_domain *sd, enum cpu_idle_type idle,
		   struct rq_iterator *iterator);
#endif
I
Ingo Molnar 已提交
1412

1413 1414 1415 1416 1417 1418
#ifdef CONFIG_CGROUP_CPUACCT
static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
#else
static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
#endif

1419 1420 1421 1422 1423 1424 1425 1426 1427 1428
static inline void inc_cpu_load(struct rq *rq, unsigned long load)
{
	update_load_add(&rq->load, load);
}

static inline void dec_cpu_load(struct rq *rq, unsigned long load)
{
	update_load_sub(&rq->load, load);
}

I
Ingo Molnar 已提交
1429
#if (defined(CONFIG_SMP) && defined(CONFIG_FAIR_GROUP_SCHED)) || defined(CONFIG_RT_GROUP_SCHED)
P
Peter Zijlstra 已提交
1430
typedef int (*tg_visitor)(struct task_group *, void *);
1431 1432 1433 1434 1435

/*
 * Iterate the full tree, calling @down when first entering a node and @up when
 * leaving it for the final time.
 */
P
Peter Zijlstra 已提交
1436
static int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
1437 1438
{
	struct task_group *parent, *child;
P
Peter Zijlstra 已提交
1439
	int ret;
1440 1441 1442 1443

	rcu_read_lock();
	parent = &root_task_group;
down:
P
Peter Zijlstra 已提交
1444 1445 1446
	ret = (*down)(parent, data);
	if (ret)
		goto out_unlock;
1447 1448 1449 1450 1451 1452 1453
	list_for_each_entry_rcu(child, &parent->children, siblings) {
		parent = child;
		goto down;

up:
		continue;
	}
P
Peter Zijlstra 已提交
1454 1455 1456
	ret = (*up)(parent, data);
	if (ret)
		goto out_unlock;
1457 1458 1459 1460 1461

	child = parent;
	parent = parent->parent;
	if (parent)
		goto up;
P
Peter Zijlstra 已提交
1462
out_unlock:
1463
	rcu_read_unlock();
P
Peter Zijlstra 已提交
1464 1465

	return ret;
1466 1467
}

P
Peter Zijlstra 已提交
1468 1469 1470
static int tg_nop(struct task_group *tg, void *data)
{
	return 0;
1471
}
P
Peter Zijlstra 已提交
1472 1473 1474 1475 1476 1477 1478 1479 1480 1481
#endif

#ifdef CONFIG_SMP
static unsigned long source_load(int cpu, int type);
static unsigned long target_load(int cpu, int type);
static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd);

static unsigned long cpu_avg_load_per_task(int cpu)
{
	struct rq *rq = cpu_rq(cpu);
1482
	unsigned long nr_running = ACCESS_ONCE(rq->nr_running);
P
Peter Zijlstra 已提交
1483

1484 1485
	if (nr_running)
		rq->avg_load_per_task = rq->load.weight / nr_running;
1486 1487
	else
		rq->avg_load_per_task = 0;
P
Peter Zijlstra 已提交
1488 1489 1490 1491 1492

	return rq->avg_load_per_task;
}

#ifdef CONFIG_FAIR_GROUP_SCHED
1493 1494 1495 1496 1497 1498 1499

static void __set_se_shares(struct sched_entity *se, unsigned long shares);

/*
 * Calculate and set the cpu's group shares.
 */
static void
1500 1501
update_group_shares_cpu(struct task_group *tg, int cpu,
			unsigned long sd_shares, unsigned long sd_rq_weight)
1502
{
1503 1504 1505
	unsigned long shares;
	unsigned long rq_weight;

1506
	if (!tg->se[cpu])
1507 1508
		return;

1509
	rq_weight = tg->cfs_rq[cpu]->rq_weight;
1510

1511 1512 1513 1514 1515 1516
	/*
	 *           \Sum shares * rq_weight
	 * shares =  -----------------------
	 *               \Sum rq_weight
	 *
	 */
1517
	shares = (sd_shares * rq_weight) / sd_rq_weight;
1518
	shares = clamp_t(unsigned long, shares, MIN_SHARES, MAX_SHARES);
1519

1520 1521 1522 1523
	if (abs(shares - tg->se[cpu]->load.weight) >
			sysctl_sched_shares_thresh) {
		struct rq *rq = cpu_rq(cpu);
		unsigned long flags;
1524

1525
		spin_lock_irqsave(&rq->lock, flags);
1526
		tg->cfs_rq[cpu]->shares = shares;
1527

1528 1529 1530
		__set_se_shares(tg->se[cpu], shares);
		spin_unlock_irqrestore(&rq->lock, flags);
	}
1531
}
1532 1533

/*
1534 1535 1536
 * Re-compute the task group their per cpu shares over the given domain.
 * This needs to be done in a bottom-up fashion because the rq weight of a
 * parent group depends on the shares of its child groups.
1537
 */
P
Peter Zijlstra 已提交
1538
static int tg_shares_up(struct task_group *tg, void *data)
1539
{
1540
	unsigned long weight, rq_weight = 0;
1541
	unsigned long shares = 0;
P
Peter Zijlstra 已提交
1542
	struct sched_domain *sd = data;
1543
	int i;
1544

1545
	for_each_cpu(i, sched_domain_span(sd)) {
1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556
		/*
		 * If there are currently no tasks on the cpu pretend there
		 * is one of average load so that when a new task gets to
		 * run here it will not get delayed by group starvation.
		 */
		weight = tg->cfs_rq[i]->load.weight;
		if (!weight)
			weight = NICE_0_LOAD;

		tg->cfs_rq[i]->rq_weight = weight;
		rq_weight += weight;
1557
		shares += tg->cfs_rq[i]->shares;
1558 1559
	}

1560 1561 1562 1563 1564
	if ((!shares && rq_weight) || shares > tg->shares)
		shares = tg->shares;

	if (!sd->parent || !(sd->parent->flags & SD_LOAD_BALANCE))
		shares = tg->shares;
1565

1566
	for_each_cpu(i, sched_domain_span(sd))
1567
		update_group_shares_cpu(tg, i, shares, rq_weight);
P
Peter Zijlstra 已提交
1568 1569

	return 0;
1570 1571 1572
}

/*
1573 1574 1575
 * Compute the cpu's hierarchical load factor for each task group.
 * This needs to be done in a top-down fashion because the load of a child
 * group is a fraction of its parents load.
1576
 */
P
Peter Zijlstra 已提交
1577
static int tg_load_down(struct task_group *tg, void *data)
1578
{
1579
	unsigned long load;
P
Peter Zijlstra 已提交
1580
	long cpu = (long)data;
1581

1582 1583 1584 1585 1586 1587 1588
	if (!tg->parent) {
		load = cpu_rq(cpu)->load.weight;
	} else {
		load = tg->parent->cfs_rq[cpu]->h_load;
		load *= tg->cfs_rq[cpu]->shares;
		load /= tg->parent->cfs_rq[cpu]->load.weight + 1;
	}
1589

1590
	tg->cfs_rq[cpu]->h_load = load;
1591

P
Peter Zijlstra 已提交
1592
	return 0;
1593 1594
}

1595
static void update_shares(struct sched_domain *sd)
1596
{
P
Peter Zijlstra 已提交
1597 1598 1599 1600 1601
	u64 now = cpu_clock(raw_smp_processor_id());
	s64 elapsed = now - sd->last_update;

	if (elapsed >= (s64)(u64)sysctl_sched_shares_ratelimit) {
		sd->last_update = now;
P
Peter Zijlstra 已提交
1602
		walk_tg_tree(tg_nop, tg_shares_up, sd);
P
Peter Zijlstra 已提交
1603
	}
1604 1605
}

1606 1607 1608 1609 1610 1611 1612
static void update_shares_locked(struct rq *rq, struct sched_domain *sd)
{
	spin_unlock(&rq->lock);
	update_shares(sd);
	spin_lock(&rq->lock);
}

P
Peter Zijlstra 已提交
1613
static void update_h_load(long cpu)
1614
{
P
Peter Zijlstra 已提交
1615
	walk_tg_tree(tg_load_down, tg_nop, (void *)cpu);
1616 1617 1618 1619
}

#else

1620
static inline void update_shares(struct sched_domain *sd)
1621 1622 1623
{
}

1624 1625 1626 1627
static inline void update_shares_locked(struct rq *rq, struct sched_domain *sd)
{
}

1628 1629
#endif

1630 1631
#ifdef CONFIG_PREEMPT

1632
/*
1633 1634 1635 1636 1637 1638
 * fair double_lock_balance: Safely acquires both rq->locks in a fair
 * way at the expense of forcing extra atomic operations in all
 * invocations.  This assures that the double_lock is acquired using the
 * same underlying policy as the spinlock_t on this architecture, which
 * reduces latency compared to the unfair variant below.  However, it
 * also adds more overhead and therefore may reduce throughput.
1639
 */
1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659
static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
	__releases(this_rq->lock)
	__acquires(busiest->lock)
	__acquires(this_rq->lock)
{
	spin_unlock(&this_rq->lock);
	double_rq_lock(this_rq, busiest);

	return 1;
}

#else
/*
 * Unfair double_lock_balance: Optimizes throughput at the expense of
 * latency by eliminating extra atomic operations when the locks are
 * already in proper order on entry.  This favors lower cpu-ids and will
 * grant the double lock to lower cpus over higher ids under contention,
 * regardless of entry order into the function.
 */
static int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677
	__releases(this_rq->lock)
	__acquires(busiest->lock)
	__acquires(this_rq->lock)
{
	int ret = 0;

	if (unlikely(!spin_trylock(&busiest->lock))) {
		if (busiest < this_rq) {
			spin_unlock(&this_rq->lock);
			spin_lock(&busiest->lock);
			spin_lock_nested(&this_rq->lock, SINGLE_DEPTH_NESTING);
			ret = 1;
		} else
			spin_lock_nested(&busiest->lock, SINGLE_DEPTH_NESTING);
	}
	return ret;
}

1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693
#endif /* CONFIG_PREEMPT */

/*
 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
 */
static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
{
	if (unlikely(!irqs_disabled())) {
		/* printk() doesn't work good under rq->lock */
		spin_unlock(&this_rq->lock);
		BUG_ON(1);
	}

	return _double_lock_balance(this_rq, busiest);
}

1694 1695 1696 1697 1698 1699
static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
	__releases(busiest->lock)
{
	spin_unlock(&busiest->lock);
	lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
}
1700 1701
#endif

V
Vegard Nossum 已提交
1702
#ifdef CONFIG_FAIR_GROUP_SCHED
I
Ingo Molnar 已提交
1703 1704
static void cfs_rq_set_shares(struct cfs_rq *cfs_rq, unsigned long shares)
{
V
Vegard Nossum 已提交
1705
#ifdef CONFIG_SMP
I
Ingo Molnar 已提交
1706 1707 1708
	cfs_rq->shares = shares;
#endif
}
V
Vegard Nossum 已提交
1709
#endif
1710

I
Ingo Molnar 已提交
1711 1712
#include "sched_stats.h"
#include "sched_idletask.c"
1713 1714
#include "sched_fair.c"
#include "sched_rt.c"
I
Ingo Molnar 已提交
1715 1716 1717 1718 1719
#ifdef CONFIG_SCHED_DEBUG
# include "sched_debug.c"
#endif

#define sched_class_highest (&rt_sched_class)
1720 1721
#define for_each_class(class) \
   for (class = sched_class_highest; class; class = class->next)
I
Ingo Molnar 已提交
1722

1723
static void inc_nr_running(struct rq *rq)
1724 1725 1726 1727
{
	rq->nr_running++;
}

1728
static void dec_nr_running(struct rq *rq)
1729 1730 1731 1732
{
	rq->nr_running--;
}

1733 1734 1735
static void set_load_weight(struct task_struct *p)
{
	if (task_has_rt_policy(p)) {
I
Ingo Molnar 已提交
1736 1737 1738 1739
		p->se.load.weight = prio_to_weight[0] * 2;
		p->se.load.inv_weight = prio_to_wmult[0] >> 1;
		return;
	}
1740

I
Ingo Molnar 已提交
1741 1742 1743 1744 1745 1746 1747 1748
	/*
	 * SCHED_IDLE tasks get minimal weight:
	 */
	if (p->policy == SCHED_IDLE) {
		p->se.load.weight = WEIGHT_IDLEPRIO;
		p->se.load.inv_weight = WMULT_IDLEPRIO;
		return;
	}
1749

I
Ingo Molnar 已提交
1750 1751
	p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
	p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
1752 1753
}

1754 1755 1756 1757 1758 1759
static void update_avg(u64 *avg, u64 sample)
{
	s64 diff = sample - *avg;
	*avg += diff >> 3;
}

1760
static void enqueue_task(struct rq *rq, struct task_struct *p, int wakeup)
1761
{
P
Peter Zijlstra 已提交
1762 1763 1764
	if (wakeup)
		p->se.start_runtime = p->se.sum_exec_runtime;

I
Ingo Molnar 已提交
1765
	sched_info_queued(p);
1766
	p->sched_class->enqueue_task(rq, p, wakeup);
I
Ingo Molnar 已提交
1767
	p->se.on_rq = 1;
1768 1769
}

1770
static void dequeue_task(struct rq *rq, struct task_struct *p, int sleep)
1771
{
P
Peter Zijlstra 已提交
1772 1773 1774 1775 1776 1777 1778 1779 1780
	if (sleep) {
		if (p->se.last_wakeup) {
			update_avg(&p->se.avg_overlap,
				p->se.sum_exec_runtime - p->se.last_wakeup);
			p->se.last_wakeup = 0;
		} else {
			update_avg(&p->se.avg_wakeup,
				sysctl_sched_wakeup_granularity);
		}
1781 1782
	}

1783
	sched_info_dequeued(p);
1784
	p->sched_class->dequeue_task(rq, p, sleep);
I
Ingo Molnar 已提交
1785
	p->se.on_rq = 0;
1786 1787
}

1788
/*
I
Ingo Molnar 已提交
1789
 * __normal_prio - return the priority that is based on the static prio
1790 1791 1792
 */
static inline int __normal_prio(struct task_struct *p)
{
I
Ingo Molnar 已提交
1793
	return p->static_prio;
1794 1795
}

1796 1797 1798 1799 1800 1801 1802
/*
 * Calculate the expected normal priority: i.e. priority
 * without taking RT-inheritance into account. Might be
 * boosted by interactivity modifiers. Changes upon fork,
 * setprio syscalls, and whenever the interactivity
 * estimator recalculates.
 */
1803
static inline int normal_prio(struct task_struct *p)
1804 1805 1806
{
	int prio;

1807
	if (task_has_rt_policy(p))
1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820
		prio = MAX_RT_PRIO-1 - p->rt_priority;
	else
		prio = __normal_prio(p);
	return prio;
}

/*
 * Calculate the current priority, i.e. the priority
 * taken into account by the scheduler. This value might
 * be boosted by RT tasks, or might be boosted by
 * interactivity modifiers. Will be RT if the task got
 * RT-boosted. If not then it returns p->normal_prio.
 */
1821
static int effective_prio(struct task_struct *p)
1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833
{
	p->normal_prio = normal_prio(p);
	/*
	 * If we are RT tasks or we were boosted to RT priority,
	 * keep the priority unchanged. Otherwise, update priority
	 * to the normal priority:
	 */
	if (!rt_prio(p->prio))
		return p->normal_prio;
	return p->prio;
}

L
Linus Torvalds 已提交
1834
/*
I
Ingo Molnar 已提交
1835
 * activate_task - move a task to the runqueue.
L
Linus Torvalds 已提交
1836
 */
I
Ingo Molnar 已提交
1837
static void activate_task(struct rq *rq, struct task_struct *p, int wakeup)
L
Linus Torvalds 已提交
1838
{
1839
	if (task_contributes_to_load(p))
I
Ingo Molnar 已提交
1840
		rq->nr_uninterruptible--;
L
Linus Torvalds 已提交
1841

1842
	enqueue_task(rq, p, wakeup);
1843
	inc_nr_running(rq);
L
Linus Torvalds 已提交
1844 1845 1846 1847 1848
}

/*
 * deactivate_task - remove a task from the runqueue.
 */
1849
static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep)
L
Linus Torvalds 已提交
1850
{
1851
	if (task_contributes_to_load(p))
I
Ingo Molnar 已提交
1852 1853
		rq->nr_uninterruptible++;

1854
	dequeue_task(rq, p, sleep);
1855
	dec_nr_running(rq);
L
Linus Torvalds 已提交
1856 1857 1858 1859 1860 1861
}

/**
 * task_curr - is this task currently executing on a CPU?
 * @p: the task in question.
 */
1862
inline int task_curr(const struct task_struct *p)
L
Linus Torvalds 已提交
1863 1864 1865 1866
{
	return cpu_curr(task_cpu(p)) == p;
}

I
Ingo Molnar 已提交
1867 1868
static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
{
P
Peter Zijlstra 已提交
1869
	set_task_rq(p, cpu);
I
Ingo Molnar 已提交
1870
#ifdef CONFIG_SMP
1871 1872 1873 1874 1875 1876
	/*
	 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
	 * successfuly executed on another CPU. We must ensure that updates of
	 * per-task data have been completed by this moment.
	 */
	smp_wmb();
I
Ingo Molnar 已提交
1877 1878
	task_thread_info(p)->cpu = cpu;
#endif
1879 1880
}

1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892
static inline void check_class_changed(struct rq *rq, struct task_struct *p,
				       const struct sched_class *prev_class,
				       int oldprio, int running)
{
	if (prev_class != p->sched_class) {
		if (prev_class->switched_from)
			prev_class->switched_from(rq, p, running);
		p->sched_class->switched_to(rq, p, running);
	} else
		p->sched_class->prio_changed(rq, p, oldprio, running);
}

L
Linus Torvalds 已提交
1893
#ifdef CONFIG_SMP
I
Ingo Molnar 已提交
1894

1895 1896 1897 1898 1899 1900
/* Used instead of source_load when we know the type == 0 */
static unsigned long weighted_cpuload(const int cpu)
{
	return cpu_rq(cpu)->load.weight;
}

1901 1902 1903
/*
 * Is this task likely cache-hot:
 */
1904
static int
1905 1906 1907 1908
task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
{
	s64 delta;

1909 1910 1911
	/*
	 * Buddy candidates are cache hot:
	 */
P
Peter Zijlstra 已提交
1912 1913 1914
	if (sched_feat(CACHE_HOT_BUDDY) &&
			(&p->se == cfs_rq_of(&p->se)->next ||
			 &p->se == cfs_rq_of(&p->se)->last))
1915 1916
		return 1;

1917 1918 1919
	if (p->sched_class != &fair_sched_class)
		return 0;

1920 1921 1922 1923 1924
	if (sysctl_sched_migration_cost == -1)
		return 1;
	if (sysctl_sched_migration_cost == 0)
		return 0;

1925 1926 1927 1928 1929 1930
	delta = now - p->se.exec_start;

	return delta < (s64)sysctl_sched_migration_cost;
}


I
Ingo Molnar 已提交
1931
void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
I
Ingo Molnar 已提交
1932
{
I
Ingo Molnar 已提交
1933 1934
	int old_cpu = task_cpu(p);
	struct rq *old_rq = cpu_rq(old_cpu), *new_rq = cpu_rq(new_cpu);
1935 1936
	struct cfs_rq *old_cfsrq = task_cfs_rq(p),
		      *new_cfsrq = cpu_cfs_rq(old_cfsrq, new_cpu);
1937
	u64 clock_offset;
I
Ingo Molnar 已提交
1938 1939

	clock_offset = old_rq->clock - new_rq->clock;
I
Ingo Molnar 已提交
1940

1941 1942
	trace_sched_migrate_task(p, task_cpu(p), new_cpu);

I
Ingo Molnar 已提交
1943 1944 1945
#ifdef CONFIG_SCHEDSTATS
	if (p->se.wait_start)
		p->se.wait_start -= clock_offset;
I
Ingo Molnar 已提交
1946 1947 1948 1949
	if (p->se.sleep_start)
		p->se.sleep_start -= clock_offset;
	if (p->se.block_start)
		p->se.block_start -= clock_offset;
1950 1951 1952 1953 1954
	if (old_cpu != new_cpu) {
		schedstat_inc(p, se.nr_migrations);
		if (task_hot(p, old_rq->clock, NULL))
			schedstat_inc(p, se.nr_forced2_migrations);
	}
I
Ingo Molnar 已提交
1955
#endif
1956 1957
	p->se.vruntime -= old_cfsrq->min_vruntime -
					 new_cfsrq->min_vruntime;
I
Ingo Molnar 已提交
1958 1959

	__set_task_cpu(p, new_cpu);
I
Ingo Molnar 已提交
1960 1961
}

1962
struct migration_req {
L
Linus Torvalds 已提交
1963 1964
	struct list_head list;

1965
	struct task_struct *task;
L
Linus Torvalds 已提交
1966 1967 1968
	int dest_cpu;

	struct completion done;
1969
};
L
Linus Torvalds 已提交
1970 1971 1972 1973 1974

/*
 * The task's runqueue lock must be held.
 * Returns true if you have to wait for migration thread.
 */
1975
static int
1976
migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
L
Linus Torvalds 已提交
1977
{
1978
	struct rq *rq = task_rq(p);
L
Linus Torvalds 已提交
1979 1980 1981 1982 1983

	/*
	 * If the task is not on a runqueue (and not running), then
	 * it is sufficient to simply update the task's cpu field.
	 */
I
Ingo Molnar 已提交
1984
	if (!p->se.on_rq && !task_running(rq, p)) {
L
Linus Torvalds 已提交
1985 1986 1987 1988 1989 1990 1991 1992
		set_task_cpu(p, dest_cpu);
		return 0;
	}

	init_completion(&req->done);
	req->task = p;
	req->dest_cpu = dest_cpu;
	list_add(&req->list, &rq->migration_queue);
1993

L
Linus Torvalds 已提交
1994 1995 1996 1997 1998 1999
	return 1;
}

/*
 * wait_task_inactive - wait for a thread to unschedule.
 *
R
Roland McGrath 已提交
2000 2001 2002 2003 2004 2005 2006
 * If @match_state is nonzero, it's the @p->state value just checked and
 * not expected to change.  If it changes, i.e. @p might have woken up,
 * then return zero.  When we succeed in waiting for @p to be off its CPU,
 * we return a positive number (its total switch count).  If a second call
 * a short while later returns the same number, the caller can be sure that
 * @p has remained unscheduled the whole time.
 *
L
Linus Torvalds 已提交
2007 2008 2009 2010 2011 2012
 * The caller must ensure that the task *will* unschedule sometime soon,
 * else this function might spin for a *long* time. This function can't
 * be called with interrupts off, or it may introduce deadlock with
 * smp_call_function() if an IPI is sent by the same process we are
 * waiting to become inactive.
 */
R
Roland McGrath 已提交
2013
unsigned long wait_task_inactive(struct task_struct *p, long match_state)
L
Linus Torvalds 已提交
2014 2015
{
	unsigned long flags;
I
Ingo Molnar 已提交
2016
	int running, on_rq;
R
Roland McGrath 已提交
2017
	unsigned long ncsw;
2018
	struct rq *rq;
L
Linus Torvalds 已提交
2019

2020 2021 2022 2023 2024 2025 2026 2027
	for (;;) {
		/*
		 * We do the initial early heuristics without holding
		 * any task-queue locks at all. We'll only try to get
		 * the runqueue lock when things look like they will
		 * work out!
		 */
		rq = task_rq(p);
2028

2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039
		/*
		 * If the task is actively running on another CPU
		 * still, just relax and busy-wait without holding
		 * any locks.
		 *
		 * NOTE! Since we don't hold any locks, it's not
		 * even sure that "rq" stays as the right runqueue!
		 * But we don't care, since "task_running()" will
		 * return false if the runqueue has changed and p
		 * is actually now running somewhere else!
		 */
R
Roland McGrath 已提交
2040 2041 2042
		while (task_running(rq, p)) {
			if (match_state && unlikely(p->state != match_state))
				return 0;
2043
			cpu_relax();
R
Roland McGrath 已提交
2044
		}
2045

2046 2047 2048 2049 2050 2051
		/*
		 * Ok, time to look more closely! We need the rq
		 * lock now, to be *sure*. If we're wrong, we'll
		 * just go back and repeat.
		 */
		rq = task_rq_lock(p, &flags);
2052
		trace_sched_wait_task(rq, p);
2053 2054
		running = task_running(rq, p);
		on_rq = p->se.on_rq;
R
Roland McGrath 已提交
2055
		ncsw = 0;
2056
		if (!match_state || p->state == match_state)
2057
			ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
2058
		task_rq_unlock(rq, &flags);
2059

R
Roland McGrath 已提交
2060 2061 2062 2063 2064 2065
		/*
		 * If it changed from the expected state, bail out now.
		 */
		if (unlikely(!ncsw))
			break;

2066 2067 2068 2069 2070 2071 2072 2073 2074 2075
		/*
		 * Was it really running after all now that we
		 * checked with the proper locks actually held?
		 *
		 * Oops. Go back and try again..
		 */
		if (unlikely(running)) {
			cpu_relax();
			continue;
		}
2076

2077 2078 2079 2080 2081
		/*
		 * It's not enough that it's not actively running,
		 * it must be off the runqueue _entirely_, and not
		 * preempted!
		 *
2082
		 * So if it was still runnable (but just not actively
2083 2084 2085 2086 2087 2088 2089
		 * running right now), it's preempted, and we should
		 * yield - it could be a while.
		 */
		if (unlikely(on_rq)) {
			schedule_timeout_uninterruptible(1);
			continue;
		}
2090

2091 2092 2093 2094 2095 2096 2097
		/*
		 * Ahh, all good. It wasn't running, and it wasn't
		 * runnable, which means that it will never become
		 * running in the future either. We're all done!
		 */
		break;
	}
R
Roland McGrath 已提交
2098 2099

	return ncsw;
L
Linus Torvalds 已提交
2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114
}

/***
 * kick_process - kick a running thread to enter/exit the kernel
 * @p: the to-be-kicked thread
 *
 * Cause a process which is running on another CPU to enter
 * kernel-mode, without any delay. (to get signals handled.)
 *
 * NOTE: this function doesnt have to take the runqueue lock,
 * because all it wants to ensure is that the remote task enters
 * the kernel. If the IPI races and the task has been migrated
 * to another CPU then no harm is done and the purpose has been
 * achieved as well.
 */
2115
void kick_process(struct task_struct *p)
L
Linus Torvalds 已提交
2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126
{
	int cpu;

	preempt_disable();
	cpu = task_cpu(p);
	if ((cpu != smp_processor_id()) && task_curr(p))
		smp_send_reschedule(cpu);
	preempt_enable();
}

/*
2127 2128
 * Return a low guess at the load of a migration-source cpu weighted
 * according to the scheduling class and "nice" value.
L
Linus Torvalds 已提交
2129 2130 2131 2132
 *
 * We want to under-estimate the load of migration sources, to
 * balance conservatively.
 */
A
Alexey Dobriyan 已提交
2133
static unsigned long source_load(int cpu, int type)
L
Linus Torvalds 已提交
2134
{
2135
	struct rq *rq = cpu_rq(cpu);
I
Ingo Molnar 已提交
2136
	unsigned long total = weighted_cpuload(cpu);
2137

2138
	if (type == 0 || !sched_feat(LB_BIAS))
I
Ingo Molnar 已提交
2139
		return total;
2140

I
Ingo Molnar 已提交
2141
	return min(rq->cpu_load[type-1], total);
L
Linus Torvalds 已提交
2142 2143 2144
}

/*
2145 2146
 * Return a high guess at the load of a migration-target cpu weighted
 * according to the scheduling class and "nice" value.
L
Linus Torvalds 已提交
2147
 */
A
Alexey Dobriyan 已提交
2148
static unsigned long target_load(int cpu, int type)
L
Linus Torvalds 已提交
2149
{
2150
	struct rq *rq = cpu_rq(cpu);
I
Ingo Molnar 已提交
2151
	unsigned long total = weighted_cpuload(cpu);
2152

2153
	if (type == 0 || !sched_feat(LB_BIAS))
I
Ingo Molnar 已提交
2154
		return total;
2155

I
Ingo Molnar 已提交
2156
	return max(rq->cpu_load[type-1], total);
2157 2158
}

N
Nick Piggin 已提交
2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175
/*
 * find_idlest_group finds and returns the least busy CPU group within the
 * domain.
 */
static struct sched_group *
find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
{
	struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups;
	unsigned long min_load = ULONG_MAX, this_load = 0;
	int load_idx = sd->forkexec_idx;
	int imbalance = 100 + (sd->imbalance_pct-100)/2;

	do {
		unsigned long load, avg_load;
		int local_group;
		int i;

2176
		/* Skip over this group if it has no CPUs allowed */
2177 2178
		if (!cpumask_intersects(sched_group_cpus(group),
					&p->cpus_allowed))
2179
			continue;
2180

2181 2182
		local_group = cpumask_test_cpu(this_cpu,
					       sched_group_cpus(group));
N
Nick Piggin 已提交
2183 2184 2185 2186

		/* Tally up the load of all CPUs in the group */
		avg_load = 0;

2187
		for_each_cpu(i, sched_group_cpus(group)) {
N
Nick Piggin 已提交
2188 2189 2190 2191 2192 2193 2194 2195 2196 2197
			/* Bias balancing toward cpus of our domain */
			if (local_group)
				load = source_load(i, load_idx);
			else
				load = target_load(i, load_idx);

			avg_load += load;
		}

		/* Adjust by relative CPU power of the group */
2198 2199
		avg_load = sg_div_cpu_power(group,
				avg_load * SCHED_LOAD_SCALE);
N
Nick Piggin 已提交
2200 2201 2202 2203 2204 2205 2206 2207

		if (local_group) {
			this_load = avg_load;
			this = group;
		} else if (avg_load < min_load) {
			min_load = avg_load;
			idlest = group;
		}
2208
	} while (group = group->next, group != sd->groups);
N
Nick Piggin 已提交
2209 2210 2211 2212 2213 2214 2215

	if (!idlest || 100*this_load < imbalance*min_load)
		return NULL;
	return idlest;
}

/*
2216
 * find_idlest_cpu - find the idlest cpu among the cpus in group.
N
Nick Piggin 已提交
2217
 */
I
Ingo Molnar 已提交
2218
static int
2219
find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
N
Nick Piggin 已提交
2220 2221 2222 2223 2224
{
	unsigned long load, min_load = ULONG_MAX;
	int idlest = -1;
	int i;

2225
	/* Traverse only the allowed CPUs */
2226
	for_each_cpu_and(i, sched_group_cpus(group), &p->cpus_allowed) {
2227
		load = weighted_cpuload(i);
N
Nick Piggin 已提交
2228 2229 2230 2231 2232 2233 2234 2235 2236 2237

		if (load < min_load || (load == min_load && i == this_cpu)) {
			min_load = load;
			idlest = i;
		}
	}

	return idlest;
}

N
Nick Piggin 已提交
2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252
/*
 * sched_balance_self: balance the current task (running on cpu) in domains
 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
 * SD_BALANCE_EXEC.
 *
 * Balance, ie. select the least loaded group.
 *
 * Returns the target CPU number, or the same CPU if no balancing is needed.
 *
 * preempt must be disabled.
 */
static int sched_balance_self(int cpu, int flag)
{
	struct task_struct *t = current;
	struct sched_domain *tmp, *sd = NULL;
N
Nick Piggin 已提交
2253

2254
	for_each_domain(cpu, tmp) {
I
Ingo Molnar 已提交
2255 2256 2257
		/*
		 * If power savings logic is enabled for a domain, stop there.
		 */
2258 2259
		if (tmp->flags & SD_POWERSAVINGS_BALANCE)
			break;
N
Nick Piggin 已提交
2260 2261
		if (tmp->flags & flag)
			sd = tmp;
2262
	}
N
Nick Piggin 已提交
2263

2264 2265 2266
	if (sd)
		update_shares(sd);

N
Nick Piggin 已提交
2267 2268
	while (sd) {
		struct sched_group *group;
2269 2270 2271 2272 2273 2274
		int new_cpu, weight;

		if (!(sd->flags & flag)) {
			sd = sd->child;
			continue;
		}
N
Nick Piggin 已提交
2275 2276

		group = find_idlest_group(sd, t, cpu);
2277 2278 2279 2280
		if (!group) {
			sd = sd->child;
			continue;
		}
N
Nick Piggin 已提交
2281

2282
		new_cpu = find_idlest_cpu(group, t, cpu);
2283 2284 2285 2286 2287
		if (new_cpu == -1 || new_cpu == cpu) {
			/* Now try balancing at a lower domain level of cpu */
			sd = sd->child;
			continue;
		}
N
Nick Piggin 已提交
2288

2289
		/* Now try balancing at a lower domain level of new_cpu */
N
Nick Piggin 已提交
2290
		cpu = new_cpu;
2291
		weight = cpumask_weight(sched_domain_span(sd));
N
Nick Piggin 已提交
2292 2293
		sd = NULL;
		for_each_domain(cpu, tmp) {
2294
			if (weight <= cpumask_weight(sched_domain_span(tmp)))
N
Nick Piggin 已提交
2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305
				break;
			if (tmp->flags & flag)
				sd = tmp;
		}
		/* while loop will break here if sd == NULL */
	}

	return cpu;
}

#endif /* CONFIG_SMP */
L
Linus Torvalds 已提交
2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320

/***
 * try_to_wake_up - wake up a thread
 * @p: the to-be-woken-up thread
 * @state: the mask of task states that can be woken
 * @sync: do a synchronous wakeup?
 *
 * Put it on the run-queue if it's not already there. The "current"
 * thread is always on the run-queue (except when the actual
 * re-schedule is in progress), and as such you're allowed to do
 * the simpler "current->state = TASK_RUNNING" to mark yourself
 * runnable without the overhead of this.
 *
 * returns failure only if the task is already active.
 */
2321
static int try_to_wake_up(struct task_struct *p, unsigned int state, int sync)
L
Linus Torvalds 已提交
2322
{
2323
	int cpu, orig_cpu, this_cpu, success = 0;
L
Linus Torvalds 已提交
2324 2325
	unsigned long flags;
	long old_state;
2326
	struct rq *rq;
L
Linus Torvalds 已提交
2327

2328 2329 2330
	if (!sched_feat(SYNC_WAKEUPS))
		sync = 0;

P
Peter Zijlstra 已提交
2331
#ifdef CONFIG_SMP
2332
	if (sched_feat(LB_WAKEUP_UPDATE) && !root_task_group_empty()) {
P
Peter Zijlstra 已提交
2333 2334 2335 2336 2337 2338
		struct sched_domain *sd;

		this_cpu = raw_smp_processor_id();
		cpu = task_cpu(p);

		for_each_domain(this_cpu, sd) {
2339
			if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
P
Peter Zijlstra 已提交
2340 2341 2342 2343 2344 2345 2346
				update_shares(sd);
				break;
			}
		}
	}
#endif

2347
	smp_wmb();
L
Linus Torvalds 已提交
2348
	rq = task_rq_lock(p, &flags);
2349
	update_rq_clock(rq);
L
Linus Torvalds 已提交
2350 2351 2352 2353
	old_state = p->state;
	if (!(old_state & state))
		goto out;

I
Ingo Molnar 已提交
2354
	if (p->se.on_rq)
L
Linus Torvalds 已提交
2355 2356 2357
		goto out_running;

	cpu = task_cpu(p);
2358
	orig_cpu = cpu;
L
Linus Torvalds 已提交
2359 2360 2361 2362 2363 2364
	this_cpu = smp_processor_id();

#ifdef CONFIG_SMP
	if (unlikely(task_running(rq, p)))
		goto out_activate;

2365 2366 2367
	cpu = p->sched_class->select_task_rq(p, sync);
	if (cpu != orig_cpu) {
		set_task_cpu(p, cpu);
L
Linus Torvalds 已提交
2368 2369 2370 2371 2372 2373
		task_rq_unlock(rq, &flags);
		/* might preempt at this point */
		rq = task_rq_lock(p, &flags);
		old_state = p->state;
		if (!(old_state & state))
			goto out;
I
Ingo Molnar 已提交
2374
		if (p->se.on_rq)
L
Linus Torvalds 已提交
2375 2376 2377 2378 2379 2380
			goto out_running;

		this_cpu = smp_processor_id();
		cpu = task_cpu(p);
	}

2381 2382 2383 2384 2385 2386 2387
#ifdef CONFIG_SCHEDSTATS
	schedstat_inc(rq, ttwu_count);
	if (cpu == this_cpu)
		schedstat_inc(rq, ttwu_local);
	else {
		struct sched_domain *sd;
		for_each_domain(this_cpu, sd) {
2388
			if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
2389 2390 2391 2392 2393
				schedstat_inc(sd, ttwu_wake_remote);
				break;
			}
		}
	}
2394
#endif /* CONFIG_SCHEDSTATS */
2395

L
Linus Torvalds 已提交
2396 2397
out_activate:
#endif /* CONFIG_SMP */
2398 2399 2400 2401 2402 2403 2404 2405 2406
	schedstat_inc(p, se.nr_wakeups);
	if (sync)
		schedstat_inc(p, se.nr_wakeups_sync);
	if (orig_cpu != cpu)
		schedstat_inc(p, se.nr_wakeups_migrate);
	if (cpu == this_cpu)
		schedstat_inc(p, se.nr_wakeups_local);
	else
		schedstat_inc(p, se.nr_wakeups_remote);
I
Ingo Molnar 已提交
2407
	activate_task(rq, p, 1);
L
Linus Torvalds 已提交
2408 2409
	success = 1;

P
Peter Zijlstra 已提交
2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425
	/*
	 * Only attribute actual wakeups done by this task.
	 */
	if (!in_interrupt()) {
		struct sched_entity *se = &current->se;
		u64 sample = se->sum_exec_runtime;

		if (se->last_wakeup)
			sample -= se->last_wakeup;
		else
			sample -= se->start_runtime;
		update_avg(&se->avg_wakeup, sample);

		se->last_wakeup = se->sum_exec_runtime;
	}

L
Linus Torvalds 已提交
2426
out_running:
2427
	trace_sched_wakeup(rq, p, success);
2428
	check_preempt_curr(rq, p, sync);
I
Ingo Molnar 已提交
2429

L
Linus Torvalds 已提交
2430
	p->state = TASK_RUNNING;
2431 2432 2433 2434
#ifdef CONFIG_SMP
	if (p->sched_class->task_wake_up)
		p->sched_class->task_wake_up(rq, p);
#endif
L
Linus Torvalds 已提交
2435 2436 2437 2438 2439 2440
out:
	task_rq_unlock(rq, &flags);

	return success;
}

2441
int wake_up_process(struct task_struct *p)
L
Linus Torvalds 已提交
2442
{
2443
	return try_to_wake_up(p, TASK_ALL, 0);
L
Linus Torvalds 已提交
2444 2445 2446
}
EXPORT_SYMBOL(wake_up_process);

2447
int wake_up_state(struct task_struct *p, unsigned int state)
L
Linus Torvalds 已提交
2448 2449 2450 2451 2452 2453 2454
{
	return try_to_wake_up(p, state, 0);
}

/*
 * Perform scheduler related setup for a newly forked process p.
 * p is forked by current.
I
Ingo Molnar 已提交
2455 2456 2457 2458 2459 2460 2461
 *
 * __sched_fork() is basic setup used by init_idle() too:
 */
static void __sched_fork(struct task_struct *p)
{
	p->se.exec_start		= 0;
	p->se.sum_exec_runtime		= 0;
2462
	p->se.prev_sum_exec_runtime	= 0;
I
Ingo Molnar 已提交
2463 2464
	p->se.last_wakeup		= 0;
	p->se.avg_overlap		= 0;
P
Peter Zijlstra 已提交
2465 2466
	p->se.start_runtime		= 0;
	p->se.avg_wakeup		= sysctl_sched_wakeup_granularity;
I
Ingo Molnar 已提交
2467 2468 2469

#ifdef CONFIG_SCHEDSTATS
	p->se.wait_start		= 0;
I
Ingo Molnar 已提交
2470 2471 2472 2473 2474 2475
	p->se.sum_sleep_runtime		= 0;
	p->se.sleep_start		= 0;
	p->se.block_start		= 0;
	p->se.sleep_max			= 0;
	p->se.block_max			= 0;
	p->se.exec_max			= 0;
I
Ingo Molnar 已提交
2476
	p->se.slice_max			= 0;
I
Ingo Molnar 已提交
2477
	p->se.wait_max			= 0;
I
Ingo Molnar 已提交
2478
#endif
N
Nick Piggin 已提交
2479

P
Peter Zijlstra 已提交
2480
	INIT_LIST_HEAD(&p->rt.run_list);
I
Ingo Molnar 已提交
2481
	p->se.on_rq = 0;
2482
	INIT_LIST_HEAD(&p->se.group_node);
N
Nick Piggin 已提交
2483

2484 2485 2486 2487
#ifdef CONFIG_PREEMPT_NOTIFIERS
	INIT_HLIST_HEAD(&p->preempt_notifiers);
#endif

L
Linus Torvalds 已提交
2488 2489 2490 2491 2492 2493 2494
	/*
	 * We mark the process as running here, but have not actually
	 * inserted it onto the runqueue yet. This guarantees that
	 * nobody will actually run it, and a signal or other external
	 * event cannot wake it up and insert it on the runqueue either.
	 */
	p->state = TASK_RUNNING;
I
Ingo Molnar 已提交
2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508
}

/*
 * fork()/clone()-time setup:
 */
void sched_fork(struct task_struct *p, int clone_flags)
{
	int cpu = get_cpu();

	__sched_fork(p);

#ifdef CONFIG_SMP
	cpu = sched_balance_self(cpu, SD_BALANCE_FORK);
#endif
I
Ingo Molnar 已提交
2509
	set_task_cpu(p, cpu);
2510 2511 2512 2513 2514

	/*
	 * Make sure we do not leak PI boosting priority to the child:
	 */
	p->prio = current->normal_prio;
H
Hiroshi Shimamoto 已提交
2515 2516
	if (!rt_prio(p->prio))
		p->sched_class = &fair_sched_class;
2517

2518
#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
I
Ingo Molnar 已提交
2519
	if (likely(sched_info_on()))
2520
		memset(&p->sched_info, 0, sizeof(p->sched_info));
L
Linus Torvalds 已提交
2521
#endif
2522
#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
2523 2524
	p->oncpu = 0;
#endif
L
Linus Torvalds 已提交
2525
#ifdef CONFIG_PREEMPT
2526
	/* Want to start with kernel preemption disabled. */
A
Al Viro 已提交
2527
	task_thread_info(p)->preempt_count = 1;
L
Linus Torvalds 已提交
2528
#endif
2529 2530
	plist_node_init(&p->pushable_tasks, MAX_PRIO);

N
Nick Piggin 已提交
2531
	put_cpu();
L
Linus Torvalds 已提交
2532 2533 2534 2535 2536 2537 2538 2539 2540
}

/*
 * wake_up_new_task - wake up a newly created task for the first time.
 *
 * This function will do some initial scheduler statistics housekeeping
 * that must be done for every newly created context, then puts the task
 * on the runqueue and wakes it.
 */
2541
void wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
L
Linus Torvalds 已提交
2542 2543
{
	unsigned long flags;
I
Ingo Molnar 已提交
2544
	struct rq *rq;
L
Linus Torvalds 已提交
2545 2546

	rq = task_rq_lock(p, &flags);
N
Nick Piggin 已提交
2547
	BUG_ON(p->state != TASK_RUNNING);
I
Ingo Molnar 已提交
2548
	update_rq_clock(rq);
L
Linus Torvalds 已提交
2549 2550 2551

	p->prio = effective_prio(p);

2552
	if (!p->sched_class->task_new || !current->se.on_rq) {
I
Ingo Molnar 已提交
2553
		activate_task(rq, p, 0);
L
Linus Torvalds 已提交
2554 2555
	} else {
		/*
I
Ingo Molnar 已提交
2556 2557
		 * Let the scheduling class do new task startup
		 * management (if any):
L
Linus Torvalds 已提交
2558
		 */
2559
		p->sched_class->task_new(rq, p);
2560
		inc_nr_running(rq);
L
Linus Torvalds 已提交
2561
	}
2562
	trace_sched_wakeup_new(rq, p, 1);
2563
	check_preempt_curr(rq, p, 0);
2564 2565 2566 2567
#ifdef CONFIG_SMP
	if (p->sched_class->task_wake_up)
		p->sched_class->task_wake_up(rq, p);
#endif
I
Ingo Molnar 已提交
2568
	task_rq_unlock(rq, &flags);
L
Linus Torvalds 已提交
2569 2570
}

2571 2572 2573
#ifdef CONFIG_PREEMPT_NOTIFIERS

/**
2574
 * preempt_notifier_register - tell me when current is being preempted & rescheduled
R
Randy Dunlap 已提交
2575
 * @notifier: notifier struct to register
2576 2577 2578 2579 2580 2581 2582 2583 2584
 */
void preempt_notifier_register(struct preempt_notifier *notifier)
{
	hlist_add_head(&notifier->link, &current->preempt_notifiers);
}
EXPORT_SYMBOL_GPL(preempt_notifier_register);

/**
 * preempt_notifier_unregister - no longer interested in preemption notifications
R
Randy Dunlap 已提交
2585
 * @notifier: notifier struct to unregister
2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614
 *
 * This is safe to call from within a preemption notifier.
 */
void preempt_notifier_unregister(struct preempt_notifier *notifier)
{
	hlist_del(&notifier->link);
}
EXPORT_SYMBOL_GPL(preempt_notifier_unregister);

static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
{
	struct preempt_notifier *notifier;
	struct hlist_node *node;

	hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
		notifier->ops->sched_in(notifier, raw_smp_processor_id());
}

static void
fire_sched_out_preempt_notifiers(struct task_struct *curr,
				 struct task_struct *next)
{
	struct preempt_notifier *notifier;
	struct hlist_node *node;

	hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
		notifier->ops->sched_out(notifier, next);
}

2615
#else /* !CONFIG_PREEMPT_NOTIFIERS */
2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626

static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
{
}

static void
fire_sched_out_preempt_notifiers(struct task_struct *curr,
				 struct task_struct *next)
{
}

2627
#endif /* CONFIG_PREEMPT_NOTIFIERS */
2628

2629 2630 2631
/**
 * prepare_task_switch - prepare to switch tasks
 * @rq: the runqueue preparing to switch
R
Randy Dunlap 已提交
2632
 * @prev: the current task that is being switched out
2633 2634 2635 2636 2637 2638 2639 2640 2641
 * @next: the task we are going to switch to.
 *
 * This is called with the rq lock held and interrupts off. It must
 * be paired with a subsequent finish_task_switch after the context
 * switch.
 *
 * prepare_task_switch sets up locking and calls architecture specific
 * hooks.
 */
2642 2643 2644
static inline void
prepare_task_switch(struct rq *rq, struct task_struct *prev,
		    struct task_struct *next)
2645
{
2646
	fire_sched_out_preempt_notifiers(prev, next);
2647 2648 2649 2650
	prepare_lock_switch(rq, next);
	prepare_arch_switch(next);
}

L
Linus Torvalds 已提交
2651 2652
/**
 * finish_task_switch - clean up after a task-switch
2653
 * @rq: runqueue associated with task-switch
L
Linus Torvalds 已提交
2654 2655
 * @prev: the thread we just switched away from.
 *
2656 2657 2658 2659
 * finish_task_switch must be called after the context switch, paired
 * with a prepare_task_switch call before the context switch.
 * finish_task_switch will reconcile locking set up by prepare_task_switch,
 * and do any other architecture-specific cleanup actions.
L
Linus Torvalds 已提交
2660 2661
 *
 * Note that we may have delayed dropping an mm in context_switch(). If
I
Ingo Molnar 已提交
2662
 * so, we finish that here outside of the runqueue lock. (Doing it
L
Linus Torvalds 已提交
2663 2664 2665
 * with the lock held can cause deadlocks; see schedule() for
 * details.)
 */
A
Alexey Dobriyan 已提交
2666
static void finish_task_switch(struct rq *rq, struct task_struct *prev)
L
Linus Torvalds 已提交
2667 2668 2669
	__releases(rq->lock)
{
	struct mm_struct *mm = rq->prev_mm;
O
Oleg Nesterov 已提交
2670
	long prev_state;
2671 2672 2673 2674 2675 2676
#ifdef CONFIG_SMP
	int post_schedule = 0;

	if (current->sched_class->needs_post_schedule)
		post_schedule = current->sched_class->needs_post_schedule(rq);
#endif
L
Linus Torvalds 已提交
2677 2678 2679 2680 2681

	rq->prev_mm = NULL;

	/*
	 * A task struct has one reference for the use as "current".
2682
	 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
O
Oleg Nesterov 已提交
2683 2684
	 * schedule one last time. The schedule call will never return, and
	 * the scheduled task must drop that reference.
2685
	 * The test for TASK_DEAD must occur while the runqueue locks are
L
Linus Torvalds 已提交
2686 2687 2688 2689 2690
	 * still held, otherwise prev could be scheduled on another cpu, die
	 * there before we look at prev->state, and then the reference would
	 * be dropped twice.
	 *		Manfred Spraul <manfred@colorfullife.com>
	 */
O
Oleg Nesterov 已提交
2691
	prev_state = prev->state;
2692 2693
	finish_arch_switch(prev);
	finish_lock_switch(rq, prev);
2694
#ifdef CONFIG_SMP
2695
	if (post_schedule)
2696 2697
		current->sched_class->post_schedule(rq);
#endif
S
Steven Rostedt 已提交
2698

2699
	fire_sched_in_preempt_notifiers(current);
L
Linus Torvalds 已提交
2700 2701
	if (mm)
		mmdrop(mm);
2702
	if (unlikely(prev_state == TASK_DEAD)) {
2703 2704 2705
		/*
		 * Remove function-return probe instances associated with this
		 * task and put them back on the free list.
I
Ingo Molnar 已提交
2706
		 */
2707
		kprobe_flush_task(prev);
L
Linus Torvalds 已提交
2708
		put_task_struct(prev);
2709
	}
L
Linus Torvalds 已提交
2710 2711 2712 2713 2714 2715
}

/**
 * schedule_tail - first thing a freshly forked thread must call.
 * @prev: the thread we just switched away from.
 */
2716
asmlinkage void schedule_tail(struct task_struct *prev)
L
Linus Torvalds 已提交
2717 2718
	__releases(rq->lock)
{
2719 2720
	struct rq *rq = this_rq();

2721 2722 2723 2724 2725
	finish_task_switch(rq, prev);
#ifdef __ARCH_WANT_UNLOCKED_CTXSW
	/* In this case, finish_task_switch does not reenable preemption */
	preempt_enable();
#endif
L
Linus Torvalds 已提交
2726
	if (current->set_child_tid)
2727
		put_user(task_pid_vnr(current), current->set_child_tid);
L
Linus Torvalds 已提交
2728 2729 2730 2731 2732 2733
}

/*
 * context_switch - switch to the new MM and the new
 * thread's register state.
 */
I
Ingo Molnar 已提交
2734
static inline void
2735
context_switch(struct rq *rq, struct task_struct *prev,
2736
	       struct task_struct *next)
L
Linus Torvalds 已提交
2737
{
I
Ingo Molnar 已提交
2738
	struct mm_struct *mm, *oldmm;
L
Linus Torvalds 已提交
2739

2740
	prepare_task_switch(rq, prev, next);
2741
	trace_sched_switch(rq, prev, next);
I
Ingo Molnar 已提交
2742 2743
	mm = next->mm;
	oldmm = prev->active_mm;
2744 2745 2746 2747 2748 2749 2750
	/*
	 * For paravirt, this is coupled with an exit in switch_to to
	 * combine the page table reload and the switch backend into
	 * one hypercall.
	 */
	arch_enter_lazy_cpu_mode();

I
Ingo Molnar 已提交
2751
	if (unlikely(!mm)) {
L
Linus Torvalds 已提交
2752 2753 2754 2755 2756 2757
		next->active_mm = oldmm;
		atomic_inc(&oldmm->mm_count);
		enter_lazy_tlb(oldmm, next);
	} else
		switch_mm(oldmm, mm, next);

I
Ingo Molnar 已提交
2758
	if (unlikely(!prev->mm)) {
L
Linus Torvalds 已提交
2759 2760 2761
		prev->active_mm = NULL;
		rq->prev_mm = oldmm;
	}
2762 2763 2764 2765 2766 2767 2768
	/*
	 * Since the runqueue lock will be released by the next
	 * task (which is an invalid locking op but in the case
	 * of the scheduler it's an obvious special-case), so we
	 * do an early lockdep release here:
	 */
#ifndef __ARCH_WANT_UNLOCKED_CTXSW
2769
	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
2770
#endif
L
Linus Torvalds 已提交
2771 2772 2773 2774

	/* Here we just switch the register state and the stack. */
	switch_to(prev, next, prev);

I
Ingo Molnar 已提交
2775 2776 2777 2778 2779 2780 2781
	barrier();
	/*
	 * this_rq must be evaluated again because prev may have moved
	 * CPUs since it called schedule(), thus the 'rq' on its stack
	 * frame will be invalid.
	 */
	finish_task_switch(this_rq(), prev);
L
Linus Torvalds 已提交
2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804
}

/*
 * nr_running, nr_uninterruptible and nr_context_switches:
 *
 * externally visible scheduler statistics: current number of runnable
 * threads, current number of uninterruptible-sleeping threads, total
 * number of context switches performed since bootup.
 */
unsigned long nr_running(void)
{
	unsigned long i, sum = 0;

	for_each_online_cpu(i)
		sum += cpu_rq(i)->nr_running;

	return sum;
}

unsigned long nr_uninterruptible(void)
{
	unsigned long i, sum = 0;

2805
	for_each_possible_cpu(i)
L
Linus Torvalds 已提交
2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819
		sum += cpu_rq(i)->nr_uninterruptible;

	/*
	 * Since we read the counters lockless, it might be slightly
	 * inaccurate. Do not allow it to go below zero though:
	 */
	if (unlikely((long)sum < 0))
		sum = 0;

	return sum;
}

unsigned long long nr_context_switches(void)
{
2820 2821
	int i;
	unsigned long long sum = 0;
L
Linus Torvalds 已提交
2822

2823
	for_each_possible_cpu(i)
L
Linus Torvalds 已提交
2824 2825 2826 2827 2828 2829 2830 2831 2832
		sum += cpu_rq(i)->nr_switches;

	return sum;
}

unsigned long nr_iowait(void)
{
	unsigned long i, sum = 0;

2833
	for_each_possible_cpu(i)
L
Linus Torvalds 已提交
2834 2835 2836 2837 2838
		sum += atomic_read(&cpu_rq(i)->nr_iowait);

	return sum;
}

2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853
unsigned long nr_active(void)
{
	unsigned long i, running = 0, uninterruptible = 0;

	for_each_online_cpu(i) {
		running += cpu_rq(i)->nr_running;
		uninterruptible += cpu_rq(i)->nr_uninterruptible;
	}

	if (unlikely((long)uninterruptible < 0))
		uninterruptible = 0;

	return running + uninterruptible;
}

2854
/*
I
Ingo Molnar 已提交
2855 2856
 * Update rq->cpu_load[] statistics. This function is usually called every
 * scheduler tick (TICK_NSEC).
2857
 */
I
Ingo Molnar 已提交
2858
static void update_cpu_load(struct rq *this_rq)
2859
{
2860
	unsigned long this_load = this_rq->load.weight;
I
Ingo Molnar 已提交
2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872
	int i, scale;

	this_rq->nr_load_updates++;

	/* Update our load: */
	for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
		unsigned long old_load, new_load;

		/* scale is effectively 1 << i now, and >> i divides by scale */

		old_load = this_rq->cpu_load[i];
		new_load = this_load;
I
Ingo Molnar 已提交
2873 2874 2875 2876 2877 2878 2879
		/*
		 * Round up the averaging division if load is increasing. This
		 * prevents us from getting stuck on 9 if the load is 10, for
		 * example.
		 */
		if (new_load > old_load)
			new_load += scale-1;
I
Ingo Molnar 已提交
2880 2881
		this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
	}
2882 2883
}

I
Ingo Molnar 已提交
2884 2885
#ifdef CONFIG_SMP

L
Linus Torvalds 已提交
2886 2887 2888 2889 2890 2891
/*
 * double_rq_lock - safely lock two runqueues
 *
 * Note this does not disable interrupts like task_rq_lock,
 * you need to do so manually before calling.
 */
2892
static void double_rq_lock(struct rq *rq1, struct rq *rq2)
L
Linus Torvalds 已提交
2893 2894 2895
	__acquires(rq1->lock)
	__acquires(rq2->lock)
{
2896
	BUG_ON(!irqs_disabled());
L
Linus Torvalds 已提交
2897 2898 2899 2900
	if (rq1 == rq2) {
		spin_lock(&rq1->lock);
		__acquire(rq2->lock);	/* Fake it out ;) */
	} else {
2901
		if (rq1 < rq2) {
L
Linus Torvalds 已提交
2902
			spin_lock(&rq1->lock);
2903
			spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
L
Linus Torvalds 已提交
2904 2905
		} else {
			spin_lock(&rq2->lock);
2906
			spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
L
Linus Torvalds 已提交
2907 2908
		}
	}
2909 2910
	update_rq_clock(rq1);
	update_rq_clock(rq2);
L
Linus Torvalds 已提交
2911 2912 2913 2914 2915 2916 2917 2918
}

/*
 * double_rq_unlock - safely unlock two runqueues
 *
 * Note this does not restore interrupts like task_rq_unlock,
 * you need to do so manually after calling.
 */
2919
static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
L
Linus Torvalds 已提交
2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932
	__releases(rq1->lock)
	__releases(rq2->lock)
{
	spin_unlock(&rq1->lock);
	if (rq1 != rq2)
		spin_unlock(&rq2->lock);
	else
		__release(rq2->lock);
}

/*
 * If dest_cpu is allowed for this process, migrate the task to it.
 * This is accomplished by forcing the cpu_allowed mask to only
I
Ingo Molnar 已提交
2933
 * allow dest_cpu, which will force the cpu onto dest_cpu. Then
L
Linus Torvalds 已提交
2934 2935
 * the cpu_allowed mask is restored.
 */
2936
static void sched_migrate_task(struct task_struct *p, int dest_cpu)
L
Linus Torvalds 已提交
2937
{
2938
	struct migration_req req;
L
Linus Torvalds 已提交
2939
	unsigned long flags;
2940
	struct rq *rq;
L
Linus Torvalds 已提交
2941 2942

	rq = task_rq_lock(p, &flags);
2943
	if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed)
2944
	    || unlikely(!cpu_active(dest_cpu)))
L
Linus Torvalds 已提交
2945 2946 2947 2948 2949 2950
		goto out;

	/* force the process onto the specified CPU */
	if (migrate_task(p, dest_cpu, &req)) {
		/* Need to wait for migration thread (might exit: take ref). */
		struct task_struct *mt = rq->migration_thread;
2951

L
Linus Torvalds 已提交
2952 2953 2954 2955 2956
		get_task_struct(mt);
		task_rq_unlock(rq, &flags);
		wake_up_process(mt);
		put_task_struct(mt);
		wait_for_completion(&req.done);
2957

L
Linus Torvalds 已提交
2958 2959 2960 2961 2962 2963 2964
		return;
	}
out:
	task_rq_unlock(rq, &flags);
}

/*
N
Nick Piggin 已提交
2965 2966
 * sched_exec - execve() is a valuable balancing opportunity, because at
 * this point the task has the smallest effective memory and cache footprint.
L
Linus Torvalds 已提交
2967 2968 2969 2970
 */
void sched_exec(void)
{
	int new_cpu, this_cpu = get_cpu();
N
Nick Piggin 已提交
2971
	new_cpu = sched_balance_self(this_cpu, SD_BALANCE_EXEC);
L
Linus Torvalds 已提交
2972
	put_cpu();
N
Nick Piggin 已提交
2973 2974
	if (new_cpu != this_cpu)
		sched_migrate_task(current, new_cpu);
L
Linus Torvalds 已提交
2975 2976 2977 2978 2979 2980
}

/*
 * pull_task - move a task from a remote runqueue to the local runqueue.
 * Both runqueues must be locked.
 */
I
Ingo Molnar 已提交
2981 2982
static void pull_task(struct rq *src_rq, struct task_struct *p,
		      struct rq *this_rq, int this_cpu)
L
Linus Torvalds 已提交
2983
{
2984
	deactivate_task(src_rq, p, 0);
L
Linus Torvalds 已提交
2985
	set_task_cpu(p, this_cpu);
I
Ingo Molnar 已提交
2986
	activate_task(this_rq, p, 0);
L
Linus Torvalds 已提交
2987 2988 2989 2990
	/*
	 * Note that idle threads have a prio of MAX_PRIO, for this test
	 * to be always true for them.
	 */
2991
	check_preempt_curr(this_rq, p, 0);
L
Linus Torvalds 已提交
2992 2993 2994 2995 2996
}

/*
 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
 */
2997
static
2998
int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
I
Ingo Molnar 已提交
2999
		     struct sched_domain *sd, enum cpu_idle_type idle,
I
Ingo Molnar 已提交
3000
		     int *all_pinned)
L
Linus Torvalds 已提交
3001
{
3002
	int tsk_cache_hot = 0;
L
Linus Torvalds 已提交
3003 3004 3005 3006 3007 3008
	/*
	 * We do not migrate tasks that are:
	 * 1) running (obviously), or
	 * 2) cannot be migrated to this CPU due to cpus_allowed, or
	 * 3) are cache-hot on their current CPU.
	 */
3009
	if (!cpumask_test_cpu(this_cpu, &p->cpus_allowed)) {
3010
		schedstat_inc(p, se.nr_failed_migrations_affine);
L
Linus Torvalds 已提交
3011
		return 0;
3012
	}
3013 3014
	*all_pinned = 0;

3015 3016
	if (task_running(rq, p)) {
		schedstat_inc(p, se.nr_failed_migrations_running);
3017
		return 0;
3018
	}
L
Linus Torvalds 已提交
3019

3020 3021 3022 3023 3024 3025
	/*
	 * Aggressive migration if:
	 * 1) task is cache cold, or
	 * 2) too many balance attempts have failed.
	 */

3026 3027 3028
	tsk_cache_hot = task_hot(p, rq->clock, sd);
	if (!tsk_cache_hot ||
		sd->nr_balance_failed > sd->cache_nice_tries) {
3029
#ifdef CONFIG_SCHEDSTATS
3030
		if (tsk_cache_hot) {
3031
			schedstat_inc(sd, lb_hot_gained[idle]);
3032 3033
			schedstat_inc(p, se.nr_forced_migrations);
		}
3034 3035 3036 3037
#endif
		return 1;
	}

3038
	if (tsk_cache_hot) {
3039
		schedstat_inc(p, se.nr_failed_migrations_hot);
3040
		return 0;
3041
	}
L
Linus Torvalds 已提交
3042 3043 3044
	return 1;
}

3045 3046 3047 3048 3049
static unsigned long
balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
	      unsigned long max_load_move, struct sched_domain *sd,
	      enum cpu_idle_type idle, int *all_pinned,
	      int *this_best_prio, struct rq_iterator *iterator)
L
Linus Torvalds 已提交
3050
{
3051
	int loops = 0, pulled = 0, pinned = 0;
I
Ingo Molnar 已提交
3052 3053
	struct task_struct *p;
	long rem_load_move = max_load_move;
L
Linus Torvalds 已提交
3054

3055
	if (max_load_move == 0)
L
Linus Torvalds 已提交
3056 3057
		goto out;

3058 3059
	pinned = 1;

L
Linus Torvalds 已提交
3060
	/*
I
Ingo Molnar 已提交
3061
	 * Start the load-balancing iterator:
L
Linus Torvalds 已提交
3062
	 */
I
Ingo Molnar 已提交
3063 3064
	p = iterator->start(iterator->arg);
next:
3065
	if (!p || loops++ > sysctl_sched_nr_migrate)
L
Linus Torvalds 已提交
3066
		goto out;
3067 3068

	if ((p->se.load.weight >> 1) > rem_load_move ||
I
Ingo Molnar 已提交
3069 3070 3071
	    !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
		p = iterator->next(iterator->arg);
		goto next;
L
Linus Torvalds 已提交
3072 3073
	}

I
Ingo Molnar 已提交
3074
	pull_task(busiest, p, this_rq, this_cpu);
L
Linus Torvalds 已提交
3075
	pulled++;
I
Ingo Molnar 已提交
3076
	rem_load_move -= p->se.load.weight;
L
Linus Torvalds 已提交
3077

3078 3079 3080 3081 3082 3083 3084 3085 3086 3087
#ifdef CONFIG_PREEMPT
	/*
	 * NEWIDLE balancing is a source of latency, so preemptible kernels
	 * will stop after the first task is pulled to minimize the critical
	 * section.
	 */
	if (idle == CPU_NEWLY_IDLE)
		goto out;
#endif

3088
	/*
3089
	 * We only want to steal up to the prescribed amount of weighted load.
3090
	 */
3091
	if (rem_load_move > 0) {
3092 3093
		if (p->prio < *this_best_prio)
			*this_best_prio = p->prio;
I
Ingo Molnar 已提交
3094 3095
		p = iterator->next(iterator->arg);
		goto next;
L
Linus Torvalds 已提交
3096 3097 3098
	}
out:
	/*
3099
	 * Right now, this is one of only two places pull_task() is called,
L
Linus Torvalds 已提交
3100 3101 3102 3103
	 * so we can safely collect pull_task() stats here rather than
	 * inside pull_task().
	 */
	schedstat_add(sd, lb_gained[idle], pulled);
3104 3105 3106

	if (all_pinned)
		*all_pinned = pinned;
3107 3108

	return max_load_move - rem_load_move;
L
Linus Torvalds 已提交
3109 3110
}

I
Ingo Molnar 已提交
3111
/*
P
Peter Williams 已提交
3112 3113 3114
 * move_tasks tries to move up to max_load_move weighted load from busiest to
 * this_rq, as part of a balancing operation within domain "sd".
 * Returns 1 if successful and 0 otherwise.
I
Ingo Molnar 已提交
3115 3116 3117 3118
 *
 * Called with both runqueues locked.
 */
static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
P
Peter Williams 已提交
3119
		      unsigned long max_load_move,
I
Ingo Molnar 已提交
3120 3121 3122
		      struct sched_domain *sd, enum cpu_idle_type idle,
		      int *all_pinned)
{
3123
	const struct sched_class *class = sched_class_highest;
P
Peter Williams 已提交
3124
	unsigned long total_load_moved = 0;
3125
	int this_best_prio = this_rq->curr->prio;
I
Ingo Molnar 已提交
3126 3127

	do {
P
Peter Williams 已提交
3128 3129
		total_load_moved +=
			class->load_balance(this_rq, this_cpu, busiest,
3130
				max_load_move - total_load_moved,
3131
				sd, idle, all_pinned, &this_best_prio);
I
Ingo Molnar 已提交
3132
		class = class->next;
3133

3134 3135 3136 3137 3138 3139
#ifdef CONFIG_PREEMPT
		/*
		 * NEWIDLE balancing is a source of latency, so preemptible
		 * kernels will stop after the first task is pulled to minimize
		 * the critical section.
		 */
3140 3141
		if (idle == CPU_NEWLY_IDLE && this_rq->nr_running)
			break;
3142
#endif
P
Peter Williams 已提交
3143
	} while (class && max_load_move > total_load_moved);
I
Ingo Molnar 已提交
3144

P
Peter Williams 已提交
3145 3146 3147
	return total_load_moved > 0;
}

3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173
static int
iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
		   struct sched_domain *sd, enum cpu_idle_type idle,
		   struct rq_iterator *iterator)
{
	struct task_struct *p = iterator->start(iterator->arg);
	int pinned = 0;

	while (p) {
		if (can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
			pull_task(busiest, p, this_rq, this_cpu);
			/*
			 * Right now, this is only the second place pull_task()
			 * is called, so we can safely collect pull_task()
			 * stats here rather than inside pull_task().
			 */
			schedstat_inc(sd, lb_gained[idle]);

			return 1;
		}
		p = iterator->next(iterator->arg);
	}

	return 0;
}

P
Peter Williams 已提交
3174 3175 3176 3177 3178 3179 3180 3181 3182 3183
/*
 * move_one_task tries to move exactly one task from busiest to this_rq, as
 * part of active balancing operations within "domain".
 * Returns 1 if successful and 0 otherwise.
 *
 * Called with both runqueues locked.
 */
static int move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
			 struct sched_domain *sd, enum cpu_idle_type idle)
{
3184
	const struct sched_class *class;
P
Peter Williams 已提交
3185 3186

	for (class = sched_class_highest; class; class = class->next)
3187
		if (class->move_one_task(this_rq, this_cpu, busiest, sd, idle))
P
Peter Williams 已提交
3188 3189 3190
			return 1;

	return 0;
I
Ingo Molnar 已提交
3191 3192
}

L
Linus Torvalds 已提交
3193 3194
/*
 * find_busiest_group finds and returns the busiest CPU group within the
3195 3196
 * domain. It calculates and returns the amount of weighted load which
 * should be moved to restore balance via the imbalance parameter.
L
Linus Torvalds 已提交
3197 3198 3199
 */
static struct sched_group *
find_busiest_group(struct sched_domain *sd, int this_cpu,
I
Ingo Molnar 已提交
3200
		   unsigned long *imbalance, enum cpu_idle_type idle,
3201
		   int *sd_idle, const struct cpumask *cpus, int *balance)
L
Linus Torvalds 已提交
3202 3203 3204
{
	struct sched_group *busiest = NULL, *this = NULL, *group = sd->groups;
	unsigned long max_load, avg_load, total_load, this_load, total_pwr;
3205
	unsigned long max_pull;
3206 3207
	unsigned long busiest_load_per_task, busiest_nr_running;
	unsigned long this_load_per_task, this_nr_running;
3208
	int load_idx, group_imb = 0;
3209 3210 3211 3212 3213 3214
#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
	int power_savings_balance = 1;
	unsigned long leader_nr_running = 0, min_load_per_task = 0;
	unsigned long min_nr_running = ULONG_MAX;
	struct sched_group *group_min = NULL, *group_leader = NULL;
#endif
L
Linus Torvalds 已提交
3215 3216

	max_load = this_load = total_load = total_pwr = 0;
3217 3218
	busiest_load_per_task = busiest_nr_running = 0;
	this_load_per_task = this_nr_running = 0;
3219

I
Ingo Molnar 已提交
3220
	if (idle == CPU_NOT_IDLE)
N
Nick Piggin 已提交
3221
		load_idx = sd->busy_idx;
I
Ingo Molnar 已提交
3222
	else if (idle == CPU_NEWLY_IDLE)
N
Nick Piggin 已提交
3223 3224 3225
		load_idx = sd->newidle_idx;
	else
		load_idx = sd->idle_idx;
L
Linus Torvalds 已提交
3226 3227

	do {
3228
		unsigned long load, group_capacity, max_cpu_load, min_cpu_load;
L
Linus Torvalds 已提交
3229 3230
		int local_group;
		int i;
3231
		int __group_imb = 0;
3232
		unsigned int balance_cpu = -1, first_idle_cpu = 0;
3233
		unsigned long sum_nr_running, sum_weighted_load;
3234 3235
		unsigned long sum_avg_load_per_task;
		unsigned long avg_load_per_task;
L
Linus Torvalds 已提交
3236

3237 3238
		local_group = cpumask_test_cpu(this_cpu,
					       sched_group_cpus(group));
L
Linus Torvalds 已提交
3239

3240
		if (local_group)
3241
			balance_cpu = cpumask_first(sched_group_cpus(group));
3242

L
Linus Torvalds 已提交
3243
		/* Tally up the load of all CPUs in the group */
3244
		sum_weighted_load = sum_nr_running = avg_load = 0;
3245 3246
		sum_avg_load_per_task = avg_load_per_task = 0;

3247 3248
		max_cpu_load = 0;
		min_cpu_load = ~0UL;
L
Linus Torvalds 已提交
3249

3250 3251
		for_each_cpu_and(i, sched_group_cpus(group), cpus) {
			struct rq *rq = cpu_rq(i);
3252

3253
			if (*sd_idle && rq->nr_running)
N
Nick Piggin 已提交
3254 3255
				*sd_idle = 0;

L
Linus Torvalds 已提交
3256
			/* Bias balancing toward cpus of our domain */
3257 3258 3259 3260 3261 3262
			if (local_group) {
				if (idle_cpu(i) && !first_idle_cpu) {
					first_idle_cpu = 1;
					balance_cpu = i;
				}

N
Nick Piggin 已提交
3263
				load = target_load(i, load_idx);
3264
			} else {
N
Nick Piggin 已提交
3265
				load = source_load(i, load_idx);
3266 3267 3268 3269 3270
				if (load > max_cpu_load)
					max_cpu_load = load;
				if (min_cpu_load > load)
					min_cpu_load = load;
			}
L
Linus Torvalds 已提交
3271 3272

			avg_load += load;
3273
			sum_nr_running += rq->nr_running;
I
Ingo Molnar 已提交
3274
			sum_weighted_load += weighted_cpuload(i);
3275 3276

			sum_avg_load_per_task += cpu_avg_load_per_task(i);
L
Linus Torvalds 已提交
3277 3278
		}

3279 3280 3281
		/*
		 * First idle cpu or the first cpu(busiest) in this sched group
		 * is eligible for doing load balancing at this and above
3282 3283
		 * domains. In the newly idle case, we will allow all the cpu's
		 * to do the newly idle load balance.
3284
		 */
3285 3286
		if (idle != CPU_NEWLY_IDLE && local_group &&
		    balance_cpu != this_cpu && balance) {
3287 3288 3289 3290
			*balance = 0;
			goto ret;
		}

L
Linus Torvalds 已提交
3291
		total_load += avg_load;
3292
		total_pwr += group->__cpu_power;
L
Linus Torvalds 已提交
3293 3294

		/* Adjust by relative CPU power of the group */
3295 3296
		avg_load = sg_div_cpu_power(group,
				avg_load * SCHED_LOAD_SCALE);
L
Linus Torvalds 已提交
3297

3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311

		/*
		 * Consider the group unbalanced when the imbalance is larger
		 * than the average weight of two tasks.
		 *
		 * APZ: with cgroup the avg task weight can vary wildly and
		 *      might not be a suitable number - should we keep a
		 *      normalized nr_running number somewhere that negates
		 *      the hierarchy?
		 */
		avg_load_per_task = sg_div_cpu_power(group,
				sum_avg_load_per_task * SCHED_LOAD_SCALE);

		if ((max_cpu_load - min_cpu_load) > 2*avg_load_per_task)
3312 3313
			__group_imb = 1;

3314
		group_capacity = group->__cpu_power / SCHED_LOAD_SCALE;
3315

L
Linus Torvalds 已提交
3316 3317 3318
		if (local_group) {
			this_load = avg_load;
			this = group;
3319 3320 3321
			this_nr_running = sum_nr_running;
			this_load_per_task = sum_weighted_load;
		} else if (avg_load > max_load &&
3322
			   (sum_nr_running > group_capacity || __group_imb)) {
L
Linus Torvalds 已提交
3323 3324
			max_load = avg_load;
			busiest = group;
3325 3326
			busiest_nr_running = sum_nr_running;
			busiest_load_per_task = sum_weighted_load;
3327
			group_imb = __group_imb;
L
Linus Torvalds 已提交
3328
		}
3329 3330 3331 3332 3333 3334

#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
		/*
		 * Busy processors will not participate in power savings
		 * balance.
		 */
I
Ingo Molnar 已提交
3335 3336 3337
		if (idle == CPU_NOT_IDLE ||
				!(sd->flags & SD_POWERSAVINGS_BALANCE))
			goto group_next;
3338 3339 3340 3341 3342 3343 3344 3345 3346

		/*
		 * If the local group is idle or completely loaded
		 * no need to do power savings balance at this domain
		 */
		if (local_group && (this_nr_running >= group_capacity ||
				    !this_nr_running))
			power_savings_balance = 0;

I
Ingo Molnar 已提交
3347
		/*
3348 3349
		 * If a group is already running at full capacity or idle,
		 * don't include that group in power savings calculations
I
Ingo Molnar 已提交
3350 3351
		 */
		if (!power_savings_balance || sum_nr_running >= group_capacity
3352
		    || !sum_nr_running)
I
Ingo Molnar 已提交
3353
			goto group_next;
3354

I
Ingo Molnar 已提交
3355
		/*
3356
		 * Calculate the group which has the least non-idle load.
I
Ingo Molnar 已提交
3357 3358 3359 3360 3361
		 * This is the group from where we need to pick up the load
		 * for saving power
		 */
		if ((sum_nr_running < min_nr_running) ||
		    (sum_nr_running == min_nr_running &&
3362
		     cpumask_first(sched_group_cpus(group)) >
3363
		     cpumask_first(sched_group_cpus(group_min)))) {
I
Ingo Molnar 已提交
3364 3365
			group_min = group;
			min_nr_running = sum_nr_running;
3366 3367
			min_load_per_task = sum_weighted_load /
						sum_nr_running;
I
Ingo Molnar 已提交
3368
		}
3369

I
Ingo Molnar 已提交
3370
		/*
3371
		 * Calculate the group which is almost near its
I
Ingo Molnar 已提交
3372 3373 3374 3375 3376 3377
		 * capacity but still has some space to pick up some load
		 * from other group and save more power
		 */
		if (sum_nr_running <= group_capacity - 1) {
			if (sum_nr_running > leader_nr_running ||
			    (sum_nr_running == leader_nr_running &&
3378
			     cpumask_first(sched_group_cpus(group)) <
3379
			     cpumask_first(sched_group_cpus(group_leader)))) {
I
Ingo Molnar 已提交
3380 3381 3382
				group_leader = group;
				leader_nr_running = sum_nr_running;
			}
3383
		}
3384 3385
group_next:
#endif
L
Linus Torvalds 已提交
3386 3387 3388
		group = group->next;
	} while (group != sd->groups);

3389
	if (!busiest || this_load >= max_load || busiest_nr_running == 0)
L
Linus Torvalds 已提交
3390 3391 3392 3393 3394 3395 3396 3397
		goto out_balanced;

	avg_load = (SCHED_LOAD_SCALE * total_load) / total_pwr;

	if (this_load >= avg_load ||
			100*max_load <= sd->imbalance_pct*this_load)
		goto out_balanced;

3398
	busiest_load_per_task /= busiest_nr_running;
3399 3400 3401
	if (group_imb)
		busiest_load_per_task = min(busiest_load_per_task, avg_load);

L
Linus Torvalds 已提交
3402 3403 3404 3405 3406 3407 3408 3409
	/*
	 * We're trying to get all the cpus to the average_load, so we don't
	 * want to push ourselves above the average load, nor do we wish to
	 * reduce the max loaded cpu below the average load, as either of these
	 * actions would just result in more rebalancing later, and ping-pong
	 * tasks around. Thus we look for the minimum possible imbalance.
	 * Negative imbalances (*we* are more loaded than anyone else) will
	 * be counted as no imbalance for these purposes -- we can't fix that
I
Ingo Molnar 已提交
3410
	 * by pulling tasks to us. Be careful of negative numbers as they'll
L
Linus Torvalds 已提交
3411 3412
	 * appear as very large values with unsigned longs.
	 */
3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424
	if (max_load <= busiest_load_per_task)
		goto out_balanced;

	/*
	 * In the presence of smp nice balancing, certain scenarios can have
	 * max load less than avg load(as we skip the groups at or below
	 * its cpu_power, while calculating max_load..)
	 */
	if (max_load < avg_load) {
		*imbalance = 0;
		goto small_imbalance;
	}
3425 3426

	/* Don't want to pull so many tasks that a group would go idle */
3427
	max_pull = min(max_load - avg_load, max_load - busiest_load_per_task);
3428

L
Linus Torvalds 已提交
3429
	/* How much load to actually move to equalise the imbalance */
3430 3431
	*imbalance = min(max_pull * busiest->__cpu_power,
				(avg_load - this_load) * this->__cpu_power)
L
Linus Torvalds 已提交
3432 3433
			/ SCHED_LOAD_SCALE;

3434 3435 3436 3437 3438 3439
	/*
	 * if *imbalance is less than the average load per runnable task
	 * there is no gaurantee that any tasks will be moved so we'll have
	 * a think about bumping its value to force at least one task to be
	 * moved
	 */
3440
	if (*imbalance < busiest_load_per_task) {
3441
		unsigned long tmp, pwr_now, pwr_move;
3442 3443 3444 3445 3446 3447 3448 3449 3450 3451
		unsigned int imbn;

small_imbalance:
		pwr_move = pwr_now = 0;
		imbn = 2;
		if (this_nr_running) {
			this_load_per_task /= this_nr_running;
			if (busiest_load_per_task > this_load_per_task)
				imbn = 1;
		} else
3452
			this_load_per_task = cpu_avg_load_per_task(this_cpu);
L
Linus Torvalds 已提交
3453

3454
		if (max_load - this_load + busiest_load_per_task >=
I
Ingo Molnar 已提交
3455
					busiest_load_per_task * imbn) {
3456
			*imbalance = busiest_load_per_task;
L
Linus Torvalds 已提交
3457 3458 3459 3460 3461 3462 3463 3464 3465
			return busiest;
		}

		/*
		 * OK, we don't have enough imbalance to justify moving tasks,
		 * however we may be able to increase total CPU power used by
		 * moving them.
		 */

3466 3467 3468 3469
		pwr_now += busiest->__cpu_power *
				min(busiest_load_per_task, max_load);
		pwr_now += this->__cpu_power *
				min(this_load_per_task, this_load);
L
Linus Torvalds 已提交
3470 3471 3472
		pwr_now /= SCHED_LOAD_SCALE;

		/* Amount of load we'd subtract */
3473 3474
		tmp = sg_div_cpu_power(busiest,
				busiest_load_per_task * SCHED_LOAD_SCALE);
L
Linus Torvalds 已提交
3475
		if (max_load > tmp)
3476
			pwr_move += busiest->__cpu_power *
3477
				min(busiest_load_per_task, max_load - tmp);
L
Linus Torvalds 已提交
3478 3479

		/* Amount of load we'd add */
3480
		if (max_load * busiest->__cpu_power <
3481
				busiest_load_per_task * SCHED_LOAD_SCALE)
3482 3483
			tmp = sg_div_cpu_power(this,
					max_load * busiest->__cpu_power);
L
Linus Torvalds 已提交
3484
		else
3485 3486 3487 3488
			tmp = sg_div_cpu_power(this,
				busiest_load_per_task * SCHED_LOAD_SCALE);
		pwr_move += this->__cpu_power *
				min(this_load_per_task, this_load + tmp);
L
Linus Torvalds 已提交
3489 3490 3491
		pwr_move /= SCHED_LOAD_SCALE;

		/* Move if we gain throughput */
3492 3493
		if (pwr_move > pwr_now)
			*imbalance = busiest_load_per_task;
L
Linus Torvalds 已提交
3494 3495 3496 3497 3498
	}

	return busiest;

out_balanced:
3499
#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
I
Ingo Molnar 已提交
3500
	if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
3501
		goto ret;
L
Linus Torvalds 已提交
3502

3503 3504
	if (this == group_leader && group_leader != group_min) {
		*imbalance = min_load_per_task;
3505 3506
		if (sched_mc_power_savings >= POWERSAVINGS_BALANCE_WAKEUP) {
			cpu_rq(this_cpu)->rd->sched_mc_preferred_wakeup_cpu =
I
Ingo Molnar 已提交
3507
				cpumask_first(sched_group_cpus(group_leader));
3508
		}
3509 3510 3511
		return group_min;
	}
#endif
3512
ret:
L
Linus Torvalds 已提交
3513 3514 3515 3516 3517 3518 3519
	*imbalance = 0;
	return NULL;
}

/*
 * find_busiest_queue - find the busiest runqueue among the cpus in group.
 */
3520
static struct rq *
I
Ingo Molnar 已提交
3521
find_busiest_queue(struct sched_group *group, enum cpu_idle_type idle,
3522
		   unsigned long imbalance, const struct cpumask *cpus)
L
Linus Torvalds 已提交
3523
{
3524
	struct rq *busiest = NULL, *rq;
3525
	unsigned long max_load = 0;
L
Linus Torvalds 已提交
3526 3527
	int i;

3528
	for_each_cpu(i, sched_group_cpus(group)) {
I
Ingo Molnar 已提交
3529
		unsigned long wl;
3530

3531
		if (!cpumask_test_cpu(i, cpus))
3532 3533
			continue;

3534
		rq = cpu_rq(i);
I
Ingo Molnar 已提交
3535
		wl = weighted_cpuload(i);
3536

I
Ingo Molnar 已提交
3537
		if (rq->nr_running == 1 && wl > imbalance)
3538
			continue;
L
Linus Torvalds 已提交
3539

I
Ingo Molnar 已提交
3540 3541
		if (wl > max_load) {
			max_load = wl;
3542
			busiest = rq;
L
Linus Torvalds 已提交
3543 3544 3545 3546 3547 3548
		}
	}

	return busiest;
}

3549 3550 3551 3552 3553 3554
/*
 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
 * so long as it is large enough.
 */
#define MAX_PINNED_INTERVAL	512

L
Linus Torvalds 已提交
3555 3556 3557 3558
/*
 * Check this_cpu to ensure it is balanced within domain. Attempt to move
 * tasks if there is an imbalance.
 */
3559
static int load_balance(int this_cpu, struct rq *this_rq,
I
Ingo Molnar 已提交
3560
			struct sched_domain *sd, enum cpu_idle_type idle,
3561
			int *balance, struct cpumask *cpus)
L
Linus Torvalds 已提交
3562
{
P
Peter Williams 已提交
3563
	int ld_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
L
Linus Torvalds 已提交
3564 3565
	struct sched_group *group;
	unsigned long imbalance;
3566
	struct rq *busiest;
3567
	unsigned long flags;
N
Nick Piggin 已提交
3568

3569
	cpumask_setall(cpus);
3570

3571 3572 3573
	/*
	 * When power savings policy is enabled for the parent domain, idle
	 * sibling can pick up load irrespective of busy siblings. In this case,
I
Ingo Molnar 已提交
3574
	 * let the state of idle sibling percolate up as CPU_IDLE, instead of
I
Ingo Molnar 已提交
3575
	 * portraying it as CPU_NOT_IDLE.
3576
	 */
I
Ingo Molnar 已提交
3577
	if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
3578
	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
N
Nick Piggin 已提交
3579
		sd_idle = 1;
L
Linus Torvalds 已提交
3580

3581
	schedstat_inc(sd, lb_count[idle]);
L
Linus Torvalds 已提交
3582

3583
redo:
3584
	update_shares(sd);
3585
	group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
3586
				   cpus, balance);
3587

3588
	if (*balance == 0)
3589 3590
		goto out_balanced;

L
Linus Torvalds 已提交
3591 3592 3593 3594 3595
	if (!group) {
		schedstat_inc(sd, lb_nobusyg[idle]);
		goto out_balanced;
	}

3596
	busiest = find_busiest_queue(group, idle, imbalance, cpus);
L
Linus Torvalds 已提交
3597 3598 3599 3600 3601
	if (!busiest) {
		schedstat_inc(sd, lb_nobusyq[idle]);
		goto out_balanced;
	}

N
Nick Piggin 已提交
3602
	BUG_ON(busiest == this_rq);
L
Linus Torvalds 已提交
3603 3604 3605

	schedstat_add(sd, lb_imbalance[idle], imbalance);

P
Peter Williams 已提交
3606
	ld_moved = 0;
L
Linus Torvalds 已提交
3607 3608 3609 3610
	if (busiest->nr_running > 1) {
		/*
		 * Attempt to move tasks. If find_busiest_group has found
		 * an imbalance but busiest->nr_running <= 1, the group is
P
Peter Williams 已提交
3611
		 * still unbalanced. ld_moved simply stays zero, so it is
L
Linus Torvalds 已提交
3612 3613
		 * correctly treated as an imbalance.
		 */
3614
		local_irq_save(flags);
N
Nick Piggin 已提交
3615
		double_rq_lock(this_rq, busiest);
P
Peter Williams 已提交
3616
		ld_moved = move_tasks(this_rq, this_cpu, busiest,
3617
				      imbalance, sd, idle, &all_pinned);
N
Nick Piggin 已提交
3618
		double_rq_unlock(this_rq, busiest);
3619
		local_irq_restore(flags);
3620

3621 3622 3623
		/*
		 * some other cpu did the load balance for us.
		 */
P
Peter Williams 已提交
3624
		if (ld_moved && this_cpu != smp_processor_id())
3625 3626
			resched_cpu(this_cpu);

3627
		/* All tasks on this runqueue were pinned by CPU affinity */
3628
		if (unlikely(all_pinned)) {
3629 3630
			cpumask_clear_cpu(cpu_of(busiest), cpus);
			if (!cpumask_empty(cpus))
3631
				goto redo;
3632
			goto out_balanced;
3633
		}
L
Linus Torvalds 已提交
3634
	}
3635

P
Peter Williams 已提交
3636
	if (!ld_moved) {
L
Linus Torvalds 已提交
3637 3638 3639 3640 3641
		schedstat_inc(sd, lb_failed[idle]);
		sd->nr_balance_failed++;

		if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {

3642
			spin_lock_irqsave(&busiest->lock, flags);
3643 3644 3645 3646

			/* don't kick the migration_thread, if the curr
			 * task on busiest cpu can't be moved to this_cpu
			 */
3647 3648
			if (!cpumask_test_cpu(this_cpu,
					      &busiest->curr->cpus_allowed)) {
3649
				spin_unlock_irqrestore(&busiest->lock, flags);
3650 3651 3652 3653
				all_pinned = 1;
				goto out_one_pinned;
			}

L
Linus Torvalds 已提交
3654 3655 3656
			if (!busiest->active_balance) {
				busiest->active_balance = 1;
				busiest->push_cpu = this_cpu;
3657
				active_balance = 1;
L
Linus Torvalds 已提交
3658
			}
3659
			spin_unlock_irqrestore(&busiest->lock, flags);
3660
			if (active_balance)
L
Linus Torvalds 已提交
3661 3662 3663 3664 3665 3666
				wake_up_process(busiest->migration_thread);

			/*
			 * We've kicked active balancing, reset the failure
			 * counter.
			 */
3667
			sd->nr_balance_failed = sd->cache_nice_tries+1;
L
Linus Torvalds 已提交
3668
		}
3669
	} else
L
Linus Torvalds 已提交
3670 3671
		sd->nr_balance_failed = 0;

3672
	if (likely(!active_balance)) {
L
Linus Torvalds 已提交
3673 3674
		/* We were unbalanced, so reset the balancing interval */
		sd->balance_interval = sd->min_interval;
3675 3676 3677 3678 3679 3680 3681 3682 3683
	} else {
		/*
		 * If we've begun active balancing, start to back off. This
		 * case may not be covered by the all_pinned logic if there
		 * is only 1 task on the busy runqueue (because we don't call
		 * move_tasks).
		 */
		if (sd->balance_interval < sd->max_interval)
			sd->balance_interval *= 2;
L
Linus Torvalds 已提交
3684 3685
	}

P
Peter Williams 已提交
3686
	if (!ld_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
3687
	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
3688 3689 3690
		ld_moved = -1;

	goto out;
L
Linus Torvalds 已提交
3691 3692 3693 3694

out_balanced:
	schedstat_inc(sd, lb_balanced[idle]);

3695
	sd->nr_balance_failed = 0;
3696 3697

out_one_pinned:
L
Linus Torvalds 已提交
3698
	/* tune up the balancing interval */
3699 3700
	if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
			(sd->balance_interval < sd->max_interval))
L
Linus Torvalds 已提交
3701 3702
		sd->balance_interval *= 2;

3703
	if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
3704
	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
3705 3706 3707 3708
		ld_moved = -1;
	else
		ld_moved = 0;
out:
3709 3710
	if (ld_moved)
		update_shares(sd);
3711
	return ld_moved;
L
Linus Torvalds 已提交
3712 3713 3714 3715 3716 3717
}

/*
 * Check this_cpu to ensure it is balanced within domain. Attempt to move
 * tasks if there is an imbalance.
 *
I
Ingo Molnar 已提交
3718
 * Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE).
L
Linus Torvalds 已提交
3719 3720
 * this_rq is locked.
 */
3721
static int
3722
load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd,
3723
			struct cpumask *cpus)
L
Linus Torvalds 已提交
3724 3725
{
	struct sched_group *group;
3726
	struct rq *busiest = NULL;
L
Linus Torvalds 已提交
3727
	unsigned long imbalance;
P
Peter Williams 已提交
3728
	int ld_moved = 0;
N
Nick Piggin 已提交
3729
	int sd_idle = 0;
3730
	int all_pinned = 0;
3731

3732
	cpumask_setall(cpus);
N
Nick Piggin 已提交
3733

3734 3735 3736 3737
	/*
	 * When power savings policy is enabled for the parent domain, idle
	 * sibling can pick up load irrespective of busy siblings. In this case,
	 * let the state of idle sibling percolate up as IDLE, instead of
I
Ingo Molnar 已提交
3738
	 * portraying it as CPU_NOT_IDLE.
3739 3740 3741
	 */
	if (sd->flags & SD_SHARE_CPUPOWER &&
	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
N
Nick Piggin 已提交
3742
		sd_idle = 1;
L
Linus Torvalds 已提交
3743

3744
	schedstat_inc(sd, lb_count[CPU_NEWLY_IDLE]);
3745
redo:
3746
	update_shares_locked(this_rq, sd);
I
Ingo Molnar 已提交
3747
	group = find_busiest_group(sd, this_cpu, &imbalance, CPU_NEWLY_IDLE,
3748
				   &sd_idle, cpus, NULL);
L
Linus Torvalds 已提交
3749
	if (!group) {
I
Ingo Molnar 已提交
3750
		schedstat_inc(sd, lb_nobusyg[CPU_NEWLY_IDLE]);
3751
		goto out_balanced;
L
Linus Torvalds 已提交
3752 3753
	}

3754
	busiest = find_busiest_queue(group, CPU_NEWLY_IDLE, imbalance, cpus);
N
Nick Piggin 已提交
3755
	if (!busiest) {
I
Ingo Molnar 已提交
3756
		schedstat_inc(sd, lb_nobusyq[CPU_NEWLY_IDLE]);
3757
		goto out_balanced;
L
Linus Torvalds 已提交
3758 3759
	}

N
Nick Piggin 已提交
3760 3761
	BUG_ON(busiest == this_rq);

I
Ingo Molnar 已提交
3762
	schedstat_add(sd, lb_imbalance[CPU_NEWLY_IDLE], imbalance);
3763

P
Peter Williams 已提交
3764
	ld_moved = 0;
3765 3766 3767
	if (busiest->nr_running > 1) {
		/* Attempt to move tasks */
		double_lock_balance(this_rq, busiest);
3768 3769
		/* this_rq->clock is already updated */
		update_rq_clock(busiest);
P
Peter Williams 已提交
3770
		ld_moved = move_tasks(this_rq, this_cpu, busiest,
3771 3772
					imbalance, sd, CPU_NEWLY_IDLE,
					&all_pinned);
3773
		double_unlock_balance(this_rq, busiest);
3774

3775
		if (unlikely(all_pinned)) {
3776 3777
			cpumask_clear_cpu(cpu_of(busiest), cpus);
			if (!cpumask_empty(cpus))
3778 3779
				goto redo;
		}
3780 3781
	}

P
Peter Williams 已提交
3782
	if (!ld_moved) {
3783
		int active_balance = 0;
3784

I
Ingo Molnar 已提交
3785
		schedstat_inc(sd, lb_failed[CPU_NEWLY_IDLE]);
3786 3787
		if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
		    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
N
Nick Piggin 已提交
3788
			return -1;
3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824

		if (sched_mc_power_savings < POWERSAVINGS_BALANCE_WAKEUP)
			return -1;

		if (sd->nr_balance_failed++ < 2)
			return -1;

		/*
		 * The only task running in a non-idle cpu can be moved to this
		 * cpu in an attempt to completely freeup the other CPU
		 * package. The same method used to move task in load_balance()
		 * have been extended for load_balance_newidle() to speedup
		 * consolidation at sched_mc=POWERSAVINGS_BALANCE_WAKEUP (2)
		 *
		 * The package power saving logic comes from
		 * find_busiest_group().  If there are no imbalance, then
		 * f_b_g() will return NULL.  However when sched_mc={1,2} then
		 * f_b_g() will select a group from which a running task may be
		 * pulled to this cpu in order to make the other package idle.
		 * If there is no opportunity to make a package idle and if
		 * there are no imbalance, then f_b_g() will return NULL and no
		 * action will be taken in load_balance_newidle().
		 *
		 * Under normal task pull operation due to imbalance, there
		 * will be more than one task in the source run queue and
		 * move_tasks() will succeed.  ld_moved will be true and this
		 * active balance code will not be triggered.
		 */

		/* Lock busiest in correct order while this_rq is held */
		double_lock_balance(this_rq, busiest);

		/*
		 * don't kick the migration_thread, if the curr
		 * task on busiest cpu can't be moved to this_cpu
		 */
3825
		if (!cpumask_test_cpu(this_cpu, &busiest->curr->cpus_allowed)) {
3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837
			double_unlock_balance(this_rq, busiest);
			all_pinned = 1;
			return ld_moved;
		}

		if (!busiest->active_balance) {
			busiest->active_balance = 1;
			busiest->push_cpu = this_cpu;
			active_balance = 1;
		}

		double_unlock_balance(this_rq, busiest);
3838 3839 3840 3841
		/*
		 * Should not call ttwu while holding a rq->lock
		 */
		spin_unlock(&this_rq->lock);
3842 3843
		if (active_balance)
			wake_up_process(busiest->migration_thread);
3844
		spin_lock(&this_rq->lock);
3845

N
Nick Piggin 已提交
3846
	} else
3847
		sd->nr_balance_failed = 0;
L
Linus Torvalds 已提交
3848

3849
	update_shares_locked(this_rq, sd);
P
Peter Williams 已提交
3850
	return ld_moved;
3851 3852

out_balanced:
I
Ingo Molnar 已提交
3853
	schedstat_inc(sd, lb_balanced[CPU_NEWLY_IDLE]);
3854
	if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
3855
	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
N
Nick Piggin 已提交
3856
		return -1;
3857
	sd->nr_balance_failed = 0;
3858

3859
	return 0;
L
Linus Torvalds 已提交
3860 3861 3862 3863 3864 3865
}

/*
 * idle_balance is called by schedule() if this_cpu is about to become
 * idle. Attempts to pull tasks from other CPUs.
 */
3866
static void idle_balance(int this_cpu, struct rq *this_rq)
L
Linus Torvalds 已提交
3867 3868
{
	struct sched_domain *sd;
3869
	int pulled_task = 0;
I
Ingo Molnar 已提交
3870
	unsigned long next_balance = jiffies + HZ;
3871 3872 3873 3874
	cpumask_var_t tmpmask;

	if (!alloc_cpumask_var(&tmpmask, GFP_ATOMIC))
		return;
L
Linus Torvalds 已提交
3875 3876

	for_each_domain(this_cpu, sd) {
3877 3878 3879 3880 3881 3882
		unsigned long interval;

		if (!(sd->flags & SD_LOAD_BALANCE))
			continue;

		if (sd->flags & SD_BALANCE_NEWIDLE)
3883
			/* If we've pulled tasks over stop searching: */
3884
			pulled_task = load_balance_newidle(this_cpu, this_rq,
3885
							   sd, tmpmask);
3886 3887 3888 3889 3890 3891

		interval = msecs_to_jiffies(sd->balance_interval);
		if (time_after(next_balance, sd->last_balance + interval))
			next_balance = sd->last_balance + interval;
		if (pulled_task)
			break;
L
Linus Torvalds 已提交
3892
	}
I
Ingo Molnar 已提交
3893
	if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
3894 3895 3896 3897 3898
		/*
		 * We are going idle. next_balance may be set based on
		 * a busy processor. So reset next_balance.
		 */
		this_rq->next_balance = next_balance;
I
Ingo Molnar 已提交
3899
	}
3900
	free_cpumask_var(tmpmask);
L
Linus Torvalds 已提交
3901 3902 3903 3904 3905 3906 3907 3908 3909 3910
}

/*
 * active_load_balance is run by migration threads. It pushes running tasks
 * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
 * running on each physical CPU where possible, and avoids physical /
 * logical imbalances.
 *
 * Called with busiest_rq locked.
 */
3911
static void active_load_balance(struct rq *busiest_rq, int busiest_cpu)
L
Linus Torvalds 已提交
3912
{
3913
	int target_cpu = busiest_rq->push_cpu;
3914 3915
	struct sched_domain *sd;
	struct rq *target_rq;
3916

3917
	/* Is there any task to move? */
3918 3919 3920 3921
	if (busiest_rq->nr_running <= 1)
		return;

	target_rq = cpu_rq(target_cpu);
L
Linus Torvalds 已提交
3922 3923

	/*
3924
	 * This condition is "impossible", if it occurs
I
Ingo Molnar 已提交
3925
	 * we need to fix it. Originally reported by
3926
	 * Bjorn Helgaas on a 128-cpu setup.
L
Linus Torvalds 已提交
3927
	 */
3928
	BUG_ON(busiest_rq == target_rq);
L
Linus Torvalds 已提交
3929

3930 3931
	/* move a task from busiest_rq to target_rq */
	double_lock_balance(busiest_rq, target_rq);
3932 3933
	update_rq_clock(busiest_rq);
	update_rq_clock(target_rq);
3934 3935

	/* Search for an sd spanning us and the target CPU. */
3936
	for_each_domain(target_cpu, sd) {
3937
		if ((sd->flags & SD_LOAD_BALANCE) &&
3938
		    cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
3939
				break;
3940
	}
3941

3942
	if (likely(sd)) {
3943
		schedstat_inc(sd, alb_count);
3944

P
Peter Williams 已提交
3945 3946
		if (move_one_task(target_rq, target_cpu, busiest_rq,
				  sd, CPU_IDLE))
3947 3948 3949 3950
			schedstat_inc(sd, alb_pushed);
		else
			schedstat_inc(sd, alb_failed);
	}
3951
	double_unlock_balance(busiest_rq, target_rq);
L
Linus Torvalds 已提交
3952 3953
}

3954 3955 3956
#ifdef CONFIG_NO_HZ
static struct {
	atomic_t load_balancer;
3957
	cpumask_var_t cpu_mask;
3958 3959 3960 3961
} nohz ____cacheline_aligned = {
	.load_balancer = ATOMIC_INIT(-1),
};

3962
/*
3963 3964 3965 3966 3967 3968 3969 3970 3971 3972
 * This routine will try to nominate the ilb (idle load balancing)
 * owner among the cpus whose ticks are stopped. ilb owner will do the idle
 * load balancing on behalf of all those cpus. If all the cpus in the system
 * go into this tickless mode, then there will be no ilb owner (as there is
 * no need for one) and all the cpus will sleep till the next wakeup event
 * arrives...
 *
 * For the ilb owner, tick is not stopped. And this tick will be used
 * for idle load balancing. ilb owner will still be part of
 * nohz.cpu_mask..
3973
 *
3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988
 * While stopping the tick, this cpu will become the ilb owner if there
 * is no other owner. And will be the owner till that cpu becomes busy
 * or if all cpus in the system stop their ticks at which point
 * there is no need for ilb owner.
 *
 * When the ilb owner becomes busy, it nominates another owner, during the
 * next busy scheduler_tick()
 */
int select_nohz_load_balancer(int stop_tick)
{
	int cpu = smp_processor_id();

	if (stop_tick) {
		cpu_rq(cpu)->in_nohz_recently = 1;

3989 3990 3991 3992 3993 3994 3995 3996
		if (!cpu_active(cpu)) {
			if (atomic_read(&nohz.load_balancer) != cpu)
				return 0;

			/*
			 * If we are going offline and still the leader,
			 * give up!
			 */
3997 3998
			if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
				BUG();
3999

4000 4001 4002
			return 0;
		}

4003 4004
		cpumask_set_cpu(cpu, nohz.cpu_mask);

4005
		/* time for ilb owner also to sleep */
4006
		if (cpumask_weight(nohz.cpu_mask) == num_online_cpus()) {
4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018
			if (atomic_read(&nohz.load_balancer) == cpu)
				atomic_set(&nohz.load_balancer, -1);
			return 0;
		}

		if (atomic_read(&nohz.load_balancer) == -1) {
			/* make me the ilb owner */
			if (atomic_cmpxchg(&nohz.load_balancer, -1, cpu) == -1)
				return 1;
		} else if (atomic_read(&nohz.load_balancer) == cpu)
			return 1;
	} else {
4019
		if (!cpumask_test_cpu(cpu, nohz.cpu_mask))
4020 4021
			return 0;

4022
		cpumask_clear_cpu(cpu, nohz.cpu_mask);
4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034

		if (atomic_read(&nohz.load_balancer) == cpu)
			if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
				BUG();
	}
	return 0;
}
#endif

static DEFINE_SPINLOCK(balancing);

/*
4035 4036 4037 4038 4039
 * It checks each scheduling domain to see if it is due to be balanced,
 * and initiates a balancing operation if so.
 *
 * Balancing parameters are set up in arch_init_sched_domains.
 */
A
Alexey Dobriyan 已提交
4040
static void rebalance_domains(int cpu, enum cpu_idle_type idle)
4041
{
4042 4043
	int balance = 1;
	struct rq *rq = cpu_rq(cpu);
4044 4045
	unsigned long interval;
	struct sched_domain *sd;
4046
	/* Earliest time when we have to do rebalance again */
4047
	unsigned long next_balance = jiffies + 60*HZ;
4048
	int update_next_balance = 0;
4049
	int need_serialize;
4050 4051 4052 4053 4054
	cpumask_var_t tmp;

	/* Fails alloc?  Rebalancing probably not a priority right now. */
	if (!alloc_cpumask_var(&tmp, GFP_ATOMIC))
		return;
L
Linus Torvalds 已提交
4055

4056
	for_each_domain(cpu, sd) {
L
Linus Torvalds 已提交
4057 4058 4059 4060
		if (!(sd->flags & SD_LOAD_BALANCE))
			continue;

		interval = sd->balance_interval;
I
Ingo Molnar 已提交
4061
		if (idle != CPU_IDLE)
L
Linus Torvalds 已提交
4062 4063 4064 4065 4066 4067
			interval *= sd->busy_factor;

		/* scale ms to jiffies */
		interval = msecs_to_jiffies(interval);
		if (unlikely(!interval))
			interval = 1;
I
Ingo Molnar 已提交
4068 4069 4070
		if (interval > HZ*NR_CPUS/10)
			interval = HZ*NR_CPUS/10;

4071
		need_serialize = sd->flags & SD_SERIALIZE;
L
Linus Torvalds 已提交
4072

4073
		if (need_serialize) {
4074 4075 4076 4077
			if (!spin_trylock(&balancing))
				goto out;
		}

4078
		if (time_after_eq(jiffies, sd->last_balance + interval)) {
4079
			if (load_balance(cpu, rq, sd, idle, &balance, tmp)) {
4080 4081
				/*
				 * We've pulled tasks over so either we're no
N
Nick Piggin 已提交
4082 4083 4084
				 * longer idle, or one of our SMT siblings is
				 * not idle.
				 */
I
Ingo Molnar 已提交
4085
				idle = CPU_NOT_IDLE;
L
Linus Torvalds 已提交
4086
			}
4087
			sd->last_balance = jiffies;
L
Linus Torvalds 已提交
4088
		}
4089
		if (need_serialize)
4090 4091
			spin_unlock(&balancing);
out:
4092
		if (time_after(next_balance, sd->last_balance + interval)) {
4093
			next_balance = sd->last_balance + interval;
4094 4095
			update_next_balance = 1;
		}
4096 4097 4098 4099 4100 4101 4102 4103

		/*
		 * Stop the load balance at this level. There is another
		 * CPU in our sched group which is doing load balancing more
		 * actively.
		 */
		if (!balance)
			break;
L
Linus Torvalds 已提交
4104
	}
4105 4106 4107 4108 4109 4110 4111 4112

	/*
	 * next_balance will be updated only when there is a need.
	 * When the cpu is attached to null domain for ex, it will not be
	 * updated.
	 */
	if (likely(update_next_balance))
		rq->next_balance = next_balance;
4113 4114

	free_cpumask_var(tmp);
4115 4116 4117 4118 4119 4120 4121 4122 4123
}

/*
 * run_rebalance_domains is triggered when needed from the scheduler tick.
 * In CONFIG_NO_HZ case, the idle load balance owner will do the
 * rebalancing for all the cpus for whom scheduler ticks are stopped.
 */
static void run_rebalance_domains(struct softirq_action *h)
{
I
Ingo Molnar 已提交
4124 4125 4126 4127
	int this_cpu = smp_processor_id();
	struct rq *this_rq = cpu_rq(this_cpu);
	enum cpu_idle_type idle = this_rq->idle_at_tick ?
						CPU_IDLE : CPU_NOT_IDLE;
4128

I
Ingo Molnar 已提交
4129
	rebalance_domains(this_cpu, idle);
4130 4131 4132 4133 4134 4135 4136

#ifdef CONFIG_NO_HZ
	/*
	 * If this cpu is the owner for idle load balancing, then do the
	 * balancing on behalf of the other idle cpus whose ticks are
	 * stopped.
	 */
I
Ingo Molnar 已提交
4137 4138
	if (this_rq->idle_at_tick &&
	    atomic_read(&nohz.load_balancer) == this_cpu) {
4139 4140 4141
		struct rq *rq;
		int balance_cpu;

4142 4143 4144 4145
		for_each_cpu(balance_cpu, nohz.cpu_mask) {
			if (balance_cpu == this_cpu)
				continue;

4146 4147 4148 4149 4150 4151 4152 4153
			/*
			 * If this cpu gets work to do, stop the load balancing
			 * work being done for other cpus. Next load
			 * balancing owner will pick it up.
			 */
			if (need_resched())
				break;

4154
			rebalance_domains(balance_cpu, CPU_IDLE);
4155 4156

			rq = cpu_rq(balance_cpu);
I
Ingo Molnar 已提交
4157 4158
			if (time_after(this_rq->next_balance, rq->next_balance))
				this_rq->next_balance = rq->next_balance;
4159 4160 4161 4162 4163
		}
	}
#endif
}

4164 4165 4166 4167 4168
static inline int on_null_domain(int cpu)
{
	return !rcu_dereference(cpu_rq(cpu)->sd);
}

4169 4170 4171 4172 4173 4174 4175
/*
 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
 *
 * In case of CONFIG_NO_HZ, this is the place where we nominate a new
 * idle load balancing owner or decide to stop the periodic load balancing,
 * if the whole system is idle.
 */
I
Ingo Molnar 已提交
4176
static inline void trigger_load_balance(struct rq *rq, int cpu)
4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187
{
#ifdef CONFIG_NO_HZ
	/*
	 * If we were in the nohz mode recently and busy at the current
	 * scheduler tick, then check if we need to nominate new idle
	 * load balancer.
	 */
	if (rq->in_nohz_recently && !rq->idle_at_tick) {
		rq->in_nohz_recently = 0;

		if (atomic_read(&nohz.load_balancer) == cpu) {
4188
			cpumask_clear_cpu(cpu, nohz.cpu_mask);
4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200
			atomic_set(&nohz.load_balancer, -1);
		}

		if (atomic_read(&nohz.load_balancer) == -1) {
			/*
			 * simple selection for now: Nominate the
			 * first cpu in the nohz list to be the next
			 * ilb owner.
			 *
			 * TBD: Traverse the sched domains and nominate
			 * the nearest cpu in the nohz.cpu_mask.
			 */
4201
			int ilb = cpumask_first(nohz.cpu_mask);
4202

4203
			if (ilb < nr_cpu_ids)
4204 4205 4206 4207 4208 4209 4210 4211 4212
				resched_cpu(ilb);
		}
	}

	/*
	 * If this cpu is idle and doing idle load balancing for all the
	 * cpus with ticks stopped, is it time for that to stop?
	 */
	if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) == cpu &&
4213
	    cpumask_weight(nohz.cpu_mask) == num_online_cpus()) {
4214 4215 4216 4217 4218 4219 4220 4221 4222
		resched_cpu(cpu);
		return;
	}

	/*
	 * If this cpu is idle and the idle load balancing is done by
	 * someone else, then no need raise the SCHED_SOFTIRQ
	 */
	if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) != cpu &&
4223
	    cpumask_test_cpu(cpu, nohz.cpu_mask))
4224 4225
		return;
#endif
4226 4227 4228
	/* Don't need to rebalance while attached to NULL domain */
	if (time_after_eq(jiffies, rq->next_balance) &&
	    likely(!on_null_domain(cpu)))
4229
		raise_softirq(SCHED_SOFTIRQ);
L
Linus Torvalds 已提交
4230
}
I
Ingo Molnar 已提交
4231 4232 4233

#else	/* CONFIG_SMP */

L
Linus Torvalds 已提交
4234 4235 4236
/*
 * on UP we do not need to balance between CPUs:
 */
4237
static inline void idle_balance(int cpu, struct rq *rq)
L
Linus Torvalds 已提交
4238 4239
{
}
I
Ingo Molnar 已提交
4240

L
Linus Torvalds 已提交
4241 4242 4243 4244 4245 4246 4247
#endif

DEFINE_PER_CPU(struct kernel_stat, kstat);

EXPORT_PER_CPU_SYMBOL(kstat);

/*
4248 4249
 * Return any ns on the sched_clock that have not yet been banked in
 * @p in case that task is currently running.
L
Linus Torvalds 已提交
4250
 */
4251
unsigned long long task_delta_exec(struct task_struct *p)
L
Linus Torvalds 已提交
4252 4253
{
	unsigned long flags;
4254
	struct rq *rq;
4255
	u64 ns = 0;
4256

4257
	rq = task_rq_lock(p, &flags);
4258

4259
	if (task_current(rq, p)) {
4260 4261
		u64 delta_exec;

I
Ingo Molnar 已提交
4262 4263
		update_rq_clock(rq);
		delta_exec = rq->clock - p->se.exec_start;
4264
		if ((s64)delta_exec > 0)
4265
			ns = delta_exec;
4266
	}
4267

4268
	task_rq_unlock(rq, &flags);
4269

L
Linus Torvalds 已提交
4270 4271 4272 4273 4274 4275 4276
	return ns;
}

/*
 * Account user cpu time to a process.
 * @p: the process that the cpu time gets accounted to
 * @cputime: the cpu time spent in user space since the last update
4277
 * @cputime_scaled: cputime scaled by cpu frequency
L
Linus Torvalds 已提交
4278
 */
4279 4280
void account_user_time(struct task_struct *p, cputime_t cputime,
		       cputime_t cputime_scaled)
L
Linus Torvalds 已提交
4281 4282 4283 4284
{
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
	cputime64_t tmp;

4285
	/* Add user time to process. */
L
Linus Torvalds 已提交
4286
	p->utime = cputime_add(p->utime, cputime);
4287
	p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
4288
	account_group_user_time(p, cputime);
L
Linus Torvalds 已提交
4289 4290 4291 4292 4293 4294 4295

	/* Add user time to cpustat. */
	tmp = cputime_to_cputime64(cputime);
	if (TASK_NICE(p) > 0)
		cpustat->nice = cputime64_add(cpustat->nice, tmp);
	else
		cpustat->user = cputime64_add(cpustat->user, tmp);
4296 4297
	/* Account for user time used */
	acct_update_integrals(p);
L
Linus Torvalds 已提交
4298 4299
}

4300 4301 4302 4303
/*
 * Account guest cpu time to a process.
 * @p: the process that the cpu time gets accounted to
 * @cputime: the cpu time spent in virtual machine since the last update
4304
 * @cputime_scaled: cputime scaled by cpu frequency
4305
 */
4306 4307
static void account_guest_time(struct task_struct *p, cputime_t cputime,
			       cputime_t cputime_scaled)
4308 4309 4310 4311 4312 4313
{
	cputime64_t tmp;
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;

	tmp = cputime_to_cputime64(cputime);

4314
	/* Add guest time to process. */
4315
	p->utime = cputime_add(p->utime, cputime);
4316
	p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
4317
	account_group_user_time(p, cputime);
4318 4319
	p->gtime = cputime_add(p->gtime, cputime);

4320
	/* Add guest time to cpustat. */
4321 4322 4323 4324
	cpustat->user = cputime64_add(cpustat->user, tmp);
	cpustat->guest = cputime64_add(cpustat->guest, tmp);
}

L
Linus Torvalds 已提交
4325 4326 4327 4328 4329
/*
 * Account system cpu time to a process.
 * @p: the process that the cpu time gets accounted to
 * @hardirq_offset: the offset to subtract from hardirq_count()
 * @cputime: the cpu time spent in kernel space since the last update
4330
 * @cputime_scaled: cputime scaled by cpu frequency
L
Linus Torvalds 已提交
4331 4332
 */
void account_system_time(struct task_struct *p, int hardirq_offset,
4333
			 cputime_t cputime, cputime_t cputime_scaled)
L
Linus Torvalds 已提交
4334 4335 4336 4337
{
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
	cputime64_t tmp;

4338
	if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
4339
		account_guest_time(p, cputime, cputime_scaled);
4340 4341
		return;
	}
4342

4343
	/* Add system time to process. */
L
Linus Torvalds 已提交
4344
	p->stime = cputime_add(p->stime, cputime);
4345
	p->stimescaled = cputime_add(p->stimescaled, cputime_scaled);
4346
	account_group_system_time(p, cputime);
L
Linus Torvalds 已提交
4347 4348 4349 4350 4351 4352 4353 4354

	/* Add system time to cpustat. */
	tmp = cputime_to_cputime64(cputime);
	if (hardirq_count() - hardirq_offset)
		cpustat->irq = cputime64_add(cpustat->irq, tmp);
	else if (softirq_count())
		cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
	else
4355 4356
		cpustat->system = cputime64_add(cpustat->system, tmp);

L
Linus Torvalds 已提交
4357 4358 4359 4360
	/* Account for system time used */
	acct_update_integrals(p);
}

4361
/*
L
Linus Torvalds 已提交
4362 4363
 * Account for involuntary wait time.
 * @steal: the cpu time spent in involuntary wait
4364
 */
4365
void account_steal_time(cputime_t cputime)
4366
{
4367 4368 4369 4370
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
	cputime64_t cputime64 = cputime_to_cputime64(cputime);

	cpustat->steal = cputime64_add(cpustat->steal, cputime64);
4371 4372
}

L
Linus Torvalds 已提交
4373
/*
4374 4375
 * Account for idle time.
 * @cputime: the cpu time spent in idle wait
L
Linus Torvalds 已提交
4376
 */
4377
void account_idle_time(cputime_t cputime)
L
Linus Torvalds 已提交
4378 4379
{
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
4380
	cputime64_t cputime64 = cputime_to_cputime64(cputime);
4381
	struct rq *rq = this_rq();
L
Linus Torvalds 已提交
4382

4383 4384 4385 4386
	if (atomic_read(&rq->nr_iowait) > 0)
		cpustat->iowait = cputime64_add(cpustat->iowait, cputime64);
	else
		cpustat->idle = cputime64_add(cpustat->idle, cputime64);
L
Linus Torvalds 已提交
4387 4388
}

4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427
#ifndef CONFIG_VIRT_CPU_ACCOUNTING

/*
 * Account a single tick of cpu time.
 * @p: the process that the cpu time gets accounted to
 * @user_tick: indicates if the tick is a user or a system tick
 */
void account_process_tick(struct task_struct *p, int user_tick)
{
	cputime_t one_jiffy = jiffies_to_cputime(1);
	cputime_t one_jiffy_scaled = cputime_to_scaled(one_jiffy);
	struct rq *rq = this_rq();

	if (user_tick)
		account_user_time(p, one_jiffy, one_jiffy_scaled);
	else if (p != rq->idle)
		account_system_time(p, HARDIRQ_OFFSET, one_jiffy,
				    one_jiffy_scaled);
	else
		account_idle_time(one_jiffy);
}

/*
 * Account multiple ticks of steal time.
 * @p: the process from which the cpu time has been stolen
 * @ticks: number of stolen ticks
 */
void account_steal_ticks(unsigned long ticks)
{
	account_steal_time(jiffies_to_cputime(ticks));
}

/*
 * Account multiple ticks of idle time.
 * @ticks: number of stolen ticks
 */
void account_idle_ticks(unsigned long ticks)
{
	account_idle_time(jiffies_to_cputime(ticks));
L
Linus Torvalds 已提交
4428 4429
}

4430 4431
#endif

4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490
/*
 * Use precise platform statistics if available:
 */
#ifdef CONFIG_VIRT_CPU_ACCOUNTING
cputime_t task_utime(struct task_struct *p)
{
	return p->utime;
}

cputime_t task_stime(struct task_struct *p)
{
	return p->stime;
}
#else
cputime_t task_utime(struct task_struct *p)
{
	clock_t utime = cputime_to_clock_t(p->utime),
		total = utime + cputime_to_clock_t(p->stime);
	u64 temp;

	/*
	 * Use CFS's precise accounting:
	 */
	temp = (u64)nsec_to_clock_t(p->se.sum_exec_runtime);

	if (total) {
		temp *= utime;
		do_div(temp, total);
	}
	utime = (clock_t)temp;

	p->prev_utime = max(p->prev_utime, clock_t_to_cputime(utime));
	return p->prev_utime;
}

cputime_t task_stime(struct task_struct *p)
{
	clock_t stime;

	/*
	 * Use CFS's precise accounting. (we subtract utime from
	 * the total, to make sure the total observed by userspace
	 * grows monotonically - apps rely on that):
	 */
	stime = nsec_to_clock_t(p->se.sum_exec_runtime) -
			cputime_to_clock_t(task_utime(p));

	if (stime >= 0)
		p->prev_stime = max(p->prev_stime, clock_t_to_cputime(stime));

	return p->prev_stime;
}
#endif

inline cputime_t task_gtime(struct task_struct *p)
{
	return p->gtime;
}

4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501
/*
 * This function gets called by the timer code, with HZ frequency.
 * We call it with interrupts disabled.
 *
 * It also gets called by the fork code, when changing the parent's
 * timeslices.
 */
void scheduler_tick(void)
{
	int cpu = smp_processor_id();
	struct rq *rq = cpu_rq(cpu);
I
Ingo Molnar 已提交
4502
	struct task_struct *curr = rq->curr;
4503 4504

	sched_clock_tick();
I
Ingo Molnar 已提交
4505 4506

	spin_lock(&rq->lock);
4507
	update_rq_clock(rq);
4508
	update_cpu_load(rq);
P
Peter Zijlstra 已提交
4509
	curr->sched_class->task_tick(rq, curr, 0);
I
Ingo Molnar 已提交
4510
	spin_unlock(&rq->lock);
4511

4512
#ifdef CONFIG_SMP
I
Ingo Molnar 已提交
4513 4514
	rq->idle_at_tick = idle_cpu(cpu);
	trigger_load_balance(rq, cpu);
4515
#endif
L
Linus Torvalds 已提交
4516 4517
}

4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529
#if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
				defined(CONFIG_PREEMPT_TRACER))

static inline unsigned long get_parent_ip(unsigned long addr)
{
	if (in_lock_functions(addr)) {
		addr = CALLER_ADDR2;
		if (in_lock_functions(addr))
			addr = CALLER_ADDR3;
	}
	return addr;
}
L
Linus Torvalds 已提交
4530

4531
void __kprobes add_preempt_count(int val)
L
Linus Torvalds 已提交
4532
{
4533
#ifdef CONFIG_DEBUG_PREEMPT
L
Linus Torvalds 已提交
4534 4535 4536
	/*
	 * Underflow?
	 */
4537 4538
	if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
		return;
4539
#endif
L
Linus Torvalds 已提交
4540
	preempt_count() += val;
4541
#ifdef CONFIG_DEBUG_PREEMPT
L
Linus Torvalds 已提交
4542 4543 4544
	/*
	 * Spinlock count overflowing soon?
	 */
4545 4546
	DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
				PREEMPT_MASK - 10);
4547 4548 4549
#endif
	if (preempt_count() == val)
		trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
L
Linus Torvalds 已提交
4550 4551 4552
}
EXPORT_SYMBOL(add_preempt_count);

4553
void __kprobes sub_preempt_count(int val)
L
Linus Torvalds 已提交
4554
{
4555
#ifdef CONFIG_DEBUG_PREEMPT
L
Linus Torvalds 已提交
4556 4557 4558
	/*
	 * Underflow?
	 */
4559
	if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
4560
		return;
L
Linus Torvalds 已提交
4561 4562 4563
	/*
	 * Is the spinlock portion underflowing?
	 */
4564 4565 4566
	if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
			!(preempt_count() & PREEMPT_MASK)))
		return;
4567
#endif
4568

4569 4570
	if (preempt_count() == val)
		trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
L
Linus Torvalds 已提交
4571 4572 4573 4574 4575 4576 4577
	preempt_count() -= val;
}
EXPORT_SYMBOL(sub_preempt_count);

#endif

/*
I
Ingo Molnar 已提交
4578
 * Print scheduling while atomic bug:
L
Linus Torvalds 已提交
4579
 */
I
Ingo Molnar 已提交
4580
static noinline void __schedule_bug(struct task_struct *prev)
L
Linus Torvalds 已提交
4581
{
4582 4583 4584 4585 4586
	struct pt_regs *regs = get_irq_regs();

	printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
		prev->comm, prev->pid, preempt_count());

I
Ingo Molnar 已提交
4587
	debug_show_held_locks(prev);
4588
	print_modules();
I
Ingo Molnar 已提交
4589 4590
	if (irqs_disabled())
		print_irqtrace_events(prev);
4591 4592 4593 4594 4595

	if (regs)
		show_regs(regs);
	else
		dump_stack();
I
Ingo Molnar 已提交
4596
}
L
Linus Torvalds 已提交
4597

I
Ingo Molnar 已提交
4598 4599 4600 4601 4602
/*
 * Various schedule()-time debugging checks and statistics:
 */
static inline void schedule_debug(struct task_struct *prev)
{
L
Linus Torvalds 已提交
4603
	/*
I
Ingo Molnar 已提交
4604
	 * Test if we are atomic. Since do_exit() needs to call into
L
Linus Torvalds 已提交
4605 4606 4607
	 * schedule() atomically, we ignore that path for now.
	 * Otherwise, whine if we are scheduling when we should not be.
	 */
4608
	if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
I
Ingo Molnar 已提交
4609 4610
		__schedule_bug(prev);

L
Linus Torvalds 已提交
4611 4612
	profile_hit(SCHED_PROFILING, __builtin_return_address(0));

4613
	schedstat_inc(this_rq(), sched_count);
I
Ingo Molnar 已提交
4614 4615
#ifdef CONFIG_SCHEDSTATS
	if (unlikely(prev->lock_depth >= 0)) {
4616 4617
		schedstat_inc(this_rq(), bkl_count);
		schedstat_inc(prev, sched_info.bkl_count);
I
Ingo Molnar 已提交
4618 4619
	}
#endif
I
Ingo Molnar 已提交
4620 4621
}

M
Mike Galbraith 已提交
4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643
static void put_prev_task(struct rq *rq, struct task_struct *prev)
{
	if (prev->state == TASK_RUNNING) {
		u64 runtime = prev->se.sum_exec_runtime;

		runtime -= prev->se.prev_sum_exec_runtime;
		runtime = min_t(u64, runtime, 2*sysctl_sched_migration_cost);

		/*
		 * In order to avoid avg_overlap growing stale when we are
		 * indeed overlapping and hence not getting put to sleep, grow
		 * the avg_overlap on preemption.
		 *
		 * We use the average preemption runtime because that
		 * correlates to the amount of cache footprint a task can
		 * build up.
		 */
		update_avg(&prev->se.avg_overlap, runtime);
	}
	prev->sched_class->put_prev_task(rq, prev);
}

I
Ingo Molnar 已提交
4644 4645 4646 4647
/*
 * Pick up the highest-prio task:
 */
static inline struct task_struct *
4648
pick_next_task(struct rq *rq)
I
Ingo Molnar 已提交
4649
{
4650
	const struct sched_class *class;
I
Ingo Molnar 已提交
4651
	struct task_struct *p;
L
Linus Torvalds 已提交
4652 4653

	/*
I
Ingo Molnar 已提交
4654 4655
	 * Optimization: we know that if all tasks are in
	 * the fair class we can call that function directly:
L
Linus Torvalds 已提交
4656
	 */
I
Ingo Molnar 已提交
4657
	if (likely(rq->nr_running == rq->cfs.nr_running)) {
4658
		p = fair_sched_class.pick_next_task(rq);
I
Ingo Molnar 已提交
4659 4660
		if (likely(p))
			return p;
L
Linus Torvalds 已提交
4661 4662
	}

I
Ingo Molnar 已提交
4663 4664
	class = sched_class_highest;
	for ( ; ; ) {
4665
		p = class->pick_next_task(rq);
I
Ingo Molnar 已提交
4666 4667 4668 4669 4670 4671 4672 4673 4674
		if (p)
			return p;
		/*
		 * Will never be NULL as the idle class always
		 * returns a non-NULL p:
		 */
		class = class->next;
	}
}
L
Linus Torvalds 已提交
4675

I
Ingo Molnar 已提交
4676 4677 4678 4679 4680 4681
/*
 * schedule() is the main scheduler function.
 */
asmlinkage void __sched schedule(void)
{
	struct task_struct *prev, *next;
4682
	unsigned long *switch_count;
I
Ingo Molnar 已提交
4683
	struct rq *rq;
4684
	int cpu;
I
Ingo Molnar 已提交
4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697

need_resched:
	preempt_disable();
	cpu = smp_processor_id();
	rq = cpu_rq(cpu);
	rcu_qsctr_inc(cpu);
	prev = rq->curr;
	switch_count = &prev->nivcsw;

	release_kernel_lock(prev);
need_resched_nonpreemptible:

	schedule_debug(prev);
L
Linus Torvalds 已提交
4698

4699
	if (sched_feat(HRTICK))
M
Mike Galbraith 已提交
4700
		hrtick_clear(rq);
P
Peter Zijlstra 已提交
4701

4702
	spin_lock_irq(&rq->lock);
4703
	update_rq_clock(rq);
4704
	clear_tsk_need_resched(prev);
L
Linus Torvalds 已提交
4705 4706

	if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
4707
		if (unlikely(signal_pending_state(prev->state, prev)))
L
Linus Torvalds 已提交
4708
			prev->state = TASK_RUNNING;
4709
		else
4710
			deactivate_task(rq, prev, 1);
I
Ingo Molnar 已提交
4711
		switch_count = &prev->nvcsw;
L
Linus Torvalds 已提交
4712 4713
	}

4714 4715 4716 4717
#ifdef CONFIG_SMP
	if (prev->sched_class->pre_schedule)
		prev->sched_class->pre_schedule(rq, prev);
#endif
4718

I
Ingo Molnar 已提交
4719
	if (unlikely(!rq->nr_running))
L
Linus Torvalds 已提交
4720 4721
		idle_balance(cpu, rq);

M
Mike Galbraith 已提交
4722
	put_prev_task(rq, prev);
4723
	next = pick_next_task(rq);
L
Linus Torvalds 已提交
4724 4725

	if (likely(prev != next)) {
4726 4727
		sched_info_switch(prev, next);

L
Linus Torvalds 已提交
4728 4729 4730 4731
		rq->nr_switches++;
		rq->curr = next;
		++*switch_count;

I
Ingo Molnar 已提交
4732
		context_switch(rq, prev, next); /* unlocks the rq */
P
Peter Zijlstra 已提交
4733 4734 4735 4736 4737 4738
		/*
		 * the context switch might have flipped the stack from under
		 * us, hence refresh the local variables.
		 */
		cpu = smp_processor_id();
		rq = cpu_rq(cpu);
L
Linus Torvalds 已提交
4739 4740 4741
	} else
		spin_unlock_irq(&rq->lock);

P
Peter Zijlstra 已提交
4742
	if (unlikely(reacquire_kernel_lock(current) < 0))
L
Linus Torvalds 已提交
4743
		goto need_resched_nonpreemptible;
P
Peter Zijlstra 已提交
4744

L
Linus Torvalds 已提交
4745 4746 4747 4748 4749 4750 4751 4752
	preempt_enable_no_resched();
	if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
		goto need_resched;
}
EXPORT_SYMBOL(schedule);

#ifdef CONFIG_PREEMPT
/*
4753
 * this is the entry point to schedule() from in-kernel preemption
I
Ingo Molnar 已提交
4754
 * off of preempt_enable. Kernel preemptions off return from interrupt
L
Linus Torvalds 已提交
4755 4756 4757 4758 4759
 * occur there and call schedule directly.
 */
asmlinkage void __sched preempt_schedule(void)
{
	struct thread_info *ti = current_thread_info();
4760

L
Linus Torvalds 已提交
4761 4762
	/*
	 * If there is a non-zero preempt_count or interrupts are disabled,
I
Ingo Molnar 已提交
4763
	 * we do not want to preempt the current task. Just return..
L
Linus Torvalds 已提交
4764
	 */
N
Nick Piggin 已提交
4765
	if (likely(ti->preempt_count || irqs_disabled()))
L
Linus Torvalds 已提交
4766 4767
		return;

4768 4769 4770 4771
	do {
		add_preempt_count(PREEMPT_ACTIVE);
		schedule();
		sub_preempt_count(PREEMPT_ACTIVE);
L
Linus Torvalds 已提交
4772

4773 4774 4775 4776 4777
		/*
		 * Check again in case we missed a preemption opportunity
		 * between schedule and now.
		 */
		barrier();
4778
	} while (need_resched());
L
Linus Torvalds 已提交
4779 4780 4781 4782
}
EXPORT_SYMBOL(preempt_schedule);

/*
4783
 * this is the entry point to schedule() from kernel preemption
L
Linus Torvalds 已提交
4784 4785 4786 4787 4788 4789 4790
 * off of irq context.
 * Note, that this is called and return with irqs disabled. This will
 * protect us against recursive calling from irq.
 */
asmlinkage void __sched preempt_schedule_irq(void)
{
	struct thread_info *ti = current_thread_info();
4791

4792
	/* Catch callers which need to be fixed */
L
Linus Torvalds 已提交
4793 4794
	BUG_ON(ti->preempt_count || !irqs_disabled());

4795 4796 4797 4798 4799 4800
	do {
		add_preempt_count(PREEMPT_ACTIVE);
		local_irq_enable();
		schedule();
		local_irq_disable();
		sub_preempt_count(PREEMPT_ACTIVE);
L
Linus Torvalds 已提交
4801

4802 4803 4804 4805 4806
		/*
		 * Check again in case we missed a preemption opportunity
		 * between schedule and now.
		 */
		barrier();
4807
	} while (need_resched());
L
Linus Torvalds 已提交
4808 4809 4810 4811
}

#endif /* CONFIG_PREEMPT */

I
Ingo Molnar 已提交
4812 4813
int default_wake_function(wait_queue_t *curr, unsigned mode, int sync,
			  void *key)
L
Linus Torvalds 已提交
4814
{
4815
	return try_to_wake_up(curr->private, mode, sync);
L
Linus Torvalds 已提交
4816 4817 4818 4819
}
EXPORT_SYMBOL(default_wake_function);

/*
I
Ingo Molnar 已提交
4820 4821
 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
L
Linus Torvalds 已提交
4822 4823 4824
 * number) then we wake all the non-exclusive tasks and one exclusive task.
 *
 * There are circumstances in which we can try to wake a task which has already
I
Ingo Molnar 已提交
4825
 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
L
Linus Torvalds 已提交
4826 4827
 * zero in this (rare) case, and we handle it by continuing to scan the queue.
 */
4828 4829
void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
			int nr_exclusive, int sync, void *key)
L
Linus Torvalds 已提交
4830
{
4831
	wait_queue_t *curr, *next;
L
Linus Torvalds 已提交
4832

4833
	list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
4834 4835
		unsigned flags = curr->flags;

L
Linus Torvalds 已提交
4836
		if (curr->func(curr, mode, sync, key) &&
4837
				(flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
L
Linus Torvalds 已提交
4838 4839 4840 4841 4842 4843 4844 4845 4846
			break;
	}
}

/**
 * __wake_up - wake up threads blocked on a waitqueue.
 * @q: the waitqueue
 * @mode: which threads
 * @nr_exclusive: how many wake-one or wake-many threads to wake up
4847
 * @key: is directly passed to the wakeup function
L
Linus Torvalds 已提交
4848
 */
4849
void __wake_up(wait_queue_head_t *q, unsigned int mode,
I
Ingo Molnar 已提交
4850
			int nr_exclusive, void *key)
L
Linus Torvalds 已提交
4851 4852 4853 4854 4855 4856 4857 4858 4859 4860 4861 4862
{
	unsigned long flags;

	spin_lock_irqsave(&q->lock, flags);
	__wake_up_common(q, mode, nr_exclusive, 0, key);
	spin_unlock_irqrestore(&q->lock, flags);
}
EXPORT_SYMBOL(__wake_up);

/*
 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
 */
4863
void __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
L
Linus Torvalds 已提交
4864 4865 4866 4867 4868
{
	__wake_up_common(q, mode, 1, 0, NULL);
}

/**
4869
 * __wake_up_sync - wake up threads blocked on a waitqueue.
L
Linus Torvalds 已提交
4870 4871 4872 4873 4874 4875 4876 4877 4878 4879 4880
 * @q: the waitqueue
 * @mode: which threads
 * @nr_exclusive: how many wake-one or wake-many threads to wake up
 *
 * The sync wakeup differs that the waker knows that it will schedule
 * away soon, so while the target thread will be woken up, it will not
 * be migrated to another CPU - ie. the two threads are 'synchronized'
 * with each other. This can prevent needless bouncing between CPUs.
 *
 * On UP it can prevent extra preemption.
 */
4881
void
I
Ingo Molnar 已提交
4882
__wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
L
Linus Torvalds 已提交
4883 4884 4885 4886 4887 4888 4889 4890 4891 4892 4893 4894 4895 4896 4897 4898
{
	unsigned long flags;
	int sync = 1;

	if (unlikely(!q))
		return;

	if (unlikely(!nr_exclusive))
		sync = 0;

	spin_lock_irqsave(&q->lock, flags);
	__wake_up_common(q, mode, nr_exclusive, sync, NULL);
	spin_unlock_irqrestore(&q->lock, flags);
}
EXPORT_SYMBOL_GPL(__wake_up_sync);	/* For internal use only */

4899 4900 4901 4902 4903 4904 4905 4906 4907
/**
 * complete: - signals a single thread waiting on this completion
 * @x:  holds the state of this particular completion
 *
 * This will wake up a single thread waiting on this completion. Threads will be
 * awakened in the same order in which they were queued.
 *
 * See also complete_all(), wait_for_completion() and related routines.
 */
4908
void complete(struct completion *x)
L
Linus Torvalds 已提交
4909 4910 4911 4912 4913
{
	unsigned long flags;

	spin_lock_irqsave(&x->wait.lock, flags);
	x->done++;
4914
	__wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
L
Linus Torvalds 已提交
4915 4916 4917 4918
	spin_unlock_irqrestore(&x->wait.lock, flags);
}
EXPORT_SYMBOL(complete);

4919 4920 4921 4922 4923 4924
/**
 * complete_all: - signals all threads waiting on this completion
 * @x:  holds the state of this particular completion
 *
 * This will wake up all threads waiting on this particular completion event.
 */
4925
void complete_all(struct completion *x)
L
Linus Torvalds 已提交
4926 4927 4928 4929 4930
{
	unsigned long flags;

	spin_lock_irqsave(&x->wait.lock, flags);
	x->done += UINT_MAX/2;
4931
	__wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
L
Linus Torvalds 已提交
4932 4933 4934 4935
	spin_unlock_irqrestore(&x->wait.lock, flags);
}
EXPORT_SYMBOL(complete_all);

4936 4937
static inline long __sched
do_wait_for_common(struct completion *x, long timeout, int state)
L
Linus Torvalds 已提交
4938 4939 4940 4941 4942 4943 4944
{
	if (!x->done) {
		DECLARE_WAITQUEUE(wait, current);

		wait.flags |= WQ_FLAG_EXCLUSIVE;
		__add_wait_queue_tail(&x->wait, &wait);
		do {
4945
			if (signal_pending_state(state, current)) {
4946 4947
				timeout = -ERESTARTSYS;
				break;
4948 4949
			}
			__set_current_state(state);
L
Linus Torvalds 已提交
4950 4951 4952
			spin_unlock_irq(&x->wait.lock);
			timeout = schedule_timeout(timeout);
			spin_lock_irq(&x->wait.lock);
4953
		} while (!x->done && timeout);
L
Linus Torvalds 已提交
4954
		__remove_wait_queue(&x->wait, &wait);
4955 4956
		if (!x->done)
			return timeout;
L
Linus Torvalds 已提交
4957 4958
	}
	x->done--;
4959
	return timeout ?: 1;
L
Linus Torvalds 已提交
4960 4961
}

4962 4963
static long __sched
wait_for_common(struct completion *x, long timeout, int state)
L
Linus Torvalds 已提交
4964 4965 4966 4967
{
	might_sleep();

	spin_lock_irq(&x->wait.lock);
4968
	timeout = do_wait_for_common(x, timeout, state);
L
Linus Torvalds 已提交
4969
	spin_unlock_irq(&x->wait.lock);
4970 4971
	return timeout;
}
L
Linus Torvalds 已提交
4972

4973 4974 4975 4976 4977 4978 4979 4980 4981 4982
/**
 * wait_for_completion: - waits for completion of a task
 * @x:  holds the state of this particular completion
 *
 * This waits to be signaled for completion of a specific task. It is NOT
 * interruptible and there is no timeout.
 *
 * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
 * and interrupt capability. Also see complete().
 */
4983
void __sched wait_for_completion(struct completion *x)
4984 4985
{
	wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
L
Linus Torvalds 已提交
4986
}
4987
EXPORT_SYMBOL(wait_for_completion);
L
Linus Torvalds 已提交
4988

4989 4990 4991 4992 4993 4994 4995 4996 4997
/**
 * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
 * @x:  holds the state of this particular completion
 * @timeout:  timeout value in jiffies
 *
 * This waits for either a completion of a specific task to be signaled or for a
 * specified timeout to expire. The timeout is in jiffies. It is not
 * interruptible.
 */
4998
unsigned long __sched
4999
wait_for_completion_timeout(struct completion *x, unsigned long timeout)
L
Linus Torvalds 已提交
5000
{
5001
	return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
L
Linus Torvalds 已提交
5002
}
5003
EXPORT_SYMBOL(wait_for_completion_timeout);
L
Linus Torvalds 已提交
5004

5005 5006 5007 5008 5009 5010 5011
/**
 * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
 * @x:  holds the state of this particular completion
 *
 * This waits for completion of a specific task to be signaled. It is
 * interruptible.
 */
5012
int __sched wait_for_completion_interruptible(struct completion *x)
I
Ingo Molnar 已提交
5013
{
5014 5015 5016 5017
	long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
	if (t == -ERESTARTSYS)
		return t;
	return 0;
I
Ingo Molnar 已提交
5018
}
5019
EXPORT_SYMBOL(wait_for_completion_interruptible);
L
Linus Torvalds 已提交
5020

5021 5022 5023 5024 5025 5026 5027 5028
/**
 * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
 * @x:  holds the state of this particular completion
 * @timeout:  timeout value in jiffies
 *
 * This waits for either a completion of a specific task to be signaled or for a
 * specified timeout to expire. It is interruptible. The timeout is in jiffies.
 */
5029
unsigned long __sched
5030 5031
wait_for_completion_interruptible_timeout(struct completion *x,
					  unsigned long timeout)
I
Ingo Molnar 已提交
5032
{
5033
	return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
I
Ingo Molnar 已提交
5034
}
5035
EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
L
Linus Torvalds 已提交
5036

5037 5038 5039 5040 5041 5042 5043
/**
 * wait_for_completion_killable: - waits for completion of a task (killable)
 * @x:  holds the state of this particular completion
 *
 * This waits to be signaled for completion of a specific task. It can be
 * interrupted by a kill signal.
 */
M
Matthew Wilcox 已提交
5044 5045 5046 5047 5048 5049 5050 5051 5052
int __sched wait_for_completion_killable(struct completion *x)
{
	long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
	if (t == -ERESTARTSYS)
		return t;
	return 0;
}
EXPORT_SYMBOL(wait_for_completion_killable);

5053 5054 5055 5056 5057 5058 5059 5060 5061 5062 5063 5064 5065 5066 5067 5068 5069 5070 5071 5072 5073 5074 5075 5076 5077 5078 5079 5080 5081 5082 5083 5084 5085 5086 5087 5088 5089 5090 5091 5092 5093 5094 5095 5096 5097 5098
/**
 *	try_wait_for_completion - try to decrement a completion without blocking
 *	@x:	completion structure
 *
 *	Returns: 0 if a decrement cannot be done without blocking
 *		 1 if a decrement succeeded.
 *
 *	If a completion is being used as a counting completion,
 *	attempt to decrement the counter without blocking. This
 *	enables us to avoid waiting if the resource the completion
 *	is protecting is not available.
 */
bool try_wait_for_completion(struct completion *x)
{
	int ret = 1;

	spin_lock_irq(&x->wait.lock);
	if (!x->done)
		ret = 0;
	else
		x->done--;
	spin_unlock_irq(&x->wait.lock);
	return ret;
}
EXPORT_SYMBOL(try_wait_for_completion);

/**
 *	completion_done - Test to see if a completion has any waiters
 *	@x:	completion structure
 *
 *	Returns: 0 if there are waiters (wait_for_completion() in progress)
 *		 1 if there are no waiters.
 *
 */
bool completion_done(struct completion *x)
{
	int ret = 1;

	spin_lock_irq(&x->wait.lock);
	if (!x->done)
		ret = 0;
	spin_unlock_irq(&x->wait.lock);
	return ret;
}
EXPORT_SYMBOL(completion_done);

5099 5100
static long __sched
sleep_on_common(wait_queue_head_t *q, int state, long timeout)
L
Linus Torvalds 已提交
5101
{
I
Ingo Molnar 已提交
5102 5103 5104 5105
	unsigned long flags;
	wait_queue_t wait;

	init_waitqueue_entry(&wait, current);
L
Linus Torvalds 已提交
5106

5107
	__set_current_state(state);
L
Linus Torvalds 已提交
5108

5109 5110 5111 5112 5113 5114 5115 5116 5117 5118 5119 5120 5121 5122
	spin_lock_irqsave(&q->lock, flags);
	__add_wait_queue(q, &wait);
	spin_unlock(&q->lock);
	timeout = schedule_timeout(timeout);
	spin_lock_irq(&q->lock);
	__remove_wait_queue(q, &wait);
	spin_unlock_irqrestore(&q->lock, flags);

	return timeout;
}

void __sched interruptible_sleep_on(wait_queue_head_t *q)
{
	sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
L
Linus Torvalds 已提交
5123 5124 5125
}
EXPORT_SYMBOL(interruptible_sleep_on);

I
Ingo Molnar 已提交
5126
long __sched
I
Ingo Molnar 已提交
5127
interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
L
Linus Torvalds 已提交
5128
{
5129
	return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
L
Linus Torvalds 已提交
5130 5131 5132
}
EXPORT_SYMBOL(interruptible_sleep_on_timeout);

I
Ingo Molnar 已提交
5133
void __sched sleep_on(wait_queue_head_t *q)
L
Linus Torvalds 已提交
5134
{
5135
	sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
L
Linus Torvalds 已提交
5136 5137 5138
}
EXPORT_SYMBOL(sleep_on);

I
Ingo Molnar 已提交
5139
long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
L
Linus Torvalds 已提交
5140
{
5141
	return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
L
Linus Torvalds 已提交
5142 5143 5144
}
EXPORT_SYMBOL(sleep_on_timeout);

5145 5146 5147 5148 5149 5150 5151 5152 5153 5154 5155 5156
#ifdef CONFIG_RT_MUTEXES

/*
 * rt_mutex_setprio - set the current priority of a task
 * @p: task
 * @prio: prio value (kernel-internal form)
 *
 * This function changes the 'effective' priority of a task. It does
 * not touch ->normal_prio like __setscheduler().
 *
 * Used by the rt_mutex code to implement priority inheritance logic.
 */
5157
void rt_mutex_setprio(struct task_struct *p, int prio)
5158 5159
{
	unsigned long flags;
5160
	int oldprio, on_rq, running;
5161
	struct rq *rq;
5162
	const struct sched_class *prev_class = p->sched_class;
5163 5164 5165 5166

	BUG_ON(prio < 0 || prio > MAX_PRIO);

	rq = task_rq_lock(p, &flags);
I
Ingo Molnar 已提交
5167
	update_rq_clock(rq);
5168

5169
	oldprio = p->prio;
I
Ingo Molnar 已提交
5170
	on_rq = p->se.on_rq;
5171
	running = task_current(rq, p);
5172
	if (on_rq)
5173
		dequeue_task(rq, p, 0);
5174 5175
	if (running)
		p->sched_class->put_prev_task(rq, p);
I
Ingo Molnar 已提交
5176 5177 5178 5179 5180 5181

	if (rt_prio(prio))
		p->sched_class = &rt_sched_class;
	else
		p->sched_class = &fair_sched_class;

5182 5183
	p->prio = prio;

5184 5185
	if (running)
		p->sched_class->set_curr_task(rq);
I
Ingo Molnar 已提交
5186
	if (on_rq) {
5187
		enqueue_task(rq, p, 0);
5188 5189

		check_class_changed(rq, p, prev_class, oldprio, running);
5190 5191 5192 5193 5194 5195
	}
	task_rq_unlock(rq, &flags);
}

#endif

5196
void set_user_nice(struct task_struct *p, long nice)
L
Linus Torvalds 已提交
5197
{
I
Ingo Molnar 已提交
5198
	int old_prio, delta, on_rq;
L
Linus Torvalds 已提交
5199
	unsigned long flags;
5200
	struct rq *rq;
L
Linus Torvalds 已提交
5201 5202 5203 5204 5205 5206 5207 5208

	if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
		return;
	/*
	 * We have to be careful, if called from sys_setpriority(),
	 * the task might be in the middle of scheduling on another CPU.
	 */
	rq = task_rq_lock(p, &flags);
I
Ingo Molnar 已提交
5209
	update_rq_clock(rq);
L
Linus Torvalds 已提交
5210 5211 5212 5213
	/*
	 * The RT priorities are set via sched_setscheduler(), but we still
	 * allow the 'normal' nice value to be set - but as expected
	 * it wont have any effect on scheduling until the task is
I
Ingo Molnar 已提交
5214
	 * SCHED_FIFO/SCHED_RR:
L
Linus Torvalds 已提交
5215
	 */
5216
	if (task_has_rt_policy(p)) {
L
Linus Torvalds 已提交
5217 5218 5219
		p->static_prio = NICE_TO_PRIO(nice);
		goto out_unlock;
	}
I
Ingo Molnar 已提交
5220
	on_rq = p->se.on_rq;
5221
	if (on_rq)
5222
		dequeue_task(rq, p, 0);
L
Linus Torvalds 已提交
5223 5224

	p->static_prio = NICE_TO_PRIO(nice);
5225
	set_load_weight(p);
5226 5227 5228
	old_prio = p->prio;
	p->prio = effective_prio(p);
	delta = p->prio - old_prio;
L
Linus Torvalds 已提交
5229

I
Ingo Molnar 已提交
5230
	if (on_rq) {
5231
		enqueue_task(rq, p, 0);
L
Linus Torvalds 已提交
5232
		/*
5233 5234
		 * If the task increased its priority or is running and
		 * lowered its priority, then reschedule its CPU:
L
Linus Torvalds 已提交
5235
		 */
5236
		if (delta < 0 || (delta > 0 && task_running(rq, p)))
L
Linus Torvalds 已提交
5237 5238 5239 5240 5241 5242 5243
			resched_task(rq->curr);
	}
out_unlock:
	task_rq_unlock(rq, &flags);
}
EXPORT_SYMBOL(set_user_nice);

M
Matt Mackall 已提交
5244 5245 5246 5247 5248
/*
 * can_nice - check if a task can reduce its nice value
 * @p: task
 * @nice: nice value
 */
5249
int can_nice(const struct task_struct *p, const int nice)
M
Matt Mackall 已提交
5250
{
5251 5252
	/* convert nice value [19,-20] to rlimit style value [1,40] */
	int nice_rlim = 20 - nice;
5253

M
Matt Mackall 已提交
5254 5255 5256 5257
	return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
		capable(CAP_SYS_NICE));
}

L
Linus Torvalds 已提交
5258 5259 5260 5261 5262 5263 5264 5265 5266
#ifdef __ARCH_WANT_SYS_NICE

/*
 * sys_nice - change the priority of the current process.
 * @increment: priority increment
 *
 * sys_setpriority is a more generic, but much slower function that
 * does similar things.
 */
5267
SYSCALL_DEFINE1(nice, int, increment)
L
Linus Torvalds 已提交
5268
{
5269
	long nice, retval;
L
Linus Torvalds 已提交
5270 5271 5272 5273 5274 5275

	/*
	 * Setpriority might change our priority at the same moment.
	 * We don't have to worry. Conceptually one call occurs first
	 * and we have a single winner.
	 */
M
Matt Mackall 已提交
5276 5277
	if (increment < -40)
		increment = -40;
L
Linus Torvalds 已提交
5278 5279 5280
	if (increment > 40)
		increment = 40;

5281
	nice = TASK_NICE(current) + increment;
L
Linus Torvalds 已提交
5282 5283 5284 5285 5286
	if (nice < -20)
		nice = -20;
	if (nice > 19)
		nice = 19;

M
Matt Mackall 已提交
5287 5288 5289
	if (increment < 0 && !can_nice(current, nice))
		return -EPERM;

L
Linus Torvalds 已提交
5290 5291 5292 5293 5294 5295 5296 5297 5298 5299 5300 5301 5302 5303 5304 5305 5306 5307
	retval = security_task_setnice(current, nice);
	if (retval)
		return retval;

	set_user_nice(current, nice);
	return 0;
}

#endif

/**
 * task_prio - return the priority value of a given task.
 * @p: the task in question.
 *
 * This is the priority value as seen by users in /proc.
 * RT tasks are offset by -200. Normal tasks are centered
 * around 0, value goes from -16 to +15.
 */
5308
int task_prio(const struct task_struct *p)
L
Linus Torvalds 已提交
5309 5310 5311 5312 5313 5314 5315 5316
{
	return p->prio - MAX_RT_PRIO;
}

/**
 * task_nice - return the nice value of a given task.
 * @p: the task in question.
 */
5317
int task_nice(const struct task_struct *p)
L
Linus Torvalds 已提交
5318 5319 5320
{
	return TASK_NICE(p);
}
P
Pavel Roskin 已提交
5321
EXPORT_SYMBOL(task_nice);
L
Linus Torvalds 已提交
5322 5323 5324 5325 5326 5327 5328 5329 5330 5331 5332 5333 5334 5335

/**
 * idle_cpu - is a given cpu idle currently?
 * @cpu: the processor in question.
 */
int idle_cpu(int cpu)
{
	return cpu_curr(cpu) == cpu_rq(cpu)->idle;
}

/**
 * idle_task - return the idle task for a given cpu.
 * @cpu: the processor in question.
 */
5336
struct task_struct *idle_task(int cpu)
L
Linus Torvalds 已提交
5337 5338 5339 5340 5341 5342 5343 5344
{
	return cpu_rq(cpu)->idle;
}

/**
 * find_process_by_pid - find a process with a matching PID value.
 * @pid: the pid in question.
 */
A
Alexey Dobriyan 已提交
5345
static struct task_struct *find_process_by_pid(pid_t pid)
L
Linus Torvalds 已提交
5346
{
5347
	return pid ? find_task_by_vpid(pid) : current;
L
Linus Torvalds 已提交
5348 5349 5350
}

/* Actually do priority change: must hold rq lock. */
I
Ingo Molnar 已提交
5351 5352
static void
__setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
L
Linus Torvalds 已提交
5353
{
I
Ingo Molnar 已提交
5354
	BUG_ON(p->se.on_rq);
5355

L
Linus Torvalds 已提交
5356
	p->policy = policy;
I
Ingo Molnar 已提交
5357 5358 5359 5360 5361 5362 5363 5364 5365 5366 5367 5368
	switch (p->policy) {
	case SCHED_NORMAL:
	case SCHED_BATCH:
	case SCHED_IDLE:
		p->sched_class = &fair_sched_class;
		break;
	case SCHED_FIFO:
	case SCHED_RR:
		p->sched_class = &rt_sched_class;
		break;
	}

L
Linus Torvalds 已提交
5369
	p->rt_priority = prio;
5370 5371 5372
	p->normal_prio = normal_prio(p);
	/* we are holding p->pi_lock already */
	p->prio = rt_mutex_getprio(p);
5373
	set_load_weight(p);
L
Linus Torvalds 已提交
5374 5375
}

5376 5377 5378 5379 5380 5381 5382 5383 5384 5385 5386 5387 5388 5389 5390 5391
/*
 * check the target process has a UID that matches the current process's
 */
static bool check_same_owner(struct task_struct *p)
{
	const struct cred *cred = current_cred(), *pcred;
	bool match;

	rcu_read_lock();
	pcred = __task_cred(p);
	match = (cred->euid == pcred->euid ||
		 cred->euid == pcred->uid);
	rcu_read_unlock();
	return match;
}

5392 5393
static int __sched_setscheduler(struct task_struct *p, int policy,
				struct sched_param *param, bool user)
L
Linus Torvalds 已提交
5394
{
5395
	int retval, oldprio, oldpolicy = -1, on_rq, running;
L
Linus Torvalds 已提交
5396
	unsigned long flags;
5397
	const struct sched_class *prev_class = p->sched_class;
5398
	struct rq *rq;
L
Linus Torvalds 已提交
5399

5400 5401
	/* may grab non-irq protected spin_locks */
	BUG_ON(in_interrupt());
L
Linus Torvalds 已提交
5402 5403 5404 5405 5406
recheck:
	/* double check policy once rq lock held */
	if (policy < 0)
		policy = oldpolicy = p->policy;
	else if (policy != SCHED_FIFO && policy != SCHED_RR &&
I
Ingo Molnar 已提交
5407 5408
			policy != SCHED_NORMAL && policy != SCHED_BATCH &&
			policy != SCHED_IDLE)
5409
		return -EINVAL;
L
Linus Torvalds 已提交
5410 5411
	/*
	 * Valid priorities for SCHED_FIFO and SCHED_RR are
I
Ingo Molnar 已提交
5412 5413
	 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
	 * SCHED_BATCH and SCHED_IDLE is 0.
L
Linus Torvalds 已提交
5414 5415
	 */
	if (param->sched_priority < 0 ||
I
Ingo Molnar 已提交
5416
	    (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
5417
	    (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
L
Linus Torvalds 已提交
5418
		return -EINVAL;
5419
	if (rt_policy(policy) != (param->sched_priority != 0))
L
Linus Torvalds 已提交
5420 5421
		return -EINVAL;

5422 5423 5424
	/*
	 * Allow unprivileged RT tasks to decrease priority:
	 */
5425
	if (user && !capable(CAP_SYS_NICE)) {
5426
		if (rt_policy(policy)) {
5427 5428 5429 5430 5431 5432 5433 5434 5435 5436 5437 5438 5439 5440 5441 5442
			unsigned long rlim_rtprio;

			if (!lock_task_sighand(p, &flags))
				return -ESRCH;
			rlim_rtprio = p->signal->rlim[RLIMIT_RTPRIO].rlim_cur;
			unlock_task_sighand(p, &flags);

			/* can't set/change the rt policy */
			if (policy != p->policy && !rlim_rtprio)
				return -EPERM;

			/* can't increase priority */
			if (param->sched_priority > p->rt_priority &&
			    param->sched_priority > rlim_rtprio)
				return -EPERM;
		}
I
Ingo Molnar 已提交
5443 5444 5445 5446 5447 5448
		/*
		 * Like positive nice levels, dont allow tasks to
		 * move out of SCHED_IDLE either:
		 */
		if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
			return -EPERM;
5449

5450
		/* can't change other user's priorities */
5451
		if (!check_same_owner(p))
5452 5453
			return -EPERM;
	}
L
Linus Torvalds 已提交
5454

5455
	if (user) {
5456
#ifdef CONFIG_RT_GROUP_SCHED
5457 5458 5459 5460
		/*
		 * Do not allow realtime tasks into groups that have no runtime
		 * assigned.
		 */
P
Peter Zijlstra 已提交
5461 5462
		if (rt_bandwidth_enabled() && rt_policy(policy) &&
				task_group(p)->rt_bandwidth.rt_runtime == 0)
5463
			return -EPERM;
5464 5465
#endif

5466 5467 5468 5469 5470
		retval = security_task_setscheduler(p, policy, param);
		if (retval)
			return retval;
	}

5471 5472 5473 5474 5475
	/*
	 * make sure no PI-waiters arrive (or leave) while we are
	 * changing the priority of the task:
	 */
	spin_lock_irqsave(&p->pi_lock, flags);
L
Linus Torvalds 已提交
5476 5477 5478 5479
	/*
	 * To be able to change p->policy safely, the apropriate
	 * runqueue lock must be held.
	 */
5480
	rq = __task_rq_lock(p);
L
Linus Torvalds 已提交
5481 5482 5483
	/* recheck policy now with rq lock held */
	if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
		policy = oldpolicy = -1;
5484 5485
		__task_rq_unlock(rq);
		spin_unlock_irqrestore(&p->pi_lock, flags);
L
Linus Torvalds 已提交
5486 5487
		goto recheck;
	}
I
Ingo Molnar 已提交
5488
	update_rq_clock(rq);
I
Ingo Molnar 已提交
5489
	on_rq = p->se.on_rq;
5490
	running = task_current(rq, p);
5491
	if (on_rq)
5492
		deactivate_task(rq, p, 0);
5493 5494
	if (running)
		p->sched_class->put_prev_task(rq, p);
5495

L
Linus Torvalds 已提交
5496
	oldprio = p->prio;
I
Ingo Molnar 已提交
5497
	__setscheduler(rq, p, policy, param->sched_priority);
5498

5499 5500
	if (running)
		p->sched_class->set_curr_task(rq);
I
Ingo Molnar 已提交
5501 5502
	if (on_rq) {
		activate_task(rq, p, 0);
5503 5504

		check_class_changed(rq, p, prev_class, oldprio, running);
L
Linus Torvalds 已提交
5505
	}
5506 5507 5508
	__task_rq_unlock(rq);
	spin_unlock_irqrestore(&p->pi_lock, flags);

5509 5510
	rt_mutex_adjust_pi(p);

L
Linus Torvalds 已提交
5511 5512
	return 0;
}
5513 5514 5515 5516 5517 5518 5519 5520 5521 5522 5523 5524 5525 5526

/**
 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
 * @p: the task in question.
 * @policy: new policy.
 * @param: structure containing the new RT priority.
 *
 * NOTE that the task may be already dead.
 */
int sched_setscheduler(struct task_struct *p, int policy,
		       struct sched_param *param)
{
	return __sched_setscheduler(p, policy, param, true);
}
L
Linus Torvalds 已提交
5527 5528
EXPORT_SYMBOL_GPL(sched_setscheduler);

5529 5530 5531 5532 5533 5534 5535 5536 5537 5538 5539 5540 5541 5542 5543 5544 5545
/**
 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
 * @p: the task in question.
 * @policy: new policy.
 * @param: structure containing the new RT priority.
 *
 * Just like sched_setscheduler, only don't bother checking if the
 * current context has permission.  For example, this is needed in
 * stop_machine(): we create temporary high priority worker threads,
 * but our caller might not have that capability.
 */
int sched_setscheduler_nocheck(struct task_struct *p, int policy,
			       struct sched_param *param)
{
	return __sched_setscheduler(p, policy, param, false);
}

I
Ingo Molnar 已提交
5546 5547
static int
do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
L
Linus Torvalds 已提交
5548 5549 5550
{
	struct sched_param lparam;
	struct task_struct *p;
5551
	int retval;
L
Linus Torvalds 已提交
5552 5553 5554 5555 5556

	if (!param || pid < 0)
		return -EINVAL;
	if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
		return -EFAULT;
5557 5558 5559

	rcu_read_lock();
	retval = -ESRCH;
L
Linus Torvalds 已提交
5560
	p = find_process_by_pid(pid);
5561 5562 5563
	if (p != NULL)
		retval = sched_setscheduler(p, policy, &lparam);
	rcu_read_unlock();
5564

L
Linus Torvalds 已提交
5565 5566 5567 5568 5569 5570 5571 5572 5573
	return retval;
}

/**
 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
 * @pid: the pid in question.
 * @policy: new policy.
 * @param: structure containing the new RT priority.
 */
5574 5575
SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
		struct sched_param __user *, param)
L
Linus Torvalds 已提交
5576
{
5577 5578 5579 5580
	/* negative values for policy are not valid */
	if (policy < 0)
		return -EINVAL;

L
Linus Torvalds 已提交
5581 5582 5583 5584 5585 5586 5587 5588
	return do_sched_setscheduler(pid, policy, param);
}

/**
 * sys_sched_setparam - set/change the RT priority of a thread
 * @pid: the pid in question.
 * @param: structure containing the new RT priority.
 */
5589
SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
L
Linus Torvalds 已提交
5590 5591 5592 5593 5594 5595 5596 5597
{
	return do_sched_setscheduler(pid, -1, param);
}

/**
 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
 * @pid: the pid in question.
 */
5598
SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
L
Linus Torvalds 已提交
5599
{
5600
	struct task_struct *p;
5601
	int retval;
L
Linus Torvalds 已提交
5602 5603

	if (pid < 0)
5604
		return -EINVAL;
L
Linus Torvalds 已提交
5605 5606 5607 5608 5609 5610 5611 5612 5613 5614 5615 5616 5617 5618 5619 5620 5621 5622

	retval = -ESRCH;
	read_lock(&tasklist_lock);
	p = find_process_by_pid(pid);
	if (p) {
		retval = security_task_getscheduler(p);
		if (!retval)
			retval = p->policy;
	}
	read_unlock(&tasklist_lock);
	return retval;
}

/**
 * sys_sched_getscheduler - get the RT priority of a thread
 * @pid: the pid in question.
 * @param: structure containing the RT priority.
 */
5623
SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
L
Linus Torvalds 已提交
5624 5625
{
	struct sched_param lp;
5626
	struct task_struct *p;
5627
	int retval;
L
Linus Torvalds 已提交
5628 5629

	if (!param || pid < 0)
5630
		return -EINVAL;
L
Linus Torvalds 已提交
5631 5632 5633 5634 5635 5636 5637 5638 5639 5640 5641 5642 5643 5644 5645 5646 5647 5648 5649 5650 5651 5652 5653 5654 5655 5656

	read_lock(&tasklist_lock);
	p = find_process_by_pid(pid);
	retval = -ESRCH;
	if (!p)
		goto out_unlock;

	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

	lp.sched_priority = p->rt_priority;
	read_unlock(&tasklist_lock);

	/*
	 * This one might sleep, we cannot do it with a spinlock held ...
	 */
	retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;

	return retval;

out_unlock:
	read_unlock(&tasklist_lock);
	return retval;
}

5657
long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
L
Linus Torvalds 已提交
5658
{
5659
	cpumask_var_t cpus_allowed, new_mask;
5660 5661
	struct task_struct *p;
	int retval;
L
Linus Torvalds 已提交
5662

5663
	get_online_cpus();
L
Linus Torvalds 已提交
5664 5665 5666 5667 5668
	read_lock(&tasklist_lock);

	p = find_process_by_pid(pid);
	if (!p) {
		read_unlock(&tasklist_lock);
5669
		put_online_cpus();
L
Linus Torvalds 已提交
5670 5671 5672 5673 5674
		return -ESRCH;
	}

	/*
	 * It is not safe to call set_cpus_allowed with the
I
Ingo Molnar 已提交
5675
	 * tasklist_lock held. We will bump the task_struct's
L
Linus Torvalds 已提交
5676 5677 5678 5679 5680
	 * usage count and then drop tasklist_lock.
	 */
	get_task_struct(p);
	read_unlock(&tasklist_lock);

5681 5682 5683 5684 5685 5686 5687 5688
	if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
		retval = -ENOMEM;
		goto out_put_task;
	}
	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
		retval = -ENOMEM;
		goto out_free_cpus_allowed;
	}
L
Linus Torvalds 已提交
5689
	retval = -EPERM;
5690
	if (!check_same_owner(p) && !capable(CAP_SYS_NICE))
L
Linus Torvalds 已提交
5691 5692
		goto out_unlock;

5693 5694 5695 5696
	retval = security_task_setscheduler(p, 0, NULL);
	if (retval)
		goto out_unlock;

5697 5698
	cpuset_cpus_allowed(p, cpus_allowed);
	cpumask_and(new_mask, in_mask, cpus_allowed);
P
Paul Menage 已提交
5699
 again:
5700
	retval = set_cpus_allowed_ptr(p, new_mask);
L
Linus Torvalds 已提交
5701

P
Paul Menage 已提交
5702
	if (!retval) {
5703 5704
		cpuset_cpus_allowed(p, cpus_allowed);
		if (!cpumask_subset(new_mask, cpus_allowed)) {
P
Paul Menage 已提交
5705 5706 5707 5708 5709
			/*
			 * We must have raced with a concurrent cpuset
			 * update. Just reset the cpus_allowed to the
			 * cpuset's cpus_allowed
			 */
5710
			cpumask_copy(new_mask, cpus_allowed);
P
Paul Menage 已提交
5711 5712 5713
			goto again;
		}
	}
L
Linus Torvalds 已提交
5714
out_unlock:
5715 5716 5717 5718
	free_cpumask_var(new_mask);
out_free_cpus_allowed:
	free_cpumask_var(cpus_allowed);
out_put_task:
L
Linus Torvalds 已提交
5719
	put_task_struct(p);
5720
	put_online_cpus();
L
Linus Torvalds 已提交
5721 5722 5723 5724
	return retval;
}

static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
5725
			     struct cpumask *new_mask)
L
Linus Torvalds 已提交
5726
{
5727 5728 5729 5730 5731
	if (len < cpumask_size())
		cpumask_clear(new_mask);
	else if (len > cpumask_size())
		len = cpumask_size();

L
Linus Torvalds 已提交
5732 5733 5734 5735 5736 5737 5738 5739 5740
	return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
}

/**
 * sys_sched_setaffinity - set the cpu affinity of a process
 * @pid: pid of the process
 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
 * @user_mask_ptr: user-space pointer to the new cpu mask
 */
5741 5742
SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
		unsigned long __user *, user_mask_ptr)
L
Linus Torvalds 已提交
5743
{
5744
	cpumask_var_t new_mask;
L
Linus Torvalds 已提交
5745 5746
	int retval;

5747 5748
	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
		return -ENOMEM;
L
Linus Torvalds 已提交
5749

5750 5751 5752 5753 5754
	retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
	if (retval == 0)
		retval = sched_setaffinity(pid, new_mask);
	free_cpumask_var(new_mask);
	return retval;
L
Linus Torvalds 已提交
5755 5756
}

5757
long sched_getaffinity(pid_t pid, struct cpumask *mask)
L
Linus Torvalds 已提交
5758
{
5759
	struct task_struct *p;
L
Linus Torvalds 已提交
5760 5761
	int retval;

5762
	get_online_cpus();
L
Linus Torvalds 已提交
5763 5764 5765 5766 5767 5768 5769
	read_lock(&tasklist_lock);

	retval = -ESRCH;
	p = find_process_by_pid(pid);
	if (!p)
		goto out_unlock;

5770 5771 5772 5773
	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

5774
	cpumask_and(mask, &p->cpus_allowed, cpu_online_mask);
L
Linus Torvalds 已提交
5775 5776 5777

out_unlock:
	read_unlock(&tasklist_lock);
5778
	put_online_cpus();
L
Linus Torvalds 已提交
5779

5780
	return retval;
L
Linus Torvalds 已提交
5781 5782 5783 5784 5785 5786 5787 5788
}

/**
 * sys_sched_getaffinity - get the cpu affinity of a process
 * @pid: pid of the process
 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
 * @user_mask_ptr: user-space pointer to hold the current cpu mask
 */
5789 5790
SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
		unsigned long __user *, user_mask_ptr)
L
Linus Torvalds 已提交
5791 5792
{
	int ret;
5793
	cpumask_var_t mask;
L
Linus Torvalds 已提交
5794

5795
	if (len < cpumask_size())
L
Linus Torvalds 已提交
5796 5797
		return -EINVAL;

5798 5799
	if (!alloc_cpumask_var(&mask, GFP_KERNEL))
		return -ENOMEM;
L
Linus Torvalds 已提交
5800

5801 5802 5803 5804 5805 5806 5807 5808
	ret = sched_getaffinity(pid, mask);
	if (ret == 0) {
		if (copy_to_user(user_mask_ptr, mask, cpumask_size()))
			ret = -EFAULT;
		else
			ret = cpumask_size();
	}
	free_cpumask_var(mask);
L
Linus Torvalds 已提交
5809

5810
	return ret;
L
Linus Torvalds 已提交
5811 5812 5813 5814 5815
}

/**
 * sys_sched_yield - yield the current processor to other threads.
 *
I
Ingo Molnar 已提交
5816 5817
 * This function yields the current CPU to other tasks. If there are no
 * other threads running on this CPU then this function will return.
L
Linus Torvalds 已提交
5818
 */
5819
SYSCALL_DEFINE0(sched_yield)
L
Linus Torvalds 已提交
5820
{
5821
	struct rq *rq = this_rq_lock();
L
Linus Torvalds 已提交
5822

5823
	schedstat_inc(rq, yld_count);
5824
	current->sched_class->yield_task(rq);
L
Linus Torvalds 已提交
5825 5826 5827 5828 5829 5830

	/*
	 * Since we are going to call schedule() anyway, there's
	 * no need to preempt or enable interrupts:
	 */
	__release(rq->lock);
5831
	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
L
Linus Torvalds 已提交
5832 5833 5834 5835 5836 5837 5838 5839
	_raw_spin_unlock(&rq->lock);
	preempt_enable_no_resched();

	schedule();

	return 0;
}

A
Andrew Morton 已提交
5840
static void __cond_resched(void)
L
Linus Torvalds 已提交
5841
{
5842 5843 5844
#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
	__might_sleep(__FILE__, __LINE__);
#endif
5845 5846 5847 5848 5849
	/*
	 * The BKS might be reacquired before we have dropped
	 * PREEMPT_ACTIVE, which could trigger a second
	 * cond_resched() call.
	 */
L
Linus Torvalds 已提交
5850 5851 5852 5853 5854 5855 5856
	do {
		add_preempt_count(PREEMPT_ACTIVE);
		schedule();
		sub_preempt_count(PREEMPT_ACTIVE);
	} while (need_resched());
}

5857
int __sched _cond_resched(void)
L
Linus Torvalds 已提交
5858
{
5859 5860
	if (need_resched() && !(preempt_count() & PREEMPT_ACTIVE) &&
					system_state == SYSTEM_RUNNING) {
L
Linus Torvalds 已提交
5861 5862 5863 5864 5865
		__cond_resched();
		return 1;
	}
	return 0;
}
5866
EXPORT_SYMBOL(_cond_resched);
L
Linus Torvalds 已提交
5867 5868 5869 5870 5871

/*
 * cond_resched_lock() - if a reschedule is pending, drop the given lock,
 * call schedule, and on return reacquire the lock.
 *
I
Ingo Molnar 已提交
5872
 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
L
Linus Torvalds 已提交
5873 5874 5875
 * operations here to prevent schedule() from being called twice (once via
 * spin_unlock(), once by hand).
 */
I
Ingo Molnar 已提交
5876
int cond_resched_lock(spinlock_t *lock)
L
Linus Torvalds 已提交
5877
{
N
Nick Piggin 已提交
5878
	int resched = need_resched() && system_state == SYSTEM_RUNNING;
J
Jan Kara 已提交
5879 5880
	int ret = 0;

N
Nick Piggin 已提交
5881
	if (spin_needbreak(lock) || resched) {
L
Linus Torvalds 已提交
5882
		spin_unlock(lock);
N
Nick Piggin 已提交
5883 5884 5885 5886
		if (resched && need_resched())
			__cond_resched();
		else
			cpu_relax();
J
Jan Kara 已提交
5887
		ret = 1;
L
Linus Torvalds 已提交
5888 5889
		spin_lock(lock);
	}
J
Jan Kara 已提交
5890
	return ret;
L
Linus Torvalds 已提交
5891 5892 5893 5894 5895 5896 5897
}
EXPORT_SYMBOL(cond_resched_lock);

int __sched cond_resched_softirq(void)
{
	BUG_ON(!in_softirq());

5898
	if (need_resched() && system_state == SYSTEM_RUNNING) {
5899
		local_bh_enable();
L
Linus Torvalds 已提交
5900 5901 5902 5903 5904 5905 5906 5907 5908 5909 5910
		__cond_resched();
		local_bh_disable();
		return 1;
	}
	return 0;
}
EXPORT_SYMBOL(cond_resched_softirq);

/**
 * yield - yield the current processor to other threads.
 *
5911
 * This is a shortcut for kernel-space yielding - it marks the
L
Linus Torvalds 已提交
5912 5913 5914 5915 5916 5917 5918 5919 5920 5921
 * thread runnable and calls sys_sched_yield().
 */
void __sched yield(void)
{
	set_current_state(TASK_RUNNING);
	sys_sched_yield();
}
EXPORT_SYMBOL(yield);

/*
I
Ingo Molnar 已提交
5922
 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
L
Linus Torvalds 已提交
5923 5924 5925 5926 5927 5928 5929
 * that process accounting knows that this is a task in IO wait state.
 *
 * But don't do that if it is a deliberate, throttling IO wait (this task
 * has set its backing_dev_info: the queue against which it should throttle)
 */
void __sched io_schedule(void)
{
5930
	struct rq *rq = &__raw_get_cpu_var(runqueues);
L
Linus Torvalds 已提交
5931

5932
	delayacct_blkio_start();
L
Linus Torvalds 已提交
5933 5934 5935
	atomic_inc(&rq->nr_iowait);
	schedule();
	atomic_dec(&rq->nr_iowait);
5936
	delayacct_blkio_end();
L
Linus Torvalds 已提交
5937 5938 5939 5940 5941
}
EXPORT_SYMBOL(io_schedule);

long __sched io_schedule_timeout(long timeout)
{
5942
	struct rq *rq = &__raw_get_cpu_var(runqueues);
L
Linus Torvalds 已提交
5943 5944
	long ret;

5945
	delayacct_blkio_start();
L
Linus Torvalds 已提交
5946 5947 5948
	atomic_inc(&rq->nr_iowait);
	ret = schedule_timeout(timeout);
	atomic_dec(&rq->nr_iowait);
5949
	delayacct_blkio_end();
L
Linus Torvalds 已提交
5950 5951 5952 5953 5954 5955 5956 5957 5958 5959
	return ret;
}

/**
 * sys_sched_get_priority_max - return maximum RT priority.
 * @policy: scheduling class.
 *
 * this syscall returns the maximum rt_priority that can be used
 * by a given scheduling class.
 */
5960
SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
L
Linus Torvalds 已提交
5961 5962 5963 5964 5965 5966 5967 5968 5969
{
	int ret = -EINVAL;

	switch (policy) {
	case SCHED_FIFO:
	case SCHED_RR:
		ret = MAX_USER_RT_PRIO-1;
		break;
	case SCHED_NORMAL:
5970
	case SCHED_BATCH:
I
Ingo Molnar 已提交
5971
	case SCHED_IDLE:
L
Linus Torvalds 已提交
5972 5973 5974 5975 5976 5977 5978 5979 5980 5981 5982 5983 5984
		ret = 0;
		break;
	}
	return ret;
}

/**
 * sys_sched_get_priority_min - return minimum RT priority.
 * @policy: scheduling class.
 *
 * this syscall returns the minimum rt_priority that can be used
 * by a given scheduling class.
 */
5985
SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
L
Linus Torvalds 已提交
5986 5987 5988 5989 5990 5991 5992 5993 5994
{
	int ret = -EINVAL;

	switch (policy) {
	case SCHED_FIFO:
	case SCHED_RR:
		ret = 1;
		break;
	case SCHED_NORMAL:
5995
	case SCHED_BATCH:
I
Ingo Molnar 已提交
5996
	case SCHED_IDLE:
L
Linus Torvalds 已提交
5997 5998 5999 6000 6001 6002 6003 6004 6005 6006 6007 6008 6009
		ret = 0;
	}
	return ret;
}

/**
 * sys_sched_rr_get_interval - return the default timeslice of a process.
 * @pid: pid of the process.
 * @interval: userspace pointer to the timeslice value.
 *
 * this syscall writes the default timeslice value of a given process
 * into the user-space timespec buffer. A value of '0' means infinity.
 */
6010
SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
6011
		struct timespec __user *, interval)
L
Linus Torvalds 已提交
6012
{
6013
	struct task_struct *p;
D
Dmitry Adamushko 已提交
6014
	unsigned int time_slice;
6015
	int retval;
L
Linus Torvalds 已提交
6016 6017 6018
	struct timespec t;

	if (pid < 0)
6019
		return -EINVAL;
L
Linus Torvalds 已提交
6020 6021 6022 6023 6024 6025 6026 6027 6028 6029 6030

	retval = -ESRCH;
	read_lock(&tasklist_lock);
	p = find_process_by_pid(pid);
	if (!p)
		goto out_unlock;

	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

6031 6032 6033 6034 6035 6036
	/*
	 * Time slice is 0 for SCHED_FIFO tasks and for SCHED_OTHER
	 * tasks that are on an otherwise idle runqueue:
	 */
	time_slice = 0;
	if (p->policy == SCHED_RR) {
D
Dmitry Adamushko 已提交
6037
		time_slice = DEF_TIMESLICE;
6038
	} else if (p->policy != SCHED_FIFO) {
D
Dmitry Adamushko 已提交
6039 6040 6041 6042 6043
		struct sched_entity *se = &p->se;
		unsigned long flags;
		struct rq *rq;

		rq = task_rq_lock(p, &flags);
6044 6045
		if (rq->cfs.load.weight)
			time_slice = NS_TO_JIFFIES(sched_slice(&rq->cfs, se));
D
Dmitry Adamushko 已提交
6046 6047
		task_rq_unlock(rq, &flags);
	}
L
Linus Torvalds 已提交
6048
	read_unlock(&tasklist_lock);
D
Dmitry Adamushko 已提交
6049
	jiffies_to_timespec(time_slice, &t);
L
Linus Torvalds 已提交
6050 6051
	retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
	return retval;
6052

L
Linus Torvalds 已提交
6053 6054 6055 6056 6057
out_unlock:
	read_unlock(&tasklist_lock);
	return retval;
}

6058
static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
6059

6060
void sched_show_task(struct task_struct *p)
L
Linus Torvalds 已提交
6061 6062
{
	unsigned long free = 0;
6063
	unsigned state;
L
Linus Torvalds 已提交
6064 6065

	state = p->state ? __ffs(p->state) + 1 : 0;
I
Ingo Molnar 已提交
6066
	printk(KERN_INFO "%-13.13s %c", p->comm,
6067
		state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
6068
#if BITS_PER_LONG == 32
L
Linus Torvalds 已提交
6069
	if (state == TASK_RUNNING)
I
Ingo Molnar 已提交
6070
		printk(KERN_CONT " running  ");
L
Linus Torvalds 已提交
6071
	else
I
Ingo Molnar 已提交
6072
		printk(KERN_CONT " %08lx ", thread_saved_pc(p));
L
Linus Torvalds 已提交
6073 6074
#else
	if (state == TASK_RUNNING)
I
Ingo Molnar 已提交
6075
		printk(KERN_CONT "  running task    ");
L
Linus Torvalds 已提交
6076
	else
I
Ingo Molnar 已提交
6077
		printk(KERN_CONT " %016lx ", thread_saved_pc(p));
L
Linus Torvalds 已提交
6078 6079 6080
#endif
#ifdef CONFIG_DEBUG_STACK_USAGE
	{
6081
		unsigned long *n = end_of_stack(p);
L
Linus Torvalds 已提交
6082 6083
		while (!*n)
			n++;
6084
		free = (unsigned long)n - (unsigned long)end_of_stack(p);
L
Linus Torvalds 已提交
6085 6086
	}
#endif
6087
	printk(KERN_CONT "%5lu %5d %6d\n", free,
R
Roland McGrath 已提交
6088
		task_pid_nr(p), task_pid_nr(p->real_parent));
L
Linus Torvalds 已提交
6089

6090
	show_stack(p, NULL);
L
Linus Torvalds 已提交
6091 6092
}

I
Ingo Molnar 已提交
6093
void show_state_filter(unsigned long state_filter)
L
Linus Torvalds 已提交
6094
{
6095
	struct task_struct *g, *p;
L
Linus Torvalds 已提交
6096

6097 6098 6099
#if BITS_PER_LONG == 32
	printk(KERN_INFO
		"  task                PC stack   pid father\n");
L
Linus Torvalds 已提交
6100
#else
6101 6102
	printk(KERN_INFO
		"  task                        PC stack   pid father\n");
L
Linus Torvalds 已提交
6103 6104 6105 6106 6107 6108 6109 6110
#endif
	read_lock(&tasklist_lock);
	do_each_thread(g, p) {
		/*
		 * reset the NMI-timeout, listing all files on a slow
		 * console might take alot of time:
		 */
		touch_nmi_watchdog();
I
Ingo Molnar 已提交
6111
		if (!state_filter || (p->state & state_filter))
6112
			sched_show_task(p);
L
Linus Torvalds 已提交
6113 6114
	} while_each_thread(g, p);

6115 6116
	touch_all_softlockup_watchdogs();

I
Ingo Molnar 已提交
6117 6118 6119
#ifdef CONFIG_SCHED_DEBUG
	sysrq_sched_debug_show();
#endif
L
Linus Torvalds 已提交
6120
	read_unlock(&tasklist_lock);
I
Ingo Molnar 已提交
6121 6122 6123 6124 6125
	/*
	 * Only show locks if all tasks are dumped:
	 */
	if (state_filter == -1)
		debug_show_all_locks();
L
Linus Torvalds 已提交
6126 6127
}

I
Ingo Molnar 已提交
6128 6129
void __cpuinit init_idle_bootup_task(struct task_struct *idle)
{
I
Ingo Molnar 已提交
6130
	idle->sched_class = &idle_sched_class;
I
Ingo Molnar 已提交
6131 6132
}

6133 6134 6135 6136 6137 6138 6139 6140
/**
 * init_idle - set up an idle thread for a given CPU
 * @idle: task in question
 * @cpu: cpu the idle task belongs to
 *
 * NOTE: this function does not set the idle thread's NEED_RESCHED
 * flag, to make booting more robust.
 */
6141
void __cpuinit init_idle(struct task_struct *idle, int cpu)
L
Linus Torvalds 已提交
6142
{
6143
	struct rq *rq = cpu_rq(cpu);
L
Linus Torvalds 已提交
6144 6145
	unsigned long flags;

6146 6147
	spin_lock_irqsave(&rq->lock, flags);

I
Ingo Molnar 已提交
6148 6149 6150
	__sched_fork(idle);
	idle->se.exec_start = sched_clock();

6151
	idle->prio = idle->normal_prio = MAX_PRIO;
6152
	cpumask_copy(&idle->cpus_allowed, cpumask_of(cpu));
I
Ingo Molnar 已提交
6153
	__set_task_cpu(idle, cpu);
L
Linus Torvalds 已提交
6154 6155

	rq->curr = rq->idle = idle;
6156 6157 6158
#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
	idle->oncpu = 1;
#endif
L
Linus Torvalds 已提交
6159 6160 6161
	spin_unlock_irqrestore(&rq->lock, flags);

	/* Set the preempt count _outside_ the spinlocks! */
6162 6163 6164
#if defined(CONFIG_PREEMPT)
	task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
#else
A
Al Viro 已提交
6165
	task_thread_info(idle)->preempt_count = 0;
6166
#endif
I
Ingo Molnar 已提交
6167 6168 6169 6170
	/*
	 * The idle tasks have their own, simple scheduling class:
	 */
	idle->sched_class = &idle_sched_class;
6171
	ftrace_graph_init_task(idle);
L
Linus Torvalds 已提交
6172 6173 6174 6175 6176 6177 6178
}

/*
 * In a system that switches off the HZ timer nohz_cpu_mask
 * indicates which cpus entered this state. This is used
 * in the rcu update to wait only for active cpus. For system
 * which do not switch off the HZ timer nohz_cpu_mask should
6179
 * always be CPU_BITS_NONE.
L
Linus Torvalds 已提交
6180
 */
6181
cpumask_var_t nohz_cpu_mask;
L
Linus Torvalds 已提交
6182

I
Ingo Molnar 已提交
6183 6184 6185 6186 6187 6188 6189 6190 6191 6192 6193 6194 6195 6196 6197 6198 6199 6200 6201 6202 6203 6204 6205
/*
 * Increase the granularity value when there are more CPUs,
 * because with more CPUs the 'effective latency' as visible
 * to users decreases. But the relationship is not linear,
 * so pick a second-best guess by going with the log2 of the
 * number of CPUs.
 *
 * This idea comes from the SD scheduler of Con Kolivas:
 */
static inline void sched_init_granularity(void)
{
	unsigned int factor = 1 + ilog2(num_online_cpus());
	const unsigned long limit = 200000000;

	sysctl_sched_min_granularity *= factor;
	if (sysctl_sched_min_granularity > limit)
		sysctl_sched_min_granularity = limit;

	sysctl_sched_latency *= factor;
	if (sysctl_sched_latency > limit)
		sysctl_sched_latency = limit;

	sysctl_sched_wakeup_granularity *= factor;
6206 6207

	sysctl_sched_shares_ratelimit *= factor;
I
Ingo Molnar 已提交
6208 6209
}

L
Linus Torvalds 已提交
6210 6211 6212 6213
#ifdef CONFIG_SMP
/*
 * This is how migration works:
 *
6214
 * 1) we queue a struct migration_req structure in the source CPU's
L
Linus Torvalds 已提交
6215 6216 6217 6218 6219 6220 6221 6222 6223 6224 6225 6226 6227 6228 6229 6230 6231 6232
 *    runqueue and wake up that CPU's migration thread.
 * 2) we down() the locked semaphore => thread blocks.
 * 3) migration thread wakes up (implicitly it forces the migrated
 *    thread off the CPU)
 * 4) it gets the migration request and checks whether the migrated
 *    task is still in the wrong runqueue.
 * 5) if it's in the wrong runqueue then the migration thread removes
 *    it and puts it into the right queue.
 * 6) migration thread up()s the semaphore.
 * 7) we wake up and the migration is done.
 */

/*
 * Change a given task's CPU affinity. Migrate the thread to a
 * proper CPU and schedule it away if the CPU it's executing on
 * is removed from the allowed bitmask.
 *
 * NOTE: the caller must have a valid reference to the task, the
I
Ingo Molnar 已提交
6233
 * task must not exit() & deallocate itself prematurely. The
L
Linus Torvalds 已提交
6234 6235
 * call is not atomic; no spinlocks may be held.
 */
6236
int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
L
Linus Torvalds 已提交
6237
{
6238
	struct migration_req req;
L
Linus Torvalds 已提交
6239
	unsigned long flags;
6240
	struct rq *rq;
6241
	int ret = 0;
L
Linus Torvalds 已提交
6242 6243

	rq = task_rq_lock(p, &flags);
6244
	if (!cpumask_intersects(new_mask, cpu_online_mask)) {
L
Linus Torvalds 已提交
6245 6246 6247 6248
		ret = -EINVAL;
		goto out;
	}

6249
	if (unlikely((p->flags & PF_THREAD_BOUND) && p != current &&
6250
		     !cpumask_equal(&p->cpus_allowed, new_mask))) {
6251 6252 6253 6254
		ret = -EINVAL;
		goto out;
	}

6255
	if (p->sched_class->set_cpus_allowed)
6256
		p->sched_class->set_cpus_allowed(p, new_mask);
6257
	else {
6258 6259
		cpumask_copy(&p->cpus_allowed, new_mask);
		p->rt.nr_cpus_allowed = cpumask_weight(new_mask);
6260 6261
	}

L
Linus Torvalds 已提交
6262
	/* Can the task run on the task's current CPU? If so, we're done */
6263
	if (cpumask_test_cpu(task_cpu(p), new_mask))
L
Linus Torvalds 已提交
6264 6265
		goto out;

R
Rusty Russell 已提交
6266
	if (migrate_task(p, cpumask_any_and(cpu_online_mask, new_mask), &req)) {
L
Linus Torvalds 已提交
6267 6268 6269 6270 6271 6272 6273 6274 6275
		/* Need help from migration thread: drop lock and wait. */
		task_rq_unlock(rq, &flags);
		wake_up_process(rq->migration_thread);
		wait_for_completion(&req.done);
		tlb_migrate_finish(p->mm);
		return 0;
	}
out:
	task_rq_unlock(rq, &flags);
6276

L
Linus Torvalds 已提交
6277 6278
	return ret;
}
6279
EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
L
Linus Torvalds 已提交
6280 6281

/*
I
Ingo Molnar 已提交
6282
 * Move (not current) task off this cpu, onto dest cpu. We're doing
L
Linus Torvalds 已提交
6283 6284 6285 6286 6287 6288
 * this because either it can't run here any more (set_cpus_allowed()
 * away from this CPU, or CPU going down), or because we're
 * attempting to rebalance this task on exec (sched_exec).
 *
 * So we race with normal scheduler movements, but that's OK, as long
 * as the task is no longer on this CPU.
6289 6290
 *
 * Returns non-zero if task was successfully migrated.
L
Linus Torvalds 已提交
6291
 */
6292
static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
L
Linus Torvalds 已提交
6293
{
6294
	struct rq *rq_dest, *rq_src;
I
Ingo Molnar 已提交
6295
	int ret = 0, on_rq;
L
Linus Torvalds 已提交
6296

6297
	if (unlikely(!cpu_active(dest_cpu)))
6298
		return ret;
L
Linus Torvalds 已提交
6299 6300 6301 6302 6303 6304 6305

	rq_src = cpu_rq(src_cpu);
	rq_dest = cpu_rq(dest_cpu);

	double_rq_lock(rq_src, rq_dest);
	/* Already moved. */
	if (task_cpu(p) != src_cpu)
L
Linus Torvalds 已提交
6306
		goto done;
L
Linus Torvalds 已提交
6307
	/* Affinity changed (again). */
6308
	if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
L
Linus Torvalds 已提交
6309
		goto fail;
L
Linus Torvalds 已提交
6310

I
Ingo Molnar 已提交
6311
	on_rq = p->se.on_rq;
6312
	if (on_rq)
6313
		deactivate_task(rq_src, p, 0);
6314

L
Linus Torvalds 已提交
6315
	set_task_cpu(p, dest_cpu);
I
Ingo Molnar 已提交
6316 6317
	if (on_rq) {
		activate_task(rq_dest, p, 0);
6318
		check_preempt_curr(rq_dest, p, 0);
L
Linus Torvalds 已提交
6319
	}
L
Linus Torvalds 已提交
6320
done:
6321
	ret = 1;
L
Linus Torvalds 已提交
6322
fail:
L
Linus Torvalds 已提交
6323
	double_rq_unlock(rq_src, rq_dest);
6324
	return ret;
L
Linus Torvalds 已提交
6325 6326 6327 6328 6329 6330 6331
}

/*
 * migration_thread - this is a highprio system thread that performs
 * thread migration by bumping thread off CPU then 'pushing' onto
 * another runqueue.
 */
I
Ingo Molnar 已提交
6332
static int migration_thread(void *data)
L
Linus Torvalds 已提交
6333 6334
{
	int cpu = (long)data;
6335
	struct rq *rq;
L
Linus Torvalds 已提交
6336 6337 6338 6339 6340 6341

	rq = cpu_rq(cpu);
	BUG_ON(rq->migration_thread != current);

	set_current_state(TASK_INTERRUPTIBLE);
	while (!kthread_should_stop()) {
6342
		struct migration_req *req;
L
Linus Torvalds 已提交
6343 6344 6345 6346 6347 6348 6349 6350 6351 6352 6353 6354 6355 6356 6357 6358 6359 6360 6361 6362 6363 6364
		struct list_head *head;

		spin_lock_irq(&rq->lock);

		if (cpu_is_offline(cpu)) {
			spin_unlock_irq(&rq->lock);
			goto wait_to_die;
		}

		if (rq->active_balance) {
			active_load_balance(rq, cpu);
			rq->active_balance = 0;
		}

		head = &rq->migration_queue;

		if (list_empty(head)) {
			spin_unlock_irq(&rq->lock);
			schedule();
			set_current_state(TASK_INTERRUPTIBLE);
			continue;
		}
6365
		req = list_entry(head->next, struct migration_req, list);
L
Linus Torvalds 已提交
6366 6367
		list_del_init(head->next);

N
Nick Piggin 已提交
6368 6369 6370
		spin_unlock(&rq->lock);
		__migrate_task(req->task, cpu, req->dest_cpu);
		local_irq_enable();
L
Linus Torvalds 已提交
6371 6372 6373 6374 6375 6376 6377 6378 6379 6380 6381 6382 6383 6384 6385 6386 6387 6388

		complete(&req->done);
	}
	__set_current_state(TASK_RUNNING);
	return 0;

wait_to_die:
	/* Wait for kthread_stop */
	set_current_state(TASK_INTERRUPTIBLE);
	while (!kthread_should_stop()) {
		schedule();
		set_current_state(TASK_INTERRUPTIBLE);
	}
	__set_current_state(TASK_RUNNING);
	return 0;
}

#ifdef CONFIG_HOTPLUG_CPU
6389 6390 6391 6392 6393 6394 6395 6396 6397 6398 6399

static int __migrate_task_irq(struct task_struct *p, int src_cpu, int dest_cpu)
{
	int ret;

	local_irq_disable();
	ret = __migrate_task(p, src_cpu, dest_cpu);
	local_irq_enable();
	return ret;
}

6400
/*
6401
 * Figure out where task on dead CPU should go, use force if necessary.
6402
 */
6403
static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
L
Linus Torvalds 已提交
6404
{
6405
	int dest_cpu;
6406
	const struct cpumask *nodemask = cpumask_of_node(cpu_to_node(dead_cpu));
6407 6408 6409 6410 6411 6412 6413 6414 6415 6416 6417 6418 6419 6420 6421 6422

again:
	/* Look for allowed, online CPU in same node. */
	for_each_cpu_and(dest_cpu, nodemask, cpu_online_mask)
		if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
			goto move;

	/* Any allowed, online CPU? */
	dest_cpu = cpumask_any_and(&p->cpus_allowed, cpu_online_mask);
	if (dest_cpu < nr_cpu_ids)
		goto move;

	/* No more Mr. Nice Guy. */
	if (dest_cpu >= nr_cpu_ids) {
		cpuset_cpus_allowed_locked(p, &p->cpus_allowed);
		dest_cpu = cpumask_any_and(cpu_online_mask, &p->cpus_allowed);
L
Linus Torvalds 已提交
6423

6424 6425 6426 6427 6428 6429 6430 6431 6432
		/*
		 * Don't tell them about moving exiting tasks or
		 * kernel threads (both mm NULL), since they never
		 * leave kernel.
		 */
		if (p->mm && printk_ratelimit()) {
			printk(KERN_INFO "process %d (%s) no "
			       "longer affine to cpu%d\n",
			       task_pid_nr(p), p->comm, dead_cpu);
6433
		}
6434 6435 6436 6437 6438 6439
	}

move:
	/* It can have affinity changed while we were choosing. */
	if (unlikely(!__migrate_task_irq(p, dead_cpu, dest_cpu)))
		goto again;
L
Linus Torvalds 已提交
6440 6441 6442 6443 6444 6445 6446 6447 6448
}

/*
 * While a dead CPU has no uninterruptible tasks queued at this point,
 * it might still have a nonzero ->nr_uninterruptible counter, because
 * for performance reasons the counter is not stricly tracking tasks to
 * their home CPUs. So we just add the counter to another CPU's counter,
 * to keep the global sum constant after CPU-down:
 */
6449
static void migrate_nr_uninterruptible(struct rq *rq_src)
L
Linus Torvalds 已提交
6450
{
R
Rusty Russell 已提交
6451
	struct rq *rq_dest = cpu_rq(cpumask_any(cpu_online_mask));
L
Linus Torvalds 已提交
6452 6453 6454 6455 6456 6457 6458 6459 6460 6461 6462 6463 6464
	unsigned long flags;

	local_irq_save(flags);
	double_rq_lock(rq_src, rq_dest);
	rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
	rq_src->nr_uninterruptible = 0;
	double_rq_unlock(rq_src, rq_dest);
	local_irq_restore(flags);
}

/* Run through task list and migrate tasks from the dead cpu. */
static void migrate_live_tasks(int src_cpu)
{
6465
	struct task_struct *p, *t;
L
Linus Torvalds 已提交
6466

6467
	read_lock(&tasklist_lock);
L
Linus Torvalds 已提交
6468

6469 6470
	do_each_thread(t, p) {
		if (p == current)
L
Linus Torvalds 已提交
6471 6472
			continue;

6473 6474 6475
		if (task_cpu(p) == src_cpu)
			move_task_off_dead_cpu(src_cpu, p);
	} while_each_thread(t, p);
L
Linus Torvalds 已提交
6476

6477
	read_unlock(&tasklist_lock);
L
Linus Torvalds 已提交
6478 6479
}

I
Ingo Molnar 已提交
6480 6481
/*
 * Schedules idle task to be the next runnable task on current CPU.
6482 6483
 * It does so by boosting its priority to highest possible.
 * Used by CPU offline code.
L
Linus Torvalds 已提交
6484 6485 6486
 */
void sched_idle_next(void)
{
6487
	int this_cpu = smp_processor_id();
6488
	struct rq *rq = cpu_rq(this_cpu);
L
Linus Torvalds 已提交
6489 6490 6491 6492
	struct task_struct *p = rq->idle;
	unsigned long flags;

	/* cpu has to be offline */
6493
	BUG_ON(cpu_online(this_cpu));
L
Linus Torvalds 已提交
6494

6495 6496 6497
	/*
	 * Strictly not necessary since rest of the CPUs are stopped by now
	 * and interrupts disabled on the current cpu.
L
Linus Torvalds 已提交
6498 6499 6500
	 */
	spin_lock_irqsave(&rq->lock, flags);

I
Ingo Molnar 已提交
6501
	__setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
6502

6503 6504
	update_rq_clock(rq);
	activate_task(rq, p, 0);
L
Linus Torvalds 已提交
6505 6506 6507 6508

	spin_unlock_irqrestore(&rq->lock, flags);
}

6509 6510
/*
 * Ensures that the idle task is using init_mm right before its cpu goes
L
Linus Torvalds 已提交
6511 6512 6513 6514 6515 6516 6517 6518 6519 6520 6521 6522 6523
 * offline.
 */
void idle_task_exit(void)
{
	struct mm_struct *mm = current->active_mm;

	BUG_ON(cpu_online(smp_processor_id()));

	if (mm != &init_mm)
		switch_mm(mm, &init_mm, current);
	mmdrop(mm);
}

6524
/* called under rq->lock with disabled interrupts */
6525
static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
L
Linus Torvalds 已提交
6526
{
6527
	struct rq *rq = cpu_rq(dead_cpu);
L
Linus Torvalds 已提交
6528 6529

	/* Must be exiting, otherwise would be on tasklist. */
E
Eugene Teo 已提交
6530
	BUG_ON(!p->exit_state);
L
Linus Torvalds 已提交
6531 6532

	/* Cannot have done final schedule yet: would have vanished. */
6533
	BUG_ON(p->state == TASK_DEAD);
L
Linus Torvalds 已提交
6534

6535
	get_task_struct(p);
L
Linus Torvalds 已提交
6536 6537 6538

	/*
	 * Drop lock around migration; if someone else moves it,
I
Ingo Molnar 已提交
6539
	 * that's OK. No task can be added to this CPU, so iteration is
L
Linus Torvalds 已提交
6540 6541
	 * fine.
	 */
6542
	spin_unlock_irq(&rq->lock);
6543
	move_task_off_dead_cpu(dead_cpu, p);
6544
	spin_lock_irq(&rq->lock);
L
Linus Torvalds 已提交
6545

6546
	put_task_struct(p);
L
Linus Torvalds 已提交
6547 6548 6549 6550 6551
}

/* release_task() removes task from tasklist, so we won't find dead tasks. */
static void migrate_dead_tasks(unsigned int dead_cpu)
{
6552
	struct rq *rq = cpu_rq(dead_cpu);
I
Ingo Molnar 已提交
6553
	struct task_struct *next;
6554

I
Ingo Molnar 已提交
6555 6556 6557
	for ( ; ; ) {
		if (!rq->nr_running)
			break;
I
Ingo Molnar 已提交
6558
		update_rq_clock(rq);
6559
		next = pick_next_task(rq);
I
Ingo Molnar 已提交
6560 6561
		if (!next)
			break;
D
Dmitry Adamushko 已提交
6562
		next->sched_class->put_prev_task(rq, next);
I
Ingo Molnar 已提交
6563
		migrate_dead(dead_cpu, next);
6564

L
Linus Torvalds 已提交
6565 6566 6567 6568
	}
}
#endif /* CONFIG_HOTPLUG_CPU */

6569 6570 6571
#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)

static struct ctl_table sd_ctl_dir[] = {
6572 6573
	{
		.procname	= "sched_domain",
6574
		.mode		= 0555,
6575
	},
I
Ingo Molnar 已提交
6576
	{0, },
6577 6578 6579
};

static struct ctl_table sd_ctl_root[] = {
6580
	{
6581
		.ctl_name	= CTL_KERN,
6582
		.procname	= "kernel",
6583
		.mode		= 0555,
6584 6585
		.child		= sd_ctl_dir,
	},
I
Ingo Molnar 已提交
6586
	{0, },
6587 6588 6589 6590 6591
};

static struct ctl_table *sd_alloc_ctl_entry(int n)
{
	struct ctl_table *entry =
6592
		kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
6593 6594 6595 6596

	return entry;
}

6597 6598
static void sd_free_ctl_entry(struct ctl_table **tablep)
{
6599
	struct ctl_table *entry;
6600

6601 6602 6603
	/*
	 * In the intermediate directories, both the child directory and
	 * procname are dynamically allocated and could fail but the mode
I
Ingo Molnar 已提交
6604
	 * will always be set. In the lowest directory the names are
6605 6606 6607
	 * static strings and all have proc handlers.
	 */
	for (entry = *tablep; entry->mode; entry++) {
6608 6609
		if (entry->child)
			sd_free_ctl_entry(&entry->child);
6610 6611 6612
		if (entry->proc_handler == NULL)
			kfree(entry->procname);
	}
6613 6614 6615 6616 6617

	kfree(*tablep);
	*tablep = NULL;
}

6618
static void
6619
set_table_entry(struct ctl_table *entry,
6620 6621 6622 6623 6624 6625 6626 6627 6628 6629 6630 6631 6632
		const char *procname, void *data, int maxlen,
		mode_t mode, proc_handler *proc_handler)
{
	entry->procname = procname;
	entry->data = data;
	entry->maxlen = maxlen;
	entry->mode = mode;
	entry->proc_handler = proc_handler;
}

static struct ctl_table *
sd_alloc_ctl_domain_table(struct sched_domain *sd)
{
6633
	struct ctl_table *table = sd_alloc_ctl_entry(13);
6634

6635 6636 6637
	if (table == NULL)
		return NULL;

6638
	set_table_entry(&table[0], "min_interval", &sd->min_interval,
6639
		sizeof(long), 0644, proc_doulongvec_minmax);
6640
	set_table_entry(&table[1], "max_interval", &sd->max_interval,
6641
		sizeof(long), 0644, proc_doulongvec_minmax);
6642
	set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
6643
		sizeof(int), 0644, proc_dointvec_minmax);
6644
	set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
6645
		sizeof(int), 0644, proc_dointvec_minmax);
6646
	set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
6647
		sizeof(int), 0644, proc_dointvec_minmax);
6648
	set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
6649
		sizeof(int), 0644, proc_dointvec_minmax);
6650
	set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
6651
		sizeof(int), 0644, proc_dointvec_minmax);
6652
	set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
6653
		sizeof(int), 0644, proc_dointvec_minmax);
6654
	set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
6655
		sizeof(int), 0644, proc_dointvec_minmax);
6656
	set_table_entry(&table[9], "cache_nice_tries",
6657 6658
		&sd->cache_nice_tries,
		sizeof(int), 0644, proc_dointvec_minmax);
6659
	set_table_entry(&table[10], "flags", &sd->flags,
6660
		sizeof(int), 0644, proc_dointvec_minmax);
6661 6662 6663
	set_table_entry(&table[11], "name", sd->name,
		CORENAME_MAX_SIZE, 0444, proc_dostring);
	/* &table[12] is terminator */
6664 6665 6666 6667

	return table;
}

6668
static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
6669 6670 6671 6672 6673 6674 6675 6676 6677
{
	struct ctl_table *entry, *table;
	struct sched_domain *sd;
	int domain_num = 0, i;
	char buf[32];

	for_each_domain(cpu, sd)
		domain_num++;
	entry = table = sd_alloc_ctl_entry(domain_num + 1);
6678 6679
	if (table == NULL)
		return NULL;
6680 6681 6682 6683 6684

	i = 0;
	for_each_domain(cpu, sd) {
		snprintf(buf, 32, "domain%d", i);
		entry->procname = kstrdup(buf, GFP_KERNEL);
6685
		entry->mode = 0555;
6686 6687 6688 6689 6690 6691 6692 6693
		entry->child = sd_alloc_ctl_domain_table(sd);
		entry++;
		i++;
	}
	return table;
}

static struct ctl_table_header *sd_sysctl_header;
6694
static void register_sched_domain_sysctl(void)
6695 6696 6697 6698 6699
{
	int i, cpu_num = num_online_cpus();
	struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
	char buf[32];

6700 6701 6702
	WARN_ON(sd_ctl_dir[0].child);
	sd_ctl_dir[0].child = entry;

6703 6704 6705
	if (entry == NULL)
		return;

6706
	for_each_online_cpu(i) {
6707 6708
		snprintf(buf, 32, "cpu%d", i);
		entry->procname = kstrdup(buf, GFP_KERNEL);
6709
		entry->mode = 0555;
6710
		entry->child = sd_alloc_ctl_cpu_table(i);
6711
		entry++;
6712
	}
6713 6714

	WARN_ON(sd_sysctl_header);
6715 6716
	sd_sysctl_header = register_sysctl_table(sd_ctl_root);
}
6717

6718
/* may be called multiple times per register */
6719 6720
static void unregister_sched_domain_sysctl(void)
{
6721 6722
	if (sd_sysctl_header)
		unregister_sysctl_table(sd_sysctl_header);
6723
	sd_sysctl_header = NULL;
6724 6725
	if (sd_ctl_dir[0].child)
		sd_free_ctl_entry(&sd_ctl_dir[0].child);
6726
}
6727
#else
6728 6729 6730 6731
static void register_sched_domain_sysctl(void)
{
}
static void unregister_sched_domain_sysctl(void)
6732 6733 6734 6735
{
}
#endif

6736 6737 6738 6739 6740
static void set_rq_online(struct rq *rq)
{
	if (!rq->online) {
		const struct sched_class *class;

6741
		cpumask_set_cpu(rq->cpu, rq->rd->online);
6742 6743 6744 6745 6746 6747 6748 6749 6750 6751 6752 6753 6754 6755 6756 6757 6758 6759 6760
		rq->online = 1;

		for_each_class(class) {
			if (class->rq_online)
				class->rq_online(rq);
		}
	}
}

static void set_rq_offline(struct rq *rq)
{
	if (rq->online) {
		const struct sched_class *class;

		for_each_class(class) {
			if (class->rq_offline)
				class->rq_offline(rq);
		}

6761
		cpumask_clear_cpu(rq->cpu, rq->rd->online);
6762 6763 6764 6765
		rq->online = 0;
	}
}

L
Linus Torvalds 已提交
6766 6767 6768 6769
/*
 * migration_call - callback that gets triggered when a CPU is added.
 * Here we can start up the necessary migration thread for the new CPU.
 */
6770 6771
static int __cpuinit
migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
L
Linus Torvalds 已提交
6772 6773
{
	struct task_struct *p;
6774
	int cpu = (long)hcpu;
L
Linus Torvalds 已提交
6775
	unsigned long flags;
6776
	struct rq *rq;
L
Linus Torvalds 已提交
6777 6778

	switch (action) {
6779

L
Linus Torvalds 已提交
6780
	case CPU_UP_PREPARE:
6781
	case CPU_UP_PREPARE_FROZEN:
I
Ingo Molnar 已提交
6782
		p = kthread_create(migration_thread, hcpu, "migration/%d", cpu);
L
Linus Torvalds 已提交
6783 6784 6785 6786 6787
		if (IS_ERR(p))
			return NOTIFY_BAD;
		kthread_bind(p, cpu);
		/* Must be high prio: stop_machine expects to yield to it. */
		rq = task_rq_lock(p, &flags);
I
Ingo Molnar 已提交
6788
		__setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
L
Linus Torvalds 已提交
6789 6790 6791
		task_rq_unlock(rq, &flags);
		cpu_rq(cpu)->migration_thread = p;
		break;
6792

L
Linus Torvalds 已提交
6793
	case CPU_ONLINE:
6794
	case CPU_ONLINE_FROZEN:
6795
		/* Strictly unnecessary, as first user will wake it. */
L
Linus Torvalds 已提交
6796
		wake_up_process(cpu_rq(cpu)->migration_thread);
6797 6798 6799 6800 6801

		/* Update our root-domain */
		rq = cpu_rq(cpu);
		spin_lock_irqsave(&rq->lock, flags);
		if (rq->rd) {
6802
			BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
6803 6804

			set_rq_online(rq);
6805 6806
		}
		spin_unlock_irqrestore(&rq->lock, flags);
L
Linus Torvalds 已提交
6807
		break;
6808

L
Linus Torvalds 已提交
6809 6810
#ifdef CONFIG_HOTPLUG_CPU
	case CPU_UP_CANCELED:
6811
	case CPU_UP_CANCELED_FROZEN:
6812 6813
		if (!cpu_rq(cpu)->migration_thread)
			break;
I
Ingo Molnar 已提交
6814
		/* Unbind it from offline cpu so it can run. Fall thru. */
6815
		kthread_bind(cpu_rq(cpu)->migration_thread,
R
Rusty Russell 已提交
6816
			     cpumask_any(cpu_online_mask));
L
Linus Torvalds 已提交
6817 6818 6819
		kthread_stop(cpu_rq(cpu)->migration_thread);
		cpu_rq(cpu)->migration_thread = NULL;
		break;
6820

L
Linus Torvalds 已提交
6821
	case CPU_DEAD:
6822
	case CPU_DEAD_FROZEN:
6823
		cpuset_lock(); /* around calls to cpuset_cpus_allowed_lock() */
L
Linus Torvalds 已提交
6824 6825 6826 6827 6828
		migrate_live_tasks(cpu);
		rq = cpu_rq(cpu);
		kthread_stop(rq->migration_thread);
		rq->migration_thread = NULL;
		/* Idle task back to normal (off runqueue, low prio) */
6829
		spin_lock_irq(&rq->lock);
I
Ingo Molnar 已提交
6830
		update_rq_clock(rq);
6831
		deactivate_task(rq, rq->idle, 0);
L
Linus Torvalds 已提交
6832
		rq->idle->static_prio = MAX_PRIO;
I
Ingo Molnar 已提交
6833 6834
		__setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
		rq->idle->sched_class = &idle_sched_class;
L
Linus Torvalds 已提交
6835
		migrate_dead_tasks(cpu);
6836
		spin_unlock_irq(&rq->lock);
6837
		cpuset_unlock();
L
Linus Torvalds 已提交
6838 6839 6840
		migrate_nr_uninterruptible(rq);
		BUG_ON(rq->nr_running != 0);

I
Ingo Molnar 已提交
6841 6842 6843 6844 6845
		/*
		 * No need to migrate the tasks: it was best-effort if
		 * they didn't take sched_hotcpu_mutex. Just wake up
		 * the requestors.
		 */
L
Linus Torvalds 已提交
6846 6847
		spin_lock_irq(&rq->lock);
		while (!list_empty(&rq->migration_queue)) {
6848 6849
			struct migration_req *req;

L
Linus Torvalds 已提交
6850
			req = list_entry(rq->migration_queue.next,
6851
					 struct migration_req, list);
L
Linus Torvalds 已提交
6852
			list_del_init(&req->list);
B
Brian King 已提交
6853
			spin_unlock_irq(&rq->lock);
L
Linus Torvalds 已提交
6854
			complete(&req->done);
B
Brian King 已提交
6855
			spin_lock_irq(&rq->lock);
L
Linus Torvalds 已提交
6856 6857 6858
		}
		spin_unlock_irq(&rq->lock);
		break;
G
Gregory Haskins 已提交
6859

6860 6861
	case CPU_DYING:
	case CPU_DYING_FROZEN:
G
Gregory Haskins 已提交
6862 6863 6864 6865
		/* Update our root-domain */
		rq = cpu_rq(cpu);
		spin_lock_irqsave(&rq->lock, flags);
		if (rq->rd) {
6866
			BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
6867
			set_rq_offline(rq);
G
Gregory Haskins 已提交
6868 6869 6870
		}
		spin_unlock_irqrestore(&rq->lock, flags);
		break;
L
Linus Torvalds 已提交
6871 6872 6873 6874 6875 6876 6877 6878
#endif
	}
	return NOTIFY_OK;
}

/* Register at highest priority so that task migration (migrate_all_tasks)
 * happens before everything else.
 */
6879
static struct notifier_block __cpuinitdata migration_notifier = {
L
Linus Torvalds 已提交
6880 6881 6882 6883
	.notifier_call = migration_call,
	.priority = 10
};

6884
static int __init migration_init(void)
L
Linus Torvalds 已提交
6885 6886
{
	void *cpu = (void *)(long)smp_processor_id();
6887
	int err;
6888 6889

	/* Start one for the boot CPU: */
6890 6891
	err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
	BUG_ON(err == NOTIFY_BAD);
L
Linus Torvalds 已提交
6892 6893
	migration_call(&migration_notifier, CPU_ONLINE, cpu);
	register_cpu_notifier(&migration_notifier);
6894 6895

	return err;
L
Linus Torvalds 已提交
6896
}
6897
early_initcall(migration_init);
L
Linus Torvalds 已提交
6898 6899 6900
#endif

#ifdef CONFIG_SMP
6901

6902
#ifdef CONFIG_SCHED_DEBUG
I
Ingo Molnar 已提交
6903

6904
static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
6905
				  struct cpumask *groupmask)
L
Linus Torvalds 已提交
6906
{
I
Ingo Molnar 已提交
6907
	struct sched_group *group = sd->groups;
6908
	char str[256];
L
Linus Torvalds 已提交
6909

R
Rusty Russell 已提交
6910
	cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
6911
	cpumask_clear(groupmask);
I
Ingo Molnar 已提交
6912 6913 6914 6915 6916 6917 6918 6919 6920

	printk(KERN_DEBUG "%*s domain %d: ", level, "", level);

	if (!(sd->flags & SD_LOAD_BALANCE)) {
		printk("does not load-balance\n");
		if (sd->parent)
			printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
					" has parent");
		return -1;
N
Nick Piggin 已提交
6921 6922
	}

6923
	printk(KERN_CONT "span %s level %s\n", str, sd->name);
I
Ingo Molnar 已提交
6924

6925
	if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
I
Ingo Molnar 已提交
6926 6927 6928
		printk(KERN_ERR "ERROR: domain->span does not contain "
				"CPU%d\n", cpu);
	}
6929
	if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
I
Ingo Molnar 已提交
6930 6931 6932
		printk(KERN_ERR "ERROR: domain->groups does not contain"
				" CPU%d\n", cpu);
	}
L
Linus Torvalds 已提交
6933

I
Ingo Molnar 已提交
6934
	printk(KERN_DEBUG "%*s groups:", level + 1, "");
L
Linus Torvalds 已提交
6935
	do {
I
Ingo Molnar 已提交
6936 6937 6938
		if (!group) {
			printk("\n");
			printk(KERN_ERR "ERROR: group is NULL\n");
L
Linus Torvalds 已提交
6939 6940 6941
			break;
		}

I
Ingo Molnar 已提交
6942 6943 6944 6945 6946 6947
		if (!group->__cpu_power) {
			printk(KERN_CONT "\n");
			printk(KERN_ERR "ERROR: domain->cpu_power not "
					"set\n");
			break;
		}
L
Linus Torvalds 已提交
6948

6949
		if (!cpumask_weight(sched_group_cpus(group))) {
I
Ingo Molnar 已提交
6950 6951 6952 6953
			printk(KERN_CONT "\n");
			printk(KERN_ERR "ERROR: empty group\n");
			break;
		}
L
Linus Torvalds 已提交
6954

6955
		if (cpumask_intersects(groupmask, sched_group_cpus(group))) {
I
Ingo Molnar 已提交
6956 6957 6958 6959
			printk(KERN_CONT "\n");
			printk(KERN_ERR "ERROR: repeated CPUs\n");
			break;
		}
L
Linus Torvalds 已提交
6960

6961
		cpumask_or(groupmask, groupmask, sched_group_cpus(group));
L
Linus Torvalds 已提交
6962

R
Rusty Russell 已提交
6963
		cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
I
Ingo Molnar 已提交
6964
		printk(KERN_CONT " %s", str);
L
Linus Torvalds 已提交
6965

I
Ingo Molnar 已提交
6966 6967 6968
		group = group->next;
	} while (group != sd->groups);
	printk(KERN_CONT "\n");
L
Linus Torvalds 已提交
6969

6970
	if (!cpumask_equal(sched_domain_span(sd), groupmask))
I
Ingo Molnar 已提交
6971
		printk(KERN_ERR "ERROR: groups don't span domain->span\n");
L
Linus Torvalds 已提交
6972

6973 6974
	if (sd->parent &&
	    !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
I
Ingo Molnar 已提交
6975 6976 6977 6978
		printk(KERN_ERR "ERROR: parent span is not a superset "
			"of domain->span\n");
	return 0;
}
L
Linus Torvalds 已提交
6979

I
Ingo Molnar 已提交
6980 6981
static void sched_domain_debug(struct sched_domain *sd, int cpu)
{
6982
	cpumask_var_t groupmask;
I
Ingo Molnar 已提交
6983
	int level = 0;
L
Linus Torvalds 已提交
6984

I
Ingo Molnar 已提交
6985 6986 6987 6988
	if (!sd) {
		printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
		return;
	}
L
Linus Torvalds 已提交
6989

I
Ingo Molnar 已提交
6990 6991
	printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);

6992
	if (!alloc_cpumask_var(&groupmask, GFP_KERNEL)) {
6993 6994 6995 6996
		printk(KERN_DEBUG "Cannot load-balance (out of memory)\n");
		return;
	}

I
Ingo Molnar 已提交
6997
	for (;;) {
6998
		if (sched_domain_debug_one(sd, cpu, level, groupmask))
I
Ingo Molnar 已提交
6999
			break;
L
Linus Torvalds 已提交
7000 7001
		level++;
		sd = sd->parent;
7002
		if (!sd)
I
Ingo Molnar 已提交
7003 7004
			break;
	}
7005
	free_cpumask_var(groupmask);
L
Linus Torvalds 已提交
7006
}
7007
#else /* !CONFIG_SCHED_DEBUG */
7008
# define sched_domain_debug(sd, cpu) do { } while (0)
7009
#endif /* CONFIG_SCHED_DEBUG */
L
Linus Torvalds 已提交
7010

7011
static int sd_degenerate(struct sched_domain *sd)
7012
{
7013
	if (cpumask_weight(sched_domain_span(sd)) == 1)
7014 7015 7016 7017 7018 7019
		return 1;

	/* Following flags need at least 2 groups */
	if (sd->flags & (SD_LOAD_BALANCE |
			 SD_BALANCE_NEWIDLE |
			 SD_BALANCE_FORK |
7020 7021 7022
			 SD_BALANCE_EXEC |
			 SD_SHARE_CPUPOWER |
			 SD_SHARE_PKG_RESOURCES)) {
7023 7024 7025 7026 7027 7028 7029 7030 7031 7032 7033 7034 7035
		if (sd->groups != sd->groups->next)
			return 0;
	}

	/* Following flags don't use groups */
	if (sd->flags & (SD_WAKE_IDLE |
			 SD_WAKE_AFFINE |
			 SD_WAKE_BALANCE))
		return 0;

	return 1;
}

7036 7037
static int
sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
7038 7039 7040 7041 7042 7043
{
	unsigned long cflags = sd->flags, pflags = parent->flags;

	if (sd_degenerate(parent))
		return 1;

7044
	if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
7045 7046 7047 7048 7049 7050 7051 7052 7053 7054 7055
		return 0;

	/* Does parent contain flags not in child? */
	/* WAKE_BALANCE is a subset of WAKE_AFFINE */
	if (cflags & SD_WAKE_AFFINE)
		pflags &= ~SD_WAKE_BALANCE;
	/* Flags needing groups don't count if only 1 group in parent */
	if (parent->groups == parent->groups->next) {
		pflags &= ~(SD_LOAD_BALANCE |
				SD_BALANCE_NEWIDLE |
				SD_BALANCE_FORK |
7056 7057 7058
				SD_BALANCE_EXEC |
				SD_SHARE_CPUPOWER |
				SD_SHARE_PKG_RESOURCES);
7059 7060
		if (nr_node_ids == 1)
			pflags &= ~SD_SERIALIZE;
7061 7062 7063 7064 7065 7066 7067
	}
	if (~cflags & pflags)
		return 0;

	return 1;
}

7068 7069
static void free_rootdomain(struct root_domain *rd)
{
7070 7071
	cpupri_cleanup(&rd->cpupri);

7072 7073 7074 7075 7076 7077
	free_cpumask_var(rd->rto_mask);
	free_cpumask_var(rd->online);
	free_cpumask_var(rd->span);
	kfree(rd);
}

G
Gregory Haskins 已提交
7078 7079
static void rq_attach_root(struct rq *rq, struct root_domain *rd)
{
I
Ingo Molnar 已提交
7080
	struct root_domain *old_rd = NULL;
G
Gregory Haskins 已提交
7081 7082 7083 7084 7085
	unsigned long flags;

	spin_lock_irqsave(&rq->lock, flags);

	if (rq->rd) {
I
Ingo Molnar 已提交
7086
		old_rd = rq->rd;
G
Gregory Haskins 已提交
7087

7088
		if (cpumask_test_cpu(rq->cpu, old_rd->online))
7089
			set_rq_offline(rq);
G
Gregory Haskins 已提交
7090

7091
		cpumask_clear_cpu(rq->cpu, old_rd->span);
7092

I
Ingo Molnar 已提交
7093 7094 7095 7096 7097 7098 7099
		/*
		 * If we dont want to free the old_rt yet then
		 * set old_rd to NULL to skip the freeing later
		 * in this function:
		 */
		if (!atomic_dec_and_test(&old_rd->refcount))
			old_rd = NULL;
G
Gregory Haskins 已提交
7100 7101 7102 7103 7104
	}

	atomic_inc(&rd->refcount);
	rq->rd = rd;

7105 7106
	cpumask_set_cpu(rq->cpu, rd->span);
	if (cpumask_test_cpu(rq->cpu, cpu_online_mask))
7107
		set_rq_online(rq);
G
Gregory Haskins 已提交
7108 7109

	spin_unlock_irqrestore(&rq->lock, flags);
I
Ingo Molnar 已提交
7110 7111 7112

	if (old_rd)
		free_rootdomain(old_rd);
G
Gregory Haskins 已提交
7113 7114
}

L
Li Zefan 已提交
7115
static int __init_refok init_rootdomain(struct root_domain *rd, bool bootmem)
G
Gregory Haskins 已提交
7116 7117 7118
{
	memset(rd, 0, sizeof(*rd));

7119 7120 7121 7122
	if (bootmem) {
		alloc_bootmem_cpumask_var(&def_root_domain.span);
		alloc_bootmem_cpumask_var(&def_root_domain.online);
		alloc_bootmem_cpumask_var(&def_root_domain.rto_mask);
7123
		cpupri_init(&rd->cpupri, true);
7124 7125 7126 7127
		return 0;
	}

	if (!alloc_cpumask_var(&rd->span, GFP_KERNEL))
7128
		goto out;
7129 7130 7131 7132
	if (!alloc_cpumask_var(&rd->online, GFP_KERNEL))
		goto free_span;
	if (!alloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
		goto free_online;
7133

7134 7135
	if (cpupri_init(&rd->cpupri, false) != 0)
		goto free_rto_mask;
7136
	return 0;
7137

7138 7139
free_rto_mask:
	free_cpumask_var(rd->rto_mask);
7140 7141 7142 7143
free_online:
	free_cpumask_var(rd->online);
free_span:
	free_cpumask_var(rd->span);
7144
out:
7145
	return -ENOMEM;
G
Gregory Haskins 已提交
7146 7147 7148 7149
}

static void init_defrootdomain(void)
{
7150 7151
	init_rootdomain(&def_root_domain, true);

G
Gregory Haskins 已提交
7152 7153 7154
	atomic_set(&def_root_domain.refcount, 1);
}

7155
static struct root_domain *alloc_rootdomain(void)
G
Gregory Haskins 已提交
7156 7157 7158 7159 7160 7161 7162
{
	struct root_domain *rd;

	rd = kmalloc(sizeof(*rd), GFP_KERNEL);
	if (!rd)
		return NULL;

7163 7164 7165 7166
	if (init_rootdomain(rd, false) != 0) {
		kfree(rd);
		return NULL;
	}
G
Gregory Haskins 已提交
7167 7168 7169 7170

	return rd;
}

L
Linus Torvalds 已提交
7171
/*
I
Ingo Molnar 已提交
7172
 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
L
Linus Torvalds 已提交
7173 7174
 * hold the hotplug lock.
 */
I
Ingo Molnar 已提交
7175 7176
static void
cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
L
Linus Torvalds 已提交
7177
{
7178
	struct rq *rq = cpu_rq(cpu);
7179 7180 7181
	struct sched_domain *tmp;

	/* Remove the sched domains which do not contribute to scheduling. */
7182
	for (tmp = sd; tmp; ) {
7183 7184 7185
		struct sched_domain *parent = tmp->parent;
		if (!parent)
			break;
7186

7187
		if (sd_parent_degenerate(tmp, parent)) {
7188
			tmp->parent = parent->parent;
7189 7190
			if (parent->parent)
				parent->parent->child = tmp;
7191 7192
		} else
			tmp = tmp->parent;
7193 7194
	}

7195
	if (sd && sd_degenerate(sd)) {
7196
		sd = sd->parent;
7197 7198 7199
		if (sd)
			sd->child = NULL;
	}
L
Linus Torvalds 已提交
7200 7201 7202

	sched_domain_debug(sd, cpu);

G
Gregory Haskins 已提交
7203
	rq_attach_root(rq, rd);
N
Nick Piggin 已提交
7204
	rcu_assign_pointer(rq->sd, sd);
L
Linus Torvalds 已提交
7205 7206 7207
}

/* cpus with isolated domains */
7208
static cpumask_var_t cpu_isolated_map;
L
Linus Torvalds 已提交
7209 7210 7211 7212

/* Setup the mask of cpus configured for isolated domains */
static int __init isolated_cpu_setup(char *str)
{
R
Rusty Russell 已提交
7213
	cpulist_parse(str, cpu_isolated_map);
L
Linus Torvalds 已提交
7214 7215 7216
	return 1;
}

I
Ingo Molnar 已提交
7217
__setup("isolcpus=", isolated_cpu_setup);
L
Linus Torvalds 已提交
7218 7219

/*
7220 7221
 * init_sched_build_groups takes the cpumask we wish to span, and a pointer
 * to a function which identifies what group(along with sched group) a CPU
7222 7223
 * belongs to. The return value of group_fn must be a >= 0 and < nr_cpu_ids
 * (due to the fact that we keep track of groups covered with a struct cpumask).
L
Linus Torvalds 已提交
7224 7225 7226 7227 7228
 *
 * init_sched_build_groups will build a circular linked list of the groups
 * covered by the given span, and will set each group's ->cpumask correctly,
 * and ->cpu_power to 0.
 */
7229
static void
7230 7231 7232
init_sched_build_groups(const struct cpumask *span,
			const struct cpumask *cpu_map,
			int (*group_fn)(int cpu, const struct cpumask *cpu_map,
7233
					struct sched_group **sg,
7234 7235
					struct cpumask *tmpmask),
			struct cpumask *covered, struct cpumask *tmpmask)
L
Linus Torvalds 已提交
7236 7237 7238 7239
{
	struct sched_group *first = NULL, *last = NULL;
	int i;

7240
	cpumask_clear(covered);
7241

7242
	for_each_cpu(i, span) {
7243
		struct sched_group *sg;
7244
		int group = group_fn(i, cpu_map, &sg, tmpmask);
L
Linus Torvalds 已提交
7245 7246
		int j;

7247
		if (cpumask_test_cpu(i, covered))
L
Linus Torvalds 已提交
7248 7249
			continue;

7250
		cpumask_clear(sched_group_cpus(sg));
7251
		sg->__cpu_power = 0;
L
Linus Torvalds 已提交
7252

7253
		for_each_cpu(j, span) {
7254
			if (group_fn(j, cpu_map, NULL, tmpmask) != group)
L
Linus Torvalds 已提交
7255 7256
				continue;

7257
			cpumask_set_cpu(j, covered);
7258
			cpumask_set_cpu(j, sched_group_cpus(sg));
L
Linus Torvalds 已提交
7259 7260 7261 7262 7263 7264 7265 7266 7267 7268
		}
		if (!first)
			first = sg;
		if (last)
			last->next = sg;
		last = sg;
	}
	last->next = first;
}

7269
#define SD_NODES_PER_DOMAIN 16
L
Linus Torvalds 已提交
7270

7271
#ifdef CONFIG_NUMA
7272

7273 7274 7275 7276 7277
/**
 * find_next_best_node - find the next node to include in a sched_domain
 * @node: node whose sched_domain we're building
 * @used_nodes: nodes already in the sched_domain
 *
I
Ingo Molnar 已提交
7278
 * Find the next node to include in a given scheduling domain. Simply
7279 7280 7281 7282
 * finds the closest node not already in the @used_nodes map.
 *
 * Should use nodemask_t.
 */
7283
static int find_next_best_node(int node, nodemask_t *used_nodes)
7284 7285 7286 7287 7288
{
	int i, n, val, min_val, best_node = 0;

	min_val = INT_MAX;

7289
	for (i = 0; i < nr_node_ids; i++) {
7290
		/* Start at @node */
7291
		n = (node + i) % nr_node_ids;
7292 7293 7294 7295 7296

		if (!nr_cpus_node(n))
			continue;

		/* Skip already used nodes */
7297
		if (node_isset(n, *used_nodes))
7298 7299 7300 7301 7302 7303 7304 7305 7306 7307 7308
			continue;

		/* Simple min distance search */
		val = node_distance(node, n);

		if (val < min_val) {
			min_val = val;
			best_node = n;
		}
	}

7309
	node_set(best_node, *used_nodes);
7310 7311 7312 7313 7314 7315
	return best_node;
}

/**
 * sched_domain_node_span - get a cpumask for a node's sched_domain
 * @node: node whose cpumask we're constructing
7316
 * @span: resulting cpumask
7317
 *
I
Ingo Molnar 已提交
7318
 * Given a node, construct a good cpumask for its sched_domain to span. It
7319 7320 7321
 * should be one that prevents unnecessary balancing, but also spreads tasks
 * out optimally.
 */
7322
static void sched_domain_node_span(int node, struct cpumask *span)
7323
{
7324
	nodemask_t used_nodes;
7325
	int i;
7326

7327
	cpumask_clear(span);
7328
	nodes_clear(used_nodes);
7329

7330
	cpumask_or(span, span, cpumask_of_node(node));
7331
	node_set(node, used_nodes);
7332 7333

	for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
7334
		int next_node = find_next_best_node(node, &used_nodes);
7335

7336
		cpumask_or(span, span, cpumask_of_node(next_node));
7337 7338
	}
}
7339
#endif /* CONFIG_NUMA */
7340

7341
int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
7342

7343 7344 7345 7346 7347 7348 7349 7350 7351 7352 7353 7354 7355 7356 7357
/*
 * The cpus mask in sched_group and sched_domain hangs off the end.
 * FIXME: use cpumask_var_t or dynamic percpu alloc to avoid wasting space
 * for nr_cpu_ids < CONFIG_NR_CPUS.
 */
struct static_sched_group {
	struct sched_group sg;
	DECLARE_BITMAP(cpus, CONFIG_NR_CPUS);
};

struct static_sched_domain {
	struct sched_domain sd;
	DECLARE_BITMAP(span, CONFIG_NR_CPUS);
};

7358
/*
7359
 * SMT sched-domains:
7360
 */
L
Linus Torvalds 已提交
7361
#ifdef CONFIG_SCHED_SMT
7362 7363
static DEFINE_PER_CPU(struct static_sched_domain, cpu_domains);
static DEFINE_PER_CPU(struct static_sched_group, sched_group_cpus);
7364

I
Ingo Molnar 已提交
7365
static int
7366 7367
cpu_to_cpu_group(int cpu, const struct cpumask *cpu_map,
		 struct sched_group **sg, struct cpumask *unused)
L
Linus Torvalds 已提交
7368
{
7369
	if (sg)
7370
		*sg = &per_cpu(sched_group_cpus, cpu).sg;
L
Linus Torvalds 已提交
7371 7372
	return cpu;
}
7373
#endif /* CONFIG_SCHED_SMT */
L
Linus Torvalds 已提交
7374

7375 7376 7377
/*
 * multi-core sched-domains:
 */
7378
#ifdef CONFIG_SCHED_MC
7379 7380
static DEFINE_PER_CPU(struct static_sched_domain, core_domains);
static DEFINE_PER_CPU(struct static_sched_group, sched_group_core);
7381
#endif /* CONFIG_SCHED_MC */
7382 7383

#if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
I
Ingo Molnar 已提交
7384
static int
7385 7386
cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
		  struct sched_group **sg, struct cpumask *mask)
7387
{
7388
	int group;
7389

7390 7391
	cpumask_and(mask, &per_cpu(cpu_sibling_map, cpu), cpu_map);
	group = cpumask_first(mask);
7392
	if (sg)
7393
		*sg = &per_cpu(sched_group_core, group).sg;
7394
	return group;
7395 7396
}
#elif defined(CONFIG_SCHED_MC)
I
Ingo Molnar 已提交
7397
static int
7398 7399
cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
		  struct sched_group **sg, struct cpumask *unused)
7400
{
7401
	if (sg)
7402
		*sg = &per_cpu(sched_group_core, cpu).sg;
7403 7404 7405 7406
	return cpu;
}
#endif

7407 7408
static DEFINE_PER_CPU(struct static_sched_domain, phys_domains);
static DEFINE_PER_CPU(struct static_sched_group, sched_group_phys);
7409

I
Ingo Molnar 已提交
7410
static int
7411 7412
cpu_to_phys_group(int cpu, const struct cpumask *cpu_map,
		  struct sched_group **sg, struct cpumask *mask)
L
Linus Torvalds 已提交
7413
{
7414
	int group;
7415
#ifdef CONFIG_SCHED_MC
7416
	cpumask_and(mask, cpu_coregroup_mask(cpu), cpu_map);
7417
	group = cpumask_first(mask);
7418
#elif defined(CONFIG_SCHED_SMT)
7419 7420
	cpumask_and(mask, &per_cpu(cpu_sibling_map, cpu), cpu_map);
	group = cpumask_first(mask);
L
Linus Torvalds 已提交
7421
#else
7422
	group = cpu;
L
Linus Torvalds 已提交
7423
#endif
7424
	if (sg)
7425
		*sg = &per_cpu(sched_group_phys, group).sg;
7426
	return group;
L
Linus Torvalds 已提交
7427 7428 7429 7430
}

#ifdef CONFIG_NUMA
/*
7431 7432 7433
 * The init_sched_build_groups can't handle what we want to do with node
 * groups, so roll our own. Now each node has its own list of groups which
 * gets dynamically allocated.
L
Linus Torvalds 已提交
7434
 */
7435
static DEFINE_PER_CPU(struct static_sched_domain, node_domains);
7436
static struct sched_group ***sched_group_nodes_bycpu;
L
Linus Torvalds 已提交
7437

7438
static DEFINE_PER_CPU(struct static_sched_domain, allnodes_domains);
7439
static DEFINE_PER_CPU(struct static_sched_group, sched_group_allnodes);
7440

7441 7442 7443
static int cpu_to_allnodes_group(int cpu, const struct cpumask *cpu_map,
				 struct sched_group **sg,
				 struct cpumask *nodemask)
7444
{
7445 7446
	int group;

7447
	cpumask_and(nodemask, cpumask_of_node(cpu_to_node(cpu)), cpu_map);
7448
	group = cpumask_first(nodemask);
7449 7450

	if (sg)
7451
		*sg = &per_cpu(sched_group_allnodes, group).sg;
7452
	return group;
L
Linus Torvalds 已提交
7453
}
7454

7455 7456 7457 7458 7459 7460 7461
static void init_numa_sched_groups_power(struct sched_group *group_head)
{
	struct sched_group *sg = group_head;
	int j;

	if (!sg)
		return;
7462
	do {
7463
		for_each_cpu(j, sched_group_cpus(sg)) {
7464
			struct sched_domain *sd;
7465

7466
			sd = &per_cpu(phys_domains, j).sd;
7467
			if (j != cpumask_first(sched_group_cpus(sd->groups))) {
7468 7469 7470 7471 7472 7473
				/*
				 * Only add "power" once for each
				 * physical package.
				 */
				continue;
			}
7474

7475 7476 7477 7478
			sg_inc_cpu_power(sg, sd->groups->__cpu_power);
		}
		sg = sg->next;
	} while (sg != group_head);
7479
}
7480
#endif /* CONFIG_NUMA */
L
Linus Torvalds 已提交
7481

7482
#ifdef CONFIG_NUMA
7483
/* Free memory allocated for various sched_group structures */
7484 7485
static void free_sched_groups(const struct cpumask *cpu_map,
			      struct cpumask *nodemask)
7486
{
7487
	int cpu, i;
7488

7489
	for_each_cpu(cpu, cpu_map) {
7490 7491 7492 7493 7494 7495
		struct sched_group **sched_group_nodes
			= sched_group_nodes_bycpu[cpu];

		if (!sched_group_nodes)
			continue;

7496
		for (i = 0; i < nr_node_ids; i++) {
7497 7498
			struct sched_group *oldsg, *sg = sched_group_nodes[i];

7499
			cpumask_and(nodemask, cpumask_of_node(i), cpu_map);
7500
			if (cpumask_empty(nodemask))
7501 7502 7503 7504 7505 7506 7507 7508 7509 7510 7511 7512 7513 7514 7515 7516
				continue;

			if (sg == NULL)
				continue;
			sg = sg->next;
next_sg:
			oldsg = sg;
			sg = sg->next;
			kfree(oldsg);
			if (oldsg != sched_group_nodes[i])
				goto next_sg;
		}
		kfree(sched_group_nodes);
		sched_group_nodes_bycpu[cpu] = NULL;
	}
}
7517
#else /* !CONFIG_NUMA */
7518 7519
static void free_sched_groups(const struct cpumask *cpu_map,
			      struct cpumask *nodemask)
7520 7521
{
}
7522
#endif /* CONFIG_NUMA */
7523

7524 7525 7526 7527 7528 7529 7530 7531 7532 7533 7534 7535 7536 7537 7538 7539 7540 7541 7542 7543 7544
/*
 * Initialize sched groups cpu_power.
 *
 * cpu_power indicates the capacity of sched group, which is used while
 * distributing the load between different sched groups in a sched domain.
 * Typically cpu_power for all the groups in a sched domain will be same unless
 * there are asymmetries in the topology. If there are asymmetries, group
 * having more cpu_power will pickup more load compared to the group having
 * less cpu_power.
 *
 * cpu_power will be a multiple of SCHED_LOAD_SCALE. This multiple represents
 * the maximum number of tasks a group can handle in the presence of other idle
 * or lightly loaded groups in the same sched domain.
 */
static void init_sched_groups_power(int cpu, struct sched_domain *sd)
{
	struct sched_domain *child;
	struct sched_group *group;

	WARN_ON(!sd || !sd->groups);

7545
	if (cpu != cpumask_first(sched_group_cpus(sd->groups)))
7546 7547 7548 7549
		return;

	child = sd->child;

7550 7551
	sd->groups->__cpu_power = 0;

7552 7553 7554 7555 7556 7557 7558 7559 7560 7561
	/*
	 * For perf policy, if the groups in child domain share resources
	 * (for example cores sharing some portions of the cache hierarchy
	 * or SMT), then set this domain groups cpu_power such that each group
	 * can handle only one task, when there are other idle groups in the
	 * same sched domain.
	 */
	if (!child || (!(sd->flags & SD_POWERSAVINGS_BALANCE) &&
		       (child->flags &
			(SD_SHARE_CPUPOWER | SD_SHARE_PKG_RESOURCES)))) {
7562
		sg_inc_cpu_power(sd->groups, SCHED_LOAD_SCALE);
7563 7564 7565 7566 7567 7568 7569 7570
		return;
	}

	/*
	 * add cpu_power of each child group to this groups cpu_power
	 */
	group = child->groups;
	do {
7571
		sg_inc_cpu_power(sd->groups, group->__cpu_power);
7572 7573 7574 7575
		group = group->next;
	} while (group != child->groups);
}

7576 7577 7578 7579 7580
/*
 * Initializers for schedule domains
 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
 */

7581 7582 7583 7584 7585 7586
#ifdef CONFIG_SCHED_DEBUG
# define SD_INIT_NAME(sd, type)		sd->name = #type
#else
# define SD_INIT_NAME(sd, type)		do { } while (0)
#endif

7587
#define	SD_INIT(sd, type)	sd_init_##type(sd)
7588

7589 7590 7591 7592 7593
#define SD_INIT_FUNC(type)	\
static noinline void sd_init_##type(struct sched_domain *sd)	\
{								\
	memset(sd, 0, sizeof(*sd));				\
	*sd = SD_##type##_INIT;					\
7594
	sd->level = SD_LV_##type;				\
7595
	SD_INIT_NAME(sd, type);					\
7596 7597 7598 7599 7600 7601 7602 7603 7604 7605 7606 7607 7608 7609
}

SD_INIT_FUNC(CPU)
#ifdef CONFIG_NUMA
 SD_INIT_FUNC(ALLNODES)
 SD_INIT_FUNC(NODE)
#endif
#ifdef CONFIG_SCHED_SMT
 SD_INIT_FUNC(SIBLING)
#endif
#ifdef CONFIG_SCHED_MC
 SD_INIT_FUNC(MC)
#endif

7610 7611 7612 7613
static int default_relax_domain_level = -1;

static int __init setup_relax_domain_level(char *str)
{
7614 7615 7616 7617 7618 7619
	unsigned long val;

	val = simple_strtoul(str, NULL, 0);
	if (val < SD_LV_MAX)
		default_relax_domain_level = val;

7620 7621 7622 7623 7624 7625 7626 7627 7628 7629 7630 7631 7632 7633 7634 7635 7636 7637 7638 7639 7640 7641 7642 7643 7644
	return 1;
}
__setup("relax_domain_level=", setup_relax_domain_level);

static void set_domain_attribute(struct sched_domain *sd,
				 struct sched_domain_attr *attr)
{
	int request;

	if (!attr || attr->relax_domain_level < 0) {
		if (default_relax_domain_level < 0)
			return;
		else
			request = default_relax_domain_level;
	} else
		request = attr->relax_domain_level;
	if (request < sd->level) {
		/* turn off idle balance on this domain */
		sd->flags &= ~(SD_WAKE_IDLE|SD_BALANCE_NEWIDLE);
	} else {
		/* turn on idle balance on this domain */
		sd->flags |= (SD_WAKE_IDLE_FAR|SD_BALANCE_NEWIDLE);
	}
}

L
Linus Torvalds 已提交
7645
/*
7646 7647
 * Build sched domains for a given set of cpus and attach the sched domains
 * to the individual cpus
L
Linus Torvalds 已提交
7648
 */
7649
static int __build_sched_domains(const struct cpumask *cpu_map,
7650
				 struct sched_domain_attr *attr)
L
Linus Torvalds 已提交
7651
{
7652
	int i, err = -ENOMEM;
G
Gregory Haskins 已提交
7653
	struct root_domain *rd;
7654 7655
	cpumask_var_t nodemask, this_sibling_map, this_core_map, send_covered,
		tmpmask;
7656
#ifdef CONFIG_NUMA
7657
	cpumask_var_t domainspan, covered, notcovered;
7658
	struct sched_group **sched_group_nodes = NULL;
7659
	int sd_allnodes = 0;
7660

7661 7662 7663 7664 7665 7666 7667 7668 7669 7670 7671 7672 7673 7674 7675 7676 7677 7678 7679 7680
	if (!alloc_cpumask_var(&domainspan, GFP_KERNEL))
		goto out;
	if (!alloc_cpumask_var(&covered, GFP_KERNEL))
		goto free_domainspan;
	if (!alloc_cpumask_var(&notcovered, GFP_KERNEL))
		goto free_covered;
#endif

	if (!alloc_cpumask_var(&nodemask, GFP_KERNEL))
		goto free_notcovered;
	if (!alloc_cpumask_var(&this_sibling_map, GFP_KERNEL))
		goto free_nodemask;
	if (!alloc_cpumask_var(&this_core_map, GFP_KERNEL))
		goto free_this_sibling_map;
	if (!alloc_cpumask_var(&send_covered, GFP_KERNEL))
		goto free_this_core_map;
	if (!alloc_cpumask_var(&tmpmask, GFP_KERNEL))
		goto free_send_covered;

#ifdef CONFIG_NUMA
7681 7682 7683
	/*
	 * Allocate the per-node list of sched groups
	 */
7684
	sched_group_nodes = kcalloc(nr_node_ids, sizeof(struct sched_group *),
I
Ingo Molnar 已提交
7685
				    GFP_KERNEL);
7686 7687
	if (!sched_group_nodes) {
		printk(KERN_WARNING "Can not alloc sched group node list\n");
7688
		goto free_tmpmask;
7689 7690
	}
#endif
L
Linus Torvalds 已提交
7691

7692
	rd = alloc_rootdomain();
G
Gregory Haskins 已提交
7693 7694
	if (!rd) {
		printk(KERN_WARNING "Cannot alloc root domain\n");
7695
		goto free_sched_groups;
G
Gregory Haskins 已提交
7696 7697
	}

7698
#ifdef CONFIG_NUMA
7699
	sched_group_nodes_bycpu[cpumask_first(cpu_map)] = sched_group_nodes;
7700 7701
#endif

L
Linus Torvalds 已提交
7702
	/*
7703
	 * Set up domains for cpus specified by the cpu_map.
L
Linus Torvalds 已提交
7704
	 */
7705
	for_each_cpu(i, cpu_map) {
L
Linus Torvalds 已提交
7706 7707
		struct sched_domain *sd = NULL, *p;

7708
		cpumask_and(nodemask, cpumask_of_node(cpu_to_node(i)), cpu_map);
L
Linus Torvalds 已提交
7709 7710

#ifdef CONFIG_NUMA
7711 7712
		if (cpumask_weight(cpu_map) >
				SD_NODES_PER_DOMAIN*cpumask_weight(nodemask)) {
7713
			sd = &per_cpu(allnodes_domains, i).sd;
7714
			SD_INIT(sd, ALLNODES);
7715
			set_domain_attribute(sd, attr);
7716
			cpumask_copy(sched_domain_span(sd), cpu_map);
7717
			cpu_to_allnodes_group(i, cpu_map, &sd->groups, tmpmask);
7718
			p = sd;
7719
			sd_allnodes = 1;
7720 7721 7722
		} else
			p = NULL;

7723
		sd = &per_cpu(node_domains, i).sd;
7724
		SD_INIT(sd, NODE);
7725
		set_domain_attribute(sd, attr);
7726
		sched_domain_node_span(cpu_to_node(i), sched_domain_span(sd));
7727
		sd->parent = p;
7728 7729
		if (p)
			p->child = sd;
7730 7731
		cpumask_and(sched_domain_span(sd),
			    sched_domain_span(sd), cpu_map);
L
Linus Torvalds 已提交
7732 7733 7734
#endif

		p = sd;
7735
		sd = &per_cpu(phys_domains, i).sd;
7736
		SD_INIT(sd, CPU);
7737
		set_domain_attribute(sd, attr);
7738
		cpumask_copy(sched_domain_span(sd), nodemask);
L
Linus Torvalds 已提交
7739
		sd->parent = p;
7740 7741
		if (p)
			p->child = sd;
7742
		cpu_to_phys_group(i, cpu_map, &sd->groups, tmpmask);
L
Linus Torvalds 已提交
7743

7744 7745
#ifdef CONFIG_SCHED_MC
		p = sd;
7746
		sd = &per_cpu(core_domains, i).sd;
7747
		SD_INIT(sd, MC);
7748
		set_domain_attribute(sd, attr);
7749 7750
		cpumask_and(sched_domain_span(sd), cpu_map,
						   cpu_coregroup_mask(i));
7751
		sd->parent = p;
7752
		p->child = sd;
7753
		cpu_to_core_group(i, cpu_map, &sd->groups, tmpmask);
7754 7755
#endif

L
Linus Torvalds 已提交
7756 7757
#ifdef CONFIG_SCHED_SMT
		p = sd;
7758
		sd = &per_cpu(cpu_domains, i).sd;
7759
		SD_INIT(sd, SIBLING);
7760
		set_domain_attribute(sd, attr);
7761 7762
		cpumask_and(sched_domain_span(sd),
			    &per_cpu(cpu_sibling_map, i), cpu_map);
L
Linus Torvalds 已提交
7763
		sd->parent = p;
7764
		p->child = sd;
7765
		cpu_to_cpu_group(i, cpu_map, &sd->groups, tmpmask);
L
Linus Torvalds 已提交
7766 7767 7768 7769 7770
#endif
	}

#ifdef CONFIG_SCHED_SMT
	/* Set up CPU (sibling) groups */
7771
	for_each_cpu(i, cpu_map) {
7772 7773 7774
		cpumask_and(this_sibling_map,
			    &per_cpu(cpu_sibling_map, i), cpu_map);
		if (i != cpumask_first(this_sibling_map))
L
Linus Torvalds 已提交
7775 7776
			continue;

I
Ingo Molnar 已提交
7777
		init_sched_build_groups(this_sibling_map, cpu_map,
7778 7779
					&cpu_to_cpu_group,
					send_covered, tmpmask);
L
Linus Torvalds 已提交
7780 7781 7782
	}
#endif

7783 7784
#ifdef CONFIG_SCHED_MC
	/* Set up multi-core groups */
7785
	for_each_cpu(i, cpu_map) {
7786
		cpumask_and(this_core_map, cpu_coregroup_mask(i), cpu_map);
7787
		if (i != cpumask_first(this_core_map))
7788
			continue;
7789

I
Ingo Molnar 已提交
7790
		init_sched_build_groups(this_core_map, cpu_map,
7791 7792
					&cpu_to_core_group,
					send_covered, tmpmask);
7793 7794 7795
	}
#endif

L
Linus Torvalds 已提交
7796
	/* Set up physical groups */
7797
	for (i = 0; i < nr_node_ids; i++) {
7798
		cpumask_and(nodemask, cpumask_of_node(i), cpu_map);
7799
		if (cpumask_empty(nodemask))
L
Linus Torvalds 已提交
7800 7801
			continue;

7802 7803 7804
		init_sched_build_groups(nodemask, cpu_map,
					&cpu_to_phys_group,
					send_covered, tmpmask);
L
Linus Torvalds 已提交
7805 7806 7807 7808
	}

#ifdef CONFIG_NUMA
	/* Set up node groups */
7809 7810 7811 7812 7813
	if (sd_allnodes) {
		init_sched_build_groups(cpu_map, cpu_map,
					&cpu_to_allnodes_group,
					send_covered, tmpmask);
	}
7814

7815
	for (i = 0; i < nr_node_ids; i++) {
7816 7817 7818 7819
		/* Set up node groups */
		struct sched_group *sg, *prev;
		int j;

7820
		cpumask_clear(covered);
7821
		cpumask_and(nodemask, cpumask_of_node(i), cpu_map);
7822
		if (cpumask_empty(nodemask)) {
7823
			sched_group_nodes[i] = NULL;
7824
			continue;
7825
		}
7826

7827
		sched_domain_node_span(i, domainspan);
7828
		cpumask_and(domainspan, domainspan, cpu_map);
7829

7830 7831
		sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(),
				  GFP_KERNEL, i);
7832 7833 7834 7835 7836
		if (!sg) {
			printk(KERN_WARNING "Can not alloc domain group for "
				"node %d\n", i);
			goto error;
		}
7837
		sched_group_nodes[i] = sg;
7838
		for_each_cpu(j, nodemask) {
7839
			struct sched_domain *sd;
I
Ingo Molnar 已提交
7840

7841
			sd = &per_cpu(node_domains, j).sd;
7842 7843
			sd->groups = sg;
		}
7844
		sg->__cpu_power = 0;
7845
		cpumask_copy(sched_group_cpus(sg), nodemask);
7846
		sg->next = sg;
7847
		cpumask_or(covered, covered, nodemask);
7848 7849
		prev = sg;

7850 7851
		for (j = 0; j < nr_node_ids; j++) {
			int n = (i + j) % nr_node_ids;
7852

7853 7854 7855 7856
			cpumask_complement(notcovered, covered);
			cpumask_and(tmpmask, notcovered, cpu_map);
			cpumask_and(tmpmask, tmpmask, domainspan);
			if (cpumask_empty(tmpmask))
7857 7858
				break;

7859
			cpumask_and(tmpmask, tmpmask, cpumask_of_node(n));
7860
			if (cpumask_empty(tmpmask))
7861 7862
				continue;

7863 7864
			sg = kmalloc_node(sizeof(struct sched_group) +
					  cpumask_size(),
7865
					  GFP_KERNEL, i);
7866 7867 7868
			if (!sg) {
				printk(KERN_WARNING
				"Can not alloc domain group for node %d\n", j);
7869
				goto error;
7870
			}
7871
			sg->__cpu_power = 0;
7872
			cpumask_copy(sched_group_cpus(sg), tmpmask);
7873
			sg->next = prev->next;
7874
			cpumask_or(covered, covered, tmpmask);
7875 7876 7877 7878
			prev->next = sg;
			prev = sg;
		}
	}
L
Linus Torvalds 已提交
7879 7880 7881
#endif

	/* Calculate CPU power for physical packages and nodes */
7882
#ifdef CONFIG_SCHED_SMT
7883
	for_each_cpu(i, cpu_map) {
7884
		struct sched_domain *sd = &per_cpu(cpu_domains, i).sd;
I
Ingo Molnar 已提交
7885

7886
		init_sched_groups_power(i, sd);
7887
	}
L
Linus Torvalds 已提交
7888
#endif
7889
#ifdef CONFIG_SCHED_MC
7890
	for_each_cpu(i, cpu_map) {
7891
		struct sched_domain *sd = &per_cpu(core_domains, i).sd;
I
Ingo Molnar 已提交
7892

7893
		init_sched_groups_power(i, sd);
7894 7895
	}
#endif
7896

7897
	for_each_cpu(i, cpu_map) {
7898
		struct sched_domain *sd = &per_cpu(phys_domains, i).sd;
I
Ingo Molnar 已提交
7899

7900
		init_sched_groups_power(i, sd);
L
Linus Torvalds 已提交
7901 7902
	}

7903
#ifdef CONFIG_NUMA
7904
	for (i = 0; i < nr_node_ids; i++)
7905
		init_numa_sched_groups_power(sched_group_nodes[i]);
7906

7907 7908
	if (sd_allnodes) {
		struct sched_group *sg;
7909

7910
		cpu_to_allnodes_group(cpumask_first(cpu_map), cpu_map, &sg,
7911
								tmpmask);
7912 7913
		init_numa_sched_groups_power(sg);
	}
7914 7915
#endif

L
Linus Torvalds 已提交
7916
	/* Attach the domains */
7917
	for_each_cpu(i, cpu_map) {
L
Linus Torvalds 已提交
7918 7919
		struct sched_domain *sd;
#ifdef CONFIG_SCHED_SMT
7920
		sd = &per_cpu(cpu_domains, i).sd;
7921
#elif defined(CONFIG_SCHED_MC)
7922
		sd = &per_cpu(core_domains, i).sd;
L
Linus Torvalds 已提交
7923
#else
7924
		sd = &per_cpu(phys_domains, i).sd;
L
Linus Torvalds 已提交
7925
#endif
G
Gregory Haskins 已提交
7926
		cpu_attach_domain(sd, rd, i);
L
Linus Torvalds 已提交
7927
	}
7928

7929 7930 7931 7932 7933 7934 7935 7936 7937 7938 7939 7940 7941 7942 7943 7944 7945 7946 7947 7948 7949 7950 7951 7952 7953 7954 7955 7956
	err = 0;

free_tmpmask:
	free_cpumask_var(tmpmask);
free_send_covered:
	free_cpumask_var(send_covered);
free_this_core_map:
	free_cpumask_var(this_core_map);
free_this_sibling_map:
	free_cpumask_var(this_sibling_map);
free_nodemask:
	free_cpumask_var(nodemask);
free_notcovered:
#ifdef CONFIG_NUMA
	free_cpumask_var(notcovered);
free_covered:
	free_cpumask_var(covered);
free_domainspan:
	free_cpumask_var(domainspan);
out:
#endif
	return err;

free_sched_groups:
#ifdef CONFIG_NUMA
	kfree(sched_group_nodes);
#endif
	goto free_tmpmask;
7957

7958
#ifdef CONFIG_NUMA
7959
error:
7960
	free_sched_groups(cpu_map, tmpmask);
7961
	free_rootdomain(rd);
7962
	goto free_tmpmask;
7963
#endif
L
Linus Torvalds 已提交
7964
}
P
Paul Jackson 已提交
7965

7966
static int build_sched_domains(const struct cpumask *cpu_map)
7967 7968 7969 7970
{
	return __build_sched_domains(cpu_map, NULL);
}

7971
static struct cpumask *doms_cur;	/* current sched domains */
P
Paul Jackson 已提交
7972
static int ndoms_cur;		/* number of sched domains in 'doms_cur' */
I
Ingo Molnar 已提交
7973 7974
static struct sched_domain_attr *dattr_cur;
				/* attribues of custom domains in 'doms_cur' */
P
Paul Jackson 已提交
7975 7976 7977

/*
 * Special case: If a kmalloc of a doms_cur partition (array of
7978 7979
 * cpumask) fails, then fallback to a single sched domain,
 * as determined by the single cpumask fallback_doms.
P
Paul Jackson 已提交
7980
 */
7981
static cpumask_var_t fallback_doms;
P
Paul Jackson 已提交
7982

7983 7984 7985 7986 7987 7988
/*
 * arch_update_cpu_topology lets virtualized architectures update the
 * cpu core maps. It is supposed to return 1 if the topology changed
 * or 0 if it stayed the same.
 */
int __attribute__((weak)) arch_update_cpu_topology(void)
7989
{
7990
	return 0;
7991 7992
}

7993
/*
I
Ingo Molnar 已提交
7994
 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
P
Paul Jackson 已提交
7995 7996
 * For now this just excludes isolated cpus, but could be used to
 * exclude other special cases in the future.
7997
 */
7998
static int arch_init_sched_domains(const struct cpumask *cpu_map)
7999
{
8000 8001
	int err;

8002
	arch_update_cpu_topology();
P
Paul Jackson 已提交
8003
	ndoms_cur = 1;
8004
	doms_cur = kmalloc(cpumask_size(), GFP_KERNEL);
P
Paul Jackson 已提交
8005
	if (!doms_cur)
8006
		doms_cur = fallback_doms;
8007
	cpumask_andnot(doms_cur, cpu_map, cpu_isolated_map);
8008
	dattr_cur = NULL;
8009
	err = build_sched_domains(doms_cur);
8010
	register_sched_domain_sysctl();
8011 8012

	return err;
8013 8014
}

8015 8016
static void arch_destroy_sched_domains(const struct cpumask *cpu_map,
				       struct cpumask *tmpmask)
L
Linus Torvalds 已提交
8017
{
8018
	free_sched_groups(cpu_map, tmpmask);
8019
}
L
Linus Torvalds 已提交
8020

8021 8022 8023 8024
/*
 * Detach sched domains from a group of cpus specified in cpu_map
 * These cpus will now be attached to the NULL domain
 */
8025
static void detach_destroy_domains(const struct cpumask *cpu_map)
8026
{
8027 8028
	/* Save because hotplug lock held. */
	static DECLARE_BITMAP(tmpmask, CONFIG_NR_CPUS);
8029 8030
	int i;

8031
	for_each_cpu(i, cpu_map)
G
Gregory Haskins 已提交
8032
		cpu_attach_domain(NULL, &def_root_domain, i);
8033
	synchronize_sched();
8034
	arch_destroy_sched_domains(cpu_map, to_cpumask(tmpmask));
8035 8036
}

8037 8038 8039 8040 8041 8042 8043 8044 8045 8046 8047 8048 8049 8050 8051 8052
/* handle null as "default" */
static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
			struct sched_domain_attr *new, int idx_new)
{
	struct sched_domain_attr tmp;

	/* fast path */
	if (!new && !cur)
		return 1;

	tmp = SD_ATTR_INIT;
	return !memcmp(cur ? (cur + idx_cur) : &tmp,
			new ? (new + idx_new) : &tmp,
			sizeof(struct sched_domain_attr));
}

P
Paul Jackson 已提交
8053 8054
/*
 * Partition sched domains as specified by the 'ndoms_new'
I
Ingo Molnar 已提交
8055
 * cpumasks in the array doms_new[] of cpumasks. This compares
P
Paul Jackson 已提交
8056 8057 8058
 * doms_new[] to the current sched domain partitioning, doms_cur[].
 * It destroys each deleted domain and builds each new domain.
 *
8059
 * 'doms_new' is an array of cpumask's of length 'ndoms_new'.
I
Ingo Molnar 已提交
8060 8061 8062
 * The masks don't intersect (don't overlap.) We should setup one
 * sched domain for each mask. CPUs not in any of the cpumasks will
 * not be load balanced. If the same cpumask appears both in the
P
Paul Jackson 已提交
8063 8064 8065
 * current 'doms_cur' domains and in the new 'doms_new', we can leave
 * it as it is.
 *
I
Ingo Molnar 已提交
8066 8067
 * The passed in 'doms_new' should be kmalloc'd. This routine takes
 * ownership of it and will kfree it when done with it. If the caller
8068 8069 8070 8071
 * failed the kmalloc call, then it can pass in doms_new == NULL &&
 * ndoms_new == 1, and partition_sched_domains() will fallback to
 * the single partition 'fallback_doms', it also forces the domains
 * to be rebuilt.
P
Paul Jackson 已提交
8072
 *
8073
 * If doms_new == NULL it will be replaced with cpu_online_mask.
8074 8075
 * ndoms_new == 0 is a special case for destroying existing domains,
 * and it will not create the default domain.
8076
 *
P
Paul Jackson 已提交
8077 8078
 * Call with hotplug lock held
 */
8079 8080
/* FIXME: Change to struct cpumask *doms_new[] */
void partition_sched_domains(int ndoms_new, struct cpumask *doms_new,
8081
			     struct sched_domain_attr *dattr_new)
P
Paul Jackson 已提交
8082
{
8083
	int i, j, n;
8084
	int new_topology;
P
Paul Jackson 已提交
8085

8086
	mutex_lock(&sched_domains_mutex);
8087

8088 8089 8090
	/* always unregister in case we don't destroy any domains */
	unregister_sched_domain_sysctl();

8091 8092 8093
	/* Let architecture update cpu core mappings. */
	new_topology = arch_update_cpu_topology();

8094
	n = doms_new ? ndoms_new : 0;
P
Paul Jackson 已提交
8095 8096 8097

	/* Destroy deleted domains */
	for (i = 0; i < ndoms_cur; i++) {
8098
		for (j = 0; j < n && !new_topology; j++) {
8099
			if (cpumask_equal(&doms_cur[i], &doms_new[j])
8100
			    && dattrs_equal(dattr_cur, i, dattr_new, j))
P
Paul Jackson 已提交
8101 8102 8103 8104 8105 8106 8107 8108
				goto match1;
		}
		/* no match - a current sched domain not in new doms_new[] */
		detach_destroy_domains(doms_cur + i);
match1:
		;
	}

8109 8110
	if (doms_new == NULL) {
		ndoms_cur = 0;
8111
		doms_new = fallback_doms;
8112
		cpumask_andnot(&doms_new[0], cpu_online_mask, cpu_isolated_map);
8113
		WARN_ON_ONCE(dattr_new);
8114 8115
	}

P
Paul Jackson 已提交
8116 8117
	/* Build new domains */
	for (i = 0; i < ndoms_new; i++) {
8118
		for (j = 0; j < ndoms_cur && !new_topology; j++) {
8119
			if (cpumask_equal(&doms_new[i], &doms_cur[j])
8120
			    && dattrs_equal(dattr_new, i, dattr_cur, j))
P
Paul Jackson 已提交
8121 8122 8123
				goto match2;
		}
		/* no match - add a new doms_new */
8124 8125
		__build_sched_domains(doms_new + i,
					dattr_new ? dattr_new + i : NULL);
P
Paul Jackson 已提交
8126 8127 8128 8129 8130
match2:
		;
	}

	/* Remember the new sched domains */
8131
	if (doms_cur != fallback_doms)
P
Paul Jackson 已提交
8132
		kfree(doms_cur);
8133
	kfree(dattr_cur);	/* kfree(NULL) is safe */
P
Paul Jackson 已提交
8134
	doms_cur = doms_new;
8135
	dattr_cur = dattr_new;
P
Paul Jackson 已提交
8136
	ndoms_cur = ndoms_new;
8137 8138

	register_sched_domain_sysctl();
8139

8140
	mutex_unlock(&sched_domains_mutex);
P
Paul Jackson 已提交
8141 8142
}

8143
#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
8144
static void arch_reinit_sched_domains(void)
8145
{
8146
	get_online_cpus();
8147 8148 8149 8150

	/* Destroy domains first to force the rebuild */
	partition_sched_domains(0, NULL, NULL);

8151
	rebuild_sched_domains();
8152
	put_online_cpus();
8153 8154 8155 8156
}

static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
{
8157
	unsigned int level = 0;
8158

8159 8160 8161 8162 8163 8164 8165 8166 8167 8168 8169
	if (sscanf(buf, "%u", &level) != 1)
		return -EINVAL;

	/*
	 * level is always be positive so don't check for
	 * level < POWERSAVINGS_BALANCE_NONE which is 0
	 * What happens on 0 or 1 byte write,
	 * need to check for count as well?
	 */

	if (level >= MAX_POWERSAVINGS_BALANCE_LEVELS)
8170 8171 8172
		return -EINVAL;

	if (smt)
8173
		sched_smt_power_savings = level;
8174
	else
8175
		sched_mc_power_savings = level;
8176

8177
	arch_reinit_sched_domains();
8178

8179
	return count;
8180 8181 8182
}

#ifdef CONFIG_SCHED_MC
8183 8184
static ssize_t sched_mc_power_savings_show(struct sysdev_class *class,
					   char *page)
8185 8186 8187
{
	return sprintf(page, "%u\n", sched_mc_power_savings);
}
8188
static ssize_t sched_mc_power_savings_store(struct sysdev_class *class,
8189
					    const char *buf, size_t count)
8190 8191 8192
{
	return sched_power_savings_store(buf, count, 0);
}
8193 8194 8195
static SYSDEV_CLASS_ATTR(sched_mc_power_savings, 0644,
			 sched_mc_power_savings_show,
			 sched_mc_power_savings_store);
8196 8197 8198
#endif

#ifdef CONFIG_SCHED_SMT
8199 8200
static ssize_t sched_smt_power_savings_show(struct sysdev_class *dev,
					    char *page)
8201 8202 8203
{
	return sprintf(page, "%u\n", sched_smt_power_savings);
}
8204
static ssize_t sched_smt_power_savings_store(struct sysdev_class *dev,
8205
					     const char *buf, size_t count)
8206 8207 8208
{
	return sched_power_savings_store(buf, count, 1);
}
8209 8210
static SYSDEV_CLASS_ATTR(sched_smt_power_savings, 0644,
		   sched_smt_power_savings_show,
A
Adrian Bunk 已提交
8211 8212 8213
		   sched_smt_power_savings_store);
#endif

8214
int __init sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
A
Adrian Bunk 已提交
8215 8216 8217 8218 8219 8220 8221 8222 8223 8224 8225 8226 8227 8228 8229
{
	int err = 0;

#ifdef CONFIG_SCHED_SMT
	if (smt_capable())
		err = sysfs_create_file(&cls->kset.kobj,
					&attr_sched_smt_power_savings.attr);
#endif
#ifdef CONFIG_SCHED_MC
	if (!err && mc_capable())
		err = sysfs_create_file(&cls->kset.kobj,
					&attr_sched_mc_power_savings.attr);
#endif
	return err;
}
8230
#endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
8231

8232
#ifndef CONFIG_CPUSETS
L
Linus Torvalds 已提交
8233
/*
8234 8235
 * Add online and remove offline CPUs from the scheduler domains.
 * When cpusets are enabled they take over this function.
L
Linus Torvalds 已提交
8236 8237 8238
 */
static int update_sched_domains(struct notifier_block *nfb,
				unsigned long action, void *hcpu)
8239 8240 8241 8242 8243 8244
{
	switch (action) {
	case CPU_ONLINE:
	case CPU_ONLINE_FROZEN:
	case CPU_DEAD:
	case CPU_DEAD_FROZEN:
8245
		partition_sched_domains(1, NULL, NULL);
8246 8247 8248 8249 8250 8251 8252 8253 8254 8255
		return NOTIFY_OK;

	default:
		return NOTIFY_DONE;
	}
}
#endif

static int update_runtime(struct notifier_block *nfb,
				unsigned long action, void *hcpu)
L
Linus Torvalds 已提交
8256
{
P
Peter Zijlstra 已提交
8257 8258
	int cpu = (int)(long)hcpu;

L
Linus Torvalds 已提交
8259 8260
	switch (action) {
	case CPU_DOWN_PREPARE:
8261
	case CPU_DOWN_PREPARE_FROZEN:
P
Peter Zijlstra 已提交
8262
		disable_runtime(cpu_rq(cpu));
L
Linus Torvalds 已提交
8263 8264 8265
		return NOTIFY_OK;

	case CPU_DOWN_FAILED:
8266
	case CPU_DOWN_FAILED_FROZEN:
L
Linus Torvalds 已提交
8267
	case CPU_ONLINE:
8268
	case CPU_ONLINE_FROZEN:
P
Peter Zijlstra 已提交
8269
		enable_runtime(cpu_rq(cpu));
8270 8271
		return NOTIFY_OK;

L
Linus Torvalds 已提交
8272 8273 8274 8275 8276 8277 8278
	default:
		return NOTIFY_DONE;
	}
}

void __init sched_init_smp(void)
{
8279 8280 8281
	cpumask_var_t non_isolated_cpus;

	alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
8282

8283 8284 8285 8286 8287
#if defined(CONFIG_NUMA)
	sched_group_nodes_bycpu = kzalloc(nr_cpu_ids * sizeof(void **),
								GFP_KERNEL);
	BUG_ON(sched_group_nodes_bycpu == NULL);
#endif
8288
	get_online_cpus();
8289
	mutex_lock(&sched_domains_mutex);
8290 8291 8292 8293
	arch_init_sched_domains(cpu_online_mask);
	cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
	if (cpumask_empty(non_isolated_cpus))
		cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
8294
	mutex_unlock(&sched_domains_mutex);
8295
	put_online_cpus();
8296 8297

#ifndef CONFIG_CPUSETS
L
Linus Torvalds 已提交
8298 8299
	/* XXX: Theoretical race here - CPU may be hotplugged now */
	hotcpu_notifier(update_sched_domains, 0);
8300 8301 8302 8303 8304
#endif

	/* RT runtime code needs to handle some hotplug events */
	hotcpu_notifier(update_runtime, 0);

8305
	init_hrtick();
8306 8307

	/* Move init over to a non-isolated CPU */
8308
	if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
8309
		BUG();
I
Ingo Molnar 已提交
8310
	sched_init_granularity();
8311
	free_cpumask_var(non_isolated_cpus);
8312 8313

	alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
8314
	init_sched_rt_class();
L
Linus Torvalds 已提交
8315 8316 8317 8318
}
#else
void __init sched_init_smp(void)
{
I
Ingo Molnar 已提交
8319
	sched_init_granularity();
L
Linus Torvalds 已提交
8320 8321 8322 8323 8324 8325 8326 8327 8328 8329
}
#endif /* CONFIG_SMP */

int in_sched_functions(unsigned long addr)
{
	return in_lock_functions(addr) ||
		(addr >= (unsigned long)__sched_text_start
		&& addr < (unsigned long)__sched_text_end);
}

A
Alexey Dobriyan 已提交
8330
static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
I
Ingo Molnar 已提交
8331 8332
{
	cfs_rq->tasks_timeline = RB_ROOT;
8333
	INIT_LIST_HEAD(&cfs_rq->tasks);
I
Ingo Molnar 已提交
8334 8335 8336
#ifdef CONFIG_FAIR_GROUP_SCHED
	cfs_rq->rq = rq;
#endif
P
Peter Zijlstra 已提交
8337
	cfs_rq->min_vruntime = (u64)(-(1LL << 20));
I
Ingo Molnar 已提交
8338 8339
}

P
Peter Zijlstra 已提交
8340 8341 8342 8343 8344 8345 8346 8347 8348 8349 8350 8351 8352
static void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
{
	struct rt_prio_array *array;
	int i;

	array = &rt_rq->active;
	for (i = 0; i < MAX_RT_PRIO; i++) {
		INIT_LIST_HEAD(array->queue + i);
		__clear_bit(i, array->bitmap);
	}
	/* delimiter for bitsearch: */
	__set_bit(MAX_RT_PRIO, array->bitmap);

8353
#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
8354
	rt_rq->highest_prio.curr = MAX_RT_PRIO;
8355
#ifdef CONFIG_SMP
8356
	rt_rq->highest_prio.next = MAX_RT_PRIO;
P
Peter Zijlstra 已提交
8357 8358
#endif
#endif
P
Peter Zijlstra 已提交
8359 8360 8361
#ifdef CONFIG_SMP
	rt_rq->rt_nr_migratory = 0;
	rt_rq->overloaded = 0;
8362
	plist_head_init(&rq->rt.pushable_tasks, &rq->lock);
P
Peter Zijlstra 已提交
8363 8364 8365 8366
#endif

	rt_rq->rt_time = 0;
	rt_rq->rt_throttled = 0;
P
Peter Zijlstra 已提交
8367 8368
	rt_rq->rt_runtime = 0;
	spin_lock_init(&rt_rq->rt_runtime_lock);
P
Peter Zijlstra 已提交
8369

8370
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
8371
	rt_rq->rt_nr_boosted = 0;
P
Peter Zijlstra 已提交
8372 8373
	rt_rq->rq = rq;
#endif
P
Peter Zijlstra 已提交
8374 8375
}

P
Peter Zijlstra 已提交
8376
#ifdef CONFIG_FAIR_GROUP_SCHED
8377 8378 8379
static void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
				struct sched_entity *se, int cpu, int add,
				struct sched_entity *parent)
P
Peter Zijlstra 已提交
8380
{
8381
	struct rq *rq = cpu_rq(cpu);
P
Peter Zijlstra 已提交
8382 8383 8384 8385 8386 8387 8388
	tg->cfs_rq[cpu] = cfs_rq;
	init_cfs_rq(cfs_rq, rq);
	cfs_rq->tg = tg;
	if (add)
		list_add(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);

	tg->se[cpu] = se;
D
Dhaval Giani 已提交
8389 8390 8391 8392
	/* se could be NULL for init_task_group */
	if (!se)
		return;

8393 8394 8395 8396 8397
	if (!parent)
		se->cfs_rq = &rq->cfs;
	else
		se->cfs_rq = parent->my_q;

P
Peter Zijlstra 已提交
8398 8399
	se->my_q = cfs_rq;
	se->load.weight = tg->shares;
8400
	se->load.inv_weight = 0;
8401
	se->parent = parent;
P
Peter Zijlstra 已提交
8402
}
8403
#endif
P
Peter Zijlstra 已提交
8404

8405
#ifdef CONFIG_RT_GROUP_SCHED
8406 8407 8408
static void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
		struct sched_rt_entity *rt_se, int cpu, int add,
		struct sched_rt_entity *parent)
P
Peter Zijlstra 已提交
8409
{
8410 8411
	struct rq *rq = cpu_rq(cpu);

P
Peter Zijlstra 已提交
8412 8413 8414 8415
	tg->rt_rq[cpu] = rt_rq;
	init_rt_rq(rt_rq, rq);
	rt_rq->tg = tg;
	rt_rq->rt_se = rt_se;
P
Peter Zijlstra 已提交
8416
	rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
P
Peter Zijlstra 已提交
8417 8418 8419 8420
	if (add)
		list_add(&rt_rq->leaf_rt_rq_list, &rq->leaf_rt_rq_list);

	tg->rt_se[cpu] = rt_se;
D
Dhaval Giani 已提交
8421 8422 8423
	if (!rt_se)
		return;

8424 8425 8426 8427 8428
	if (!parent)
		rt_se->rt_rq = &rq->rt;
	else
		rt_se->rt_rq = parent->my_q;

P
Peter Zijlstra 已提交
8429
	rt_se->my_q = rt_rq;
8430
	rt_se->parent = parent;
P
Peter Zijlstra 已提交
8431 8432 8433 8434
	INIT_LIST_HEAD(&rt_se->run_list);
}
#endif

L
Linus Torvalds 已提交
8435 8436
void __init sched_init(void)
{
I
Ingo Molnar 已提交
8437
	int i, j;
8438 8439 8440 8441 8442 8443 8444
	unsigned long alloc_size = 0, ptr;

#ifdef CONFIG_FAIR_GROUP_SCHED
	alloc_size += 2 * nr_cpu_ids * sizeof(void **);
#endif
#ifdef CONFIG_RT_GROUP_SCHED
	alloc_size += 2 * nr_cpu_ids * sizeof(void **);
8445 8446 8447
#endif
#ifdef CONFIG_USER_SCHED
	alloc_size *= 2;
8448 8449 8450 8451 8452 8453
#endif
	/*
	 * As sched_init() is called before page_alloc is setup,
	 * we use alloc_bootmem().
	 */
	if (alloc_size) {
8454
		ptr = (unsigned long)alloc_bootmem(alloc_size);
8455 8456 8457 8458 8459 8460 8461

#ifdef CONFIG_FAIR_GROUP_SCHED
		init_task_group.se = (struct sched_entity **)ptr;
		ptr += nr_cpu_ids * sizeof(void **);

		init_task_group.cfs_rq = (struct cfs_rq **)ptr;
		ptr += nr_cpu_ids * sizeof(void **);
8462 8463 8464 8465 8466 8467 8468

#ifdef CONFIG_USER_SCHED
		root_task_group.se = (struct sched_entity **)ptr;
		ptr += nr_cpu_ids * sizeof(void **);

		root_task_group.cfs_rq = (struct cfs_rq **)ptr;
		ptr += nr_cpu_ids * sizeof(void **);
8469 8470
#endif /* CONFIG_USER_SCHED */
#endif /* CONFIG_FAIR_GROUP_SCHED */
8471 8472 8473 8474 8475
#ifdef CONFIG_RT_GROUP_SCHED
		init_task_group.rt_se = (struct sched_rt_entity **)ptr;
		ptr += nr_cpu_ids * sizeof(void **);

		init_task_group.rt_rq = (struct rt_rq **)ptr;
8476 8477 8478 8479 8480 8481 8482 8483
		ptr += nr_cpu_ids * sizeof(void **);

#ifdef CONFIG_USER_SCHED
		root_task_group.rt_se = (struct sched_rt_entity **)ptr;
		ptr += nr_cpu_ids * sizeof(void **);

		root_task_group.rt_rq = (struct rt_rq **)ptr;
		ptr += nr_cpu_ids * sizeof(void **);
8484 8485
#endif /* CONFIG_USER_SCHED */
#endif /* CONFIG_RT_GROUP_SCHED */
8486
	}
I
Ingo Molnar 已提交
8487

G
Gregory Haskins 已提交
8488 8489 8490 8491
#ifdef CONFIG_SMP
	init_defrootdomain();
#endif

8492 8493 8494 8495 8496 8497
	init_rt_bandwidth(&def_rt_bandwidth,
			global_rt_period(), global_rt_runtime());

#ifdef CONFIG_RT_GROUP_SCHED
	init_rt_bandwidth(&init_task_group.rt_bandwidth,
			global_rt_period(), global_rt_runtime());
8498 8499 8500
#ifdef CONFIG_USER_SCHED
	init_rt_bandwidth(&root_task_group.rt_bandwidth,
			global_rt_period(), RUNTIME_INF);
8501 8502
#endif /* CONFIG_USER_SCHED */
#endif /* CONFIG_RT_GROUP_SCHED */
8503

8504
#ifdef CONFIG_GROUP_SCHED
P
Peter Zijlstra 已提交
8505
	list_add(&init_task_group.list, &task_groups);
P
Peter Zijlstra 已提交
8506 8507 8508 8509 8510 8511
	INIT_LIST_HEAD(&init_task_group.children);

#ifdef CONFIG_USER_SCHED
	INIT_LIST_HEAD(&root_task_group.children);
	init_task_group.parent = &root_task_group;
	list_add(&init_task_group.siblings, &root_task_group.children);
8512 8513
#endif /* CONFIG_USER_SCHED */
#endif /* CONFIG_GROUP_SCHED */
P
Peter Zijlstra 已提交
8514

8515
	for_each_possible_cpu(i) {
8516
		struct rq *rq;
L
Linus Torvalds 已提交
8517 8518 8519

		rq = cpu_rq(i);
		spin_lock_init(&rq->lock);
N
Nick Piggin 已提交
8520
		rq->nr_running = 0;
I
Ingo Molnar 已提交
8521
		init_cfs_rq(&rq->cfs, rq);
P
Peter Zijlstra 已提交
8522
		init_rt_rq(&rq->rt, rq);
I
Ingo Molnar 已提交
8523
#ifdef CONFIG_FAIR_GROUP_SCHED
8524
		init_task_group.shares = init_task_group_load;
P
Peter Zijlstra 已提交
8525
		INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
D
Dhaval Giani 已提交
8526 8527 8528 8529 8530 8531 8532 8533 8534 8535 8536 8537 8538 8539 8540 8541 8542 8543 8544 8545
#ifdef CONFIG_CGROUP_SCHED
		/*
		 * How much cpu bandwidth does init_task_group get?
		 *
		 * In case of task-groups formed thr' the cgroup filesystem, it
		 * gets 100% of the cpu resources in the system. This overall
		 * system cpu resource is divided among the tasks of
		 * init_task_group and its child task-groups in a fair manner,
		 * based on each entity's (task or task-group's) weight
		 * (se->load.weight).
		 *
		 * In other words, if init_task_group has 10 tasks of weight
		 * 1024) and two child groups A0 and A1 (of weight 1024 each),
		 * then A0's share of the cpu resource is:
		 *
		 * 	A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
		 *
		 * We achieve this by letting init_task_group's tasks sit
		 * directly in rq->cfs (i.e init_task_group->se[] = NULL).
		 */
8546
		init_tg_cfs_entry(&init_task_group, &rq->cfs, NULL, i, 1, NULL);
D
Dhaval Giani 已提交
8547
#elif defined CONFIG_USER_SCHED
8548 8549
		root_task_group.shares = NICE_0_LOAD;
		init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, 0, NULL);
D
Dhaval Giani 已提交
8550 8551 8552 8553 8554 8555 8556 8557 8558 8559 8560
		/*
		 * In case of task-groups formed thr' the user id of tasks,
		 * init_task_group represents tasks belonging to root user.
		 * Hence it forms a sibling of all subsequent groups formed.
		 * In this case, init_task_group gets only a fraction of overall
		 * system cpu resource, based on the weight assigned to root
		 * user's cpu share (INIT_TASK_GROUP_LOAD). This is accomplished
		 * by letting tasks of init_task_group sit in a separate cfs_rq
		 * (init_cfs_rq) and having one entity represent this group of
		 * tasks in rq->cfs (i.e init_task_group->se[] != NULL).
		 */
8561
		init_tg_cfs_entry(&init_task_group,
P
Peter Zijlstra 已提交
8562
				&per_cpu(init_cfs_rq, i),
8563 8564
				&per_cpu(init_sched_entity, i), i, 1,
				root_task_group.se[i]);
P
Peter Zijlstra 已提交
8565

8566
#endif
D
Dhaval Giani 已提交
8567 8568 8569
#endif /* CONFIG_FAIR_GROUP_SCHED */

		rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
8570
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
8571
		INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
D
Dhaval Giani 已提交
8572
#ifdef CONFIG_CGROUP_SCHED
8573
		init_tg_rt_entry(&init_task_group, &rq->rt, NULL, i, 1, NULL);
D
Dhaval Giani 已提交
8574
#elif defined CONFIG_USER_SCHED
8575
		init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, 0, NULL);
8576
		init_tg_rt_entry(&init_task_group,
P
Peter Zijlstra 已提交
8577
				&per_cpu(init_rt_rq, i),
8578 8579
				&per_cpu(init_sched_rt_entity, i), i, 1,
				root_task_group.rt_se[i]);
D
Dhaval Giani 已提交
8580
#endif
I
Ingo Molnar 已提交
8581
#endif
L
Linus Torvalds 已提交
8582

I
Ingo Molnar 已提交
8583 8584
		for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
			rq->cpu_load[j] = 0;
L
Linus Torvalds 已提交
8585
#ifdef CONFIG_SMP
N
Nick Piggin 已提交
8586
		rq->sd = NULL;
G
Gregory Haskins 已提交
8587
		rq->rd = NULL;
L
Linus Torvalds 已提交
8588
		rq->active_balance = 0;
I
Ingo Molnar 已提交
8589
		rq->next_balance = jiffies;
L
Linus Torvalds 已提交
8590
		rq->push_cpu = 0;
8591
		rq->cpu = i;
8592
		rq->online = 0;
L
Linus Torvalds 已提交
8593 8594
		rq->migration_thread = NULL;
		INIT_LIST_HEAD(&rq->migration_queue);
8595
		rq_attach_root(rq, &def_root_domain);
L
Linus Torvalds 已提交
8596
#endif
P
Peter Zijlstra 已提交
8597
		init_rq_hrtick(rq);
L
Linus Torvalds 已提交
8598 8599 8600
		atomic_set(&rq->nr_iowait, 0);
	}

8601
	set_load_weight(&init_task);
8602

8603 8604 8605 8606
#ifdef CONFIG_PREEMPT_NOTIFIERS
	INIT_HLIST_HEAD(&init_task.preempt_notifiers);
#endif

8607
#ifdef CONFIG_SMP
8608
	open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
8609 8610
#endif

8611 8612 8613 8614
#ifdef CONFIG_RT_MUTEXES
	plist_head_init(&init_task.pi_waiters, &init_task.pi_lock);
#endif

L
Linus Torvalds 已提交
8615 8616 8617 8618 8619 8620 8621 8622 8623 8624 8625 8626 8627
	/*
	 * The boot idle thread does lazy MMU switching as well:
	 */
	atomic_inc(&init_mm.mm_count);
	enter_lazy_tlb(&init_mm, current);

	/*
	 * Make us the idle thread. Technically, schedule() should not be
	 * called from this thread, however somewhere below it might be,
	 * but because we are the idle thread, we just pick up running again
	 * when this runqueue becomes "idle".
	 */
	init_idle(current, smp_processor_id());
I
Ingo Molnar 已提交
8628 8629 8630 8631
	/*
	 * During early bootup we pretend to be a normal task:
	 */
	current->sched_class = &fair_sched_class;
8632

8633 8634
	/* Allocate the nohz_cpu_mask if CONFIG_CPUMASK_OFFSTACK */
	alloc_bootmem_cpumask_var(&nohz_cpu_mask);
8635
#ifdef CONFIG_SMP
8636 8637 8638
#ifdef CONFIG_NO_HZ
	alloc_bootmem_cpumask_var(&nohz.cpu_mask);
#endif
8639
	alloc_bootmem_cpumask_var(&cpu_isolated_map);
8640
#endif /* SMP */
8641

8642
	scheduler_running = 1;
L
Linus Torvalds 已提交
8643 8644 8645 8646 8647
}

#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
void __might_sleep(char *file, int line)
{
8648
#ifdef in_atomic
L
Linus Torvalds 已提交
8649 8650
	static unsigned long prev_jiffy;	/* ratelimiting */

I
Ingo Molnar 已提交
8651 8652 8653 8654 8655 8656 8657 8658 8659 8660 8661 8662 8663 8664 8665 8666 8667 8668 8669
	if ((!in_atomic() && !irqs_disabled()) ||
		    system_state != SYSTEM_RUNNING || oops_in_progress)
		return;
	if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
		return;
	prev_jiffy = jiffies;

	printk(KERN_ERR
		"BUG: sleeping function called from invalid context at %s:%d\n",
			file, line);
	printk(KERN_ERR
		"in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
			in_atomic(), irqs_disabled(),
			current->pid, current->comm);

	debug_show_held_locks(current);
	if (irqs_disabled())
		print_irqtrace_events(current);
	dump_stack();
L
Linus Torvalds 已提交
8670 8671 8672 8673 8674 8675
#endif
}
EXPORT_SYMBOL(__might_sleep);
#endif

#ifdef CONFIG_MAGIC_SYSRQ
8676 8677 8678
static void normalize_task(struct rq *rq, struct task_struct *p)
{
	int on_rq;
8679

8680 8681 8682 8683 8684 8685 8686 8687 8688 8689 8690
	update_rq_clock(rq);
	on_rq = p->se.on_rq;
	if (on_rq)
		deactivate_task(rq, p, 0);
	__setscheduler(rq, p, SCHED_NORMAL, 0);
	if (on_rq) {
		activate_task(rq, p, 0);
		resched_task(rq->curr);
	}
}

L
Linus Torvalds 已提交
8691 8692
void normalize_rt_tasks(void)
{
8693
	struct task_struct *g, *p;
L
Linus Torvalds 已提交
8694
	unsigned long flags;
8695
	struct rq *rq;
L
Linus Torvalds 已提交
8696

8697
	read_lock_irqsave(&tasklist_lock, flags);
8698
	do_each_thread(g, p) {
8699 8700 8701 8702 8703 8704
		/*
		 * Only normalize user tasks:
		 */
		if (!p->mm)
			continue;

I
Ingo Molnar 已提交
8705 8706
		p->se.exec_start		= 0;
#ifdef CONFIG_SCHEDSTATS
I
Ingo Molnar 已提交
8707 8708 8709
		p->se.wait_start		= 0;
		p->se.sleep_start		= 0;
		p->se.block_start		= 0;
I
Ingo Molnar 已提交
8710
#endif
I
Ingo Molnar 已提交
8711 8712 8713 8714 8715 8716 8717 8718

		if (!rt_task(p)) {
			/*
			 * Renice negative nice level userspace
			 * tasks back to 0:
			 */
			if (TASK_NICE(p) < 0 && p->mm)
				set_user_nice(p, 0);
L
Linus Torvalds 已提交
8719
			continue;
I
Ingo Molnar 已提交
8720
		}
L
Linus Torvalds 已提交
8721

8722
		spin_lock(&p->pi_lock);
8723
		rq = __task_rq_lock(p);
L
Linus Torvalds 已提交
8724

8725
		normalize_task(rq, p);
8726

8727
		__task_rq_unlock(rq);
8728
		spin_unlock(&p->pi_lock);
8729 8730
	} while_each_thread(g, p);

8731
	read_unlock_irqrestore(&tasklist_lock, flags);
L
Linus Torvalds 已提交
8732 8733 8734
}

#endif /* CONFIG_MAGIC_SYSRQ */
8735 8736 8737 8738 8739 8740 8741 8742 8743 8744 8745 8746 8747 8748 8749 8750 8751 8752

#ifdef CONFIG_IA64
/*
 * These functions are only useful for the IA64 MCA handling.
 *
 * They can only be called when the whole system has been
 * stopped - every CPU needs to be quiescent, and no scheduling
 * activity can take place. Using them for anything else would
 * be a serious bug, and as a result, they aren't even visible
 * under any other configuration.
 */

/**
 * curr_task - return the current task for a given cpu.
 * @cpu: the processor in question.
 *
 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
 */
8753
struct task_struct *curr_task(int cpu)
8754 8755 8756 8757 8758 8759 8760 8761 8762 8763
{
	return cpu_curr(cpu);
}

/**
 * set_curr_task - set the current task for a given cpu.
 * @cpu: the processor in question.
 * @p: the task pointer to set.
 *
 * Description: This function must only be used when non-maskable interrupts
I
Ingo Molnar 已提交
8764 8765
 * are serviced on a separate stack. It allows the architecture to switch the
 * notion of the current task on a cpu in a non-blocking manner. This function
8766 8767 8768 8769 8770 8771 8772
 * must be called with all CPU's synchronized, and interrupts disabled, the
 * and caller must save the original value of the current task (see
 * curr_task() above) and restore that value before reenabling interrupts and
 * re-starting the system.
 *
 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
 */
8773
void set_curr_task(int cpu, struct task_struct *p)
8774 8775 8776 8777 8778
{
	cpu_curr(cpu) = p;
}

#endif
S
Srivatsa Vaddagiri 已提交
8779

8780 8781
#ifdef CONFIG_FAIR_GROUP_SCHED
static void free_fair_sched_group(struct task_group *tg)
P
Peter Zijlstra 已提交
8782 8783 8784 8785 8786 8787 8788 8789 8790 8791 8792 8793 8794 8795
{
	int i;

	for_each_possible_cpu(i) {
		if (tg->cfs_rq)
			kfree(tg->cfs_rq[i]);
		if (tg->se)
			kfree(tg->se[i]);
	}

	kfree(tg->cfs_rq);
	kfree(tg->se);
}

8796 8797
static
int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
S
Srivatsa Vaddagiri 已提交
8798 8799
{
	struct cfs_rq *cfs_rq;
8800
	struct sched_entity *se;
8801
	struct rq *rq;
S
Srivatsa Vaddagiri 已提交
8802 8803
	int i;

8804
	tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
S
Srivatsa Vaddagiri 已提交
8805 8806
	if (!tg->cfs_rq)
		goto err;
8807
	tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
S
Srivatsa Vaddagiri 已提交
8808 8809
	if (!tg->se)
		goto err;
8810 8811

	tg->shares = NICE_0_LOAD;
S
Srivatsa Vaddagiri 已提交
8812 8813

	for_each_possible_cpu(i) {
8814
		rq = cpu_rq(i);
S
Srivatsa Vaddagiri 已提交
8815

8816 8817
		cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
				      GFP_KERNEL, cpu_to_node(i));
S
Srivatsa Vaddagiri 已提交
8818 8819 8820
		if (!cfs_rq)
			goto err;

8821 8822
		se = kzalloc_node(sizeof(struct sched_entity),
				  GFP_KERNEL, cpu_to_node(i));
S
Srivatsa Vaddagiri 已提交
8823 8824 8825
		if (!se)
			goto err;

8826
		init_tg_cfs_entry(tg, cfs_rq, se, i, 0, parent->se[i]);
8827 8828 8829 8830 8831 8832 8833 8834 8835 8836 8837 8838 8839 8840 8841 8842 8843 8844
	}

	return 1;

 err:
	return 0;
}

static inline void register_fair_sched_group(struct task_group *tg, int cpu)
{
	list_add_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list,
			&cpu_rq(cpu)->leaf_cfs_rq_list);
}

static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
{
	list_del_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list);
}
8845
#else /* !CONFG_FAIR_GROUP_SCHED */
8846 8847 8848 8849
static inline void free_fair_sched_group(struct task_group *tg)
{
}

8850 8851
static inline
int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
8852 8853 8854 8855 8856 8857 8858 8859 8860 8861 8862
{
	return 1;
}

static inline void register_fair_sched_group(struct task_group *tg, int cpu)
{
}

static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
{
}
8863
#endif /* CONFIG_FAIR_GROUP_SCHED */
8864 8865

#ifdef CONFIG_RT_GROUP_SCHED
8866 8867 8868 8869
static void free_rt_sched_group(struct task_group *tg)
{
	int i;

8870 8871
	destroy_rt_bandwidth(&tg->rt_bandwidth);

8872 8873 8874 8875 8876 8877 8878 8879 8880 8881 8882
	for_each_possible_cpu(i) {
		if (tg->rt_rq)
			kfree(tg->rt_rq[i]);
		if (tg->rt_se)
			kfree(tg->rt_se[i]);
	}

	kfree(tg->rt_rq);
	kfree(tg->rt_se);
}

8883 8884
static
int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
8885 8886
{
	struct rt_rq *rt_rq;
8887
	struct sched_rt_entity *rt_se;
8888 8889 8890
	struct rq *rq;
	int i;

8891
	tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
8892 8893
	if (!tg->rt_rq)
		goto err;
8894
	tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
8895 8896 8897
	if (!tg->rt_se)
		goto err;

8898 8899
	init_rt_bandwidth(&tg->rt_bandwidth,
			ktime_to_ns(def_rt_bandwidth.rt_period), 0);
8900 8901 8902 8903

	for_each_possible_cpu(i) {
		rq = cpu_rq(i);

8904 8905
		rt_rq = kzalloc_node(sizeof(struct rt_rq),
				     GFP_KERNEL, cpu_to_node(i));
P
Peter Zijlstra 已提交
8906 8907
		if (!rt_rq)
			goto err;
S
Srivatsa Vaddagiri 已提交
8908

8909 8910
		rt_se = kzalloc_node(sizeof(struct sched_rt_entity),
				     GFP_KERNEL, cpu_to_node(i));
P
Peter Zijlstra 已提交
8911 8912
		if (!rt_se)
			goto err;
S
Srivatsa Vaddagiri 已提交
8913

8914
		init_tg_rt_entry(tg, rt_rq, rt_se, i, 0, parent->rt_se[i]);
S
Srivatsa Vaddagiri 已提交
8915 8916
	}

8917 8918 8919 8920 8921 8922 8923 8924 8925 8926 8927 8928 8929 8930 8931 8932
	return 1;

 err:
	return 0;
}

static inline void register_rt_sched_group(struct task_group *tg, int cpu)
{
	list_add_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list,
			&cpu_rq(cpu)->leaf_rt_rq_list);
}

static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
{
	list_del_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list);
}
8933
#else /* !CONFIG_RT_GROUP_SCHED */
8934 8935 8936 8937
static inline void free_rt_sched_group(struct task_group *tg)
{
}

8938 8939
static inline
int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
8940 8941 8942 8943 8944 8945 8946 8947 8948 8949 8950
{
	return 1;
}

static inline void register_rt_sched_group(struct task_group *tg, int cpu)
{
}

static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
{
}
8951
#endif /* CONFIG_RT_GROUP_SCHED */
8952

8953
#ifdef CONFIG_GROUP_SCHED
8954 8955 8956 8957 8958 8959 8960 8961
static void free_sched_group(struct task_group *tg)
{
	free_fair_sched_group(tg);
	free_rt_sched_group(tg);
	kfree(tg);
}

/* allocate runqueue etc for a new task group */
8962
struct task_group *sched_create_group(struct task_group *parent)
8963 8964 8965 8966 8967 8968 8969 8970 8971
{
	struct task_group *tg;
	unsigned long flags;
	int i;

	tg = kzalloc(sizeof(*tg), GFP_KERNEL);
	if (!tg)
		return ERR_PTR(-ENOMEM);

8972
	if (!alloc_fair_sched_group(tg, parent))
8973 8974
		goto err;

8975
	if (!alloc_rt_sched_group(tg, parent))
8976 8977
		goto err;

8978
	spin_lock_irqsave(&task_group_lock, flags);
8979
	for_each_possible_cpu(i) {
8980 8981
		register_fair_sched_group(tg, i);
		register_rt_sched_group(tg, i);
8982
	}
P
Peter Zijlstra 已提交
8983
	list_add_rcu(&tg->list, &task_groups);
P
Peter Zijlstra 已提交
8984 8985 8986 8987 8988

	WARN_ON(!parent); /* root should already exist */

	tg->parent = parent;
	INIT_LIST_HEAD(&tg->children);
8989
	list_add_rcu(&tg->siblings, &parent->children);
8990
	spin_unlock_irqrestore(&task_group_lock, flags);
S
Srivatsa Vaddagiri 已提交
8991

8992
	return tg;
S
Srivatsa Vaddagiri 已提交
8993 8994

err:
P
Peter Zijlstra 已提交
8995
	free_sched_group(tg);
S
Srivatsa Vaddagiri 已提交
8996 8997 8998
	return ERR_PTR(-ENOMEM);
}

8999
/* rcu callback to free various structures associated with a task group */
P
Peter Zijlstra 已提交
9000
static void free_sched_group_rcu(struct rcu_head *rhp)
S
Srivatsa Vaddagiri 已提交
9001 9002
{
	/* now it should be safe to free those cfs_rqs */
P
Peter Zijlstra 已提交
9003
	free_sched_group(container_of(rhp, struct task_group, rcu));
S
Srivatsa Vaddagiri 已提交
9004 9005
}

9006
/* Destroy runqueue etc associated with a task group */
9007
void sched_destroy_group(struct task_group *tg)
S
Srivatsa Vaddagiri 已提交
9008
{
9009
	unsigned long flags;
9010
	int i;
S
Srivatsa Vaddagiri 已提交
9011

9012
	spin_lock_irqsave(&task_group_lock, flags);
9013
	for_each_possible_cpu(i) {
9014 9015
		unregister_fair_sched_group(tg, i);
		unregister_rt_sched_group(tg, i);
9016
	}
P
Peter Zijlstra 已提交
9017
	list_del_rcu(&tg->list);
P
Peter Zijlstra 已提交
9018
	list_del_rcu(&tg->siblings);
9019
	spin_unlock_irqrestore(&task_group_lock, flags);
9020 9021

	/* wait for possible concurrent references to cfs_rqs complete */
P
Peter Zijlstra 已提交
9022
	call_rcu(&tg->rcu, free_sched_group_rcu);
S
Srivatsa Vaddagiri 已提交
9023 9024
}

9025
/* change task's runqueue when it moves between groups.
I
Ingo Molnar 已提交
9026 9027 9028
 *	The caller of this function should have put the task in its new group
 *	by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
 *	reflect its new group.
9029 9030
 */
void sched_move_task(struct task_struct *tsk)
S
Srivatsa Vaddagiri 已提交
9031 9032 9033 9034 9035 9036 9037 9038 9039
{
	int on_rq, running;
	unsigned long flags;
	struct rq *rq;

	rq = task_rq_lock(tsk, &flags);

	update_rq_clock(rq);

9040
	running = task_current(rq, tsk);
S
Srivatsa Vaddagiri 已提交
9041 9042
	on_rq = tsk->se.on_rq;

9043
	if (on_rq)
S
Srivatsa Vaddagiri 已提交
9044
		dequeue_task(rq, tsk, 0);
9045 9046
	if (unlikely(running))
		tsk->sched_class->put_prev_task(rq, tsk);
S
Srivatsa Vaddagiri 已提交
9047

P
Peter Zijlstra 已提交
9048
	set_task_rq(tsk, task_cpu(tsk));
S
Srivatsa Vaddagiri 已提交
9049

P
Peter Zijlstra 已提交
9050 9051 9052 9053 9054
#ifdef CONFIG_FAIR_GROUP_SCHED
	if (tsk->sched_class->moved_group)
		tsk->sched_class->moved_group(tsk);
#endif

9055 9056 9057
	if (unlikely(running))
		tsk->sched_class->set_curr_task(rq);
	if (on_rq)
9058
		enqueue_task(rq, tsk, 0);
S
Srivatsa Vaddagiri 已提交
9059 9060 9061

	task_rq_unlock(rq, &flags);
}
9062
#endif /* CONFIG_GROUP_SCHED */
S
Srivatsa Vaddagiri 已提交
9063

9064
#ifdef CONFIG_FAIR_GROUP_SCHED
9065
static void __set_se_shares(struct sched_entity *se, unsigned long shares)
S
Srivatsa Vaddagiri 已提交
9066 9067 9068 9069 9070
{
	struct cfs_rq *cfs_rq = se->cfs_rq;
	int on_rq;

	on_rq = se->on_rq;
9071
	if (on_rq)
S
Srivatsa Vaddagiri 已提交
9072 9073 9074
		dequeue_entity(cfs_rq, se, 0);

	se->load.weight = shares;
9075
	se->load.inv_weight = 0;
S
Srivatsa Vaddagiri 已提交
9076

9077
	if (on_rq)
S
Srivatsa Vaddagiri 已提交
9078
		enqueue_entity(cfs_rq, se, 0);
9079
}
9080

9081 9082 9083 9084 9085 9086 9087 9088 9089
static void set_se_shares(struct sched_entity *se, unsigned long shares)
{
	struct cfs_rq *cfs_rq = se->cfs_rq;
	struct rq *rq = cfs_rq->rq;
	unsigned long flags;

	spin_lock_irqsave(&rq->lock, flags);
	__set_se_shares(se, shares);
	spin_unlock_irqrestore(&rq->lock, flags);
S
Srivatsa Vaddagiri 已提交
9090 9091
}

9092 9093
static DEFINE_MUTEX(shares_mutex);

9094
int sched_group_set_shares(struct task_group *tg, unsigned long shares)
S
Srivatsa Vaddagiri 已提交
9095 9096
{
	int i;
9097
	unsigned long flags;
9098

9099 9100 9101 9102 9103 9104
	/*
	 * We can't change the weight of the root cgroup.
	 */
	if (!tg->se[0])
		return -EINVAL;

9105 9106
	if (shares < MIN_SHARES)
		shares = MIN_SHARES;
9107 9108
	else if (shares > MAX_SHARES)
		shares = MAX_SHARES;
9109

9110
	mutex_lock(&shares_mutex);
9111
	if (tg->shares == shares)
9112
		goto done;
S
Srivatsa Vaddagiri 已提交
9113

9114
	spin_lock_irqsave(&task_group_lock, flags);
9115 9116
	for_each_possible_cpu(i)
		unregister_fair_sched_group(tg, i);
P
Peter Zijlstra 已提交
9117
	list_del_rcu(&tg->siblings);
9118
	spin_unlock_irqrestore(&task_group_lock, flags);
9119 9120 9121 9122 9123 9124 9125 9126

	/* wait for any ongoing reference to this group to finish */
	synchronize_sched();

	/*
	 * Now we are free to modify the group's share on each cpu
	 * w/o tripping rebalance_share or load_balance_fair.
	 */
9127
	tg->shares = shares;
9128 9129 9130 9131 9132
	for_each_possible_cpu(i) {
		/*
		 * force a rebalance
		 */
		cfs_rq_set_shares(tg->cfs_rq[i], 0);
9133
		set_se_shares(tg->se[i], shares);
9134
	}
S
Srivatsa Vaddagiri 已提交
9135

9136 9137 9138 9139
	/*
	 * Enable load balance activity on this group, by inserting it back on
	 * each cpu's rq->leaf_cfs_rq_list.
	 */
9140
	spin_lock_irqsave(&task_group_lock, flags);
9141 9142
	for_each_possible_cpu(i)
		register_fair_sched_group(tg, i);
P
Peter Zijlstra 已提交
9143
	list_add_rcu(&tg->siblings, &tg->parent->children);
9144
	spin_unlock_irqrestore(&task_group_lock, flags);
9145
done:
9146
	mutex_unlock(&shares_mutex);
9147
	return 0;
S
Srivatsa Vaddagiri 已提交
9148 9149
}

9150 9151 9152 9153
unsigned long sched_group_shares(struct task_group *tg)
{
	return tg->shares;
}
9154
#endif
9155

9156
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
9157
/*
P
Peter Zijlstra 已提交
9158
 * Ensure that the real time constraints are schedulable.
P
Peter Zijlstra 已提交
9159
 */
P
Peter Zijlstra 已提交
9160 9161 9162 9163 9164
static DEFINE_MUTEX(rt_constraints_mutex);

static unsigned long to_ratio(u64 period, u64 runtime)
{
	if (runtime == RUNTIME_INF)
P
Peter Zijlstra 已提交
9165
		return 1ULL << 20;
P
Peter Zijlstra 已提交
9166

P
Peter Zijlstra 已提交
9167
	return div64_u64(runtime << 20, period);
P
Peter Zijlstra 已提交
9168 9169
}

P
Peter Zijlstra 已提交
9170 9171
/* Must be called with tasklist_lock held */
static inline int tg_has_rt_tasks(struct task_group *tg)
9172
{
P
Peter Zijlstra 已提交
9173
	struct task_struct *g, *p;
9174

P
Peter Zijlstra 已提交
9175 9176 9177 9178
	do_each_thread(g, p) {
		if (rt_task(p) && rt_rq_of_se(&p->rt)->tg == tg)
			return 1;
	} while_each_thread(g, p);
9179

P
Peter Zijlstra 已提交
9180 9181
	return 0;
}
9182

P
Peter Zijlstra 已提交
9183 9184 9185 9186 9187
struct rt_schedulable_data {
	struct task_group *tg;
	u64 rt_period;
	u64 rt_runtime;
};
9188

P
Peter Zijlstra 已提交
9189 9190 9191 9192 9193 9194
static int tg_schedulable(struct task_group *tg, void *data)
{
	struct rt_schedulable_data *d = data;
	struct task_group *child;
	unsigned long total, sum = 0;
	u64 period, runtime;
9195

P
Peter Zijlstra 已提交
9196 9197
	period = ktime_to_ns(tg->rt_bandwidth.rt_period);
	runtime = tg->rt_bandwidth.rt_runtime;
9198

P
Peter Zijlstra 已提交
9199 9200 9201
	if (tg == d->tg) {
		period = d->rt_period;
		runtime = d->rt_runtime;
9202 9203
	}

9204 9205 9206 9207 9208 9209 9210
#ifdef CONFIG_USER_SCHED
	if (tg == &root_task_group) {
		period = global_rt_period();
		runtime = global_rt_runtime();
	}
#endif

9211 9212 9213 9214 9215
	/*
	 * Cannot have more runtime than the period.
	 */
	if (runtime > period && runtime != RUNTIME_INF)
		return -EINVAL;
P
Peter Zijlstra 已提交
9216

9217 9218 9219
	/*
	 * Ensure we don't starve existing RT tasks.
	 */
P
Peter Zijlstra 已提交
9220 9221
	if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
		return -EBUSY;
P
Peter Zijlstra 已提交
9222

P
Peter Zijlstra 已提交
9223
	total = to_ratio(period, runtime);
P
Peter Zijlstra 已提交
9224

9225 9226 9227 9228 9229
	/*
	 * Nobody can have more than the global setting allows.
	 */
	if (total > to_ratio(global_rt_period(), global_rt_runtime()))
		return -EINVAL;
P
Peter Zijlstra 已提交
9230

9231 9232 9233
	/*
	 * The sum of our children's runtime should not exceed our own.
	 */
P
Peter Zijlstra 已提交
9234 9235 9236
	list_for_each_entry_rcu(child, &tg->children, siblings) {
		period = ktime_to_ns(child->rt_bandwidth.rt_period);
		runtime = child->rt_bandwidth.rt_runtime;
P
Peter Zijlstra 已提交
9237

P
Peter Zijlstra 已提交
9238 9239 9240 9241
		if (child == d->tg) {
			period = d->rt_period;
			runtime = d->rt_runtime;
		}
P
Peter Zijlstra 已提交
9242

P
Peter Zijlstra 已提交
9243
		sum += to_ratio(period, runtime);
P
Peter Zijlstra 已提交
9244
	}
P
Peter Zijlstra 已提交
9245

P
Peter Zijlstra 已提交
9246 9247 9248 9249
	if (sum > total)
		return -EINVAL;

	return 0;
P
Peter Zijlstra 已提交
9250 9251
}

P
Peter Zijlstra 已提交
9252
static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
9253
{
P
Peter Zijlstra 已提交
9254 9255 9256 9257 9258 9259 9260
	struct rt_schedulable_data data = {
		.tg = tg,
		.rt_period = period,
		.rt_runtime = runtime,
	};

	return walk_tg_tree(tg_schedulable, tg_nop, &data);
9261 9262
}

9263 9264
static int tg_set_bandwidth(struct task_group *tg,
		u64 rt_period, u64 rt_runtime)
P
Peter Zijlstra 已提交
9265
{
P
Peter Zijlstra 已提交
9266
	int i, err = 0;
P
Peter Zijlstra 已提交
9267 9268

	mutex_lock(&rt_constraints_mutex);
9269
	read_lock(&tasklist_lock);
P
Peter Zijlstra 已提交
9270 9271
	err = __rt_schedulable(tg, rt_period, rt_runtime);
	if (err)
P
Peter Zijlstra 已提交
9272
		goto unlock;
P
Peter Zijlstra 已提交
9273 9274

	spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
9275 9276
	tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
	tg->rt_bandwidth.rt_runtime = rt_runtime;
P
Peter Zijlstra 已提交
9277 9278 9279 9280 9281 9282 9283 9284 9285

	for_each_possible_cpu(i) {
		struct rt_rq *rt_rq = tg->rt_rq[i];

		spin_lock(&rt_rq->rt_runtime_lock);
		rt_rq->rt_runtime = rt_runtime;
		spin_unlock(&rt_rq->rt_runtime_lock);
	}
	spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
P
Peter Zijlstra 已提交
9286
 unlock:
9287
	read_unlock(&tasklist_lock);
P
Peter Zijlstra 已提交
9288 9289 9290
	mutex_unlock(&rt_constraints_mutex);

	return err;
P
Peter Zijlstra 已提交
9291 9292
}

9293 9294 9295 9296 9297 9298 9299 9300 9301 9302 9303 9304
int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
{
	u64 rt_runtime, rt_period;

	rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
	rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
	if (rt_runtime_us < 0)
		rt_runtime = RUNTIME_INF;

	return tg_set_bandwidth(tg, rt_period, rt_runtime);
}

P
Peter Zijlstra 已提交
9305 9306 9307 9308
long sched_group_rt_runtime(struct task_group *tg)
{
	u64 rt_runtime_us;

9309
	if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
P
Peter Zijlstra 已提交
9310 9311
		return -1;

9312
	rt_runtime_us = tg->rt_bandwidth.rt_runtime;
P
Peter Zijlstra 已提交
9313 9314 9315
	do_div(rt_runtime_us, NSEC_PER_USEC);
	return rt_runtime_us;
}
9316 9317 9318 9319 9320 9321 9322 9323

int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
{
	u64 rt_runtime, rt_period;

	rt_period = (u64)rt_period_us * NSEC_PER_USEC;
	rt_runtime = tg->rt_bandwidth.rt_runtime;

9324 9325 9326
	if (rt_period == 0)
		return -EINVAL;

9327 9328 9329 9330 9331 9332 9333 9334 9335 9336 9337 9338 9339 9340
	return tg_set_bandwidth(tg, rt_period, rt_runtime);
}

long sched_group_rt_period(struct task_group *tg)
{
	u64 rt_period_us;

	rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
	do_div(rt_period_us, NSEC_PER_USEC);
	return rt_period_us;
}

static int sched_rt_global_constraints(void)
{
9341
	u64 runtime, period;
9342 9343
	int ret = 0;

9344 9345 9346
	if (sysctl_sched_rt_period <= 0)
		return -EINVAL;

9347 9348 9349 9350 9351 9352 9353 9354
	runtime = global_rt_runtime();
	period = global_rt_period();

	/*
	 * Sanity check on the sysctl variables.
	 */
	if (runtime > period && runtime != RUNTIME_INF)
		return -EINVAL;
9355

9356
	mutex_lock(&rt_constraints_mutex);
P
Peter Zijlstra 已提交
9357
	read_lock(&tasklist_lock);
9358
	ret = __rt_schedulable(NULL, 0, 0);
P
Peter Zijlstra 已提交
9359
	read_unlock(&tasklist_lock);
9360 9361 9362 9363
	mutex_unlock(&rt_constraints_mutex);

	return ret;
}
9364 9365 9366 9367 9368 9369 9370 9371 9372 9373

int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
{
	/* Don't accept realtime tasks when there is no way for them to run */
	if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
		return 0;

	return 1;
}

9374
#else /* !CONFIG_RT_GROUP_SCHED */
9375 9376
static int sched_rt_global_constraints(void)
{
P
Peter Zijlstra 已提交
9377 9378 9379
	unsigned long flags;
	int i;

9380 9381 9382
	if (sysctl_sched_rt_period <= 0)
		return -EINVAL;

P
Peter Zijlstra 已提交
9383 9384 9385 9386 9387 9388 9389 9390 9391 9392
	spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
	for_each_possible_cpu(i) {
		struct rt_rq *rt_rq = &cpu_rq(i)->rt;

		spin_lock(&rt_rq->rt_runtime_lock);
		rt_rq->rt_runtime = global_rt_runtime();
		spin_unlock(&rt_rq->rt_runtime_lock);
	}
	spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);

9393 9394
	return 0;
}
9395
#endif /* CONFIG_RT_GROUP_SCHED */
9396 9397 9398 9399 9400 9401 9402 9403 9404 9405 9406 9407 9408 9409 9410 9411 9412 9413 9414 9415 9416 9417 9418 9419 9420 9421 9422 9423 9424 9425

int sched_rt_handler(struct ctl_table *table, int write,
		struct file *filp, void __user *buffer, size_t *lenp,
		loff_t *ppos)
{
	int ret;
	int old_period, old_runtime;
	static DEFINE_MUTEX(mutex);

	mutex_lock(&mutex);
	old_period = sysctl_sched_rt_period;
	old_runtime = sysctl_sched_rt_runtime;

	ret = proc_dointvec(table, write, filp, buffer, lenp, ppos);

	if (!ret && write) {
		ret = sched_rt_global_constraints();
		if (ret) {
			sysctl_sched_rt_period = old_period;
			sysctl_sched_rt_runtime = old_runtime;
		} else {
			def_rt_bandwidth.rt_runtime = global_rt_runtime();
			def_rt_bandwidth.rt_period =
				ns_to_ktime(global_rt_period());
		}
	}
	mutex_unlock(&mutex);

	return ret;
}
9426

9427
#ifdef CONFIG_CGROUP_SCHED
9428 9429

/* return corresponding task_group object of a cgroup */
9430
static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
9431
{
9432 9433
	return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
			    struct task_group, css);
9434 9435 9436
}

static struct cgroup_subsys_state *
9437
cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
9438
{
9439
	struct task_group *tg, *parent;
9440

9441
	if (!cgrp->parent) {
9442 9443 9444 9445
		/* This is early initialization for the top cgroup */
		return &init_task_group.css;
	}

9446 9447
	parent = cgroup_tg(cgrp->parent);
	tg = sched_create_group(parent);
9448 9449 9450 9451 9452 9453
	if (IS_ERR(tg))
		return ERR_PTR(-ENOMEM);

	return &tg->css;
}

I
Ingo Molnar 已提交
9454 9455
static void
cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
9456
{
9457
	struct task_group *tg = cgroup_tg(cgrp);
9458 9459 9460 9461

	sched_destroy_group(tg);
}

I
Ingo Molnar 已提交
9462 9463 9464
static int
cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
		      struct task_struct *tsk)
9465
{
9466
#ifdef CONFIG_RT_GROUP_SCHED
9467
	if (!sched_rt_can_attach(cgroup_tg(cgrp), tsk))
9468 9469
		return -EINVAL;
#else
9470 9471 9472
	/* We don't support RT-tasks being in separate groups */
	if (tsk->sched_class != &fair_sched_class)
		return -EINVAL;
9473
#endif
9474 9475 9476 9477 9478

	return 0;
}

static void
9479
cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
9480 9481 9482 9483 9484
			struct cgroup *old_cont, struct task_struct *tsk)
{
	sched_move_task(tsk);
}

9485
#ifdef CONFIG_FAIR_GROUP_SCHED
9486
static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
9487
				u64 shareval)
9488
{
9489
	return sched_group_set_shares(cgroup_tg(cgrp), shareval);
9490 9491
}

9492
static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
9493
{
9494
	struct task_group *tg = cgroup_tg(cgrp);
9495 9496 9497

	return (u64) tg->shares;
}
9498
#endif /* CONFIG_FAIR_GROUP_SCHED */
9499

9500
#ifdef CONFIG_RT_GROUP_SCHED
M
Mirco Tischler 已提交
9501
static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
9502
				s64 val)
P
Peter Zijlstra 已提交
9503
{
9504
	return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
P
Peter Zijlstra 已提交
9505 9506
}

9507
static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
P
Peter Zijlstra 已提交
9508
{
9509
	return sched_group_rt_runtime(cgroup_tg(cgrp));
P
Peter Zijlstra 已提交
9510
}
9511 9512 9513 9514 9515 9516 9517 9518 9519 9520 9521

static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
		u64 rt_period_us)
{
	return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
}

static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
{
	return sched_group_rt_period(cgroup_tg(cgrp));
}
9522
#endif /* CONFIG_RT_GROUP_SCHED */
P
Peter Zijlstra 已提交
9523

9524
static struct cftype cpu_files[] = {
9525
#ifdef CONFIG_FAIR_GROUP_SCHED
9526 9527
	{
		.name = "shares",
9528 9529
		.read_u64 = cpu_shares_read_u64,
		.write_u64 = cpu_shares_write_u64,
9530
	},
9531 9532
#endif
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
9533
	{
P
Peter Zijlstra 已提交
9534
		.name = "rt_runtime_us",
9535 9536
		.read_s64 = cpu_rt_runtime_read,
		.write_s64 = cpu_rt_runtime_write,
P
Peter Zijlstra 已提交
9537
	},
9538 9539
	{
		.name = "rt_period_us",
9540 9541
		.read_u64 = cpu_rt_period_read_uint,
		.write_u64 = cpu_rt_period_write_uint,
9542
	},
9543
#endif
9544 9545 9546 9547
};

static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
{
9548
	return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
9549 9550 9551
}

struct cgroup_subsys cpu_cgroup_subsys = {
I
Ingo Molnar 已提交
9552 9553 9554 9555 9556 9557 9558
	.name		= "cpu",
	.create		= cpu_cgroup_create,
	.destroy	= cpu_cgroup_destroy,
	.can_attach	= cpu_cgroup_can_attach,
	.attach		= cpu_cgroup_attach,
	.populate	= cpu_cgroup_populate,
	.subsys_id	= cpu_cgroup_subsys_id,
9559 9560 9561
	.early_init	= 1,
};

9562
#endif	/* CONFIG_CGROUP_SCHED */
9563 9564 9565 9566 9567 9568 9569 9570 9571 9572

#ifdef CONFIG_CGROUP_CPUACCT

/*
 * CPU accounting code for task groups.
 *
 * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
 * (balbir@in.ibm.com).
 */

9573
/* track cpu usage of a group of tasks and its child groups */
9574 9575 9576 9577
struct cpuacct {
	struct cgroup_subsys_state css;
	/* cpuusage holds pointer to a u64-type object on every cpu */
	u64 *cpuusage;
9578
	struct cpuacct *parent;
9579 9580 9581 9582 9583
};

struct cgroup_subsys cpuacct_subsys;

/* return cpu accounting group corresponding to this container */
9584
static inline struct cpuacct *cgroup_ca(struct cgroup *cgrp)
9585
{
9586
	return container_of(cgroup_subsys_state(cgrp, cpuacct_subsys_id),
9587 9588 9589 9590 9591 9592 9593 9594 9595 9596 9597 9598
			    struct cpuacct, css);
}

/* return cpu accounting group to which this task belongs */
static inline struct cpuacct *task_ca(struct task_struct *tsk)
{
	return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
			    struct cpuacct, css);
}

/* create a new cpu accounting group */
static struct cgroup_subsys_state *cpuacct_create(
9599
	struct cgroup_subsys *ss, struct cgroup *cgrp)
9600 9601 9602 9603 9604 9605 9606 9607 9608 9609 9610 9611
{
	struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL);

	if (!ca)
		return ERR_PTR(-ENOMEM);

	ca->cpuusage = alloc_percpu(u64);
	if (!ca->cpuusage) {
		kfree(ca);
		return ERR_PTR(-ENOMEM);
	}

9612 9613 9614
	if (cgrp->parent)
		ca->parent = cgroup_ca(cgrp->parent);

9615 9616 9617 9618
	return &ca->css;
}

/* destroy an existing cpu accounting group */
I
Ingo Molnar 已提交
9619
static void
9620
cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
9621
{
9622
	struct cpuacct *ca = cgroup_ca(cgrp);
9623 9624 9625 9626 9627

	free_percpu(ca->cpuusage);
	kfree(ca);
}

9628 9629 9630 9631 9632 9633 9634 9635 9636 9637 9638 9639 9640 9641 9642 9643 9644 9645 9646 9647 9648 9649 9650 9651 9652 9653 9654 9655 9656 9657 9658 9659 9660 9661 9662
static u64 cpuacct_cpuusage_read(struct cpuacct *ca, int cpu)
{
	u64 *cpuusage = percpu_ptr(ca->cpuusage, cpu);
	u64 data;

#ifndef CONFIG_64BIT
	/*
	 * Take rq->lock to make 64-bit read safe on 32-bit platforms.
	 */
	spin_lock_irq(&cpu_rq(cpu)->lock);
	data = *cpuusage;
	spin_unlock_irq(&cpu_rq(cpu)->lock);
#else
	data = *cpuusage;
#endif

	return data;
}

static void cpuacct_cpuusage_write(struct cpuacct *ca, int cpu, u64 val)
{
	u64 *cpuusage = percpu_ptr(ca->cpuusage, cpu);

#ifndef CONFIG_64BIT
	/*
	 * Take rq->lock to make 64-bit write safe on 32-bit platforms.
	 */
	spin_lock_irq(&cpu_rq(cpu)->lock);
	*cpuusage = val;
	spin_unlock_irq(&cpu_rq(cpu)->lock);
#else
	*cpuusage = val;
#endif
}

9663
/* return total cpu usage (in nanoseconds) of a group */
9664
static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
9665
{
9666
	struct cpuacct *ca = cgroup_ca(cgrp);
9667 9668 9669
	u64 totalcpuusage = 0;
	int i;

9670 9671
	for_each_present_cpu(i)
		totalcpuusage += cpuacct_cpuusage_read(ca, i);
9672 9673 9674 9675

	return totalcpuusage;
}

9676 9677 9678 9679 9680 9681 9682 9683 9684 9685 9686 9687
static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
								u64 reset)
{
	struct cpuacct *ca = cgroup_ca(cgrp);
	int err = 0;
	int i;

	if (reset) {
		err = -EINVAL;
		goto out;
	}

9688 9689
	for_each_present_cpu(i)
		cpuacct_cpuusage_write(ca, i, 0);
9690 9691 9692 9693 9694

out:
	return err;
}

9695 9696 9697 9698 9699 9700 9701 9702 9703 9704 9705 9706 9707 9708 9709
static int cpuacct_percpu_seq_read(struct cgroup *cgroup, struct cftype *cft,
				   struct seq_file *m)
{
	struct cpuacct *ca = cgroup_ca(cgroup);
	u64 percpu;
	int i;

	for_each_present_cpu(i) {
		percpu = cpuacct_cpuusage_read(ca, i);
		seq_printf(m, "%llu ", (unsigned long long) percpu);
	}
	seq_printf(m, "\n");
	return 0;
}

9710 9711 9712
static struct cftype files[] = {
	{
		.name = "usage",
9713 9714
		.read_u64 = cpuusage_read,
		.write_u64 = cpuusage_write,
9715
	},
9716 9717 9718 9719 9720
	{
		.name = "usage_percpu",
		.read_seq_string = cpuacct_percpu_seq_read,
	},

9721 9722
};

9723
static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cgrp)
9724
{
9725
	return cgroup_add_files(cgrp, ss, files, ARRAY_SIZE(files));
9726 9727 9728 9729 9730 9731 9732 9733 9734 9735
}

/*
 * charge this task's execution time to its accounting group.
 *
 * called with rq->lock held.
 */
static void cpuacct_charge(struct task_struct *tsk, u64 cputime)
{
	struct cpuacct *ca;
9736
	int cpu;
9737

L
Li Zefan 已提交
9738
	if (unlikely(!cpuacct_subsys.active))
9739 9740
		return;

9741
	cpu = task_cpu(tsk);
9742 9743
	ca = task_ca(tsk);

9744 9745
	for (; ca; ca = ca->parent) {
		u64 *cpuusage = percpu_ptr(ca->cpuusage, cpu);
9746 9747 9748 9749 9750 9751 9752 9753 9754 9755 9756 9757
		*cpuusage += cputime;
	}
}

struct cgroup_subsys cpuacct_subsys = {
	.name = "cpuacct",
	.create = cpuacct_create,
	.destroy = cpuacct_destroy,
	.populate = cpuacct_populate,
	.subsys_id = cpuacct_subsys_id,
};
#endif	/* CONFIG_CGROUP_CPUACCT */