sched.c 217.0 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
/*
 *  kernel/sched.c
 *
 *  Kernel scheduler and related syscalls
 *
 *  Copyright (C) 1991-2002  Linus Torvalds
 *
 *  1996-12-23  Modified by Dave Grothe to fix bugs in semaphores and
 *		make semaphores SMP safe
 *  1998-11-19	Implemented schedule_timeout() and related stuff
 *		by Andrea Arcangeli
 *  2002-01-04	New ultra-scalable O(1) scheduler by Ingo Molnar:
 *		hybrid priority-list and round-robin design with
 *		an array-switch method of distributing timeslices
 *		and per-CPU runqueues.  Cleanups and useful suggestions
 *		by Davide Libenzi, preemptible kernel bits by Robert Love.
 *  2003-09-03	Interactivity tuning by Con Kolivas.
 *  2004-04-02	Scheduler domains code by Nick Piggin
I
Ingo Molnar 已提交
19 20 21 22 23 24
 *  2007-04-15  Work begun on replacing all interactivity tuning with a
 *              fair scheduling design by Con Kolivas.
 *  2007-05-05  Load balancing (smp-nice) and other improvements
 *              by Peter Williams
 *  2007-05-06  Interactivity improvements to CFS by Mike Galbraith
 *  2007-07-01  Group scheduling enhancements by Srivatsa Vaddagiri
25 26
 *  2007-11-29  RT balancing improvements by Steven Rostedt, Gregory Haskins,
 *              Thomas Gleixner, Mike Kravetz
L
Linus Torvalds 已提交
27 28 29 30 31 32
 */

#include <linux/mm.h>
#include <linux/module.h>
#include <linux/nmi.h>
#include <linux/init.h>
33
#include <linux/uaccess.h>
L
Linus Torvalds 已提交
34 35 36 37
#include <linux/highmem.h>
#include <linux/smp_lock.h>
#include <asm/mmu_context.h>
#include <linux/interrupt.h>
38
#include <linux/capability.h>
L
Linus Torvalds 已提交
39 40
#include <linux/completion.h>
#include <linux/kernel_stat.h>
41
#include <linux/debug_locks.h>
L
Linus Torvalds 已提交
42 43 44
#include <linux/security.h>
#include <linux/notifier.h>
#include <linux/profile.h>
45
#include <linux/freezer.h>
46
#include <linux/vmalloc.h>
L
Linus Torvalds 已提交
47 48
#include <linux/blkdev.h>
#include <linux/delay.h>
49
#include <linux/pid_namespace.h>
L
Linus Torvalds 已提交
50 51 52 53 54 55 56 57 58
#include <linux/smp.h>
#include <linux/threads.h>
#include <linux/timer.h>
#include <linux/rcupdate.h>
#include <linux/cpu.h>
#include <linux/cpuset.h>
#include <linux/percpu.h>
#include <linux/kthread.h>
#include <linux/seq_file.h>
59
#include <linux/sysctl.h>
L
Linus Torvalds 已提交
60 61
#include <linux/syscalls.h>
#include <linux/times.h>
62
#include <linux/tsacct_kern.h>
63
#include <linux/kprobes.h>
64
#include <linux/delayacct.h>
65
#include <linux/reciprocal_div.h>
66
#include <linux/unistd.h>
J
Jens Axboe 已提交
67
#include <linux/pagemap.h>
P
Peter Zijlstra 已提交
68
#include <linux/hrtimer.h>
R
Reynes Philippe 已提交
69
#include <linux/tick.h>
70
#include <linux/bootmem.h>
P
Peter Zijlstra 已提交
71 72
#include <linux/debugfs.h>
#include <linux/ctype.h>
L
Linus Torvalds 已提交
73

74
#include <asm/tlb.h>
75
#include <asm/irq_regs.h>
L
Linus Torvalds 已提交
76

77 78
#include "sched_cpupri.h"

L
Linus Torvalds 已提交
79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97
/*
 * Convert user-nice values [ -20 ... 0 ... 19 ]
 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
 * and back.
 */
#define NICE_TO_PRIO(nice)	(MAX_RT_PRIO + (nice) + 20)
#define PRIO_TO_NICE(prio)	((prio) - MAX_RT_PRIO - 20)
#define TASK_NICE(p)		PRIO_TO_NICE((p)->static_prio)

/*
 * 'User priority' is the nice value converted to something we
 * can work with better when scaling various scheduler parameters,
 * it's a [ 0 ... 39 ] range.
 */
#define USER_PRIO(p)		((p)-MAX_RT_PRIO)
#define TASK_USER_PRIO(p)	USER_PRIO((p)->static_prio)
#define MAX_USER_PRIO		(USER_PRIO(MAX_PRIO))

/*
98
 * Helpers for converting nanosecond timing to jiffy resolution
L
Linus Torvalds 已提交
99
 */
100
#define NS_TO_JIFFIES(TIME)	((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
L
Linus Torvalds 已提交
101

I
Ingo Molnar 已提交
102 103 104
#define NICE_0_LOAD		SCHED_LOAD_SCALE
#define NICE_0_SHIFT		SCHED_LOAD_SHIFT

L
Linus Torvalds 已提交
105 106 107
/*
 * These are the 'tuning knobs' of the scheduler:
 *
D
Dmitry Adamushko 已提交
108
 * default timeslice is 100 msecs (used only for SCHED_RR tasks).
L
Linus Torvalds 已提交
109 110 111
 * Timeslices get refilled after they expire.
 */
#define DEF_TIMESLICE		(100 * HZ / 1000)
112

113 114 115 116 117
/*
 * single value that denotes runtime == period, ie unlimited time.
 */
#define RUNTIME_INF	((u64)~0ULL)

118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138
#ifdef CONFIG_SMP
/*
 * Divide a load by a sched group cpu_power : (load / sg->__cpu_power)
 * Since cpu_power is a 'constant', we can use a reciprocal divide.
 */
static inline u32 sg_div_cpu_power(const struct sched_group *sg, u32 load)
{
	return reciprocal_divide(load, sg->reciprocal_cpu_power);
}

/*
 * Each time a sched group cpu_power is changed,
 * we must compute its reciprocal value
 */
static inline void sg_inc_cpu_power(struct sched_group *sg, u32 val)
{
	sg->__cpu_power += val;
	sg->reciprocal_cpu_power = reciprocal_value(sg->__cpu_power);
}
#endif

139 140
static inline int rt_policy(int policy)
{
141
	if (unlikely(policy == SCHED_FIFO || policy == SCHED_RR))
142 143 144 145 146 147 148 149 150
		return 1;
	return 0;
}

static inline int task_has_rt_policy(struct task_struct *p)
{
	return rt_policy(p->policy);
}

L
Linus Torvalds 已提交
151
/*
I
Ingo Molnar 已提交
152
 * This is the priority-queue data structure of the RT scheduling class:
L
Linus Torvalds 已提交
153
 */
I
Ingo Molnar 已提交
154 155
struct rt_prio_array {
	DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
156
	struct list_head queue[MAX_RT_PRIO];
I
Ingo Molnar 已提交
157 158
};

159
struct rt_bandwidth {
I
Ingo Molnar 已提交
160 161 162 163 164
	/* nests inside the rq lock: */
	spinlock_t		rt_runtime_lock;
	ktime_t			rt_period;
	u64			rt_runtime;
	struct hrtimer		rt_period_timer;
165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197
};

static struct rt_bandwidth def_rt_bandwidth;

static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);

static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
{
	struct rt_bandwidth *rt_b =
		container_of(timer, struct rt_bandwidth, rt_period_timer);
	ktime_t now;
	int overrun;
	int idle = 0;

	for (;;) {
		now = hrtimer_cb_get_time(timer);
		overrun = hrtimer_forward(timer, now, rt_b->rt_period);

		if (!overrun)
			break;

		idle = do_sched_rt_period_timer(rt_b, overrun);
	}

	return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
}

static
void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
{
	rt_b->rt_period = ns_to_ktime(period);
	rt_b->rt_runtime = runtime;

P
Peter Zijlstra 已提交
198 199
	spin_lock_init(&rt_b->rt_runtime_lock);

200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236
	hrtimer_init(&rt_b->rt_period_timer,
			CLOCK_MONOTONIC, HRTIMER_MODE_REL);
	rt_b->rt_period_timer.function = sched_rt_period_timer;
	rt_b->rt_period_timer.cb_mode = HRTIMER_CB_IRQSAFE_NO_SOFTIRQ;
}

static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
{
	ktime_t now;

	if (rt_b->rt_runtime == RUNTIME_INF)
		return;

	if (hrtimer_active(&rt_b->rt_period_timer))
		return;

	spin_lock(&rt_b->rt_runtime_lock);
	for (;;) {
		if (hrtimer_active(&rt_b->rt_period_timer))
			break;

		now = hrtimer_cb_get_time(&rt_b->rt_period_timer);
		hrtimer_forward(&rt_b->rt_period_timer, now, rt_b->rt_period);
		hrtimer_start(&rt_b->rt_period_timer,
			      rt_b->rt_period_timer.expires,
			      HRTIMER_MODE_ABS);
	}
	spin_unlock(&rt_b->rt_runtime_lock);
}

#ifdef CONFIG_RT_GROUP_SCHED
static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
{
	hrtimer_cancel(&rt_b->rt_period_timer);
}
#endif

237 238 239 240 241 242
/*
 * sched_domains_mutex serializes calls to arch_init_sched_domains,
 * detach_destroy_domains and partition_sched_domains.
 */
static DEFINE_MUTEX(sched_domains_mutex);

243
#ifdef CONFIG_GROUP_SCHED
S
Srivatsa Vaddagiri 已提交
244

245 246
#include <linux/cgroup.h>

S
Srivatsa Vaddagiri 已提交
247 248
struct cfs_rq;

P
Peter Zijlstra 已提交
249 250
static LIST_HEAD(task_groups);

S
Srivatsa Vaddagiri 已提交
251
/* task group related information */
252
struct task_group {
253
#ifdef CONFIG_CGROUP_SCHED
254 255
	struct cgroup_subsys_state css;
#endif
256 257

#ifdef CONFIG_FAIR_GROUP_SCHED
S
Srivatsa Vaddagiri 已提交
258 259 260 261 262
	/* schedulable entities of this group on each cpu */
	struct sched_entity **se;
	/* runqueue "owned" by this group on each cpu */
	struct cfs_rq **cfs_rq;
	unsigned long shares;
263 264 265 266 267 268
#endif

#ifdef CONFIG_RT_GROUP_SCHED
	struct sched_rt_entity **rt_se;
	struct rt_rq **rt_rq;

269
	struct rt_bandwidth rt_bandwidth;
270
#endif
271

272
	struct rcu_head rcu;
P
Peter Zijlstra 已提交
273
	struct list_head list;
P
Peter Zijlstra 已提交
274 275 276 277

	struct task_group *parent;
	struct list_head siblings;
	struct list_head children;
S
Srivatsa Vaddagiri 已提交
278 279
};

D
Dhaval Giani 已提交
280
#ifdef CONFIG_USER_SCHED
281 282 283 284 285 286 287 288

/*
 * Root task group.
 * 	Every UID task group (including init_task_group aka UID-0) will
 * 	be a child to this group.
 */
struct task_group root_task_group;

289
#ifdef CONFIG_FAIR_GROUP_SCHED
S
Srivatsa Vaddagiri 已提交
290 291 292 293
/* Default task group's sched entity on each cpu */
static DEFINE_PER_CPU(struct sched_entity, init_sched_entity);
/* Default task group's cfs_rq on each cpu */
static DEFINE_PER_CPU(struct cfs_rq, init_cfs_rq) ____cacheline_aligned_in_smp;
294
#endif /* CONFIG_FAIR_GROUP_SCHED */
295 296 297 298

#ifdef CONFIG_RT_GROUP_SCHED
static DEFINE_PER_CPU(struct sched_rt_entity, init_sched_rt_entity);
static DEFINE_PER_CPU(struct rt_rq, init_rt_rq) ____cacheline_aligned_in_smp;
299 300
#endif /* CONFIG_RT_GROUP_SCHED */
#else /* !CONFIG_FAIR_GROUP_SCHED */
301
#define root_task_group init_task_group
302
#endif /* CONFIG_FAIR_GROUP_SCHED */
P
Peter Zijlstra 已提交
303

304
/* task_group_lock serializes add/remove of task groups and also changes to
305 306
 * a task group's cpu shares.
 */
307
static DEFINE_SPINLOCK(task_group_lock);
308

309 310 311
#ifdef CONFIG_FAIR_GROUP_SCHED
#ifdef CONFIG_USER_SCHED
# define INIT_TASK_GROUP_LOAD	(2*NICE_0_LOAD)
312
#else /* !CONFIG_USER_SCHED */
313
# define INIT_TASK_GROUP_LOAD	NICE_0_LOAD
314
#endif /* CONFIG_USER_SCHED */
315

316
/*
317 318 319 320
 * A weight of 0 or 1 can cause arithmetics problems.
 * A weight of a cfs_rq is the sum of weights of which entities
 * are queued on this cfs_rq, so a weight of a entity should not be
 * too large, so as the shares value of a task group.
321 322 323
 * (The default weight is 1024 - so there's no practical
 *  limitation from this.)
 */
324
#define MIN_SHARES	2
325
#define MAX_SHARES	(1UL << 18)
326

327 328 329
static int init_task_group_load = INIT_TASK_GROUP_LOAD;
#endif

S
Srivatsa Vaddagiri 已提交
330
/* Default task group.
I
Ingo Molnar 已提交
331
 *	Every task in system belong to this group at bootup.
S
Srivatsa Vaddagiri 已提交
332
 */
333
struct task_group init_task_group;
S
Srivatsa Vaddagiri 已提交
334 335

/* return group to which a task belongs */
336
static inline struct task_group *task_group(struct task_struct *p)
S
Srivatsa Vaddagiri 已提交
337
{
338
	struct task_group *tg;
339

340
#ifdef CONFIG_USER_SCHED
341
	tg = p->user->tg;
342
#elif defined(CONFIG_CGROUP_SCHED)
343 344
	tg = container_of(task_subsys_state(p, cpu_cgroup_subsys_id),
				struct task_group, css);
345
#else
I
Ingo Molnar 已提交
346
	tg = &init_task_group;
347
#endif
348
	return tg;
S
Srivatsa Vaddagiri 已提交
349 350 351
}

/* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
P
Peter Zijlstra 已提交
352
static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
S
Srivatsa Vaddagiri 已提交
353
{
354
#ifdef CONFIG_FAIR_GROUP_SCHED
355 356
	p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
	p->se.parent = task_group(p)->se[cpu];
357
#endif
P
Peter Zijlstra 已提交
358

359
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
360 361
	p->rt.rt_rq  = task_group(p)->rt_rq[cpu];
	p->rt.parent = task_group(p)->rt_se[cpu];
362
#endif
S
Srivatsa Vaddagiri 已提交
363 364 365 366
}

#else

P
Peter Zijlstra 已提交
367
static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
S
Srivatsa Vaddagiri 已提交
368

369
#endif	/* CONFIG_GROUP_SCHED */
S
Srivatsa Vaddagiri 已提交
370

I
Ingo Molnar 已提交
371 372 373 374 375 376
/* CFS-related fields in a runqueue */
struct cfs_rq {
	struct load_weight load;
	unsigned long nr_running;

	u64 exec_clock;
I
Ingo Molnar 已提交
377
	u64 min_vruntime;
378
	u64 pair_start;
I
Ingo Molnar 已提交
379 380 381

	struct rb_root tasks_timeline;
	struct rb_node *rb_leftmost;
382 383 384 385 386 387

	struct list_head tasks;
	struct list_head *balance_iterator;

	/*
	 * 'curr' points to currently running entity on this cfs_rq.
I
Ingo Molnar 已提交
388 389
	 * It is set to NULL otherwise (i.e when none are currently running).
	 */
390
	struct sched_entity *curr, *next;
P
Peter Zijlstra 已提交
391 392 393

	unsigned long nr_spread_over;

394
#ifdef CONFIG_FAIR_GROUP_SCHED
I
Ingo Molnar 已提交
395 396
	struct rq *rq;	/* cpu runqueue to which this cfs_rq is attached */

I
Ingo Molnar 已提交
397 398
	/*
	 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
I
Ingo Molnar 已提交
399 400 401 402 403 404
	 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
	 * (like users, containers etc.)
	 *
	 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
	 * list is used during load balance.
	 */
I
Ingo Molnar 已提交
405 406
	struct list_head leaf_cfs_rq_list;
	struct task_group *tg;	/* group that "owns" this runqueue */
407 408 409

#ifdef CONFIG_SMP
	/*
410
	 * the part of load.weight contributed by tasks
411
	 */
412
	unsigned long task_weight;
413

414 415 416 417 418 419 420
	/*
	 *   h_load = weight * f(tg)
	 *
	 * Where f(tg) is the recursive weight fraction assigned to
	 * this group.
	 */
	unsigned long h_load;
421

422 423 424 425
	/*
	 * this cpu's part of tg->shares
	 */
	unsigned long shares;
426
#endif
I
Ingo Molnar 已提交
427 428
#endif
};
L
Linus Torvalds 已提交
429

I
Ingo Molnar 已提交
430 431 432
/* Real-Time classes' related field in a runqueue: */
struct rt_rq {
	struct rt_prio_array active;
433
	unsigned long rt_nr_running;
434
#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
435 436
	int highest_prio; /* highest queued rt task prio */
#endif
P
Peter Zijlstra 已提交
437
#ifdef CONFIG_SMP
438
	unsigned long rt_nr_migratory;
G
Gregory Haskins 已提交
439
	int overloaded;
P
Peter Zijlstra 已提交
440
#endif
P
Peter Zijlstra 已提交
441
	int rt_throttled;
P
Peter Zijlstra 已提交
442
	u64 rt_time;
P
Peter Zijlstra 已提交
443
	u64 rt_runtime;
I
Ingo Molnar 已提交
444
	/* Nests inside the rq lock: */
P
Peter Zijlstra 已提交
445
	spinlock_t rt_runtime_lock;
P
Peter Zijlstra 已提交
446

447
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
448 449
	unsigned long rt_nr_boosted;

P
Peter Zijlstra 已提交
450 451 452 453 454
	struct rq *rq;
	struct list_head leaf_rt_rq_list;
	struct task_group *tg;
	struct sched_rt_entity *rt_se;
#endif
I
Ingo Molnar 已提交
455 456
};

G
Gregory Haskins 已提交
457 458 459 460
#ifdef CONFIG_SMP

/*
 * We add the notion of a root-domain which will be used to define per-domain
I
Ingo Molnar 已提交
461 462
 * variables. Each exclusive cpuset essentially defines an island domain by
 * fully partitioning the member cpus from any other cpuset. Whenever a new
G
Gregory Haskins 已提交
463 464 465 466 467 468 469 470
 * exclusive cpuset is created, we also create and attach a new root-domain
 * object.
 *
 */
struct root_domain {
	atomic_t refcount;
	cpumask_t span;
	cpumask_t online;
471

I
Ingo Molnar 已提交
472
	/*
473 474 475 476
	 * The "RT overload" flag: it gets set if a CPU has more than
	 * one runnable RT task.
	 */
	cpumask_t rto_mask;
I
Ingo Molnar 已提交
477
	atomic_t rto_count;
478 479 480
#ifdef CONFIG_SMP
	struct cpupri cpupri;
#endif
G
Gregory Haskins 已提交
481 482
};

483 484 485 486
/*
 * By default the system creates a single root-domain with all cpus as
 * members (mimicking the global state we have today).
 */
G
Gregory Haskins 已提交
487 488 489 490
static struct root_domain def_root_domain;

#endif

L
Linus Torvalds 已提交
491 492 493 494 495 496 497
/*
 * This is the main, per-CPU runqueue data structure.
 *
 * Locking rule: those places that want to lock multiple runqueues
 * (such as the load balancing or the thread migration code), lock
 * acquire operations must be ordered by ascending &runqueue.
 */
498
struct rq {
499 500
	/* runqueue lock: */
	spinlock_t lock;
L
Linus Torvalds 已提交
501 502 503 504 505 506

	/*
	 * nr_running and cpu_load should be in the same cacheline because
	 * remote CPUs use both these fields when doing load calculation.
	 */
	unsigned long nr_running;
I
Ingo Molnar 已提交
507 508
	#define CPU_LOAD_IDX_MAX 5
	unsigned long cpu_load[CPU_LOAD_IDX_MAX];
509
	unsigned char idle_at_tick;
510
#ifdef CONFIG_NO_HZ
511
	unsigned long last_tick_seen;
512 513
	unsigned char in_nohz_recently;
#endif
514 515
	/* capture load from *all* tasks on this cpu: */
	struct load_weight load;
I
Ingo Molnar 已提交
516 517 518 519
	unsigned long nr_load_updates;
	u64 nr_switches;

	struct cfs_rq cfs;
P
Peter Zijlstra 已提交
520 521
	struct rt_rq rt;

I
Ingo Molnar 已提交
522
#ifdef CONFIG_FAIR_GROUP_SCHED
523 524
	/* list of leaf cfs_rq on this cpu: */
	struct list_head leaf_cfs_rq_list;
525 526
#endif
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
527
	struct list_head leaf_rt_rq_list;
L
Linus Torvalds 已提交
528 529 530 531 532 533 534 535 536 537
#endif

	/*
	 * This is part of a global counter where only the total sum
	 * over all CPUs matters. A task can increase this counter on
	 * one CPU and if it got migrated afterwards it may decrease
	 * it on another CPU. Always updated under the runqueue lock:
	 */
	unsigned long nr_uninterruptible;

538
	struct task_struct *curr, *idle;
539
	unsigned long next_balance;
L
Linus Torvalds 已提交
540
	struct mm_struct *prev_mm;
I
Ingo Molnar 已提交
541

542
	u64 clock;
I
Ingo Molnar 已提交
543

L
Linus Torvalds 已提交
544 545 546
	atomic_t nr_iowait;

#ifdef CONFIG_SMP
I
Ingo Molnar 已提交
547
	struct root_domain *rd;
L
Linus Torvalds 已提交
548 549 550 551 552
	struct sched_domain *sd;

	/* For active balancing */
	int active_balance;
	int push_cpu;
553 554
	/* cpu of this runqueue: */
	int cpu;
555
	int online;
L
Linus Torvalds 已提交
556

557
	struct task_struct *migration_thread;
L
Linus Torvalds 已提交
558 559 560
	struct list_head migration_queue;
#endif

P
Peter Zijlstra 已提交
561 562 563 564 565 566
#ifdef CONFIG_SCHED_HRTICK
	unsigned long hrtick_flags;
	ktime_t hrtick_expire;
	struct hrtimer hrtick_timer;
#endif

L
Linus Torvalds 已提交
567 568 569 570 571
#ifdef CONFIG_SCHEDSTATS
	/* latency stats */
	struct sched_info rq_sched_info;

	/* sys_sched_yield() stats */
572 573 574 575
	unsigned int yld_exp_empty;
	unsigned int yld_act_empty;
	unsigned int yld_both_empty;
	unsigned int yld_count;
L
Linus Torvalds 已提交
576 577

	/* schedule() stats */
578 579 580
	unsigned int sched_switch;
	unsigned int sched_count;
	unsigned int sched_goidle;
L
Linus Torvalds 已提交
581 582

	/* try_to_wake_up() stats */
583 584
	unsigned int ttwu_count;
	unsigned int ttwu_local;
I
Ingo Molnar 已提交
585 586

	/* BKL stats */
587
	unsigned int bkl_count;
L
Linus Torvalds 已提交
588
#endif
589
	struct lock_class_key rq_lock_key;
L
Linus Torvalds 已提交
590 591
};

592
static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
L
Linus Torvalds 已提交
593

I
Ingo Molnar 已提交
594 595 596 597 598
static inline void check_preempt_curr(struct rq *rq, struct task_struct *p)
{
	rq->curr->sched_class->check_preempt_curr(rq, p);
}

599 600 601 602 603 604 605 606 607
static inline int cpu_of(struct rq *rq)
{
#ifdef CONFIG_SMP
	return rq->cpu;
#else
	return 0;
#endif
}

N
Nick Piggin 已提交
608 609
/*
 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
610
 * See detach_destroy_domains: synchronize_sched for details.
N
Nick Piggin 已提交
611 612 613 614
 *
 * The domain tree of any CPU may only be accessed from within
 * preempt-disabled sections.
 */
615 616
#define for_each_domain(cpu, __sd) \
	for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
L
Linus Torvalds 已提交
617 618 619 620 621 622

#define cpu_rq(cpu)		(&per_cpu(runqueues, (cpu)))
#define this_rq()		(&__get_cpu_var(runqueues))
#define task_rq(p)		cpu_rq(task_cpu(p))
#define cpu_curr(cpu)		(cpu_rq(cpu)->curr)

623 624 625 626 627
static inline void update_rq_clock(struct rq *rq)
{
	rq->clock = sched_clock_cpu(cpu_of(rq));
}

I
Ingo Molnar 已提交
628 629 630 631 632 633 634 635 636 637 638 639
/*
 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
 */
#ifdef CONFIG_SCHED_DEBUG
# define const_debug __read_mostly
#else
# define const_debug static const
#endif

/*
 * Debugging: various feature bits
 */
P
Peter Zijlstra 已提交
640 641 642 643

#define SCHED_FEAT(name, enabled)	\
	__SCHED_FEAT_##name ,

I
Ingo Molnar 已提交
644
enum {
P
Peter Zijlstra 已提交
645
#include "sched_features.h"
I
Ingo Molnar 已提交
646 647
};

P
Peter Zijlstra 已提交
648 649 650 651 652
#undef SCHED_FEAT

#define SCHED_FEAT(name, enabled)	\
	(1UL << __SCHED_FEAT_##name) * enabled |

I
Ingo Molnar 已提交
653
const_debug unsigned int sysctl_sched_features =
P
Peter Zijlstra 已提交
654 655 656 657 658 659 660 661 662
#include "sched_features.h"
	0;

#undef SCHED_FEAT

#ifdef CONFIG_SCHED_DEBUG
#define SCHED_FEAT(name, enabled)	\
	#name ,

663
static __read_mostly char *sched_feat_names[] = {
P
Peter Zijlstra 已提交
664 665 666 667 668 669
#include "sched_features.h"
	NULL
};

#undef SCHED_FEAT

670
static int sched_feat_open(struct inode *inode, struct file *filp)
P
Peter Zijlstra 已提交
671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697
{
	filp->private_data = inode->i_private;
	return 0;
}

static ssize_t
sched_feat_read(struct file *filp, char __user *ubuf,
		size_t cnt, loff_t *ppos)
{
	char *buf;
	int r = 0;
	int len = 0;
	int i;

	for (i = 0; sched_feat_names[i]; i++) {
		len += strlen(sched_feat_names[i]);
		len += 4;
	}

	buf = kmalloc(len + 2, GFP_KERNEL);
	if (!buf)
		return -ENOMEM;

	for (i = 0; sched_feat_names[i]; i++) {
		if (sysctl_sched_features & (1UL << i))
			r += sprintf(buf + r, "%s ", sched_feat_names[i]);
		else
I
Ingo Molnar 已提交
698
			r += sprintf(buf + r, "NO_%s ", sched_feat_names[i]);
P
Peter Zijlstra 已提交
699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727
	}

	r += sprintf(buf + r, "\n");
	WARN_ON(r >= len + 2);

	r = simple_read_from_buffer(ubuf, cnt, ppos, buf, r);

	kfree(buf);

	return r;
}

static ssize_t
sched_feat_write(struct file *filp, const char __user *ubuf,
		size_t cnt, loff_t *ppos)
{
	char buf[64];
	char *cmp = buf;
	int neg = 0;
	int i;

	if (cnt > 63)
		cnt = 63;

	if (copy_from_user(&buf, ubuf, cnt))
		return -EFAULT;

	buf[cnt] = 0;

I
Ingo Molnar 已提交
728
	if (strncmp(buf, "NO_", 3) == 0) {
P
Peter Zijlstra 已提交
729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770
		neg = 1;
		cmp += 3;
	}

	for (i = 0; sched_feat_names[i]; i++) {
		int len = strlen(sched_feat_names[i]);

		if (strncmp(cmp, sched_feat_names[i], len) == 0) {
			if (neg)
				sysctl_sched_features &= ~(1UL << i);
			else
				sysctl_sched_features |= (1UL << i);
			break;
		}
	}

	if (!sched_feat_names[i])
		return -EINVAL;

	filp->f_pos += cnt;

	return cnt;
}

static struct file_operations sched_feat_fops = {
	.open	= sched_feat_open,
	.read	= sched_feat_read,
	.write	= sched_feat_write,
};

static __init int sched_init_debug(void)
{
	debugfs_create_file("sched_features", 0644, NULL, NULL,
			&sched_feat_fops);

	return 0;
}
late_initcall(sched_init_debug);

#endif

#define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
I
Ingo Molnar 已提交
771

772 773 774 775 776 777
/*
 * Number of tasks to iterate in a single balance run.
 * Limited because this is done with IRQs disabled.
 */
const_debug unsigned int sysctl_sched_nr_migrate = 32;

P
Peter Zijlstra 已提交
778
/*
P
Peter Zijlstra 已提交
779
 * period over which we measure -rt task cpu usage in us.
P
Peter Zijlstra 已提交
780 781
 * default: 1s
 */
P
Peter Zijlstra 已提交
782
unsigned int sysctl_sched_rt_period = 1000000;
P
Peter Zijlstra 已提交
783

784 785
static __read_mostly int scheduler_running;

P
Peter Zijlstra 已提交
786 787 788 789 790
/*
 * part of the period that we allow rt tasks to run in us.
 * default: 0.95s
 */
int sysctl_sched_rt_runtime = 950000;
P
Peter Zijlstra 已提交
791

792 793 794 795 796 797 798 799 800 801 802 803
static inline u64 global_rt_period(void)
{
	return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
}

static inline u64 global_rt_runtime(void)
{
	if (sysctl_sched_rt_period < 0)
		return RUNTIME_INF;

	return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
}
P
Peter Zijlstra 已提交
804

L
Linus Torvalds 已提交
805
#ifndef prepare_arch_switch
806 807 808 809 810 811
# define prepare_arch_switch(next)	do { } while (0)
#endif
#ifndef finish_arch_switch
# define finish_arch_switch(prev)	do { } while (0)
#endif

812 813 814 815 816
static inline int task_current(struct rq *rq, struct task_struct *p)
{
	return rq->curr == p;
}

817
#ifndef __ARCH_WANT_UNLOCKED_CTXSW
818
static inline int task_running(struct rq *rq, struct task_struct *p)
819
{
820
	return task_current(rq, p);
821 822
}

823
static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
824 825 826
{
}

827
static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
828
{
829 830 831 832
#ifdef CONFIG_DEBUG_SPINLOCK
	/* this is a valid case when another task releases the spinlock */
	rq->lock.owner = current;
#endif
833 834 835 836 837 838 839
	/*
	 * If we are tracking spinlock dependencies then we have to
	 * fix up the runqueue lock - which gets 'carried over' from
	 * prev into current:
	 */
	spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);

840 841 842 843
	spin_unlock_irq(&rq->lock);
}

#else /* __ARCH_WANT_UNLOCKED_CTXSW */
844
static inline int task_running(struct rq *rq, struct task_struct *p)
845 846 847 848
{
#ifdef CONFIG_SMP
	return p->oncpu;
#else
849
	return task_current(rq, p);
850 851 852
#endif
}

853
static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869
{
#ifdef CONFIG_SMP
	/*
	 * We can optimise this out completely for !SMP, because the
	 * SMP rebalancing from interrupt is the only thing that cares
	 * here.
	 */
	next->oncpu = 1;
#endif
#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
	spin_unlock_irq(&rq->lock);
#else
	spin_unlock(&rq->lock);
#endif
}

870
static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
871 872 873 874 875 876 877 878 879 880 881 882
{
#ifdef CONFIG_SMP
	/*
	 * After ->oncpu is cleared, the task can be moved to a different CPU.
	 * We must ensure this doesn't happen until the switch is completely
	 * finished.
	 */
	smp_wmb();
	prev->oncpu = 0;
#endif
#ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
	local_irq_enable();
L
Linus Torvalds 已提交
883
#endif
884 885
}
#endif /* __ARCH_WANT_UNLOCKED_CTXSW */
L
Linus Torvalds 已提交
886

887 888 889 890
/*
 * __task_rq_lock - lock the runqueue a given task resides on.
 * Must be called interrupts disabled.
 */
891
static inline struct rq *__task_rq_lock(struct task_struct *p)
892 893
	__acquires(rq->lock)
{
894 895 896 897 898
	for (;;) {
		struct rq *rq = task_rq(p);
		spin_lock(&rq->lock);
		if (likely(rq == task_rq(p)))
			return rq;
899 900 901 902
		spin_unlock(&rq->lock);
	}
}

L
Linus Torvalds 已提交
903 904
/*
 * task_rq_lock - lock the runqueue a given task resides on and disable
I
Ingo Molnar 已提交
905
 * interrupts. Note the ordering: we can safely lookup the task_rq without
L
Linus Torvalds 已提交
906 907
 * explicitly disabling preemption.
 */
908
static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
L
Linus Torvalds 已提交
909 910
	__acquires(rq->lock)
{
911
	struct rq *rq;
L
Linus Torvalds 已提交
912

913 914 915 916 917 918
	for (;;) {
		local_irq_save(*flags);
		rq = task_rq(p);
		spin_lock(&rq->lock);
		if (likely(rq == task_rq(p)))
			return rq;
L
Linus Torvalds 已提交
919 920 921 922
		spin_unlock_irqrestore(&rq->lock, *flags);
	}
}

A
Alexey Dobriyan 已提交
923
static void __task_rq_unlock(struct rq *rq)
924 925 926 927 928
	__releases(rq->lock)
{
	spin_unlock(&rq->lock);
}

929
static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
L
Linus Torvalds 已提交
930 931 932 933 934 935
	__releases(rq->lock)
{
	spin_unlock_irqrestore(&rq->lock, *flags);
}

/*
936
 * this_rq_lock - lock this runqueue and disable interrupts.
L
Linus Torvalds 已提交
937
 */
A
Alexey Dobriyan 已提交
938
static struct rq *this_rq_lock(void)
L
Linus Torvalds 已提交
939 940
	__acquires(rq->lock)
{
941
	struct rq *rq;
L
Linus Torvalds 已提交
942 943 944 945 946 947 948 949

	local_irq_disable();
	rq = this_rq();
	spin_lock(&rq->lock);

	return rq;
}

P
Peter Zijlstra 已提交
950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984
static void __resched_task(struct task_struct *p, int tif_bit);

static inline void resched_task(struct task_struct *p)
{
	__resched_task(p, TIF_NEED_RESCHED);
}

#ifdef CONFIG_SCHED_HRTICK
/*
 * Use HR-timers to deliver accurate preemption points.
 *
 * Its all a bit involved since we cannot program an hrt while holding the
 * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
 * reschedule event.
 *
 * When we get rescheduled we reprogram the hrtick_timer outside of the
 * rq->lock.
 */
static inline void resched_hrt(struct task_struct *p)
{
	__resched_task(p, TIF_HRTICK_RESCHED);
}

static inline void resched_rq(struct rq *rq)
{
	unsigned long flags;

	spin_lock_irqsave(&rq->lock, flags);
	resched_task(rq->curr);
	spin_unlock_irqrestore(&rq->lock, flags);
}

enum {
	HRTICK_SET,		/* re-programm hrtick_timer */
	HRTICK_RESET,		/* not a new slice */
985
	HRTICK_BLOCK,		/* stop hrtick operations */
P
Peter Zijlstra 已提交
986 987 988 989 990 991 992 993 994 995 996
};

/*
 * Use hrtick when:
 *  - enabled by features
 *  - hrtimer is actually high res
 */
static inline int hrtick_enabled(struct rq *rq)
{
	if (!sched_feat(HRTICK))
		return 0;
997 998
	if (unlikely(test_bit(HRTICK_BLOCK, &rq->hrtick_flags)))
		return 0;
P
Peter Zijlstra 已提交
999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073
	return hrtimer_is_hres_active(&rq->hrtick_timer);
}

/*
 * Called to set the hrtick timer state.
 *
 * called with rq->lock held and irqs disabled
 */
static void hrtick_start(struct rq *rq, u64 delay, int reset)
{
	assert_spin_locked(&rq->lock);

	/*
	 * preempt at: now + delay
	 */
	rq->hrtick_expire =
		ktime_add_ns(rq->hrtick_timer.base->get_time(), delay);
	/*
	 * indicate we need to program the timer
	 */
	__set_bit(HRTICK_SET, &rq->hrtick_flags);
	if (reset)
		__set_bit(HRTICK_RESET, &rq->hrtick_flags);

	/*
	 * New slices are called from the schedule path and don't need a
	 * forced reschedule.
	 */
	if (reset)
		resched_hrt(rq->curr);
}

static void hrtick_clear(struct rq *rq)
{
	if (hrtimer_active(&rq->hrtick_timer))
		hrtimer_cancel(&rq->hrtick_timer);
}

/*
 * Update the timer from the possible pending state.
 */
static void hrtick_set(struct rq *rq)
{
	ktime_t time;
	int set, reset;
	unsigned long flags;

	WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());

	spin_lock_irqsave(&rq->lock, flags);
	set = __test_and_clear_bit(HRTICK_SET, &rq->hrtick_flags);
	reset = __test_and_clear_bit(HRTICK_RESET, &rq->hrtick_flags);
	time = rq->hrtick_expire;
	clear_thread_flag(TIF_HRTICK_RESCHED);
	spin_unlock_irqrestore(&rq->lock, flags);

	if (set) {
		hrtimer_start(&rq->hrtick_timer, time, HRTIMER_MODE_ABS);
		if (reset && !hrtimer_active(&rq->hrtick_timer))
			resched_rq(rq);
	} else
		hrtick_clear(rq);
}

/*
 * High-resolution timer tick.
 * Runs from hardirq context with interrupts disabled.
 */
static enum hrtimer_restart hrtick(struct hrtimer *timer)
{
	struct rq *rq = container_of(timer, struct rq, hrtick_timer);

	WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());

	spin_lock(&rq->lock);
1074
	update_rq_clock(rq);
P
Peter Zijlstra 已提交
1075 1076 1077 1078 1079 1080
	rq->curr->sched_class->task_tick(rq, rq->curr, 1);
	spin_unlock(&rq->lock);

	return HRTIMER_NORESTART;
}

1081
#ifdef CONFIG_SMP
1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136
static void hotplug_hrtick_disable(int cpu)
{
	struct rq *rq = cpu_rq(cpu);
	unsigned long flags;

	spin_lock_irqsave(&rq->lock, flags);
	rq->hrtick_flags = 0;
	__set_bit(HRTICK_BLOCK, &rq->hrtick_flags);
	spin_unlock_irqrestore(&rq->lock, flags);

	hrtick_clear(rq);
}

static void hotplug_hrtick_enable(int cpu)
{
	struct rq *rq = cpu_rq(cpu);
	unsigned long flags;

	spin_lock_irqsave(&rq->lock, flags);
	__clear_bit(HRTICK_BLOCK, &rq->hrtick_flags);
	spin_unlock_irqrestore(&rq->lock, flags);
}

static int
hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
{
	int cpu = (int)(long)hcpu;

	switch (action) {
	case CPU_UP_CANCELED:
	case CPU_UP_CANCELED_FROZEN:
	case CPU_DOWN_PREPARE:
	case CPU_DOWN_PREPARE_FROZEN:
	case CPU_DEAD:
	case CPU_DEAD_FROZEN:
		hotplug_hrtick_disable(cpu);
		return NOTIFY_OK;

	case CPU_UP_PREPARE:
	case CPU_UP_PREPARE_FROZEN:
	case CPU_DOWN_FAILED:
	case CPU_DOWN_FAILED_FROZEN:
	case CPU_ONLINE:
	case CPU_ONLINE_FROZEN:
		hotplug_hrtick_enable(cpu);
		return NOTIFY_OK;
	}

	return NOTIFY_DONE;
}

static void init_hrtick(void)
{
	hotcpu_notifier(hotplug_hrtick, 0);
}
1137
#endif /* CONFIG_SMP */
1138 1139

static void init_rq_hrtick(struct rq *rq)
P
Peter Zijlstra 已提交
1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175
{
	rq->hrtick_flags = 0;
	hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
	rq->hrtick_timer.function = hrtick;
	rq->hrtick_timer.cb_mode = HRTIMER_CB_IRQSAFE_NO_SOFTIRQ;
}

void hrtick_resched(void)
{
	struct rq *rq;
	unsigned long flags;

	if (!test_thread_flag(TIF_HRTICK_RESCHED))
		return;

	local_irq_save(flags);
	rq = cpu_rq(smp_processor_id());
	hrtick_set(rq);
	local_irq_restore(flags);
}
#else
static inline void hrtick_clear(struct rq *rq)
{
}

static inline void hrtick_set(struct rq *rq)
{
}

static inline void init_rq_hrtick(struct rq *rq)
{
}

void hrtick_resched(void)
{
}
1176 1177 1178 1179

static inline void init_hrtick(void)
{
}
P
Peter Zijlstra 已提交
1180 1181
#endif

I
Ingo Molnar 已提交
1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194
/*
 * resched_task - mark a task 'to be rescheduled now'.
 *
 * On UP this means the setting of the need_resched flag, on SMP it
 * might also involve a cross-CPU call to trigger the scheduler on
 * the target CPU.
 */
#ifdef CONFIG_SMP

#ifndef tsk_is_polling
#define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
#endif

P
Peter Zijlstra 已提交
1195
static void __resched_task(struct task_struct *p, int tif_bit)
I
Ingo Molnar 已提交
1196 1197 1198 1199 1200
{
	int cpu;

	assert_spin_locked(&task_rq(p)->lock);

P
Peter Zijlstra 已提交
1201
	if (unlikely(test_tsk_thread_flag(p, tif_bit)))
I
Ingo Molnar 已提交
1202 1203
		return;

P
Peter Zijlstra 已提交
1204
	set_tsk_thread_flag(p, tif_bit);
I
Ingo Molnar 已提交
1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225

	cpu = task_cpu(p);
	if (cpu == smp_processor_id())
		return;

	/* NEED_RESCHED must be visible before we test polling */
	smp_mb();
	if (!tsk_is_polling(p))
		smp_send_reschedule(cpu);
}

static void resched_cpu(int cpu)
{
	struct rq *rq = cpu_rq(cpu);
	unsigned long flags;

	if (!spin_trylock_irqsave(&rq->lock, flags))
		return;
	resched_task(cpu_curr(cpu));
	spin_unlock_irqrestore(&rq->lock, flags);
}
1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266

#ifdef CONFIG_NO_HZ
/*
 * When add_timer_on() enqueues a timer into the timer wheel of an
 * idle CPU then this timer might expire before the next timer event
 * which is scheduled to wake up that CPU. In case of a completely
 * idle system the next event might even be infinite time into the
 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
 * leaves the inner idle loop so the newly added timer is taken into
 * account when the CPU goes back to idle and evaluates the timer
 * wheel for the next timer event.
 */
void wake_up_idle_cpu(int cpu)
{
	struct rq *rq = cpu_rq(cpu);

	if (cpu == smp_processor_id())
		return;

	/*
	 * This is safe, as this function is called with the timer
	 * wheel base lock of (cpu) held. When the CPU is on the way
	 * to idle and has not yet set rq->curr to idle then it will
	 * be serialized on the timer wheel base lock and take the new
	 * timer into account automatically.
	 */
	if (rq->curr != rq->idle)
		return;

	/*
	 * We can set TIF_RESCHED on the idle task of the other CPU
	 * lockless. The worst case is that the other CPU runs the
	 * idle task through an additional NOOP schedule()
	 */
	set_tsk_thread_flag(rq->idle, TIF_NEED_RESCHED);

	/* NEED_RESCHED must be visible before we test polling */
	smp_mb();
	if (!tsk_is_polling(rq->idle))
		smp_send_reschedule(cpu);
}
1267
#endif /* CONFIG_NO_HZ */
1268

1269
#else /* !CONFIG_SMP */
P
Peter Zijlstra 已提交
1270
static void __resched_task(struct task_struct *p, int tif_bit)
I
Ingo Molnar 已提交
1271 1272
{
	assert_spin_locked(&task_rq(p)->lock);
P
Peter Zijlstra 已提交
1273
	set_tsk_thread_flag(p, tif_bit);
I
Ingo Molnar 已提交
1274
}
1275
#endif /* CONFIG_SMP */
I
Ingo Molnar 已提交
1276

1277 1278 1279 1280 1281 1282 1283 1284
#if BITS_PER_LONG == 32
# define WMULT_CONST	(~0UL)
#else
# define WMULT_CONST	(1UL << 32)
#endif

#define WMULT_SHIFT	32

I
Ingo Molnar 已提交
1285 1286 1287
/*
 * Shift right and round:
 */
I
Ingo Molnar 已提交
1288
#define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
I
Ingo Molnar 已提交
1289

1290 1291 1292
/*
 * delta *= weight / lw
 */
1293
static unsigned long
1294 1295 1296 1297 1298
calc_delta_mine(unsigned long delta_exec, unsigned long weight,
		struct load_weight *lw)
{
	u64 tmp;

1299 1300 1301 1302 1303 1304 1305
	if (!lw->inv_weight) {
		if (BITS_PER_LONG > 32 && unlikely(lw->weight >= WMULT_CONST))
			lw->inv_weight = 1;
		else
			lw->inv_weight = 1 + (WMULT_CONST-lw->weight/2)
				/ (lw->weight+1);
	}
1306 1307 1308 1309 1310

	tmp = (u64)delta_exec * weight;
	/*
	 * Check whether we'd overflow the 64-bit multiplication:
	 */
I
Ingo Molnar 已提交
1311
	if (unlikely(tmp > WMULT_CONST))
I
Ingo Molnar 已提交
1312
		tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
I
Ingo Molnar 已提交
1313 1314
			WMULT_SHIFT/2);
	else
I
Ingo Molnar 已提交
1315
		tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
1316

1317
	return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
1318 1319
}

1320
static inline void update_load_add(struct load_weight *lw, unsigned long inc)
1321 1322
{
	lw->weight += inc;
I
Ingo Molnar 已提交
1323
	lw->inv_weight = 0;
1324 1325
}

1326
static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
1327 1328
{
	lw->weight -= dec;
I
Ingo Molnar 已提交
1329
	lw->inv_weight = 0;
1330 1331
}

1332 1333 1334 1335
/*
 * To aid in avoiding the subversion of "niceness" due to uneven distribution
 * of tasks with abnormal "nice" values across CPUs the contribution that
 * each task makes to its run queue's load is weighted according to its
I
Ingo Molnar 已提交
1336
 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
1337 1338 1339 1340
 * scaled version of the new time slice allocation that they receive on time
 * slice expiry etc.
 */

I
Ingo Molnar 已提交
1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351
#define WEIGHT_IDLEPRIO		2
#define WMULT_IDLEPRIO		(1 << 31)

/*
 * Nice levels are multiplicative, with a gentle 10% change for every
 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
 * nice 1, it will get ~10% less CPU time than another CPU-bound task
 * that remained on nice 0.
 *
 * The "10% effect" is relative and cumulative: from _any_ nice level,
 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
1352 1353 1354
 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
 * If a task goes up by ~10% and another task goes down by ~10% then
 * the relative distance between them is ~25%.)
I
Ingo Molnar 已提交
1355 1356
 */
static const int prio_to_weight[40] = {
1357 1358 1359 1360 1361 1362 1363 1364
 /* -20 */     88761,     71755,     56483,     46273,     36291,
 /* -15 */     29154,     23254,     18705,     14949,     11916,
 /* -10 */      9548,      7620,      6100,      4904,      3906,
 /*  -5 */      3121,      2501,      1991,      1586,      1277,
 /*   0 */      1024,       820,       655,       526,       423,
 /*   5 */       335,       272,       215,       172,       137,
 /*  10 */       110,        87,        70,        56,        45,
 /*  15 */        36,        29,        23,        18,        15,
I
Ingo Molnar 已提交
1365 1366
};

1367 1368 1369 1370 1371 1372 1373
/*
 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
 *
 * In cases where the weight does not change often, we can use the
 * precalculated inverse to speed up arithmetics by turning divisions
 * into multiplications:
 */
I
Ingo Molnar 已提交
1374
static const u32 prio_to_wmult[40] = {
1375 1376 1377 1378 1379 1380 1381 1382
 /* -20 */     48388,     59856,     76040,     92818,    118348,
 /* -15 */    147320,    184698,    229616,    287308,    360437,
 /* -10 */    449829,    563644,    704093,    875809,   1099582,
 /*  -5 */   1376151,   1717300,   2157191,   2708050,   3363326,
 /*   0 */   4194304,   5237765,   6557202,   8165337,  10153587,
 /*   5 */  12820798,  15790321,  19976592,  24970740,  31350126,
 /*  10 */  39045157,  49367440,  61356676,  76695844,  95443717,
 /*  15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
I
Ingo Molnar 已提交
1383
};
1384

I
Ingo Molnar 已提交
1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397
static void activate_task(struct rq *rq, struct task_struct *p, int wakeup);

/*
 * runqueue iterator, to support SMP load-balancing between different
 * scheduling classes, without having to expose their internal data
 * structures to the load-balancing proper:
 */
struct rq_iterator {
	void *arg;
	struct task_struct *(*start)(void *);
	struct task_struct *(*next)(void *);
};

1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409
#ifdef CONFIG_SMP
static unsigned long
balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
	      unsigned long max_load_move, struct sched_domain *sd,
	      enum cpu_idle_type idle, int *all_pinned,
	      int *this_best_prio, struct rq_iterator *iterator);

static int
iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
		   struct sched_domain *sd, enum cpu_idle_type idle,
		   struct rq_iterator *iterator);
#endif
I
Ingo Molnar 已提交
1410

1411 1412 1413 1414 1415 1416
#ifdef CONFIG_CGROUP_CPUACCT
static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
#else
static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
#endif

1417 1418 1419 1420 1421 1422 1423 1424 1425 1426
static inline void inc_cpu_load(struct rq *rq, unsigned long load)
{
	update_load_add(&rq->load, load);
}

static inline void dec_cpu_load(struct rq *rq, unsigned long load)
{
	update_load_sub(&rq->load, load);
}

1427 1428 1429 1430 1431
#ifdef CONFIG_SMP
static unsigned long source_load(int cpu, int type);
static unsigned long target_load(int cpu, int type);
static unsigned long cpu_avg_load_per_task(int cpu);
static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd);
1432 1433 1434

#ifdef CONFIG_FAIR_GROUP_SCHED

1435
typedef void (*tg_visitor)(struct task_group *, int, struct sched_domain *);
1436 1437 1438 1439 1440

/*
 * Iterate the full tree, calling @down when first entering a node and @up when
 * leaving it for the final time.
 */
1441 1442
static void
walk_tg_tree(tg_visitor down, tg_visitor up, int cpu, struct sched_domain *sd)
1443 1444 1445 1446 1447 1448
{
	struct task_group *parent, *child;

	rcu_read_lock();
	parent = &root_task_group;
down:
1449
	(*down)(parent, cpu, sd);
1450 1451 1452 1453 1454 1455 1456
	list_for_each_entry_rcu(child, &parent->children, siblings) {
		parent = child;
		goto down;

up:
		continue;
	}
1457
	(*up)(parent, cpu, sd);
1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471

	child = parent;
	parent = parent->parent;
	if (parent)
		goto up;
	rcu_read_unlock();
}

static void __set_se_shares(struct sched_entity *se, unsigned long shares);

/*
 * Calculate and set the cpu's group shares.
 */
static void
1472
__update_group_shares_cpu(struct task_group *tg, int cpu,
1473
			  unsigned long sd_shares, unsigned long sd_rq_weight)
1474 1475 1476 1477 1478
{
	int boost = 0;
	unsigned long shares;
	unsigned long rq_weight;

1479
	if (!tg->se[cpu])
1480 1481
		return;

1482
	rq_weight = tg->cfs_rq[cpu]->load.weight;
1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493

	/*
	 * If there are currently no tasks on the cpu pretend there is one of
	 * average load so that when a new task gets to run here it will not
	 * get delayed by group starvation.
	 */
	if (!rq_weight) {
		boost = 1;
		rq_weight = NICE_0_LOAD;
	}

1494 1495 1496
	if (unlikely(rq_weight > sd_rq_weight))
		rq_weight = sd_rq_weight;

1497 1498 1499 1500 1501 1502
	/*
	 *           \Sum shares * rq_weight
	 * shares =  -----------------------
	 *               \Sum rq_weight
	 *
	 */
1503
	shares = (sd_shares * rq_weight) / (sd_rq_weight + 1);
1504 1505 1506 1507

	/*
	 * record the actual number of shares, not the boosted amount.
	 */
1508
	tg->cfs_rq[cpu]->shares = boost ? 0 : shares;
1509 1510 1511 1512 1513 1514

	if (shares < MIN_SHARES)
		shares = MIN_SHARES;
	else if (shares > MAX_SHARES)
		shares = MAX_SHARES;

1515
	__set_se_shares(tg->se[cpu], shares);
1516 1517 1518
}

/*
1519 1520 1521
 * Re-compute the task group their per cpu shares over the given domain.
 * This needs to be done in a bottom-up fashion because the rq weight of a
 * parent group depends on the shares of its child groups.
1522 1523
 */
static void
1524
tg_shares_up(struct task_group *tg, int cpu, struct sched_domain *sd)
1525
{
1526 1527 1528
	unsigned long rq_weight = 0;
	unsigned long shares = 0;
	int i;
1529

1530 1531 1532
	for_each_cpu_mask(i, sd->span) {
		rq_weight += tg->cfs_rq[i]->load.weight;
		shares += tg->cfs_rq[i]->shares;
1533 1534
	}

1535 1536 1537 1538 1539
	if ((!shares && rq_weight) || shares > tg->shares)
		shares = tg->shares;

	if (!sd->parent || !(sd->parent->flags & SD_LOAD_BALANCE))
		shares = tg->shares;
1540 1541 1542 1543 1544 1545

	for_each_cpu_mask(i, sd->span) {
		struct rq *rq = cpu_rq(i);
		unsigned long flags;

		spin_lock_irqsave(&rq->lock, flags);
1546
		__update_group_shares_cpu(tg, i, shares, rq_weight);
1547 1548 1549 1550 1551
		spin_unlock_irqrestore(&rq->lock, flags);
	}
}

/*
1552 1553 1554
 * Compute the cpu's hierarchical load factor for each task group.
 * This needs to be done in a top-down fashion because the load of a child
 * group is a fraction of its parents load.
1555
 */
1556
static void
1557
tg_load_down(struct task_group *tg, int cpu, struct sched_domain *sd)
1558
{
1559
	unsigned long load;
1560

1561 1562 1563 1564 1565 1566 1567
	if (!tg->parent) {
		load = cpu_rq(cpu)->load.weight;
	} else {
		load = tg->parent->cfs_rq[cpu]->h_load;
		load *= tg->cfs_rq[cpu]->shares;
		load /= tg->parent->cfs_rq[cpu]->load.weight + 1;
	}
1568

1569
	tg->cfs_rq[cpu]->h_load = load;
1570 1571
}

1572 1573
static void
tg_nop(struct task_group *tg, int cpu, struct sched_domain *sd)
1574 1575 1576
{
}

1577
static void update_shares(struct sched_domain *sd)
1578
{
1579
	walk_tg_tree(tg_nop, tg_shares_up, 0, sd);
1580 1581
}

1582 1583 1584 1585 1586 1587 1588
static void update_shares_locked(struct rq *rq, struct sched_domain *sd)
{
	spin_unlock(&rq->lock);
	update_shares(sd);
	spin_lock(&rq->lock);
}

1589
static void update_h_load(int cpu)
1590
{
1591
	walk_tg_tree(tg_load_down, tg_nop, cpu, NULL);
1592 1593 1594 1595 1596 1597 1598 1599 1600
}

static void cfs_rq_set_shares(struct cfs_rq *cfs_rq, unsigned long shares)
{
	cfs_rq->shares = shares;
}

#else

1601
static inline void update_shares(struct sched_domain *sd)
1602 1603 1604
{
}

1605 1606 1607 1608
static inline void update_shares_locked(struct rq *rq, struct sched_domain *sd)
{
}

1609 1610
#endif

1611 1612
#endif

I
Ingo Molnar 已提交
1613 1614
#include "sched_stats.h"
#include "sched_idletask.c"
1615 1616
#include "sched_fair.c"
#include "sched_rt.c"
I
Ingo Molnar 已提交
1617 1618 1619 1620 1621
#ifdef CONFIG_SCHED_DEBUG
# include "sched_debug.c"
#endif

#define sched_class_highest (&rt_sched_class)
1622 1623
#define for_each_class(class) \
   for (class = sched_class_highest; class; class = class->next)
I
Ingo Molnar 已提交
1624

1625
static void inc_nr_running(struct rq *rq)
1626 1627 1628 1629
{
	rq->nr_running++;
}

1630
static void dec_nr_running(struct rq *rq)
1631 1632 1633 1634
{
	rq->nr_running--;
}

1635 1636 1637
static void set_load_weight(struct task_struct *p)
{
	if (task_has_rt_policy(p)) {
I
Ingo Molnar 已提交
1638 1639 1640 1641
		p->se.load.weight = prio_to_weight[0] * 2;
		p->se.load.inv_weight = prio_to_wmult[0] >> 1;
		return;
	}
1642

I
Ingo Molnar 已提交
1643 1644 1645 1646 1647 1648 1649 1650
	/*
	 * SCHED_IDLE tasks get minimal weight:
	 */
	if (p->policy == SCHED_IDLE) {
		p->se.load.weight = WEIGHT_IDLEPRIO;
		p->se.load.inv_weight = WMULT_IDLEPRIO;
		return;
	}
1651

I
Ingo Molnar 已提交
1652 1653
	p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
	p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
1654 1655
}

1656
static void enqueue_task(struct rq *rq, struct task_struct *p, int wakeup)
1657
{
I
Ingo Molnar 已提交
1658
	sched_info_queued(p);
1659
	p->sched_class->enqueue_task(rq, p, wakeup);
I
Ingo Molnar 已提交
1660
	p->se.on_rq = 1;
1661 1662
}

1663
static void dequeue_task(struct rq *rq, struct task_struct *p, int sleep)
1664
{
1665
	p->sched_class->dequeue_task(rq, p, sleep);
I
Ingo Molnar 已提交
1666
	p->se.on_rq = 0;
1667 1668
}

1669
/*
I
Ingo Molnar 已提交
1670
 * __normal_prio - return the priority that is based on the static prio
1671 1672 1673
 */
static inline int __normal_prio(struct task_struct *p)
{
I
Ingo Molnar 已提交
1674
	return p->static_prio;
1675 1676
}

1677 1678 1679 1680 1681 1682 1683
/*
 * Calculate the expected normal priority: i.e. priority
 * without taking RT-inheritance into account. Might be
 * boosted by interactivity modifiers. Changes upon fork,
 * setprio syscalls, and whenever the interactivity
 * estimator recalculates.
 */
1684
static inline int normal_prio(struct task_struct *p)
1685 1686 1687
{
	int prio;

1688
	if (task_has_rt_policy(p))
1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701
		prio = MAX_RT_PRIO-1 - p->rt_priority;
	else
		prio = __normal_prio(p);
	return prio;
}

/*
 * Calculate the current priority, i.e. the priority
 * taken into account by the scheduler. This value might
 * be boosted by RT tasks, or might be boosted by
 * interactivity modifiers. Will be RT if the task got
 * RT-boosted. If not then it returns p->normal_prio.
 */
1702
static int effective_prio(struct task_struct *p)
1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714
{
	p->normal_prio = normal_prio(p);
	/*
	 * If we are RT tasks or we were boosted to RT priority,
	 * keep the priority unchanged. Otherwise, update priority
	 * to the normal priority:
	 */
	if (!rt_prio(p->prio))
		return p->normal_prio;
	return p->prio;
}

L
Linus Torvalds 已提交
1715
/*
I
Ingo Molnar 已提交
1716
 * activate_task - move a task to the runqueue.
L
Linus Torvalds 已提交
1717
 */
I
Ingo Molnar 已提交
1718
static void activate_task(struct rq *rq, struct task_struct *p, int wakeup)
L
Linus Torvalds 已提交
1719
{
1720
	if (task_contributes_to_load(p))
I
Ingo Molnar 已提交
1721
		rq->nr_uninterruptible--;
L
Linus Torvalds 已提交
1722

1723
	enqueue_task(rq, p, wakeup);
1724
	inc_nr_running(rq);
L
Linus Torvalds 已提交
1725 1726 1727 1728 1729
}

/*
 * deactivate_task - remove a task from the runqueue.
 */
1730
static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep)
L
Linus Torvalds 已提交
1731
{
1732
	if (task_contributes_to_load(p))
I
Ingo Molnar 已提交
1733 1734
		rq->nr_uninterruptible++;

1735
	dequeue_task(rq, p, sleep);
1736
	dec_nr_running(rq);
L
Linus Torvalds 已提交
1737 1738 1739 1740 1741 1742
}

/**
 * task_curr - is this task currently executing on a CPU?
 * @p: the task in question.
 */
1743
inline int task_curr(const struct task_struct *p)
L
Linus Torvalds 已提交
1744 1745 1746 1747
{
	return cpu_curr(task_cpu(p)) == p;
}

I
Ingo Molnar 已提交
1748 1749
static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
{
P
Peter Zijlstra 已提交
1750
	set_task_rq(p, cpu);
I
Ingo Molnar 已提交
1751
#ifdef CONFIG_SMP
1752 1753 1754 1755 1756 1757
	/*
	 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
	 * successfuly executed on another CPU. We must ensure that updates of
	 * per-task data have been completed by this moment.
	 */
	smp_wmb();
I
Ingo Molnar 已提交
1758 1759
	task_thread_info(p)->cpu = cpu;
#endif
1760 1761
}

1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773
static inline void check_class_changed(struct rq *rq, struct task_struct *p,
				       const struct sched_class *prev_class,
				       int oldprio, int running)
{
	if (prev_class != p->sched_class) {
		if (prev_class->switched_from)
			prev_class->switched_from(rq, p, running);
		p->sched_class->switched_to(rq, p, running);
	} else
		p->sched_class->prio_changed(rq, p, oldprio, running);
}

L
Linus Torvalds 已提交
1774
#ifdef CONFIG_SMP
I
Ingo Molnar 已提交
1775

1776 1777 1778 1779 1780 1781
/* Used instead of source_load when we know the type == 0 */
static unsigned long weighted_cpuload(const int cpu)
{
	return cpu_rq(cpu)->load.weight;
}

1782 1783 1784
/*
 * Is this task likely cache-hot:
 */
1785
static int
1786 1787 1788 1789
task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
{
	s64 delta;

1790 1791 1792
	/*
	 * Buddy candidates are cache hot:
	 */
I
Ingo Molnar 已提交
1793
	if (sched_feat(CACHE_HOT_BUDDY) && (&p->se == cfs_rq_of(&p->se)->next))
1794 1795
		return 1;

1796 1797 1798
	if (p->sched_class != &fair_sched_class)
		return 0;

1799 1800 1801 1802 1803
	if (sysctl_sched_migration_cost == -1)
		return 1;
	if (sysctl_sched_migration_cost == 0)
		return 0;

1804 1805 1806 1807 1808 1809
	delta = now - p->se.exec_start;

	return delta < (s64)sysctl_sched_migration_cost;
}


I
Ingo Molnar 已提交
1810
void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
I
Ingo Molnar 已提交
1811
{
I
Ingo Molnar 已提交
1812 1813
	int old_cpu = task_cpu(p);
	struct rq *old_rq = cpu_rq(old_cpu), *new_rq = cpu_rq(new_cpu);
1814 1815
	struct cfs_rq *old_cfsrq = task_cfs_rq(p),
		      *new_cfsrq = cpu_cfs_rq(old_cfsrq, new_cpu);
1816
	u64 clock_offset;
I
Ingo Molnar 已提交
1817 1818

	clock_offset = old_rq->clock - new_rq->clock;
I
Ingo Molnar 已提交
1819 1820 1821 1822

#ifdef CONFIG_SCHEDSTATS
	if (p->se.wait_start)
		p->se.wait_start -= clock_offset;
I
Ingo Molnar 已提交
1823 1824 1825 1826
	if (p->se.sleep_start)
		p->se.sleep_start -= clock_offset;
	if (p->se.block_start)
		p->se.block_start -= clock_offset;
1827 1828 1829 1830 1831
	if (old_cpu != new_cpu) {
		schedstat_inc(p, se.nr_migrations);
		if (task_hot(p, old_rq->clock, NULL))
			schedstat_inc(p, se.nr_forced2_migrations);
	}
I
Ingo Molnar 已提交
1832
#endif
1833 1834
	p->se.vruntime -= old_cfsrq->min_vruntime -
					 new_cfsrq->min_vruntime;
I
Ingo Molnar 已提交
1835 1836

	__set_task_cpu(p, new_cpu);
I
Ingo Molnar 已提交
1837 1838
}

1839
struct migration_req {
L
Linus Torvalds 已提交
1840 1841
	struct list_head list;

1842
	struct task_struct *task;
L
Linus Torvalds 已提交
1843 1844 1845
	int dest_cpu;

	struct completion done;
1846
};
L
Linus Torvalds 已提交
1847 1848 1849 1850 1851

/*
 * The task's runqueue lock must be held.
 * Returns true if you have to wait for migration thread.
 */
1852
static int
1853
migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
L
Linus Torvalds 已提交
1854
{
1855
	struct rq *rq = task_rq(p);
L
Linus Torvalds 已提交
1856 1857 1858 1859 1860

	/*
	 * If the task is not on a runqueue (and not running), then
	 * it is sufficient to simply update the task's cpu field.
	 */
I
Ingo Molnar 已提交
1861
	if (!p->se.on_rq && !task_running(rq, p)) {
L
Linus Torvalds 已提交
1862 1863 1864 1865 1866 1867 1868 1869
		set_task_cpu(p, dest_cpu);
		return 0;
	}

	init_completion(&req->done);
	req->task = p;
	req->dest_cpu = dest_cpu;
	list_add(&req->list, &rq->migration_queue);
1870

L
Linus Torvalds 已提交
1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882
	return 1;
}

/*
 * wait_task_inactive - wait for a thread to unschedule.
 *
 * The caller must ensure that the task *will* unschedule sometime soon,
 * else this function might spin for a *long* time. This function can't
 * be called with interrupts off, or it may introduce deadlock with
 * smp_call_function() if an IPI is sent by the same process we are
 * waiting to become inactive.
 */
1883
void wait_task_inactive(struct task_struct *p)
L
Linus Torvalds 已提交
1884 1885
{
	unsigned long flags;
I
Ingo Molnar 已提交
1886
	int running, on_rq;
1887
	struct rq *rq;
L
Linus Torvalds 已提交
1888

1889 1890 1891 1892 1893 1894 1895 1896
	for (;;) {
		/*
		 * We do the initial early heuristics without holding
		 * any task-queue locks at all. We'll only try to get
		 * the runqueue lock when things look like they will
		 * work out!
		 */
		rq = task_rq(p);
1897

1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910
		/*
		 * If the task is actively running on another CPU
		 * still, just relax and busy-wait without holding
		 * any locks.
		 *
		 * NOTE! Since we don't hold any locks, it's not
		 * even sure that "rq" stays as the right runqueue!
		 * But we don't care, since "task_running()" will
		 * return false if the runqueue has changed and p
		 * is actually now running somewhere else!
		 */
		while (task_running(rq, p))
			cpu_relax();
1911

1912 1913 1914 1915 1916 1917 1918 1919 1920
		/*
		 * Ok, time to look more closely! We need the rq
		 * lock now, to be *sure*. If we're wrong, we'll
		 * just go back and repeat.
		 */
		rq = task_rq_lock(p, &flags);
		running = task_running(rq, p);
		on_rq = p->se.on_rq;
		task_rq_unlock(rq, &flags);
1921

1922 1923 1924 1925 1926 1927 1928 1929 1930 1931
		/*
		 * Was it really running after all now that we
		 * checked with the proper locks actually held?
		 *
		 * Oops. Go back and try again..
		 */
		if (unlikely(running)) {
			cpu_relax();
			continue;
		}
1932

1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945
		/*
		 * It's not enough that it's not actively running,
		 * it must be off the runqueue _entirely_, and not
		 * preempted!
		 *
		 * So if it wa still runnable (but just not actively
		 * running right now), it's preempted, and we should
		 * yield - it could be a while.
		 */
		if (unlikely(on_rq)) {
			schedule_timeout_uninterruptible(1);
			continue;
		}
1946

1947 1948 1949 1950 1951 1952 1953
		/*
		 * Ahh, all good. It wasn't running, and it wasn't
		 * runnable, which means that it will never become
		 * running in the future either. We're all done!
		 */
		break;
	}
L
Linus Torvalds 已提交
1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968
}

/***
 * kick_process - kick a running thread to enter/exit the kernel
 * @p: the to-be-kicked thread
 *
 * Cause a process which is running on another CPU to enter
 * kernel-mode, without any delay. (to get signals handled.)
 *
 * NOTE: this function doesnt have to take the runqueue lock,
 * because all it wants to ensure is that the remote task enters
 * the kernel. If the IPI races and the task has been migrated
 * to another CPU then no harm is done and the purpose has been
 * achieved as well.
 */
1969
void kick_process(struct task_struct *p)
L
Linus Torvalds 已提交
1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980
{
	int cpu;

	preempt_disable();
	cpu = task_cpu(p);
	if ((cpu != smp_processor_id()) && task_curr(p))
		smp_send_reschedule(cpu);
	preempt_enable();
}

/*
1981 1982
 * Return a low guess at the load of a migration-source cpu weighted
 * according to the scheduling class and "nice" value.
L
Linus Torvalds 已提交
1983 1984 1985 1986
 *
 * We want to under-estimate the load of migration sources, to
 * balance conservatively.
 */
A
Alexey Dobriyan 已提交
1987
static unsigned long source_load(int cpu, int type)
L
Linus Torvalds 已提交
1988
{
1989
	struct rq *rq = cpu_rq(cpu);
I
Ingo Molnar 已提交
1990
	unsigned long total = weighted_cpuload(cpu);
1991

1992
	if (type == 0)
I
Ingo Molnar 已提交
1993
		return total;
1994

I
Ingo Molnar 已提交
1995
	return min(rq->cpu_load[type-1], total);
L
Linus Torvalds 已提交
1996 1997 1998
}

/*
1999 2000
 * Return a high guess at the load of a migration-target cpu weighted
 * according to the scheduling class and "nice" value.
L
Linus Torvalds 已提交
2001
 */
A
Alexey Dobriyan 已提交
2002
static unsigned long target_load(int cpu, int type)
L
Linus Torvalds 已提交
2003
{
2004
	struct rq *rq = cpu_rq(cpu);
I
Ingo Molnar 已提交
2005
	unsigned long total = weighted_cpuload(cpu);
2006

N
Nick Piggin 已提交
2007
	if (type == 0)
I
Ingo Molnar 已提交
2008
		return total;
2009

I
Ingo Molnar 已提交
2010
	return max(rq->cpu_load[type-1], total);
2011 2012 2013 2014 2015
}

/*
 * Return the average load per task on the cpu's run queue
 */
2016
static unsigned long cpu_avg_load_per_task(int cpu)
2017
{
2018
	struct rq *rq = cpu_rq(cpu);
I
Ingo Molnar 已提交
2019
	unsigned long total = weighted_cpuload(cpu);
2020 2021
	unsigned long n = rq->nr_running;

I
Ingo Molnar 已提交
2022
	return n ? total / n : SCHED_LOAD_SCALE;
L
Linus Torvalds 已提交
2023 2024
}

N
Nick Piggin 已提交
2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041
/*
 * find_idlest_group finds and returns the least busy CPU group within the
 * domain.
 */
static struct sched_group *
find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
{
	struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups;
	unsigned long min_load = ULONG_MAX, this_load = 0;
	int load_idx = sd->forkexec_idx;
	int imbalance = 100 + (sd->imbalance_pct-100)/2;

	do {
		unsigned long load, avg_load;
		int local_group;
		int i;

2042 2043
		/* Skip over this group if it has no CPUs allowed */
		if (!cpus_intersects(group->cpumask, p->cpus_allowed))
2044
			continue;
2045

N
Nick Piggin 已提交
2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061
		local_group = cpu_isset(this_cpu, group->cpumask);

		/* Tally up the load of all CPUs in the group */
		avg_load = 0;

		for_each_cpu_mask(i, group->cpumask) {
			/* Bias balancing toward cpus of our domain */
			if (local_group)
				load = source_load(i, load_idx);
			else
				load = target_load(i, load_idx);

			avg_load += load;
		}

		/* Adjust by relative CPU power of the group */
2062 2063
		avg_load = sg_div_cpu_power(group,
				avg_load * SCHED_LOAD_SCALE);
N
Nick Piggin 已提交
2064 2065 2066 2067 2068 2069 2070 2071

		if (local_group) {
			this_load = avg_load;
			this = group;
		} else if (avg_load < min_load) {
			min_load = avg_load;
			idlest = group;
		}
2072
	} while (group = group->next, group != sd->groups);
N
Nick Piggin 已提交
2073 2074 2075 2076 2077 2078 2079

	if (!idlest || 100*this_load < imbalance*min_load)
		return NULL;
	return idlest;
}

/*
2080
 * find_idlest_cpu - find the idlest cpu among the cpus in group.
N
Nick Piggin 已提交
2081
 */
I
Ingo Molnar 已提交
2082
static int
2083 2084
find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu,
		cpumask_t *tmp)
N
Nick Piggin 已提交
2085 2086 2087 2088 2089
{
	unsigned long load, min_load = ULONG_MAX;
	int idlest = -1;
	int i;

2090
	/* Traverse only the allowed CPUs */
2091
	cpus_and(*tmp, group->cpumask, p->cpus_allowed);
2092

2093
	for_each_cpu_mask(i, *tmp) {
2094
		load = weighted_cpuload(i);
N
Nick Piggin 已提交
2095 2096 2097 2098 2099 2100 2101 2102 2103 2104

		if (load < min_load || (load == min_load && i == this_cpu)) {
			min_load = load;
			idlest = i;
		}
	}

	return idlest;
}

N
Nick Piggin 已提交
2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119
/*
 * sched_balance_self: balance the current task (running on cpu) in domains
 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
 * SD_BALANCE_EXEC.
 *
 * Balance, ie. select the least loaded group.
 *
 * Returns the target CPU number, or the same CPU if no balancing is needed.
 *
 * preempt must be disabled.
 */
static int sched_balance_self(int cpu, int flag)
{
	struct task_struct *t = current;
	struct sched_domain *tmp, *sd = NULL;
N
Nick Piggin 已提交
2120

2121
	for_each_domain(cpu, tmp) {
I
Ingo Molnar 已提交
2122 2123 2124
		/*
		 * If power savings logic is enabled for a domain, stop there.
		 */
2125 2126
		if (tmp->flags & SD_POWERSAVINGS_BALANCE)
			break;
N
Nick Piggin 已提交
2127 2128
		if (tmp->flags & flag)
			sd = tmp;
2129
	}
N
Nick Piggin 已提交
2130

2131 2132 2133
	if (sd)
		update_shares(sd);

N
Nick Piggin 已提交
2134
	while (sd) {
2135
		cpumask_t span, tmpmask;
N
Nick Piggin 已提交
2136
		struct sched_group *group;
2137 2138 2139 2140 2141 2142
		int new_cpu, weight;

		if (!(sd->flags & flag)) {
			sd = sd->child;
			continue;
		}
N
Nick Piggin 已提交
2143 2144 2145

		span = sd->span;
		group = find_idlest_group(sd, t, cpu);
2146 2147 2148 2149
		if (!group) {
			sd = sd->child;
			continue;
		}
N
Nick Piggin 已提交
2150

2151
		new_cpu = find_idlest_cpu(group, t, cpu, &tmpmask);
2152 2153 2154 2155 2156
		if (new_cpu == -1 || new_cpu == cpu) {
			/* Now try balancing at a lower domain level of cpu */
			sd = sd->child;
			continue;
		}
N
Nick Piggin 已提交
2157

2158
		/* Now try balancing at a lower domain level of new_cpu */
N
Nick Piggin 已提交
2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174
		cpu = new_cpu;
		sd = NULL;
		weight = cpus_weight(span);
		for_each_domain(cpu, tmp) {
			if (weight <= cpus_weight(tmp->span))
				break;
			if (tmp->flags & flag)
				sd = tmp;
		}
		/* while loop will break here if sd == NULL */
	}

	return cpu;
}

#endif /* CONFIG_SMP */
L
Linus Torvalds 已提交
2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189

/***
 * try_to_wake_up - wake up a thread
 * @p: the to-be-woken-up thread
 * @state: the mask of task states that can be woken
 * @sync: do a synchronous wakeup?
 *
 * Put it on the run-queue if it's not already there. The "current"
 * thread is always on the run-queue (except when the actual
 * re-schedule is in progress), and as such you're allowed to do
 * the simpler "current->state = TASK_RUNNING" to mark yourself
 * runnable without the overhead of this.
 *
 * returns failure only if the task is already active.
 */
2190
static int try_to_wake_up(struct task_struct *p, unsigned int state, int sync)
L
Linus Torvalds 已提交
2191
{
2192
	int cpu, orig_cpu, this_cpu, success = 0;
L
Linus Torvalds 已提交
2193 2194
	unsigned long flags;
	long old_state;
2195
	struct rq *rq;
L
Linus Torvalds 已提交
2196

2197 2198 2199
	if (!sched_feat(SYNC_WAKEUPS))
		sync = 0;

2200
	smp_wmb();
L
Linus Torvalds 已提交
2201 2202 2203 2204 2205
	rq = task_rq_lock(p, &flags);
	old_state = p->state;
	if (!(old_state & state))
		goto out;

I
Ingo Molnar 已提交
2206
	if (p->se.on_rq)
L
Linus Torvalds 已提交
2207 2208 2209
		goto out_running;

	cpu = task_cpu(p);
2210
	orig_cpu = cpu;
L
Linus Torvalds 已提交
2211 2212 2213 2214 2215 2216
	this_cpu = smp_processor_id();

#ifdef CONFIG_SMP
	if (unlikely(task_running(rq, p)))
		goto out_activate;

2217 2218 2219
	cpu = p->sched_class->select_task_rq(p, sync);
	if (cpu != orig_cpu) {
		set_task_cpu(p, cpu);
L
Linus Torvalds 已提交
2220 2221 2222 2223 2224 2225
		task_rq_unlock(rq, &flags);
		/* might preempt at this point */
		rq = task_rq_lock(p, &flags);
		old_state = p->state;
		if (!(old_state & state))
			goto out;
I
Ingo Molnar 已提交
2226
		if (p->se.on_rq)
L
Linus Torvalds 已提交
2227 2228 2229 2230 2231 2232
			goto out_running;

		this_cpu = smp_processor_id();
		cpu = task_cpu(p);
	}

2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245
#ifdef CONFIG_SCHEDSTATS
	schedstat_inc(rq, ttwu_count);
	if (cpu == this_cpu)
		schedstat_inc(rq, ttwu_local);
	else {
		struct sched_domain *sd;
		for_each_domain(this_cpu, sd) {
			if (cpu_isset(cpu, sd->span)) {
				schedstat_inc(sd, ttwu_wake_remote);
				break;
			}
		}
	}
2246
#endif /* CONFIG_SCHEDSTATS */
2247

L
Linus Torvalds 已提交
2248 2249
out_activate:
#endif /* CONFIG_SMP */
2250 2251 2252 2253 2254 2255 2256 2257 2258
	schedstat_inc(p, se.nr_wakeups);
	if (sync)
		schedstat_inc(p, se.nr_wakeups_sync);
	if (orig_cpu != cpu)
		schedstat_inc(p, se.nr_wakeups_migrate);
	if (cpu == this_cpu)
		schedstat_inc(p, se.nr_wakeups_local);
	else
		schedstat_inc(p, se.nr_wakeups_remote);
I
Ingo Molnar 已提交
2259
	update_rq_clock(rq);
I
Ingo Molnar 已提交
2260
	activate_task(rq, p, 1);
L
Linus Torvalds 已提交
2261 2262 2263
	success = 1;

out_running:
I
Ingo Molnar 已提交
2264 2265
	check_preempt_curr(rq, p);

L
Linus Torvalds 已提交
2266
	p->state = TASK_RUNNING;
2267 2268 2269 2270
#ifdef CONFIG_SMP
	if (p->sched_class->task_wake_up)
		p->sched_class->task_wake_up(rq, p);
#endif
L
Linus Torvalds 已提交
2271 2272 2273 2274 2275 2276
out:
	task_rq_unlock(rq, &flags);

	return success;
}

2277
int wake_up_process(struct task_struct *p)
L
Linus Torvalds 已提交
2278
{
2279
	return try_to_wake_up(p, TASK_ALL, 0);
L
Linus Torvalds 已提交
2280 2281 2282
}
EXPORT_SYMBOL(wake_up_process);

2283
int wake_up_state(struct task_struct *p, unsigned int state)
L
Linus Torvalds 已提交
2284 2285 2286 2287 2288 2289 2290
{
	return try_to_wake_up(p, state, 0);
}

/*
 * Perform scheduler related setup for a newly forked process p.
 * p is forked by current.
I
Ingo Molnar 已提交
2291 2292 2293 2294 2295 2296 2297
 *
 * __sched_fork() is basic setup used by init_idle() too:
 */
static void __sched_fork(struct task_struct *p)
{
	p->se.exec_start		= 0;
	p->se.sum_exec_runtime		= 0;
2298
	p->se.prev_sum_exec_runtime	= 0;
I
Ingo Molnar 已提交
2299 2300
	p->se.last_wakeup		= 0;
	p->se.avg_overlap		= 0;
I
Ingo Molnar 已提交
2301 2302 2303

#ifdef CONFIG_SCHEDSTATS
	p->se.wait_start		= 0;
I
Ingo Molnar 已提交
2304 2305 2306 2307 2308 2309
	p->se.sum_sleep_runtime		= 0;
	p->se.sleep_start		= 0;
	p->se.block_start		= 0;
	p->se.sleep_max			= 0;
	p->se.block_max			= 0;
	p->se.exec_max			= 0;
I
Ingo Molnar 已提交
2310
	p->se.slice_max			= 0;
I
Ingo Molnar 已提交
2311
	p->se.wait_max			= 0;
I
Ingo Molnar 已提交
2312
#endif
N
Nick Piggin 已提交
2313

P
Peter Zijlstra 已提交
2314
	INIT_LIST_HEAD(&p->rt.run_list);
I
Ingo Molnar 已提交
2315
	p->se.on_rq = 0;
2316
	INIT_LIST_HEAD(&p->se.group_node);
N
Nick Piggin 已提交
2317

2318 2319 2320 2321
#ifdef CONFIG_PREEMPT_NOTIFIERS
	INIT_HLIST_HEAD(&p->preempt_notifiers);
#endif

L
Linus Torvalds 已提交
2322 2323 2324 2325 2326 2327 2328
	/*
	 * We mark the process as running here, but have not actually
	 * inserted it onto the runqueue yet. This guarantees that
	 * nobody will actually run it, and a signal or other external
	 * event cannot wake it up and insert it on the runqueue either.
	 */
	p->state = TASK_RUNNING;
I
Ingo Molnar 已提交
2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342
}

/*
 * fork()/clone()-time setup:
 */
void sched_fork(struct task_struct *p, int clone_flags)
{
	int cpu = get_cpu();

	__sched_fork(p);

#ifdef CONFIG_SMP
	cpu = sched_balance_self(cpu, SD_BALANCE_FORK);
#endif
I
Ingo Molnar 已提交
2343
	set_task_cpu(p, cpu);
2344 2345 2346 2347 2348

	/*
	 * Make sure we do not leak PI boosting priority to the child:
	 */
	p->prio = current->normal_prio;
H
Hiroshi Shimamoto 已提交
2349 2350
	if (!rt_prio(p->prio))
		p->sched_class = &fair_sched_class;
2351

2352
#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
I
Ingo Molnar 已提交
2353
	if (likely(sched_info_on()))
2354
		memset(&p->sched_info, 0, sizeof(p->sched_info));
L
Linus Torvalds 已提交
2355
#endif
2356
#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
2357 2358
	p->oncpu = 0;
#endif
L
Linus Torvalds 已提交
2359
#ifdef CONFIG_PREEMPT
2360
	/* Want to start with kernel preemption disabled. */
A
Al Viro 已提交
2361
	task_thread_info(p)->preempt_count = 1;
L
Linus Torvalds 已提交
2362
#endif
N
Nick Piggin 已提交
2363
	put_cpu();
L
Linus Torvalds 已提交
2364 2365 2366 2367 2368 2369 2370 2371 2372
}

/*
 * wake_up_new_task - wake up a newly created task for the first time.
 *
 * This function will do some initial scheduler statistics housekeeping
 * that must be done for every newly created context, then puts the task
 * on the runqueue and wakes it.
 */
2373
void wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
L
Linus Torvalds 已提交
2374 2375
{
	unsigned long flags;
I
Ingo Molnar 已提交
2376
	struct rq *rq;
L
Linus Torvalds 已提交
2377 2378

	rq = task_rq_lock(p, &flags);
N
Nick Piggin 已提交
2379
	BUG_ON(p->state != TASK_RUNNING);
I
Ingo Molnar 已提交
2380
	update_rq_clock(rq);
L
Linus Torvalds 已提交
2381 2382 2383

	p->prio = effective_prio(p);

2384
	if (!p->sched_class->task_new || !current->se.on_rq) {
I
Ingo Molnar 已提交
2385
		activate_task(rq, p, 0);
L
Linus Torvalds 已提交
2386 2387
	} else {
		/*
I
Ingo Molnar 已提交
2388 2389
		 * Let the scheduling class do new task startup
		 * management (if any):
L
Linus Torvalds 已提交
2390
		 */
2391
		p->sched_class->task_new(rq, p);
2392
		inc_nr_running(rq);
L
Linus Torvalds 已提交
2393
	}
I
Ingo Molnar 已提交
2394
	check_preempt_curr(rq, p);
2395 2396 2397 2398
#ifdef CONFIG_SMP
	if (p->sched_class->task_wake_up)
		p->sched_class->task_wake_up(rq, p);
#endif
I
Ingo Molnar 已提交
2399
	task_rq_unlock(rq, &flags);
L
Linus Torvalds 已提交
2400 2401
}

2402 2403 2404
#ifdef CONFIG_PREEMPT_NOTIFIERS

/**
R
Randy Dunlap 已提交
2405 2406
 * preempt_notifier_register - tell me when current is being being preempted & rescheduled
 * @notifier: notifier struct to register
2407 2408 2409 2410 2411 2412 2413 2414 2415
 */
void preempt_notifier_register(struct preempt_notifier *notifier)
{
	hlist_add_head(&notifier->link, &current->preempt_notifiers);
}
EXPORT_SYMBOL_GPL(preempt_notifier_register);

/**
 * preempt_notifier_unregister - no longer interested in preemption notifications
R
Randy Dunlap 已提交
2416
 * @notifier: notifier struct to unregister
2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445
 *
 * This is safe to call from within a preemption notifier.
 */
void preempt_notifier_unregister(struct preempt_notifier *notifier)
{
	hlist_del(&notifier->link);
}
EXPORT_SYMBOL_GPL(preempt_notifier_unregister);

static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
{
	struct preempt_notifier *notifier;
	struct hlist_node *node;

	hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
		notifier->ops->sched_in(notifier, raw_smp_processor_id());
}

static void
fire_sched_out_preempt_notifiers(struct task_struct *curr,
				 struct task_struct *next)
{
	struct preempt_notifier *notifier;
	struct hlist_node *node;

	hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
		notifier->ops->sched_out(notifier, next);
}

2446
#else /* !CONFIG_PREEMPT_NOTIFIERS */
2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457

static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
{
}

static void
fire_sched_out_preempt_notifiers(struct task_struct *curr,
				 struct task_struct *next)
{
}

2458
#endif /* CONFIG_PREEMPT_NOTIFIERS */
2459

2460 2461 2462
/**
 * prepare_task_switch - prepare to switch tasks
 * @rq: the runqueue preparing to switch
R
Randy Dunlap 已提交
2463
 * @prev: the current task that is being switched out
2464 2465 2466 2467 2468 2469 2470 2471 2472
 * @next: the task we are going to switch to.
 *
 * This is called with the rq lock held and interrupts off. It must
 * be paired with a subsequent finish_task_switch after the context
 * switch.
 *
 * prepare_task_switch sets up locking and calls architecture specific
 * hooks.
 */
2473 2474 2475
static inline void
prepare_task_switch(struct rq *rq, struct task_struct *prev,
		    struct task_struct *next)
2476
{
2477
	fire_sched_out_preempt_notifiers(prev, next);
2478 2479 2480 2481
	prepare_lock_switch(rq, next);
	prepare_arch_switch(next);
}

L
Linus Torvalds 已提交
2482 2483
/**
 * finish_task_switch - clean up after a task-switch
2484
 * @rq: runqueue associated with task-switch
L
Linus Torvalds 已提交
2485 2486
 * @prev: the thread we just switched away from.
 *
2487 2488 2489 2490
 * finish_task_switch must be called after the context switch, paired
 * with a prepare_task_switch call before the context switch.
 * finish_task_switch will reconcile locking set up by prepare_task_switch,
 * and do any other architecture-specific cleanup actions.
L
Linus Torvalds 已提交
2491 2492
 *
 * Note that we may have delayed dropping an mm in context_switch(). If
I
Ingo Molnar 已提交
2493
 * so, we finish that here outside of the runqueue lock. (Doing it
L
Linus Torvalds 已提交
2494 2495 2496
 * with the lock held can cause deadlocks; see schedule() for
 * details.)
 */
A
Alexey Dobriyan 已提交
2497
static void finish_task_switch(struct rq *rq, struct task_struct *prev)
L
Linus Torvalds 已提交
2498 2499 2500
	__releases(rq->lock)
{
	struct mm_struct *mm = rq->prev_mm;
O
Oleg Nesterov 已提交
2501
	long prev_state;
L
Linus Torvalds 已提交
2502 2503 2504 2505 2506

	rq->prev_mm = NULL;

	/*
	 * A task struct has one reference for the use as "current".
2507
	 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
O
Oleg Nesterov 已提交
2508 2509
	 * schedule one last time. The schedule call will never return, and
	 * the scheduled task must drop that reference.
2510
	 * The test for TASK_DEAD must occur while the runqueue locks are
L
Linus Torvalds 已提交
2511 2512 2513 2514 2515
	 * still held, otherwise prev could be scheduled on another cpu, die
	 * there before we look at prev->state, and then the reference would
	 * be dropped twice.
	 *		Manfred Spraul <manfred@colorfullife.com>
	 */
O
Oleg Nesterov 已提交
2516
	prev_state = prev->state;
2517 2518
	finish_arch_switch(prev);
	finish_lock_switch(rq, prev);
2519 2520 2521 2522
#ifdef CONFIG_SMP
	if (current->sched_class->post_schedule)
		current->sched_class->post_schedule(rq);
#endif
S
Steven Rostedt 已提交
2523

2524
	fire_sched_in_preempt_notifiers(current);
L
Linus Torvalds 已提交
2525 2526
	if (mm)
		mmdrop(mm);
2527
	if (unlikely(prev_state == TASK_DEAD)) {
2528 2529 2530
		/*
		 * Remove function-return probe instances associated with this
		 * task and put them back on the free list.
I
Ingo Molnar 已提交
2531
		 */
2532
		kprobe_flush_task(prev);
L
Linus Torvalds 已提交
2533
		put_task_struct(prev);
2534
	}
L
Linus Torvalds 已提交
2535 2536 2537 2538 2539 2540
}

/**
 * schedule_tail - first thing a freshly forked thread must call.
 * @prev: the thread we just switched away from.
 */
2541
asmlinkage void schedule_tail(struct task_struct *prev)
L
Linus Torvalds 已提交
2542 2543
	__releases(rq->lock)
{
2544 2545
	struct rq *rq = this_rq();

2546 2547 2548 2549 2550
	finish_task_switch(rq, prev);
#ifdef __ARCH_WANT_UNLOCKED_CTXSW
	/* In this case, finish_task_switch does not reenable preemption */
	preempt_enable();
#endif
L
Linus Torvalds 已提交
2551
	if (current->set_child_tid)
2552
		put_user(task_pid_vnr(current), current->set_child_tid);
L
Linus Torvalds 已提交
2553 2554 2555 2556 2557 2558
}

/*
 * context_switch - switch to the new MM and the new
 * thread's register state.
 */
I
Ingo Molnar 已提交
2559
static inline void
2560
context_switch(struct rq *rq, struct task_struct *prev,
2561
	       struct task_struct *next)
L
Linus Torvalds 已提交
2562
{
I
Ingo Molnar 已提交
2563
	struct mm_struct *mm, *oldmm;
L
Linus Torvalds 已提交
2564

2565
	prepare_task_switch(rq, prev, next);
I
Ingo Molnar 已提交
2566 2567
	mm = next->mm;
	oldmm = prev->active_mm;
2568 2569 2570 2571 2572 2573 2574
	/*
	 * For paravirt, this is coupled with an exit in switch_to to
	 * combine the page table reload and the switch backend into
	 * one hypercall.
	 */
	arch_enter_lazy_cpu_mode();

I
Ingo Molnar 已提交
2575
	if (unlikely(!mm)) {
L
Linus Torvalds 已提交
2576 2577 2578 2579 2580 2581
		next->active_mm = oldmm;
		atomic_inc(&oldmm->mm_count);
		enter_lazy_tlb(oldmm, next);
	} else
		switch_mm(oldmm, mm, next);

I
Ingo Molnar 已提交
2582
	if (unlikely(!prev->mm)) {
L
Linus Torvalds 已提交
2583 2584 2585
		prev->active_mm = NULL;
		rq->prev_mm = oldmm;
	}
2586 2587 2588 2589 2590 2591 2592
	/*
	 * Since the runqueue lock will be released by the next
	 * task (which is an invalid locking op but in the case
	 * of the scheduler it's an obvious special-case), so we
	 * do an early lockdep release here:
	 */
#ifndef __ARCH_WANT_UNLOCKED_CTXSW
2593
	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
2594
#endif
L
Linus Torvalds 已提交
2595 2596 2597 2598

	/* Here we just switch the register state and the stack. */
	switch_to(prev, next, prev);

I
Ingo Molnar 已提交
2599 2600 2601 2602 2603 2604 2605
	barrier();
	/*
	 * this_rq must be evaluated again because prev may have moved
	 * CPUs since it called schedule(), thus the 'rq' on its stack
	 * frame will be invalid.
	 */
	finish_task_switch(this_rq(), prev);
L
Linus Torvalds 已提交
2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628
}

/*
 * nr_running, nr_uninterruptible and nr_context_switches:
 *
 * externally visible scheduler statistics: current number of runnable
 * threads, current number of uninterruptible-sleeping threads, total
 * number of context switches performed since bootup.
 */
unsigned long nr_running(void)
{
	unsigned long i, sum = 0;

	for_each_online_cpu(i)
		sum += cpu_rq(i)->nr_running;

	return sum;
}

unsigned long nr_uninterruptible(void)
{
	unsigned long i, sum = 0;

2629
	for_each_possible_cpu(i)
L
Linus Torvalds 已提交
2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643
		sum += cpu_rq(i)->nr_uninterruptible;

	/*
	 * Since we read the counters lockless, it might be slightly
	 * inaccurate. Do not allow it to go below zero though:
	 */
	if (unlikely((long)sum < 0))
		sum = 0;

	return sum;
}

unsigned long long nr_context_switches(void)
{
2644 2645
	int i;
	unsigned long long sum = 0;
L
Linus Torvalds 已提交
2646

2647
	for_each_possible_cpu(i)
L
Linus Torvalds 已提交
2648 2649 2650 2651 2652 2653 2654 2655 2656
		sum += cpu_rq(i)->nr_switches;

	return sum;
}

unsigned long nr_iowait(void)
{
	unsigned long i, sum = 0;

2657
	for_each_possible_cpu(i)
L
Linus Torvalds 已提交
2658 2659 2660 2661 2662
		sum += atomic_read(&cpu_rq(i)->nr_iowait);

	return sum;
}

2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677
unsigned long nr_active(void)
{
	unsigned long i, running = 0, uninterruptible = 0;

	for_each_online_cpu(i) {
		running += cpu_rq(i)->nr_running;
		uninterruptible += cpu_rq(i)->nr_uninterruptible;
	}

	if (unlikely((long)uninterruptible < 0))
		uninterruptible = 0;

	return running + uninterruptible;
}

2678
/*
I
Ingo Molnar 已提交
2679 2680
 * Update rq->cpu_load[] statistics. This function is usually called every
 * scheduler tick (TICK_NSEC).
2681
 */
I
Ingo Molnar 已提交
2682
static void update_cpu_load(struct rq *this_rq)
2683
{
2684
	unsigned long this_load = this_rq->load.weight;
I
Ingo Molnar 已提交
2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696
	int i, scale;

	this_rq->nr_load_updates++;

	/* Update our load: */
	for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
		unsigned long old_load, new_load;

		/* scale is effectively 1 << i now, and >> i divides by scale */

		old_load = this_rq->cpu_load[i];
		new_load = this_load;
I
Ingo Molnar 已提交
2697 2698 2699 2700 2701 2702 2703
		/*
		 * Round up the averaging division if load is increasing. This
		 * prevents us from getting stuck on 9 if the load is 10, for
		 * example.
		 */
		if (new_load > old_load)
			new_load += scale-1;
I
Ingo Molnar 已提交
2704 2705
		this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
	}
2706 2707
}

I
Ingo Molnar 已提交
2708 2709
#ifdef CONFIG_SMP

L
Linus Torvalds 已提交
2710 2711 2712 2713 2714 2715
/*
 * double_rq_lock - safely lock two runqueues
 *
 * Note this does not disable interrupts like task_rq_lock,
 * you need to do so manually before calling.
 */
2716
static void double_rq_lock(struct rq *rq1, struct rq *rq2)
L
Linus Torvalds 已提交
2717 2718 2719
	__acquires(rq1->lock)
	__acquires(rq2->lock)
{
2720
	BUG_ON(!irqs_disabled());
L
Linus Torvalds 已提交
2721 2722 2723 2724
	if (rq1 == rq2) {
		spin_lock(&rq1->lock);
		__acquire(rq2->lock);	/* Fake it out ;) */
	} else {
2725
		if (rq1 < rq2) {
L
Linus Torvalds 已提交
2726 2727 2728 2729 2730 2731 2732
			spin_lock(&rq1->lock);
			spin_lock(&rq2->lock);
		} else {
			spin_lock(&rq2->lock);
			spin_lock(&rq1->lock);
		}
	}
2733 2734
	update_rq_clock(rq1);
	update_rq_clock(rq2);
L
Linus Torvalds 已提交
2735 2736 2737 2738 2739 2740 2741 2742
}

/*
 * double_rq_unlock - safely unlock two runqueues
 *
 * Note this does not restore interrupts like task_rq_unlock,
 * you need to do so manually after calling.
 */
2743
static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
L
Linus Torvalds 已提交
2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756
	__releases(rq1->lock)
	__releases(rq2->lock)
{
	spin_unlock(&rq1->lock);
	if (rq1 != rq2)
		spin_unlock(&rq2->lock);
	else
		__release(rq2->lock);
}

/*
 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
 */
S
Steven Rostedt 已提交
2757
static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
L
Linus Torvalds 已提交
2758 2759 2760 2761
	__releases(this_rq->lock)
	__acquires(busiest->lock)
	__acquires(this_rq->lock)
{
S
Steven Rostedt 已提交
2762 2763
	int ret = 0;

2764 2765 2766 2767 2768
	if (unlikely(!irqs_disabled())) {
		/* printk() doesn't work good under rq->lock */
		spin_unlock(&this_rq->lock);
		BUG_ON(1);
	}
L
Linus Torvalds 已提交
2769
	if (unlikely(!spin_trylock(&busiest->lock))) {
2770
		if (busiest < this_rq) {
L
Linus Torvalds 已提交
2771 2772 2773
			spin_unlock(&this_rq->lock);
			spin_lock(&busiest->lock);
			spin_lock(&this_rq->lock);
S
Steven Rostedt 已提交
2774
			ret = 1;
L
Linus Torvalds 已提交
2775 2776 2777
		} else
			spin_lock(&busiest->lock);
	}
S
Steven Rostedt 已提交
2778
	return ret;
L
Linus Torvalds 已提交
2779 2780 2781 2782 2783
}

/*
 * If dest_cpu is allowed for this process, migrate the task to it.
 * This is accomplished by forcing the cpu_allowed mask to only
I
Ingo Molnar 已提交
2784
 * allow dest_cpu, which will force the cpu onto dest_cpu. Then
L
Linus Torvalds 已提交
2785 2786
 * the cpu_allowed mask is restored.
 */
2787
static void sched_migrate_task(struct task_struct *p, int dest_cpu)
L
Linus Torvalds 已提交
2788
{
2789
	struct migration_req req;
L
Linus Torvalds 已提交
2790
	unsigned long flags;
2791
	struct rq *rq;
L
Linus Torvalds 已提交
2792 2793 2794 2795 2796 2797 2798 2799 2800 2801

	rq = task_rq_lock(p, &flags);
	if (!cpu_isset(dest_cpu, p->cpus_allowed)
	    || unlikely(cpu_is_offline(dest_cpu)))
		goto out;

	/* force the process onto the specified CPU */
	if (migrate_task(p, dest_cpu, &req)) {
		/* Need to wait for migration thread (might exit: take ref). */
		struct task_struct *mt = rq->migration_thread;
2802

L
Linus Torvalds 已提交
2803 2804 2805 2806 2807
		get_task_struct(mt);
		task_rq_unlock(rq, &flags);
		wake_up_process(mt);
		put_task_struct(mt);
		wait_for_completion(&req.done);
2808

L
Linus Torvalds 已提交
2809 2810 2811 2812 2813 2814 2815
		return;
	}
out:
	task_rq_unlock(rq, &flags);
}

/*
N
Nick Piggin 已提交
2816 2817
 * sched_exec - execve() is a valuable balancing opportunity, because at
 * this point the task has the smallest effective memory and cache footprint.
L
Linus Torvalds 已提交
2818 2819 2820 2821
 */
void sched_exec(void)
{
	int new_cpu, this_cpu = get_cpu();
N
Nick Piggin 已提交
2822
	new_cpu = sched_balance_self(this_cpu, SD_BALANCE_EXEC);
L
Linus Torvalds 已提交
2823
	put_cpu();
N
Nick Piggin 已提交
2824 2825
	if (new_cpu != this_cpu)
		sched_migrate_task(current, new_cpu);
L
Linus Torvalds 已提交
2826 2827 2828 2829 2830 2831
}

/*
 * pull_task - move a task from a remote runqueue to the local runqueue.
 * Both runqueues must be locked.
 */
I
Ingo Molnar 已提交
2832 2833
static void pull_task(struct rq *src_rq, struct task_struct *p,
		      struct rq *this_rq, int this_cpu)
L
Linus Torvalds 已提交
2834
{
2835
	deactivate_task(src_rq, p, 0);
L
Linus Torvalds 已提交
2836
	set_task_cpu(p, this_cpu);
I
Ingo Molnar 已提交
2837
	activate_task(this_rq, p, 0);
L
Linus Torvalds 已提交
2838 2839 2840 2841
	/*
	 * Note that idle threads have a prio of MAX_PRIO, for this test
	 * to be always true for them.
	 */
I
Ingo Molnar 已提交
2842
	check_preempt_curr(this_rq, p);
L
Linus Torvalds 已提交
2843 2844 2845 2846 2847
}

/*
 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
 */
2848
static
2849
int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
I
Ingo Molnar 已提交
2850
		     struct sched_domain *sd, enum cpu_idle_type idle,
I
Ingo Molnar 已提交
2851
		     int *all_pinned)
L
Linus Torvalds 已提交
2852 2853 2854 2855 2856 2857 2858
{
	/*
	 * We do not migrate tasks that are:
	 * 1) running (obviously), or
	 * 2) cannot be migrated to this CPU due to cpus_allowed, or
	 * 3) are cache-hot on their current CPU.
	 */
2859 2860
	if (!cpu_isset(this_cpu, p->cpus_allowed)) {
		schedstat_inc(p, se.nr_failed_migrations_affine);
L
Linus Torvalds 已提交
2861
		return 0;
2862
	}
2863 2864
	*all_pinned = 0;

2865 2866
	if (task_running(rq, p)) {
		schedstat_inc(p, se.nr_failed_migrations_running);
2867
		return 0;
2868
	}
L
Linus Torvalds 已提交
2869

2870 2871 2872 2873 2874 2875
	/*
	 * Aggressive migration if:
	 * 1) task is cache cold, or
	 * 2) too many balance attempts have failed.
	 */

2876 2877
	if (!task_hot(p, rq->clock, sd) ||
			sd->nr_balance_failed > sd->cache_nice_tries) {
2878
#ifdef CONFIG_SCHEDSTATS
2879
		if (task_hot(p, rq->clock, sd)) {
2880
			schedstat_inc(sd, lb_hot_gained[idle]);
2881 2882
			schedstat_inc(p, se.nr_forced_migrations);
		}
2883 2884 2885 2886
#endif
		return 1;
	}

2887 2888
	if (task_hot(p, rq->clock, sd)) {
		schedstat_inc(p, se.nr_failed_migrations_hot);
2889
		return 0;
2890
	}
L
Linus Torvalds 已提交
2891 2892 2893
	return 1;
}

2894 2895 2896 2897 2898
static unsigned long
balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
	      unsigned long max_load_move, struct sched_domain *sd,
	      enum cpu_idle_type idle, int *all_pinned,
	      int *this_best_prio, struct rq_iterator *iterator)
L
Linus Torvalds 已提交
2899
{
2900
	int loops = 0, pulled = 0, pinned = 0, skip_for_load;
I
Ingo Molnar 已提交
2901 2902
	struct task_struct *p;
	long rem_load_move = max_load_move;
L
Linus Torvalds 已提交
2903

2904
	if (max_load_move == 0)
L
Linus Torvalds 已提交
2905 2906
		goto out;

2907 2908
	pinned = 1;

L
Linus Torvalds 已提交
2909
	/*
I
Ingo Molnar 已提交
2910
	 * Start the load-balancing iterator:
L
Linus Torvalds 已提交
2911
	 */
I
Ingo Molnar 已提交
2912 2913
	p = iterator->start(iterator->arg);
next:
2914
	if (!p || loops++ > sysctl_sched_nr_migrate)
L
Linus Torvalds 已提交
2915
		goto out;
2916
	/*
2917
	 * To help distribute high priority tasks across CPUs we don't
2918 2919 2920
	 * skip a task if it will be the highest priority task (i.e. smallest
	 * prio value) on its new queue regardless of its load weight
	 */
I
Ingo Molnar 已提交
2921 2922
	skip_for_load = (p->se.load.weight >> 1) > rem_load_move +
							 SCHED_LOAD_SCALE_FUZZ;
2923
	if ((skip_for_load && p->prio >= *this_best_prio) ||
I
Ingo Molnar 已提交
2924 2925 2926
	    !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
		p = iterator->next(iterator->arg);
		goto next;
L
Linus Torvalds 已提交
2927 2928
	}

I
Ingo Molnar 已提交
2929
	pull_task(busiest, p, this_rq, this_cpu);
L
Linus Torvalds 已提交
2930
	pulled++;
I
Ingo Molnar 已提交
2931
	rem_load_move -= p->se.load.weight;
L
Linus Torvalds 已提交
2932

2933
	/*
2934
	 * We only want to steal up to the prescribed amount of weighted load.
2935
	 */
2936
	if (rem_load_move > 0) {
2937 2938
		if (p->prio < *this_best_prio)
			*this_best_prio = p->prio;
I
Ingo Molnar 已提交
2939 2940
		p = iterator->next(iterator->arg);
		goto next;
L
Linus Torvalds 已提交
2941 2942 2943
	}
out:
	/*
2944
	 * Right now, this is one of only two places pull_task() is called,
L
Linus Torvalds 已提交
2945 2946 2947 2948
	 * so we can safely collect pull_task() stats here rather than
	 * inside pull_task().
	 */
	schedstat_add(sd, lb_gained[idle], pulled);
2949 2950 2951

	if (all_pinned)
		*all_pinned = pinned;
2952 2953

	return max_load_move - rem_load_move;
L
Linus Torvalds 已提交
2954 2955
}

I
Ingo Molnar 已提交
2956
/*
P
Peter Williams 已提交
2957 2958 2959
 * move_tasks tries to move up to max_load_move weighted load from busiest to
 * this_rq, as part of a balancing operation within domain "sd".
 * Returns 1 if successful and 0 otherwise.
I
Ingo Molnar 已提交
2960 2961 2962 2963
 *
 * Called with both runqueues locked.
 */
static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
P
Peter Williams 已提交
2964
		      unsigned long max_load_move,
I
Ingo Molnar 已提交
2965 2966 2967
		      struct sched_domain *sd, enum cpu_idle_type idle,
		      int *all_pinned)
{
2968
	const struct sched_class *class = sched_class_highest;
P
Peter Williams 已提交
2969
	unsigned long total_load_moved = 0;
2970
	int this_best_prio = this_rq->curr->prio;
I
Ingo Molnar 已提交
2971 2972

	do {
P
Peter Williams 已提交
2973 2974
		total_load_moved +=
			class->load_balance(this_rq, this_cpu, busiest,
2975
				max_load_move - total_load_moved,
2976
				sd, idle, all_pinned, &this_best_prio);
I
Ingo Molnar 已提交
2977
		class = class->next;
P
Peter Williams 已提交
2978
	} while (class && max_load_move > total_load_moved);
I
Ingo Molnar 已提交
2979

P
Peter Williams 已提交
2980 2981 2982
	return total_load_moved > 0;
}

2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008
static int
iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
		   struct sched_domain *sd, enum cpu_idle_type idle,
		   struct rq_iterator *iterator)
{
	struct task_struct *p = iterator->start(iterator->arg);
	int pinned = 0;

	while (p) {
		if (can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
			pull_task(busiest, p, this_rq, this_cpu);
			/*
			 * Right now, this is only the second place pull_task()
			 * is called, so we can safely collect pull_task()
			 * stats here rather than inside pull_task().
			 */
			schedstat_inc(sd, lb_gained[idle]);

			return 1;
		}
		p = iterator->next(iterator->arg);
	}

	return 0;
}

P
Peter Williams 已提交
3009 3010 3011 3012 3013 3014 3015 3016 3017 3018
/*
 * move_one_task tries to move exactly one task from busiest to this_rq, as
 * part of active balancing operations within "domain".
 * Returns 1 if successful and 0 otherwise.
 *
 * Called with both runqueues locked.
 */
static int move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
			 struct sched_domain *sd, enum cpu_idle_type idle)
{
3019
	const struct sched_class *class;
P
Peter Williams 已提交
3020 3021

	for (class = sched_class_highest; class; class = class->next)
3022
		if (class->move_one_task(this_rq, this_cpu, busiest, sd, idle))
P
Peter Williams 已提交
3023 3024 3025
			return 1;

	return 0;
I
Ingo Molnar 已提交
3026 3027
}

L
Linus Torvalds 已提交
3028 3029
/*
 * find_busiest_group finds and returns the busiest CPU group within the
3030 3031
 * domain. It calculates and returns the amount of weighted load which
 * should be moved to restore balance via the imbalance parameter.
L
Linus Torvalds 已提交
3032 3033 3034
 */
static struct sched_group *
find_busiest_group(struct sched_domain *sd, int this_cpu,
I
Ingo Molnar 已提交
3035
		   unsigned long *imbalance, enum cpu_idle_type idle,
3036
		   int *sd_idle, const cpumask_t *cpus, int *balance)
L
Linus Torvalds 已提交
3037 3038 3039
{
	struct sched_group *busiest = NULL, *this = NULL, *group = sd->groups;
	unsigned long max_load, avg_load, total_load, this_load, total_pwr;
3040
	unsigned long max_pull;
3041 3042
	unsigned long busiest_load_per_task, busiest_nr_running;
	unsigned long this_load_per_task, this_nr_running;
3043
	int load_idx, group_imb = 0;
3044 3045 3046 3047 3048 3049
#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
	int power_savings_balance = 1;
	unsigned long leader_nr_running = 0, min_load_per_task = 0;
	unsigned long min_nr_running = ULONG_MAX;
	struct sched_group *group_min = NULL, *group_leader = NULL;
#endif
L
Linus Torvalds 已提交
3050 3051

	max_load = this_load = total_load = total_pwr = 0;
3052 3053
	busiest_load_per_task = busiest_nr_running = 0;
	this_load_per_task = this_nr_running = 0;
I
Ingo Molnar 已提交
3054
	if (idle == CPU_NOT_IDLE)
N
Nick Piggin 已提交
3055
		load_idx = sd->busy_idx;
I
Ingo Molnar 已提交
3056
	else if (idle == CPU_NEWLY_IDLE)
N
Nick Piggin 已提交
3057 3058 3059
		load_idx = sd->newidle_idx;
	else
		load_idx = sd->idle_idx;
L
Linus Torvalds 已提交
3060 3061

	do {
3062
		unsigned long load, group_capacity, max_cpu_load, min_cpu_load;
L
Linus Torvalds 已提交
3063 3064
		int local_group;
		int i;
3065
		int __group_imb = 0;
3066
		unsigned int balance_cpu = -1, first_idle_cpu = 0;
3067
		unsigned long sum_nr_running, sum_weighted_load;
L
Linus Torvalds 已提交
3068 3069 3070

		local_group = cpu_isset(this_cpu, group->cpumask);

3071 3072 3073
		if (local_group)
			balance_cpu = first_cpu(group->cpumask);

L
Linus Torvalds 已提交
3074
		/* Tally up the load of all CPUs in the group */
3075
		sum_weighted_load = sum_nr_running = avg_load = 0;
3076 3077
		max_cpu_load = 0;
		min_cpu_load = ~0UL;
L
Linus Torvalds 已提交
3078 3079

		for_each_cpu_mask(i, group->cpumask) {
3080 3081 3082 3083 3084 3085
			struct rq *rq;

			if (!cpu_isset(i, *cpus))
				continue;

			rq = cpu_rq(i);
3086

3087
			if (*sd_idle && rq->nr_running)
N
Nick Piggin 已提交
3088 3089
				*sd_idle = 0;

L
Linus Torvalds 已提交
3090
			/* Bias balancing toward cpus of our domain */
3091 3092 3093 3094 3095 3096
			if (local_group) {
				if (idle_cpu(i) && !first_idle_cpu) {
					first_idle_cpu = 1;
					balance_cpu = i;
				}

N
Nick Piggin 已提交
3097
				load = target_load(i, load_idx);
3098
			} else {
N
Nick Piggin 已提交
3099
				load = source_load(i, load_idx);
3100 3101 3102 3103 3104
				if (load > max_cpu_load)
					max_cpu_load = load;
				if (min_cpu_load > load)
					min_cpu_load = load;
			}
L
Linus Torvalds 已提交
3105 3106

			avg_load += load;
3107
			sum_nr_running += rq->nr_running;
I
Ingo Molnar 已提交
3108
			sum_weighted_load += weighted_cpuload(i);
L
Linus Torvalds 已提交
3109 3110
		}

3111 3112 3113
		/*
		 * First idle cpu or the first cpu(busiest) in this sched group
		 * is eligible for doing load balancing at this and above
3114 3115
		 * domains. In the newly idle case, we will allow all the cpu's
		 * to do the newly idle load balance.
3116
		 */
3117 3118
		if (idle != CPU_NEWLY_IDLE && local_group &&
		    balance_cpu != this_cpu && balance) {
3119 3120 3121 3122
			*balance = 0;
			goto ret;
		}

L
Linus Torvalds 已提交
3123
		total_load += avg_load;
3124
		total_pwr += group->__cpu_power;
L
Linus Torvalds 已提交
3125 3126

		/* Adjust by relative CPU power of the group */
3127 3128
		avg_load = sg_div_cpu_power(group,
				avg_load * SCHED_LOAD_SCALE);
L
Linus Torvalds 已提交
3129

3130 3131 3132
		if ((max_cpu_load - min_cpu_load) > SCHED_LOAD_SCALE)
			__group_imb = 1;

3133
		group_capacity = group->__cpu_power / SCHED_LOAD_SCALE;
3134

L
Linus Torvalds 已提交
3135 3136 3137
		if (local_group) {
			this_load = avg_load;
			this = group;
3138 3139 3140
			this_nr_running = sum_nr_running;
			this_load_per_task = sum_weighted_load;
		} else if (avg_load > max_load &&
3141
			   (sum_nr_running > group_capacity || __group_imb)) {
L
Linus Torvalds 已提交
3142 3143
			max_load = avg_load;
			busiest = group;
3144 3145
			busiest_nr_running = sum_nr_running;
			busiest_load_per_task = sum_weighted_load;
3146
			group_imb = __group_imb;
L
Linus Torvalds 已提交
3147
		}
3148 3149 3150 3151 3152 3153

#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
		/*
		 * Busy processors will not participate in power savings
		 * balance.
		 */
I
Ingo Molnar 已提交
3154 3155 3156
		if (idle == CPU_NOT_IDLE ||
				!(sd->flags & SD_POWERSAVINGS_BALANCE))
			goto group_next;
3157 3158 3159 3160 3161 3162 3163 3164 3165

		/*
		 * If the local group is idle or completely loaded
		 * no need to do power savings balance at this domain
		 */
		if (local_group && (this_nr_running >= group_capacity ||
				    !this_nr_running))
			power_savings_balance = 0;

I
Ingo Molnar 已提交
3166
		/*
3167 3168
		 * If a group is already running at full capacity or idle,
		 * don't include that group in power savings calculations
I
Ingo Molnar 已提交
3169 3170
		 */
		if (!power_savings_balance || sum_nr_running >= group_capacity
3171
		    || !sum_nr_running)
I
Ingo Molnar 已提交
3172
			goto group_next;
3173

I
Ingo Molnar 已提交
3174
		/*
3175
		 * Calculate the group which has the least non-idle load.
I
Ingo Molnar 已提交
3176 3177 3178 3179 3180
		 * This is the group from where we need to pick up the load
		 * for saving power
		 */
		if ((sum_nr_running < min_nr_running) ||
		    (sum_nr_running == min_nr_running &&
3181 3182
		     first_cpu(group->cpumask) <
		     first_cpu(group_min->cpumask))) {
I
Ingo Molnar 已提交
3183 3184
			group_min = group;
			min_nr_running = sum_nr_running;
3185 3186
			min_load_per_task = sum_weighted_load /
						sum_nr_running;
I
Ingo Molnar 已提交
3187
		}
3188

I
Ingo Molnar 已提交
3189
		/*
3190
		 * Calculate the group which is almost near its
I
Ingo Molnar 已提交
3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201
		 * capacity but still has some space to pick up some load
		 * from other group and save more power
		 */
		if (sum_nr_running <= group_capacity - 1) {
			if (sum_nr_running > leader_nr_running ||
			    (sum_nr_running == leader_nr_running &&
			     first_cpu(group->cpumask) >
			      first_cpu(group_leader->cpumask))) {
				group_leader = group;
				leader_nr_running = sum_nr_running;
			}
3202
		}
3203 3204
group_next:
#endif
L
Linus Torvalds 已提交
3205 3206 3207
		group = group->next;
	} while (group != sd->groups);

3208
	if (!busiest || this_load >= max_load || busiest_nr_running == 0)
L
Linus Torvalds 已提交
3209 3210 3211 3212 3213 3214 3215 3216
		goto out_balanced;

	avg_load = (SCHED_LOAD_SCALE * total_load) / total_pwr;

	if (this_load >= avg_load ||
			100*max_load <= sd->imbalance_pct*this_load)
		goto out_balanced;

3217
	busiest_load_per_task /= busiest_nr_running;
3218 3219 3220
	if (group_imb)
		busiest_load_per_task = min(busiest_load_per_task, avg_load);

L
Linus Torvalds 已提交
3221 3222 3223 3224 3225 3226 3227 3228
	/*
	 * We're trying to get all the cpus to the average_load, so we don't
	 * want to push ourselves above the average load, nor do we wish to
	 * reduce the max loaded cpu below the average load, as either of these
	 * actions would just result in more rebalancing later, and ping-pong
	 * tasks around. Thus we look for the minimum possible imbalance.
	 * Negative imbalances (*we* are more loaded than anyone else) will
	 * be counted as no imbalance for these purposes -- we can't fix that
I
Ingo Molnar 已提交
3229
	 * by pulling tasks to us. Be careful of negative numbers as they'll
L
Linus Torvalds 已提交
3230 3231
	 * appear as very large values with unsigned longs.
	 */
3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243
	if (max_load <= busiest_load_per_task)
		goto out_balanced;

	/*
	 * In the presence of smp nice balancing, certain scenarios can have
	 * max load less than avg load(as we skip the groups at or below
	 * its cpu_power, while calculating max_load..)
	 */
	if (max_load < avg_load) {
		*imbalance = 0;
		goto small_imbalance;
	}
3244 3245

	/* Don't want to pull so many tasks that a group would go idle */
3246
	max_pull = min(max_load - avg_load, max_load - busiest_load_per_task);
3247

L
Linus Torvalds 已提交
3248
	/* How much load to actually move to equalise the imbalance */
3249 3250
	*imbalance = min(max_pull * busiest->__cpu_power,
				(avg_load - this_load) * this->__cpu_power)
L
Linus Torvalds 已提交
3251 3252
			/ SCHED_LOAD_SCALE;

3253 3254 3255 3256 3257 3258
	/*
	 * if *imbalance is less than the average load per runnable task
	 * there is no gaurantee that any tasks will be moved so we'll have
	 * a think about bumping its value to force at least one task to be
	 * moved
	 */
3259
	if (*imbalance < busiest_load_per_task) {
3260
		unsigned long tmp, pwr_now, pwr_move;
3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271
		unsigned int imbn;

small_imbalance:
		pwr_move = pwr_now = 0;
		imbn = 2;
		if (this_nr_running) {
			this_load_per_task /= this_nr_running;
			if (busiest_load_per_task > this_load_per_task)
				imbn = 1;
		} else
			this_load_per_task = SCHED_LOAD_SCALE;
L
Linus Torvalds 已提交
3272

I
Ingo Molnar 已提交
3273 3274
		if (max_load - this_load + SCHED_LOAD_SCALE_FUZZ >=
					busiest_load_per_task * imbn) {
3275
			*imbalance = busiest_load_per_task;
L
Linus Torvalds 已提交
3276 3277 3278 3279 3280 3281 3282 3283 3284
			return busiest;
		}

		/*
		 * OK, we don't have enough imbalance to justify moving tasks,
		 * however we may be able to increase total CPU power used by
		 * moving them.
		 */

3285 3286 3287 3288
		pwr_now += busiest->__cpu_power *
				min(busiest_load_per_task, max_load);
		pwr_now += this->__cpu_power *
				min(this_load_per_task, this_load);
L
Linus Torvalds 已提交
3289 3290 3291
		pwr_now /= SCHED_LOAD_SCALE;

		/* Amount of load we'd subtract */
3292 3293
		tmp = sg_div_cpu_power(busiest,
				busiest_load_per_task * SCHED_LOAD_SCALE);
L
Linus Torvalds 已提交
3294
		if (max_load > tmp)
3295
			pwr_move += busiest->__cpu_power *
3296
				min(busiest_load_per_task, max_load - tmp);
L
Linus Torvalds 已提交
3297 3298

		/* Amount of load we'd add */
3299
		if (max_load * busiest->__cpu_power <
3300
				busiest_load_per_task * SCHED_LOAD_SCALE)
3301 3302
			tmp = sg_div_cpu_power(this,
					max_load * busiest->__cpu_power);
L
Linus Torvalds 已提交
3303
		else
3304 3305 3306 3307
			tmp = sg_div_cpu_power(this,
				busiest_load_per_task * SCHED_LOAD_SCALE);
		pwr_move += this->__cpu_power *
				min(this_load_per_task, this_load + tmp);
L
Linus Torvalds 已提交
3308 3309 3310
		pwr_move /= SCHED_LOAD_SCALE;

		/* Move if we gain throughput */
3311 3312
		if (pwr_move > pwr_now)
			*imbalance = busiest_load_per_task;
L
Linus Torvalds 已提交
3313 3314 3315 3316 3317
	}

	return busiest;

out_balanced:
3318
#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
I
Ingo Molnar 已提交
3319
	if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
3320
		goto ret;
L
Linus Torvalds 已提交
3321

3322 3323 3324 3325 3326
	if (this == group_leader && group_leader != group_min) {
		*imbalance = min_load_per_task;
		return group_min;
	}
#endif
3327
ret:
L
Linus Torvalds 已提交
3328 3329 3330 3331 3332 3333 3334
	*imbalance = 0;
	return NULL;
}

/*
 * find_busiest_queue - find the busiest runqueue among the cpus in group.
 */
3335
static struct rq *
I
Ingo Molnar 已提交
3336
find_busiest_queue(struct sched_group *group, enum cpu_idle_type idle,
3337
		   unsigned long imbalance, const cpumask_t *cpus)
L
Linus Torvalds 已提交
3338
{
3339
	struct rq *busiest = NULL, *rq;
3340
	unsigned long max_load = 0;
L
Linus Torvalds 已提交
3341 3342 3343
	int i;

	for_each_cpu_mask(i, group->cpumask) {
I
Ingo Molnar 已提交
3344
		unsigned long wl;
3345 3346 3347 3348

		if (!cpu_isset(i, *cpus))
			continue;

3349
		rq = cpu_rq(i);
I
Ingo Molnar 已提交
3350
		wl = weighted_cpuload(i);
3351

I
Ingo Molnar 已提交
3352
		if (rq->nr_running == 1 && wl > imbalance)
3353
			continue;
L
Linus Torvalds 已提交
3354

I
Ingo Molnar 已提交
3355 3356
		if (wl > max_load) {
			max_load = wl;
3357
			busiest = rq;
L
Linus Torvalds 已提交
3358 3359 3360 3361 3362 3363
		}
	}

	return busiest;
}

3364 3365 3366 3367 3368 3369
/*
 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
 * so long as it is large enough.
 */
#define MAX_PINNED_INTERVAL	512

L
Linus Torvalds 已提交
3370 3371 3372 3373
/*
 * Check this_cpu to ensure it is balanced within domain. Attempt to move
 * tasks if there is an imbalance.
 */
3374
static int load_balance(int this_cpu, struct rq *this_rq,
I
Ingo Molnar 已提交
3375
			struct sched_domain *sd, enum cpu_idle_type idle,
3376
			int *balance, cpumask_t *cpus)
L
Linus Torvalds 已提交
3377
{
P
Peter Williams 已提交
3378
	int ld_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
L
Linus Torvalds 已提交
3379 3380
	struct sched_group *group;
	unsigned long imbalance;
3381
	struct rq *busiest;
3382
	unsigned long flags;
N
Nick Piggin 已提交
3383

3384 3385
	cpus_setall(*cpus);

3386 3387 3388
	/*
	 * When power savings policy is enabled for the parent domain, idle
	 * sibling can pick up load irrespective of busy siblings. In this case,
I
Ingo Molnar 已提交
3389
	 * let the state of idle sibling percolate up as CPU_IDLE, instead of
I
Ingo Molnar 已提交
3390
	 * portraying it as CPU_NOT_IDLE.
3391
	 */
I
Ingo Molnar 已提交
3392
	if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
3393
	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
N
Nick Piggin 已提交
3394
		sd_idle = 1;
L
Linus Torvalds 已提交
3395

3396
	schedstat_inc(sd, lb_count[idle]);
L
Linus Torvalds 已提交
3397

3398
redo:
3399
	update_shares(sd);
3400
	group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
3401
				   cpus, balance);
3402

3403
	if (*balance == 0)
3404 3405
		goto out_balanced;

L
Linus Torvalds 已提交
3406 3407 3408 3409 3410
	if (!group) {
		schedstat_inc(sd, lb_nobusyg[idle]);
		goto out_balanced;
	}

3411
	busiest = find_busiest_queue(group, idle, imbalance, cpus);
L
Linus Torvalds 已提交
3412 3413 3414 3415 3416
	if (!busiest) {
		schedstat_inc(sd, lb_nobusyq[idle]);
		goto out_balanced;
	}

N
Nick Piggin 已提交
3417
	BUG_ON(busiest == this_rq);
L
Linus Torvalds 已提交
3418 3419 3420

	schedstat_add(sd, lb_imbalance[idle], imbalance);

P
Peter Williams 已提交
3421
	ld_moved = 0;
L
Linus Torvalds 已提交
3422 3423 3424 3425
	if (busiest->nr_running > 1) {
		/*
		 * Attempt to move tasks. If find_busiest_group has found
		 * an imbalance but busiest->nr_running <= 1, the group is
P
Peter Williams 已提交
3426
		 * still unbalanced. ld_moved simply stays zero, so it is
L
Linus Torvalds 已提交
3427 3428
		 * correctly treated as an imbalance.
		 */
3429
		local_irq_save(flags);
N
Nick Piggin 已提交
3430
		double_rq_lock(this_rq, busiest);
P
Peter Williams 已提交
3431
		ld_moved = move_tasks(this_rq, this_cpu, busiest,
3432
				      imbalance, sd, idle, &all_pinned);
N
Nick Piggin 已提交
3433
		double_rq_unlock(this_rq, busiest);
3434
		local_irq_restore(flags);
3435

3436 3437 3438
		/*
		 * some other cpu did the load balance for us.
		 */
P
Peter Williams 已提交
3439
		if (ld_moved && this_cpu != smp_processor_id())
3440 3441
			resched_cpu(this_cpu);

3442
		/* All tasks on this runqueue were pinned by CPU affinity */
3443
		if (unlikely(all_pinned)) {
3444 3445
			cpu_clear(cpu_of(busiest), *cpus);
			if (!cpus_empty(*cpus))
3446
				goto redo;
3447
			goto out_balanced;
3448
		}
L
Linus Torvalds 已提交
3449
	}
3450

P
Peter Williams 已提交
3451
	if (!ld_moved) {
L
Linus Torvalds 已提交
3452 3453 3454 3455 3456
		schedstat_inc(sd, lb_failed[idle]);
		sd->nr_balance_failed++;

		if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {

3457
			spin_lock_irqsave(&busiest->lock, flags);
3458 3459 3460 3461 3462

			/* don't kick the migration_thread, if the curr
			 * task on busiest cpu can't be moved to this_cpu
			 */
			if (!cpu_isset(this_cpu, busiest->curr->cpus_allowed)) {
3463
				spin_unlock_irqrestore(&busiest->lock, flags);
3464 3465 3466 3467
				all_pinned = 1;
				goto out_one_pinned;
			}

L
Linus Torvalds 已提交
3468 3469 3470
			if (!busiest->active_balance) {
				busiest->active_balance = 1;
				busiest->push_cpu = this_cpu;
3471
				active_balance = 1;
L
Linus Torvalds 已提交
3472
			}
3473
			spin_unlock_irqrestore(&busiest->lock, flags);
3474
			if (active_balance)
L
Linus Torvalds 已提交
3475 3476 3477 3478 3479 3480
				wake_up_process(busiest->migration_thread);

			/*
			 * We've kicked active balancing, reset the failure
			 * counter.
			 */
3481
			sd->nr_balance_failed = sd->cache_nice_tries+1;
L
Linus Torvalds 已提交
3482
		}
3483
	} else
L
Linus Torvalds 已提交
3484 3485
		sd->nr_balance_failed = 0;

3486
	if (likely(!active_balance)) {
L
Linus Torvalds 已提交
3487 3488
		/* We were unbalanced, so reset the balancing interval */
		sd->balance_interval = sd->min_interval;
3489 3490 3491 3492 3493 3494 3495 3496 3497
	} else {
		/*
		 * If we've begun active balancing, start to back off. This
		 * case may not be covered by the all_pinned logic if there
		 * is only 1 task on the busy runqueue (because we don't call
		 * move_tasks).
		 */
		if (sd->balance_interval < sd->max_interval)
			sd->balance_interval *= 2;
L
Linus Torvalds 已提交
3498 3499
	}

P
Peter Williams 已提交
3500
	if (!ld_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
3501
	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
3502 3503 3504
		ld_moved = -1;

	goto out;
L
Linus Torvalds 已提交
3505 3506 3507 3508

out_balanced:
	schedstat_inc(sd, lb_balanced[idle]);

3509
	sd->nr_balance_failed = 0;
3510 3511

out_one_pinned:
L
Linus Torvalds 已提交
3512
	/* tune up the balancing interval */
3513 3514
	if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
			(sd->balance_interval < sd->max_interval))
L
Linus Torvalds 已提交
3515 3516
		sd->balance_interval *= 2;

3517
	if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
3518
	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
3519 3520 3521 3522
		ld_moved = -1;
	else
		ld_moved = 0;
out:
3523 3524
	if (ld_moved)
		update_shares(sd);
3525
	return ld_moved;
L
Linus Torvalds 已提交
3526 3527 3528 3529 3530 3531
}

/*
 * Check this_cpu to ensure it is balanced within domain. Attempt to move
 * tasks if there is an imbalance.
 *
I
Ingo Molnar 已提交
3532
 * Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE).
L
Linus Torvalds 已提交
3533 3534
 * this_rq is locked.
 */
3535
static int
3536 3537
load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd,
			cpumask_t *cpus)
L
Linus Torvalds 已提交
3538 3539
{
	struct sched_group *group;
3540
	struct rq *busiest = NULL;
L
Linus Torvalds 已提交
3541
	unsigned long imbalance;
P
Peter Williams 已提交
3542
	int ld_moved = 0;
N
Nick Piggin 已提交
3543
	int sd_idle = 0;
3544
	int all_pinned = 0;
3545 3546

	cpus_setall(*cpus);
N
Nick Piggin 已提交
3547

3548 3549 3550 3551
	/*
	 * When power savings policy is enabled for the parent domain, idle
	 * sibling can pick up load irrespective of busy siblings. In this case,
	 * let the state of idle sibling percolate up as IDLE, instead of
I
Ingo Molnar 已提交
3552
	 * portraying it as CPU_NOT_IDLE.
3553 3554 3555
	 */
	if (sd->flags & SD_SHARE_CPUPOWER &&
	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
N
Nick Piggin 已提交
3556
		sd_idle = 1;
L
Linus Torvalds 已提交
3557

3558
	schedstat_inc(sd, lb_count[CPU_NEWLY_IDLE]);
3559
redo:
3560
	update_shares_locked(this_rq, sd);
I
Ingo Molnar 已提交
3561
	group = find_busiest_group(sd, this_cpu, &imbalance, CPU_NEWLY_IDLE,
3562
				   &sd_idle, cpus, NULL);
L
Linus Torvalds 已提交
3563
	if (!group) {
I
Ingo Molnar 已提交
3564
		schedstat_inc(sd, lb_nobusyg[CPU_NEWLY_IDLE]);
3565
		goto out_balanced;
L
Linus Torvalds 已提交
3566 3567
	}

3568
	busiest = find_busiest_queue(group, CPU_NEWLY_IDLE, imbalance, cpus);
N
Nick Piggin 已提交
3569
	if (!busiest) {
I
Ingo Molnar 已提交
3570
		schedstat_inc(sd, lb_nobusyq[CPU_NEWLY_IDLE]);
3571
		goto out_balanced;
L
Linus Torvalds 已提交
3572 3573
	}

N
Nick Piggin 已提交
3574 3575
	BUG_ON(busiest == this_rq);

I
Ingo Molnar 已提交
3576
	schedstat_add(sd, lb_imbalance[CPU_NEWLY_IDLE], imbalance);
3577

P
Peter Williams 已提交
3578
	ld_moved = 0;
3579 3580 3581
	if (busiest->nr_running > 1) {
		/* Attempt to move tasks */
		double_lock_balance(this_rq, busiest);
3582 3583
		/* this_rq->clock is already updated */
		update_rq_clock(busiest);
P
Peter Williams 已提交
3584
		ld_moved = move_tasks(this_rq, this_cpu, busiest,
3585 3586
					imbalance, sd, CPU_NEWLY_IDLE,
					&all_pinned);
3587
		spin_unlock(&busiest->lock);
3588

3589
		if (unlikely(all_pinned)) {
3590 3591
			cpu_clear(cpu_of(busiest), *cpus);
			if (!cpus_empty(*cpus))
3592 3593
				goto redo;
		}
3594 3595
	}

P
Peter Williams 已提交
3596
	if (!ld_moved) {
I
Ingo Molnar 已提交
3597
		schedstat_inc(sd, lb_failed[CPU_NEWLY_IDLE]);
3598 3599
		if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
		    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
N
Nick Piggin 已提交
3600 3601
			return -1;
	} else
3602
		sd->nr_balance_failed = 0;
L
Linus Torvalds 已提交
3603

3604
	update_shares_locked(this_rq, sd);
P
Peter Williams 已提交
3605
	return ld_moved;
3606 3607

out_balanced:
I
Ingo Molnar 已提交
3608
	schedstat_inc(sd, lb_balanced[CPU_NEWLY_IDLE]);
3609
	if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
3610
	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
N
Nick Piggin 已提交
3611
		return -1;
3612
	sd->nr_balance_failed = 0;
3613

3614
	return 0;
L
Linus Torvalds 已提交
3615 3616 3617 3618 3619 3620
}

/*
 * idle_balance is called by schedule() if this_cpu is about to become
 * idle. Attempts to pull tasks from other CPUs.
 */
3621
static void idle_balance(int this_cpu, struct rq *this_rq)
L
Linus Torvalds 已提交
3622 3623
{
	struct sched_domain *sd;
I
Ingo Molnar 已提交
3624 3625
	int pulled_task = -1;
	unsigned long next_balance = jiffies + HZ;
3626
	cpumask_t tmpmask;
L
Linus Torvalds 已提交
3627 3628

	for_each_domain(this_cpu, sd) {
3629 3630 3631 3632 3633 3634
		unsigned long interval;

		if (!(sd->flags & SD_LOAD_BALANCE))
			continue;

		if (sd->flags & SD_BALANCE_NEWIDLE)
3635
			/* If we've pulled tasks over stop searching: */
3636 3637
			pulled_task = load_balance_newidle(this_cpu, this_rq,
							   sd, &tmpmask);
3638 3639 3640 3641 3642 3643

		interval = msecs_to_jiffies(sd->balance_interval);
		if (time_after(next_balance, sd->last_balance + interval))
			next_balance = sd->last_balance + interval;
		if (pulled_task)
			break;
L
Linus Torvalds 已提交
3644
	}
I
Ingo Molnar 已提交
3645
	if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
3646 3647 3648 3649 3650
		/*
		 * We are going idle. next_balance may be set based on
		 * a busy processor. So reset next_balance.
		 */
		this_rq->next_balance = next_balance;
I
Ingo Molnar 已提交
3651
	}
L
Linus Torvalds 已提交
3652 3653 3654 3655 3656 3657 3658 3659 3660 3661
}

/*
 * active_load_balance is run by migration threads. It pushes running tasks
 * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
 * running on each physical CPU where possible, and avoids physical /
 * logical imbalances.
 *
 * Called with busiest_rq locked.
 */
3662
static void active_load_balance(struct rq *busiest_rq, int busiest_cpu)
L
Linus Torvalds 已提交
3663
{
3664
	int target_cpu = busiest_rq->push_cpu;
3665 3666
	struct sched_domain *sd;
	struct rq *target_rq;
3667

3668
	/* Is there any task to move? */
3669 3670 3671 3672
	if (busiest_rq->nr_running <= 1)
		return;

	target_rq = cpu_rq(target_cpu);
L
Linus Torvalds 已提交
3673 3674

	/*
3675
	 * This condition is "impossible", if it occurs
I
Ingo Molnar 已提交
3676
	 * we need to fix it. Originally reported by
3677
	 * Bjorn Helgaas on a 128-cpu setup.
L
Linus Torvalds 已提交
3678
	 */
3679
	BUG_ON(busiest_rq == target_rq);
L
Linus Torvalds 已提交
3680

3681 3682
	/* move a task from busiest_rq to target_rq */
	double_lock_balance(busiest_rq, target_rq);
3683 3684
	update_rq_clock(busiest_rq);
	update_rq_clock(target_rq);
3685 3686

	/* Search for an sd spanning us and the target CPU. */
3687
	for_each_domain(target_cpu, sd) {
3688
		if ((sd->flags & SD_LOAD_BALANCE) &&
3689
		    cpu_isset(busiest_cpu, sd->span))
3690
				break;
3691
	}
3692

3693
	if (likely(sd)) {
3694
		schedstat_inc(sd, alb_count);
3695

P
Peter Williams 已提交
3696 3697
		if (move_one_task(target_rq, target_cpu, busiest_rq,
				  sd, CPU_IDLE))
3698 3699 3700 3701
			schedstat_inc(sd, alb_pushed);
		else
			schedstat_inc(sd, alb_failed);
	}
3702
	spin_unlock(&target_rq->lock);
L
Linus Torvalds 已提交
3703 3704
}

3705 3706 3707
#ifdef CONFIG_NO_HZ
static struct {
	atomic_t load_balancer;
I
Ingo Molnar 已提交
3708
	cpumask_t cpu_mask;
3709 3710 3711 3712 3713
} nohz ____cacheline_aligned = {
	.load_balancer = ATOMIC_INIT(-1),
	.cpu_mask = CPU_MASK_NONE,
};

3714
/*
3715 3716 3717 3718 3719 3720 3721 3722 3723 3724
 * This routine will try to nominate the ilb (idle load balancing)
 * owner among the cpus whose ticks are stopped. ilb owner will do the idle
 * load balancing on behalf of all those cpus. If all the cpus in the system
 * go into this tickless mode, then there will be no ilb owner (as there is
 * no need for one) and all the cpus will sleep till the next wakeup event
 * arrives...
 *
 * For the ilb owner, tick is not stopped. And this tick will be used
 * for idle load balancing. ilb owner will still be part of
 * nohz.cpu_mask..
3725
 *
3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781
 * While stopping the tick, this cpu will become the ilb owner if there
 * is no other owner. And will be the owner till that cpu becomes busy
 * or if all cpus in the system stop their ticks at which point
 * there is no need for ilb owner.
 *
 * When the ilb owner becomes busy, it nominates another owner, during the
 * next busy scheduler_tick()
 */
int select_nohz_load_balancer(int stop_tick)
{
	int cpu = smp_processor_id();

	if (stop_tick) {
		cpu_set(cpu, nohz.cpu_mask);
		cpu_rq(cpu)->in_nohz_recently = 1;

		/*
		 * If we are going offline and still the leader, give up!
		 */
		if (cpu_is_offline(cpu) &&
		    atomic_read(&nohz.load_balancer) == cpu) {
			if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
				BUG();
			return 0;
		}

		/* time for ilb owner also to sleep */
		if (cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
			if (atomic_read(&nohz.load_balancer) == cpu)
				atomic_set(&nohz.load_balancer, -1);
			return 0;
		}

		if (atomic_read(&nohz.load_balancer) == -1) {
			/* make me the ilb owner */
			if (atomic_cmpxchg(&nohz.load_balancer, -1, cpu) == -1)
				return 1;
		} else if (atomic_read(&nohz.load_balancer) == cpu)
			return 1;
	} else {
		if (!cpu_isset(cpu, nohz.cpu_mask))
			return 0;

		cpu_clear(cpu, nohz.cpu_mask);

		if (atomic_read(&nohz.load_balancer) == cpu)
			if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
				BUG();
	}
	return 0;
}
#endif

static DEFINE_SPINLOCK(balancing);

/*
3782 3783 3784 3785 3786
 * It checks each scheduling domain to see if it is due to be balanced,
 * and initiates a balancing operation if so.
 *
 * Balancing parameters are set up in arch_init_sched_domains.
 */
A
Alexey Dobriyan 已提交
3787
static void rebalance_domains(int cpu, enum cpu_idle_type idle)
3788
{
3789 3790
	int balance = 1;
	struct rq *rq = cpu_rq(cpu);
3791 3792
	unsigned long interval;
	struct sched_domain *sd;
3793
	/* Earliest time when we have to do rebalance again */
3794
	unsigned long next_balance = jiffies + 60*HZ;
3795
	int update_next_balance = 0;
3796
	int need_serialize;
3797
	cpumask_t tmp;
L
Linus Torvalds 已提交
3798

3799
	for_each_domain(cpu, sd) {
L
Linus Torvalds 已提交
3800 3801 3802 3803
		if (!(sd->flags & SD_LOAD_BALANCE))
			continue;

		interval = sd->balance_interval;
I
Ingo Molnar 已提交
3804
		if (idle != CPU_IDLE)
L
Linus Torvalds 已提交
3805 3806 3807 3808 3809 3810
			interval *= sd->busy_factor;

		/* scale ms to jiffies */
		interval = msecs_to_jiffies(interval);
		if (unlikely(!interval))
			interval = 1;
I
Ingo Molnar 已提交
3811 3812 3813
		if (interval > HZ*NR_CPUS/10)
			interval = HZ*NR_CPUS/10;

3814
		need_serialize = sd->flags & SD_SERIALIZE;
L
Linus Torvalds 已提交
3815

3816
		if (need_serialize) {
3817 3818 3819 3820
			if (!spin_trylock(&balancing))
				goto out;
		}

3821
		if (time_after_eq(jiffies, sd->last_balance + interval)) {
3822
			if (load_balance(cpu, rq, sd, idle, &balance, &tmp)) {
3823 3824
				/*
				 * We've pulled tasks over so either we're no
N
Nick Piggin 已提交
3825 3826 3827
				 * longer idle, or one of our SMT siblings is
				 * not idle.
				 */
I
Ingo Molnar 已提交
3828
				idle = CPU_NOT_IDLE;
L
Linus Torvalds 已提交
3829
			}
3830
			sd->last_balance = jiffies;
L
Linus Torvalds 已提交
3831
		}
3832
		if (need_serialize)
3833 3834
			spin_unlock(&balancing);
out:
3835
		if (time_after(next_balance, sd->last_balance + interval)) {
3836
			next_balance = sd->last_balance + interval;
3837 3838
			update_next_balance = 1;
		}
3839 3840 3841 3842 3843 3844 3845 3846

		/*
		 * Stop the load balance at this level. There is another
		 * CPU in our sched group which is doing load balancing more
		 * actively.
		 */
		if (!balance)
			break;
L
Linus Torvalds 已提交
3847
	}
3848 3849 3850 3851 3852 3853 3854 3855

	/*
	 * next_balance will be updated only when there is a need.
	 * When the cpu is attached to null domain for ex, it will not be
	 * updated.
	 */
	if (likely(update_next_balance))
		rq->next_balance = next_balance;
3856 3857 3858 3859 3860 3861 3862 3863 3864
}

/*
 * run_rebalance_domains is triggered when needed from the scheduler tick.
 * In CONFIG_NO_HZ case, the idle load balance owner will do the
 * rebalancing for all the cpus for whom scheduler ticks are stopped.
 */
static void run_rebalance_domains(struct softirq_action *h)
{
I
Ingo Molnar 已提交
3865 3866 3867 3868
	int this_cpu = smp_processor_id();
	struct rq *this_rq = cpu_rq(this_cpu);
	enum cpu_idle_type idle = this_rq->idle_at_tick ?
						CPU_IDLE : CPU_NOT_IDLE;
3869

I
Ingo Molnar 已提交
3870
	rebalance_domains(this_cpu, idle);
3871 3872 3873 3874 3875 3876 3877

#ifdef CONFIG_NO_HZ
	/*
	 * If this cpu is the owner for idle load balancing, then do the
	 * balancing on behalf of the other idle cpus whose ticks are
	 * stopped.
	 */
I
Ingo Molnar 已提交
3878 3879
	if (this_rq->idle_at_tick &&
	    atomic_read(&nohz.load_balancer) == this_cpu) {
3880 3881 3882 3883
		cpumask_t cpus = nohz.cpu_mask;
		struct rq *rq;
		int balance_cpu;

I
Ingo Molnar 已提交
3884
		cpu_clear(this_cpu, cpus);
3885 3886 3887 3888 3889 3890 3891 3892 3893
		for_each_cpu_mask(balance_cpu, cpus) {
			/*
			 * If this cpu gets work to do, stop the load balancing
			 * work being done for other cpus. Next load
			 * balancing owner will pick it up.
			 */
			if (need_resched())
				break;

3894
			rebalance_domains(balance_cpu, CPU_IDLE);
3895 3896

			rq = cpu_rq(balance_cpu);
I
Ingo Molnar 已提交
3897 3898
			if (time_after(this_rq->next_balance, rq->next_balance))
				this_rq->next_balance = rq->next_balance;
3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910
		}
	}
#endif
}

/*
 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
 *
 * In case of CONFIG_NO_HZ, this is the place where we nominate a new
 * idle load balancing owner or decide to stop the periodic load balancing,
 * if the whole system is idle.
 */
I
Ingo Molnar 已提交
3911
static inline void trigger_load_balance(struct rq *rq, int cpu)
3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937
{
#ifdef CONFIG_NO_HZ
	/*
	 * If we were in the nohz mode recently and busy at the current
	 * scheduler tick, then check if we need to nominate new idle
	 * load balancer.
	 */
	if (rq->in_nohz_recently && !rq->idle_at_tick) {
		rq->in_nohz_recently = 0;

		if (atomic_read(&nohz.load_balancer) == cpu) {
			cpu_clear(cpu, nohz.cpu_mask);
			atomic_set(&nohz.load_balancer, -1);
		}

		if (atomic_read(&nohz.load_balancer) == -1) {
			/*
			 * simple selection for now: Nominate the
			 * first cpu in the nohz list to be the next
			 * ilb owner.
			 *
			 * TBD: Traverse the sched domains and nominate
			 * the nearest cpu in the nohz.cpu_mask.
			 */
			int ilb = first_cpu(nohz.cpu_mask);

3938
			if (ilb < nr_cpu_ids)
3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962
				resched_cpu(ilb);
		}
	}

	/*
	 * If this cpu is idle and doing idle load balancing for all the
	 * cpus with ticks stopped, is it time for that to stop?
	 */
	if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) == cpu &&
	    cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
		resched_cpu(cpu);
		return;
	}

	/*
	 * If this cpu is idle and the idle load balancing is done by
	 * someone else, then no need raise the SCHED_SOFTIRQ
	 */
	if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) != cpu &&
	    cpu_isset(cpu, nohz.cpu_mask))
		return;
#endif
	if (time_after_eq(jiffies, rq->next_balance))
		raise_softirq(SCHED_SOFTIRQ);
L
Linus Torvalds 已提交
3963
}
I
Ingo Molnar 已提交
3964 3965 3966

#else	/* CONFIG_SMP */

L
Linus Torvalds 已提交
3967 3968 3969
/*
 * on UP we do not need to balance between CPUs:
 */
3970
static inline void idle_balance(int cpu, struct rq *rq)
L
Linus Torvalds 已提交
3971 3972
{
}
I
Ingo Molnar 已提交
3973

L
Linus Torvalds 已提交
3974 3975 3976 3977 3978 3979 3980
#endif

DEFINE_PER_CPU(struct kernel_stat, kstat);

EXPORT_PER_CPU_SYMBOL(kstat);

/*
3981 3982
 * Return p->sum_exec_runtime plus any more ns on the sched_clock
 * that have not yet been banked in case the task is currently running.
L
Linus Torvalds 已提交
3983
 */
3984
unsigned long long task_sched_runtime(struct task_struct *p)
L
Linus Torvalds 已提交
3985 3986
{
	unsigned long flags;
3987 3988
	u64 ns, delta_exec;
	struct rq *rq;
3989

3990 3991
	rq = task_rq_lock(p, &flags);
	ns = p->se.sum_exec_runtime;
3992
	if (task_current(rq, p)) {
I
Ingo Molnar 已提交
3993 3994
		update_rq_clock(rq);
		delta_exec = rq->clock - p->se.exec_start;
3995 3996 3997 3998
		if ((s64)delta_exec > 0)
			ns += delta_exec;
	}
	task_rq_unlock(rq, &flags);
3999

L
Linus Torvalds 已提交
4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022
	return ns;
}

/*
 * Account user cpu time to a process.
 * @p: the process that the cpu time gets accounted to
 * @cputime: the cpu time spent in user space since the last update
 */
void account_user_time(struct task_struct *p, cputime_t cputime)
{
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
	cputime64_t tmp;

	p->utime = cputime_add(p->utime, cputime);

	/* Add user time to cpustat. */
	tmp = cputime_to_cputime64(cputime);
	if (TASK_NICE(p) > 0)
		cpustat->nice = cputime64_add(cpustat->nice, tmp);
	else
		cpustat->user = cputime64_add(cpustat->user, tmp);
}

4023 4024 4025 4026 4027
/*
 * Account guest cpu time to a process.
 * @p: the process that the cpu time gets accounted to
 * @cputime: the cpu time spent in virtual machine since the last update
 */
4028
static void account_guest_time(struct task_struct *p, cputime_t cputime)
4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041
{
	cputime64_t tmp;
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;

	tmp = cputime_to_cputime64(cputime);

	p->utime = cputime_add(p->utime, cputime);
	p->gtime = cputime_add(p->gtime, cputime);

	cpustat->user = cputime64_add(cpustat->user, tmp);
	cpustat->guest = cputime64_add(cpustat->guest, tmp);
}

4042 4043 4044 4045 4046 4047 4048 4049 4050 4051
/*
 * Account scaled user cpu time to a process.
 * @p: the process that the cpu time gets accounted to
 * @cputime: the cpu time spent in user space since the last update
 */
void account_user_time_scaled(struct task_struct *p, cputime_t cputime)
{
	p->utimescaled = cputime_add(p->utimescaled, cputime);
}

L
Linus Torvalds 已提交
4052 4053 4054 4055 4056 4057 4058 4059 4060 4061
/*
 * Account system cpu time to a process.
 * @p: the process that the cpu time gets accounted to
 * @hardirq_offset: the offset to subtract from hardirq_count()
 * @cputime: the cpu time spent in kernel space since the last update
 */
void account_system_time(struct task_struct *p, int hardirq_offset,
			 cputime_t cputime)
{
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
4062
	struct rq *rq = this_rq();
L
Linus Torvalds 已提交
4063 4064
	cputime64_t tmp;

4065 4066 4067 4068
	if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
		account_guest_time(p, cputime);
		return;
	}
4069

L
Linus Torvalds 已提交
4070 4071 4072 4073 4074 4075 4076 4077
	p->stime = cputime_add(p->stime, cputime);

	/* Add system time to cpustat. */
	tmp = cputime_to_cputime64(cputime);
	if (hardirq_count() - hardirq_offset)
		cpustat->irq = cputime64_add(cpustat->irq, tmp);
	else if (softirq_count())
		cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
4078
	else if (p != rq->idle)
L
Linus Torvalds 已提交
4079
		cpustat->system = cputime64_add(cpustat->system, tmp);
4080
	else if (atomic_read(&rq->nr_iowait) > 0)
L
Linus Torvalds 已提交
4081 4082 4083 4084 4085 4086 4087
		cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
	else
		cpustat->idle = cputime64_add(cpustat->idle, tmp);
	/* Account for system time used */
	acct_update_integrals(p);
}

4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098
/*
 * Account scaled system cpu time to a process.
 * @p: the process that the cpu time gets accounted to
 * @hardirq_offset: the offset to subtract from hardirq_count()
 * @cputime: the cpu time spent in kernel space since the last update
 */
void account_system_time_scaled(struct task_struct *p, cputime_t cputime)
{
	p->stimescaled = cputime_add(p->stimescaled, cputime);
}

L
Linus Torvalds 已提交
4099 4100 4101 4102 4103 4104 4105 4106 4107
/*
 * Account for involuntary wait time.
 * @p: the process from which the cpu time has been stolen
 * @steal: the cpu time spent in involuntary wait
 */
void account_steal_time(struct task_struct *p, cputime_t steal)
{
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
	cputime64_t tmp = cputime_to_cputime64(steal);
4108
	struct rq *rq = this_rq();
L
Linus Torvalds 已提交
4109 4110 4111 4112 4113 4114 4115

	if (p == rq->idle) {
		p->stime = cputime_add(p->stime, steal);
		if (atomic_read(&rq->nr_iowait) > 0)
			cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
		else
			cpustat->idle = cputime64_add(cpustat->idle, tmp);
4116
	} else
L
Linus Torvalds 已提交
4117 4118 4119
		cpustat->steal = cputime64_add(cpustat->steal, tmp);
}

4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130
/*
 * This function gets called by the timer code, with HZ frequency.
 * We call it with interrupts disabled.
 *
 * It also gets called by the fork code, when changing the parent's
 * timeslices.
 */
void scheduler_tick(void)
{
	int cpu = smp_processor_id();
	struct rq *rq = cpu_rq(cpu);
I
Ingo Molnar 已提交
4131
	struct task_struct *curr = rq->curr;
4132 4133

	sched_clock_tick();
I
Ingo Molnar 已提交
4134 4135

	spin_lock(&rq->lock);
4136
	update_rq_clock(rq);
4137
	update_cpu_load(rq);
P
Peter Zijlstra 已提交
4138
	curr->sched_class->task_tick(rq, curr, 0);
I
Ingo Molnar 已提交
4139
	spin_unlock(&rq->lock);
4140

4141
#ifdef CONFIG_SMP
I
Ingo Molnar 已提交
4142 4143
	rq->idle_at_tick = idle_cpu(cpu);
	trigger_load_balance(rq, cpu);
4144
#endif
L
Linus Torvalds 已提交
4145 4146 4147 4148
}

#if defined(CONFIG_PREEMPT) && defined(CONFIG_DEBUG_PREEMPT)

4149
void __kprobes add_preempt_count(int val)
L
Linus Torvalds 已提交
4150 4151 4152 4153
{
	/*
	 * Underflow?
	 */
4154 4155
	if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
		return;
L
Linus Torvalds 已提交
4156 4157 4158 4159
	preempt_count() += val;
	/*
	 * Spinlock count overflowing soon?
	 */
4160 4161
	DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
				PREEMPT_MASK - 10);
L
Linus Torvalds 已提交
4162 4163 4164
}
EXPORT_SYMBOL(add_preempt_count);

4165
void __kprobes sub_preempt_count(int val)
L
Linus Torvalds 已提交
4166 4167 4168 4169
{
	/*
	 * Underflow?
	 */
4170 4171
	if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
		return;
L
Linus Torvalds 已提交
4172 4173 4174
	/*
	 * Is the spinlock portion underflowing?
	 */
4175 4176 4177 4178
	if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
			!(preempt_count() & PREEMPT_MASK)))
		return;

L
Linus Torvalds 已提交
4179 4180 4181 4182 4183 4184 4185
	preempt_count() -= val;
}
EXPORT_SYMBOL(sub_preempt_count);

#endif

/*
I
Ingo Molnar 已提交
4186
 * Print scheduling while atomic bug:
L
Linus Torvalds 已提交
4187
 */
I
Ingo Molnar 已提交
4188
static noinline void __schedule_bug(struct task_struct *prev)
L
Linus Torvalds 已提交
4189
{
4190 4191 4192 4193 4194
	struct pt_regs *regs = get_irq_regs();

	printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
		prev->comm, prev->pid, preempt_count());

I
Ingo Molnar 已提交
4195
	debug_show_held_locks(prev);
4196
	print_modules();
I
Ingo Molnar 已提交
4197 4198
	if (irqs_disabled())
		print_irqtrace_events(prev);
4199 4200 4201 4202 4203

	if (regs)
		show_regs(regs);
	else
		dump_stack();
I
Ingo Molnar 已提交
4204
}
L
Linus Torvalds 已提交
4205

I
Ingo Molnar 已提交
4206 4207 4208 4209 4210
/*
 * Various schedule()-time debugging checks and statistics:
 */
static inline void schedule_debug(struct task_struct *prev)
{
L
Linus Torvalds 已提交
4211
	/*
I
Ingo Molnar 已提交
4212
	 * Test if we are atomic. Since do_exit() needs to call into
L
Linus Torvalds 已提交
4213 4214 4215
	 * schedule() atomically, we ignore that path for now.
	 * Otherwise, whine if we are scheduling when we should not be.
	 */
4216
	if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
I
Ingo Molnar 已提交
4217 4218
		__schedule_bug(prev);

L
Linus Torvalds 已提交
4219 4220
	profile_hit(SCHED_PROFILING, __builtin_return_address(0));

4221
	schedstat_inc(this_rq(), sched_count);
I
Ingo Molnar 已提交
4222 4223
#ifdef CONFIG_SCHEDSTATS
	if (unlikely(prev->lock_depth >= 0)) {
4224 4225
		schedstat_inc(this_rq(), bkl_count);
		schedstat_inc(prev, sched_info.bkl_count);
I
Ingo Molnar 已提交
4226 4227
	}
#endif
I
Ingo Molnar 已提交
4228 4229 4230 4231 4232 4233
}

/*
 * Pick up the highest-prio task:
 */
static inline struct task_struct *
4234
pick_next_task(struct rq *rq, struct task_struct *prev)
I
Ingo Molnar 已提交
4235
{
4236
	const struct sched_class *class;
I
Ingo Molnar 已提交
4237
	struct task_struct *p;
L
Linus Torvalds 已提交
4238 4239

	/*
I
Ingo Molnar 已提交
4240 4241
	 * Optimization: we know that if all tasks are in
	 * the fair class we can call that function directly:
L
Linus Torvalds 已提交
4242
	 */
I
Ingo Molnar 已提交
4243
	if (likely(rq->nr_running == rq->cfs.nr_running)) {
4244
		p = fair_sched_class.pick_next_task(rq);
I
Ingo Molnar 已提交
4245 4246
		if (likely(p))
			return p;
L
Linus Torvalds 已提交
4247 4248
	}

I
Ingo Molnar 已提交
4249 4250
	class = sched_class_highest;
	for ( ; ; ) {
4251
		p = class->pick_next_task(rq);
I
Ingo Molnar 已提交
4252 4253 4254 4255 4256 4257 4258 4259 4260
		if (p)
			return p;
		/*
		 * Will never be NULL as the idle class always
		 * returns a non-NULL p:
		 */
		class = class->next;
	}
}
L
Linus Torvalds 已提交
4261

I
Ingo Molnar 已提交
4262 4263 4264 4265 4266 4267
/*
 * schedule() is the main scheduler function.
 */
asmlinkage void __sched schedule(void)
{
	struct task_struct *prev, *next;
4268
	unsigned long *switch_count;
I
Ingo Molnar 已提交
4269
	struct rq *rq;
M
Mike Galbraith 已提交
4270
	int cpu, hrtick = sched_feat(HRTICK);
I
Ingo Molnar 已提交
4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283

need_resched:
	preempt_disable();
	cpu = smp_processor_id();
	rq = cpu_rq(cpu);
	rcu_qsctr_inc(cpu);
	prev = rq->curr;
	switch_count = &prev->nivcsw;

	release_kernel_lock(prev);
need_resched_nonpreemptible:

	schedule_debug(prev);
L
Linus Torvalds 已提交
4284

M
Mike Galbraith 已提交
4285 4286
	if (hrtick)
		hrtick_clear(rq);
P
Peter Zijlstra 已提交
4287

4288 4289 4290 4291
	/*
	 * Do the rq-clock update outside the rq lock:
	 */
	local_irq_disable();
4292
	update_rq_clock(rq);
4293 4294
	spin_lock(&rq->lock);
	clear_tsk_need_resched(prev);
L
Linus Torvalds 已提交
4295 4296

	if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
4297
		if (unlikely(signal_pending_state(prev->state, prev)))
L
Linus Torvalds 已提交
4298
			prev->state = TASK_RUNNING;
4299
		else
4300
			deactivate_task(rq, prev, 1);
I
Ingo Molnar 已提交
4301
		switch_count = &prev->nvcsw;
L
Linus Torvalds 已提交
4302 4303
	}

4304 4305 4306 4307
#ifdef CONFIG_SMP
	if (prev->sched_class->pre_schedule)
		prev->sched_class->pre_schedule(rq, prev);
#endif
4308

I
Ingo Molnar 已提交
4309
	if (unlikely(!rq->nr_running))
L
Linus Torvalds 已提交
4310 4311
		idle_balance(cpu, rq);

4312
	prev->sched_class->put_prev_task(rq, prev);
4313
	next = pick_next_task(rq, prev);
L
Linus Torvalds 已提交
4314 4315

	if (likely(prev != next)) {
4316 4317
		sched_info_switch(prev, next);

L
Linus Torvalds 已提交
4318 4319 4320 4321
		rq->nr_switches++;
		rq->curr = next;
		++*switch_count;

I
Ingo Molnar 已提交
4322
		context_switch(rq, prev, next); /* unlocks the rq */
P
Peter Zijlstra 已提交
4323 4324 4325 4326 4327 4328
		/*
		 * the context switch might have flipped the stack from under
		 * us, hence refresh the local variables.
		 */
		cpu = smp_processor_id();
		rq = cpu_rq(cpu);
L
Linus Torvalds 已提交
4329 4330 4331
	} else
		spin_unlock_irq(&rq->lock);

M
Mike Galbraith 已提交
4332 4333
	if (hrtick)
		hrtick_set(rq);
P
Peter Zijlstra 已提交
4334 4335

	if (unlikely(reacquire_kernel_lock(current) < 0))
L
Linus Torvalds 已提交
4336
		goto need_resched_nonpreemptible;
P
Peter Zijlstra 已提交
4337

L
Linus Torvalds 已提交
4338 4339 4340 4341 4342 4343 4344 4345
	preempt_enable_no_resched();
	if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
		goto need_resched;
}
EXPORT_SYMBOL(schedule);

#ifdef CONFIG_PREEMPT
/*
4346
 * this is the entry point to schedule() from in-kernel preemption
I
Ingo Molnar 已提交
4347
 * off of preempt_enable. Kernel preemptions off return from interrupt
L
Linus Torvalds 已提交
4348 4349 4350 4351 4352
 * occur there and call schedule directly.
 */
asmlinkage void __sched preempt_schedule(void)
{
	struct thread_info *ti = current_thread_info();
4353

L
Linus Torvalds 已提交
4354 4355
	/*
	 * If there is a non-zero preempt_count or interrupts are disabled,
I
Ingo Molnar 已提交
4356
	 * we do not want to preempt the current task. Just return..
L
Linus Torvalds 已提交
4357
	 */
N
Nick Piggin 已提交
4358
	if (likely(ti->preempt_count || irqs_disabled()))
L
Linus Torvalds 已提交
4359 4360
		return;

4361 4362 4363 4364
	do {
		add_preempt_count(PREEMPT_ACTIVE);
		schedule();
		sub_preempt_count(PREEMPT_ACTIVE);
L
Linus Torvalds 已提交
4365

4366 4367 4368 4369 4370 4371
		/*
		 * Check again in case we missed a preemption opportunity
		 * between schedule and now.
		 */
		barrier();
	} while (unlikely(test_thread_flag(TIF_NEED_RESCHED)));
L
Linus Torvalds 已提交
4372 4373 4374 4375
}
EXPORT_SYMBOL(preempt_schedule);

/*
4376
 * this is the entry point to schedule() from kernel preemption
L
Linus Torvalds 已提交
4377 4378 4379 4380 4381 4382 4383
 * off of irq context.
 * Note, that this is called and return with irqs disabled. This will
 * protect us against recursive calling from irq.
 */
asmlinkage void __sched preempt_schedule_irq(void)
{
	struct thread_info *ti = current_thread_info();
4384

4385
	/* Catch callers which need to be fixed */
L
Linus Torvalds 已提交
4386 4387
	BUG_ON(ti->preempt_count || !irqs_disabled());

4388 4389 4390 4391 4392 4393
	do {
		add_preempt_count(PREEMPT_ACTIVE);
		local_irq_enable();
		schedule();
		local_irq_disable();
		sub_preempt_count(PREEMPT_ACTIVE);
L
Linus Torvalds 已提交
4394

4395 4396 4397 4398 4399 4400
		/*
		 * Check again in case we missed a preemption opportunity
		 * between schedule and now.
		 */
		barrier();
	} while (unlikely(test_thread_flag(TIF_NEED_RESCHED)));
L
Linus Torvalds 已提交
4401 4402 4403 4404
}

#endif /* CONFIG_PREEMPT */

I
Ingo Molnar 已提交
4405 4406
int default_wake_function(wait_queue_t *curr, unsigned mode, int sync,
			  void *key)
L
Linus Torvalds 已提交
4407
{
4408
	return try_to_wake_up(curr->private, mode, sync);
L
Linus Torvalds 已提交
4409 4410 4411 4412
}
EXPORT_SYMBOL(default_wake_function);

/*
I
Ingo Molnar 已提交
4413 4414
 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
L
Linus Torvalds 已提交
4415 4416 4417
 * number) then we wake all the non-exclusive tasks and one exclusive task.
 *
 * There are circumstances in which we can try to wake a task which has already
I
Ingo Molnar 已提交
4418
 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
L
Linus Torvalds 已提交
4419 4420 4421 4422 4423
 * zero in this (rare) case, and we handle it by continuing to scan the queue.
 */
static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
			     int nr_exclusive, int sync, void *key)
{
4424
	wait_queue_t *curr, *next;
L
Linus Torvalds 已提交
4425

4426
	list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
4427 4428
		unsigned flags = curr->flags;

L
Linus Torvalds 已提交
4429
		if (curr->func(curr, mode, sync, key) &&
4430
				(flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
L
Linus Torvalds 已提交
4431 4432 4433 4434 4435 4436 4437 4438 4439
			break;
	}
}

/**
 * __wake_up - wake up threads blocked on a waitqueue.
 * @q: the waitqueue
 * @mode: which threads
 * @nr_exclusive: how many wake-one or wake-many threads to wake up
4440
 * @key: is directly passed to the wakeup function
L
Linus Torvalds 已提交
4441
 */
4442
void __wake_up(wait_queue_head_t *q, unsigned int mode,
I
Ingo Molnar 已提交
4443
			int nr_exclusive, void *key)
L
Linus Torvalds 已提交
4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455
{
	unsigned long flags;

	spin_lock_irqsave(&q->lock, flags);
	__wake_up_common(q, mode, nr_exclusive, 0, key);
	spin_unlock_irqrestore(&q->lock, flags);
}
EXPORT_SYMBOL(__wake_up);

/*
 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
 */
4456
void __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
L
Linus Torvalds 已提交
4457 4458 4459 4460 4461
{
	__wake_up_common(q, mode, 1, 0, NULL);
}

/**
4462
 * __wake_up_sync - wake up threads blocked on a waitqueue.
L
Linus Torvalds 已提交
4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473
 * @q: the waitqueue
 * @mode: which threads
 * @nr_exclusive: how many wake-one or wake-many threads to wake up
 *
 * The sync wakeup differs that the waker knows that it will schedule
 * away soon, so while the target thread will be woken up, it will not
 * be migrated to another CPU - ie. the two threads are 'synchronized'
 * with each other. This can prevent needless bouncing between CPUs.
 *
 * On UP it can prevent extra preemption.
 */
4474
void
I
Ingo Molnar 已提交
4475
__wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
L
Linus Torvalds 已提交
4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491
{
	unsigned long flags;
	int sync = 1;

	if (unlikely(!q))
		return;

	if (unlikely(!nr_exclusive))
		sync = 0;

	spin_lock_irqsave(&q->lock, flags);
	__wake_up_common(q, mode, nr_exclusive, sync, NULL);
	spin_unlock_irqrestore(&q->lock, flags);
}
EXPORT_SYMBOL_GPL(__wake_up_sync);	/* For internal use only */

4492
void complete(struct completion *x)
L
Linus Torvalds 已提交
4493 4494 4495 4496 4497
{
	unsigned long flags;

	spin_lock_irqsave(&x->wait.lock, flags);
	x->done++;
4498
	__wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
L
Linus Torvalds 已提交
4499 4500 4501 4502
	spin_unlock_irqrestore(&x->wait.lock, flags);
}
EXPORT_SYMBOL(complete);

4503
void complete_all(struct completion *x)
L
Linus Torvalds 已提交
4504 4505 4506 4507 4508
{
	unsigned long flags;

	spin_lock_irqsave(&x->wait.lock, flags);
	x->done += UINT_MAX/2;
4509
	__wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
L
Linus Torvalds 已提交
4510 4511 4512 4513
	spin_unlock_irqrestore(&x->wait.lock, flags);
}
EXPORT_SYMBOL(complete_all);

4514 4515
static inline long __sched
do_wait_for_common(struct completion *x, long timeout, int state)
L
Linus Torvalds 已提交
4516 4517 4518 4519 4520 4521 4522
{
	if (!x->done) {
		DECLARE_WAITQUEUE(wait, current);

		wait.flags |= WQ_FLAG_EXCLUSIVE;
		__add_wait_queue_tail(&x->wait, &wait);
		do {
M
Matthew Wilcox 已提交
4523 4524 4525 4526
			if ((state == TASK_INTERRUPTIBLE &&
			     signal_pending(current)) ||
			    (state == TASK_KILLABLE &&
			     fatal_signal_pending(current))) {
4527 4528
				timeout = -ERESTARTSYS;
				break;
4529 4530
			}
			__set_current_state(state);
L
Linus Torvalds 已提交
4531 4532 4533
			spin_unlock_irq(&x->wait.lock);
			timeout = schedule_timeout(timeout);
			spin_lock_irq(&x->wait.lock);
4534
		} while (!x->done && timeout);
L
Linus Torvalds 已提交
4535
		__remove_wait_queue(&x->wait, &wait);
4536 4537
		if (!x->done)
			return timeout;
L
Linus Torvalds 已提交
4538 4539
	}
	x->done--;
4540
	return timeout ?: 1;
L
Linus Torvalds 已提交
4541 4542
}

4543 4544
static long __sched
wait_for_common(struct completion *x, long timeout, int state)
L
Linus Torvalds 已提交
4545 4546 4547 4548
{
	might_sleep();

	spin_lock_irq(&x->wait.lock);
4549
	timeout = do_wait_for_common(x, timeout, state);
L
Linus Torvalds 已提交
4550
	spin_unlock_irq(&x->wait.lock);
4551 4552
	return timeout;
}
L
Linus Torvalds 已提交
4553

4554
void __sched wait_for_completion(struct completion *x)
4555 4556
{
	wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
L
Linus Torvalds 已提交
4557
}
4558
EXPORT_SYMBOL(wait_for_completion);
L
Linus Torvalds 已提交
4559

4560
unsigned long __sched
4561
wait_for_completion_timeout(struct completion *x, unsigned long timeout)
L
Linus Torvalds 已提交
4562
{
4563
	return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
L
Linus Torvalds 已提交
4564
}
4565
EXPORT_SYMBOL(wait_for_completion_timeout);
L
Linus Torvalds 已提交
4566

4567
int __sched wait_for_completion_interruptible(struct completion *x)
I
Ingo Molnar 已提交
4568
{
4569 4570 4571 4572
	long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
	if (t == -ERESTARTSYS)
		return t;
	return 0;
I
Ingo Molnar 已提交
4573
}
4574
EXPORT_SYMBOL(wait_for_completion_interruptible);
L
Linus Torvalds 已提交
4575

4576
unsigned long __sched
4577 4578
wait_for_completion_interruptible_timeout(struct completion *x,
					  unsigned long timeout)
I
Ingo Molnar 已提交
4579
{
4580
	return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
I
Ingo Molnar 已提交
4581
}
4582
EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
L
Linus Torvalds 已提交
4583

M
Matthew Wilcox 已提交
4584 4585 4586 4587 4588 4589 4590 4591 4592
int __sched wait_for_completion_killable(struct completion *x)
{
	long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
	if (t == -ERESTARTSYS)
		return t;
	return 0;
}
EXPORT_SYMBOL(wait_for_completion_killable);

4593 4594
static long __sched
sleep_on_common(wait_queue_head_t *q, int state, long timeout)
L
Linus Torvalds 已提交
4595
{
I
Ingo Molnar 已提交
4596 4597 4598 4599
	unsigned long flags;
	wait_queue_t wait;

	init_waitqueue_entry(&wait, current);
L
Linus Torvalds 已提交
4600

4601
	__set_current_state(state);
L
Linus Torvalds 已提交
4602

4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616
	spin_lock_irqsave(&q->lock, flags);
	__add_wait_queue(q, &wait);
	spin_unlock(&q->lock);
	timeout = schedule_timeout(timeout);
	spin_lock_irq(&q->lock);
	__remove_wait_queue(q, &wait);
	spin_unlock_irqrestore(&q->lock, flags);

	return timeout;
}

void __sched interruptible_sleep_on(wait_queue_head_t *q)
{
	sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
L
Linus Torvalds 已提交
4617 4618 4619
}
EXPORT_SYMBOL(interruptible_sleep_on);

I
Ingo Molnar 已提交
4620
long __sched
I
Ingo Molnar 已提交
4621
interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
L
Linus Torvalds 已提交
4622
{
4623
	return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
L
Linus Torvalds 已提交
4624 4625 4626
}
EXPORT_SYMBOL(interruptible_sleep_on_timeout);

I
Ingo Molnar 已提交
4627
void __sched sleep_on(wait_queue_head_t *q)
L
Linus Torvalds 已提交
4628
{
4629
	sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
L
Linus Torvalds 已提交
4630 4631 4632
}
EXPORT_SYMBOL(sleep_on);

I
Ingo Molnar 已提交
4633
long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
L
Linus Torvalds 已提交
4634
{
4635
	return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
L
Linus Torvalds 已提交
4636 4637 4638
}
EXPORT_SYMBOL(sleep_on_timeout);

4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650
#ifdef CONFIG_RT_MUTEXES

/*
 * rt_mutex_setprio - set the current priority of a task
 * @p: task
 * @prio: prio value (kernel-internal form)
 *
 * This function changes the 'effective' priority of a task. It does
 * not touch ->normal_prio like __setscheduler().
 *
 * Used by the rt_mutex code to implement priority inheritance logic.
 */
4651
void rt_mutex_setprio(struct task_struct *p, int prio)
4652 4653
{
	unsigned long flags;
4654
	int oldprio, on_rq, running;
4655
	struct rq *rq;
4656
	const struct sched_class *prev_class = p->sched_class;
4657 4658 4659 4660

	BUG_ON(prio < 0 || prio > MAX_PRIO);

	rq = task_rq_lock(p, &flags);
I
Ingo Molnar 已提交
4661
	update_rq_clock(rq);
4662

4663
	oldprio = p->prio;
I
Ingo Molnar 已提交
4664
	on_rq = p->se.on_rq;
4665
	running = task_current(rq, p);
4666
	if (on_rq)
4667
		dequeue_task(rq, p, 0);
4668 4669
	if (running)
		p->sched_class->put_prev_task(rq, p);
I
Ingo Molnar 已提交
4670 4671 4672 4673 4674 4675

	if (rt_prio(prio))
		p->sched_class = &rt_sched_class;
	else
		p->sched_class = &fair_sched_class;

4676 4677
	p->prio = prio;

4678 4679
	if (running)
		p->sched_class->set_curr_task(rq);
I
Ingo Molnar 已提交
4680
	if (on_rq) {
4681
		enqueue_task(rq, p, 0);
4682 4683

		check_class_changed(rq, p, prev_class, oldprio, running);
4684 4685 4686 4687 4688 4689
	}
	task_rq_unlock(rq, &flags);
}

#endif

4690
void set_user_nice(struct task_struct *p, long nice)
L
Linus Torvalds 已提交
4691
{
I
Ingo Molnar 已提交
4692
	int old_prio, delta, on_rq;
L
Linus Torvalds 已提交
4693
	unsigned long flags;
4694
	struct rq *rq;
L
Linus Torvalds 已提交
4695 4696 4697 4698 4699 4700 4701 4702

	if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
		return;
	/*
	 * We have to be careful, if called from sys_setpriority(),
	 * the task might be in the middle of scheduling on another CPU.
	 */
	rq = task_rq_lock(p, &flags);
I
Ingo Molnar 已提交
4703
	update_rq_clock(rq);
L
Linus Torvalds 已提交
4704 4705 4706 4707
	/*
	 * The RT priorities are set via sched_setscheduler(), but we still
	 * allow the 'normal' nice value to be set - but as expected
	 * it wont have any effect on scheduling until the task is
I
Ingo Molnar 已提交
4708
	 * SCHED_FIFO/SCHED_RR:
L
Linus Torvalds 已提交
4709
	 */
4710
	if (task_has_rt_policy(p)) {
L
Linus Torvalds 已提交
4711 4712 4713
		p->static_prio = NICE_TO_PRIO(nice);
		goto out_unlock;
	}
I
Ingo Molnar 已提交
4714
	on_rq = p->se.on_rq;
4715
	if (on_rq)
4716
		dequeue_task(rq, p, 0);
L
Linus Torvalds 已提交
4717 4718

	p->static_prio = NICE_TO_PRIO(nice);
4719
	set_load_weight(p);
4720 4721 4722
	old_prio = p->prio;
	p->prio = effective_prio(p);
	delta = p->prio - old_prio;
L
Linus Torvalds 已提交
4723

I
Ingo Molnar 已提交
4724
	if (on_rq) {
4725
		enqueue_task(rq, p, 0);
L
Linus Torvalds 已提交
4726
		/*
4727 4728
		 * If the task increased its priority or is running and
		 * lowered its priority, then reschedule its CPU:
L
Linus Torvalds 已提交
4729
		 */
4730
		if (delta < 0 || (delta > 0 && task_running(rq, p)))
L
Linus Torvalds 已提交
4731 4732 4733 4734 4735 4736 4737
			resched_task(rq->curr);
	}
out_unlock:
	task_rq_unlock(rq, &flags);
}
EXPORT_SYMBOL(set_user_nice);

M
Matt Mackall 已提交
4738 4739 4740 4741 4742
/*
 * can_nice - check if a task can reduce its nice value
 * @p: task
 * @nice: nice value
 */
4743
int can_nice(const struct task_struct *p, const int nice)
M
Matt Mackall 已提交
4744
{
4745 4746
	/* convert nice value [19,-20] to rlimit style value [1,40] */
	int nice_rlim = 20 - nice;
4747

M
Matt Mackall 已提交
4748 4749 4750 4751
	return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
		capable(CAP_SYS_NICE));
}

L
Linus Torvalds 已提交
4752 4753 4754 4755 4756 4757 4758 4759 4760 4761 4762
#ifdef __ARCH_WANT_SYS_NICE

/*
 * sys_nice - change the priority of the current process.
 * @increment: priority increment
 *
 * sys_setpriority is a more generic, but much slower function that
 * does similar things.
 */
asmlinkage long sys_nice(int increment)
{
4763
	long nice, retval;
L
Linus Torvalds 已提交
4764 4765 4766 4767 4768 4769

	/*
	 * Setpriority might change our priority at the same moment.
	 * We don't have to worry. Conceptually one call occurs first
	 * and we have a single winner.
	 */
M
Matt Mackall 已提交
4770 4771
	if (increment < -40)
		increment = -40;
L
Linus Torvalds 已提交
4772 4773 4774 4775 4776 4777 4778 4779 4780
	if (increment > 40)
		increment = 40;

	nice = PRIO_TO_NICE(current->static_prio) + increment;
	if (nice < -20)
		nice = -20;
	if (nice > 19)
		nice = 19;

M
Matt Mackall 已提交
4781 4782 4783
	if (increment < 0 && !can_nice(current, nice))
		return -EPERM;

L
Linus Torvalds 已提交
4784 4785 4786 4787 4788 4789 4790 4791 4792 4793 4794 4795 4796 4797 4798 4799 4800 4801
	retval = security_task_setnice(current, nice);
	if (retval)
		return retval;

	set_user_nice(current, nice);
	return 0;
}

#endif

/**
 * task_prio - return the priority value of a given task.
 * @p: the task in question.
 *
 * This is the priority value as seen by users in /proc.
 * RT tasks are offset by -200. Normal tasks are centered
 * around 0, value goes from -16 to +15.
 */
4802
int task_prio(const struct task_struct *p)
L
Linus Torvalds 已提交
4803 4804 4805 4806 4807 4808 4809 4810
{
	return p->prio - MAX_RT_PRIO;
}

/**
 * task_nice - return the nice value of a given task.
 * @p: the task in question.
 */
4811
int task_nice(const struct task_struct *p)
L
Linus Torvalds 已提交
4812 4813 4814
{
	return TASK_NICE(p);
}
P
Pavel Roskin 已提交
4815
EXPORT_SYMBOL(task_nice);
L
Linus Torvalds 已提交
4816 4817 4818 4819 4820 4821 4822 4823 4824 4825 4826 4827 4828 4829

/**
 * idle_cpu - is a given cpu idle currently?
 * @cpu: the processor in question.
 */
int idle_cpu(int cpu)
{
	return cpu_curr(cpu) == cpu_rq(cpu)->idle;
}

/**
 * idle_task - return the idle task for a given cpu.
 * @cpu: the processor in question.
 */
4830
struct task_struct *idle_task(int cpu)
L
Linus Torvalds 已提交
4831 4832 4833 4834 4835 4836 4837 4838
{
	return cpu_rq(cpu)->idle;
}

/**
 * find_process_by_pid - find a process with a matching PID value.
 * @pid: the pid in question.
 */
A
Alexey Dobriyan 已提交
4839
static struct task_struct *find_process_by_pid(pid_t pid)
L
Linus Torvalds 已提交
4840
{
4841
	return pid ? find_task_by_vpid(pid) : current;
L
Linus Torvalds 已提交
4842 4843 4844
}

/* Actually do priority change: must hold rq lock. */
I
Ingo Molnar 已提交
4845 4846
static void
__setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
L
Linus Torvalds 已提交
4847
{
I
Ingo Molnar 已提交
4848
	BUG_ON(p->se.on_rq);
4849

L
Linus Torvalds 已提交
4850
	p->policy = policy;
I
Ingo Molnar 已提交
4851 4852 4853 4854 4855 4856 4857 4858 4859 4860 4861 4862
	switch (p->policy) {
	case SCHED_NORMAL:
	case SCHED_BATCH:
	case SCHED_IDLE:
		p->sched_class = &fair_sched_class;
		break;
	case SCHED_FIFO:
	case SCHED_RR:
		p->sched_class = &rt_sched_class;
		break;
	}

L
Linus Torvalds 已提交
4863
	p->rt_priority = prio;
4864 4865 4866
	p->normal_prio = normal_prio(p);
	/* we are holding p->pi_lock already */
	p->prio = rt_mutex_getprio(p);
4867
	set_load_weight(p);
L
Linus Torvalds 已提交
4868 4869 4870
}

/**
4871
 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
L
Linus Torvalds 已提交
4872 4873 4874
 * @p: the task in question.
 * @policy: new policy.
 * @param: structure containing the new RT priority.
4875
 *
4876
 * NOTE that the task may be already dead.
L
Linus Torvalds 已提交
4877
 */
I
Ingo Molnar 已提交
4878 4879
int sched_setscheduler(struct task_struct *p, int policy,
		       struct sched_param *param)
L
Linus Torvalds 已提交
4880
{
4881
	int retval, oldprio, oldpolicy = -1, on_rq, running;
L
Linus Torvalds 已提交
4882
	unsigned long flags;
4883
	const struct sched_class *prev_class = p->sched_class;
4884
	struct rq *rq;
L
Linus Torvalds 已提交
4885

4886 4887
	/* may grab non-irq protected spin_locks */
	BUG_ON(in_interrupt());
L
Linus Torvalds 已提交
4888 4889 4890 4891 4892
recheck:
	/* double check policy once rq lock held */
	if (policy < 0)
		policy = oldpolicy = p->policy;
	else if (policy != SCHED_FIFO && policy != SCHED_RR &&
I
Ingo Molnar 已提交
4893 4894
			policy != SCHED_NORMAL && policy != SCHED_BATCH &&
			policy != SCHED_IDLE)
4895
		return -EINVAL;
L
Linus Torvalds 已提交
4896 4897
	/*
	 * Valid priorities for SCHED_FIFO and SCHED_RR are
I
Ingo Molnar 已提交
4898 4899
	 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
	 * SCHED_BATCH and SCHED_IDLE is 0.
L
Linus Torvalds 已提交
4900 4901
	 */
	if (param->sched_priority < 0 ||
I
Ingo Molnar 已提交
4902
	    (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
4903
	    (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
L
Linus Torvalds 已提交
4904
		return -EINVAL;
4905
	if (rt_policy(policy) != (param->sched_priority != 0))
L
Linus Torvalds 已提交
4906 4907
		return -EINVAL;

4908 4909 4910 4911
	/*
	 * Allow unprivileged RT tasks to decrease priority:
	 */
	if (!capable(CAP_SYS_NICE)) {
4912
		if (rt_policy(policy)) {
4913 4914 4915 4916 4917 4918 4919 4920 4921 4922 4923 4924 4925 4926 4927 4928
			unsigned long rlim_rtprio;

			if (!lock_task_sighand(p, &flags))
				return -ESRCH;
			rlim_rtprio = p->signal->rlim[RLIMIT_RTPRIO].rlim_cur;
			unlock_task_sighand(p, &flags);

			/* can't set/change the rt policy */
			if (policy != p->policy && !rlim_rtprio)
				return -EPERM;

			/* can't increase priority */
			if (param->sched_priority > p->rt_priority &&
			    param->sched_priority > rlim_rtprio)
				return -EPERM;
		}
I
Ingo Molnar 已提交
4929 4930 4931 4932 4933 4934
		/*
		 * Like positive nice levels, dont allow tasks to
		 * move out of SCHED_IDLE either:
		 */
		if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
			return -EPERM;
4935

4936 4937 4938 4939 4940
		/* can't change other user's priorities */
		if ((current->euid != p->euid) &&
		    (current->euid != p->uid))
			return -EPERM;
	}
L
Linus Torvalds 已提交
4941

4942 4943 4944 4945 4946
#ifdef CONFIG_RT_GROUP_SCHED
	/*
	 * Do not allow realtime tasks into groups that have no runtime
	 * assigned.
	 */
4947
	if (rt_policy(policy) && task_group(p)->rt_bandwidth.rt_runtime == 0)
4948 4949 4950
		return -EPERM;
#endif

L
Linus Torvalds 已提交
4951 4952 4953
	retval = security_task_setscheduler(p, policy, param);
	if (retval)
		return retval;
4954 4955 4956 4957 4958
	/*
	 * make sure no PI-waiters arrive (or leave) while we are
	 * changing the priority of the task:
	 */
	spin_lock_irqsave(&p->pi_lock, flags);
L
Linus Torvalds 已提交
4959 4960 4961 4962
	/*
	 * To be able to change p->policy safely, the apropriate
	 * runqueue lock must be held.
	 */
4963
	rq = __task_rq_lock(p);
L
Linus Torvalds 已提交
4964 4965 4966
	/* recheck policy now with rq lock held */
	if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
		policy = oldpolicy = -1;
4967 4968
		__task_rq_unlock(rq);
		spin_unlock_irqrestore(&p->pi_lock, flags);
L
Linus Torvalds 已提交
4969 4970
		goto recheck;
	}
I
Ingo Molnar 已提交
4971
	update_rq_clock(rq);
I
Ingo Molnar 已提交
4972
	on_rq = p->se.on_rq;
4973
	running = task_current(rq, p);
4974
	if (on_rq)
4975
		deactivate_task(rq, p, 0);
4976 4977
	if (running)
		p->sched_class->put_prev_task(rq, p);
4978

L
Linus Torvalds 已提交
4979
	oldprio = p->prio;
I
Ingo Molnar 已提交
4980
	__setscheduler(rq, p, policy, param->sched_priority);
4981

4982 4983
	if (running)
		p->sched_class->set_curr_task(rq);
I
Ingo Molnar 已提交
4984 4985
	if (on_rq) {
		activate_task(rq, p, 0);
4986 4987

		check_class_changed(rq, p, prev_class, oldprio, running);
L
Linus Torvalds 已提交
4988
	}
4989 4990 4991
	__task_rq_unlock(rq);
	spin_unlock_irqrestore(&p->pi_lock, flags);

4992 4993
	rt_mutex_adjust_pi(p);

L
Linus Torvalds 已提交
4994 4995 4996 4997
	return 0;
}
EXPORT_SYMBOL_GPL(sched_setscheduler);

I
Ingo Molnar 已提交
4998 4999
static int
do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
L
Linus Torvalds 已提交
5000 5001 5002
{
	struct sched_param lparam;
	struct task_struct *p;
5003
	int retval;
L
Linus Torvalds 已提交
5004 5005 5006 5007 5008

	if (!param || pid < 0)
		return -EINVAL;
	if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
		return -EFAULT;
5009 5010 5011

	rcu_read_lock();
	retval = -ESRCH;
L
Linus Torvalds 已提交
5012
	p = find_process_by_pid(pid);
5013 5014 5015
	if (p != NULL)
		retval = sched_setscheduler(p, policy, &lparam);
	rcu_read_unlock();
5016

L
Linus Torvalds 已提交
5017 5018 5019 5020 5021 5022 5023 5024 5025
	return retval;
}

/**
 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
 * @pid: the pid in question.
 * @policy: new policy.
 * @param: structure containing the new RT priority.
 */
I
Ingo Molnar 已提交
5026 5027
asmlinkage long
sys_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
L
Linus Torvalds 已提交
5028
{
5029 5030 5031 5032
	/* negative values for policy are not valid */
	if (policy < 0)
		return -EINVAL;

L
Linus Torvalds 已提交
5033 5034 5035 5036 5037 5038 5039 5040 5041 5042 5043 5044 5045 5046 5047 5048 5049 5050 5051
	return do_sched_setscheduler(pid, policy, param);
}

/**
 * sys_sched_setparam - set/change the RT priority of a thread
 * @pid: the pid in question.
 * @param: structure containing the new RT priority.
 */
asmlinkage long sys_sched_setparam(pid_t pid, struct sched_param __user *param)
{
	return do_sched_setscheduler(pid, -1, param);
}

/**
 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
 * @pid: the pid in question.
 */
asmlinkage long sys_sched_getscheduler(pid_t pid)
{
5052
	struct task_struct *p;
5053
	int retval;
L
Linus Torvalds 已提交
5054 5055

	if (pid < 0)
5056
		return -EINVAL;
L
Linus Torvalds 已提交
5057 5058 5059 5060 5061 5062 5063 5064 5065 5066 5067 5068 5069 5070 5071 5072 5073 5074 5075 5076 5077

	retval = -ESRCH;
	read_lock(&tasklist_lock);
	p = find_process_by_pid(pid);
	if (p) {
		retval = security_task_getscheduler(p);
		if (!retval)
			retval = p->policy;
	}
	read_unlock(&tasklist_lock);
	return retval;
}

/**
 * sys_sched_getscheduler - get the RT priority of a thread
 * @pid: the pid in question.
 * @param: structure containing the RT priority.
 */
asmlinkage long sys_sched_getparam(pid_t pid, struct sched_param __user *param)
{
	struct sched_param lp;
5078
	struct task_struct *p;
5079
	int retval;
L
Linus Torvalds 已提交
5080 5081

	if (!param || pid < 0)
5082
		return -EINVAL;
L
Linus Torvalds 已提交
5083 5084 5085 5086 5087 5088 5089 5090 5091 5092 5093 5094 5095 5096 5097 5098 5099 5100 5101 5102 5103 5104 5105 5106 5107 5108

	read_lock(&tasklist_lock);
	p = find_process_by_pid(pid);
	retval = -ESRCH;
	if (!p)
		goto out_unlock;

	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

	lp.sched_priority = p->rt_priority;
	read_unlock(&tasklist_lock);

	/*
	 * This one might sleep, we cannot do it with a spinlock held ...
	 */
	retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;

	return retval;

out_unlock:
	read_unlock(&tasklist_lock);
	return retval;
}

5109
long sched_setaffinity(pid_t pid, const cpumask_t *in_mask)
L
Linus Torvalds 已提交
5110 5111
{
	cpumask_t cpus_allowed;
5112
	cpumask_t new_mask = *in_mask;
5113 5114
	struct task_struct *p;
	int retval;
L
Linus Torvalds 已提交
5115

5116
	get_online_cpus();
L
Linus Torvalds 已提交
5117 5118 5119 5120 5121
	read_lock(&tasklist_lock);

	p = find_process_by_pid(pid);
	if (!p) {
		read_unlock(&tasklist_lock);
5122
		put_online_cpus();
L
Linus Torvalds 已提交
5123 5124 5125 5126 5127
		return -ESRCH;
	}

	/*
	 * It is not safe to call set_cpus_allowed with the
I
Ingo Molnar 已提交
5128
	 * tasklist_lock held. We will bump the task_struct's
L
Linus Torvalds 已提交
5129 5130 5131 5132 5133 5134 5135 5136 5137 5138
	 * usage count and then drop tasklist_lock.
	 */
	get_task_struct(p);
	read_unlock(&tasklist_lock);

	retval = -EPERM;
	if ((current->euid != p->euid) && (current->euid != p->uid) &&
			!capable(CAP_SYS_NICE))
		goto out_unlock;

5139 5140 5141 5142
	retval = security_task_setscheduler(p, 0, NULL);
	if (retval)
		goto out_unlock;

5143
	cpuset_cpus_allowed(p, &cpus_allowed);
L
Linus Torvalds 已提交
5144
	cpus_and(new_mask, new_mask, cpus_allowed);
P
Paul Menage 已提交
5145
 again:
5146
	retval = set_cpus_allowed_ptr(p, &new_mask);
L
Linus Torvalds 已提交
5147

P
Paul Menage 已提交
5148
	if (!retval) {
5149
		cpuset_cpus_allowed(p, &cpus_allowed);
P
Paul Menage 已提交
5150 5151 5152 5153 5154 5155 5156 5157 5158 5159
		if (!cpus_subset(new_mask, cpus_allowed)) {
			/*
			 * We must have raced with a concurrent cpuset
			 * update. Just reset the cpus_allowed to the
			 * cpuset's cpus_allowed
			 */
			new_mask = cpus_allowed;
			goto again;
		}
	}
L
Linus Torvalds 已提交
5160 5161
out_unlock:
	put_task_struct(p);
5162
	put_online_cpus();
L
Linus Torvalds 已提交
5163 5164 5165 5166 5167 5168 5169 5170 5171 5172 5173 5174 5175 5176 5177 5178 5179 5180 5181 5182 5183 5184 5185 5186 5187 5188 5189 5190 5191 5192
	return retval;
}

static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
			     cpumask_t *new_mask)
{
	if (len < sizeof(cpumask_t)) {
		memset(new_mask, 0, sizeof(cpumask_t));
	} else if (len > sizeof(cpumask_t)) {
		len = sizeof(cpumask_t);
	}
	return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
}

/**
 * sys_sched_setaffinity - set the cpu affinity of a process
 * @pid: pid of the process
 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
 * @user_mask_ptr: user-space pointer to the new cpu mask
 */
asmlinkage long sys_sched_setaffinity(pid_t pid, unsigned int len,
				      unsigned long __user *user_mask_ptr)
{
	cpumask_t new_mask;
	int retval;

	retval = get_user_cpu_mask(user_mask_ptr, len, &new_mask);
	if (retval)
		return retval;

5193
	return sched_setaffinity(pid, &new_mask);
L
Linus Torvalds 已提交
5194 5195 5196 5197
}

long sched_getaffinity(pid_t pid, cpumask_t *mask)
{
5198
	struct task_struct *p;
L
Linus Torvalds 已提交
5199 5200
	int retval;

5201
	get_online_cpus();
L
Linus Torvalds 已提交
5202 5203 5204 5205 5206 5207 5208
	read_lock(&tasklist_lock);

	retval = -ESRCH;
	p = find_process_by_pid(pid);
	if (!p)
		goto out_unlock;

5209 5210 5211 5212
	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

5213
	cpus_and(*mask, p->cpus_allowed, cpu_online_map);
L
Linus Torvalds 已提交
5214 5215 5216

out_unlock:
	read_unlock(&tasklist_lock);
5217
	put_online_cpus();
L
Linus Torvalds 已提交
5218

5219
	return retval;
L
Linus Torvalds 已提交
5220 5221 5222 5223 5224 5225 5226 5227 5228 5229 5230 5231 5232 5233 5234 5235 5236 5237 5238 5239 5240 5241 5242 5243 5244 5245 5246 5247 5248 5249
}

/**
 * sys_sched_getaffinity - get the cpu affinity of a process
 * @pid: pid of the process
 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
 * @user_mask_ptr: user-space pointer to hold the current cpu mask
 */
asmlinkage long sys_sched_getaffinity(pid_t pid, unsigned int len,
				      unsigned long __user *user_mask_ptr)
{
	int ret;
	cpumask_t mask;

	if (len < sizeof(cpumask_t))
		return -EINVAL;

	ret = sched_getaffinity(pid, &mask);
	if (ret < 0)
		return ret;

	if (copy_to_user(user_mask_ptr, &mask, sizeof(cpumask_t)))
		return -EFAULT;

	return sizeof(cpumask_t);
}

/**
 * sys_sched_yield - yield the current processor to other threads.
 *
I
Ingo Molnar 已提交
5250 5251
 * This function yields the current CPU to other tasks. If there are no
 * other threads running on this CPU then this function will return.
L
Linus Torvalds 已提交
5252 5253 5254
 */
asmlinkage long sys_sched_yield(void)
{
5255
	struct rq *rq = this_rq_lock();
L
Linus Torvalds 已提交
5256

5257
	schedstat_inc(rq, yld_count);
5258
	current->sched_class->yield_task(rq);
L
Linus Torvalds 已提交
5259 5260 5261 5262 5263 5264

	/*
	 * Since we are going to call schedule() anyway, there's
	 * no need to preempt or enable interrupts:
	 */
	__release(rq->lock);
5265
	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
L
Linus Torvalds 已提交
5266 5267 5268 5269 5270 5271 5272 5273
	_raw_spin_unlock(&rq->lock);
	preempt_enable_no_resched();

	schedule();

	return 0;
}

A
Andrew Morton 已提交
5274
static void __cond_resched(void)
L
Linus Torvalds 已提交
5275
{
5276 5277 5278
#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
	__might_sleep(__FILE__, __LINE__);
#endif
5279 5280 5281 5282 5283
	/*
	 * The BKS might be reacquired before we have dropped
	 * PREEMPT_ACTIVE, which could trigger a second
	 * cond_resched() call.
	 */
L
Linus Torvalds 已提交
5284 5285 5286 5287 5288 5289 5290
	do {
		add_preempt_count(PREEMPT_ACTIVE);
		schedule();
		sub_preempt_count(PREEMPT_ACTIVE);
	} while (need_resched());
}

5291
int __sched _cond_resched(void)
L
Linus Torvalds 已提交
5292
{
5293 5294
	if (need_resched() && !(preempt_count() & PREEMPT_ACTIVE) &&
					system_state == SYSTEM_RUNNING) {
L
Linus Torvalds 已提交
5295 5296 5297 5298 5299
		__cond_resched();
		return 1;
	}
	return 0;
}
5300
EXPORT_SYMBOL(_cond_resched);
L
Linus Torvalds 已提交
5301 5302 5303 5304 5305

/*
 * cond_resched_lock() - if a reschedule is pending, drop the given lock,
 * call schedule, and on return reacquire the lock.
 *
I
Ingo Molnar 已提交
5306
 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
L
Linus Torvalds 已提交
5307 5308 5309
 * operations here to prevent schedule() from being called twice (once via
 * spin_unlock(), once by hand).
 */
I
Ingo Molnar 已提交
5310
int cond_resched_lock(spinlock_t *lock)
L
Linus Torvalds 已提交
5311
{
N
Nick Piggin 已提交
5312
	int resched = need_resched() && system_state == SYSTEM_RUNNING;
J
Jan Kara 已提交
5313 5314
	int ret = 0;

N
Nick Piggin 已提交
5315
	if (spin_needbreak(lock) || resched) {
L
Linus Torvalds 已提交
5316
		spin_unlock(lock);
N
Nick Piggin 已提交
5317 5318 5319 5320
		if (resched && need_resched())
			__cond_resched();
		else
			cpu_relax();
J
Jan Kara 已提交
5321
		ret = 1;
L
Linus Torvalds 已提交
5322 5323
		spin_lock(lock);
	}
J
Jan Kara 已提交
5324
	return ret;
L
Linus Torvalds 已提交
5325 5326 5327 5328 5329 5330 5331
}
EXPORT_SYMBOL(cond_resched_lock);

int __sched cond_resched_softirq(void)
{
	BUG_ON(!in_softirq());

5332
	if (need_resched() && system_state == SYSTEM_RUNNING) {
5333
		local_bh_enable();
L
Linus Torvalds 已提交
5334 5335 5336 5337 5338 5339 5340 5341 5342 5343 5344
		__cond_resched();
		local_bh_disable();
		return 1;
	}
	return 0;
}
EXPORT_SYMBOL(cond_resched_softirq);

/**
 * yield - yield the current processor to other threads.
 *
5345
 * This is a shortcut for kernel-space yielding - it marks the
L
Linus Torvalds 已提交
5346 5347 5348 5349 5350 5351 5352 5353 5354 5355
 * thread runnable and calls sys_sched_yield().
 */
void __sched yield(void)
{
	set_current_state(TASK_RUNNING);
	sys_sched_yield();
}
EXPORT_SYMBOL(yield);

/*
I
Ingo Molnar 已提交
5356
 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
L
Linus Torvalds 已提交
5357 5358 5359 5360 5361 5362 5363
 * that process accounting knows that this is a task in IO wait state.
 *
 * But don't do that if it is a deliberate, throttling IO wait (this task
 * has set its backing_dev_info: the queue against which it should throttle)
 */
void __sched io_schedule(void)
{
5364
	struct rq *rq = &__raw_get_cpu_var(runqueues);
L
Linus Torvalds 已提交
5365

5366
	delayacct_blkio_start();
L
Linus Torvalds 已提交
5367 5368 5369
	atomic_inc(&rq->nr_iowait);
	schedule();
	atomic_dec(&rq->nr_iowait);
5370
	delayacct_blkio_end();
L
Linus Torvalds 已提交
5371 5372 5373 5374 5375
}
EXPORT_SYMBOL(io_schedule);

long __sched io_schedule_timeout(long timeout)
{
5376
	struct rq *rq = &__raw_get_cpu_var(runqueues);
L
Linus Torvalds 已提交
5377 5378
	long ret;

5379
	delayacct_blkio_start();
L
Linus Torvalds 已提交
5380 5381 5382
	atomic_inc(&rq->nr_iowait);
	ret = schedule_timeout(timeout);
	atomic_dec(&rq->nr_iowait);
5383
	delayacct_blkio_end();
L
Linus Torvalds 已提交
5384 5385 5386 5387 5388 5389 5390 5391 5392 5393 5394 5395 5396 5397 5398 5399 5400 5401 5402 5403
	return ret;
}

/**
 * sys_sched_get_priority_max - return maximum RT priority.
 * @policy: scheduling class.
 *
 * this syscall returns the maximum rt_priority that can be used
 * by a given scheduling class.
 */
asmlinkage long sys_sched_get_priority_max(int policy)
{
	int ret = -EINVAL;

	switch (policy) {
	case SCHED_FIFO:
	case SCHED_RR:
		ret = MAX_USER_RT_PRIO-1;
		break;
	case SCHED_NORMAL:
5404
	case SCHED_BATCH:
I
Ingo Molnar 已提交
5405
	case SCHED_IDLE:
L
Linus Torvalds 已提交
5406 5407 5408 5409 5410 5411 5412 5413 5414 5415 5416 5417 5418 5419 5420 5421 5422 5423 5424 5425 5426 5427 5428
		ret = 0;
		break;
	}
	return ret;
}

/**
 * sys_sched_get_priority_min - return minimum RT priority.
 * @policy: scheduling class.
 *
 * this syscall returns the minimum rt_priority that can be used
 * by a given scheduling class.
 */
asmlinkage long sys_sched_get_priority_min(int policy)
{
	int ret = -EINVAL;

	switch (policy) {
	case SCHED_FIFO:
	case SCHED_RR:
		ret = 1;
		break;
	case SCHED_NORMAL:
5429
	case SCHED_BATCH:
I
Ingo Molnar 已提交
5430
	case SCHED_IDLE:
L
Linus Torvalds 已提交
5431 5432 5433 5434 5435 5436 5437 5438 5439 5440 5441 5442 5443 5444 5445 5446
		ret = 0;
	}
	return ret;
}

/**
 * sys_sched_rr_get_interval - return the default timeslice of a process.
 * @pid: pid of the process.
 * @interval: userspace pointer to the timeslice value.
 *
 * this syscall writes the default timeslice value of a given process
 * into the user-space timespec buffer. A value of '0' means infinity.
 */
asmlinkage
long sys_sched_rr_get_interval(pid_t pid, struct timespec __user *interval)
{
5447
	struct task_struct *p;
D
Dmitry Adamushko 已提交
5448
	unsigned int time_slice;
5449
	int retval;
L
Linus Torvalds 已提交
5450 5451 5452
	struct timespec t;

	if (pid < 0)
5453
		return -EINVAL;
L
Linus Torvalds 已提交
5454 5455 5456 5457 5458 5459 5460 5461 5462 5463 5464

	retval = -ESRCH;
	read_lock(&tasklist_lock);
	p = find_process_by_pid(pid);
	if (!p)
		goto out_unlock;

	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

5465 5466 5467 5468 5469 5470
	/*
	 * Time slice is 0 for SCHED_FIFO tasks and for SCHED_OTHER
	 * tasks that are on an otherwise idle runqueue:
	 */
	time_slice = 0;
	if (p->policy == SCHED_RR) {
D
Dmitry Adamushko 已提交
5471
		time_slice = DEF_TIMESLICE;
5472
	} else if (p->policy != SCHED_FIFO) {
D
Dmitry Adamushko 已提交
5473 5474 5475 5476 5477
		struct sched_entity *se = &p->se;
		unsigned long flags;
		struct rq *rq;

		rq = task_rq_lock(p, &flags);
5478 5479
		if (rq->cfs.load.weight)
			time_slice = NS_TO_JIFFIES(sched_slice(&rq->cfs, se));
D
Dmitry Adamushko 已提交
5480 5481
		task_rq_unlock(rq, &flags);
	}
L
Linus Torvalds 已提交
5482
	read_unlock(&tasklist_lock);
D
Dmitry Adamushko 已提交
5483
	jiffies_to_timespec(time_slice, &t);
L
Linus Torvalds 已提交
5484 5485
	retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
	return retval;
5486

L
Linus Torvalds 已提交
5487 5488 5489 5490 5491
out_unlock:
	read_unlock(&tasklist_lock);
	return retval;
}

5492
static const char stat_nam[] = "RSDTtZX";
5493

5494
void sched_show_task(struct task_struct *p)
L
Linus Torvalds 已提交
5495 5496
{
	unsigned long free = 0;
5497
	unsigned state;
L
Linus Torvalds 已提交
5498 5499

	state = p->state ? __ffs(p->state) + 1 : 0;
I
Ingo Molnar 已提交
5500
	printk(KERN_INFO "%-13.13s %c", p->comm,
5501
		state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
5502
#if BITS_PER_LONG == 32
L
Linus Torvalds 已提交
5503
	if (state == TASK_RUNNING)
I
Ingo Molnar 已提交
5504
		printk(KERN_CONT " running  ");
L
Linus Torvalds 已提交
5505
	else
I
Ingo Molnar 已提交
5506
		printk(KERN_CONT " %08lx ", thread_saved_pc(p));
L
Linus Torvalds 已提交
5507 5508
#else
	if (state == TASK_RUNNING)
I
Ingo Molnar 已提交
5509
		printk(KERN_CONT "  running task    ");
L
Linus Torvalds 已提交
5510
	else
I
Ingo Molnar 已提交
5511
		printk(KERN_CONT " %016lx ", thread_saved_pc(p));
L
Linus Torvalds 已提交
5512 5513 5514
#endif
#ifdef CONFIG_DEBUG_STACK_USAGE
	{
5515
		unsigned long *n = end_of_stack(p);
L
Linus Torvalds 已提交
5516 5517
		while (!*n)
			n++;
5518
		free = (unsigned long)n - (unsigned long)end_of_stack(p);
L
Linus Torvalds 已提交
5519 5520
	}
#endif
5521
	printk(KERN_CONT "%5lu %5d %6d\n", free,
R
Roland McGrath 已提交
5522
		task_pid_nr(p), task_pid_nr(p->real_parent));
L
Linus Torvalds 已提交
5523

5524
	show_stack(p, NULL);
L
Linus Torvalds 已提交
5525 5526
}

I
Ingo Molnar 已提交
5527
void show_state_filter(unsigned long state_filter)
L
Linus Torvalds 已提交
5528
{
5529
	struct task_struct *g, *p;
L
Linus Torvalds 已提交
5530

5531 5532 5533
#if BITS_PER_LONG == 32
	printk(KERN_INFO
		"  task                PC stack   pid father\n");
L
Linus Torvalds 已提交
5534
#else
5535 5536
	printk(KERN_INFO
		"  task                        PC stack   pid father\n");
L
Linus Torvalds 已提交
5537 5538 5539 5540 5541 5542 5543 5544
#endif
	read_lock(&tasklist_lock);
	do_each_thread(g, p) {
		/*
		 * reset the NMI-timeout, listing all files on a slow
		 * console might take alot of time:
		 */
		touch_nmi_watchdog();
I
Ingo Molnar 已提交
5545
		if (!state_filter || (p->state & state_filter))
5546
			sched_show_task(p);
L
Linus Torvalds 已提交
5547 5548
	} while_each_thread(g, p);

5549 5550
	touch_all_softlockup_watchdogs();

I
Ingo Molnar 已提交
5551 5552 5553
#ifdef CONFIG_SCHED_DEBUG
	sysrq_sched_debug_show();
#endif
L
Linus Torvalds 已提交
5554
	read_unlock(&tasklist_lock);
I
Ingo Molnar 已提交
5555 5556 5557 5558 5559
	/*
	 * Only show locks if all tasks are dumped:
	 */
	if (state_filter == -1)
		debug_show_all_locks();
L
Linus Torvalds 已提交
5560 5561
}

I
Ingo Molnar 已提交
5562 5563
void __cpuinit init_idle_bootup_task(struct task_struct *idle)
{
I
Ingo Molnar 已提交
5564
	idle->sched_class = &idle_sched_class;
I
Ingo Molnar 已提交
5565 5566
}

5567 5568 5569 5570 5571 5572 5573 5574
/**
 * init_idle - set up an idle thread for a given CPU
 * @idle: task in question
 * @cpu: cpu the idle task belongs to
 *
 * NOTE: this function does not set the idle thread's NEED_RESCHED
 * flag, to make booting more robust.
 */
5575
void __cpuinit init_idle(struct task_struct *idle, int cpu)
L
Linus Torvalds 已提交
5576
{
5577
	struct rq *rq = cpu_rq(cpu);
L
Linus Torvalds 已提交
5578 5579
	unsigned long flags;

I
Ingo Molnar 已提交
5580 5581 5582
	__sched_fork(idle);
	idle->se.exec_start = sched_clock();

5583
	idle->prio = idle->normal_prio = MAX_PRIO;
L
Linus Torvalds 已提交
5584
	idle->cpus_allowed = cpumask_of_cpu(cpu);
I
Ingo Molnar 已提交
5585
	__set_task_cpu(idle, cpu);
L
Linus Torvalds 已提交
5586 5587 5588

	spin_lock_irqsave(&rq->lock, flags);
	rq->curr = rq->idle = idle;
5589 5590 5591
#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
	idle->oncpu = 1;
#endif
L
Linus Torvalds 已提交
5592 5593 5594
	spin_unlock_irqrestore(&rq->lock, flags);

	/* Set the preempt count _outside_ the spinlocks! */
5595 5596 5597
#if defined(CONFIG_PREEMPT)
	task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
#else
A
Al Viro 已提交
5598
	task_thread_info(idle)->preempt_count = 0;
5599
#endif
I
Ingo Molnar 已提交
5600 5601 5602 5603
	/*
	 * The idle tasks have their own, simple scheduling class:
	 */
	idle->sched_class = &idle_sched_class;
L
Linus Torvalds 已提交
5604 5605 5606 5607 5608 5609 5610 5611 5612 5613 5614
}

/*
 * In a system that switches off the HZ timer nohz_cpu_mask
 * indicates which cpus entered this state. This is used
 * in the rcu update to wait only for active cpus. For system
 * which do not switch off the HZ timer nohz_cpu_mask should
 * always be CPU_MASK_NONE.
 */
cpumask_t nohz_cpu_mask = CPU_MASK_NONE;

I
Ingo Molnar 已提交
5615 5616 5617 5618 5619 5620 5621 5622 5623 5624 5625 5626 5627 5628 5629 5630 5631 5632 5633 5634 5635 5636 5637 5638 5639
/*
 * Increase the granularity value when there are more CPUs,
 * because with more CPUs the 'effective latency' as visible
 * to users decreases. But the relationship is not linear,
 * so pick a second-best guess by going with the log2 of the
 * number of CPUs.
 *
 * This idea comes from the SD scheduler of Con Kolivas:
 */
static inline void sched_init_granularity(void)
{
	unsigned int factor = 1 + ilog2(num_online_cpus());
	const unsigned long limit = 200000000;

	sysctl_sched_min_granularity *= factor;
	if (sysctl_sched_min_granularity > limit)
		sysctl_sched_min_granularity = limit;

	sysctl_sched_latency *= factor;
	if (sysctl_sched_latency > limit)
		sysctl_sched_latency = limit;

	sysctl_sched_wakeup_granularity *= factor;
}

L
Linus Torvalds 已提交
5640 5641 5642 5643
#ifdef CONFIG_SMP
/*
 * This is how migration works:
 *
5644
 * 1) we queue a struct migration_req structure in the source CPU's
L
Linus Torvalds 已提交
5645 5646 5647 5648 5649 5650 5651 5652 5653 5654 5655 5656 5657 5658 5659 5660 5661 5662
 *    runqueue and wake up that CPU's migration thread.
 * 2) we down() the locked semaphore => thread blocks.
 * 3) migration thread wakes up (implicitly it forces the migrated
 *    thread off the CPU)
 * 4) it gets the migration request and checks whether the migrated
 *    task is still in the wrong runqueue.
 * 5) if it's in the wrong runqueue then the migration thread removes
 *    it and puts it into the right queue.
 * 6) migration thread up()s the semaphore.
 * 7) we wake up and the migration is done.
 */

/*
 * Change a given task's CPU affinity. Migrate the thread to a
 * proper CPU and schedule it away if the CPU it's executing on
 * is removed from the allowed bitmask.
 *
 * NOTE: the caller must have a valid reference to the task, the
I
Ingo Molnar 已提交
5663
 * task must not exit() & deallocate itself prematurely. The
L
Linus Torvalds 已提交
5664 5665
 * call is not atomic; no spinlocks may be held.
 */
5666
int set_cpus_allowed_ptr(struct task_struct *p, const cpumask_t *new_mask)
L
Linus Torvalds 已提交
5667
{
5668
	struct migration_req req;
L
Linus Torvalds 已提交
5669
	unsigned long flags;
5670
	struct rq *rq;
5671
	int ret = 0;
L
Linus Torvalds 已提交
5672 5673

	rq = task_rq_lock(p, &flags);
5674
	if (!cpus_intersects(*new_mask, cpu_online_map)) {
L
Linus Torvalds 已提交
5675 5676 5677 5678
		ret = -EINVAL;
		goto out;
	}

5679 5680 5681 5682 5683 5684
	if (unlikely((p->flags & PF_THREAD_BOUND) && p != current &&
		     !cpus_equal(p->cpus_allowed, *new_mask))) {
		ret = -EINVAL;
		goto out;
	}

5685
	if (p->sched_class->set_cpus_allowed)
5686
		p->sched_class->set_cpus_allowed(p, new_mask);
5687
	else {
5688 5689
		p->cpus_allowed = *new_mask;
		p->rt.nr_cpus_allowed = cpus_weight(*new_mask);
5690 5691
	}

L
Linus Torvalds 已提交
5692
	/* Can the task run on the task's current CPU? If so, we're done */
5693
	if (cpu_isset(task_cpu(p), *new_mask))
L
Linus Torvalds 已提交
5694 5695
		goto out;

5696
	if (migrate_task(p, any_online_cpu(*new_mask), &req)) {
L
Linus Torvalds 已提交
5697 5698 5699 5700 5701 5702 5703 5704 5705
		/* Need help from migration thread: drop lock and wait. */
		task_rq_unlock(rq, &flags);
		wake_up_process(rq->migration_thread);
		wait_for_completion(&req.done);
		tlb_migrate_finish(p->mm);
		return 0;
	}
out:
	task_rq_unlock(rq, &flags);
5706

L
Linus Torvalds 已提交
5707 5708
	return ret;
}
5709
EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
L
Linus Torvalds 已提交
5710 5711

/*
I
Ingo Molnar 已提交
5712
 * Move (not current) task off this cpu, onto dest cpu. We're doing
L
Linus Torvalds 已提交
5713 5714 5715 5716 5717 5718
 * this because either it can't run here any more (set_cpus_allowed()
 * away from this CPU, or CPU going down), or because we're
 * attempting to rebalance this task on exec (sched_exec).
 *
 * So we race with normal scheduler movements, but that's OK, as long
 * as the task is no longer on this CPU.
5719 5720
 *
 * Returns non-zero if task was successfully migrated.
L
Linus Torvalds 已提交
5721
 */
5722
static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
L
Linus Torvalds 已提交
5723
{
5724
	struct rq *rq_dest, *rq_src;
I
Ingo Molnar 已提交
5725
	int ret = 0, on_rq;
L
Linus Torvalds 已提交
5726 5727

	if (unlikely(cpu_is_offline(dest_cpu)))
5728
		return ret;
L
Linus Torvalds 已提交
5729 5730 5731 5732 5733 5734 5735 5736 5737 5738 5739 5740

	rq_src = cpu_rq(src_cpu);
	rq_dest = cpu_rq(dest_cpu);

	double_rq_lock(rq_src, rq_dest);
	/* Already moved. */
	if (task_cpu(p) != src_cpu)
		goto out;
	/* Affinity changed (again). */
	if (!cpu_isset(dest_cpu, p->cpus_allowed))
		goto out;

I
Ingo Molnar 已提交
5741
	on_rq = p->se.on_rq;
5742
	if (on_rq)
5743
		deactivate_task(rq_src, p, 0);
5744

L
Linus Torvalds 已提交
5745
	set_task_cpu(p, dest_cpu);
I
Ingo Molnar 已提交
5746 5747 5748
	if (on_rq) {
		activate_task(rq_dest, p, 0);
		check_preempt_curr(rq_dest, p);
L
Linus Torvalds 已提交
5749
	}
5750
	ret = 1;
L
Linus Torvalds 已提交
5751 5752
out:
	double_rq_unlock(rq_src, rq_dest);
5753
	return ret;
L
Linus Torvalds 已提交
5754 5755 5756 5757 5758 5759 5760
}

/*
 * migration_thread - this is a highprio system thread that performs
 * thread migration by bumping thread off CPU then 'pushing' onto
 * another runqueue.
 */
I
Ingo Molnar 已提交
5761
static int migration_thread(void *data)
L
Linus Torvalds 已提交
5762 5763
{
	int cpu = (long)data;
5764
	struct rq *rq;
L
Linus Torvalds 已提交
5765 5766 5767 5768 5769 5770

	rq = cpu_rq(cpu);
	BUG_ON(rq->migration_thread != current);

	set_current_state(TASK_INTERRUPTIBLE);
	while (!kthread_should_stop()) {
5771
		struct migration_req *req;
L
Linus Torvalds 已提交
5772 5773 5774 5775 5776 5777 5778 5779 5780 5781 5782 5783 5784 5785 5786 5787 5788 5789 5790 5791 5792 5793
		struct list_head *head;

		spin_lock_irq(&rq->lock);

		if (cpu_is_offline(cpu)) {
			spin_unlock_irq(&rq->lock);
			goto wait_to_die;
		}

		if (rq->active_balance) {
			active_load_balance(rq, cpu);
			rq->active_balance = 0;
		}

		head = &rq->migration_queue;

		if (list_empty(head)) {
			spin_unlock_irq(&rq->lock);
			schedule();
			set_current_state(TASK_INTERRUPTIBLE);
			continue;
		}
5794
		req = list_entry(head->next, struct migration_req, list);
L
Linus Torvalds 已提交
5795 5796
		list_del_init(head->next);

N
Nick Piggin 已提交
5797 5798 5799
		spin_unlock(&rq->lock);
		__migrate_task(req->task, cpu, req->dest_cpu);
		local_irq_enable();
L
Linus Torvalds 已提交
5800 5801 5802 5803 5804 5805 5806 5807 5808 5809 5810 5811 5812 5813 5814 5815 5816 5817

		complete(&req->done);
	}
	__set_current_state(TASK_RUNNING);
	return 0;

wait_to_die:
	/* Wait for kthread_stop */
	set_current_state(TASK_INTERRUPTIBLE);
	while (!kthread_should_stop()) {
		schedule();
		set_current_state(TASK_INTERRUPTIBLE);
	}
	__set_current_state(TASK_RUNNING);
	return 0;
}

#ifdef CONFIG_HOTPLUG_CPU
5818 5819 5820 5821 5822 5823 5824 5825 5826 5827 5828

static int __migrate_task_irq(struct task_struct *p, int src_cpu, int dest_cpu)
{
	int ret;

	local_irq_disable();
	ret = __migrate_task(p, src_cpu, dest_cpu);
	local_irq_enable();
	return ret;
}

5829
/*
5830
 * Figure out where task on dead CPU should go, use force if necessary.
5831 5832
 * NOTE: interrupts should be disabled by the caller
 */
5833
static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
L
Linus Torvalds 已提交
5834
{
5835
	unsigned long flags;
L
Linus Torvalds 已提交
5836
	cpumask_t mask;
5837 5838
	struct rq *rq;
	int dest_cpu;
L
Linus Torvalds 已提交
5839

5840 5841 5842 5843 5844 5845 5846
	do {
		/* On same node? */
		mask = node_to_cpumask(cpu_to_node(dead_cpu));
		cpus_and(mask, mask, p->cpus_allowed);
		dest_cpu = any_online_cpu(mask);

		/* On any allowed CPU? */
5847
		if (dest_cpu >= nr_cpu_ids)
5848 5849 5850
			dest_cpu = any_online_cpu(p->cpus_allowed);

		/* No more Mr. Nice Guy. */
5851
		if (dest_cpu >= nr_cpu_ids) {
5852 5853 5854
			cpumask_t cpus_allowed;

			cpuset_cpus_allowed_locked(p, &cpus_allowed);
5855 5856 5857 5858
			/*
			 * Try to stay on the same cpuset, where the
			 * current cpuset may be a subset of all cpus.
			 * The cpuset_cpus_allowed_locked() variant of
I
Ingo Molnar 已提交
5859
			 * cpuset_cpus_allowed() will not block. It must be
5860 5861
			 * called within calls to cpuset_lock/cpuset_unlock.
			 */
5862
			rq = task_rq_lock(p, &flags);
5863
			p->cpus_allowed = cpus_allowed;
5864 5865
			dest_cpu = any_online_cpu(p->cpus_allowed);
			task_rq_unlock(rq, &flags);
L
Linus Torvalds 已提交
5866

5867 5868 5869 5870 5871
			/*
			 * Don't tell them about moving exiting tasks or
			 * kernel threads (both mm NULL), since they never
			 * leave kernel.
			 */
I
Ingo Molnar 已提交
5872
			if (p->mm && printk_ratelimit()) {
5873 5874
				printk(KERN_INFO "process %d (%s) no "
				       "longer affine to cpu%d\n",
I
Ingo Molnar 已提交
5875 5876
					task_pid_nr(p), p->comm, dead_cpu);
			}
5877
		}
5878
	} while (!__migrate_task_irq(p, dead_cpu, dest_cpu));
L
Linus Torvalds 已提交
5879 5880 5881 5882 5883 5884 5885 5886 5887
}

/*
 * While a dead CPU has no uninterruptible tasks queued at this point,
 * it might still have a nonzero ->nr_uninterruptible counter, because
 * for performance reasons the counter is not stricly tracking tasks to
 * their home CPUs. So we just add the counter to another CPU's counter,
 * to keep the global sum constant after CPU-down:
 */
5888
static void migrate_nr_uninterruptible(struct rq *rq_src)
L
Linus Torvalds 已提交
5889
{
5890
	struct rq *rq_dest = cpu_rq(any_online_cpu(*CPU_MASK_ALL_PTR));
L
Linus Torvalds 已提交
5891 5892 5893 5894 5895 5896 5897 5898 5899 5900 5901 5902 5903
	unsigned long flags;

	local_irq_save(flags);
	double_rq_lock(rq_src, rq_dest);
	rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
	rq_src->nr_uninterruptible = 0;
	double_rq_unlock(rq_src, rq_dest);
	local_irq_restore(flags);
}

/* Run through task list and migrate tasks from the dead cpu. */
static void migrate_live_tasks(int src_cpu)
{
5904
	struct task_struct *p, *t;
L
Linus Torvalds 已提交
5905

5906
	read_lock(&tasklist_lock);
L
Linus Torvalds 已提交
5907

5908 5909
	do_each_thread(t, p) {
		if (p == current)
L
Linus Torvalds 已提交
5910 5911
			continue;

5912 5913 5914
		if (task_cpu(p) == src_cpu)
			move_task_off_dead_cpu(src_cpu, p);
	} while_each_thread(t, p);
L
Linus Torvalds 已提交
5915

5916
	read_unlock(&tasklist_lock);
L
Linus Torvalds 已提交
5917 5918
}

I
Ingo Molnar 已提交
5919 5920
/*
 * Schedules idle task to be the next runnable task on current CPU.
5921 5922
 * It does so by boosting its priority to highest possible.
 * Used by CPU offline code.
L
Linus Torvalds 已提交
5923 5924 5925
 */
void sched_idle_next(void)
{
5926
	int this_cpu = smp_processor_id();
5927
	struct rq *rq = cpu_rq(this_cpu);
L
Linus Torvalds 已提交
5928 5929 5930 5931
	struct task_struct *p = rq->idle;
	unsigned long flags;

	/* cpu has to be offline */
5932
	BUG_ON(cpu_online(this_cpu));
L
Linus Torvalds 已提交
5933

5934 5935 5936
	/*
	 * Strictly not necessary since rest of the CPUs are stopped by now
	 * and interrupts disabled on the current cpu.
L
Linus Torvalds 已提交
5937 5938 5939
	 */
	spin_lock_irqsave(&rq->lock, flags);

I
Ingo Molnar 已提交
5940
	__setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
5941

5942 5943
	update_rq_clock(rq);
	activate_task(rq, p, 0);
L
Linus Torvalds 已提交
5944 5945 5946 5947

	spin_unlock_irqrestore(&rq->lock, flags);
}

5948 5949
/*
 * Ensures that the idle task is using init_mm right before its cpu goes
L
Linus Torvalds 已提交
5950 5951 5952 5953 5954 5955 5956 5957 5958 5959 5960 5961 5962
 * offline.
 */
void idle_task_exit(void)
{
	struct mm_struct *mm = current->active_mm;

	BUG_ON(cpu_online(smp_processor_id()));

	if (mm != &init_mm)
		switch_mm(mm, &init_mm, current);
	mmdrop(mm);
}

5963
/* called under rq->lock with disabled interrupts */
5964
static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
L
Linus Torvalds 已提交
5965
{
5966
	struct rq *rq = cpu_rq(dead_cpu);
L
Linus Torvalds 已提交
5967 5968

	/* Must be exiting, otherwise would be on tasklist. */
E
Eugene Teo 已提交
5969
	BUG_ON(!p->exit_state);
L
Linus Torvalds 已提交
5970 5971

	/* Cannot have done final schedule yet: would have vanished. */
5972
	BUG_ON(p->state == TASK_DEAD);
L
Linus Torvalds 已提交
5973

5974
	get_task_struct(p);
L
Linus Torvalds 已提交
5975 5976 5977

	/*
	 * Drop lock around migration; if someone else moves it,
I
Ingo Molnar 已提交
5978
	 * that's OK. No task can be added to this CPU, so iteration is
L
Linus Torvalds 已提交
5979 5980
	 * fine.
	 */
5981
	spin_unlock_irq(&rq->lock);
5982
	move_task_off_dead_cpu(dead_cpu, p);
5983
	spin_lock_irq(&rq->lock);
L
Linus Torvalds 已提交
5984

5985
	put_task_struct(p);
L
Linus Torvalds 已提交
5986 5987 5988 5989 5990
}

/* release_task() removes task from tasklist, so we won't find dead tasks. */
static void migrate_dead_tasks(unsigned int dead_cpu)
{
5991
	struct rq *rq = cpu_rq(dead_cpu);
I
Ingo Molnar 已提交
5992
	struct task_struct *next;
5993

I
Ingo Molnar 已提交
5994 5995 5996
	for ( ; ; ) {
		if (!rq->nr_running)
			break;
I
Ingo Molnar 已提交
5997
		update_rq_clock(rq);
5998
		next = pick_next_task(rq, rq->curr);
I
Ingo Molnar 已提交
5999 6000 6001
		if (!next)
			break;
		migrate_dead(dead_cpu, next);
6002

L
Linus Torvalds 已提交
6003 6004 6005 6006
	}
}
#endif /* CONFIG_HOTPLUG_CPU */

6007 6008 6009
#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)

static struct ctl_table sd_ctl_dir[] = {
6010 6011
	{
		.procname	= "sched_domain",
6012
		.mode		= 0555,
6013
	},
I
Ingo Molnar 已提交
6014
	{0, },
6015 6016 6017
};

static struct ctl_table sd_ctl_root[] = {
6018
	{
6019
		.ctl_name	= CTL_KERN,
6020
		.procname	= "kernel",
6021
		.mode		= 0555,
6022 6023
		.child		= sd_ctl_dir,
	},
I
Ingo Molnar 已提交
6024
	{0, },
6025 6026 6027 6028 6029
};

static struct ctl_table *sd_alloc_ctl_entry(int n)
{
	struct ctl_table *entry =
6030
		kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
6031 6032 6033 6034

	return entry;
}

6035 6036
static void sd_free_ctl_entry(struct ctl_table **tablep)
{
6037
	struct ctl_table *entry;
6038

6039 6040 6041
	/*
	 * In the intermediate directories, both the child directory and
	 * procname are dynamically allocated and could fail but the mode
I
Ingo Molnar 已提交
6042
	 * will always be set. In the lowest directory the names are
6043 6044 6045
	 * static strings and all have proc handlers.
	 */
	for (entry = *tablep; entry->mode; entry++) {
6046 6047
		if (entry->child)
			sd_free_ctl_entry(&entry->child);
6048 6049 6050
		if (entry->proc_handler == NULL)
			kfree(entry->procname);
	}
6051 6052 6053 6054 6055

	kfree(*tablep);
	*tablep = NULL;
}

6056
static void
6057
set_table_entry(struct ctl_table *entry,
6058 6059 6060 6061 6062 6063 6064 6065 6066 6067 6068 6069 6070
		const char *procname, void *data, int maxlen,
		mode_t mode, proc_handler *proc_handler)
{
	entry->procname = procname;
	entry->data = data;
	entry->maxlen = maxlen;
	entry->mode = mode;
	entry->proc_handler = proc_handler;
}

static struct ctl_table *
sd_alloc_ctl_domain_table(struct sched_domain *sd)
{
6071
	struct ctl_table *table = sd_alloc_ctl_entry(12);
6072

6073 6074 6075
	if (table == NULL)
		return NULL;

6076
	set_table_entry(&table[0], "min_interval", &sd->min_interval,
6077
		sizeof(long), 0644, proc_doulongvec_minmax);
6078
	set_table_entry(&table[1], "max_interval", &sd->max_interval,
6079
		sizeof(long), 0644, proc_doulongvec_minmax);
6080
	set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
6081
		sizeof(int), 0644, proc_dointvec_minmax);
6082
	set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
6083
		sizeof(int), 0644, proc_dointvec_minmax);
6084
	set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
6085
		sizeof(int), 0644, proc_dointvec_minmax);
6086
	set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
6087
		sizeof(int), 0644, proc_dointvec_minmax);
6088
	set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
6089
		sizeof(int), 0644, proc_dointvec_minmax);
6090
	set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
6091
		sizeof(int), 0644, proc_dointvec_minmax);
6092
	set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
6093
		sizeof(int), 0644, proc_dointvec_minmax);
6094
	set_table_entry(&table[9], "cache_nice_tries",
6095 6096
		&sd->cache_nice_tries,
		sizeof(int), 0644, proc_dointvec_minmax);
6097
	set_table_entry(&table[10], "flags", &sd->flags,
6098
		sizeof(int), 0644, proc_dointvec_minmax);
6099
	/* &table[11] is terminator */
6100 6101 6102 6103

	return table;
}

6104
static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
6105 6106 6107 6108 6109 6110 6111 6112 6113
{
	struct ctl_table *entry, *table;
	struct sched_domain *sd;
	int domain_num = 0, i;
	char buf[32];

	for_each_domain(cpu, sd)
		domain_num++;
	entry = table = sd_alloc_ctl_entry(domain_num + 1);
6114 6115
	if (table == NULL)
		return NULL;
6116 6117 6118 6119 6120

	i = 0;
	for_each_domain(cpu, sd) {
		snprintf(buf, 32, "domain%d", i);
		entry->procname = kstrdup(buf, GFP_KERNEL);
6121
		entry->mode = 0555;
6122 6123 6124 6125 6126 6127 6128 6129
		entry->child = sd_alloc_ctl_domain_table(sd);
		entry++;
		i++;
	}
	return table;
}

static struct ctl_table_header *sd_sysctl_header;
6130
static void register_sched_domain_sysctl(void)
6131 6132 6133 6134 6135
{
	int i, cpu_num = num_online_cpus();
	struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
	char buf[32];

6136 6137 6138
	WARN_ON(sd_ctl_dir[0].child);
	sd_ctl_dir[0].child = entry;

6139 6140 6141
	if (entry == NULL)
		return;

6142
	for_each_online_cpu(i) {
6143 6144
		snprintf(buf, 32, "cpu%d", i);
		entry->procname = kstrdup(buf, GFP_KERNEL);
6145
		entry->mode = 0555;
6146
		entry->child = sd_alloc_ctl_cpu_table(i);
6147
		entry++;
6148
	}
6149 6150

	WARN_ON(sd_sysctl_header);
6151 6152
	sd_sysctl_header = register_sysctl_table(sd_ctl_root);
}
6153

6154
/* may be called multiple times per register */
6155 6156
static void unregister_sched_domain_sysctl(void)
{
6157 6158
	if (sd_sysctl_header)
		unregister_sysctl_table(sd_sysctl_header);
6159
	sd_sysctl_header = NULL;
6160 6161
	if (sd_ctl_dir[0].child)
		sd_free_ctl_entry(&sd_ctl_dir[0].child);
6162
}
6163
#else
6164 6165 6166 6167
static void register_sched_domain_sysctl(void)
{
}
static void unregister_sched_domain_sysctl(void)
6168 6169 6170 6171
{
}
#endif

6172 6173 6174 6175 6176 6177 6178 6179 6180 6181 6182 6183 6184 6185 6186 6187 6188 6189 6190 6191 6192 6193 6194 6195 6196 6197 6198 6199 6200 6201
static void set_rq_online(struct rq *rq)
{
	if (!rq->online) {
		const struct sched_class *class;

		cpu_set(rq->cpu, rq->rd->online);
		rq->online = 1;

		for_each_class(class) {
			if (class->rq_online)
				class->rq_online(rq);
		}
	}
}

static void set_rq_offline(struct rq *rq)
{
	if (rq->online) {
		const struct sched_class *class;

		for_each_class(class) {
			if (class->rq_offline)
				class->rq_offline(rq);
		}

		cpu_clear(rq->cpu, rq->rd->online);
		rq->online = 0;
	}
}

L
Linus Torvalds 已提交
6202 6203 6204 6205
/*
 * migration_call - callback that gets triggered when a CPU is added.
 * Here we can start up the necessary migration thread for the new CPU.
 */
6206 6207
static int __cpuinit
migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
L
Linus Torvalds 已提交
6208 6209
{
	struct task_struct *p;
6210
	int cpu = (long)hcpu;
L
Linus Torvalds 已提交
6211
	unsigned long flags;
6212
	struct rq *rq;
L
Linus Torvalds 已提交
6213 6214

	switch (action) {
6215

L
Linus Torvalds 已提交
6216
	case CPU_UP_PREPARE:
6217
	case CPU_UP_PREPARE_FROZEN:
I
Ingo Molnar 已提交
6218
		p = kthread_create(migration_thread, hcpu, "migration/%d", cpu);
L
Linus Torvalds 已提交
6219 6220 6221 6222 6223
		if (IS_ERR(p))
			return NOTIFY_BAD;
		kthread_bind(p, cpu);
		/* Must be high prio: stop_machine expects to yield to it. */
		rq = task_rq_lock(p, &flags);
I
Ingo Molnar 已提交
6224
		__setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
L
Linus Torvalds 已提交
6225 6226 6227
		task_rq_unlock(rq, &flags);
		cpu_rq(cpu)->migration_thread = p;
		break;
6228

L
Linus Torvalds 已提交
6229
	case CPU_ONLINE:
6230
	case CPU_ONLINE_FROZEN:
6231
		/* Strictly unnecessary, as first user will wake it. */
L
Linus Torvalds 已提交
6232
		wake_up_process(cpu_rq(cpu)->migration_thread);
6233 6234 6235 6236 6237 6238

		/* Update our root-domain */
		rq = cpu_rq(cpu);
		spin_lock_irqsave(&rq->lock, flags);
		if (rq->rd) {
			BUG_ON(!cpu_isset(cpu, rq->rd->span));
6239 6240

			set_rq_online(rq);
6241 6242
		}
		spin_unlock_irqrestore(&rq->lock, flags);
L
Linus Torvalds 已提交
6243
		break;
6244

L
Linus Torvalds 已提交
6245 6246
#ifdef CONFIG_HOTPLUG_CPU
	case CPU_UP_CANCELED:
6247
	case CPU_UP_CANCELED_FROZEN:
6248 6249
		if (!cpu_rq(cpu)->migration_thread)
			break;
I
Ingo Molnar 已提交
6250
		/* Unbind it from offline cpu so it can run. Fall thru. */
6251 6252
		kthread_bind(cpu_rq(cpu)->migration_thread,
			     any_online_cpu(cpu_online_map));
L
Linus Torvalds 已提交
6253 6254 6255
		kthread_stop(cpu_rq(cpu)->migration_thread);
		cpu_rq(cpu)->migration_thread = NULL;
		break;
6256

L
Linus Torvalds 已提交
6257
	case CPU_DEAD:
6258
	case CPU_DEAD_FROZEN:
6259
		cpuset_lock(); /* around calls to cpuset_cpus_allowed_lock() */
L
Linus Torvalds 已提交
6260 6261 6262 6263 6264
		migrate_live_tasks(cpu);
		rq = cpu_rq(cpu);
		kthread_stop(rq->migration_thread);
		rq->migration_thread = NULL;
		/* Idle task back to normal (off runqueue, low prio) */
6265
		spin_lock_irq(&rq->lock);
I
Ingo Molnar 已提交
6266
		update_rq_clock(rq);
6267
		deactivate_task(rq, rq->idle, 0);
L
Linus Torvalds 已提交
6268
		rq->idle->static_prio = MAX_PRIO;
I
Ingo Molnar 已提交
6269 6270
		__setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
		rq->idle->sched_class = &idle_sched_class;
L
Linus Torvalds 已提交
6271
		migrate_dead_tasks(cpu);
6272
		spin_unlock_irq(&rq->lock);
6273
		cpuset_unlock();
L
Linus Torvalds 已提交
6274 6275 6276
		migrate_nr_uninterruptible(rq);
		BUG_ON(rq->nr_running != 0);

I
Ingo Molnar 已提交
6277 6278 6279 6280 6281
		/*
		 * No need to migrate the tasks: it was best-effort if
		 * they didn't take sched_hotcpu_mutex. Just wake up
		 * the requestors.
		 */
L
Linus Torvalds 已提交
6282 6283
		spin_lock_irq(&rq->lock);
		while (!list_empty(&rq->migration_queue)) {
6284 6285
			struct migration_req *req;

L
Linus Torvalds 已提交
6286
			req = list_entry(rq->migration_queue.next,
6287
					 struct migration_req, list);
L
Linus Torvalds 已提交
6288 6289 6290 6291 6292
			list_del_init(&req->list);
			complete(&req->done);
		}
		spin_unlock_irq(&rq->lock);
		break;
G
Gregory Haskins 已提交
6293

6294 6295
	case CPU_DYING:
	case CPU_DYING_FROZEN:
G
Gregory Haskins 已提交
6296 6297 6298 6299 6300
		/* Update our root-domain */
		rq = cpu_rq(cpu);
		spin_lock_irqsave(&rq->lock, flags);
		if (rq->rd) {
			BUG_ON(!cpu_isset(cpu, rq->rd->span));
6301
			set_rq_offline(rq);
G
Gregory Haskins 已提交
6302 6303 6304
		}
		spin_unlock_irqrestore(&rq->lock, flags);
		break;
L
Linus Torvalds 已提交
6305 6306 6307 6308 6309 6310 6311 6312
#endif
	}
	return NOTIFY_OK;
}

/* Register at highest priority so that task migration (migrate_all_tasks)
 * happens before everything else.
 */
6313
static struct notifier_block __cpuinitdata migration_notifier = {
L
Linus Torvalds 已提交
6314 6315 6316 6317
	.notifier_call = migration_call,
	.priority = 10
};

6318
void __init migration_init(void)
L
Linus Torvalds 已提交
6319 6320
{
	void *cpu = (void *)(long)smp_processor_id();
6321
	int err;
6322 6323

	/* Start one for the boot CPU: */
6324 6325
	err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
	BUG_ON(err == NOTIFY_BAD);
L
Linus Torvalds 已提交
6326 6327 6328 6329 6330 6331
	migration_call(&migration_notifier, CPU_ONLINE, cpu);
	register_cpu_notifier(&migration_notifier);
}
#endif

#ifdef CONFIG_SMP
6332

6333
#ifdef CONFIG_SCHED_DEBUG
I
Ingo Molnar 已提交
6334

6335 6336 6337 6338 6339 6340 6341 6342 6343 6344 6345 6346 6347 6348 6349 6350 6351 6352 6353 6354 6355 6356
static inline const char *sd_level_to_string(enum sched_domain_level lvl)
{
	switch (lvl) {
	case SD_LV_NONE:
			return "NONE";
	case SD_LV_SIBLING:
			return "SIBLING";
	case SD_LV_MC:
			return "MC";
	case SD_LV_CPU:
			return "CPU";
	case SD_LV_NODE:
			return "NODE";
	case SD_LV_ALLNODES:
			return "ALLNODES";
	case SD_LV_MAX:
			return "MAX";

	}
	return "MAX";
}

6357 6358
static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
				  cpumask_t *groupmask)
L
Linus Torvalds 已提交
6359
{
I
Ingo Molnar 已提交
6360
	struct sched_group *group = sd->groups;
6361
	char str[256];
L
Linus Torvalds 已提交
6362

6363
	cpulist_scnprintf(str, sizeof(str), sd->span);
6364
	cpus_clear(*groupmask);
I
Ingo Molnar 已提交
6365 6366 6367 6368 6369 6370 6371 6372 6373

	printk(KERN_DEBUG "%*s domain %d: ", level, "", level);

	if (!(sd->flags & SD_LOAD_BALANCE)) {
		printk("does not load-balance\n");
		if (sd->parent)
			printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
					" has parent");
		return -1;
N
Nick Piggin 已提交
6374 6375
	}

6376 6377
	printk(KERN_CONT "span %s level %s\n",
		str, sd_level_to_string(sd->level));
I
Ingo Molnar 已提交
6378 6379 6380 6381 6382 6383 6384 6385 6386

	if (!cpu_isset(cpu, sd->span)) {
		printk(KERN_ERR "ERROR: domain->span does not contain "
				"CPU%d\n", cpu);
	}
	if (!cpu_isset(cpu, group->cpumask)) {
		printk(KERN_ERR "ERROR: domain->groups does not contain"
				" CPU%d\n", cpu);
	}
L
Linus Torvalds 已提交
6387

I
Ingo Molnar 已提交
6388
	printk(KERN_DEBUG "%*s groups:", level + 1, "");
L
Linus Torvalds 已提交
6389
	do {
I
Ingo Molnar 已提交
6390 6391 6392
		if (!group) {
			printk("\n");
			printk(KERN_ERR "ERROR: group is NULL\n");
L
Linus Torvalds 已提交
6393 6394 6395
			break;
		}

I
Ingo Molnar 已提交
6396 6397 6398 6399 6400 6401
		if (!group->__cpu_power) {
			printk(KERN_CONT "\n");
			printk(KERN_ERR "ERROR: domain->cpu_power not "
					"set\n");
			break;
		}
L
Linus Torvalds 已提交
6402

I
Ingo Molnar 已提交
6403 6404 6405 6406 6407
		if (!cpus_weight(group->cpumask)) {
			printk(KERN_CONT "\n");
			printk(KERN_ERR "ERROR: empty group\n");
			break;
		}
L
Linus Torvalds 已提交
6408

6409
		if (cpus_intersects(*groupmask, group->cpumask)) {
I
Ingo Molnar 已提交
6410 6411 6412 6413
			printk(KERN_CONT "\n");
			printk(KERN_ERR "ERROR: repeated CPUs\n");
			break;
		}
L
Linus Torvalds 已提交
6414

6415
		cpus_or(*groupmask, *groupmask, group->cpumask);
L
Linus Torvalds 已提交
6416

6417
		cpulist_scnprintf(str, sizeof(str), group->cpumask);
I
Ingo Molnar 已提交
6418
		printk(KERN_CONT " %s", str);
L
Linus Torvalds 已提交
6419

I
Ingo Molnar 已提交
6420 6421 6422
		group = group->next;
	} while (group != sd->groups);
	printk(KERN_CONT "\n");
L
Linus Torvalds 已提交
6423

6424
	if (!cpus_equal(sd->span, *groupmask))
I
Ingo Molnar 已提交
6425
		printk(KERN_ERR "ERROR: groups don't span domain->span\n");
L
Linus Torvalds 已提交
6426

6427
	if (sd->parent && !cpus_subset(*groupmask, sd->parent->span))
I
Ingo Molnar 已提交
6428 6429 6430 6431
		printk(KERN_ERR "ERROR: parent span is not a superset "
			"of domain->span\n");
	return 0;
}
L
Linus Torvalds 已提交
6432

I
Ingo Molnar 已提交
6433 6434
static void sched_domain_debug(struct sched_domain *sd, int cpu)
{
6435
	cpumask_t *groupmask;
I
Ingo Molnar 已提交
6436
	int level = 0;
L
Linus Torvalds 已提交
6437

I
Ingo Molnar 已提交
6438 6439 6440 6441
	if (!sd) {
		printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
		return;
	}
L
Linus Torvalds 已提交
6442

I
Ingo Molnar 已提交
6443 6444
	printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);

6445 6446 6447 6448 6449 6450
	groupmask = kmalloc(sizeof(cpumask_t), GFP_KERNEL);
	if (!groupmask) {
		printk(KERN_DEBUG "Cannot load-balance (out of memory)\n");
		return;
	}

I
Ingo Molnar 已提交
6451
	for (;;) {
6452
		if (sched_domain_debug_one(sd, cpu, level, groupmask))
I
Ingo Molnar 已提交
6453
			break;
L
Linus Torvalds 已提交
6454 6455
		level++;
		sd = sd->parent;
6456
		if (!sd)
I
Ingo Molnar 已提交
6457 6458
			break;
	}
6459
	kfree(groupmask);
L
Linus Torvalds 已提交
6460
}
6461
#else /* !CONFIG_SCHED_DEBUG */
6462
# define sched_domain_debug(sd, cpu) do { } while (0)
6463
#endif /* CONFIG_SCHED_DEBUG */
L
Linus Torvalds 已提交
6464

6465
static int sd_degenerate(struct sched_domain *sd)
6466 6467 6468 6469 6470 6471 6472 6473
{
	if (cpus_weight(sd->span) == 1)
		return 1;

	/* Following flags need at least 2 groups */
	if (sd->flags & (SD_LOAD_BALANCE |
			 SD_BALANCE_NEWIDLE |
			 SD_BALANCE_FORK |
6474 6475 6476
			 SD_BALANCE_EXEC |
			 SD_SHARE_CPUPOWER |
			 SD_SHARE_PKG_RESOURCES)) {
6477 6478 6479 6480 6481 6482 6483 6484 6485 6486 6487 6488 6489
		if (sd->groups != sd->groups->next)
			return 0;
	}

	/* Following flags don't use groups */
	if (sd->flags & (SD_WAKE_IDLE |
			 SD_WAKE_AFFINE |
			 SD_WAKE_BALANCE))
		return 0;

	return 1;
}

6490 6491
static int
sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
6492 6493 6494 6495 6496 6497 6498 6499 6500 6501 6502 6503 6504 6505 6506 6507 6508 6509
{
	unsigned long cflags = sd->flags, pflags = parent->flags;

	if (sd_degenerate(parent))
		return 1;

	if (!cpus_equal(sd->span, parent->span))
		return 0;

	/* Does parent contain flags not in child? */
	/* WAKE_BALANCE is a subset of WAKE_AFFINE */
	if (cflags & SD_WAKE_AFFINE)
		pflags &= ~SD_WAKE_BALANCE;
	/* Flags needing groups don't count if only 1 group in parent */
	if (parent->groups == parent->groups->next) {
		pflags &= ~(SD_LOAD_BALANCE |
				SD_BALANCE_NEWIDLE |
				SD_BALANCE_FORK |
6510 6511 6512
				SD_BALANCE_EXEC |
				SD_SHARE_CPUPOWER |
				SD_SHARE_PKG_RESOURCES);
6513 6514 6515 6516 6517 6518 6519
	}
	if (~cflags & pflags)
		return 0;

	return 1;
}

G
Gregory Haskins 已提交
6520 6521 6522 6523 6524 6525 6526 6527 6528
static void rq_attach_root(struct rq *rq, struct root_domain *rd)
{
	unsigned long flags;

	spin_lock_irqsave(&rq->lock, flags);

	if (rq->rd) {
		struct root_domain *old_rd = rq->rd;

6529 6530
		if (cpu_isset(rq->cpu, old_rd->online))
			set_rq_offline(rq);
G
Gregory Haskins 已提交
6531

6532 6533
		cpu_clear(rq->cpu, old_rd->span);

G
Gregory Haskins 已提交
6534 6535 6536 6537 6538 6539 6540
		if (atomic_dec_and_test(&old_rd->refcount))
			kfree(old_rd);
	}

	atomic_inc(&rd->refcount);
	rq->rd = rd;

6541
	cpu_set(rq->cpu, rd->span);
6542
	if (cpu_isset(rq->cpu, cpu_online_map))
6543
		set_rq_online(rq);
G
Gregory Haskins 已提交
6544 6545 6546 6547

	spin_unlock_irqrestore(&rq->lock, flags);
}

6548
static void init_rootdomain(struct root_domain *rd)
G
Gregory Haskins 已提交
6549 6550 6551
{
	memset(rd, 0, sizeof(*rd));

6552 6553
	cpus_clear(rd->span);
	cpus_clear(rd->online);
6554 6555

	cpupri_init(&rd->cpupri);
G
Gregory Haskins 已提交
6556 6557 6558 6559
}

static void init_defrootdomain(void)
{
6560
	init_rootdomain(&def_root_domain);
G
Gregory Haskins 已提交
6561 6562 6563
	atomic_set(&def_root_domain.refcount, 1);
}

6564
static struct root_domain *alloc_rootdomain(void)
G
Gregory Haskins 已提交
6565 6566 6567 6568 6569 6570 6571
{
	struct root_domain *rd;

	rd = kmalloc(sizeof(*rd), GFP_KERNEL);
	if (!rd)
		return NULL;

6572
	init_rootdomain(rd);
G
Gregory Haskins 已提交
6573 6574 6575 6576

	return rd;
}

L
Linus Torvalds 已提交
6577
/*
I
Ingo Molnar 已提交
6578
 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
L
Linus Torvalds 已提交
6579 6580
 * hold the hotplug lock.
 */
I
Ingo Molnar 已提交
6581 6582
static void
cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
L
Linus Torvalds 已提交
6583
{
6584
	struct rq *rq = cpu_rq(cpu);
6585 6586 6587 6588 6589 6590 6591
	struct sched_domain *tmp;

	/* Remove the sched domains which do not contribute to scheduling. */
	for (tmp = sd; tmp; tmp = tmp->parent) {
		struct sched_domain *parent = tmp->parent;
		if (!parent)
			break;
6592
		if (sd_parent_degenerate(tmp, parent)) {
6593
			tmp->parent = parent->parent;
6594 6595 6596
			if (parent->parent)
				parent->parent->child = tmp;
		}
6597 6598
	}

6599
	if (sd && sd_degenerate(sd)) {
6600
		sd = sd->parent;
6601 6602 6603
		if (sd)
			sd->child = NULL;
	}
L
Linus Torvalds 已提交
6604 6605 6606

	sched_domain_debug(sd, cpu);

G
Gregory Haskins 已提交
6607
	rq_attach_root(rq, rd);
N
Nick Piggin 已提交
6608
	rcu_assign_pointer(rq->sd, sd);
L
Linus Torvalds 已提交
6609 6610 6611
}

/* cpus with isolated domains */
6612
static cpumask_t cpu_isolated_map = CPU_MASK_NONE;
L
Linus Torvalds 已提交
6613 6614 6615 6616 6617 6618 6619 6620 6621 6622 6623 6624 6625 6626

/* Setup the mask of cpus configured for isolated domains */
static int __init isolated_cpu_setup(char *str)
{
	int ints[NR_CPUS], i;

	str = get_options(str, ARRAY_SIZE(ints), ints);
	cpus_clear(cpu_isolated_map);
	for (i = 1; i <= ints[0]; i++)
		if (ints[i] < NR_CPUS)
			cpu_set(ints[i], cpu_isolated_map);
	return 1;
}

I
Ingo Molnar 已提交
6627
__setup("isolcpus=", isolated_cpu_setup);
L
Linus Torvalds 已提交
6628 6629

/*
6630 6631 6632 6633
 * init_sched_build_groups takes the cpumask we wish to span, and a pointer
 * to a function which identifies what group(along with sched group) a CPU
 * belongs to. The return value of group_fn must be a >= 0 and < NR_CPUS
 * (due to the fact that we keep track of groups covered with a cpumask_t).
L
Linus Torvalds 已提交
6634 6635 6636 6637 6638
 *
 * init_sched_build_groups will build a circular linked list of the groups
 * covered by the given span, and will set each group's ->cpumask correctly,
 * and ->cpu_power to 0.
 */
6639
static void
6640
init_sched_build_groups(const cpumask_t *span, const cpumask_t *cpu_map,
6641
			int (*group_fn)(int cpu, const cpumask_t *cpu_map,
6642 6643 6644
					struct sched_group **sg,
					cpumask_t *tmpmask),
			cpumask_t *covered, cpumask_t *tmpmask)
L
Linus Torvalds 已提交
6645 6646 6647 6648
{
	struct sched_group *first = NULL, *last = NULL;
	int i;

6649 6650 6651
	cpus_clear(*covered);

	for_each_cpu_mask(i, *span) {
6652
		struct sched_group *sg;
6653
		int group = group_fn(i, cpu_map, &sg, tmpmask);
L
Linus Torvalds 已提交
6654 6655
		int j;

6656
		if (cpu_isset(i, *covered))
L
Linus Torvalds 已提交
6657 6658
			continue;

6659
		cpus_clear(sg->cpumask);
6660
		sg->__cpu_power = 0;
L
Linus Torvalds 已提交
6661

6662 6663
		for_each_cpu_mask(j, *span) {
			if (group_fn(j, cpu_map, NULL, tmpmask) != group)
L
Linus Torvalds 已提交
6664 6665
				continue;

6666
			cpu_set(j, *covered);
L
Linus Torvalds 已提交
6667 6668 6669 6670 6671 6672 6673 6674 6675 6676 6677
			cpu_set(j, sg->cpumask);
		}
		if (!first)
			first = sg;
		if (last)
			last->next = sg;
		last = sg;
	}
	last->next = first;
}

6678
#define SD_NODES_PER_DOMAIN 16
L
Linus Torvalds 已提交
6679

6680
#ifdef CONFIG_NUMA
6681

6682 6683 6684 6685 6686
/**
 * find_next_best_node - find the next node to include in a sched_domain
 * @node: node whose sched_domain we're building
 * @used_nodes: nodes already in the sched_domain
 *
I
Ingo Molnar 已提交
6687
 * Find the next node to include in a given scheduling domain. Simply
6688 6689 6690 6691
 * finds the closest node not already in the @used_nodes map.
 *
 * Should use nodemask_t.
 */
6692
static int find_next_best_node(int node, nodemask_t *used_nodes)
6693 6694 6695 6696 6697 6698 6699 6700 6701 6702 6703 6704 6705
{
	int i, n, val, min_val, best_node = 0;

	min_val = INT_MAX;

	for (i = 0; i < MAX_NUMNODES; i++) {
		/* Start at @node */
		n = (node + i) % MAX_NUMNODES;

		if (!nr_cpus_node(n))
			continue;

		/* Skip already used nodes */
6706
		if (node_isset(n, *used_nodes))
6707 6708 6709 6710 6711 6712 6713 6714 6715 6716 6717
			continue;

		/* Simple min distance search */
		val = node_distance(node, n);

		if (val < min_val) {
			min_val = val;
			best_node = n;
		}
	}

6718
	node_set(best_node, *used_nodes);
6719 6720 6721 6722 6723 6724
	return best_node;
}

/**
 * sched_domain_node_span - get a cpumask for a node's sched_domain
 * @node: node whose cpumask we're constructing
6725
 * @span: resulting cpumask
6726
 *
I
Ingo Molnar 已提交
6727
 * Given a node, construct a good cpumask for its sched_domain to span. It
6728 6729 6730
 * should be one that prevents unnecessary balancing, but also spreads tasks
 * out optimally.
 */
6731
static void sched_domain_node_span(int node, cpumask_t *span)
6732
{
6733 6734
	nodemask_t used_nodes;
	node_to_cpumask_ptr(nodemask, node);
6735
	int i;
6736

6737
	cpus_clear(*span);
6738
	nodes_clear(used_nodes);
6739

6740
	cpus_or(*span, *span, *nodemask);
6741
	node_set(node, used_nodes);
6742 6743

	for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
6744
		int next_node = find_next_best_node(node, &used_nodes);
6745

6746
		node_to_cpumask_ptr_next(nodemask, next_node);
6747
		cpus_or(*span, *span, *nodemask);
6748 6749
	}
}
6750
#endif /* CONFIG_NUMA */
6751

6752
int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
6753

6754
/*
6755
 * SMT sched-domains:
6756
 */
L
Linus Torvalds 已提交
6757 6758
#ifdef CONFIG_SCHED_SMT
static DEFINE_PER_CPU(struct sched_domain, cpu_domains);
6759
static DEFINE_PER_CPU(struct sched_group, sched_group_cpus);
6760

I
Ingo Molnar 已提交
6761
static int
6762 6763
cpu_to_cpu_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg,
		 cpumask_t *unused)
L
Linus Torvalds 已提交
6764
{
6765 6766
	if (sg)
		*sg = &per_cpu(sched_group_cpus, cpu);
L
Linus Torvalds 已提交
6767 6768
	return cpu;
}
6769
#endif /* CONFIG_SCHED_SMT */
L
Linus Torvalds 已提交
6770

6771 6772 6773
/*
 * multi-core sched-domains:
 */
6774 6775
#ifdef CONFIG_SCHED_MC
static DEFINE_PER_CPU(struct sched_domain, core_domains);
6776
static DEFINE_PER_CPU(struct sched_group, sched_group_core);
6777
#endif /* CONFIG_SCHED_MC */
6778 6779

#if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
I
Ingo Molnar 已提交
6780
static int
6781 6782
cpu_to_core_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg,
		  cpumask_t *mask)
6783
{
6784
	int group;
6785 6786 6787 6788

	*mask = per_cpu(cpu_sibling_map, cpu);
	cpus_and(*mask, *mask, *cpu_map);
	group = first_cpu(*mask);
6789 6790 6791
	if (sg)
		*sg = &per_cpu(sched_group_core, group);
	return group;
6792 6793
}
#elif defined(CONFIG_SCHED_MC)
I
Ingo Molnar 已提交
6794
static int
6795 6796
cpu_to_core_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg,
		  cpumask_t *unused)
6797
{
6798 6799
	if (sg)
		*sg = &per_cpu(sched_group_core, cpu);
6800 6801 6802 6803
	return cpu;
}
#endif

L
Linus Torvalds 已提交
6804
static DEFINE_PER_CPU(struct sched_domain, phys_domains);
6805
static DEFINE_PER_CPU(struct sched_group, sched_group_phys);
6806

I
Ingo Molnar 已提交
6807
static int
6808 6809
cpu_to_phys_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg,
		  cpumask_t *mask)
L
Linus Torvalds 已提交
6810
{
6811
	int group;
6812
#ifdef CONFIG_SCHED_MC
6813 6814 6815
	*mask = cpu_coregroup_map(cpu);
	cpus_and(*mask, *mask, *cpu_map);
	group = first_cpu(*mask);
6816
#elif defined(CONFIG_SCHED_SMT)
6817 6818 6819
	*mask = per_cpu(cpu_sibling_map, cpu);
	cpus_and(*mask, *mask, *cpu_map);
	group = first_cpu(*mask);
L
Linus Torvalds 已提交
6820
#else
6821
	group = cpu;
L
Linus Torvalds 已提交
6822
#endif
6823 6824 6825
	if (sg)
		*sg = &per_cpu(sched_group_phys, group);
	return group;
L
Linus Torvalds 已提交
6826 6827 6828 6829
}

#ifdef CONFIG_NUMA
/*
6830 6831 6832
 * The init_sched_build_groups can't handle what we want to do with node
 * groups, so roll our own. Now each node has its own list of groups which
 * gets dynamically allocated.
L
Linus Torvalds 已提交
6833
 */
6834
static DEFINE_PER_CPU(struct sched_domain, node_domains);
6835
static struct sched_group ***sched_group_nodes_bycpu;
L
Linus Torvalds 已提交
6836

6837
static DEFINE_PER_CPU(struct sched_domain, allnodes_domains);
6838
static DEFINE_PER_CPU(struct sched_group, sched_group_allnodes);
6839

6840
static int cpu_to_allnodes_group(int cpu, const cpumask_t *cpu_map,
6841
				 struct sched_group **sg, cpumask_t *nodemask)
6842
{
6843 6844
	int group;

6845 6846 6847
	*nodemask = node_to_cpumask(cpu_to_node(cpu));
	cpus_and(*nodemask, *nodemask, *cpu_map);
	group = first_cpu(*nodemask);
6848 6849 6850 6851

	if (sg)
		*sg = &per_cpu(sched_group_allnodes, group);
	return group;
L
Linus Torvalds 已提交
6852
}
6853

6854 6855 6856 6857 6858 6859 6860
static void init_numa_sched_groups_power(struct sched_group *group_head)
{
	struct sched_group *sg = group_head;
	int j;

	if (!sg)
		return;
6861 6862 6863
	do {
		for_each_cpu_mask(j, sg->cpumask) {
			struct sched_domain *sd;
6864

6865 6866 6867 6868 6869 6870 6871 6872
			sd = &per_cpu(phys_domains, j);
			if (j != first_cpu(sd->groups->cpumask)) {
				/*
				 * Only add "power" once for each
				 * physical package.
				 */
				continue;
			}
6873

6874 6875 6876 6877
			sg_inc_cpu_power(sg, sd->groups->__cpu_power);
		}
		sg = sg->next;
	} while (sg != group_head);
6878
}
6879
#endif /* CONFIG_NUMA */
L
Linus Torvalds 已提交
6880

6881
#ifdef CONFIG_NUMA
6882
/* Free memory allocated for various sched_group structures */
6883
static void free_sched_groups(const cpumask_t *cpu_map, cpumask_t *nodemask)
6884
{
6885
	int cpu, i;
6886 6887 6888 6889 6890 6891 6892 6893 6894 6895 6896

	for_each_cpu_mask(cpu, *cpu_map) {
		struct sched_group **sched_group_nodes
			= sched_group_nodes_bycpu[cpu];

		if (!sched_group_nodes)
			continue;

		for (i = 0; i < MAX_NUMNODES; i++) {
			struct sched_group *oldsg, *sg = sched_group_nodes[i];

6897 6898 6899
			*nodemask = node_to_cpumask(i);
			cpus_and(*nodemask, *nodemask, *cpu_map);
			if (cpus_empty(*nodemask))
6900 6901 6902 6903 6904 6905 6906 6907 6908 6909 6910 6911 6912 6913 6914 6915
				continue;

			if (sg == NULL)
				continue;
			sg = sg->next;
next_sg:
			oldsg = sg;
			sg = sg->next;
			kfree(oldsg);
			if (oldsg != sched_group_nodes[i])
				goto next_sg;
		}
		kfree(sched_group_nodes);
		sched_group_nodes_bycpu[cpu] = NULL;
	}
}
6916
#else /* !CONFIG_NUMA */
6917
static void free_sched_groups(const cpumask_t *cpu_map, cpumask_t *nodemask)
6918 6919
{
}
6920
#endif /* CONFIG_NUMA */
6921

6922 6923 6924 6925 6926 6927 6928 6929 6930 6931 6932 6933 6934 6935 6936 6937 6938 6939 6940 6941 6942 6943 6944 6945 6946 6947
/*
 * Initialize sched groups cpu_power.
 *
 * cpu_power indicates the capacity of sched group, which is used while
 * distributing the load between different sched groups in a sched domain.
 * Typically cpu_power for all the groups in a sched domain will be same unless
 * there are asymmetries in the topology. If there are asymmetries, group
 * having more cpu_power will pickup more load compared to the group having
 * less cpu_power.
 *
 * cpu_power will be a multiple of SCHED_LOAD_SCALE. This multiple represents
 * the maximum number of tasks a group can handle in the presence of other idle
 * or lightly loaded groups in the same sched domain.
 */
static void init_sched_groups_power(int cpu, struct sched_domain *sd)
{
	struct sched_domain *child;
	struct sched_group *group;

	WARN_ON(!sd || !sd->groups);

	if (cpu != first_cpu(sd->groups->cpumask))
		return;

	child = sd->child;

6948 6949
	sd->groups->__cpu_power = 0;

6950 6951 6952 6953 6954 6955 6956 6957 6958 6959
	/*
	 * For perf policy, if the groups in child domain share resources
	 * (for example cores sharing some portions of the cache hierarchy
	 * or SMT), then set this domain groups cpu_power such that each group
	 * can handle only one task, when there are other idle groups in the
	 * same sched domain.
	 */
	if (!child || (!(sd->flags & SD_POWERSAVINGS_BALANCE) &&
		       (child->flags &
			(SD_SHARE_CPUPOWER | SD_SHARE_PKG_RESOURCES)))) {
6960
		sg_inc_cpu_power(sd->groups, SCHED_LOAD_SCALE);
6961 6962 6963 6964 6965 6966 6967 6968
		return;
	}

	/*
	 * add cpu_power of each child group to this groups cpu_power
	 */
	group = child->groups;
	do {
6969
		sg_inc_cpu_power(sd->groups, group->__cpu_power);
6970 6971 6972 6973
		group = group->next;
	} while (group != child->groups);
}

6974 6975 6976 6977 6978 6979 6980 6981 6982 6983 6984
/*
 * Initializers for schedule domains
 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
 */

#define	SD_INIT(sd, type)	sd_init_##type(sd)
#define SD_INIT_FUNC(type)	\
static noinline void sd_init_##type(struct sched_domain *sd)	\
{								\
	memset(sd, 0, sizeof(*sd));				\
	*sd = SD_##type##_INIT;					\
6985
	sd->level = SD_LV_##type;				\
6986 6987 6988 6989 6990 6991 6992 6993 6994 6995 6996 6997 6998 6999 7000 7001 7002 7003 7004 7005 7006 7007 7008 7009 7010 7011 7012 7013 7014 7015 7016 7017 7018 7019 7020 7021 7022 7023 7024 7025 7026 7027 7028 7029 7030 7031 7032 7033
}

SD_INIT_FUNC(CPU)
#ifdef CONFIG_NUMA
 SD_INIT_FUNC(ALLNODES)
 SD_INIT_FUNC(NODE)
#endif
#ifdef CONFIG_SCHED_SMT
 SD_INIT_FUNC(SIBLING)
#endif
#ifdef CONFIG_SCHED_MC
 SD_INIT_FUNC(MC)
#endif

/*
 * To minimize stack usage kmalloc room for cpumasks and share the
 * space as the usage in build_sched_domains() dictates.  Used only
 * if the amount of space is significant.
 */
struct allmasks {
	cpumask_t tmpmask;			/* make this one first */
	union {
		cpumask_t nodemask;
		cpumask_t this_sibling_map;
		cpumask_t this_core_map;
	};
	cpumask_t send_covered;

#ifdef CONFIG_NUMA
	cpumask_t domainspan;
	cpumask_t covered;
	cpumask_t notcovered;
#endif
};

#if	NR_CPUS > 128
#define	SCHED_CPUMASK_ALLOC		1
#define	SCHED_CPUMASK_FREE(v)		kfree(v)
#define	SCHED_CPUMASK_DECLARE(v)	struct allmasks *v
#else
#define	SCHED_CPUMASK_ALLOC		0
#define	SCHED_CPUMASK_FREE(v)
#define	SCHED_CPUMASK_DECLARE(v)	struct allmasks _v, *v = &_v
#endif

#define	SCHED_CPUMASK_VAR(v, a) 	cpumask_t *v = (cpumask_t *) \
			((unsigned long)(a) + offsetof(struct allmasks, v))

7034 7035 7036 7037
static int default_relax_domain_level = -1;

static int __init setup_relax_domain_level(char *str)
{
7038 7039 7040 7041 7042 7043
	unsigned long val;

	val = simple_strtoul(str, NULL, 0);
	if (val < SD_LV_MAX)
		default_relax_domain_level = val;

7044 7045 7046 7047 7048 7049 7050 7051 7052 7053 7054 7055 7056 7057 7058 7059 7060 7061 7062 7063 7064 7065 7066 7067 7068
	return 1;
}
__setup("relax_domain_level=", setup_relax_domain_level);

static void set_domain_attribute(struct sched_domain *sd,
				 struct sched_domain_attr *attr)
{
	int request;

	if (!attr || attr->relax_domain_level < 0) {
		if (default_relax_domain_level < 0)
			return;
		else
			request = default_relax_domain_level;
	} else
		request = attr->relax_domain_level;
	if (request < sd->level) {
		/* turn off idle balance on this domain */
		sd->flags &= ~(SD_WAKE_IDLE|SD_BALANCE_NEWIDLE);
	} else {
		/* turn on idle balance on this domain */
		sd->flags |= (SD_WAKE_IDLE_FAR|SD_BALANCE_NEWIDLE);
	}
}

L
Linus Torvalds 已提交
7069
/*
7070 7071
 * Build sched domains for a given set of cpus and attach the sched domains
 * to the individual cpus
L
Linus Torvalds 已提交
7072
 */
7073 7074
static int __build_sched_domains(const cpumask_t *cpu_map,
				 struct sched_domain_attr *attr)
L
Linus Torvalds 已提交
7075 7076
{
	int i;
G
Gregory Haskins 已提交
7077
	struct root_domain *rd;
7078 7079
	SCHED_CPUMASK_DECLARE(allmasks);
	cpumask_t *tmpmask;
7080 7081
#ifdef CONFIG_NUMA
	struct sched_group **sched_group_nodes = NULL;
7082
	int sd_allnodes = 0;
7083 7084 7085 7086

	/*
	 * Allocate the per-node list of sched groups
	 */
7087
	sched_group_nodes = kcalloc(MAX_NUMNODES, sizeof(struct sched_group *),
I
Ingo Molnar 已提交
7088
				    GFP_KERNEL);
7089 7090
	if (!sched_group_nodes) {
		printk(KERN_WARNING "Can not alloc sched group node list\n");
7091
		return -ENOMEM;
7092 7093
	}
#endif
L
Linus Torvalds 已提交
7094

7095
	rd = alloc_rootdomain();
G
Gregory Haskins 已提交
7096 7097
	if (!rd) {
		printk(KERN_WARNING "Cannot alloc root domain\n");
7098 7099 7100
#ifdef CONFIG_NUMA
		kfree(sched_group_nodes);
#endif
G
Gregory Haskins 已提交
7101 7102 7103
		return -ENOMEM;
	}

7104 7105 7106 7107 7108 7109 7110 7111 7112 7113 7114 7115 7116 7117 7118 7119 7120 7121 7122
#if SCHED_CPUMASK_ALLOC
	/* get space for all scratch cpumask variables */
	allmasks = kmalloc(sizeof(*allmasks), GFP_KERNEL);
	if (!allmasks) {
		printk(KERN_WARNING "Cannot alloc cpumask array\n");
		kfree(rd);
#ifdef CONFIG_NUMA
		kfree(sched_group_nodes);
#endif
		return -ENOMEM;
	}
#endif
	tmpmask = (cpumask_t *)allmasks;


#ifdef CONFIG_NUMA
	sched_group_nodes_bycpu[first_cpu(*cpu_map)] = sched_group_nodes;
#endif

L
Linus Torvalds 已提交
7123
	/*
7124
	 * Set up domains for cpus specified by the cpu_map.
L
Linus Torvalds 已提交
7125
	 */
7126
	for_each_cpu_mask(i, *cpu_map) {
L
Linus Torvalds 已提交
7127
		struct sched_domain *sd = NULL, *p;
7128
		SCHED_CPUMASK_VAR(nodemask, allmasks);
L
Linus Torvalds 已提交
7129

7130 7131
		*nodemask = node_to_cpumask(cpu_to_node(i));
		cpus_and(*nodemask, *nodemask, *cpu_map);
L
Linus Torvalds 已提交
7132 7133

#ifdef CONFIG_NUMA
I
Ingo Molnar 已提交
7134
		if (cpus_weight(*cpu_map) >
7135
				SD_NODES_PER_DOMAIN*cpus_weight(*nodemask)) {
7136
			sd = &per_cpu(allnodes_domains, i);
7137
			SD_INIT(sd, ALLNODES);
7138
			set_domain_attribute(sd, attr);
7139
			sd->span = *cpu_map;
7140
			cpu_to_allnodes_group(i, cpu_map, &sd->groups, tmpmask);
7141
			p = sd;
7142
			sd_allnodes = 1;
7143 7144 7145
		} else
			p = NULL;

L
Linus Torvalds 已提交
7146
		sd = &per_cpu(node_domains, i);
7147
		SD_INIT(sd, NODE);
7148
		set_domain_attribute(sd, attr);
7149
		sched_domain_node_span(cpu_to_node(i), &sd->span);
7150
		sd->parent = p;
7151 7152
		if (p)
			p->child = sd;
7153
		cpus_and(sd->span, sd->span, *cpu_map);
L
Linus Torvalds 已提交
7154 7155 7156 7157
#endif

		p = sd;
		sd = &per_cpu(phys_domains, i);
7158
		SD_INIT(sd, CPU);
7159
		set_domain_attribute(sd, attr);
7160
		sd->span = *nodemask;
L
Linus Torvalds 已提交
7161
		sd->parent = p;
7162 7163
		if (p)
			p->child = sd;
7164
		cpu_to_phys_group(i, cpu_map, &sd->groups, tmpmask);
L
Linus Torvalds 已提交
7165

7166 7167 7168
#ifdef CONFIG_SCHED_MC
		p = sd;
		sd = &per_cpu(core_domains, i);
7169
		SD_INIT(sd, MC);
7170
		set_domain_attribute(sd, attr);
7171 7172 7173
		sd->span = cpu_coregroup_map(i);
		cpus_and(sd->span, sd->span, *cpu_map);
		sd->parent = p;
7174
		p->child = sd;
7175
		cpu_to_core_group(i, cpu_map, &sd->groups, tmpmask);
7176 7177
#endif

L
Linus Torvalds 已提交
7178 7179 7180
#ifdef CONFIG_SCHED_SMT
		p = sd;
		sd = &per_cpu(cpu_domains, i);
7181
		SD_INIT(sd, SIBLING);
7182
		set_domain_attribute(sd, attr);
7183
		sd->span = per_cpu(cpu_sibling_map, i);
7184
		cpus_and(sd->span, sd->span, *cpu_map);
L
Linus Torvalds 已提交
7185
		sd->parent = p;
7186
		p->child = sd;
7187
		cpu_to_cpu_group(i, cpu_map, &sd->groups, tmpmask);
L
Linus Torvalds 已提交
7188 7189 7190 7191 7192
#endif
	}

#ifdef CONFIG_SCHED_SMT
	/* Set up CPU (sibling) groups */
7193
	for_each_cpu_mask(i, *cpu_map) {
7194 7195 7196 7197 7198 7199
		SCHED_CPUMASK_VAR(this_sibling_map, allmasks);
		SCHED_CPUMASK_VAR(send_covered, allmasks);

		*this_sibling_map = per_cpu(cpu_sibling_map, i);
		cpus_and(*this_sibling_map, *this_sibling_map, *cpu_map);
		if (i != first_cpu(*this_sibling_map))
L
Linus Torvalds 已提交
7200 7201
			continue;

I
Ingo Molnar 已提交
7202
		init_sched_build_groups(this_sibling_map, cpu_map,
7203 7204
					&cpu_to_cpu_group,
					send_covered, tmpmask);
L
Linus Torvalds 已提交
7205 7206 7207
	}
#endif

7208 7209 7210
#ifdef CONFIG_SCHED_MC
	/* Set up multi-core groups */
	for_each_cpu_mask(i, *cpu_map) {
7211 7212 7213 7214 7215 7216
		SCHED_CPUMASK_VAR(this_core_map, allmasks);
		SCHED_CPUMASK_VAR(send_covered, allmasks);

		*this_core_map = cpu_coregroup_map(i);
		cpus_and(*this_core_map, *this_core_map, *cpu_map);
		if (i != first_cpu(*this_core_map))
7217
			continue;
7218

I
Ingo Molnar 已提交
7219
		init_sched_build_groups(this_core_map, cpu_map,
7220 7221
					&cpu_to_core_group,
					send_covered, tmpmask);
7222 7223 7224
	}
#endif

L
Linus Torvalds 已提交
7225 7226
	/* Set up physical groups */
	for (i = 0; i < MAX_NUMNODES; i++) {
7227 7228
		SCHED_CPUMASK_VAR(nodemask, allmasks);
		SCHED_CPUMASK_VAR(send_covered, allmasks);
L
Linus Torvalds 已提交
7229

7230 7231 7232
		*nodemask = node_to_cpumask(i);
		cpus_and(*nodemask, *nodemask, *cpu_map);
		if (cpus_empty(*nodemask))
L
Linus Torvalds 已提交
7233 7234
			continue;

7235 7236 7237
		init_sched_build_groups(nodemask, cpu_map,
					&cpu_to_phys_group,
					send_covered, tmpmask);
L
Linus Torvalds 已提交
7238 7239 7240 7241
	}

#ifdef CONFIG_NUMA
	/* Set up node groups */
7242 7243 7244 7245 7246 7247 7248
	if (sd_allnodes) {
		SCHED_CPUMASK_VAR(send_covered, allmasks);

		init_sched_build_groups(cpu_map, cpu_map,
					&cpu_to_allnodes_group,
					send_covered, tmpmask);
	}
7249 7250 7251 7252

	for (i = 0; i < MAX_NUMNODES; i++) {
		/* Set up node groups */
		struct sched_group *sg, *prev;
7253 7254 7255
		SCHED_CPUMASK_VAR(nodemask, allmasks);
		SCHED_CPUMASK_VAR(domainspan, allmasks);
		SCHED_CPUMASK_VAR(covered, allmasks);
7256 7257
		int j;

7258 7259 7260 7261 7262
		*nodemask = node_to_cpumask(i);
		cpus_clear(*covered);

		cpus_and(*nodemask, *nodemask, *cpu_map);
		if (cpus_empty(*nodemask)) {
7263
			sched_group_nodes[i] = NULL;
7264
			continue;
7265
		}
7266

7267
		sched_domain_node_span(i, domainspan);
7268
		cpus_and(*domainspan, *domainspan, *cpu_map);
7269

7270
		sg = kmalloc_node(sizeof(struct sched_group), GFP_KERNEL, i);
7271 7272 7273 7274 7275
		if (!sg) {
			printk(KERN_WARNING "Can not alloc domain group for "
				"node %d\n", i);
			goto error;
		}
7276
		sched_group_nodes[i] = sg;
7277
		for_each_cpu_mask(j, *nodemask) {
7278
			struct sched_domain *sd;
I
Ingo Molnar 已提交
7279

7280 7281 7282
			sd = &per_cpu(node_domains, j);
			sd->groups = sg;
		}
7283
		sg->__cpu_power = 0;
7284
		sg->cpumask = *nodemask;
7285
		sg->next = sg;
7286
		cpus_or(*covered, *covered, *nodemask);
7287 7288 7289
		prev = sg;

		for (j = 0; j < MAX_NUMNODES; j++) {
7290
			SCHED_CPUMASK_VAR(notcovered, allmasks);
7291
			int n = (i + j) % MAX_NUMNODES;
7292
			node_to_cpumask_ptr(pnodemask, n);
7293

7294 7295 7296 7297
			cpus_complement(*notcovered, *covered);
			cpus_and(*tmpmask, *notcovered, *cpu_map);
			cpus_and(*tmpmask, *tmpmask, *domainspan);
			if (cpus_empty(*tmpmask))
7298 7299
				break;

7300 7301
			cpus_and(*tmpmask, *tmpmask, *pnodemask);
			if (cpus_empty(*tmpmask))
7302 7303
				continue;

7304 7305
			sg = kmalloc_node(sizeof(struct sched_group),
					  GFP_KERNEL, i);
7306 7307 7308
			if (!sg) {
				printk(KERN_WARNING
				"Can not alloc domain group for node %d\n", j);
7309
				goto error;
7310
			}
7311
			sg->__cpu_power = 0;
7312
			sg->cpumask = *tmpmask;
7313
			sg->next = prev->next;
7314
			cpus_or(*covered, *covered, *tmpmask);
7315 7316 7317 7318
			prev->next = sg;
			prev = sg;
		}
	}
L
Linus Torvalds 已提交
7319 7320 7321
#endif

	/* Calculate CPU power for physical packages and nodes */
7322
#ifdef CONFIG_SCHED_SMT
7323
	for_each_cpu_mask(i, *cpu_map) {
I
Ingo Molnar 已提交
7324 7325
		struct sched_domain *sd = &per_cpu(cpu_domains, i);

7326
		init_sched_groups_power(i, sd);
7327
	}
L
Linus Torvalds 已提交
7328
#endif
7329
#ifdef CONFIG_SCHED_MC
7330
	for_each_cpu_mask(i, *cpu_map) {
I
Ingo Molnar 已提交
7331 7332
		struct sched_domain *sd = &per_cpu(core_domains, i);

7333
		init_sched_groups_power(i, sd);
7334 7335
	}
#endif
7336

7337
	for_each_cpu_mask(i, *cpu_map) {
I
Ingo Molnar 已提交
7338 7339
		struct sched_domain *sd = &per_cpu(phys_domains, i);

7340
		init_sched_groups_power(i, sd);
L
Linus Torvalds 已提交
7341 7342
	}

7343
#ifdef CONFIG_NUMA
7344 7345
	for (i = 0; i < MAX_NUMNODES; i++)
		init_numa_sched_groups_power(sched_group_nodes[i]);
7346

7347 7348
	if (sd_allnodes) {
		struct sched_group *sg;
7349

7350 7351
		cpu_to_allnodes_group(first_cpu(*cpu_map), cpu_map, &sg,
								tmpmask);
7352 7353
		init_numa_sched_groups_power(sg);
	}
7354 7355
#endif

L
Linus Torvalds 已提交
7356
	/* Attach the domains */
7357
	for_each_cpu_mask(i, *cpu_map) {
L
Linus Torvalds 已提交
7358 7359 7360
		struct sched_domain *sd;
#ifdef CONFIG_SCHED_SMT
		sd = &per_cpu(cpu_domains, i);
7361 7362
#elif defined(CONFIG_SCHED_MC)
		sd = &per_cpu(core_domains, i);
L
Linus Torvalds 已提交
7363 7364 7365
#else
		sd = &per_cpu(phys_domains, i);
#endif
G
Gregory Haskins 已提交
7366
		cpu_attach_domain(sd, rd, i);
L
Linus Torvalds 已提交
7367
	}
7368

7369
	SCHED_CPUMASK_FREE((void *)allmasks);
7370 7371
	return 0;

7372
#ifdef CONFIG_NUMA
7373
error:
7374 7375
	free_sched_groups(cpu_map, tmpmask);
	SCHED_CPUMASK_FREE((void *)allmasks);
7376
	return -ENOMEM;
7377
#endif
L
Linus Torvalds 已提交
7378
}
P
Paul Jackson 已提交
7379

7380 7381 7382 7383 7384
static int build_sched_domains(const cpumask_t *cpu_map)
{
	return __build_sched_domains(cpu_map, NULL);
}

P
Paul Jackson 已提交
7385 7386
static cpumask_t *doms_cur;	/* current sched domains */
static int ndoms_cur;		/* number of sched domains in 'doms_cur' */
I
Ingo Molnar 已提交
7387 7388
static struct sched_domain_attr *dattr_cur;
				/* attribues of custom domains in 'doms_cur' */
P
Paul Jackson 已提交
7389 7390 7391 7392 7393 7394 7395 7396

/*
 * Special case: If a kmalloc of a doms_cur partition (array of
 * cpumask_t) fails, then fallback to a single sched domain,
 * as determined by the single cpumask_t fallback_doms.
 */
static cpumask_t fallback_doms;

7397 7398 7399 7400
void __attribute__((weak)) arch_update_cpu_topology(void)
{
}

7401 7402 7403 7404 7405 7406 7407 7408 7409 7410 7411 7412
/*
 * Free current domain masks.
 * Called after all cpus are attached to NULL domain.
 */
static void free_sched_domains(void)
{
	ndoms_cur = 0;
	if (doms_cur != &fallback_doms)
		kfree(doms_cur);
	doms_cur = &fallback_doms;
}

7413
/*
I
Ingo Molnar 已提交
7414
 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
P
Paul Jackson 已提交
7415 7416
 * For now this just excludes isolated cpus, but could be used to
 * exclude other special cases in the future.
7417
 */
7418
static int arch_init_sched_domains(const cpumask_t *cpu_map)
7419
{
7420 7421
	int err;

7422
	arch_update_cpu_topology();
P
Paul Jackson 已提交
7423 7424 7425 7426 7427
	ndoms_cur = 1;
	doms_cur = kmalloc(sizeof(cpumask_t), GFP_KERNEL);
	if (!doms_cur)
		doms_cur = &fallback_doms;
	cpus_andnot(*doms_cur, *cpu_map, cpu_isolated_map);
7428
	dattr_cur = NULL;
7429
	err = build_sched_domains(doms_cur);
7430
	register_sched_domain_sysctl();
7431 7432

	return err;
7433 7434
}

7435 7436
static void arch_destroy_sched_domains(const cpumask_t *cpu_map,
				       cpumask_t *tmpmask)
L
Linus Torvalds 已提交
7437
{
7438
	free_sched_groups(cpu_map, tmpmask);
7439
}
L
Linus Torvalds 已提交
7440

7441 7442 7443 7444
/*
 * Detach sched domains from a group of cpus specified in cpu_map
 * These cpus will now be attached to the NULL domain
 */
7445
static void detach_destroy_domains(const cpumask_t *cpu_map)
7446
{
7447
	cpumask_t tmpmask;
7448 7449
	int i;

7450 7451
	unregister_sched_domain_sysctl();

7452
	for_each_cpu_mask(i, *cpu_map)
G
Gregory Haskins 已提交
7453
		cpu_attach_domain(NULL, &def_root_domain, i);
7454
	synchronize_sched();
7455
	arch_destroy_sched_domains(cpu_map, &tmpmask);
7456 7457
}

7458 7459 7460 7461 7462 7463 7464 7465 7466 7467 7468 7469 7470 7471 7472 7473
/* handle null as "default" */
static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
			struct sched_domain_attr *new, int idx_new)
{
	struct sched_domain_attr tmp;

	/* fast path */
	if (!new && !cur)
		return 1;

	tmp = SD_ATTR_INIT;
	return !memcmp(cur ? (cur + idx_cur) : &tmp,
			new ? (new + idx_new) : &tmp,
			sizeof(struct sched_domain_attr));
}

P
Paul Jackson 已提交
7474 7475
/*
 * Partition sched domains as specified by the 'ndoms_new'
I
Ingo Molnar 已提交
7476
 * cpumasks in the array doms_new[] of cpumasks. This compares
P
Paul Jackson 已提交
7477 7478 7479 7480
 * doms_new[] to the current sched domain partitioning, doms_cur[].
 * It destroys each deleted domain and builds each new domain.
 *
 * 'doms_new' is an array of cpumask_t's of length 'ndoms_new'.
I
Ingo Molnar 已提交
7481 7482 7483
 * The masks don't intersect (don't overlap.) We should setup one
 * sched domain for each mask. CPUs not in any of the cpumasks will
 * not be load balanced. If the same cpumask appears both in the
P
Paul Jackson 已提交
7484 7485 7486
 * current 'doms_cur' domains and in the new 'doms_new', we can leave
 * it as it is.
 *
I
Ingo Molnar 已提交
7487 7488
 * The passed in 'doms_new' should be kmalloc'd. This routine takes
 * ownership of it and will kfree it when done with it. If the caller
P
Paul Jackson 已提交
7489 7490 7491 7492 7493 7494
 * failed the kmalloc call, then it can pass in doms_new == NULL,
 * and partition_sched_domains() will fallback to the single partition
 * 'fallback_doms'.
 *
 * Call with hotplug lock held
 */
7495 7496
void partition_sched_domains(int ndoms_new, cpumask_t *doms_new,
			     struct sched_domain_attr *dattr_new)
P
Paul Jackson 已提交
7497 7498 7499
{
	int i, j;

7500
	mutex_lock(&sched_domains_mutex);
7501

7502 7503 7504
	/* always unregister in case we don't destroy any domains */
	unregister_sched_domain_sysctl();

P
Paul Jackson 已提交
7505 7506 7507 7508
	if (doms_new == NULL) {
		ndoms_new = 1;
		doms_new = &fallback_doms;
		cpus_andnot(doms_new[0], cpu_online_map, cpu_isolated_map);
7509
		dattr_new = NULL;
P
Paul Jackson 已提交
7510 7511 7512 7513 7514
	}

	/* Destroy deleted domains */
	for (i = 0; i < ndoms_cur; i++) {
		for (j = 0; j < ndoms_new; j++) {
7515 7516
			if (cpus_equal(doms_cur[i], doms_new[j])
			    && dattrs_equal(dattr_cur, i, dattr_new, j))
P
Paul Jackson 已提交
7517 7518 7519 7520 7521 7522 7523 7524 7525 7526 7527
				goto match1;
		}
		/* no match - a current sched domain not in new doms_new[] */
		detach_destroy_domains(doms_cur + i);
match1:
		;
	}

	/* Build new domains */
	for (i = 0; i < ndoms_new; i++) {
		for (j = 0; j < ndoms_cur; j++) {
7528 7529
			if (cpus_equal(doms_new[i], doms_cur[j])
			    && dattrs_equal(dattr_new, i, dattr_cur, j))
P
Paul Jackson 已提交
7530 7531 7532
				goto match2;
		}
		/* no match - add a new doms_new */
7533 7534
		__build_sched_domains(doms_new + i,
					dattr_new ? dattr_new + i : NULL);
P
Paul Jackson 已提交
7535 7536 7537 7538 7539 7540 7541
match2:
		;
	}

	/* Remember the new sched domains */
	if (doms_cur != &fallback_doms)
		kfree(doms_cur);
7542
	kfree(dattr_cur);	/* kfree(NULL) is safe */
P
Paul Jackson 已提交
7543
	doms_cur = doms_new;
7544
	dattr_cur = dattr_new;
P
Paul Jackson 已提交
7545
	ndoms_cur = ndoms_new;
7546 7547

	register_sched_domain_sysctl();
7548

7549
	mutex_unlock(&sched_domains_mutex);
P
Paul Jackson 已提交
7550 7551
}

7552
#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
7553
int arch_reinit_sched_domains(void)
7554 7555 7556
{
	int err;

7557
	get_online_cpus();
7558
	mutex_lock(&sched_domains_mutex);
7559
	detach_destroy_domains(&cpu_online_map);
7560
	free_sched_domains();
7561
	err = arch_init_sched_domains(&cpu_online_map);
7562
	mutex_unlock(&sched_domains_mutex);
7563
	put_online_cpus();
7564 7565 7566 7567 7568 7569 7570 7571 7572 7573 7574 7575 7576 7577 7578 7579 7580 7581 7582 7583 7584 7585 7586 7587 7588 7589

	return err;
}

static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
{
	int ret;

	if (buf[0] != '0' && buf[0] != '1')
		return -EINVAL;

	if (smt)
		sched_smt_power_savings = (buf[0] == '1');
	else
		sched_mc_power_savings = (buf[0] == '1');

	ret = arch_reinit_sched_domains();

	return ret ? ret : count;
}

#ifdef CONFIG_SCHED_MC
static ssize_t sched_mc_power_savings_show(struct sys_device *dev, char *page)
{
	return sprintf(page, "%u\n", sched_mc_power_savings);
}
7590 7591
static ssize_t sched_mc_power_savings_store(struct sys_device *dev,
					    const char *buf, size_t count)
7592 7593 7594
{
	return sched_power_savings_store(buf, count, 0);
}
A
Adrian Bunk 已提交
7595 7596
static SYSDEV_ATTR(sched_mc_power_savings, 0644, sched_mc_power_savings_show,
		   sched_mc_power_savings_store);
7597 7598 7599 7600 7601 7602 7603
#endif

#ifdef CONFIG_SCHED_SMT
static ssize_t sched_smt_power_savings_show(struct sys_device *dev, char *page)
{
	return sprintf(page, "%u\n", sched_smt_power_savings);
}
7604 7605
static ssize_t sched_smt_power_savings_store(struct sys_device *dev,
					     const char *buf, size_t count)
7606 7607 7608
{
	return sched_power_savings_store(buf, count, 1);
}
A
Adrian Bunk 已提交
7609 7610 7611 7612 7613 7614 7615 7616 7617 7618 7619 7620 7621 7622 7623 7624 7625 7626 7627 7628
static SYSDEV_ATTR(sched_smt_power_savings, 0644, sched_smt_power_savings_show,
		   sched_smt_power_savings_store);
#endif

int sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
{
	int err = 0;

#ifdef CONFIG_SCHED_SMT
	if (smt_capable())
		err = sysfs_create_file(&cls->kset.kobj,
					&attr_sched_smt_power_savings.attr);
#endif
#ifdef CONFIG_SCHED_MC
	if (!err && mc_capable())
		err = sysfs_create_file(&cls->kset.kobj,
					&attr_sched_mc_power_savings.attr);
#endif
	return err;
}
7629
#endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
7630

L
Linus Torvalds 已提交
7631
/*
I
Ingo Molnar 已提交
7632
 * Force a reinitialization of the sched domains hierarchy. The domains
L
Linus Torvalds 已提交
7633
 * and groups cannot be updated in place without racing with the balancing
N
Nick Piggin 已提交
7634
 * code, so we temporarily attach all running cpus to the NULL domain
L
Linus Torvalds 已提交
7635 7636 7637 7638 7639
 * which will prevent rebalancing while the sched domains are recalculated.
 */
static int update_sched_domains(struct notifier_block *nfb,
				unsigned long action, void *hcpu)
{
P
Peter Zijlstra 已提交
7640 7641
	int cpu = (int)(long)hcpu;

L
Linus Torvalds 已提交
7642 7643
	switch (action) {
	case CPU_DOWN_PREPARE:
7644
	case CPU_DOWN_PREPARE_FROZEN:
P
Peter Zijlstra 已提交
7645 7646 7647 7648
		disable_runtime(cpu_rq(cpu));
		/* fall-through */
	case CPU_UP_PREPARE:
	case CPU_UP_PREPARE_FROZEN:
7649
		detach_destroy_domains(&cpu_online_map);
7650
		free_sched_domains();
L
Linus Torvalds 已提交
7651 7652
		return NOTIFY_OK;

P
Peter Zijlstra 已提交
7653

L
Linus Torvalds 已提交
7654
	case CPU_DOWN_FAILED:
7655
	case CPU_DOWN_FAILED_FROZEN:
L
Linus Torvalds 已提交
7656
	case CPU_ONLINE:
7657
	case CPU_ONLINE_FROZEN:
P
Peter Zijlstra 已提交
7658 7659 7660 7661
		enable_runtime(cpu_rq(cpu));
		/* fall-through */
	case CPU_UP_CANCELED:
	case CPU_UP_CANCELED_FROZEN:
L
Linus Torvalds 已提交
7662
	case CPU_DEAD:
7663
	case CPU_DEAD_FROZEN:
L
Linus Torvalds 已提交
7664 7665 7666 7667 7668 7669 7670 7671
		/*
		 * Fall through and re-initialise the domains.
		 */
		break;
	default:
		return NOTIFY_DONE;
	}

7672 7673 7674 7675 7676 7677 7678
#ifndef CONFIG_CPUSETS
	/*
	 * Create default domain partitioning if cpusets are disabled.
	 * Otherwise we let cpusets rebuild the domains based on the
	 * current setup.
	 */

L
Linus Torvalds 已提交
7679
	/* The hotplug lock is already held by cpu_up/cpu_down */
7680
	arch_init_sched_domains(&cpu_online_map);
7681
#endif
L
Linus Torvalds 已提交
7682 7683 7684 7685 7686 7687

	return NOTIFY_OK;
}

void __init sched_init_smp(void)
{
7688 7689
	cpumask_t non_isolated_cpus;

7690 7691 7692 7693 7694
#if defined(CONFIG_NUMA)
	sched_group_nodes_bycpu = kzalloc(nr_cpu_ids * sizeof(void **),
								GFP_KERNEL);
	BUG_ON(sched_group_nodes_bycpu == NULL);
#endif
7695
	get_online_cpus();
7696
	mutex_lock(&sched_domains_mutex);
7697
	arch_init_sched_domains(&cpu_online_map);
7698
	cpus_andnot(non_isolated_cpus, cpu_possible_map, cpu_isolated_map);
7699 7700
	if (cpus_empty(non_isolated_cpus))
		cpu_set(smp_processor_id(), non_isolated_cpus);
7701
	mutex_unlock(&sched_domains_mutex);
7702
	put_online_cpus();
L
Linus Torvalds 已提交
7703 7704
	/* XXX: Theoretical race here - CPU may be hotplugged now */
	hotcpu_notifier(update_sched_domains, 0);
7705
	init_hrtick();
7706 7707

	/* Move init over to a non-isolated CPU */
7708
	if (set_cpus_allowed_ptr(current, &non_isolated_cpus) < 0)
7709
		BUG();
I
Ingo Molnar 已提交
7710
	sched_init_granularity();
L
Linus Torvalds 已提交
7711 7712 7713 7714
}
#else
void __init sched_init_smp(void)
{
I
Ingo Molnar 已提交
7715
	sched_init_granularity();
L
Linus Torvalds 已提交
7716 7717 7718 7719 7720 7721 7722 7723 7724 7725
}
#endif /* CONFIG_SMP */

int in_sched_functions(unsigned long addr)
{
	return in_lock_functions(addr) ||
		(addr >= (unsigned long)__sched_text_start
		&& addr < (unsigned long)__sched_text_end);
}

A
Alexey Dobriyan 已提交
7726
static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
I
Ingo Molnar 已提交
7727 7728
{
	cfs_rq->tasks_timeline = RB_ROOT;
7729
	INIT_LIST_HEAD(&cfs_rq->tasks);
I
Ingo Molnar 已提交
7730 7731 7732
#ifdef CONFIG_FAIR_GROUP_SCHED
	cfs_rq->rq = rq;
#endif
P
Peter Zijlstra 已提交
7733
	cfs_rq->min_vruntime = (u64)(-(1LL << 20));
I
Ingo Molnar 已提交
7734 7735
}

P
Peter Zijlstra 已提交
7736 7737 7738 7739 7740 7741 7742
static void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
{
	struct rt_prio_array *array;
	int i;

	array = &rt_rq->active;
	for (i = 0; i < MAX_RT_PRIO; i++) {
7743
		INIT_LIST_HEAD(array->queue + i);
P
Peter Zijlstra 已提交
7744 7745 7746 7747 7748
		__clear_bit(i, array->bitmap);
	}
	/* delimiter for bitsearch: */
	__set_bit(MAX_RT_PRIO, array->bitmap);

7749
#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
7750 7751
	rt_rq->highest_prio = MAX_RT_PRIO;
#endif
P
Peter Zijlstra 已提交
7752 7753 7754 7755 7756 7757 7758
#ifdef CONFIG_SMP
	rt_rq->rt_nr_migratory = 0;
	rt_rq->overloaded = 0;
#endif

	rt_rq->rt_time = 0;
	rt_rq->rt_throttled = 0;
P
Peter Zijlstra 已提交
7759 7760
	rt_rq->rt_runtime = 0;
	spin_lock_init(&rt_rq->rt_runtime_lock);
P
Peter Zijlstra 已提交
7761

7762
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
7763
	rt_rq->rt_nr_boosted = 0;
P
Peter Zijlstra 已提交
7764 7765
	rt_rq->rq = rq;
#endif
P
Peter Zijlstra 已提交
7766 7767
}

P
Peter Zijlstra 已提交
7768
#ifdef CONFIG_FAIR_GROUP_SCHED
7769 7770 7771
static void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
				struct sched_entity *se, int cpu, int add,
				struct sched_entity *parent)
P
Peter Zijlstra 已提交
7772
{
7773
	struct rq *rq = cpu_rq(cpu);
P
Peter Zijlstra 已提交
7774 7775 7776 7777 7778 7779 7780
	tg->cfs_rq[cpu] = cfs_rq;
	init_cfs_rq(cfs_rq, rq);
	cfs_rq->tg = tg;
	if (add)
		list_add(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);

	tg->se[cpu] = se;
D
Dhaval Giani 已提交
7781 7782 7783 7784
	/* se could be NULL for init_task_group */
	if (!se)
		return;

7785 7786 7787 7788 7789
	if (!parent)
		se->cfs_rq = &rq->cfs;
	else
		se->cfs_rq = parent->my_q;

P
Peter Zijlstra 已提交
7790 7791
	se->my_q = cfs_rq;
	se->load.weight = tg->shares;
7792
	se->load.inv_weight = 0;
7793
	se->parent = parent;
P
Peter Zijlstra 已提交
7794
}
7795
#endif
P
Peter Zijlstra 已提交
7796

7797
#ifdef CONFIG_RT_GROUP_SCHED
7798 7799 7800
static void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
		struct sched_rt_entity *rt_se, int cpu, int add,
		struct sched_rt_entity *parent)
P
Peter Zijlstra 已提交
7801
{
7802 7803
	struct rq *rq = cpu_rq(cpu);

P
Peter Zijlstra 已提交
7804 7805 7806 7807
	tg->rt_rq[cpu] = rt_rq;
	init_rt_rq(rt_rq, rq);
	rt_rq->tg = tg;
	rt_rq->rt_se = rt_se;
P
Peter Zijlstra 已提交
7808
	rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
P
Peter Zijlstra 已提交
7809 7810 7811 7812
	if (add)
		list_add(&rt_rq->leaf_rt_rq_list, &rq->leaf_rt_rq_list);

	tg->rt_se[cpu] = rt_se;
D
Dhaval Giani 已提交
7813 7814 7815
	if (!rt_se)
		return;

7816 7817 7818 7819 7820
	if (!parent)
		rt_se->rt_rq = &rq->rt;
	else
		rt_se->rt_rq = parent->my_q;

P
Peter Zijlstra 已提交
7821
	rt_se->my_q = rt_rq;
7822
	rt_se->parent = parent;
P
Peter Zijlstra 已提交
7823 7824 7825 7826
	INIT_LIST_HEAD(&rt_se->run_list);
}
#endif

L
Linus Torvalds 已提交
7827 7828
void __init sched_init(void)
{
I
Ingo Molnar 已提交
7829
	int i, j;
7830 7831 7832 7833 7834 7835 7836
	unsigned long alloc_size = 0, ptr;

#ifdef CONFIG_FAIR_GROUP_SCHED
	alloc_size += 2 * nr_cpu_ids * sizeof(void **);
#endif
#ifdef CONFIG_RT_GROUP_SCHED
	alloc_size += 2 * nr_cpu_ids * sizeof(void **);
7837 7838 7839
#endif
#ifdef CONFIG_USER_SCHED
	alloc_size *= 2;
7840 7841 7842 7843 7844 7845
#endif
	/*
	 * As sched_init() is called before page_alloc is setup,
	 * we use alloc_bootmem().
	 */
	if (alloc_size) {
7846
		ptr = (unsigned long)alloc_bootmem(alloc_size);
7847 7848 7849 7850 7851 7852 7853

#ifdef CONFIG_FAIR_GROUP_SCHED
		init_task_group.se = (struct sched_entity **)ptr;
		ptr += nr_cpu_ids * sizeof(void **);

		init_task_group.cfs_rq = (struct cfs_rq **)ptr;
		ptr += nr_cpu_ids * sizeof(void **);
7854 7855 7856 7857 7858 7859 7860

#ifdef CONFIG_USER_SCHED
		root_task_group.se = (struct sched_entity **)ptr;
		ptr += nr_cpu_ids * sizeof(void **);

		root_task_group.cfs_rq = (struct cfs_rq **)ptr;
		ptr += nr_cpu_ids * sizeof(void **);
7861 7862
#endif /* CONFIG_USER_SCHED */
#endif /* CONFIG_FAIR_GROUP_SCHED */
7863 7864 7865 7866 7867
#ifdef CONFIG_RT_GROUP_SCHED
		init_task_group.rt_se = (struct sched_rt_entity **)ptr;
		ptr += nr_cpu_ids * sizeof(void **);

		init_task_group.rt_rq = (struct rt_rq **)ptr;
7868 7869 7870 7871 7872 7873 7874 7875
		ptr += nr_cpu_ids * sizeof(void **);

#ifdef CONFIG_USER_SCHED
		root_task_group.rt_se = (struct sched_rt_entity **)ptr;
		ptr += nr_cpu_ids * sizeof(void **);

		root_task_group.rt_rq = (struct rt_rq **)ptr;
		ptr += nr_cpu_ids * sizeof(void **);
7876 7877
#endif /* CONFIG_USER_SCHED */
#endif /* CONFIG_RT_GROUP_SCHED */
7878
	}
I
Ingo Molnar 已提交
7879

G
Gregory Haskins 已提交
7880 7881 7882 7883
#ifdef CONFIG_SMP
	init_defrootdomain();
#endif

7884 7885 7886 7887 7888 7889
	init_rt_bandwidth(&def_rt_bandwidth,
			global_rt_period(), global_rt_runtime());

#ifdef CONFIG_RT_GROUP_SCHED
	init_rt_bandwidth(&init_task_group.rt_bandwidth,
			global_rt_period(), global_rt_runtime());
7890 7891 7892
#ifdef CONFIG_USER_SCHED
	init_rt_bandwidth(&root_task_group.rt_bandwidth,
			global_rt_period(), RUNTIME_INF);
7893 7894
#endif /* CONFIG_USER_SCHED */
#endif /* CONFIG_RT_GROUP_SCHED */
7895

7896
#ifdef CONFIG_GROUP_SCHED
P
Peter Zijlstra 已提交
7897
	list_add(&init_task_group.list, &task_groups);
P
Peter Zijlstra 已提交
7898 7899 7900 7901 7902 7903
	INIT_LIST_HEAD(&init_task_group.children);

#ifdef CONFIG_USER_SCHED
	INIT_LIST_HEAD(&root_task_group.children);
	init_task_group.parent = &root_task_group;
	list_add(&init_task_group.siblings, &root_task_group.children);
7904 7905
#endif /* CONFIG_USER_SCHED */
#endif /* CONFIG_GROUP_SCHED */
P
Peter Zijlstra 已提交
7906

7907
	for_each_possible_cpu(i) {
7908
		struct rq *rq;
L
Linus Torvalds 已提交
7909 7910 7911

		rq = cpu_rq(i);
		spin_lock_init(&rq->lock);
7912
		lockdep_set_class(&rq->lock, &rq->rq_lock_key);
N
Nick Piggin 已提交
7913
		rq->nr_running = 0;
I
Ingo Molnar 已提交
7914
		init_cfs_rq(&rq->cfs, rq);
P
Peter Zijlstra 已提交
7915
		init_rt_rq(&rq->rt, rq);
I
Ingo Molnar 已提交
7916
#ifdef CONFIG_FAIR_GROUP_SCHED
7917
		init_task_group.shares = init_task_group_load;
P
Peter Zijlstra 已提交
7918
		INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
D
Dhaval Giani 已提交
7919 7920 7921 7922 7923 7924 7925 7926 7927 7928 7929 7930 7931 7932 7933 7934 7935 7936 7937 7938
#ifdef CONFIG_CGROUP_SCHED
		/*
		 * How much cpu bandwidth does init_task_group get?
		 *
		 * In case of task-groups formed thr' the cgroup filesystem, it
		 * gets 100% of the cpu resources in the system. This overall
		 * system cpu resource is divided among the tasks of
		 * init_task_group and its child task-groups in a fair manner,
		 * based on each entity's (task or task-group's) weight
		 * (se->load.weight).
		 *
		 * In other words, if init_task_group has 10 tasks of weight
		 * 1024) and two child groups A0 and A1 (of weight 1024 each),
		 * then A0's share of the cpu resource is:
		 *
		 * 	A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
		 *
		 * We achieve this by letting init_task_group's tasks sit
		 * directly in rq->cfs (i.e init_task_group->se[] = NULL).
		 */
7939
		init_tg_cfs_entry(&init_task_group, &rq->cfs, NULL, i, 1, NULL);
D
Dhaval Giani 已提交
7940
#elif defined CONFIG_USER_SCHED
7941 7942
		root_task_group.shares = NICE_0_LOAD;
		init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, 0, NULL);
D
Dhaval Giani 已提交
7943 7944 7945 7946 7947 7948 7949 7950 7951 7952 7953
		/*
		 * In case of task-groups formed thr' the user id of tasks,
		 * init_task_group represents tasks belonging to root user.
		 * Hence it forms a sibling of all subsequent groups formed.
		 * In this case, init_task_group gets only a fraction of overall
		 * system cpu resource, based on the weight assigned to root
		 * user's cpu share (INIT_TASK_GROUP_LOAD). This is accomplished
		 * by letting tasks of init_task_group sit in a separate cfs_rq
		 * (init_cfs_rq) and having one entity represent this group of
		 * tasks in rq->cfs (i.e init_task_group->se[] != NULL).
		 */
7954
		init_tg_cfs_entry(&init_task_group,
P
Peter Zijlstra 已提交
7955
				&per_cpu(init_cfs_rq, i),
7956 7957
				&per_cpu(init_sched_entity, i), i, 1,
				root_task_group.se[i]);
P
Peter Zijlstra 已提交
7958

7959
#endif
D
Dhaval Giani 已提交
7960 7961 7962
#endif /* CONFIG_FAIR_GROUP_SCHED */

		rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
7963
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
7964
		INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
D
Dhaval Giani 已提交
7965
#ifdef CONFIG_CGROUP_SCHED
7966
		init_tg_rt_entry(&init_task_group, &rq->rt, NULL, i, 1, NULL);
D
Dhaval Giani 已提交
7967
#elif defined CONFIG_USER_SCHED
7968
		init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, 0, NULL);
7969
		init_tg_rt_entry(&init_task_group,
P
Peter Zijlstra 已提交
7970
				&per_cpu(init_rt_rq, i),
7971 7972
				&per_cpu(init_sched_rt_entity, i), i, 1,
				root_task_group.rt_se[i]);
D
Dhaval Giani 已提交
7973
#endif
I
Ingo Molnar 已提交
7974
#endif
L
Linus Torvalds 已提交
7975

I
Ingo Molnar 已提交
7976 7977
		for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
			rq->cpu_load[j] = 0;
L
Linus Torvalds 已提交
7978
#ifdef CONFIG_SMP
N
Nick Piggin 已提交
7979
		rq->sd = NULL;
G
Gregory Haskins 已提交
7980
		rq->rd = NULL;
L
Linus Torvalds 已提交
7981
		rq->active_balance = 0;
I
Ingo Molnar 已提交
7982
		rq->next_balance = jiffies;
L
Linus Torvalds 已提交
7983
		rq->push_cpu = 0;
7984
		rq->cpu = i;
7985
		rq->online = 0;
L
Linus Torvalds 已提交
7986 7987
		rq->migration_thread = NULL;
		INIT_LIST_HEAD(&rq->migration_queue);
7988
		rq_attach_root(rq, &def_root_domain);
L
Linus Torvalds 已提交
7989
#endif
P
Peter Zijlstra 已提交
7990
		init_rq_hrtick(rq);
L
Linus Torvalds 已提交
7991 7992 7993
		atomic_set(&rq->nr_iowait, 0);
	}

7994
	set_load_weight(&init_task);
7995

7996 7997 7998 7999
#ifdef CONFIG_PREEMPT_NOTIFIERS
	INIT_HLIST_HEAD(&init_task.preempt_notifiers);
#endif

8000 8001 8002 8003
#ifdef CONFIG_SMP
	open_softirq(SCHED_SOFTIRQ, run_rebalance_domains, NULL);
#endif

8004 8005 8006 8007
#ifdef CONFIG_RT_MUTEXES
	plist_head_init(&init_task.pi_waiters, &init_task.pi_lock);
#endif

L
Linus Torvalds 已提交
8008 8009 8010 8011 8012 8013 8014 8015 8016 8017 8018 8019 8020
	/*
	 * The boot idle thread does lazy MMU switching as well:
	 */
	atomic_inc(&init_mm.mm_count);
	enter_lazy_tlb(&init_mm, current);

	/*
	 * Make us the idle thread. Technically, schedule() should not be
	 * called from this thread, however somewhere below it might be,
	 * but because we are the idle thread, we just pick up running again
	 * when this runqueue becomes "idle".
	 */
	init_idle(current, smp_processor_id());
I
Ingo Molnar 已提交
8021 8022 8023 8024
	/*
	 * During early bootup we pretend to be a normal task:
	 */
	current->sched_class = &fair_sched_class;
8025 8026

	scheduler_running = 1;
L
Linus Torvalds 已提交
8027 8028 8029 8030 8031
}

#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
void __might_sleep(char *file, int line)
{
8032
#ifdef in_atomic
L
Linus Torvalds 已提交
8033 8034 8035 8036 8037 8038 8039
	static unsigned long prev_jiffy;	/* ratelimiting */

	if ((in_atomic() || irqs_disabled()) &&
	    system_state == SYSTEM_RUNNING && !oops_in_progress) {
		if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
			return;
		prev_jiffy = jiffies;
8040
		printk(KERN_ERR "BUG: sleeping function called from invalid"
L
Linus Torvalds 已提交
8041 8042 8043
				" context at %s:%d\n", file, line);
		printk("in_atomic():%d, irqs_disabled():%d\n",
			in_atomic(), irqs_disabled());
8044
		debug_show_held_locks(current);
8045 8046
		if (irqs_disabled())
			print_irqtrace_events(current);
L
Linus Torvalds 已提交
8047 8048 8049 8050 8051 8052 8053 8054
		dump_stack();
	}
#endif
}
EXPORT_SYMBOL(__might_sleep);
#endif

#ifdef CONFIG_MAGIC_SYSRQ
8055 8056 8057
static void normalize_task(struct rq *rq, struct task_struct *p)
{
	int on_rq;
8058

8059 8060 8061 8062 8063 8064 8065 8066 8067 8068 8069
	update_rq_clock(rq);
	on_rq = p->se.on_rq;
	if (on_rq)
		deactivate_task(rq, p, 0);
	__setscheduler(rq, p, SCHED_NORMAL, 0);
	if (on_rq) {
		activate_task(rq, p, 0);
		resched_task(rq->curr);
	}
}

L
Linus Torvalds 已提交
8070 8071
void normalize_rt_tasks(void)
{
8072
	struct task_struct *g, *p;
L
Linus Torvalds 已提交
8073
	unsigned long flags;
8074
	struct rq *rq;
L
Linus Torvalds 已提交
8075

8076
	read_lock_irqsave(&tasklist_lock, flags);
8077
	do_each_thread(g, p) {
8078 8079 8080 8081 8082 8083
		/*
		 * Only normalize user tasks:
		 */
		if (!p->mm)
			continue;

I
Ingo Molnar 已提交
8084 8085
		p->se.exec_start		= 0;
#ifdef CONFIG_SCHEDSTATS
I
Ingo Molnar 已提交
8086 8087 8088
		p->se.wait_start		= 0;
		p->se.sleep_start		= 0;
		p->se.block_start		= 0;
I
Ingo Molnar 已提交
8089
#endif
I
Ingo Molnar 已提交
8090 8091 8092 8093 8094 8095 8096 8097

		if (!rt_task(p)) {
			/*
			 * Renice negative nice level userspace
			 * tasks back to 0:
			 */
			if (TASK_NICE(p) < 0 && p->mm)
				set_user_nice(p, 0);
L
Linus Torvalds 已提交
8098
			continue;
I
Ingo Molnar 已提交
8099
		}
L
Linus Torvalds 已提交
8100

8101
		spin_lock(&p->pi_lock);
8102
		rq = __task_rq_lock(p);
L
Linus Torvalds 已提交
8103

8104
		normalize_task(rq, p);
8105

8106
		__task_rq_unlock(rq);
8107
		spin_unlock(&p->pi_lock);
8108 8109
	} while_each_thread(g, p);

8110
	read_unlock_irqrestore(&tasklist_lock, flags);
L
Linus Torvalds 已提交
8111 8112 8113
}

#endif /* CONFIG_MAGIC_SYSRQ */
8114 8115 8116 8117 8118 8119 8120 8121 8122 8123 8124 8125 8126 8127 8128 8129 8130 8131

#ifdef CONFIG_IA64
/*
 * These functions are only useful for the IA64 MCA handling.
 *
 * They can only be called when the whole system has been
 * stopped - every CPU needs to be quiescent, and no scheduling
 * activity can take place. Using them for anything else would
 * be a serious bug, and as a result, they aren't even visible
 * under any other configuration.
 */

/**
 * curr_task - return the current task for a given cpu.
 * @cpu: the processor in question.
 *
 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
 */
8132
struct task_struct *curr_task(int cpu)
8133 8134 8135 8136 8137 8138 8139 8140 8141 8142
{
	return cpu_curr(cpu);
}

/**
 * set_curr_task - set the current task for a given cpu.
 * @cpu: the processor in question.
 * @p: the task pointer to set.
 *
 * Description: This function must only be used when non-maskable interrupts
I
Ingo Molnar 已提交
8143 8144
 * are serviced on a separate stack. It allows the architecture to switch the
 * notion of the current task on a cpu in a non-blocking manner. This function
8145 8146 8147 8148 8149 8150 8151
 * must be called with all CPU's synchronized, and interrupts disabled, the
 * and caller must save the original value of the current task (see
 * curr_task() above) and restore that value before reenabling interrupts and
 * re-starting the system.
 *
 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
 */
8152
void set_curr_task(int cpu, struct task_struct *p)
8153 8154 8155 8156 8157
{
	cpu_curr(cpu) = p;
}

#endif
S
Srivatsa Vaddagiri 已提交
8158

8159 8160
#ifdef CONFIG_FAIR_GROUP_SCHED
static void free_fair_sched_group(struct task_group *tg)
P
Peter Zijlstra 已提交
8161 8162 8163 8164 8165 8166 8167 8168 8169 8170 8171 8172 8173 8174
{
	int i;

	for_each_possible_cpu(i) {
		if (tg->cfs_rq)
			kfree(tg->cfs_rq[i]);
		if (tg->se)
			kfree(tg->se[i]);
	}

	kfree(tg->cfs_rq);
	kfree(tg->se);
}

8175 8176
static
int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
S
Srivatsa Vaddagiri 已提交
8177 8178
{
	struct cfs_rq *cfs_rq;
8179
	struct sched_entity *se, *parent_se;
8180
	struct rq *rq;
S
Srivatsa Vaddagiri 已提交
8181 8182
	int i;

8183
	tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
S
Srivatsa Vaddagiri 已提交
8184 8185
	if (!tg->cfs_rq)
		goto err;
8186
	tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
S
Srivatsa Vaddagiri 已提交
8187 8188
	if (!tg->se)
		goto err;
8189 8190

	tg->shares = NICE_0_LOAD;
S
Srivatsa Vaddagiri 已提交
8191 8192

	for_each_possible_cpu(i) {
8193
		rq = cpu_rq(i);
S
Srivatsa Vaddagiri 已提交
8194

P
Peter Zijlstra 已提交
8195 8196
		cfs_rq = kmalloc_node(sizeof(struct cfs_rq),
				GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
S
Srivatsa Vaddagiri 已提交
8197 8198 8199
		if (!cfs_rq)
			goto err;

P
Peter Zijlstra 已提交
8200 8201
		se = kmalloc_node(sizeof(struct sched_entity),
				GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
S
Srivatsa Vaddagiri 已提交
8202 8203 8204
		if (!se)
			goto err;

8205 8206
		parent_se = parent ? parent->se[i] : NULL;
		init_tg_cfs_entry(tg, cfs_rq, se, i, 0, parent_se);
8207 8208 8209 8210 8211 8212 8213 8214 8215 8216 8217 8218 8219 8220 8221 8222 8223 8224
	}

	return 1;

 err:
	return 0;
}

static inline void register_fair_sched_group(struct task_group *tg, int cpu)
{
	list_add_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list,
			&cpu_rq(cpu)->leaf_cfs_rq_list);
}

static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
{
	list_del_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list);
}
8225
#else /* !CONFG_FAIR_GROUP_SCHED */
8226 8227 8228 8229
static inline void free_fair_sched_group(struct task_group *tg)
{
}

8230 8231
static inline
int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
8232 8233 8234 8235 8236 8237 8238 8239 8240 8241 8242
{
	return 1;
}

static inline void register_fair_sched_group(struct task_group *tg, int cpu)
{
}

static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
{
}
8243
#endif /* CONFIG_FAIR_GROUP_SCHED */
8244 8245

#ifdef CONFIG_RT_GROUP_SCHED
8246 8247 8248 8249
static void free_rt_sched_group(struct task_group *tg)
{
	int i;

8250 8251
	destroy_rt_bandwidth(&tg->rt_bandwidth);

8252 8253 8254 8255 8256 8257 8258 8259 8260 8261 8262
	for_each_possible_cpu(i) {
		if (tg->rt_rq)
			kfree(tg->rt_rq[i]);
		if (tg->rt_se)
			kfree(tg->rt_se[i]);
	}

	kfree(tg->rt_rq);
	kfree(tg->rt_se);
}

8263 8264
static
int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
8265 8266
{
	struct rt_rq *rt_rq;
8267
	struct sched_rt_entity *rt_se, *parent_se;
8268 8269 8270
	struct rq *rq;
	int i;

8271
	tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
8272 8273
	if (!tg->rt_rq)
		goto err;
8274
	tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
8275 8276 8277
	if (!tg->rt_se)
		goto err;

8278 8279
	init_rt_bandwidth(&tg->rt_bandwidth,
			ktime_to_ns(def_rt_bandwidth.rt_period), 0);
8280 8281 8282 8283

	for_each_possible_cpu(i) {
		rq = cpu_rq(i);

P
Peter Zijlstra 已提交
8284 8285 8286 8287
		rt_rq = kmalloc_node(sizeof(struct rt_rq),
				GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
		if (!rt_rq)
			goto err;
S
Srivatsa Vaddagiri 已提交
8288

P
Peter Zijlstra 已提交
8289 8290 8291 8292
		rt_se = kmalloc_node(sizeof(struct sched_rt_entity),
				GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
		if (!rt_se)
			goto err;
S
Srivatsa Vaddagiri 已提交
8293

8294 8295
		parent_se = parent ? parent->rt_se[i] : NULL;
		init_tg_rt_entry(tg, rt_rq, rt_se, i, 0, parent_se);
S
Srivatsa Vaddagiri 已提交
8296 8297
	}

8298 8299 8300 8301 8302 8303 8304 8305 8306 8307 8308 8309 8310 8311 8312 8313
	return 1;

 err:
	return 0;
}

static inline void register_rt_sched_group(struct task_group *tg, int cpu)
{
	list_add_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list,
			&cpu_rq(cpu)->leaf_rt_rq_list);
}

static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
{
	list_del_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list);
}
8314
#else /* !CONFIG_RT_GROUP_SCHED */
8315 8316 8317 8318
static inline void free_rt_sched_group(struct task_group *tg)
{
}

8319 8320
static inline
int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
8321 8322 8323 8324 8325 8326 8327 8328 8329 8330 8331
{
	return 1;
}

static inline void register_rt_sched_group(struct task_group *tg, int cpu)
{
}

static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
{
}
8332
#endif /* CONFIG_RT_GROUP_SCHED */
8333

8334
#ifdef CONFIG_GROUP_SCHED
8335 8336 8337 8338 8339 8340 8341 8342
static void free_sched_group(struct task_group *tg)
{
	free_fair_sched_group(tg);
	free_rt_sched_group(tg);
	kfree(tg);
}

/* allocate runqueue etc for a new task group */
8343
struct task_group *sched_create_group(struct task_group *parent)
8344 8345 8346 8347 8348 8349 8350 8351 8352
{
	struct task_group *tg;
	unsigned long flags;
	int i;

	tg = kzalloc(sizeof(*tg), GFP_KERNEL);
	if (!tg)
		return ERR_PTR(-ENOMEM);

8353
	if (!alloc_fair_sched_group(tg, parent))
8354 8355
		goto err;

8356
	if (!alloc_rt_sched_group(tg, parent))
8357 8358
		goto err;

8359
	spin_lock_irqsave(&task_group_lock, flags);
8360
	for_each_possible_cpu(i) {
8361 8362
		register_fair_sched_group(tg, i);
		register_rt_sched_group(tg, i);
8363
	}
P
Peter Zijlstra 已提交
8364
	list_add_rcu(&tg->list, &task_groups);
P
Peter Zijlstra 已提交
8365 8366 8367 8368 8369 8370

	WARN_ON(!parent); /* root should already exist */

	tg->parent = parent;
	list_add_rcu(&tg->siblings, &parent->children);
	INIT_LIST_HEAD(&tg->children);
8371
	spin_unlock_irqrestore(&task_group_lock, flags);
S
Srivatsa Vaddagiri 已提交
8372

8373
	return tg;
S
Srivatsa Vaddagiri 已提交
8374 8375

err:
P
Peter Zijlstra 已提交
8376
	free_sched_group(tg);
S
Srivatsa Vaddagiri 已提交
8377 8378 8379
	return ERR_PTR(-ENOMEM);
}

8380
/* rcu callback to free various structures associated with a task group */
P
Peter Zijlstra 已提交
8381
static void free_sched_group_rcu(struct rcu_head *rhp)
S
Srivatsa Vaddagiri 已提交
8382 8383
{
	/* now it should be safe to free those cfs_rqs */
P
Peter Zijlstra 已提交
8384
	free_sched_group(container_of(rhp, struct task_group, rcu));
S
Srivatsa Vaddagiri 已提交
8385 8386
}

8387
/* Destroy runqueue etc associated with a task group */
8388
void sched_destroy_group(struct task_group *tg)
S
Srivatsa Vaddagiri 已提交
8389
{
8390
	unsigned long flags;
8391
	int i;
S
Srivatsa Vaddagiri 已提交
8392

8393
	spin_lock_irqsave(&task_group_lock, flags);
8394
	for_each_possible_cpu(i) {
8395 8396
		unregister_fair_sched_group(tg, i);
		unregister_rt_sched_group(tg, i);
8397
	}
P
Peter Zijlstra 已提交
8398
	list_del_rcu(&tg->list);
P
Peter Zijlstra 已提交
8399
	list_del_rcu(&tg->siblings);
8400
	spin_unlock_irqrestore(&task_group_lock, flags);
8401 8402

	/* wait for possible concurrent references to cfs_rqs complete */
P
Peter Zijlstra 已提交
8403
	call_rcu(&tg->rcu, free_sched_group_rcu);
S
Srivatsa Vaddagiri 已提交
8404 8405
}

8406
/* change task's runqueue when it moves between groups.
I
Ingo Molnar 已提交
8407 8408 8409
 *	The caller of this function should have put the task in its new group
 *	by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
 *	reflect its new group.
8410 8411
 */
void sched_move_task(struct task_struct *tsk)
S
Srivatsa Vaddagiri 已提交
8412 8413 8414 8415 8416 8417 8418 8419 8420
{
	int on_rq, running;
	unsigned long flags;
	struct rq *rq;

	rq = task_rq_lock(tsk, &flags);

	update_rq_clock(rq);

8421
	running = task_current(rq, tsk);
S
Srivatsa Vaddagiri 已提交
8422 8423
	on_rq = tsk->se.on_rq;

8424
	if (on_rq)
S
Srivatsa Vaddagiri 已提交
8425
		dequeue_task(rq, tsk, 0);
8426 8427
	if (unlikely(running))
		tsk->sched_class->put_prev_task(rq, tsk);
S
Srivatsa Vaddagiri 已提交
8428

P
Peter Zijlstra 已提交
8429
	set_task_rq(tsk, task_cpu(tsk));
S
Srivatsa Vaddagiri 已提交
8430

P
Peter Zijlstra 已提交
8431 8432 8433 8434 8435
#ifdef CONFIG_FAIR_GROUP_SCHED
	if (tsk->sched_class->moved_group)
		tsk->sched_class->moved_group(tsk);
#endif

8436 8437 8438
	if (unlikely(running))
		tsk->sched_class->set_curr_task(rq);
	if (on_rq)
8439
		enqueue_task(rq, tsk, 0);
S
Srivatsa Vaddagiri 已提交
8440 8441 8442

	task_rq_unlock(rq, &flags);
}
8443
#endif /* CONFIG_GROUP_SCHED */
S
Srivatsa Vaddagiri 已提交
8444

8445
#ifdef CONFIG_FAIR_GROUP_SCHED
8446
static void __set_se_shares(struct sched_entity *se, unsigned long shares)
S
Srivatsa Vaddagiri 已提交
8447 8448 8449 8450 8451
{
	struct cfs_rq *cfs_rq = se->cfs_rq;
	int on_rq;

	on_rq = se->on_rq;
8452
	if (on_rq)
S
Srivatsa Vaddagiri 已提交
8453 8454 8455
		dequeue_entity(cfs_rq, se, 0);

	se->load.weight = shares;
8456
	se->load.inv_weight = 0;
S
Srivatsa Vaddagiri 已提交
8457

8458
	if (on_rq)
S
Srivatsa Vaddagiri 已提交
8459
		enqueue_entity(cfs_rq, se, 0);
8460
}
8461

8462 8463 8464 8465 8466 8467 8468 8469 8470
static void set_se_shares(struct sched_entity *se, unsigned long shares)
{
	struct cfs_rq *cfs_rq = se->cfs_rq;
	struct rq *rq = cfs_rq->rq;
	unsigned long flags;

	spin_lock_irqsave(&rq->lock, flags);
	__set_se_shares(se, shares);
	spin_unlock_irqrestore(&rq->lock, flags);
S
Srivatsa Vaddagiri 已提交
8471 8472
}

8473 8474
static DEFINE_MUTEX(shares_mutex);

8475
int sched_group_set_shares(struct task_group *tg, unsigned long shares)
S
Srivatsa Vaddagiri 已提交
8476 8477
{
	int i;
8478
	unsigned long flags;
8479

8480 8481 8482 8483 8484 8485
	/*
	 * We can't change the weight of the root cgroup.
	 */
	if (!tg->se[0])
		return -EINVAL;

8486 8487
	if (shares < MIN_SHARES)
		shares = MIN_SHARES;
8488 8489
	else if (shares > MAX_SHARES)
		shares = MAX_SHARES;
8490

8491
	mutex_lock(&shares_mutex);
8492
	if (tg->shares == shares)
8493
		goto done;
S
Srivatsa Vaddagiri 已提交
8494

8495
	spin_lock_irqsave(&task_group_lock, flags);
8496 8497
	for_each_possible_cpu(i)
		unregister_fair_sched_group(tg, i);
P
Peter Zijlstra 已提交
8498
	list_del_rcu(&tg->siblings);
8499
	spin_unlock_irqrestore(&task_group_lock, flags);
8500 8501 8502 8503 8504 8505 8506 8507

	/* wait for any ongoing reference to this group to finish */
	synchronize_sched();

	/*
	 * Now we are free to modify the group's share on each cpu
	 * w/o tripping rebalance_share or load_balance_fair.
	 */
8508
	tg->shares = shares;
8509 8510 8511 8512 8513
	for_each_possible_cpu(i) {
		/*
		 * force a rebalance
		 */
		cfs_rq_set_shares(tg->cfs_rq[i], 0);
8514
		set_se_shares(tg->se[i], shares);
8515
	}
S
Srivatsa Vaddagiri 已提交
8516

8517 8518 8519 8520
	/*
	 * Enable load balance activity on this group, by inserting it back on
	 * each cpu's rq->leaf_cfs_rq_list.
	 */
8521
	spin_lock_irqsave(&task_group_lock, flags);
8522 8523
	for_each_possible_cpu(i)
		register_fair_sched_group(tg, i);
P
Peter Zijlstra 已提交
8524
	list_add_rcu(&tg->siblings, &tg->parent->children);
8525
	spin_unlock_irqrestore(&task_group_lock, flags);
8526
done:
8527
	mutex_unlock(&shares_mutex);
8528
	return 0;
S
Srivatsa Vaddagiri 已提交
8529 8530
}

8531 8532 8533 8534
unsigned long sched_group_shares(struct task_group *tg)
{
	return tg->shares;
}
8535
#endif
8536

8537
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
8538
/*
P
Peter Zijlstra 已提交
8539
 * Ensure that the real time constraints are schedulable.
P
Peter Zijlstra 已提交
8540
 */
P
Peter Zijlstra 已提交
8541 8542 8543 8544 8545 8546 8547
static DEFINE_MUTEX(rt_constraints_mutex);

static unsigned long to_ratio(u64 period, u64 runtime)
{
	if (runtime == RUNTIME_INF)
		return 1ULL << 16;

R
Roman Zippel 已提交
8548
	return div64_u64(runtime << 16, period);
P
Peter Zijlstra 已提交
8549 8550
}

8551 8552 8553
#ifdef CONFIG_CGROUP_SCHED
static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
{
8554
	struct task_group *tgi, *parent = tg->parent;
8555 8556 8557 8558 8559 8560 8561 8562 8563 8564 8565 8566 8567 8568 8569 8570 8571 8572 8573 8574 8575 8576 8577
	unsigned long total = 0;

	if (!parent) {
		if (global_rt_period() < period)
			return 0;

		return to_ratio(period, runtime) <
			to_ratio(global_rt_period(), global_rt_runtime());
	}

	if (ktime_to_ns(parent->rt_bandwidth.rt_period) < period)
		return 0;

	rcu_read_lock();
	list_for_each_entry_rcu(tgi, &parent->children, siblings) {
		if (tgi == tg)
			continue;

		total += to_ratio(ktime_to_ns(tgi->rt_bandwidth.rt_period),
				tgi->rt_bandwidth.rt_runtime);
	}
	rcu_read_unlock();

8578
	return total + to_ratio(period, runtime) <=
8579 8580 8581 8582
		to_ratio(ktime_to_ns(parent->rt_bandwidth.rt_period),
				parent->rt_bandwidth.rt_runtime);
}
#elif defined CONFIG_USER_SCHED
P
Peter Zijlstra 已提交
8583
static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
P
Peter Zijlstra 已提交
8584 8585 8586
{
	struct task_group *tgi;
	unsigned long total = 0;
P
Peter Zijlstra 已提交
8587
	unsigned long global_ratio =
8588
		to_ratio(global_rt_period(), global_rt_runtime());
P
Peter Zijlstra 已提交
8589 8590

	rcu_read_lock();
P
Peter Zijlstra 已提交
8591 8592 8593
	list_for_each_entry_rcu(tgi, &task_groups, list) {
		if (tgi == tg)
			continue;
P
Peter Zijlstra 已提交
8594

8595 8596
		total += to_ratio(ktime_to_ns(tgi->rt_bandwidth.rt_period),
				tgi->rt_bandwidth.rt_runtime);
P
Peter Zijlstra 已提交
8597 8598
	}
	rcu_read_unlock();
P
Peter Zijlstra 已提交
8599

P
Peter Zijlstra 已提交
8600
	return total + to_ratio(period, runtime) < global_ratio;
P
Peter Zijlstra 已提交
8601
}
8602
#endif
P
Peter Zijlstra 已提交
8603

8604 8605 8606 8607 8608 8609 8610 8611 8612 8613 8614
/* Must be called with tasklist_lock held */
static inline int tg_has_rt_tasks(struct task_group *tg)
{
	struct task_struct *g, *p;
	do_each_thread(g, p) {
		if (rt_task(p) && rt_rq_of_se(&p->rt)->tg == tg)
			return 1;
	} while_each_thread(g, p);
	return 0;
}

8615 8616
static int tg_set_bandwidth(struct task_group *tg,
		u64 rt_period, u64 rt_runtime)
P
Peter Zijlstra 已提交
8617
{
P
Peter Zijlstra 已提交
8618
	int i, err = 0;
P
Peter Zijlstra 已提交
8619 8620

	mutex_lock(&rt_constraints_mutex);
8621
	read_lock(&tasklist_lock);
P
Peter Zijlstra 已提交
8622
	if (rt_runtime == 0 && tg_has_rt_tasks(tg)) {
8623 8624 8625
		err = -EBUSY;
		goto unlock;
	}
P
Peter Zijlstra 已提交
8626 8627 8628 8629
	if (!__rt_schedulable(tg, rt_period, rt_runtime)) {
		err = -EINVAL;
		goto unlock;
	}
P
Peter Zijlstra 已提交
8630 8631

	spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
8632 8633
	tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
	tg->rt_bandwidth.rt_runtime = rt_runtime;
P
Peter Zijlstra 已提交
8634 8635 8636 8637 8638 8639 8640 8641 8642

	for_each_possible_cpu(i) {
		struct rt_rq *rt_rq = tg->rt_rq[i];

		spin_lock(&rt_rq->rt_runtime_lock);
		rt_rq->rt_runtime = rt_runtime;
		spin_unlock(&rt_rq->rt_runtime_lock);
	}
	spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
P
Peter Zijlstra 已提交
8643
 unlock:
8644
	read_unlock(&tasklist_lock);
P
Peter Zijlstra 已提交
8645 8646 8647
	mutex_unlock(&rt_constraints_mutex);

	return err;
P
Peter Zijlstra 已提交
8648 8649
}

8650 8651 8652 8653 8654 8655 8656 8657 8658 8659 8660 8661
int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
{
	u64 rt_runtime, rt_period;

	rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
	rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
	if (rt_runtime_us < 0)
		rt_runtime = RUNTIME_INF;

	return tg_set_bandwidth(tg, rt_period, rt_runtime);
}

P
Peter Zijlstra 已提交
8662 8663 8664 8665
long sched_group_rt_runtime(struct task_group *tg)
{
	u64 rt_runtime_us;

8666
	if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
P
Peter Zijlstra 已提交
8667 8668
		return -1;

8669
	rt_runtime_us = tg->rt_bandwidth.rt_runtime;
P
Peter Zijlstra 已提交
8670 8671 8672
	do_div(rt_runtime_us, NSEC_PER_USEC);
	return rt_runtime_us;
}
8673 8674 8675 8676 8677 8678 8679 8680 8681 8682 8683 8684 8685 8686 8687 8688 8689 8690 8691 8692 8693 8694

int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
{
	u64 rt_runtime, rt_period;

	rt_period = (u64)rt_period_us * NSEC_PER_USEC;
	rt_runtime = tg->rt_bandwidth.rt_runtime;

	return tg_set_bandwidth(tg, rt_period, rt_runtime);
}

long sched_group_rt_period(struct task_group *tg)
{
	u64 rt_period_us;

	rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
	do_div(rt_period_us, NSEC_PER_USEC);
	return rt_period_us;
}

static int sched_rt_global_constraints(void)
{
8695 8696
	struct task_group *tg = &root_task_group;
	u64 rt_runtime, rt_period;
8697 8698
	int ret = 0;

8699 8700 8701
	rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
	rt_runtime = tg->rt_bandwidth.rt_runtime;

8702
	mutex_lock(&rt_constraints_mutex);
8703
	if (!__rt_schedulable(tg, rt_period, rt_runtime))
8704 8705 8706 8707 8708
		ret = -EINVAL;
	mutex_unlock(&rt_constraints_mutex);

	return ret;
}
8709
#else /* !CONFIG_RT_GROUP_SCHED */
8710 8711
static int sched_rt_global_constraints(void)
{
P
Peter Zijlstra 已提交
8712 8713 8714 8715 8716 8717 8718 8719 8720 8721 8722 8723 8724
	unsigned long flags;
	int i;

	spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
	for_each_possible_cpu(i) {
		struct rt_rq *rt_rq = &cpu_rq(i)->rt;

		spin_lock(&rt_rq->rt_runtime_lock);
		rt_rq->rt_runtime = global_rt_runtime();
		spin_unlock(&rt_rq->rt_runtime_lock);
	}
	spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);

8725 8726
	return 0;
}
8727
#endif /* CONFIG_RT_GROUP_SCHED */
8728 8729 8730 8731 8732 8733 8734 8735 8736 8737 8738 8739 8740 8741 8742 8743 8744 8745 8746 8747 8748 8749 8750 8751 8752 8753 8754 8755 8756 8757

int sched_rt_handler(struct ctl_table *table, int write,
		struct file *filp, void __user *buffer, size_t *lenp,
		loff_t *ppos)
{
	int ret;
	int old_period, old_runtime;
	static DEFINE_MUTEX(mutex);

	mutex_lock(&mutex);
	old_period = sysctl_sched_rt_period;
	old_runtime = sysctl_sched_rt_runtime;

	ret = proc_dointvec(table, write, filp, buffer, lenp, ppos);

	if (!ret && write) {
		ret = sched_rt_global_constraints();
		if (ret) {
			sysctl_sched_rt_period = old_period;
			sysctl_sched_rt_runtime = old_runtime;
		} else {
			def_rt_bandwidth.rt_runtime = global_rt_runtime();
			def_rt_bandwidth.rt_period =
				ns_to_ktime(global_rt_period());
		}
	}
	mutex_unlock(&mutex);

	return ret;
}
8758

8759
#ifdef CONFIG_CGROUP_SCHED
8760 8761

/* return corresponding task_group object of a cgroup */
8762
static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
8763
{
8764 8765
	return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
			    struct task_group, css);
8766 8767 8768
}

static struct cgroup_subsys_state *
8769
cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
8770
{
8771
	struct task_group *tg, *parent;
8772

8773
	if (!cgrp->parent) {
8774
		/* This is early initialization for the top cgroup */
8775
		init_task_group.css.cgroup = cgrp;
8776 8777 8778
		return &init_task_group.css;
	}

8779 8780
	parent = cgroup_tg(cgrp->parent);
	tg = sched_create_group(parent);
8781 8782 8783 8784
	if (IS_ERR(tg))
		return ERR_PTR(-ENOMEM);

	/* Bind the cgroup to task_group object we just created */
8785
	tg->css.cgroup = cgrp;
8786 8787 8788 8789

	return &tg->css;
}

I
Ingo Molnar 已提交
8790 8791
static void
cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
8792
{
8793
	struct task_group *tg = cgroup_tg(cgrp);
8794 8795 8796 8797

	sched_destroy_group(tg);
}

I
Ingo Molnar 已提交
8798 8799 8800
static int
cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
		      struct task_struct *tsk)
8801
{
8802 8803
#ifdef CONFIG_RT_GROUP_SCHED
	/* Don't accept realtime tasks when there is no way for them to run */
8804
	if (rt_task(tsk) && cgroup_tg(cgrp)->rt_bandwidth.rt_runtime == 0)
8805 8806
		return -EINVAL;
#else
8807 8808 8809
	/* We don't support RT-tasks being in separate groups */
	if (tsk->sched_class != &fair_sched_class)
		return -EINVAL;
8810
#endif
8811 8812 8813 8814 8815

	return 0;
}

static void
8816
cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
8817 8818 8819 8820 8821
			struct cgroup *old_cont, struct task_struct *tsk)
{
	sched_move_task(tsk);
}

8822
#ifdef CONFIG_FAIR_GROUP_SCHED
8823
static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
8824
				u64 shareval)
8825
{
8826
	return sched_group_set_shares(cgroup_tg(cgrp), shareval);
8827 8828
}

8829
static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
8830
{
8831
	struct task_group *tg = cgroup_tg(cgrp);
8832 8833 8834

	return (u64) tg->shares;
}
8835
#endif /* CONFIG_FAIR_GROUP_SCHED */
8836

8837
#ifdef CONFIG_RT_GROUP_SCHED
M
Mirco Tischler 已提交
8838
static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
8839
				s64 val)
P
Peter Zijlstra 已提交
8840
{
8841
	return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
P
Peter Zijlstra 已提交
8842 8843
}

8844
static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
P
Peter Zijlstra 已提交
8845
{
8846
	return sched_group_rt_runtime(cgroup_tg(cgrp));
P
Peter Zijlstra 已提交
8847
}
8848 8849 8850 8851 8852 8853 8854 8855 8856 8857 8858

static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
		u64 rt_period_us)
{
	return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
}

static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
{
	return sched_group_rt_period(cgroup_tg(cgrp));
}
8859
#endif /* CONFIG_RT_GROUP_SCHED */
P
Peter Zijlstra 已提交
8860

8861
static struct cftype cpu_files[] = {
8862
#ifdef CONFIG_FAIR_GROUP_SCHED
8863 8864
	{
		.name = "shares",
8865 8866
		.read_u64 = cpu_shares_read_u64,
		.write_u64 = cpu_shares_write_u64,
8867
	},
8868 8869
#endif
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
8870
	{
P
Peter Zijlstra 已提交
8871
		.name = "rt_runtime_us",
8872 8873
		.read_s64 = cpu_rt_runtime_read,
		.write_s64 = cpu_rt_runtime_write,
P
Peter Zijlstra 已提交
8874
	},
8875 8876
	{
		.name = "rt_period_us",
8877 8878
		.read_u64 = cpu_rt_period_read_uint,
		.write_u64 = cpu_rt_period_write_uint,
8879
	},
8880
#endif
8881 8882 8883 8884
};

static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
{
8885
	return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
8886 8887 8888
}

struct cgroup_subsys cpu_cgroup_subsys = {
I
Ingo Molnar 已提交
8889 8890 8891 8892 8893 8894 8895
	.name		= "cpu",
	.create		= cpu_cgroup_create,
	.destroy	= cpu_cgroup_destroy,
	.can_attach	= cpu_cgroup_can_attach,
	.attach		= cpu_cgroup_attach,
	.populate	= cpu_cgroup_populate,
	.subsys_id	= cpu_cgroup_subsys_id,
8896 8897 8898
	.early_init	= 1,
};

8899
#endif	/* CONFIG_CGROUP_SCHED */
8900 8901 8902 8903 8904 8905 8906 8907 8908 8909 8910 8911 8912 8913 8914 8915 8916 8917 8918 8919

#ifdef CONFIG_CGROUP_CPUACCT

/*
 * CPU accounting code for task groups.
 *
 * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
 * (balbir@in.ibm.com).
 */

/* track cpu usage of a group of tasks */
struct cpuacct {
	struct cgroup_subsys_state css;
	/* cpuusage holds pointer to a u64-type object on every cpu */
	u64 *cpuusage;
};

struct cgroup_subsys cpuacct_subsys;

/* return cpu accounting group corresponding to this container */
8920
static inline struct cpuacct *cgroup_ca(struct cgroup *cgrp)
8921
{
8922
	return container_of(cgroup_subsys_state(cgrp, cpuacct_subsys_id),
8923 8924 8925 8926 8927 8928 8929 8930 8931 8932 8933 8934
			    struct cpuacct, css);
}

/* return cpu accounting group to which this task belongs */
static inline struct cpuacct *task_ca(struct task_struct *tsk)
{
	return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
			    struct cpuacct, css);
}

/* create a new cpu accounting group */
static struct cgroup_subsys_state *cpuacct_create(
8935
	struct cgroup_subsys *ss, struct cgroup *cgrp)
8936 8937 8938 8939 8940 8941 8942 8943 8944 8945 8946 8947 8948 8949 8950 8951
{
	struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL);

	if (!ca)
		return ERR_PTR(-ENOMEM);

	ca->cpuusage = alloc_percpu(u64);
	if (!ca->cpuusage) {
		kfree(ca);
		return ERR_PTR(-ENOMEM);
	}

	return &ca->css;
}

/* destroy an existing cpu accounting group */
I
Ingo Molnar 已提交
8952
static void
8953
cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
8954
{
8955
	struct cpuacct *ca = cgroup_ca(cgrp);
8956 8957 8958 8959 8960 8961

	free_percpu(ca->cpuusage);
	kfree(ca);
}

/* return total cpu usage (in nanoseconds) of a group */
8962
static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
8963
{
8964
	struct cpuacct *ca = cgroup_ca(cgrp);
8965 8966 8967 8968 8969 8970 8971 8972 8973 8974 8975 8976 8977 8978 8979 8980 8981 8982
	u64 totalcpuusage = 0;
	int i;

	for_each_possible_cpu(i) {
		u64 *cpuusage = percpu_ptr(ca->cpuusage, i);

		/*
		 * Take rq->lock to make 64-bit addition safe on 32-bit
		 * platforms.
		 */
		spin_lock_irq(&cpu_rq(i)->lock);
		totalcpuusage += *cpuusage;
		spin_unlock_irq(&cpu_rq(i)->lock);
	}

	return totalcpuusage;
}

8983 8984 8985 8986 8987 8988 8989 8990 8991 8992 8993 8994 8995 8996 8997 8998 8999 9000 9001 9002 9003 9004 9005
static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
								u64 reset)
{
	struct cpuacct *ca = cgroup_ca(cgrp);
	int err = 0;
	int i;

	if (reset) {
		err = -EINVAL;
		goto out;
	}

	for_each_possible_cpu(i) {
		u64 *cpuusage = percpu_ptr(ca->cpuusage, i);

		spin_lock_irq(&cpu_rq(i)->lock);
		*cpuusage = 0;
		spin_unlock_irq(&cpu_rq(i)->lock);
	}
out:
	return err;
}

9006 9007 9008
static struct cftype files[] = {
	{
		.name = "usage",
9009 9010
		.read_u64 = cpuusage_read,
		.write_u64 = cpuusage_write,
9011 9012 9013
	},
};

9014
static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cgrp)
9015
{
9016
	return cgroup_add_files(cgrp, ss, files, ARRAY_SIZE(files));
9017 9018 9019 9020 9021 9022 9023 9024 9025 9026 9027 9028 9029 9030 9031 9032 9033 9034 9035 9036 9037 9038 9039 9040 9041 9042 9043 9044 9045 9046
}

/*
 * charge this task's execution time to its accounting group.
 *
 * called with rq->lock held.
 */
static void cpuacct_charge(struct task_struct *tsk, u64 cputime)
{
	struct cpuacct *ca;

	if (!cpuacct_subsys.active)
		return;

	ca = task_ca(tsk);
	if (ca) {
		u64 *cpuusage = percpu_ptr(ca->cpuusage, task_cpu(tsk));

		*cpuusage += cputime;
	}
}

struct cgroup_subsys cpuacct_subsys = {
	.name = "cpuacct",
	.create = cpuacct_create,
	.destroy = cpuacct_destroy,
	.populate = cpuacct_populate,
	.subsys_id = cpuacct_subsys_id,
};
#endif	/* CONFIG_CGROUP_CPUACCT */