sched.c 249.6 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
/*
 *  kernel/sched.c
 *
 *  Kernel scheduler and related syscalls
 *
 *  Copyright (C) 1991-2002  Linus Torvalds
 *
 *  1996-12-23  Modified by Dave Grothe to fix bugs in semaphores and
 *		make semaphores SMP safe
 *  1998-11-19	Implemented schedule_timeout() and related stuff
 *		by Andrea Arcangeli
 *  2002-01-04	New ultra-scalable O(1) scheduler by Ingo Molnar:
 *		hybrid priority-list and round-robin design with
 *		an array-switch method of distributing timeslices
 *		and per-CPU runqueues.  Cleanups and useful suggestions
 *		by Davide Libenzi, preemptible kernel bits by Robert Love.
 *  2003-09-03	Interactivity tuning by Con Kolivas.
 *  2004-04-02	Scheduler domains code by Nick Piggin
I
Ingo Molnar 已提交
19 20 21 22 23 24
 *  2007-04-15  Work begun on replacing all interactivity tuning with a
 *              fair scheduling design by Con Kolivas.
 *  2007-05-05  Load balancing (smp-nice) and other improvements
 *              by Peter Williams
 *  2007-05-06  Interactivity improvements to CFS by Mike Galbraith
 *  2007-07-01  Group scheduling enhancements by Srivatsa Vaddagiri
25 26
 *  2007-11-29  RT balancing improvements by Steven Rostedt, Gregory Haskins,
 *              Thomas Gleixner, Mike Kravetz
L
Linus Torvalds 已提交
27 28 29 30 31 32
 */

#include <linux/mm.h>
#include <linux/module.h>
#include <linux/nmi.h>
#include <linux/init.h>
33
#include <linux/uaccess.h>
L
Linus Torvalds 已提交
34 35 36 37
#include <linux/highmem.h>
#include <linux/smp_lock.h>
#include <asm/mmu_context.h>
#include <linux/interrupt.h>
38
#include <linux/capability.h>
L
Linus Torvalds 已提交
39 40
#include <linux/completion.h>
#include <linux/kernel_stat.h>
41
#include <linux/debug_locks.h>
L
Linus Torvalds 已提交
42 43 44
#include <linux/security.h>
#include <linux/notifier.h>
#include <linux/profile.h>
45
#include <linux/freezer.h>
46
#include <linux/vmalloc.h>
L
Linus Torvalds 已提交
47 48
#include <linux/blkdev.h>
#include <linux/delay.h>
49
#include <linux/pid_namespace.h>
L
Linus Torvalds 已提交
50 51 52 53 54 55 56 57
#include <linux/smp.h>
#include <linux/threads.h>
#include <linux/timer.h>
#include <linux/rcupdate.h>
#include <linux/cpu.h>
#include <linux/cpuset.h>
#include <linux/percpu.h>
#include <linux/kthread.h>
58
#include <linux/proc_fs.h>
L
Linus Torvalds 已提交
59
#include <linux/seq_file.h>
60
#include <linux/sysctl.h>
L
Linus Torvalds 已提交
61 62
#include <linux/syscalls.h>
#include <linux/times.h>
63
#include <linux/tsacct_kern.h>
64
#include <linux/kprobes.h>
65
#include <linux/delayacct.h>
66
#include <linux/reciprocal_div.h>
67
#include <linux/unistd.h>
J
Jens Axboe 已提交
68
#include <linux/pagemap.h>
P
Peter Zijlstra 已提交
69
#include <linux/hrtimer.h>
R
Reynes Philippe 已提交
70
#include <linux/tick.h>
71
#include <linux/bootmem.h>
P
Peter Zijlstra 已提交
72 73
#include <linux/debugfs.h>
#include <linux/ctype.h>
74
#include <linux/ftrace.h>
75
#include <trace/sched.h>
L
Linus Torvalds 已提交
76

77
#include <asm/tlb.h>
78
#include <asm/irq_regs.h>
L
Linus Torvalds 已提交
79

80 81
#include "sched_cpupri.h"

L
Linus Torvalds 已提交
82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100
/*
 * Convert user-nice values [ -20 ... 0 ... 19 ]
 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
 * and back.
 */
#define NICE_TO_PRIO(nice)	(MAX_RT_PRIO + (nice) + 20)
#define PRIO_TO_NICE(prio)	((prio) - MAX_RT_PRIO - 20)
#define TASK_NICE(p)		PRIO_TO_NICE((p)->static_prio)

/*
 * 'User priority' is the nice value converted to something we
 * can work with better when scaling various scheduler parameters,
 * it's a [ 0 ... 39 ] range.
 */
#define USER_PRIO(p)		((p)-MAX_RT_PRIO)
#define TASK_USER_PRIO(p)	USER_PRIO((p)->static_prio)
#define MAX_USER_PRIO		(USER_PRIO(MAX_PRIO))

/*
101
 * Helpers for converting nanosecond timing to jiffy resolution
L
Linus Torvalds 已提交
102
 */
103
#define NS_TO_JIFFIES(TIME)	((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
L
Linus Torvalds 已提交
104

I
Ingo Molnar 已提交
105 106 107
#define NICE_0_LOAD		SCHED_LOAD_SCALE
#define NICE_0_SHIFT		SCHED_LOAD_SHIFT

L
Linus Torvalds 已提交
108 109 110
/*
 * These are the 'tuning knobs' of the scheduler:
 *
D
Dmitry Adamushko 已提交
111
 * default timeslice is 100 msecs (used only for SCHED_RR tasks).
L
Linus Torvalds 已提交
112 113 114
 * Timeslices get refilled after they expire.
 */
#define DEF_TIMESLICE		(100 * HZ / 1000)
115

116 117 118 119 120
/*
 * single value that denotes runtime == period, ie unlimited time.
 */
#define RUNTIME_INF	((u64)~0ULL)

121 122 123 124 125 126
DEFINE_TRACE(sched_wait_task);
DEFINE_TRACE(sched_wakeup);
DEFINE_TRACE(sched_wakeup_new);
DEFINE_TRACE(sched_switch);
DEFINE_TRACE(sched_migrate_task);

127
#ifdef CONFIG_SMP
128 129 130

static void double_rq_lock(struct rq *rq1, struct rq *rq2);

131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150
/*
 * Divide a load by a sched group cpu_power : (load / sg->__cpu_power)
 * Since cpu_power is a 'constant', we can use a reciprocal divide.
 */
static inline u32 sg_div_cpu_power(const struct sched_group *sg, u32 load)
{
	return reciprocal_divide(load, sg->reciprocal_cpu_power);
}

/*
 * Each time a sched group cpu_power is changed,
 * we must compute its reciprocal value
 */
static inline void sg_inc_cpu_power(struct sched_group *sg, u32 val)
{
	sg->__cpu_power += val;
	sg->reciprocal_cpu_power = reciprocal_value(sg->__cpu_power);
}
#endif

151 152
static inline int rt_policy(int policy)
{
153
	if (unlikely(policy == SCHED_FIFO || policy == SCHED_RR))
154 155 156 157 158 159 160 161 162
		return 1;
	return 0;
}

static inline int task_has_rt_policy(struct task_struct *p)
{
	return rt_policy(p->policy);
}

L
Linus Torvalds 已提交
163
/*
I
Ingo Molnar 已提交
164
 * This is the priority-queue data structure of the RT scheduling class:
L
Linus Torvalds 已提交
165
 */
I
Ingo Molnar 已提交
166 167 168 169 170
struct rt_prio_array {
	DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
	struct list_head queue[MAX_RT_PRIO];
};

171
struct rt_bandwidth {
I
Ingo Molnar 已提交
172 173 174 175 176
	/* nests inside the rq lock: */
	spinlock_t		rt_runtime_lock;
	ktime_t			rt_period;
	u64			rt_runtime;
	struct hrtimer		rt_period_timer;
177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209
};

static struct rt_bandwidth def_rt_bandwidth;

static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);

static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
{
	struct rt_bandwidth *rt_b =
		container_of(timer, struct rt_bandwidth, rt_period_timer);
	ktime_t now;
	int overrun;
	int idle = 0;

	for (;;) {
		now = hrtimer_cb_get_time(timer);
		overrun = hrtimer_forward(timer, now, rt_b->rt_period);

		if (!overrun)
			break;

		idle = do_sched_rt_period_timer(rt_b, overrun);
	}

	return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
}

static
void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
{
	rt_b->rt_period = ns_to_ktime(period);
	rt_b->rt_runtime = runtime;

P
Peter Zijlstra 已提交
210 211
	spin_lock_init(&rt_b->rt_runtime_lock);

212 213 214 215 216
	hrtimer_init(&rt_b->rt_period_timer,
			CLOCK_MONOTONIC, HRTIMER_MODE_REL);
	rt_b->rt_period_timer.function = sched_rt_period_timer;
}

217 218 219
static inline int rt_bandwidth_enabled(void)
{
	return sysctl_sched_rt_runtime >= 0;
220 221 222 223 224 225
}

static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
{
	ktime_t now;

226
	if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)
227 228 229 230 231 232 233
		return;

	if (hrtimer_active(&rt_b->rt_period_timer))
		return;

	spin_lock(&rt_b->rt_runtime_lock);
	for (;;) {
234 235 236
		unsigned long delta;
		ktime_t soft, hard;

237 238 239 240 241
		if (hrtimer_active(&rt_b->rt_period_timer))
			break;

		now = hrtimer_cb_get_time(&rt_b->rt_period_timer);
		hrtimer_forward(&rt_b->rt_period_timer, now, rt_b->rt_period);
242 243 244 245 246

		soft = hrtimer_get_softexpires(&rt_b->rt_period_timer);
		hard = hrtimer_get_expires(&rt_b->rt_period_timer);
		delta = ktime_to_ns(ktime_sub(hard, soft));
		__hrtimer_start_range_ns(&rt_b->rt_period_timer, soft, delta,
247
				HRTIMER_MODE_ABS_PINNED, 0);
248 249 250 251 252 253 254 255 256 257 258
	}
	spin_unlock(&rt_b->rt_runtime_lock);
}

#ifdef CONFIG_RT_GROUP_SCHED
static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
{
	hrtimer_cancel(&rt_b->rt_period_timer);
}
#endif

259 260 261 262 263 264
/*
 * sched_domains_mutex serializes calls to arch_init_sched_domains,
 * detach_destroy_domains and partition_sched_domains.
 */
static DEFINE_MUTEX(sched_domains_mutex);

265
#ifdef CONFIG_GROUP_SCHED
S
Srivatsa Vaddagiri 已提交
266

267 268
#include <linux/cgroup.h>

S
Srivatsa Vaddagiri 已提交
269 270
struct cfs_rq;

P
Peter Zijlstra 已提交
271 272
static LIST_HEAD(task_groups);

S
Srivatsa Vaddagiri 已提交
273
/* task group related information */
274
struct task_group {
275
#ifdef CONFIG_CGROUP_SCHED
276 277
	struct cgroup_subsys_state css;
#endif
278

279 280 281 282
#ifdef CONFIG_USER_SCHED
	uid_t uid;
#endif

283
#ifdef CONFIG_FAIR_GROUP_SCHED
S
Srivatsa Vaddagiri 已提交
284 285 286 287 288
	/* schedulable entities of this group on each cpu */
	struct sched_entity **se;
	/* runqueue "owned" by this group on each cpu */
	struct cfs_rq **cfs_rq;
	unsigned long shares;
289 290 291 292 293 294
#endif

#ifdef CONFIG_RT_GROUP_SCHED
	struct sched_rt_entity **rt_se;
	struct rt_rq **rt_rq;

295
	struct rt_bandwidth rt_bandwidth;
296
#endif
297

298
	struct rcu_head rcu;
P
Peter Zijlstra 已提交
299
	struct list_head list;
P
Peter Zijlstra 已提交
300 301 302 303

	struct task_group *parent;
	struct list_head siblings;
	struct list_head children;
S
Srivatsa Vaddagiri 已提交
304 305
};

D
Dhaval Giani 已提交
306
#ifdef CONFIG_USER_SCHED
307

308 309 310 311 312 313
/* Helper function to pass uid information to create_sched_user() */
void set_tg_uid(struct user_struct *user)
{
	user->tg->uid = user->uid;
}

314 315 316 317 318 319 320
/*
 * Root task group.
 * 	Every UID task group (including init_task_group aka UID-0) will
 * 	be a child to this group.
 */
struct task_group root_task_group;

321
#ifdef CONFIG_FAIR_GROUP_SCHED
S
Srivatsa Vaddagiri 已提交
322 323 324 325
/* Default task group's sched entity on each cpu */
static DEFINE_PER_CPU(struct sched_entity, init_sched_entity);
/* Default task group's cfs_rq on each cpu */
static DEFINE_PER_CPU(struct cfs_rq, init_cfs_rq) ____cacheline_aligned_in_smp;
326
#endif /* CONFIG_FAIR_GROUP_SCHED */
327 328 329 330

#ifdef CONFIG_RT_GROUP_SCHED
static DEFINE_PER_CPU(struct sched_rt_entity, init_sched_rt_entity);
static DEFINE_PER_CPU(struct rt_rq, init_rt_rq) ____cacheline_aligned_in_smp;
331
#endif /* CONFIG_RT_GROUP_SCHED */
P
Peter Zijlstra 已提交
332
#else /* !CONFIG_USER_SCHED */
333
#define root_task_group init_task_group
P
Peter Zijlstra 已提交
334
#endif /* CONFIG_USER_SCHED */
P
Peter Zijlstra 已提交
335

336
/* task_group_lock serializes add/remove of task groups and also changes to
337 338
 * a task group's cpu shares.
 */
339
static DEFINE_SPINLOCK(task_group_lock);
340

341 342 343 344 345 346 347
#ifdef CONFIG_SMP
static int root_task_group_empty(void)
{
	return list_empty(&root_task_group.children);
}
#endif

348 349 350
#ifdef CONFIG_FAIR_GROUP_SCHED
#ifdef CONFIG_USER_SCHED
# define INIT_TASK_GROUP_LOAD	(2*NICE_0_LOAD)
351
#else /* !CONFIG_USER_SCHED */
352
# define INIT_TASK_GROUP_LOAD	NICE_0_LOAD
353
#endif /* CONFIG_USER_SCHED */
354

355
/*
356 357 358 359
 * A weight of 0 or 1 can cause arithmetics problems.
 * A weight of a cfs_rq is the sum of weights of which entities
 * are queued on this cfs_rq, so a weight of a entity should not be
 * too large, so as the shares value of a task group.
360 361 362
 * (The default weight is 1024 - so there's no practical
 *  limitation from this.)
 */
363
#define MIN_SHARES	2
364
#define MAX_SHARES	(1UL << 18)
365

366 367 368
static int init_task_group_load = INIT_TASK_GROUP_LOAD;
#endif

S
Srivatsa Vaddagiri 已提交
369
/* Default task group.
I
Ingo Molnar 已提交
370
 *	Every task in system belong to this group at bootup.
S
Srivatsa Vaddagiri 已提交
371
 */
372
struct task_group init_task_group;
S
Srivatsa Vaddagiri 已提交
373 374

/* return group to which a task belongs */
375
static inline struct task_group *task_group(struct task_struct *p)
S
Srivatsa Vaddagiri 已提交
376
{
377
	struct task_group *tg;
378

379
#ifdef CONFIG_USER_SCHED
380 381 382
	rcu_read_lock();
	tg = __task_cred(p)->user->tg;
	rcu_read_unlock();
383
#elif defined(CONFIG_CGROUP_SCHED)
384 385
	tg = container_of(task_subsys_state(p, cpu_cgroup_subsys_id),
				struct task_group, css);
386
#else
I
Ingo Molnar 已提交
387
	tg = &init_task_group;
388
#endif
389
	return tg;
S
Srivatsa Vaddagiri 已提交
390 391 392
}

/* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
P
Peter Zijlstra 已提交
393
static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
S
Srivatsa Vaddagiri 已提交
394
{
395
#ifdef CONFIG_FAIR_GROUP_SCHED
396 397
	p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
	p->se.parent = task_group(p)->se[cpu];
398
#endif
P
Peter Zijlstra 已提交
399

400
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
401 402
	p->rt.rt_rq  = task_group(p)->rt_rq[cpu];
	p->rt.parent = task_group(p)->rt_se[cpu];
403
#endif
S
Srivatsa Vaddagiri 已提交
404 405 406 407
}

#else

408 409 410 411 412 413 414
#ifdef CONFIG_SMP
static int root_task_group_empty(void)
{
	return 1;
}
#endif

P
Peter Zijlstra 已提交
415
static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
416 417 418 419
static inline struct task_group *task_group(struct task_struct *p)
{
	return NULL;
}
S
Srivatsa Vaddagiri 已提交
420

421
#endif	/* CONFIG_GROUP_SCHED */
S
Srivatsa Vaddagiri 已提交
422

I
Ingo Molnar 已提交
423 424 425 426 427 428
/* CFS-related fields in a runqueue */
struct cfs_rq {
	struct load_weight load;
	unsigned long nr_running;

	u64 exec_clock;
I
Ingo Molnar 已提交
429
	u64 min_vruntime;
I
Ingo Molnar 已提交
430 431 432

	struct rb_root tasks_timeline;
	struct rb_node *rb_leftmost;
433 434 435 436 437 438

	struct list_head tasks;
	struct list_head *balance_iterator;

	/*
	 * 'curr' points to currently running entity on this cfs_rq.
I
Ingo Molnar 已提交
439 440
	 * It is set to NULL otherwise (i.e when none are currently running).
	 */
P
Peter Zijlstra 已提交
441
	struct sched_entity *curr, *next, *last;
P
Peter Zijlstra 已提交
442

P
Peter Zijlstra 已提交
443
	unsigned int nr_spread_over;
P
Peter Zijlstra 已提交
444

445
#ifdef CONFIG_FAIR_GROUP_SCHED
I
Ingo Molnar 已提交
446 447
	struct rq *rq;	/* cpu runqueue to which this cfs_rq is attached */

I
Ingo Molnar 已提交
448 449
	/*
	 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
I
Ingo Molnar 已提交
450 451 452 453 454 455
	 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
	 * (like users, containers etc.)
	 *
	 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
	 * list is used during load balance.
	 */
I
Ingo Molnar 已提交
456 457
	struct list_head leaf_cfs_rq_list;
	struct task_group *tg;	/* group that "owns" this runqueue */
458 459 460

#ifdef CONFIG_SMP
	/*
461
	 * the part of load.weight contributed by tasks
462
	 */
463
	unsigned long task_weight;
464

465 466 467 468 469 470 471
	/*
	 *   h_load = weight * f(tg)
	 *
	 * Where f(tg) is the recursive weight fraction assigned to
	 * this group.
	 */
	unsigned long h_load;
472

473 474 475 476
	/*
	 * this cpu's part of tg->shares
	 */
	unsigned long shares;
477 478 479 480 481

	/*
	 * load.weight at the time we set shares
	 */
	unsigned long rq_weight;
482
#endif
I
Ingo Molnar 已提交
483 484
#endif
};
L
Linus Torvalds 已提交
485

I
Ingo Molnar 已提交
486 487 488
/* Real-Time classes' related field in a runqueue: */
struct rt_rq {
	struct rt_prio_array active;
489
	unsigned long rt_nr_running;
490
#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
491 492
	struct {
		int curr; /* highest queued rt task prio */
493
#ifdef CONFIG_SMP
494
		int next; /* next highest */
495
#endif
496
	} highest_prio;
P
Peter Zijlstra 已提交
497
#endif
P
Peter Zijlstra 已提交
498
#ifdef CONFIG_SMP
499
	unsigned long rt_nr_migratory;
G
Gregory Haskins 已提交
500
	int overloaded;
501
	struct plist_head pushable_tasks;
P
Peter Zijlstra 已提交
502
#endif
P
Peter Zijlstra 已提交
503
	int rt_throttled;
P
Peter Zijlstra 已提交
504
	u64 rt_time;
P
Peter Zijlstra 已提交
505
	u64 rt_runtime;
I
Ingo Molnar 已提交
506
	/* Nests inside the rq lock: */
P
Peter Zijlstra 已提交
507
	spinlock_t rt_runtime_lock;
P
Peter Zijlstra 已提交
508

509
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
510 511
	unsigned long rt_nr_boosted;

P
Peter Zijlstra 已提交
512 513 514 515 516
	struct rq *rq;
	struct list_head leaf_rt_rq_list;
	struct task_group *tg;
	struct sched_rt_entity *rt_se;
#endif
I
Ingo Molnar 已提交
517 518
};

G
Gregory Haskins 已提交
519 520 521 522
#ifdef CONFIG_SMP

/*
 * We add the notion of a root-domain which will be used to define per-domain
I
Ingo Molnar 已提交
523 524
 * variables. Each exclusive cpuset essentially defines an island domain by
 * fully partitioning the member cpus from any other cpuset. Whenever a new
G
Gregory Haskins 已提交
525 526 527 528 529 530
 * exclusive cpuset is created, we also create and attach a new root-domain
 * object.
 *
 */
struct root_domain {
	atomic_t refcount;
531 532
	cpumask_var_t span;
	cpumask_var_t online;
533

I
Ingo Molnar 已提交
534
	/*
535 536 537
	 * The "RT overload" flag: it gets set if a CPU has more than
	 * one runnable RT task.
	 */
538
	cpumask_var_t rto_mask;
I
Ingo Molnar 已提交
539
	atomic_t rto_count;
540 541 542
#ifdef CONFIG_SMP
	struct cpupri cpupri;
#endif
543 544 545 546 547 548 549 550
#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
	/*
	 * Preferred wake up cpu nominated by sched_mc balance that will be
	 * used when most cpus are idle in the system indicating overall very
	 * low system utilisation. Triggered at POWERSAVINGS_BALANCE_WAKEUP(2)
	 */
	unsigned int sched_mc_preferred_wakeup_cpu;
#endif
G
Gregory Haskins 已提交
551 552
};

553 554 555 556
/*
 * By default the system creates a single root-domain with all cpus as
 * members (mimicking the global state we have today).
 */
G
Gregory Haskins 已提交
557 558 559 560
static struct root_domain def_root_domain;

#endif

L
Linus Torvalds 已提交
561 562 563 564 565 566 567
/*
 * This is the main, per-CPU runqueue data structure.
 *
 * Locking rule: those places that want to lock multiple runqueues
 * (such as the load balancing or the thread migration code), lock
 * acquire operations must be ordered by ascending &runqueue.
 */
568
struct rq {
569 570
	/* runqueue lock: */
	spinlock_t lock;
L
Linus Torvalds 已提交
571 572 573 574 575 576

	/*
	 * nr_running and cpu_load should be in the same cacheline because
	 * remote CPUs use both these fields when doing load calculation.
	 */
	unsigned long nr_running;
I
Ingo Molnar 已提交
577 578
	#define CPU_LOAD_IDX_MAX 5
	unsigned long cpu_load[CPU_LOAD_IDX_MAX];
579
#ifdef CONFIG_NO_HZ
580
	unsigned long last_tick_seen;
581 582
	unsigned char in_nohz_recently;
#endif
583 584
	/* capture load from *all* tasks on this cpu: */
	struct load_weight load;
I
Ingo Molnar 已提交
585 586 587 588
	unsigned long nr_load_updates;
	u64 nr_switches;

	struct cfs_rq cfs;
P
Peter Zijlstra 已提交
589 590
	struct rt_rq rt;

I
Ingo Molnar 已提交
591
#ifdef CONFIG_FAIR_GROUP_SCHED
592 593
	/* list of leaf cfs_rq on this cpu: */
	struct list_head leaf_cfs_rq_list;
594 595
#endif
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
596
	struct list_head leaf_rt_rq_list;
L
Linus Torvalds 已提交
597 598 599 600 601 602 603 604 605 606
#endif

	/*
	 * This is part of a global counter where only the total sum
	 * over all CPUs matters. A task can increase this counter on
	 * one CPU and if it got migrated afterwards it may decrease
	 * it on another CPU. Always updated under the runqueue lock:
	 */
	unsigned long nr_uninterruptible;

607
	struct task_struct *curr, *idle;
608
	unsigned long next_balance;
L
Linus Torvalds 已提交
609
	struct mm_struct *prev_mm;
I
Ingo Molnar 已提交
610

611
	u64 clock;
I
Ingo Molnar 已提交
612

L
Linus Torvalds 已提交
613 614 615
	atomic_t nr_iowait;

#ifdef CONFIG_SMP
I
Ingo Molnar 已提交
616
	struct root_domain *rd;
L
Linus Torvalds 已提交
617 618
	struct sched_domain *sd;

619
	unsigned char idle_at_tick;
L
Linus Torvalds 已提交
620 621 622
	/* For active balancing */
	int active_balance;
	int push_cpu;
623 624
	/* cpu of this runqueue: */
	int cpu;
625
	int online;
L
Linus Torvalds 已提交
626

627
	unsigned long avg_load_per_task;
L
Linus Torvalds 已提交
628

629
	struct task_struct *migration_thread;
L
Linus Torvalds 已提交
630 631 632
	struct list_head migration_queue;
#endif

P
Peter Zijlstra 已提交
633
#ifdef CONFIG_SCHED_HRTICK
634 635 636 637
#ifdef CONFIG_SMP
	int hrtick_csd_pending;
	struct call_single_data hrtick_csd;
#endif
P
Peter Zijlstra 已提交
638 639 640
	struct hrtimer hrtick_timer;
#endif

L
Linus Torvalds 已提交
641 642 643
#ifdef CONFIG_SCHEDSTATS
	/* latency stats */
	struct sched_info rq_sched_info;
644 645
	unsigned long long rq_cpu_time;
	/* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
L
Linus Torvalds 已提交
646 647

	/* sys_sched_yield() stats */
648
	unsigned int yld_count;
L
Linus Torvalds 已提交
649 650

	/* schedule() stats */
651 652 653
	unsigned int sched_switch;
	unsigned int sched_count;
	unsigned int sched_goidle;
L
Linus Torvalds 已提交
654 655

	/* try_to_wake_up() stats */
656 657
	unsigned int ttwu_count;
	unsigned int ttwu_local;
I
Ingo Molnar 已提交
658 659

	/* BKL stats */
660
	unsigned int bkl_count;
L
Linus Torvalds 已提交
661 662 663
#endif
};

664
static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
L
Linus Torvalds 已提交
665

666
static inline void check_preempt_curr(struct rq *rq, struct task_struct *p, int sync)
I
Ingo Molnar 已提交
667
{
668
	rq->curr->sched_class->check_preempt_curr(rq, p, sync);
I
Ingo Molnar 已提交
669 670
}

671 672 673 674 675 676 677 678 679
static inline int cpu_of(struct rq *rq)
{
#ifdef CONFIG_SMP
	return rq->cpu;
#else
	return 0;
#endif
}

N
Nick Piggin 已提交
680 681
/*
 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
682
 * See detach_destroy_domains: synchronize_sched for details.
N
Nick Piggin 已提交
683 684 685 686
 *
 * The domain tree of any CPU may only be accessed from within
 * preempt-disabled sections.
 */
687 688
#define for_each_domain(cpu, __sd) \
	for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
L
Linus Torvalds 已提交
689 690 691 692 693 694

#define cpu_rq(cpu)		(&per_cpu(runqueues, (cpu)))
#define this_rq()		(&__get_cpu_var(runqueues))
#define task_rq(p)		cpu_rq(task_cpu(p))
#define cpu_curr(cpu)		(cpu_rq(cpu)->curr)

695 696 697 698 699
static inline void update_rq_clock(struct rq *rq)
{
	rq->clock = sched_clock_cpu(cpu_of(rq));
}

I
Ingo Molnar 已提交
700 701 702 703 704 705 706 707 708
/*
 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
 */
#ifdef CONFIG_SCHED_DEBUG
# define const_debug __read_mostly
#else
# define const_debug static const
#endif

I
Ingo Molnar 已提交
709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726
/**
 * runqueue_is_locked
 *
 * Returns true if the current cpu runqueue is locked.
 * This interface allows printk to be called with the runqueue lock
 * held and know whether or not it is OK to wake up the klogd.
 */
int runqueue_is_locked(void)
{
	int cpu = get_cpu();
	struct rq *rq = cpu_rq(cpu);
	int ret;

	ret = spin_is_locked(&rq->lock);
	put_cpu();
	return ret;
}

I
Ingo Molnar 已提交
727 728 729
/*
 * Debugging: various feature bits
 */
P
Peter Zijlstra 已提交
730 731 732 733

#define SCHED_FEAT(name, enabled)	\
	__SCHED_FEAT_##name ,

I
Ingo Molnar 已提交
734
enum {
P
Peter Zijlstra 已提交
735
#include "sched_features.h"
I
Ingo Molnar 已提交
736 737
};

P
Peter Zijlstra 已提交
738 739 740 741 742
#undef SCHED_FEAT

#define SCHED_FEAT(name, enabled)	\
	(1UL << __SCHED_FEAT_##name) * enabled |

I
Ingo Molnar 已提交
743
const_debug unsigned int sysctl_sched_features =
P
Peter Zijlstra 已提交
744 745 746 747 748 749 750 751 752
#include "sched_features.h"
	0;

#undef SCHED_FEAT

#ifdef CONFIG_SCHED_DEBUG
#define SCHED_FEAT(name, enabled)	\
	#name ,

753
static __read_mostly char *sched_feat_names[] = {
P
Peter Zijlstra 已提交
754 755 756 757 758 759
#include "sched_features.h"
	NULL
};

#undef SCHED_FEAT

L
Li Zefan 已提交
760
static int sched_feat_show(struct seq_file *m, void *v)
P
Peter Zijlstra 已提交
761 762 763 764
{
	int i;

	for (i = 0; sched_feat_names[i]; i++) {
L
Li Zefan 已提交
765 766 767
		if (!(sysctl_sched_features & (1UL << i)))
			seq_puts(m, "NO_");
		seq_printf(m, "%s ", sched_feat_names[i]);
P
Peter Zijlstra 已提交
768
	}
L
Li Zefan 已提交
769
	seq_puts(m, "\n");
P
Peter Zijlstra 已提交
770

L
Li Zefan 已提交
771
	return 0;
P
Peter Zijlstra 已提交
772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790
}

static ssize_t
sched_feat_write(struct file *filp, const char __user *ubuf,
		size_t cnt, loff_t *ppos)
{
	char buf[64];
	char *cmp = buf;
	int neg = 0;
	int i;

	if (cnt > 63)
		cnt = 63;

	if (copy_from_user(&buf, ubuf, cnt))
		return -EFAULT;

	buf[cnt] = 0;

I
Ingo Molnar 已提交
791
	if (strncmp(buf, "NO_", 3) == 0) {
P
Peter Zijlstra 已提交
792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815
		neg = 1;
		cmp += 3;
	}

	for (i = 0; sched_feat_names[i]; i++) {
		int len = strlen(sched_feat_names[i]);

		if (strncmp(cmp, sched_feat_names[i], len) == 0) {
			if (neg)
				sysctl_sched_features &= ~(1UL << i);
			else
				sysctl_sched_features |= (1UL << i);
			break;
		}
	}

	if (!sched_feat_names[i])
		return -EINVAL;

	filp->f_pos += cnt;

	return cnt;
}

L
Li Zefan 已提交
816 817 818 819 820
static int sched_feat_open(struct inode *inode, struct file *filp)
{
	return single_open(filp, sched_feat_show, NULL);
}

P
Peter Zijlstra 已提交
821
static struct file_operations sched_feat_fops = {
L
Li Zefan 已提交
822 823 824 825 826
	.open		= sched_feat_open,
	.write		= sched_feat_write,
	.read		= seq_read,
	.llseek		= seq_lseek,
	.release	= single_release,
P
Peter Zijlstra 已提交
827 828 829 830 831 832 833 834 835 836 837 838 839 840
};

static __init int sched_init_debug(void)
{
	debugfs_create_file("sched_features", 0644, NULL, NULL,
			&sched_feat_fops);

	return 0;
}
late_initcall(sched_init_debug);

#endif

#define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
I
Ingo Molnar 已提交
841

842 843 844 845 846 847
/*
 * Number of tasks to iterate in a single balance run.
 * Limited because this is done with IRQs disabled.
 */
const_debug unsigned int sysctl_sched_nr_migrate = 32;

P
Peter Zijlstra 已提交
848 849
/*
 * ratelimit for updating the group shares.
850
 * default: 0.25ms
P
Peter Zijlstra 已提交
851
 */
852
unsigned int sysctl_sched_shares_ratelimit = 250000;
P
Peter Zijlstra 已提交
853

854 855 856 857 858 859 860
/*
 * Inject some fuzzyness into changing the per-cpu group shares
 * this avoids remote rq-locks at the expense of fairness.
 * default: 4
 */
unsigned int sysctl_sched_shares_thresh = 4;

P
Peter Zijlstra 已提交
861
/*
P
Peter Zijlstra 已提交
862
 * period over which we measure -rt task cpu usage in us.
P
Peter Zijlstra 已提交
863 864
 * default: 1s
 */
P
Peter Zijlstra 已提交
865
unsigned int sysctl_sched_rt_period = 1000000;
P
Peter Zijlstra 已提交
866

867 868
static __read_mostly int scheduler_running;

P
Peter Zijlstra 已提交
869 870 871 872 873
/*
 * part of the period that we allow rt tasks to run in us.
 * default: 0.95s
 */
int sysctl_sched_rt_runtime = 950000;
P
Peter Zijlstra 已提交
874

875 876 877 878 879 880 881
static inline u64 global_rt_period(void)
{
	return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
}

static inline u64 global_rt_runtime(void)
{
882
	if (sysctl_sched_rt_runtime < 0)
883 884 885 886
		return RUNTIME_INF;

	return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
}
P
Peter Zijlstra 已提交
887

L
Linus Torvalds 已提交
888
#ifndef prepare_arch_switch
889 890 891 892 893 894
# define prepare_arch_switch(next)	do { } while (0)
#endif
#ifndef finish_arch_switch
# define finish_arch_switch(prev)	do { } while (0)
#endif

895 896 897 898 899
static inline int task_current(struct rq *rq, struct task_struct *p)
{
	return rq->curr == p;
}

900
#ifndef __ARCH_WANT_UNLOCKED_CTXSW
901
static inline int task_running(struct rq *rq, struct task_struct *p)
902
{
903
	return task_current(rq, p);
904 905
}

906
static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
907 908 909
{
}

910
static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
911
{
912 913 914 915
#ifdef CONFIG_DEBUG_SPINLOCK
	/* this is a valid case when another task releases the spinlock */
	rq->lock.owner = current;
#endif
916 917 918 919 920 921 922
	/*
	 * If we are tracking spinlock dependencies then we have to
	 * fix up the runqueue lock - which gets 'carried over' from
	 * prev into current:
	 */
	spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);

923 924 925 926
	spin_unlock_irq(&rq->lock);
}

#else /* __ARCH_WANT_UNLOCKED_CTXSW */
927
static inline int task_running(struct rq *rq, struct task_struct *p)
928 929 930 931
{
#ifdef CONFIG_SMP
	return p->oncpu;
#else
932
	return task_current(rq, p);
933 934 935
#endif
}

936
static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952
{
#ifdef CONFIG_SMP
	/*
	 * We can optimise this out completely for !SMP, because the
	 * SMP rebalancing from interrupt is the only thing that cares
	 * here.
	 */
	next->oncpu = 1;
#endif
#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
	spin_unlock_irq(&rq->lock);
#else
	spin_unlock(&rq->lock);
#endif
}

953
static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
954 955 956 957 958 959 960 961 962 963 964 965
{
#ifdef CONFIG_SMP
	/*
	 * After ->oncpu is cleared, the task can be moved to a different CPU.
	 * We must ensure this doesn't happen until the switch is completely
	 * finished.
	 */
	smp_wmb();
	prev->oncpu = 0;
#endif
#ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
	local_irq_enable();
L
Linus Torvalds 已提交
966
#endif
967 968
}
#endif /* __ARCH_WANT_UNLOCKED_CTXSW */
L
Linus Torvalds 已提交
969

970 971 972 973
/*
 * __task_rq_lock - lock the runqueue a given task resides on.
 * Must be called interrupts disabled.
 */
974
static inline struct rq *__task_rq_lock(struct task_struct *p)
975 976
	__acquires(rq->lock)
{
977 978 979 980 981
	for (;;) {
		struct rq *rq = task_rq(p);
		spin_lock(&rq->lock);
		if (likely(rq == task_rq(p)))
			return rq;
982 983 984 985
		spin_unlock(&rq->lock);
	}
}

L
Linus Torvalds 已提交
986 987
/*
 * task_rq_lock - lock the runqueue a given task resides on and disable
I
Ingo Molnar 已提交
988
 * interrupts. Note the ordering: we can safely lookup the task_rq without
L
Linus Torvalds 已提交
989 990
 * explicitly disabling preemption.
 */
991
static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
L
Linus Torvalds 已提交
992 993
	__acquires(rq->lock)
{
994
	struct rq *rq;
L
Linus Torvalds 已提交
995

996 997 998 999 1000 1001
	for (;;) {
		local_irq_save(*flags);
		rq = task_rq(p);
		spin_lock(&rq->lock);
		if (likely(rq == task_rq(p)))
			return rq;
L
Linus Torvalds 已提交
1002 1003 1004 1005
		spin_unlock_irqrestore(&rq->lock, *flags);
	}
}

1006 1007 1008 1009 1010 1011 1012 1013
void task_rq_unlock_wait(struct task_struct *p)
{
	struct rq *rq = task_rq(p);

	smp_mb(); /* spin-unlock-wait is not a full memory barrier */
	spin_unlock_wait(&rq->lock);
}

A
Alexey Dobriyan 已提交
1014
static void __task_rq_unlock(struct rq *rq)
1015 1016 1017 1018 1019
	__releases(rq->lock)
{
	spin_unlock(&rq->lock);
}

1020
static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
L
Linus Torvalds 已提交
1021 1022 1023 1024 1025 1026
	__releases(rq->lock)
{
	spin_unlock_irqrestore(&rq->lock, *flags);
}

/*
1027
 * this_rq_lock - lock this runqueue and disable interrupts.
L
Linus Torvalds 已提交
1028
 */
A
Alexey Dobriyan 已提交
1029
static struct rq *this_rq_lock(void)
L
Linus Torvalds 已提交
1030 1031
	__acquires(rq->lock)
{
1032
	struct rq *rq;
L
Linus Torvalds 已提交
1033 1034 1035 1036 1037 1038 1039 1040

	local_irq_disable();
	rq = this_rq();
	spin_lock(&rq->lock);

	return rq;
}

P
Peter Zijlstra 已提交
1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061
#ifdef CONFIG_SCHED_HRTICK
/*
 * Use HR-timers to deliver accurate preemption points.
 *
 * Its all a bit involved since we cannot program an hrt while holding the
 * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
 * reschedule event.
 *
 * When we get rescheduled we reprogram the hrtick_timer outside of the
 * rq->lock.
 */

/*
 * Use hrtick when:
 *  - enabled by features
 *  - hrtimer is actually high res
 */
static inline int hrtick_enabled(struct rq *rq)
{
	if (!sched_feat(HRTICK))
		return 0;
1062
	if (!cpu_active(cpu_of(rq)))
1063
		return 0;
P
Peter Zijlstra 已提交
1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083
	return hrtimer_is_hres_active(&rq->hrtick_timer);
}

static void hrtick_clear(struct rq *rq)
{
	if (hrtimer_active(&rq->hrtick_timer))
		hrtimer_cancel(&rq->hrtick_timer);
}

/*
 * High-resolution timer tick.
 * Runs from hardirq context with interrupts disabled.
 */
static enum hrtimer_restart hrtick(struct hrtimer *timer)
{
	struct rq *rq = container_of(timer, struct rq, hrtick_timer);

	WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());

	spin_lock(&rq->lock);
1084
	update_rq_clock(rq);
P
Peter Zijlstra 已提交
1085 1086 1087 1088 1089 1090
	rq->curr->sched_class->task_tick(rq, rq->curr, 1);
	spin_unlock(&rq->lock);

	return HRTIMER_NORESTART;
}

1091
#ifdef CONFIG_SMP
1092 1093 1094 1095
/*
 * called from hardirq (IPI) context
 */
static void __hrtick_start(void *arg)
1096
{
1097
	struct rq *rq = arg;
1098

1099 1100 1101 1102
	spin_lock(&rq->lock);
	hrtimer_restart(&rq->hrtick_timer);
	rq->hrtick_csd_pending = 0;
	spin_unlock(&rq->lock);
1103 1104
}

1105 1106 1107 1108 1109 1110
/*
 * Called to set the hrtick timer state.
 *
 * called with rq->lock held and irqs disabled
 */
static void hrtick_start(struct rq *rq, u64 delay)
1111
{
1112 1113
	struct hrtimer *timer = &rq->hrtick_timer;
	ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
1114

1115
	hrtimer_set_expires(timer, time);
1116 1117 1118 1119

	if (rq == this_rq()) {
		hrtimer_restart(timer);
	} else if (!rq->hrtick_csd_pending) {
1120
		__smp_call_function_single(cpu_of(rq), &rq->hrtick_csd, 0);
1121 1122
		rq->hrtick_csd_pending = 1;
	}
1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136
}

static int
hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
{
	int cpu = (int)(long)hcpu;

	switch (action) {
	case CPU_UP_CANCELED:
	case CPU_UP_CANCELED_FROZEN:
	case CPU_DOWN_PREPARE:
	case CPU_DOWN_PREPARE_FROZEN:
	case CPU_DEAD:
	case CPU_DEAD_FROZEN:
1137
		hrtick_clear(cpu_rq(cpu));
1138 1139 1140 1141 1142 1143
		return NOTIFY_OK;
	}

	return NOTIFY_DONE;
}

1144
static __init void init_hrtick(void)
1145 1146 1147
{
	hotcpu_notifier(hotplug_hrtick, 0);
}
1148 1149 1150 1151 1152 1153 1154 1155
#else
/*
 * Called to set the hrtick timer state.
 *
 * called with rq->lock held and irqs disabled
 */
static void hrtick_start(struct rq *rq, u64 delay)
{
1156
	__hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
1157
			HRTIMER_MODE_REL_PINNED, 0);
1158
}
1159

A
Andrew Morton 已提交
1160
static inline void init_hrtick(void)
P
Peter Zijlstra 已提交
1161 1162
{
}
1163
#endif /* CONFIG_SMP */
P
Peter Zijlstra 已提交
1164

1165
static void init_rq_hrtick(struct rq *rq)
P
Peter Zijlstra 已提交
1166
{
1167 1168
#ifdef CONFIG_SMP
	rq->hrtick_csd_pending = 0;
P
Peter Zijlstra 已提交
1169

1170 1171 1172 1173
	rq->hrtick_csd.flags = 0;
	rq->hrtick_csd.func = __hrtick_start;
	rq->hrtick_csd.info = rq;
#endif
P
Peter Zijlstra 已提交
1174

1175 1176
	hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
	rq->hrtick_timer.function = hrtick;
P
Peter Zijlstra 已提交
1177
}
A
Andrew Morton 已提交
1178
#else	/* CONFIG_SCHED_HRTICK */
P
Peter Zijlstra 已提交
1179 1180 1181 1182 1183 1184 1185 1186
static inline void hrtick_clear(struct rq *rq)
{
}

static inline void init_rq_hrtick(struct rq *rq)
{
}

1187 1188 1189
static inline void init_hrtick(void)
{
}
A
Andrew Morton 已提交
1190
#endif	/* CONFIG_SCHED_HRTICK */
P
Peter Zijlstra 已提交
1191

I
Ingo Molnar 已提交
1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204
/*
 * resched_task - mark a task 'to be rescheduled now'.
 *
 * On UP this means the setting of the need_resched flag, on SMP it
 * might also involve a cross-CPU call to trigger the scheduler on
 * the target CPU.
 */
#ifdef CONFIG_SMP

#ifndef tsk_is_polling
#define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
#endif

1205
static void resched_task(struct task_struct *p)
I
Ingo Molnar 已提交
1206 1207 1208 1209 1210
{
	int cpu;

	assert_spin_locked(&task_rq(p)->lock);

1211
	if (test_tsk_need_resched(p))
I
Ingo Molnar 已提交
1212 1213
		return;

1214
	set_tsk_need_resched(p);
I
Ingo Molnar 已提交
1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235

	cpu = task_cpu(p);
	if (cpu == smp_processor_id())
		return;

	/* NEED_RESCHED must be visible before we test polling */
	smp_mb();
	if (!tsk_is_polling(p))
		smp_send_reschedule(cpu);
}

static void resched_cpu(int cpu)
{
	struct rq *rq = cpu_rq(cpu);
	unsigned long flags;

	if (!spin_trylock_irqsave(&rq->lock, flags))
		return;
	resched_task(cpu_curr(cpu));
	spin_unlock_irqrestore(&rq->lock, flags);
}
1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269

#ifdef CONFIG_NO_HZ
/*
 * When add_timer_on() enqueues a timer into the timer wheel of an
 * idle CPU then this timer might expire before the next timer event
 * which is scheduled to wake up that CPU. In case of a completely
 * idle system the next event might even be infinite time into the
 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
 * leaves the inner idle loop so the newly added timer is taken into
 * account when the CPU goes back to idle and evaluates the timer
 * wheel for the next timer event.
 */
void wake_up_idle_cpu(int cpu)
{
	struct rq *rq = cpu_rq(cpu);

	if (cpu == smp_processor_id())
		return;

	/*
	 * This is safe, as this function is called with the timer
	 * wheel base lock of (cpu) held. When the CPU is on the way
	 * to idle and has not yet set rq->curr to idle then it will
	 * be serialized on the timer wheel base lock and take the new
	 * timer into account automatically.
	 */
	if (rq->curr != rq->idle)
		return;

	/*
	 * We can set TIF_RESCHED on the idle task of the other CPU
	 * lockless. The worst case is that the other CPU runs the
	 * idle task through an additional NOOP schedule()
	 */
1270
	set_tsk_need_resched(rq->idle);
1271 1272 1273 1274 1275 1276

	/* NEED_RESCHED must be visible before we test polling */
	smp_mb();
	if (!tsk_is_polling(rq->idle))
		smp_send_reschedule(cpu);
}
1277
#endif /* CONFIG_NO_HZ */
1278

1279
#else /* !CONFIG_SMP */
1280
static void resched_task(struct task_struct *p)
I
Ingo Molnar 已提交
1281 1282
{
	assert_spin_locked(&task_rq(p)->lock);
1283
	set_tsk_need_resched(p);
I
Ingo Molnar 已提交
1284
}
1285
#endif /* CONFIG_SMP */
I
Ingo Molnar 已提交
1286

1287 1288 1289 1290 1291 1292 1293 1294
#if BITS_PER_LONG == 32
# define WMULT_CONST	(~0UL)
#else
# define WMULT_CONST	(1UL << 32)
#endif

#define WMULT_SHIFT	32

I
Ingo Molnar 已提交
1295 1296 1297
/*
 * Shift right and round:
 */
I
Ingo Molnar 已提交
1298
#define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
I
Ingo Molnar 已提交
1299

1300 1301 1302
/*
 * delta *= weight / lw
 */
1303
static unsigned long
1304 1305 1306 1307 1308
calc_delta_mine(unsigned long delta_exec, unsigned long weight,
		struct load_weight *lw)
{
	u64 tmp;

1309 1310 1311 1312 1313 1314 1315
	if (!lw->inv_weight) {
		if (BITS_PER_LONG > 32 && unlikely(lw->weight >= WMULT_CONST))
			lw->inv_weight = 1;
		else
			lw->inv_weight = 1 + (WMULT_CONST-lw->weight/2)
				/ (lw->weight+1);
	}
1316 1317 1318 1319 1320

	tmp = (u64)delta_exec * weight;
	/*
	 * Check whether we'd overflow the 64-bit multiplication:
	 */
I
Ingo Molnar 已提交
1321
	if (unlikely(tmp > WMULT_CONST))
I
Ingo Molnar 已提交
1322
		tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
I
Ingo Molnar 已提交
1323 1324
			WMULT_SHIFT/2);
	else
I
Ingo Molnar 已提交
1325
		tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
1326

1327
	return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
1328 1329
}

1330
static inline void update_load_add(struct load_weight *lw, unsigned long inc)
1331 1332
{
	lw->weight += inc;
I
Ingo Molnar 已提交
1333
	lw->inv_weight = 0;
1334 1335
}

1336
static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
1337 1338
{
	lw->weight -= dec;
I
Ingo Molnar 已提交
1339
	lw->inv_weight = 0;
1340 1341
}

1342 1343 1344 1345
/*
 * To aid in avoiding the subversion of "niceness" due to uneven distribution
 * of tasks with abnormal "nice" values across CPUs the contribution that
 * each task makes to its run queue's load is weighted according to its
I
Ingo Molnar 已提交
1346
 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
1347 1348 1349 1350
 * scaled version of the new time slice allocation that they receive on time
 * slice expiry etc.
 */

P
Peter Zijlstra 已提交
1351 1352
#define WEIGHT_IDLEPRIO                3
#define WMULT_IDLEPRIO         1431655765
I
Ingo Molnar 已提交
1353 1354 1355 1356 1357 1358 1359 1360 1361

/*
 * Nice levels are multiplicative, with a gentle 10% change for every
 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
 * nice 1, it will get ~10% less CPU time than another CPU-bound task
 * that remained on nice 0.
 *
 * The "10% effect" is relative and cumulative: from _any_ nice level,
 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
1362 1363 1364
 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
 * If a task goes up by ~10% and another task goes down by ~10% then
 * the relative distance between them is ~25%.)
I
Ingo Molnar 已提交
1365 1366
 */
static const int prio_to_weight[40] = {
1367 1368 1369 1370 1371 1372 1373 1374
 /* -20 */     88761,     71755,     56483,     46273,     36291,
 /* -15 */     29154,     23254,     18705,     14949,     11916,
 /* -10 */      9548,      7620,      6100,      4904,      3906,
 /*  -5 */      3121,      2501,      1991,      1586,      1277,
 /*   0 */      1024,       820,       655,       526,       423,
 /*   5 */       335,       272,       215,       172,       137,
 /*  10 */       110,        87,        70,        56,        45,
 /*  15 */        36,        29,        23,        18,        15,
I
Ingo Molnar 已提交
1375 1376
};

1377 1378 1379 1380 1381 1382 1383
/*
 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
 *
 * In cases where the weight does not change often, we can use the
 * precalculated inverse to speed up arithmetics by turning divisions
 * into multiplications:
 */
I
Ingo Molnar 已提交
1384
static const u32 prio_to_wmult[40] = {
1385 1386 1387 1388 1389 1390 1391 1392
 /* -20 */     48388,     59856,     76040,     92818,    118348,
 /* -15 */    147320,    184698,    229616,    287308,    360437,
 /* -10 */    449829,    563644,    704093,    875809,   1099582,
 /*  -5 */   1376151,   1717300,   2157191,   2708050,   3363326,
 /*   0 */   4194304,   5237765,   6557202,   8165337,  10153587,
 /*   5 */  12820798,  15790321,  19976592,  24970740,  31350126,
 /*  10 */  39045157,  49367440,  61356676,  76695844,  95443717,
 /*  15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
I
Ingo Molnar 已提交
1393
};
1394

I
Ingo Molnar 已提交
1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407
static void activate_task(struct rq *rq, struct task_struct *p, int wakeup);

/*
 * runqueue iterator, to support SMP load-balancing between different
 * scheduling classes, without having to expose their internal data
 * structures to the load-balancing proper:
 */
struct rq_iterator {
	void *arg;
	struct task_struct *(*start)(void *);
	struct task_struct *(*next)(void *);
};

1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419
#ifdef CONFIG_SMP
static unsigned long
balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
	      unsigned long max_load_move, struct sched_domain *sd,
	      enum cpu_idle_type idle, int *all_pinned,
	      int *this_best_prio, struct rq_iterator *iterator);

static int
iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
		   struct sched_domain *sd, enum cpu_idle_type idle,
		   struct rq_iterator *iterator);
#endif
I
Ingo Molnar 已提交
1420

1421 1422 1423 1424 1425 1426 1427 1428
/* Time spent by the tasks of the cpu accounting group executing in ... */
enum cpuacct_stat_index {
	CPUACCT_STAT_USER,	/* ... user mode */
	CPUACCT_STAT_SYSTEM,	/* ... kernel mode */

	CPUACCT_STAT_NSTATS,
};

1429 1430
#ifdef CONFIG_CGROUP_CPUACCT
static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
1431 1432
static void cpuacct_update_stats(struct task_struct *tsk,
		enum cpuacct_stat_index idx, cputime_t val);
1433 1434
#else
static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
1435 1436
static inline void cpuacct_update_stats(struct task_struct *tsk,
		enum cpuacct_stat_index idx, cputime_t val) {}
1437 1438
#endif

1439 1440 1441 1442 1443 1444 1445 1446 1447 1448
static inline void inc_cpu_load(struct rq *rq, unsigned long load)
{
	update_load_add(&rq->load, load);
}

static inline void dec_cpu_load(struct rq *rq, unsigned long load)
{
	update_load_sub(&rq->load, load);
}

I
Ingo Molnar 已提交
1449
#if (defined(CONFIG_SMP) && defined(CONFIG_FAIR_GROUP_SCHED)) || defined(CONFIG_RT_GROUP_SCHED)
P
Peter Zijlstra 已提交
1450
typedef int (*tg_visitor)(struct task_group *, void *);
1451 1452 1453 1454 1455

/*
 * Iterate the full tree, calling @down when first entering a node and @up when
 * leaving it for the final time.
 */
P
Peter Zijlstra 已提交
1456
static int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
1457 1458
{
	struct task_group *parent, *child;
P
Peter Zijlstra 已提交
1459
	int ret;
1460 1461 1462 1463

	rcu_read_lock();
	parent = &root_task_group;
down:
P
Peter Zijlstra 已提交
1464 1465 1466
	ret = (*down)(parent, data);
	if (ret)
		goto out_unlock;
1467 1468 1469 1470 1471 1472 1473
	list_for_each_entry_rcu(child, &parent->children, siblings) {
		parent = child;
		goto down;

up:
		continue;
	}
P
Peter Zijlstra 已提交
1474 1475 1476
	ret = (*up)(parent, data);
	if (ret)
		goto out_unlock;
1477 1478 1479 1480 1481

	child = parent;
	parent = parent->parent;
	if (parent)
		goto up;
P
Peter Zijlstra 已提交
1482
out_unlock:
1483
	rcu_read_unlock();
P
Peter Zijlstra 已提交
1484 1485

	return ret;
1486 1487
}

P
Peter Zijlstra 已提交
1488 1489 1490
static int tg_nop(struct task_group *tg, void *data)
{
	return 0;
1491
}
P
Peter Zijlstra 已提交
1492 1493 1494 1495 1496 1497 1498 1499 1500 1501
#endif

#ifdef CONFIG_SMP
static unsigned long source_load(int cpu, int type);
static unsigned long target_load(int cpu, int type);
static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd);

static unsigned long cpu_avg_load_per_task(int cpu)
{
	struct rq *rq = cpu_rq(cpu);
1502
	unsigned long nr_running = ACCESS_ONCE(rq->nr_running);
P
Peter Zijlstra 已提交
1503

1504 1505
	if (nr_running)
		rq->avg_load_per_task = rq->load.weight / nr_running;
1506 1507
	else
		rq->avg_load_per_task = 0;
P
Peter Zijlstra 已提交
1508 1509 1510 1511 1512

	return rq->avg_load_per_task;
}

#ifdef CONFIG_FAIR_GROUP_SCHED
1513 1514 1515 1516 1517 1518 1519

static void __set_se_shares(struct sched_entity *se, unsigned long shares);

/*
 * Calculate and set the cpu's group shares.
 */
static void
1520 1521
update_group_shares_cpu(struct task_group *tg, int cpu,
			unsigned long sd_shares, unsigned long sd_rq_weight)
1522
{
1523 1524 1525
	unsigned long shares;
	unsigned long rq_weight;

1526
	if (!tg->se[cpu])
1527 1528
		return;

1529
	rq_weight = tg->cfs_rq[cpu]->rq_weight;
1530

1531 1532 1533 1534 1535 1536
	/*
	 *           \Sum shares * rq_weight
	 * shares =  -----------------------
	 *               \Sum rq_weight
	 *
	 */
1537
	shares = (sd_shares * rq_weight) / sd_rq_weight;
1538
	shares = clamp_t(unsigned long, shares, MIN_SHARES, MAX_SHARES);
1539

1540 1541 1542 1543
	if (abs(shares - tg->se[cpu]->load.weight) >
			sysctl_sched_shares_thresh) {
		struct rq *rq = cpu_rq(cpu);
		unsigned long flags;
1544

1545
		spin_lock_irqsave(&rq->lock, flags);
1546
		tg->cfs_rq[cpu]->shares = shares;
1547

1548 1549 1550
		__set_se_shares(tg->se[cpu], shares);
		spin_unlock_irqrestore(&rq->lock, flags);
	}
1551
}
1552 1553

/*
1554 1555 1556
 * Re-compute the task group their per cpu shares over the given domain.
 * This needs to be done in a bottom-up fashion because the rq weight of a
 * parent group depends on the shares of its child groups.
1557
 */
P
Peter Zijlstra 已提交
1558
static int tg_shares_up(struct task_group *tg, void *data)
1559
{
1560
	unsigned long weight, rq_weight = 0;
1561
	unsigned long shares = 0;
P
Peter Zijlstra 已提交
1562
	struct sched_domain *sd = data;
1563
	int i;
1564

1565
	for_each_cpu(i, sched_domain_span(sd)) {
1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576
		/*
		 * If there are currently no tasks on the cpu pretend there
		 * is one of average load so that when a new task gets to
		 * run here it will not get delayed by group starvation.
		 */
		weight = tg->cfs_rq[i]->load.weight;
		if (!weight)
			weight = NICE_0_LOAD;

		tg->cfs_rq[i]->rq_weight = weight;
		rq_weight += weight;
1577
		shares += tg->cfs_rq[i]->shares;
1578 1579
	}

1580 1581 1582 1583 1584
	if ((!shares && rq_weight) || shares > tg->shares)
		shares = tg->shares;

	if (!sd->parent || !(sd->parent->flags & SD_LOAD_BALANCE))
		shares = tg->shares;
1585

1586
	for_each_cpu(i, sched_domain_span(sd))
1587
		update_group_shares_cpu(tg, i, shares, rq_weight);
P
Peter Zijlstra 已提交
1588 1589

	return 0;
1590 1591 1592
}

/*
1593 1594 1595
 * Compute the cpu's hierarchical load factor for each task group.
 * This needs to be done in a top-down fashion because the load of a child
 * group is a fraction of its parents load.
1596
 */
P
Peter Zijlstra 已提交
1597
static int tg_load_down(struct task_group *tg, void *data)
1598
{
1599
	unsigned long load;
P
Peter Zijlstra 已提交
1600
	long cpu = (long)data;
1601

1602 1603 1604 1605 1606 1607 1608
	if (!tg->parent) {
		load = cpu_rq(cpu)->load.weight;
	} else {
		load = tg->parent->cfs_rq[cpu]->h_load;
		load *= tg->cfs_rq[cpu]->shares;
		load /= tg->parent->cfs_rq[cpu]->load.weight + 1;
	}
1609

1610
	tg->cfs_rq[cpu]->h_load = load;
1611

P
Peter Zijlstra 已提交
1612
	return 0;
1613 1614
}

1615
static void update_shares(struct sched_domain *sd)
1616
{
P
Peter Zijlstra 已提交
1617 1618 1619 1620 1621
	u64 now = cpu_clock(raw_smp_processor_id());
	s64 elapsed = now - sd->last_update;

	if (elapsed >= (s64)(u64)sysctl_sched_shares_ratelimit) {
		sd->last_update = now;
P
Peter Zijlstra 已提交
1622
		walk_tg_tree(tg_nop, tg_shares_up, sd);
P
Peter Zijlstra 已提交
1623
	}
1624 1625
}

1626 1627 1628 1629 1630 1631 1632
static void update_shares_locked(struct rq *rq, struct sched_domain *sd)
{
	spin_unlock(&rq->lock);
	update_shares(sd);
	spin_lock(&rq->lock);
}

P
Peter Zijlstra 已提交
1633
static void update_h_load(long cpu)
1634
{
P
Peter Zijlstra 已提交
1635
	walk_tg_tree(tg_load_down, tg_nop, (void *)cpu);
1636 1637 1638 1639
}

#else

1640
static inline void update_shares(struct sched_domain *sd)
1641 1642 1643
{
}

1644 1645 1646 1647
static inline void update_shares_locked(struct rq *rq, struct sched_domain *sd)
{
}

1648 1649
#endif

1650 1651
#ifdef CONFIG_PREEMPT

1652
/*
1653 1654 1655 1656 1657 1658
 * fair double_lock_balance: Safely acquires both rq->locks in a fair
 * way at the expense of forcing extra atomic operations in all
 * invocations.  This assures that the double_lock is acquired using the
 * same underlying policy as the spinlock_t on this architecture, which
 * reduces latency compared to the unfair variant below.  However, it
 * also adds more overhead and therefore may reduce throughput.
1659
 */
1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679
static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
	__releases(this_rq->lock)
	__acquires(busiest->lock)
	__acquires(this_rq->lock)
{
	spin_unlock(&this_rq->lock);
	double_rq_lock(this_rq, busiest);

	return 1;
}

#else
/*
 * Unfair double_lock_balance: Optimizes throughput at the expense of
 * latency by eliminating extra atomic operations when the locks are
 * already in proper order on entry.  This favors lower cpu-ids and will
 * grant the double lock to lower cpus over higher ids under contention,
 * regardless of entry order into the function.
 */
static int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697
	__releases(this_rq->lock)
	__acquires(busiest->lock)
	__acquires(this_rq->lock)
{
	int ret = 0;

	if (unlikely(!spin_trylock(&busiest->lock))) {
		if (busiest < this_rq) {
			spin_unlock(&this_rq->lock);
			spin_lock(&busiest->lock);
			spin_lock_nested(&this_rq->lock, SINGLE_DEPTH_NESTING);
			ret = 1;
		} else
			spin_lock_nested(&busiest->lock, SINGLE_DEPTH_NESTING);
	}
	return ret;
}

1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713
#endif /* CONFIG_PREEMPT */

/*
 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
 */
static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
{
	if (unlikely(!irqs_disabled())) {
		/* printk() doesn't work good under rq->lock */
		spin_unlock(&this_rq->lock);
		BUG_ON(1);
	}

	return _double_lock_balance(this_rq, busiest);
}

1714 1715 1716 1717 1718 1719
static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
	__releases(busiest->lock)
{
	spin_unlock(&busiest->lock);
	lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
}
1720 1721
#endif

V
Vegard Nossum 已提交
1722
#ifdef CONFIG_FAIR_GROUP_SCHED
I
Ingo Molnar 已提交
1723 1724
static void cfs_rq_set_shares(struct cfs_rq *cfs_rq, unsigned long shares)
{
V
Vegard Nossum 已提交
1725
#ifdef CONFIG_SMP
I
Ingo Molnar 已提交
1726 1727 1728
	cfs_rq->shares = shares;
#endif
}
V
Vegard Nossum 已提交
1729
#endif
1730

I
Ingo Molnar 已提交
1731 1732
#include "sched_stats.h"
#include "sched_idletask.c"
1733 1734
#include "sched_fair.c"
#include "sched_rt.c"
I
Ingo Molnar 已提交
1735 1736 1737 1738 1739
#ifdef CONFIG_SCHED_DEBUG
# include "sched_debug.c"
#endif

#define sched_class_highest (&rt_sched_class)
1740 1741
#define for_each_class(class) \
   for (class = sched_class_highest; class; class = class->next)
I
Ingo Molnar 已提交
1742

1743
static void inc_nr_running(struct rq *rq)
1744 1745 1746 1747
{
	rq->nr_running++;
}

1748
static void dec_nr_running(struct rq *rq)
1749 1750 1751 1752
{
	rq->nr_running--;
}

1753 1754 1755
static void set_load_weight(struct task_struct *p)
{
	if (task_has_rt_policy(p)) {
I
Ingo Molnar 已提交
1756 1757 1758 1759
		p->se.load.weight = prio_to_weight[0] * 2;
		p->se.load.inv_weight = prio_to_wmult[0] >> 1;
		return;
	}
1760

I
Ingo Molnar 已提交
1761 1762 1763 1764 1765 1766 1767 1768
	/*
	 * SCHED_IDLE tasks get minimal weight:
	 */
	if (p->policy == SCHED_IDLE) {
		p->se.load.weight = WEIGHT_IDLEPRIO;
		p->se.load.inv_weight = WMULT_IDLEPRIO;
		return;
	}
1769

I
Ingo Molnar 已提交
1770 1771
	p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
	p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
1772 1773
}

1774 1775 1776 1777 1778 1779
static void update_avg(u64 *avg, u64 sample)
{
	s64 diff = sample - *avg;
	*avg += diff >> 3;
}

1780
static void enqueue_task(struct rq *rq, struct task_struct *p, int wakeup)
1781
{
P
Peter Zijlstra 已提交
1782 1783 1784
	if (wakeup)
		p->se.start_runtime = p->se.sum_exec_runtime;

I
Ingo Molnar 已提交
1785
	sched_info_queued(p);
1786
	p->sched_class->enqueue_task(rq, p, wakeup);
I
Ingo Molnar 已提交
1787
	p->se.on_rq = 1;
1788 1789
}

1790
static void dequeue_task(struct rq *rq, struct task_struct *p, int sleep)
1791
{
P
Peter Zijlstra 已提交
1792 1793 1794 1795 1796 1797 1798 1799 1800
	if (sleep) {
		if (p->se.last_wakeup) {
			update_avg(&p->se.avg_overlap,
				p->se.sum_exec_runtime - p->se.last_wakeup);
			p->se.last_wakeup = 0;
		} else {
			update_avg(&p->se.avg_wakeup,
				sysctl_sched_wakeup_granularity);
		}
1801 1802
	}

1803
	sched_info_dequeued(p);
1804
	p->sched_class->dequeue_task(rq, p, sleep);
I
Ingo Molnar 已提交
1805
	p->se.on_rq = 0;
1806 1807
}

1808
/*
I
Ingo Molnar 已提交
1809
 * __normal_prio - return the priority that is based on the static prio
1810 1811 1812
 */
static inline int __normal_prio(struct task_struct *p)
{
I
Ingo Molnar 已提交
1813
	return p->static_prio;
1814 1815
}

1816 1817 1818 1819 1820 1821 1822
/*
 * Calculate the expected normal priority: i.e. priority
 * without taking RT-inheritance into account. Might be
 * boosted by interactivity modifiers. Changes upon fork,
 * setprio syscalls, and whenever the interactivity
 * estimator recalculates.
 */
1823
static inline int normal_prio(struct task_struct *p)
1824 1825 1826
{
	int prio;

1827
	if (task_has_rt_policy(p))
1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840
		prio = MAX_RT_PRIO-1 - p->rt_priority;
	else
		prio = __normal_prio(p);
	return prio;
}

/*
 * Calculate the current priority, i.e. the priority
 * taken into account by the scheduler. This value might
 * be boosted by RT tasks, or might be boosted by
 * interactivity modifiers. Will be RT if the task got
 * RT-boosted. If not then it returns p->normal_prio.
 */
1841
static int effective_prio(struct task_struct *p)
1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853
{
	p->normal_prio = normal_prio(p);
	/*
	 * If we are RT tasks or we were boosted to RT priority,
	 * keep the priority unchanged. Otherwise, update priority
	 * to the normal priority:
	 */
	if (!rt_prio(p->prio))
		return p->normal_prio;
	return p->prio;
}

L
Linus Torvalds 已提交
1854
/*
I
Ingo Molnar 已提交
1855
 * activate_task - move a task to the runqueue.
L
Linus Torvalds 已提交
1856
 */
I
Ingo Molnar 已提交
1857
static void activate_task(struct rq *rq, struct task_struct *p, int wakeup)
L
Linus Torvalds 已提交
1858
{
1859
	if (task_contributes_to_load(p))
I
Ingo Molnar 已提交
1860
		rq->nr_uninterruptible--;
L
Linus Torvalds 已提交
1861

1862
	enqueue_task(rq, p, wakeup);
1863
	inc_nr_running(rq);
L
Linus Torvalds 已提交
1864 1865 1866 1867 1868
}

/*
 * deactivate_task - remove a task from the runqueue.
 */
1869
static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep)
L
Linus Torvalds 已提交
1870
{
1871
	if (task_contributes_to_load(p))
I
Ingo Molnar 已提交
1872 1873
		rq->nr_uninterruptible++;

1874
	dequeue_task(rq, p, sleep);
1875
	dec_nr_running(rq);
L
Linus Torvalds 已提交
1876 1877 1878 1879 1880 1881
}

/**
 * task_curr - is this task currently executing on a CPU?
 * @p: the task in question.
 */
1882
inline int task_curr(const struct task_struct *p)
L
Linus Torvalds 已提交
1883 1884 1885 1886
{
	return cpu_curr(task_cpu(p)) == p;
}

I
Ingo Molnar 已提交
1887 1888
static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
{
P
Peter Zijlstra 已提交
1889
	set_task_rq(p, cpu);
I
Ingo Molnar 已提交
1890
#ifdef CONFIG_SMP
1891 1892 1893 1894 1895 1896
	/*
	 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
	 * successfuly executed on another CPU. We must ensure that updates of
	 * per-task data have been completed by this moment.
	 */
	smp_wmb();
I
Ingo Molnar 已提交
1897 1898
	task_thread_info(p)->cpu = cpu;
#endif
1899 1900
}

1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912
static inline void check_class_changed(struct rq *rq, struct task_struct *p,
				       const struct sched_class *prev_class,
				       int oldprio, int running)
{
	if (prev_class != p->sched_class) {
		if (prev_class->switched_from)
			prev_class->switched_from(rq, p, running);
		p->sched_class->switched_to(rq, p, running);
	} else
		p->sched_class->prio_changed(rq, p, oldprio, running);
}

L
Linus Torvalds 已提交
1913
#ifdef CONFIG_SMP
I
Ingo Molnar 已提交
1914

1915 1916 1917 1918 1919 1920
/* Used instead of source_load when we know the type == 0 */
static unsigned long weighted_cpuload(const int cpu)
{
	return cpu_rq(cpu)->load.weight;
}

1921 1922 1923
/*
 * Is this task likely cache-hot:
 */
1924
static int
1925 1926 1927 1928
task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
{
	s64 delta;

1929 1930 1931
	/*
	 * Buddy candidates are cache hot:
	 */
P
Peter Zijlstra 已提交
1932 1933 1934
	if (sched_feat(CACHE_HOT_BUDDY) &&
			(&p->se == cfs_rq_of(&p->se)->next ||
			 &p->se == cfs_rq_of(&p->se)->last))
1935 1936
		return 1;

1937 1938 1939
	if (p->sched_class != &fair_sched_class)
		return 0;

1940 1941 1942 1943 1944
	if (sysctl_sched_migration_cost == -1)
		return 1;
	if (sysctl_sched_migration_cost == 0)
		return 0;

1945 1946 1947 1948 1949 1950
	delta = now - p->se.exec_start;

	return delta < (s64)sysctl_sched_migration_cost;
}


I
Ingo Molnar 已提交
1951
void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
I
Ingo Molnar 已提交
1952
{
I
Ingo Molnar 已提交
1953 1954
	int old_cpu = task_cpu(p);
	struct rq *old_rq = cpu_rq(old_cpu), *new_rq = cpu_rq(new_cpu);
1955 1956
	struct cfs_rq *old_cfsrq = task_cfs_rq(p),
		      *new_cfsrq = cpu_cfs_rq(old_cfsrq, new_cpu);
1957
	u64 clock_offset;
I
Ingo Molnar 已提交
1958 1959

	clock_offset = old_rq->clock - new_rq->clock;
I
Ingo Molnar 已提交
1960

1961 1962
	trace_sched_migrate_task(p, task_cpu(p), new_cpu);

I
Ingo Molnar 已提交
1963 1964 1965
#ifdef CONFIG_SCHEDSTATS
	if (p->se.wait_start)
		p->se.wait_start -= clock_offset;
I
Ingo Molnar 已提交
1966 1967 1968 1969
	if (p->se.sleep_start)
		p->se.sleep_start -= clock_offset;
	if (p->se.block_start)
		p->se.block_start -= clock_offset;
1970 1971 1972 1973 1974
	if (old_cpu != new_cpu) {
		schedstat_inc(p, se.nr_migrations);
		if (task_hot(p, old_rq->clock, NULL))
			schedstat_inc(p, se.nr_forced2_migrations);
	}
I
Ingo Molnar 已提交
1975
#endif
1976 1977
	p->se.vruntime -= old_cfsrq->min_vruntime -
					 new_cfsrq->min_vruntime;
I
Ingo Molnar 已提交
1978 1979

	__set_task_cpu(p, new_cpu);
I
Ingo Molnar 已提交
1980 1981
}

1982
struct migration_req {
L
Linus Torvalds 已提交
1983 1984
	struct list_head list;

1985
	struct task_struct *task;
L
Linus Torvalds 已提交
1986 1987 1988
	int dest_cpu;

	struct completion done;
1989
};
L
Linus Torvalds 已提交
1990 1991 1992 1993 1994

/*
 * The task's runqueue lock must be held.
 * Returns true if you have to wait for migration thread.
 */
1995
static int
1996
migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
L
Linus Torvalds 已提交
1997
{
1998
	struct rq *rq = task_rq(p);
L
Linus Torvalds 已提交
1999 2000 2001 2002 2003

	/*
	 * If the task is not on a runqueue (and not running), then
	 * it is sufficient to simply update the task's cpu field.
	 */
I
Ingo Molnar 已提交
2004
	if (!p->se.on_rq && !task_running(rq, p)) {
L
Linus Torvalds 已提交
2005 2006 2007 2008 2009 2010 2011 2012
		set_task_cpu(p, dest_cpu);
		return 0;
	}

	init_completion(&req->done);
	req->task = p;
	req->dest_cpu = dest_cpu;
	list_add(&req->list, &rq->migration_queue);
2013

L
Linus Torvalds 已提交
2014 2015 2016 2017 2018 2019
	return 1;
}

/*
 * wait_task_inactive - wait for a thread to unschedule.
 *
R
Roland McGrath 已提交
2020 2021 2022 2023 2024 2025 2026
 * If @match_state is nonzero, it's the @p->state value just checked and
 * not expected to change.  If it changes, i.e. @p might have woken up,
 * then return zero.  When we succeed in waiting for @p to be off its CPU,
 * we return a positive number (its total switch count).  If a second call
 * a short while later returns the same number, the caller can be sure that
 * @p has remained unscheduled the whole time.
 *
L
Linus Torvalds 已提交
2027 2028 2029 2030 2031 2032
 * The caller must ensure that the task *will* unschedule sometime soon,
 * else this function might spin for a *long* time. This function can't
 * be called with interrupts off, or it may introduce deadlock with
 * smp_call_function() if an IPI is sent by the same process we are
 * waiting to become inactive.
 */
R
Roland McGrath 已提交
2033
unsigned long wait_task_inactive(struct task_struct *p, long match_state)
L
Linus Torvalds 已提交
2034 2035
{
	unsigned long flags;
I
Ingo Molnar 已提交
2036
	int running, on_rq;
R
Roland McGrath 已提交
2037
	unsigned long ncsw;
2038
	struct rq *rq;
L
Linus Torvalds 已提交
2039

2040 2041 2042 2043 2044 2045 2046 2047
	for (;;) {
		/*
		 * We do the initial early heuristics without holding
		 * any task-queue locks at all. We'll only try to get
		 * the runqueue lock when things look like they will
		 * work out!
		 */
		rq = task_rq(p);
2048

2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059
		/*
		 * If the task is actively running on another CPU
		 * still, just relax and busy-wait without holding
		 * any locks.
		 *
		 * NOTE! Since we don't hold any locks, it's not
		 * even sure that "rq" stays as the right runqueue!
		 * But we don't care, since "task_running()" will
		 * return false if the runqueue has changed and p
		 * is actually now running somewhere else!
		 */
R
Roland McGrath 已提交
2060 2061 2062
		while (task_running(rq, p)) {
			if (match_state && unlikely(p->state != match_state))
				return 0;
2063
			cpu_relax();
R
Roland McGrath 已提交
2064
		}
2065

2066 2067 2068 2069 2070 2071
		/*
		 * Ok, time to look more closely! We need the rq
		 * lock now, to be *sure*. If we're wrong, we'll
		 * just go back and repeat.
		 */
		rq = task_rq_lock(p, &flags);
2072
		trace_sched_wait_task(rq, p);
2073 2074
		running = task_running(rq, p);
		on_rq = p->se.on_rq;
R
Roland McGrath 已提交
2075
		ncsw = 0;
2076
		if (!match_state || p->state == match_state)
2077
			ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
2078
		task_rq_unlock(rq, &flags);
2079

R
Roland McGrath 已提交
2080 2081 2082 2083 2084 2085
		/*
		 * If it changed from the expected state, bail out now.
		 */
		if (unlikely(!ncsw))
			break;

2086 2087 2088 2089 2090 2091 2092 2093 2094 2095
		/*
		 * Was it really running after all now that we
		 * checked with the proper locks actually held?
		 *
		 * Oops. Go back and try again..
		 */
		if (unlikely(running)) {
			cpu_relax();
			continue;
		}
2096

2097 2098 2099 2100 2101
		/*
		 * It's not enough that it's not actively running,
		 * it must be off the runqueue _entirely_, and not
		 * preempted!
		 *
2102
		 * So if it was still runnable (but just not actively
2103 2104 2105 2106 2107 2108 2109
		 * running right now), it's preempted, and we should
		 * yield - it could be a while.
		 */
		if (unlikely(on_rq)) {
			schedule_timeout_uninterruptible(1);
			continue;
		}
2110

2111 2112 2113 2114 2115 2116 2117
		/*
		 * Ahh, all good. It wasn't running, and it wasn't
		 * runnable, which means that it will never become
		 * running in the future either. We're all done!
		 */
		break;
	}
R
Roland McGrath 已提交
2118 2119

	return ncsw;
L
Linus Torvalds 已提交
2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134
}

/***
 * kick_process - kick a running thread to enter/exit the kernel
 * @p: the to-be-kicked thread
 *
 * Cause a process which is running on another CPU to enter
 * kernel-mode, without any delay. (to get signals handled.)
 *
 * NOTE: this function doesnt have to take the runqueue lock,
 * because all it wants to ensure is that the remote task enters
 * the kernel. If the IPI races and the task has been migrated
 * to another CPU then no harm is done and the purpose has been
 * achieved as well.
 */
2135
void kick_process(struct task_struct *p)
L
Linus Torvalds 已提交
2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146
{
	int cpu;

	preempt_disable();
	cpu = task_cpu(p);
	if ((cpu != smp_processor_id()) && task_curr(p))
		smp_send_reschedule(cpu);
	preempt_enable();
}

/*
2147 2148
 * Return a low guess at the load of a migration-source cpu weighted
 * according to the scheduling class and "nice" value.
L
Linus Torvalds 已提交
2149 2150 2151 2152
 *
 * We want to under-estimate the load of migration sources, to
 * balance conservatively.
 */
A
Alexey Dobriyan 已提交
2153
static unsigned long source_load(int cpu, int type)
L
Linus Torvalds 已提交
2154
{
2155
	struct rq *rq = cpu_rq(cpu);
I
Ingo Molnar 已提交
2156
	unsigned long total = weighted_cpuload(cpu);
2157

2158
	if (type == 0 || !sched_feat(LB_BIAS))
I
Ingo Molnar 已提交
2159
		return total;
2160

I
Ingo Molnar 已提交
2161
	return min(rq->cpu_load[type-1], total);
L
Linus Torvalds 已提交
2162 2163 2164
}

/*
2165 2166
 * Return a high guess at the load of a migration-target cpu weighted
 * according to the scheduling class and "nice" value.
L
Linus Torvalds 已提交
2167
 */
A
Alexey Dobriyan 已提交
2168
static unsigned long target_load(int cpu, int type)
L
Linus Torvalds 已提交
2169
{
2170
	struct rq *rq = cpu_rq(cpu);
I
Ingo Molnar 已提交
2171
	unsigned long total = weighted_cpuload(cpu);
2172

2173
	if (type == 0 || !sched_feat(LB_BIAS))
I
Ingo Molnar 已提交
2174
		return total;
2175

I
Ingo Molnar 已提交
2176
	return max(rq->cpu_load[type-1], total);
2177 2178
}

N
Nick Piggin 已提交
2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195
/*
 * find_idlest_group finds and returns the least busy CPU group within the
 * domain.
 */
static struct sched_group *
find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
{
	struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups;
	unsigned long min_load = ULONG_MAX, this_load = 0;
	int load_idx = sd->forkexec_idx;
	int imbalance = 100 + (sd->imbalance_pct-100)/2;

	do {
		unsigned long load, avg_load;
		int local_group;
		int i;

2196
		/* Skip over this group if it has no CPUs allowed */
2197 2198
		if (!cpumask_intersects(sched_group_cpus(group),
					&p->cpus_allowed))
2199
			continue;
2200

2201 2202
		local_group = cpumask_test_cpu(this_cpu,
					       sched_group_cpus(group));
N
Nick Piggin 已提交
2203 2204 2205 2206

		/* Tally up the load of all CPUs in the group */
		avg_load = 0;

2207
		for_each_cpu(i, sched_group_cpus(group)) {
N
Nick Piggin 已提交
2208 2209 2210 2211 2212 2213 2214 2215 2216 2217
			/* Bias balancing toward cpus of our domain */
			if (local_group)
				load = source_load(i, load_idx);
			else
				load = target_load(i, load_idx);

			avg_load += load;
		}

		/* Adjust by relative CPU power of the group */
2218 2219
		avg_load = sg_div_cpu_power(group,
				avg_load * SCHED_LOAD_SCALE);
N
Nick Piggin 已提交
2220 2221 2222 2223 2224 2225 2226 2227

		if (local_group) {
			this_load = avg_load;
			this = group;
		} else if (avg_load < min_load) {
			min_load = avg_load;
			idlest = group;
		}
2228
	} while (group = group->next, group != sd->groups);
N
Nick Piggin 已提交
2229 2230 2231 2232 2233 2234 2235

	if (!idlest || 100*this_load < imbalance*min_load)
		return NULL;
	return idlest;
}

/*
2236
 * find_idlest_cpu - find the idlest cpu among the cpus in group.
N
Nick Piggin 已提交
2237
 */
I
Ingo Molnar 已提交
2238
static int
2239
find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
N
Nick Piggin 已提交
2240 2241 2242 2243 2244
{
	unsigned long load, min_load = ULONG_MAX;
	int idlest = -1;
	int i;

2245
	/* Traverse only the allowed CPUs */
2246
	for_each_cpu_and(i, sched_group_cpus(group), &p->cpus_allowed) {
2247
		load = weighted_cpuload(i);
N
Nick Piggin 已提交
2248 2249 2250 2251 2252 2253 2254 2255 2256 2257

		if (load < min_load || (load == min_load && i == this_cpu)) {
			min_load = load;
			idlest = i;
		}
	}

	return idlest;
}

N
Nick Piggin 已提交
2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272
/*
 * sched_balance_self: balance the current task (running on cpu) in domains
 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
 * SD_BALANCE_EXEC.
 *
 * Balance, ie. select the least loaded group.
 *
 * Returns the target CPU number, or the same CPU if no balancing is needed.
 *
 * preempt must be disabled.
 */
static int sched_balance_self(int cpu, int flag)
{
	struct task_struct *t = current;
	struct sched_domain *tmp, *sd = NULL;
N
Nick Piggin 已提交
2273

2274
	for_each_domain(cpu, tmp) {
I
Ingo Molnar 已提交
2275 2276 2277
		/*
		 * If power savings logic is enabled for a domain, stop there.
		 */
2278 2279
		if (tmp->flags & SD_POWERSAVINGS_BALANCE)
			break;
N
Nick Piggin 已提交
2280 2281
		if (tmp->flags & flag)
			sd = tmp;
2282
	}
N
Nick Piggin 已提交
2283

2284 2285 2286
	if (sd)
		update_shares(sd);

N
Nick Piggin 已提交
2287 2288
	while (sd) {
		struct sched_group *group;
2289 2290 2291 2292 2293 2294
		int new_cpu, weight;

		if (!(sd->flags & flag)) {
			sd = sd->child;
			continue;
		}
N
Nick Piggin 已提交
2295 2296

		group = find_idlest_group(sd, t, cpu);
2297 2298 2299 2300
		if (!group) {
			sd = sd->child;
			continue;
		}
N
Nick Piggin 已提交
2301

2302
		new_cpu = find_idlest_cpu(group, t, cpu);
2303 2304 2305 2306 2307
		if (new_cpu == -1 || new_cpu == cpu) {
			/* Now try balancing at a lower domain level of cpu */
			sd = sd->child;
			continue;
		}
N
Nick Piggin 已提交
2308

2309
		/* Now try balancing at a lower domain level of new_cpu */
N
Nick Piggin 已提交
2310
		cpu = new_cpu;
2311
		weight = cpumask_weight(sched_domain_span(sd));
N
Nick Piggin 已提交
2312 2313
		sd = NULL;
		for_each_domain(cpu, tmp) {
2314
			if (weight <= cpumask_weight(sched_domain_span(tmp)))
N
Nick Piggin 已提交
2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325
				break;
			if (tmp->flags & flag)
				sd = tmp;
		}
		/* while loop will break here if sd == NULL */
	}

	return cpu;
}

#endif /* CONFIG_SMP */
L
Linus Torvalds 已提交
2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340

/***
 * try_to_wake_up - wake up a thread
 * @p: the to-be-woken-up thread
 * @state: the mask of task states that can be woken
 * @sync: do a synchronous wakeup?
 *
 * Put it on the run-queue if it's not already there. The "current"
 * thread is always on the run-queue (except when the actual
 * re-schedule is in progress), and as such you're allowed to do
 * the simpler "current->state = TASK_RUNNING" to mark yourself
 * runnable without the overhead of this.
 *
 * returns failure only if the task is already active.
 */
2341
static int try_to_wake_up(struct task_struct *p, unsigned int state, int sync)
L
Linus Torvalds 已提交
2342
{
2343
	int cpu, orig_cpu, this_cpu, success = 0;
L
Linus Torvalds 已提交
2344 2345
	unsigned long flags;
	long old_state;
2346
	struct rq *rq;
L
Linus Torvalds 已提交
2347

2348 2349 2350
	if (!sched_feat(SYNC_WAKEUPS))
		sync = 0;

P
Peter Zijlstra 已提交
2351
#ifdef CONFIG_SMP
2352
	if (sched_feat(LB_WAKEUP_UPDATE) && !root_task_group_empty()) {
P
Peter Zijlstra 已提交
2353 2354 2355 2356 2357 2358
		struct sched_domain *sd;

		this_cpu = raw_smp_processor_id();
		cpu = task_cpu(p);

		for_each_domain(this_cpu, sd) {
2359
			if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
P
Peter Zijlstra 已提交
2360 2361 2362 2363 2364 2365 2366
				update_shares(sd);
				break;
			}
		}
	}
#endif

2367
	smp_wmb();
L
Linus Torvalds 已提交
2368
	rq = task_rq_lock(p, &flags);
2369
	update_rq_clock(rq);
L
Linus Torvalds 已提交
2370 2371 2372 2373
	old_state = p->state;
	if (!(old_state & state))
		goto out;

I
Ingo Molnar 已提交
2374
	if (p->se.on_rq)
L
Linus Torvalds 已提交
2375 2376 2377
		goto out_running;

	cpu = task_cpu(p);
2378
	orig_cpu = cpu;
L
Linus Torvalds 已提交
2379 2380 2381 2382 2383 2384
	this_cpu = smp_processor_id();

#ifdef CONFIG_SMP
	if (unlikely(task_running(rq, p)))
		goto out_activate;

2385 2386 2387
	cpu = p->sched_class->select_task_rq(p, sync);
	if (cpu != orig_cpu) {
		set_task_cpu(p, cpu);
L
Linus Torvalds 已提交
2388 2389 2390 2391 2392 2393
		task_rq_unlock(rq, &flags);
		/* might preempt at this point */
		rq = task_rq_lock(p, &flags);
		old_state = p->state;
		if (!(old_state & state))
			goto out;
I
Ingo Molnar 已提交
2394
		if (p->se.on_rq)
L
Linus Torvalds 已提交
2395 2396 2397 2398 2399 2400
			goto out_running;

		this_cpu = smp_processor_id();
		cpu = task_cpu(p);
	}

2401 2402 2403 2404 2405 2406 2407
#ifdef CONFIG_SCHEDSTATS
	schedstat_inc(rq, ttwu_count);
	if (cpu == this_cpu)
		schedstat_inc(rq, ttwu_local);
	else {
		struct sched_domain *sd;
		for_each_domain(this_cpu, sd) {
2408
			if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
2409 2410 2411 2412 2413
				schedstat_inc(sd, ttwu_wake_remote);
				break;
			}
		}
	}
2414
#endif /* CONFIG_SCHEDSTATS */
2415

L
Linus Torvalds 已提交
2416 2417
out_activate:
#endif /* CONFIG_SMP */
2418 2419 2420 2421 2422 2423 2424 2425 2426
	schedstat_inc(p, se.nr_wakeups);
	if (sync)
		schedstat_inc(p, se.nr_wakeups_sync);
	if (orig_cpu != cpu)
		schedstat_inc(p, se.nr_wakeups_migrate);
	if (cpu == this_cpu)
		schedstat_inc(p, se.nr_wakeups_local);
	else
		schedstat_inc(p, se.nr_wakeups_remote);
I
Ingo Molnar 已提交
2427
	activate_task(rq, p, 1);
L
Linus Torvalds 已提交
2428 2429
	success = 1;

P
Peter Zijlstra 已提交
2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445
	/*
	 * Only attribute actual wakeups done by this task.
	 */
	if (!in_interrupt()) {
		struct sched_entity *se = &current->se;
		u64 sample = se->sum_exec_runtime;

		if (se->last_wakeup)
			sample -= se->last_wakeup;
		else
			sample -= se->start_runtime;
		update_avg(&se->avg_wakeup, sample);

		se->last_wakeup = se->sum_exec_runtime;
	}

L
Linus Torvalds 已提交
2446
out_running:
2447
	trace_sched_wakeup(rq, p, success);
2448
	check_preempt_curr(rq, p, sync);
I
Ingo Molnar 已提交
2449

L
Linus Torvalds 已提交
2450
	p->state = TASK_RUNNING;
2451 2452 2453 2454
#ifdef CONFIG_SMP
	if (p->sched_class->task_wake_up)
		p->sched_class->task_wake_up(rq, p);
#endif
L
Linus Torvalds 已提交
2455 2456 2457 2458 2459 2460
out:
	task_rq_unlock(rq, &flags);

	return success;
}

2461
int wake_up_process(struct task_struct *p)
L
Linus Torvalds 已提交
2462
{
2463
	return try_to_wake_up(p, TASK_ALL, 0);
L
Linus Torvalds 已提交
2464 2465 2466
}
EXPORT_SYMBOL(wake_up_process);

2467
int wake_up_state(struct task_struct *p, unsigned int state)
L
Linus Torvalds 已提交
2468 2469 2470 2471 2472 2473 2474
{
	return try_to_wake_up(p, state, 0);
}

/*
 * Perform scheduler related setup for a newly forked process p.
 * p is forked by current.
I
Ingo Molnar 已提交
2475 2476 2477 2478 2479 2480 2481
 *
 * __sched_fork() is basic setup used by init_idle() too:
 */
static void __sched_fork(struct task_struct *p)
{
	p->se.exec_start		= 0;
	p->se.sum_exec_runtime		= 0;
2482
	p->se.prev_sum_exec_runtime	= 0;
I
Ingo Molnar 已提交
2483 2484
	p->se.last_wakeup		= 0;
	p->se.avg_overlap		= 0;
P
Peter Zijlstra 已提交
2485 2486
	p->se.start_runtime		= 0;
	p->se.avg_wakeup		= sysctl_sched_wakeup_granularity;
I
Ingo Molnar 已提交
2487 2488 2489

#ifdef CONFIG_SCHEDSTATS
	p->se.wait_start		= 0;
I
Ingo Molnar 已提交
2490 2491 2492 2493 2494 2495
	p->se.sum_sleep_runtime		= 0;
	p->se.sleep_start		= 0;
	p->se.block_start		= 0;
	p->se.sleep_max			= 0;
	p->se.block_max			= 0;
	p->se.exec_max			= 0;
I
Ingo Molnar 已提交
2496
	p->se.slice_max			= 0;
I
Ingo Molnar 已提交
2497
	p->se.wait_max			= 0;
I
Ingo Molnar 已提交
2498
#endif
N
Nick Piggin 已提交
2499

P
Peter Zijlstra 已提交
2500
	INIT_LIST_HEAD(&p->rt.run_list);
I
Ingo Molnar 已提交
2501
	p->se.on_rq = 0;
2502
	INIT_LIST_HEAD(&p->se.group_node);
N
Nick Piggin 已提交
2503

2504 2505 2506 2507
#ifdef CONFIG_PREEMPT_NOTIFIERS
	INIT_HLIST_HEAD(&p->preempt_notifiers);
#endif

L
Linus Torvalds 已提交
2508 2509 2510 2511 2512 2513 2514
	/*
	 * We mark the process as running here, but have not actually
	 * inserted it onto the runqueue yet. This guarantees that
	 * nobody will actually run it, and a signal or other external
	 * event cannot wake it up and insert it on the runqueue either.
	 */
	p->state = TASK_RUNNING;
I
Ingo Molnar 已提交
2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528
}

/*
 * fork()/clone()-time setup:
 */
void sched_fork(struct task_struct *p, int clone_flags)
{
	int cpu = get_cpu();

	__sched_fork(p);

#ifdef CONFIG_SMP
	cpu = sched_balance_self(cpu, SD_BALANCE_FORK);
#endif
I
Ingo Molnar 已提交
2529
	set_task_cpu(p, cpu);
2530 2531 2532 2533 2534

	/*
	 * Make sure we do not leak PI boosting priority to the child:
	 */
	p->prio = current->normal_prio;
H
Hiroshi Shimamoto 已提交
2535 2536
	if (!rt_prio(p->prio))
		p->sched_class = &fair_sched_class;
2537

2538
#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
I
Ingo Molnar 已提交
2539
	if (likely(sched_info_on()))
2540
		memset(&p->sched_info, 0, sizeof(p->sched_info));
L
Linus Torvalds 已提交
2541
#endif
2542
#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
2543 2544
	p->oncpu = 0;
#endif
L
Linus Torvalds 已提交
2545
#ifdef CONFIG_PREEMPT
2546
	/* Want to start with kernel preemption disabled. */
A
Al Viro 已提交
2547
	task_thread_info(p)->preempt_count = 1;
L
Linus Torvalds 已提交
2548
#endif
2549 2550
	plist_node_init(&p->pushable_tasks, MAX_PRIO);

N
Nick Piggin 已提交
2551
	put_cpu();
L
Linus Torvalds 已提交
2552 2553 2554 2555 2556 2557 2558 2559 2560
}

/*
 * wake_up_new_task - wake up a newly created task for the first time.
 *
 * This function will do some initial scheduler statistics housekeeping
 * that must be done for every newly created context, then puts the task
 * on the runqueue and wakes it.
 */
2561
void wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
L
Linus Torvalds 已提交
2562 2563
{
	unsigned long flags;
I
Ingo Molnar 已提交
2564
	struct rq *rq;
L
Linus Torvalds 已提交
2565 2566

	rq = task_rq_lock(p, &flags);
N
Nick Piggin 已提交
2567
	BUG_ON(p->state != TASK_RUNNING);
I
Ingo Molnar 已提交
2568
	update_rq_clock(rq);
L
Linus Torvalds 已提交
2569 2570 2571

	p->prio = effective_prio(p);

2572
	if (!p->sched_class->task_new || !current->se.on_rq) {
I
Ingo Molnar 已提交
2573
		activate_task(rq, p, 0);
L
Linus Torvalds 已提交
2574 2575
	} else {
		/*
I
Ingo Molnar 已提交
2576 2577
		 * Let the scheduling class do new task startup
		 * management (if any):
L
Linus Torvalds 已提交
2578
		 */
2579
		p->sched_class->task_new(rq, p);
2580
		inc_nr_running(rq);
L
Linus Torvalds 已提交
2581
	}
2582
	trace_sched_wakeup_new(rq, p, 1);
2583
	check_preempt_curr(rq, p, 0);
2584 2585 2586 2587
#ifdef CONFIG_SMP
	if (p->sched_class->task_wake_up)
		p->sched_class->task_wake_up(rq, p);
#endif
I
Ingo Molnar 已提交
2588
	task_rq_unlock(rq, &flags);
L
Linus Torvalds 已提交
2589 2590
}

2591 2592 2593
#ifdef CONFIG_PREEMPT_NOTIFIERS

/**
2594
 * preempt_notifier_register - tell me when current is being preempted & rescheduled
R
Randy Dunlap 已提交
2595
 * @notifier: notifier struct to register
2596 2597 2598 2599 2600 2601 2602 2603 2604
 */
void preempt_notifier_register(struct preempt_notifier *notifier)
{
	hlist_add_head(&notifier->link, &current->preempt_notifiers);
}
EXPORT_SYMBOL_GPL(preempt_notifier_register);

/**
 * preempt_notifier_unregister - no longer interested in preemption notifications
R
Randy Dunlap 已提交
2605
 * @notifier: notifier struct to unregister
2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634
 *
 * This is safe to call from within a preemption notifier.
 */
void preempt_notifier_unregister(struct preempt_notifier *notifier)
{
	hlist_del(&notifier->link);
}
EXPORT_SYMBOL_GPL(preempt_notifier_unregister);

static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
{
	struct preempt_notifier *notifier;
	struct hlist_node *node;

	hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
		notifier->ops->sched_in(notifier, raw_smp_processor_id());
}

static void
fire_sched_out_preempt_notifiers(struct task_struct *curr,
				 struct task_struct *next)
{
	struct preempt_notifier *notifier;
	struct hlist_node *node;

	hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
		notifier->ops->sched_out(notifier, next);
}

2635
#else /* !CONFIG_PREEMPT_NOTIFIERS */
2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646

static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
{
}

static void
fire_sched_out_preempt_notifiers(struct task_struct *curr,
				 struct task_struct *next)
{
}

2647
#endif /* CONFIG_PREEMPT_NOTIFIERS */
2648

2649 2650 2651
/**
 * prepare_task_switch - prepare to switch tasks
 * @rq: the runqueue preparing to switch
R
Randy Dunlap 已提交
2652
 * @prev: the current task that is being switched out
2653 2654 2655 2656 2657 2658 2659 2660 2661
 * @next: the task we are going to switch to.
 *
 * This is called with the rq lock held and interrupts off. It must
 * be paired with a subsequent finish_task_switch after the context
 * switch.
 *
 * prepare_task_switch sets up locking and calls architecture specific
 * hooks.
 */
2662 2663 2664
static inline void
prepare_task_switch(struct rq *rq, struct task_struct *prev,
		    struct task_struct *next)
2665
{
2666
	fire_sched_out_preempt_notifiers(prev, next);
2667 2668 2669 2670
	prepare_lock_switch(rq, next);
	prepare_arch_switch(next);
}

L
Linus Torvalds 已提交
2671 2672
/**
 * finish_task_switch - clean up after a task-switch
2673
 * @rq: runqueue associated with task-switch
L
Linus Torvalds 已提交
2674 2675
 * @prev: the thread we just switched away from.
 *
2676 2677 2678 2679
 * finish_task_switch must be called after the context switch, paired
 * with a prepare_task_switch call before the context switch.
 * finish_task_switch will reconcile locking set up by prepare_task_switch,
 * and do any other architecture-specific cleanup actions.
L
Linus Torvalds 已提交
2680 2681
 *
 * Note that we may have delayed dropping an mm in context_switch(). If
I
Ingo Molnar 已提交
2682
 * so, we finish that here outside of the runqueue lock. (Doing it
L
Linus Torvalds 已提交
2683 2684 2685
 * with the lock held can cause deadlocks; see schedule() for
 * details.)
 */
A
Alexey Dobriyan 已提交
2686
static void finish_task_switch(struct rq *rq, struct task_struct *prev)
L
Linus Torvalds 已提交
2687 2688 2689
	__releases(rq->lock)
{
	struct mm_struct *mm = rq->prev_mm;
O
Oleg Nesterov 已提交
2690
	long prev_state;
2691 2692 2693 2694 2695 2696
#ifdef CONFIG_SMP
	int post_schedule = 0;

	if (current->sched_class->needs_post_schedule)
		post_schedule = current->sched_class->needs_post_schedule(rq);
#endif
L
Linus Torvalds 已提交
2697 2698 2699 2700 2701

	rq->prev_mm = NULL;

	/*
	 * A task struct has one reference for the use as "current".
2702
	 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
O
Oleg Nesterov 已提交
2703 2704
	 * schedule one last time. The schedule call will never return, and
	 * the scheduled task must drop that reference.
2705
	 * The test for TASK_DEAD must occur while the runqueue locks are
L
Linus Torvalds 已提交
2706 2707 2708 2709 2710
	 * still held, otherwise prev could be scheduled on another cpu, die
	 * there before we look at prev->state, and then the reference would
	 * be dropped twice.
	 *		Manfred Spraul <manfred@colorfullife.com>
	 */
O
Oleg Nesterov 已提交
2711
	prev_state = prev->state;
2712 2713
	finish_arch_switch(prev);
	finish_lock_switch(rq, prev);
2714
#ifdef CONFIG_SMP
2715
	if (post_schedule)
2716 2717
		current->sched_class->post_schedule(rq);
#endif
S
Steven Rostedt 已提交
2718

2719
	fire_sched_in_preempt_notifiers(current);
L
Linus Torvalds 已提交
2720 2721
	if (mm)
		mmdrop(mm);
2722
	if (unlikely(prev_state == TASK_DEAD)) {
2723 2724 2725
		/*
		 * Remove function-return probe instances associated with this
		 * task and put them back on the free list.
I
Ingo Molnar 已提交
2726
		 */
2727
		kprobe_flush_task(prev);
L
Linus Torvalds 已提交
2728
		put_task_struct(prev);
2729
	}
L
Linus Torvalds 已提交
2730 2731 2732 2733 2734 2735
}

/**
 * schedule_tail - first thing a freshly forked thread must call.
 * @prev: the thread we just switched away from.
 */
2736
asmlinkage void schedule_tail(struct task_struct *prev)
L
Linus Torvalds 已提交
2737 2738
	__releases(rq->lock)
{
2739 2740
	struct rq *rq = this_rq();

2741 2742 2743 2744 2745
	finish_task_switch(rq, prev);
#ifdef __ARCH_WANT_UNLOCKED_CTXSW
	/* In this case, finish_task_switch does not reenable preemption */
	preempt_enable();
#endif
L
Linus Torvalds 已提交
2746
	if (current->set_child_tid)
2747
		put_user(task_pid_vnr(current), current->set_child_tid);
L
Linus Torvalds 已提交
2748 2749 2750 2751 2752 2753
}

/*
 * context_switch - switch to the new MM and the new
 * thread's register state.
 */
I
Ingo Molnar 已提交
2754
static inline void
2755
context_switch(struct rq *rq, struct task_struct *prev,
2756
	       struct task_struct *next)
L
Linus Torvalds 已提交
2757
{
I
Ingo Molnar 已提交
2758
	struct mm_struct *mm, *oldmm;
L
Linus Torvalds 已提交
2759

2760
	prepare_task_switch(rq, prev, next);
2761
	trace_sched_switch(rq, prev, next);
I
Ingo Molnar 已提交
2762 2763
	mm = next->mm;
	oldmm = prev->active_mm;
2764 2765 2766 2767 2768 2769 2770
	/*
	 * For paravirt, this is coupled with an exit in switch_to to
	 * combine the page table reload and the switch backend into
	 * one hypercall.
	 */
	arch_enter_lazy_cpu_mode();

I
Ingo Molnar 已提交
2771
	if (unlikely(!mm)) {
L
Linus Torvalds 已提交
2772 2773 2774 2775 2776 2777
		next->active_mm = oldmm;
		atomic_inc(&oldmm->mm_count);
		enter_lazy_tlb(oldmm, next);
	} else
		switch_mm(oldmm, mm, next);

I
Ingo Molnar 已提交
2778
	if (unlikely(!prev->mm)) {
L
Linus Torvalds 已提交
2779 2780 2781
		prev->active_mm = NULL;
		rq->prev_mm = oldmm;
	}
2782 2783 2784 2785 2786 2787 2788
	/*
	 * Since the runqueue lock will be released by the next
	 * task (which is an invalid locking op but in the case
	 * of the scheduler it's an obvious special-case), so we
	 * do an early lockdep release here:
	 */
#ifndef __ARCH_WANT_UNLOCKED_CTXSW
2789
	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
2790
#endif
L
Linus Torvalds 已提交
2791 2792 2793 2794

	/* Here we just switch the register state and the stack. */
	switch_to(prev, next, prev);

I
Ingo Molnar 已提交
2795 2796 2797 2798 2799 2800 2801
	barrier();
	/*
	 * this_rq must be evaluated again because prev may have moved
	 * CPUs since it called schedule(), thus the 'rq' on its stack
	 * frame will be invalid.
	 */
	finish_task_switch(this_rq(), prev);
L
Linus Torvalds 已提交
2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824
}

/*
 * nr_running, nr_uninterruptible and nr_context_switches:
 *
 * externally visible scheduler statistics: current number of runnable
 * threads, current number of uninterruptible-sleeping threads, total
 * number of context switches performed since bootup.
 */
unsigned long nr_running(void)
{
	unsigned long i, sum = 0;

	for_each_online_cpu(i)
		sum += cpu_rq(i)->nr_running;

	return sum;
}

unsigned long nr_uninterruptible(void)
{
	unsigned long i, sum = 0;

2825
	for_each_possible_cpu(i)
L
Linus Torvalds 已提交
2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839
		sum += cpu_rq(i)->nr_uninterruptible;

	/*
	 * Since we read the counters lockless, it might be slightly
	 * inaccurate. Do not allow it to go below zero though:
	 */
	if (unlikely((long)sum < 0))
		sum = 0;

	return sum;
}

unsigned long long nr_context_switches(void)
{
2840 2841
	int i;
	unsigned long long sum = 0;
L
Linus Torvalds 已提交
2842

2843
	for_each_possible_cpu(i)
L
Linus Torvalds 已提交
2844 2845 2846 2847 2848 2849 2850 2851 2852
		sum += cpu_rq(i)->nr_switches;

	return sum;
}

unsigned long nr_iowait(void)
{
	unsigned long i, sum = 0;

2853
	for_each_possible_cpu(i)
L
Linus Torvalds 已提交
2854 2855 2856 2857 2858
		sum += atomic_read(&cpu_rq(i)->nr_iowait);

	return sum;
}

2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873
unsigned long nr_active(void)
{
	unsigned long i, running = 0, uninterruptible = 0;

	for_each_online_cpu(i) {
		running += cpu_rq(i)->nr_running;
		uninterruptible += cpu_rq(i)->nr_uninterruptible;
	}

	if (unlikely((long)uninterruptible < 0))
		uninterruptible = 0;

	return running + uninterruptible;
}

2874
/*
I
Ingo Molnar 已提交
2875 2876
 * Update rq->cpu_load[] statistics. This function is usually called every
 * scheduler tick (TICK_NSEC).
2877
 */
I
Ingo Molnar 已提交
2878
static void update_cpu_load(struct rq *this_rq)
2879
{
2880
	unsigned long this_load = this_rq->load.weight;
I
Ingo Molnar 已提交
2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892
	int i, scale;

	this_rq->nr_load_updates++;

	/* Update our load: */
	for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
		unsigned long old_load, new_load;

		/* scale is effectively 1 << i now, and >> i divides by scale */

		old_load = this_rq->cpu_load[i];
		new_load = this_load;
I
Ingo Molnar 已提交
2893 2894 2895 2896 2897 2898 2899
		/*
		 * Round up the averaging division if load is increasing. This
		 * prevents us from getting stuck on 9 if the load is 10, for
		 * example.
		 */
		if (new_load > old_load)
			new_load += scale-1;
I
Ingo Molnar 已提交
2900 2901
		this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
	}
2902 2903
}

I
Ingo Molnar 已提交
2904 2905
#ifdef CONFIG_SMP

L
Linus Torvalds 已提交
2906 2907 2908 2909 2910 2911
/*
 * double_rq_lock - safely lock two runqueues
 *
 * Note this does not disable interrupts like task_rq_lock,
 * you need to do so manually before calling.
 */
2912
static void double_rq_lock(struct rq *rq1, struct rq *rq2)
L
Linus Torvalds 已提交
2913 2914 2915
	__acquires(rq1->lock)
	__acquires(rq2->lock)
{
2916
	BUG_ON(!irqs_disabled());
L
Linus Torvalds 已提交
2917 2918 2919 2920
	if (rq1 == rq2) {
		spin_lock(&rq1->lock);
		__acquire(rq2->lock);	/* Fake it out ;) */
	} else {
2921
		if (rq1 < rq2) {
L
Linus Torvalds 已提交
2922
			spin_lock(&rq1->lock);
2923
			spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
L
Linus Torvalds 已提交
2924 2925
		} else {
			spin_lock(&rq2->lock);
2926
			spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
L
Linus Torvalds 已提交
2927 2928
		}
	}
2929 2930
	update_rq_clock(rq1);
	update_rq_clock(rq2);
L
Linus Torvalds 已提交
2931 2932 2933 2934 2935 2936 2937 2938
}

/*
 * double_rq_unlock - safely unlock two runqueues
 *
 * Note this does not restore interrupts like task_rq_unlock,
 * you need to do so manually after calling.
 */
2939
static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
L
Linus Torvalds 已提交
2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952
	__releases(rq1->lock)
	__releases(rq2->lock)
{
	spin_unlock(&rq1->lock);
	if (rq1 != rq2)
		spin_unlock(&rq2->lock);
	else
		__release(rq2->lock);
}

/*
 * If dest_cpu is allowed for this process, migrate the task to it.
 * This is accomplished by forcing the cpu_allowed mask to only
I
Ingo Molnar 已提交
2953
 * allow dest_cpu, which will force the cpu onto dest_cpu. Then
L
Linus Torvalds 已提交
2954 2955
 * the cpu_allowed mask is restored.
 */
2956
static void sched_migrate_task(struct task_struct *p, int dest_cpu)
L
Linus Torvalds 已提交
2957
{
2958
	struct migration_req req;
L
Linus Torvalds 已提交
2959
	unsigned long flags;
2960
	struct rq *rq;
L
Linus Torvalds 已提交
2961 2962

	rq = task_rq_lock(p, &flags);
2963
	if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed)
2964
	    || unlikely(!cpu_active(dest_cpu)))
L
Linus Torvalds 已提交
2965 2966 2967 2968 2969 2970
		goto out;

	/* force the process onto the specified CPU */
	if (migrate_task(p, dest_cpu, &req)) {
		/* Need to wait for migration thread (might exit: take ref). */
		struct task_struct *mt = rq->migration_thread;
2971

L
Linus Torvalds 已提交
2972 2973 2974 2975 2976
		get_task_struct(mt);
		task_rq_unlock(rq, &flags);
		wake_up_process(mt);
		put_task_struct(mt);
		wait_for_completion(&req.done);
2977

L
Linus Torvalds 已提交
2978 2979 2980 2981 2982 2983 2984
		return;
	}
out:
	task_rq_unlock(rq, &flags);
}

/*
N
Nick Piggin 已提交
2985 2986
 * sched_exec - execve() is a valuable balancing opportunity, because at
 * this point the task has the smallest effective memory and cache footprint.
L
Linus Torvalds 已提交
2987 2988 2989 2990
 */
void sched_exec(void)
{
	int new_cpu, this_cpu = get_cpu();
N
Nick Piggin 已提交
2991
	new_cpu = sched_balance_self(this_cpu, SD_BALANCE_EXEC);
L
Linus Torvalds 已提交
2992
	put_cpu();
N
Nick Piggin 已提交
2993 2994
	if (new_cpu != this_cpu)
		sched_migrate_task(current, new_cpu);
L
Linus Torvalds 已提交
2995 2996 2997 2998 2999 3000
}

/*
 * pull_task - move a task from a remote runqueue to the local runqueue.
 * Both runqueues must be locked.
 */
I
Ingo Molnar 已提交
3001 3002
static void pull_task(struct rq *src_rq, struct task_struct *p,
		      struct rq *this_rq, int this_cpu)
L
Linus Torvalds 已提交
3003
{
3004
	deactivate_task(src_rq, p, 0);
L
Linus Torvalds 已提交
3005
	set_task_cpu(p, this_cpu);
I
Ingo Molnar 已提交
3006
	activate_task(this_rq, p, 0);
L
Linus Torvalds 已提交
3007 3008 3009 3010
	/*
	 * Note that idle threads have a prio of MAX_PRIO, for this test
	 * to be always true for them.
	 */
3011
	check_preempt_curr(this_rq, p, 0);
L
Linus Torvalds 已提交
3012 3013 3014 3015 3016
}

/*
 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
 */
3017
static
3018
int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
I
Ingo Molnar 已提交
3019
		     struct sched_domain *sd, enum cpu_idle_type idle,
I
Ingo Molnar 已提交
3020
		     int *all_pinned)
L
Linus Torvalds 已提交
3021
{
3022
	int tsk_cache_hot = 0;
L
Linus Torvalds 已提交
3023 3024 3025 3026 3027 3028
	/*
	 * We do not migrate tasks that are:
	 * 1) running (obviously), or
	 * 2) cannot be migrated to this CPU due to cpus_allowed, or
	 * 3) are cache-hot on their current CPU.
	 */
3029
	if (!cpumask_test_cpu(this_cpu, &p->cpus_allowed)) {
3030
		schedstat_inc(p, se.nr_failed_migrations_affine);
L
Linus Torvalds 已提交
3031
		return 0;
3032
	}
3033 3034
	*all_pinned = 0;

3035 3036
	if (task_running(rq, p)) {
		schedstat_inc(p, se.nr_failed_migrations_running);
3037
		return 0;
3038
	}
L
Linus Torvalds 已提交
3039

3040 3041 3042 3043 3044 3045
	/*
	 * Aggressive migration if:
	 * 1) task is cache cold, or
	 * 2) too many balance attempts have failed.
	 */

3046 3047 3048
	tsk_cache_hot = task_hot(p, rq->clock, sd);
	if (!tsk_cache_hot ||
		sd->nr_balance_failed > sd->cache_nice_tries) {
3049
#ifdef CONFIG_SCHEDSTATS
3050
		if (tsk_cache_hot) {
3051
			schedstat_inc(sd, lb_hot_gained[idle]);
3052 3053
			schedstat_inc(p, se.nr_forced_migrations);
		}
3054 3055 3056 3057
#endif
		return 1;
	}

3058
	if (tsk_cache_hot) {
3059
		schedstat_inc(p, se.nr_failed_migrations_hot);
3060
		return 0;
3061
	}
L
Linus Torvalds 已提交
3062 3063 3064
	return 1;
}

3065 3066 3067 3068 3069
static unsigned long
balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
	      unsigned long max_load_move, struct sched_domain *sd,
	      enum cpu_idle_type idle, int *all_pinned,
	      int *this_best_prio, struct rq_iterator *iterator)
L
Linus Torvalds 已提交
3070
{
3071
	int loops = 0, pulled = 0, pinned = 0;
I
Ingo Molnar 已提交
3072 3073
	struct task_struct *p;
	long rem_load_move = max_load_move;
L
Linus Torvalds 已提交
3074

3075
	if (max_load_move == 0)
L
Linus Torvalds 已提交
3076 3077
		goto out;

3078 3079
	pinned = 1;

L
Linus Torvalds 已提交
3080
	/*
I
Ingo Molnar 已提交
3081
	 * Start the load-balancing iterator:
L
Linus Torvalds 已提交
3082
	 */
I
Ingo Molnar 已提交
3083 3084
	p = iterator->start(iterator->arg);
next:
3085
	if (!p || loops++ > sysctl_sched_nr_migrate)
L
Linus Torvalds 已提交
3086
		goto out;
3087 3088

	if ((p->se.load.weight >> 1) > rem_load_move ||
I
Ingo Molnar 已提交
3089 3090 3091
	    !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
		p = iterator->next(iterator->arg);
		goto next;
L
Linus Torvalds 已提交
3092 3093
	}

I
Ingo Molnar 已提交
3094
	pull_task(busiest, p, this_rq, this_cpu);
L
Linus Torvalds 已提交
3095
	pulled++;
I
Ingo Molnar 已提交
3096
	rem_load_move -= p->se.load.weight;
L
Linus Torvalds 已提交
3097

3098 3099 3100 3101 3102 3103 3104 3105 3106 3107
#ifdef CONFIG_PREEMPT
	/*
	 * NEWIDLE balancing is a source of latency, so preemptible kernels
	 * will stop after the first task is pulled to minimize the critical
	 * section.
	 */
	if (idle == CPU_NEWLY_IDLE)
		goto out;
#endif

3108
	/*
3109
	 * We only want to steal up to the prescribed amount of weighted load.
3110
	 */
3111
	if (rem_load_move > 0) {
3112 3113
		if (p->prio < *this_best_prio)
			*this_best_prio = p->prio;
I
Ingo Molnar 已提交
3114 3115
		p = iterator->next(iterator->arg);
		goto next;
L
Linus Torvalds 已提交
3116 3117 3118
	}
out:
	/*
3119
	 * Right now, this is one of only two places pull_task() is called,
L
Linus Torvalds 已提交
3120 3121 3122 3123
	 * so we can safely collect pull_task() stats here rather than
	 * inside pull_task().
	 */
	schedstat_add(sd, lb_gained[idle], pulled);
3124 3125 3126

	if (all_pinned)
		*all_pinned = pinned;
3127 3128

	return max_load_move - rem_load_move;
L
Linus Torvalds 已提交
3129 3130
}

I
Ingo Molnar 已提交
3131
/*
P
Peter Williams 已提交
3132 3133 3134
 * move_tasks tries to move up to max_load_move weighted load from busiest to
 * this_rq, as part of a balancing operation within domain "sd".
 * Returns 1 if successful and 0 otherwise.
I
Ingo Molnar 已提交
3135 3136 3137 3138
 *
 * Called with both runqueues locked.
 */
static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
P
Peter Williams 已提交
3139
		      unsigned long max_load_move,
I
Ingo Molnar 已提交
3140 3141 3142
		      struct sched_domain *sd, enum cpu_idle_type idle,
		      int *all_pinned)
{
3143
	const struct sched_class *class = sched_class_highest;
P
Peter Williams 已提交
3144
	unsigned long total_load_moved = 0;
3145
	int this_best_prio = this_rq->curr->prio;
I
Ingo Molnar 已提交
3146 3147

	do {
P
Peter Williams 已提交
3148 3149
		total_load_moved +=
			class->load_balance(this_rq, this_cpu, busiest,
3150
				max_load_move - total_load_moved,
3151
				sd, idle, all_pinned, &this_best_prio);
I
Ingo Molnar 已提交
3152
		class = class->next;
3153

3154 3155 3156 3157 3158 3159
#ifdef CONFIG_PREEMPT
		/*
		 * NEWIDLE balancing is a source of latency, so preemptible
		 * kernels will stop after the first task is pulled to minimize
		 * the critical section.
		 */
3160 3161
		if (idle == CPU_NEWLY_IDLE && this_rq->nr_running)
			break;
3162
#endif
P
Peter Williams 已提交
3163
	} while (class && max_load_move > total_load_moved);
I
Ingo Molnar 已提交
3164

P
Peter Williams 已提交
3165 3166 3167
	return total_load_moved > 0;
}

3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193
static int
iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
		   struct sched_domain *sd, enum cpu_idle_type idle,
		   struct rq_iterator *iterator)
{
	struct task_struct *p = iterator->start(iterator->arg);
	int pinned = 0;

	while (p) {
		if (can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
			pull_task(busiest, p, this_rq, this_cpu);
			/*
			 * Right now, this is only the second place pull_task()
			 * is called, so we can safely collect pull_task()
			 * stats here rather than inside pull_task().
			 */
			schedstat_inc(sd, lb_gained[idle]);

			return 1;
		}
		p = iterator->next(iterator->arg);
	}

	return 0;
}

P
Peter Williams 已提交
3194 3195 3196 3197 3198 3199 3200 3201 3202 3203
/*
 * move_one_task tries to move exactly one task from busiest to this_rq, as
 * part of active balancing operations within "domain".
 * Returns 1 if successful and 0 otherwise.
 *
 * Called with both runqueues locked.
 */
static int move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
			 struct sched_domain *sd, enum cpu_idle_type idle)
{
3204
	const struct sched_class *class;
P
Peter Williams 已提交
3205 3206

	for (class = sched_class_highest; class; class = class->next)
3207
		if (class->move_one_task(this_rq, this_cpu, busiest, sd, idle))
P
Peter Williams 已提交
3208 3209 3210
			return 1;

	return 0;
I
Ingo Molnar 已提交
3211
}
3212
/********** Helpers for find_busiest_group ************************/
L
Linus Torvalds 已提交
3213
/*
3214 3215
 * sd_lb_stats - Structure to store the statistics of a sched_domain
 * 		during load balancing.
L
Linus Torvalds 已提交
3216
 */
3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234
struct sd_lb_stats {
	struct sched_group *busiest; /* Busiest group in this sd */
	struct sched_group *this;  /* Local group in this sd */
	unsigned long total_load;  /* Total load of all groups in sd */
	unsigned long total_pwr;   /*	Total power of all groups in sd */
	unsigned long avg_load;	   /* Average load across all groups in sd */

	/** Statistics of this group */
	unsigned long this_load;
	unsigned long this_load_per_task;
	unsigned long this_nr_running;

	/* Statistics of the busiest group */
	unsigned long max_load;
	unsigned long busiest_load_per_task;
	unsigned long busiest_nr_running;

	int group_imb; /* Is there imbalance in this sd */
3235
#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
3236 3237 3238 3239 3240 3241
	int power_savings_balance; /* Is powersave balance needed for this sd */
	struct sched_group *group_min; /* Least loaded group in sd */
	struct sched_group *group_leader; /* Group which relieves group_min */
	unsigned long min_load_per_task; /* load_per_task in group_min */
	unsigned long leader_nr_running; /* Nr running of group_leader */
	unsigned long min_nr_running; /* Nr running of group_min */
3242
#endif
3243
};
L
Linus Torvalds 已提交
3244

3245
/*
3246 3247 3248 3249 3250 3251 3252 3253 3254 3255
 * sg_lb_stats - stats of a sched_group required for load_balancing
 */
struct sg_lb_stats {
	unsigned long avg_load; /*Avg load across the CPUs of the group */
	unsigned long group_load; /* Total load over the CPUs of the group */
	unsigned long sum_nr_running; /* Nr tasks running in the group */
	unsigned long sum_weighted_load; /* Weighted load of group's tasks */
	unsigned long group_capacity;
	int group_imb; /* Is there an imbalance in the group ? */
};
3256

3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277
/**
 * group_first_cpu - Returns the first cpu in the cpumask of a sched_group.
 * @group: The group whose first cpu is to be returned.
 */
static inline unsigned int group_first_cpu(struct sched_group *group)
{
	return cpumask_first(sched_group_cpus(group));
}

/**
 * get_sd_load_idx - Obtain the load index for a given sched domain.
 * @sd: The sched_domain whose load_idx is to be obtained.
 * @idle: The Idle status of the CPU for whose sd load_icx is obtained.
 */
static inline int get_sd_load_idx(struct sched_domain *sd,
					enum cpu_idle_type idle)
{
	int load_idx;

	switch (idle) {
	case CPU_NOT_IDLE:
N
Nick Piggin 已提交
3278
		load_idx = sd->busy_idx;
3279 3280 3281
		break;

	case CPU_NEWLY_IDLE:
N
Nick Piggin 已提交
3282
		load_idx = sd->newidle_idx;
3283 3284
		break;
	default:
N
Nick Piggin 已提交
3285
		load_idx = sd->idle_idx;
3286 3287
		break;
	}
L
Linus Torvalds 已提交
3288

3289 3290
	return load_idx;
}
L
Linus Torvalds 已提交
3291 3292


3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316
#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
/**
 * init_sd_power_savings_stats - Initialize power savings statistics for
 * the given sched_domain, during load balancing.
 *
 * @sd: Sched domain whose power-savings statistics are to be initialized.
 * @sds: Variable containing the statistics for sd.
 * @idle: Idle status of the CPU at which we're performing load-balancing.
 */
static inline void init_sd_power_savings_stats(struct sched_domain *sd,
	struct sd_lb_stats *sds, enum cpu_idle_type idle)
{
	/*
	 * Busy processors will not participate in power savings
	 * balance.
	 */
	if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
		sds->power_savings_balance = 0;
	else {
		sds->power_savings_balance = 1;
		sds->min_nr_running = ULONG_MAX;
		sds->leader_nr_running = 0;
	}
}
3317

3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330
/**
 * update_sd_power_savings_stats - Update the power saving stats for a
 * sched_domain while performing load balancing.
 *
 * @group: sched_group belonging to the sched_domain under consideration.
 * @sds: Variable containing the statistics of the sched_domain
 * @local_group: Does group contain the CPU for which we're performing
 * 		load balancing ?
 * @sgs: Variable containing the statistics of the group.
 */
static inline void update_sd_power_savings_stats(struct sched_group *group,
	struct sd_lb_stats *sds, int local_group, struct sg_lb_stats *sgs)
{
3331

3332 3333
	if (!sds->power_savings_balance)
		return;
L
Linus Torvalds 已提交
3334

3335 3336 3337 3338 3339 3340 3341
	/*
	 * If the local group is idle or completely loaded
	 * no need to do power savings balance at this domain
	 */
	if (local_group && (sds->this_nr_running >= sgs->group_capacity ||
				!sds->this_nr_running))
		sds->power_savings_balance = 0;
3342

3343 3344 3345 3346 3347 3348 3349 3350
	/*
	 * If a group is already running at full capacity or idle,
	 * don't include that group in power savings calculations
	 */
	if (!sds->power_savings_balance ||
		sgs->sum_nr_running >= sgs->group_capacity ||
		!sgs->sum_nr_running)
		return;
N
Nick Piggin 已提交
3351

3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364
	/*
	 * Calculate the group which has the least non-idle load.
	 * This is the group from where we need to pick up the load
	 * for saving power
	 */
	if ((sgs->sum_nr_running < sds->min_nr_running) ||
	    (sgs->sum_nr_running == sds->min_nr_running &&
	     group_first_cpu(group) > group_first_cpu(sds->group_min))) {
		sds->group_min = group;
		sds->min_nr_running = sgs->sum_nr_running;
		sds->min_load_per_task = sgs->sum_weighted_load /
						sgs->sum_nr_running;
	}
3365

3366 3367 3368 3369 3370 3371 3372
	/*
	 * Calculate the group which is almost near its
	 * capacity but still has some space to pick up some load
	 * from other group and save more power
	 */
	if (sgs->sum_nr_running > sgs->group_capacity - 1)
		return;
L
Linus Torvalds 已提交
3373

3374 3375 3376 3377 3378 3379 3380
	if (sgs->sum_nr_running > sds->leader_nr_running ||
	    (sgs->sum_nr_running == sds->leader_nr_running &&
	     group_first_cpu(group) < group_first_cpu(sds->group_leader))) {
		sds->group_leader = group;
		sds->leader_nr_running = sgs->sum_nr_running;
	}
}
3381

3382
/**
3383
 * check_power_save_busiest_group - see if there is potential for some power-savings balance
3384 3385 3386 3387 3388
 * @sds: Variable containing the statistics of the sched_domain
 *	under consideration.
 * @this_cpu: Cpu at which we're currently performing load-balancing.
 * @imbalance: Variable to store the imbalance.
 *
3389 3390 3391 3392 3393
 * Description:
 * Check if we have potential to perform some power-savings balance.
 * If yes, set the busiest group to be the least loaded group in the
 * sched_domain, so that it's CPUs can be put to idle.
 *
3394 3395 3396 3397 3398 3399 3400 3401
 * Returns 1 if there is potential to perform power-savings balance.
 * Else returns 0.
 */
static inline int check_power_save_busiest_group(struct sd_lb_stats *sds,
					int this_cpu, unsigned long *imbalance)
{
	if (!sds->power_savings_balance)
		return 0;
L
Linus Torvalds 已提交
3402

3403 3404 3405
	if (sds->this != sds->group_leader ||
			sds->group_leader == sds->group_min)
		return 0;
3406

3407 3408
	*imbalance = sds->min_load_per_task;
	sds->busiest = sds->group_min;
L
Linus Torvalds 已提交
3409

3410 3411 3412 3413 3414 3415
	if (sched_mc_power_savings >= POWERSAVINGS_BALANCE_WAKEUP) {
		cpu_rq(this_cpu)->rd->sched_mc_preferred_wakeup_cpu =
			group_first_cpu(sds->group_leader);
	}

	return 1;
L
Linus Torvalds 已提交
3416

3417 3418 3419 3420 3421 3422 3423
}
#else /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
static inline void init_sd_power_savings_stats(struct sched_domain *sd,
	struct sd_lb_stats *sds, enum cpu_idle_type idle)
{
	return;
}
3424

3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438
static inline void update_sd_power_savings_stats(struct sched_group *group,
	struct sd_lb_stats *sds, int local_group, struct sg_lb_stats *sgs)
{
	return;
}

static inline int check_power_save_busiest_group(struct sd_lb_stats *sds,
					int this_cpu, unsigned long *imbalance)
{
	return 0;
}
#endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */


3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468
/**
 * update_sg_lb_stats - Update sched_group's statistics for load balancing.
 * @group: sched_group whose statistics are to be updated.
 * @this_cpu: Cpu for which load balance is currently performed.
 * @idle: Idle status of this_cpu
 * @load_idx: Load index of sched_domain of this_cpu for load calc.
 * @sd_idle: Idle status of the sched_domain containing group.
 * @local_group: Does group contain this_cpu.
 * @cpus: Set of cpus considered for load balancing.
 * @balance: Should we balance.
 * @sgs: variable to hold the statistics for this group.
 */
static inline void update_sg_lb_stats(struct sched_group *group, int this_cpu,
			enum cpu_idle_type idle, int load_idx, int *sd_idle,
			int local_group, const struct cpumask *cpus,
			int *balance, struct sg_lb_stats *sgs)
{
	unsigned long load, max_cpu_load, min_cpu_load;
	int i;
	unsigned int balance_cpu = -1, first_idle_cpu = 0;
	unsigned long sum_avg_load_per_task;
	unsigned long avg_load_per_task;

	if (local_group)
		balance_cpu = group_first_cpu(group);

	/* Tally up the load of all CPUs in the group */
	sum_avg_load_per_task = avg_load_per_task = 0;
	max_cpu_load = 0;
	min_cpu_load = ~0UL;
3469

3470 3471
	for_each_cpu_and(i, sched_group_cpus(group), cpus) {
		struct rq *rq = cpu_rq(i);
3472

3473 3474
		if (*sd_idle && rq->nr_running)
			*sd_idle = 0;
3475

3476
		/* Bias balancing toward cpus of our domain */
L
Linus Torvalds 已提交
3477
		if (local_group) {
3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489
			if (idle_cpu(i) && !first_idle_cpu) {
				first_idle_cpu = 1;
				balance_cpu = i;
			}

			load = target_load(i, load_idx);
		} else {
			load = source_load(i, load_idx);
			if (load > max_cpu_load)
				max_cpu_load = load;
			if (min_cpu_load > load)
				min_cpu_load = load;
L
Linus Torvalds 已提交
3490
		}
3491

3492 3493 3494
		sgs->group_load += load;
		sgs->sum_nr_running += rq->nr_running;
		sgs->sum_weighted_load += weighted_cpuload(i);
3495

3496 3497
		sum_avg_load_per_task += cpu_avg_load_per_task(i);
	}
3498

3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509
	/*
	 * First idle cpu or the first cpu(busiest) in this sched group
	 * is eligible for doing load balancing at this and above
	 * domains. In the newly idle case, we will allow all the cpu's
	 * to do the newly idle load balance.
	 */
	if (idle != CPU_NEWLY_IDLE && local_group &&
	    balance_cpu != this_cpu && balance) {
		*balance = 0;
		return;
	}
3510

3511 3512 3513
	/* Adjust by relative CPU power of the group */
	sgs->avg_load = sg_div_cpu_power(group,
			sgs->group_load * SCHED_LOAD_SCALE);
3514

3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533

	/*
	 * Consider the group unbalanced when the imbalance is larger
	 * than the average weight of two tasks.
	 *
	 * APZ: with cgroup the avg task weight can vary wildly and
	 *      might not be a suitable number - should we keep a
	 *      normalized nr_running number somewhere that negates
	 *      the hierarchy?
	 */
	avg_load_per_task = sg_div_cpu_power(group,
			sum_avg_load_per_task * SCHED_LOAD_SCALE);

	if ((max_cpu_load - min_cpu_load) > 2*avg_load_per_task)
		sgs->group_imb = 1;

	sgs->group_capacity = group->__cpu_power / SCHED_LOAD_SCALE;

}
I
Ingo Molnar 已提交
3534

3535 3536 3537 3538 3539 3540 3541 3542 3543
/**
 * update_sd_lb_stats - Update sched_group's statistics for load balancing.
 * @sd: sched_domain whose statistics are to be updated.
 * @this_cpu: Cpu for which load balance is currently performed.
 * @idle: Idle status of this_cpu
 * @sd_idle: Idle status of the sched_domain containing group.
 * @cpus: Set of cpus considered for load balancing.
 * @balance: Should we balance.
 * @sds: variable to hold the statistics for this sched_domain.
L
Linus Torvalds 已提交
3544
 */
3545 3546 3547 3548
static inline void update_sd_lb_stats(struct sched_domain *sd, int this_cpu,
			enum cpu_idle_type idle, int *sd_idle,
			const struct cpumask *cpus, int *balance,
			struct sd_lb_stats *sds)
L
Linus Torvalds 已提交
3549
{
3550
	struct sched_group *group = sd->groups;
3551
	struct sg_lb_stats sgs;
3552 3553
	int load_idx;

3554
	init_sd_power_savings_stats(sd, sds, idle);
3555
	load_idx = get_sd_load_idx(sd, idle);
L
Linus Torvalds 已提交
3556 3557 3558 3559

	do {
		int local_group;

3560 3561
		local_group = cpumask_test_cpu(this_cpu,
					       sched_group_cpus(group));
3562
		memset(&sgs, 0, sizeof(sgs));
3563 3564
		update_sg_lb_stats(group, this_cpu, idle, load_idx, sd_idle,
				local_group, cpus, balance, &sgs);
L
Linus Torvalds 已提交
3565

3566 3567
		if (local_group && balance && !(*balance))
			return;
3568

3569 3570
		sds->total_load += sgs.group_load;
		sds->total_pwr += group->__cpu_power;
L
Linus Torvalds 已提交
3571 3572

		if (local_group) {
3573 3574 3575 3576 3577
			sds->this_load = sgs.avg_load;
			sds->this = group;
			sds->this_nr_running = sgs.sum_nr_running;
			sds->this_load_per_task = sgs.sum_weighted_load;
		} else if (sgs.avg_load > sds->max_load &&
3578 3579
			   (sgs.sum_nr_running > sgs.group_capacity ||
				sgs.group_imb)) {
3580 3581 3582 3583 3584
			sds->max_load = sgs.avg_load;
			sds->busiest = group;
			sds->busiest_nr_running = sgs.sum_nr_running;
			sds->busiest_load_per_task = sgs.sum_weighted_load;
			sds->group_imb = sgs.group_imb;
3585
		}
3586

3587
		update_sd_power_savings_stats(group, sds, local_group, &sgs);
L
Linus Torvalds 已提交
3588 3589 3590
		group = group->next;
	} while (group != sd->groups);

3591
}
L
Linus Torvalds 已提交
3592

3593 3594
/**
 * fix_small_imbalance - Calculate the minor imbalance that exists
3595 3596
 *			amongst the groups of a sched_domain, during
 *			load balancing.
3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614
 * @sds: Statistics of the sched_domain whose imbalance is to be calculated.
 * @this_cpu: The cpu at whose sched_domain we're performing load-balance.
 * @imbalance: Variable to store the imbalance.
 */
static inline void fix_small_imbalance(struct sd_lb_stats *sds,
				int this_cpu, unsigned long *imbalance)
{
	unsigned long tmp, pwr_now = 0, pwr_move = 0;
	unsigned int imbn = 2;

	if (sds->this_nr_running) {
		sds->this_load_per_task /= sds->this_nr_running;
		if (sds->busiest_load_per_task >
				sds->this_load_per_task)
			imbn = 1;
	} else
		sds->this_load_per_task =
			cpu_avg_load_per_task(this_cpu);
L
Linus Torvalds 已提交
3615

3616 3617 3618 3619 3620
	if (sds->max_load - sds->this_load + sds->busiest_load_per_task >=
			sds->busiest_load_per_task * imbn) {
		*imbalance = sds->busiest_load_per_task;
		return;
	}
3621

L
Linus Torvalds 已提交
3622
	/*
3623 3624 3625
	 * OK, we don't have enough imbalance to justify moving tasks,
	 * however we may be able to increase total CPU power used by
	 * moving them.
L
Linus Torvalds 已提交
3626
	 */
3627

3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656
	pwr_now += sds->busiest->__cpu_power *
			min(sds->busiest_load_per_task, sds->max_load);
	pwr_now += sds->this->__cpu_power *
			min(sds->this_load_per_task, sds->this_load);
	pwr_now /= SCHED_LOAD_SCALE;

	/* Amount of load we'd subtract */
	tmp = sg_div_cpu_power(sds->busiest,
			sds->busiest_load_per_task * SCHED_LOAD_SCALE);
	if (sds->max_load > tmp)
		pwr_move += sds->busiest->__cpu_power *
			min(sds->busiest_load_per_task, sds->max_load - tmp);

	/* Amount of load we'd add */
	if (sds->max_load * sds->busiest->__cpu_power <
		sds->busiest_load_per_task * SCHED_LOAD_SCALE)
		tmp = sg_div_cpu_power(sds->this,
			sds->max_load * sds->busiest->__cpu_power);
	else
		tmp = sg_div_cpu_power(sds->this,
			sds->busiest_load_per_task * SCHED_LOAD_SCALE);
	pwr_move += sds->this->__cpu_power *
			min(sds->this_load_per_task, sds->this_load + tmp);
	pwr_move /= SCHED_LOAD_SCALE;

	/* Move if we gain throughput */
	if (pwr_move > pwr_now)
		*imbalance = sds->busiest_load_per_task;
}
3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668

/**
 * calculate_imbalance - Calculate the amount of imbalance present within the
 *			 groups of a given sched_domain during load balance.
 * @sds: statistics of the sched_domain whose imbalance is to be calculated.
 * @this_cpu: Cpu for which currently load balance is being performed.
 * @imbalance: The variable to store the imbalance.
 */
static inline void calculate_imbalance(struct sd_lb_stats *sds, int this_cpu,
		unsigned long *imbalance)
{
	unsigned long max_pull;
3669 3670 3671 3672 3673
	/*
	 * In the presence of smp nice balancing, certain scenarios can have
	 * max load less than avg load(as we skip the groups at or below
	 * its cpu_power, while calculating max_load..)
	 */
3674
	if (sds->max_load < sds->avg_load) {
3675
		*imbalance = 0;
3676
		return fix_small_imbalance(sds, this_cpu, imbalance);
3677
	}
3678 3679

	/* Don't want to pull so many tasks that a group would go idle */
3680 3681
	max_pull = min(sds->max_load - sds->avg_load,
			sds->max_load - sds->busiest_load_per_task);
3682

L
Linus Torvalds 已提交
3683
	/* How much load to actually move to equalise the imbalance */
3684 3685
	*imbalance = min(max_pull * sds->busiest->__cpu_power,
		(sds->avg_load - sds->this_load) * sds->this->__cpu_power)
L
Linus Torvalds 已提交
3686 3687
			/ SCHED_LOAD_SCALE;

3688 3689 3690 3691 3692 3693
	/*
	 * if *imbalance is less than the average load per runnable task
	 * there is no gaurantee that any tasks will be moved so we'll have
	 * a think about bumping its value to force at least one task to be
	 * moved
	 */
3694 3695
	if (*imbalance < sds->busiest_load_per_task)
		return fix_small_imbalance(sds, this_cpu, imbalance);
L
Linus Torvalds 已提交
3696

3697
}
3698
/******* find_busiest_group() helpers end here *********************/
L
Linus Torvalds 已提交
3699

3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723
/**
 * find_busiest_group - Returns the busiest group within the sched_domain
 * if there is an imbalance. If there isn't an imbalance, and
 * the user has opted for power-savings, it returns a group whose
 * CPUs can be put to idle by rebalancing those tasks elsewhere, if
 * such a group exists.
 *
 * Also calculates the amount of weighted load which should be moved
 * to restore balance.
 *
 * @sd: The sched_domain whose busiest group is to be returned.
 * @this_cpu: The cpu for which load balancing is currently being performed.
 * @imbalance: Variable which stores amount of weighted load which should
 *		be moved to restore balance/put a group to idle.
 * @idle: The idle status of this_cpu.
 * @sd_idle: The idleness of sd
 * @cpus: The set of CPUs under consideration for load-balancing.
 * @balance: Pointer to a variable indicating if this_cpu
 *	is the appropriate cpu to perform load balancing at this_level.
 *
 * Returns:	- the busiest group if imbalance exists.
 *		- If no imbalance and user has opted for power-savings balance,
 *		   return the least loaded group whose CPUs can be
 *		   put to idle by rebalancing its tasks onto our group.
3724 3725 3726 3727 3728 3729 3730
 */
static struct sched_group *
find_busiest_group(struct sched_domain *sd, int this_cpu,
		   unsigned long *imbalance, enum cpu_idle_type idle,
		   int *sd_idle, const struct cpumask *cpus, int *balance)
{
	struct sd_lb_stats sds;
L
Linus Torvalds 已提交
3731

3732
	memset(&sds, 0, sizeof(sds));
L
Linus Torvalds 已提交
3733

3734 3735 3736 3737 3738 3739 3740
	/*
	 * Compute the various statistics relavent for load balancing at
	 * this level.
	 */
	update_sd_lb_stats(sd, this_cpu, idle, sd_idle, cpus,
					balance, &sds);

3741 3742 3743 3744 3745 3746 3747 3748 3749 3750
	/* Cases where imbalance does not exist from POV of this_cpu */
	/* 1) this_cpu is not the appropriate cpu to perform load balancing
	 *    at this level.
	 * 2) There is no busy sibling group to pull from.
	 * 3) This group is the busiest group.
	 * 4) This group is more busy than the avg busieness at this
	 *    sched_domain.
	 * 5) The imbalance is within the specified limit.
	 * 6) Any rebalance would lead to ping-pong
	 */
3751 3752
	if (balance && !(*balance))
		goto ret;
L
Linus Torvalds 已提交
3753

3754 3755
	if (!sds.busiest || sds.busiest_nr_running == 0)
		goto out_balanced;
L
Linus Torvalds 已提交
3756

3757
	if (sds.this_load >= sds.max_load)
L
Linus Torvalds 已提交
3758 3759
		goto out_balanced;

3760
	sds.avg_load = (SCHED_LOAD_SCALE * sds.total_load) / sds.total_pwr;
L
Linus Torvalds 已提交
3761

3762 3763 3764 3765
	if (sds.this_load >= sds.avg_load)
		goto out_balanced;

	if (100 * sds.max_load <= sd->imbalance_pct * sds.this_load)
L
Linus Torvalds 已提交
3766 3767
		goto out_balanced;

3768 3769 3770 3771
	sds.busiest_load_per_task /= sds.busiest_nr_running;
	if (sds.group_imb)
		sds.busiest_load_per_task =
			min(sds.busiest_load_per_task, sds.avg_load);
3772

L
Linus Torvalds 已提交
3773 3774 3775 3776 3777 3778 3779 3780
	/*
	 * We're trying to get all the cpus to the average_load, so we don't
	 * want to push ourselves above the average load, nor do we wish to
	 * reduce the max loaded cpu below the average load, as either of these
	 * actions would just result in more rebalancing later, and ping-pong
	 * tasks around. Thus we look for the minimum possible imbalance.
	 * Negative imbalances (*we* are more loaded than anyone else) will
	 * be counted as no imbalance for these purposes -- we can't fix that
I
Ingo Molnar 已提交
3781
	 * by pulling tasks to us. Be careful of negative numbers as they'll
L
Linus Torvalds 已提交
3782 3783
	 * appear as very large values with unsigned longs.
	 */
3784
	if (sds.max_load <= sds.busiest_load_per_task)
3785 3786
		goto out_balanced;

3787 3788
	/* Looks like there is an imbalance. Compute it */
	calculate_imbalance(&sds, this_cpu, imbalance);
3789
	return sds.busiest;
L
Linus Torvalds 已提交
3790 3791

out_balanced:
3792 3793 3794 3795 3796 3797
	/*
	 * There is no obvious imbalance. But check if we can do some balancing
	 * to save power.
	 */
	if (check_power_save_busiest_group(&sds, this_cpu, imbalance))
		return sds.busiest;
3798
ret:
L
Linus Torvalds 已提交
3799 3800 3801 3802 3803 3804 3805
	*imbalance = 0;
	return NULL;
}

/*
 * find_busiest_queue - find the busiest runqueue among the cpus in group.
 */
3806
static struct rq *
I
Ingo Molnar 已提交
3807
find_busiest_queue(struct sched_group *group, enum cpu_idle_type idle,
3808
		   unsigned long imbalance, const struct cpumask *cpus)
L
Linus Torvalds 已提交
3809
{
3810
	struct rq *busiest = NULL, *rq;
3811
	unsigned long max_load = 0;
L
Linus Torvalds 已提交
3812 3813
	int i;

3814
	for_each_cpu(i, sched_group_cpus(group)) {
I
Ingo Molnar 已提交
3815
		unsigned long wl;
3816

3817
		if (!cpumask_test_cpu(i, cpus))
3818 3819
			continue;

3820
		rq = cpu_rq(i);
I
Ingo Molnar 已提交
3821
		wl = weighted_cpuload(i);
3822

I
Ingo Molnar 已提交
3823
		if (rq->nr_running == 1 && wl > imbalance)
3824
			continue;
L
Linus Torvalds 已提交
3825

I
Ingo Molnar 已提交
3826 3827
		if (wl > max_load) {
			max_load = wl;
3828
			busiest = rq;
L
Linus Torvalds 已提交
3829 3830 3831 3832 3833 3834
		}
	}

	return busiest;
}

3835 3836 3837 3838 3839 3840
/*
 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
 * so long as it is large enough.
 */
#define MAX_PINNED_INTERVAL	512

3841 3842 3843
/* Working cpumask for load_balance and load_balance_newidle. */
static DEFINE_PER_CPU(cpumask_var_t, load_balance_tmpmask);

L
Linus Torvalds 已提交
3844 3845 3846 3847
/*
 * Check this_cpu to ensure it is balanced within domain. Attempt to move
 * tasks if there is an imbalance.
 */
3848
static int load_balance(int this_cpu, struct rq *this_rq,
I
Ingo Molnar 已提交
3849
			struct sched_domain *sd, enum cpu_idle_type idle,
3850
			int *balance)
L
Linus Torvalds 已提交
3851
{
P
Peter Williams 已提交
3852
	int ld_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
L
Linus Torvalds 已提交
3853 3854
	struct sched_group *group;
	unsigned long imbalance;
3855
	struct rq *busiest;
3856
	unsigned long flags;
3857
	struct cpumask *cpus = __get_cpu_var(load_balance_tmpmask);
N
Nick Piggin 已提交
3858

3859
	cpumask_setall(cpus);
3860

3861 3862 3863
	/*
	 * When power savings policy is enabled for the parent domain, idle
	 * sibling can pick up load irrespective of busy siblings. In this case,
I
Ingo Molnar 已提交
3864
	 * let the state of idle sibling percolate up as CPU_IDLE, instead of
I
Ingo Molnar 已提交
3865
	 * portraying it as CPU_NOT_IDLE.
3866
	 */
I
Ingo Molnar 已提交
3867
	if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
3868
	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
N
Nick Piggin 已提交
3869
		sd_idle = 1;
L
Linus Torvalds 已提交
3870

3871
	schedstat_inc(sd, lb_count[idle]);
L
Linus Torvalds 已提交
3872

3873
redo:
3874
	update_shares(sd);
3875
	group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
3876
				   cpus, balance);
3877

3878
	if (*balance == 0)
3879 3880
		goto out_balanced;

L
Linus Torvalds 已提交
3881 3882 3883 3884 3885
	if (!group) {
		schedstat_inc(sd, lb_nobusyg[idle]);
		goto out_balanced;
	}

3886
	busiest = find_busiest_queue(group, idle, imbalance, cpus);
L
Linus Torvalds 已提交
3887 3888 3889 3890 3891
	if (!busiest) {
		schedstat_inc(sd, lb_nobusyq[idle]);
		goto out_balanced;
	}

N
Nick Piggin 已提交
3892
	BUG_ON(busiest == this_rq);
L
Linus Torvalds 已提交
3893 3894 3895

	schedstat_add(sd, lb_imbalance[idle], imbalance);

P
Peter Williams 已提交
3896
	ld_moved = 0;
L
Linus Torvalds 已提交
3897 3898 3899 3900
	if (busiest->nr_running > 1) {
		/*
		 * Attempt to move tasks. If find_busiest_group has found
		 * an imbalance but busiest->nr_running <= 1, the group is
P
Peter Williams 已提交
3901
		 * still unbalanced. ld_moved simply stays zero, so it is
L
Linus Torvalds 已提交
3902 3903
		 * correctly treated as an imbalance.
		 */
3904
		local_irq_save(flags);
N
Nick Piggin 已提交
3905
		double_rq_lock(this_rq, busiest);
P
Peter Williams 已提交
3906
		ld_moved = move_tasks(this_rq, this_cpu, busiest,
3907
				      imbalance, sd, idle, &all_pinned);
N
Nick Piggin 已提交
3908
		double_rq_unlock(this_rq, busiest);
3909
		local_irq_restore(flags);
3910

3911 3912 3913
		/*
		 * some other cpu did the load balance for us.
		 */
P
Peter Williams 已提交
3914
		if (ld_moved && this_cpu != smp_processor_id())
3915 3916
			resched_cpu(this_cpu);

3917
		/* All tasks on this runqueue were pinned by CPU affinity */
3918
		if (unlikely(all_pinned)) {
3919 3920
			cpumask_clear_cpu(cpu_of(busiest), cpus);
			if (!cpumask_empty(cpus))
3921
				goto redo;
3922
			goto out_balanced;
3923
		}
L
Linus Torvalds 已提交
3924
	}
3925

P
Peter Williams 已提交
3926
	if (!ld_moved) {
L
Linus Torvalds 已提交
3927 3928 3929 3930 3931
		schedstat_inc(sd, lb_failed[idle]);
		sd->nr_balance_failed++;

		if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {

3932
			spin_lock_irqsave(&busiest->lock, flags);
3933 3934 3935 3936

			/* don't kick the migration_thread, if the curr
			 * task on busiest cpu can't be moved to this_cpu
			 */
3937 3938
			if (!cpumask_test_cpu(this_cpu,
					      &busiest->curr->cpus_allowed)) {
3939
				spin_unlock_irqrestore(&busiest->lock, flags);
3940 3941 3942 3943
				all_pinned = 1;
				goto out_one_pinned;
			}

L
Linus Torvalds 已提交
3944 3945 3946
			if (!busiest->active_balance) {
				busiest->active_balance = 1;
				busiest->push_cpu = this_cpu;
3947
				active_balance = 1;
L
Linus Torvalds 已提交
3948
			}
3949
			spin_unlock_irqrestore(&busiest->lock, flags);
3950
			if (active_balance)
L
Linus Torvalds 已提交
3951 3952 3953 3954 3955 3956
				wake_up_process(busiest->migration_thread);

			/*
			 * We've kicked active balancing, reset the failure
			 * counter.
			 */
3957
			sd->nr_balance_failed = sd->cache_nice_tries+1;
L
Linus Torvalds 已提交
3958
		}
3959
	} else
L
Linus Torvalds 已提交
3960 3961
		sd->nr_balance_failed = 0;

3962
	if (likely(!active_balance)) {
L
Linus Torvalds 已提交
3963 3964
		/* We were unbalanced, so reset the balancing interval */
		sd->balance_interval = sd->min_interval;
3965 3966 3967 3968 3969 3970 3971 3972 3973
	} else {
		/*
		 * If we've begun active balancing, start to back off. This
		 * case may not be covered by the all_pinned logic if there
		 * is only 1 task on the busy runqueue (because we don't call
		 * move_tasks).
		 */
		if (sd->balance_interval < sd->max_interval)
			sd->balance_interval *= 2;
L
Linus Torvalds 已提交
3974 3975
	}

P
Peter Williams 已提交
3976
	if (!ld_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
3977
	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
3978 3979 3980
		ld_moved = -1;

	goto out;
L
Linus Torvalds 已提交
3981 3982 3983 3984

out_balanced:
	schedstat_inc(sd, lb_balanced[idle]);

3985
	sd->nr_balance_failed = 0;
3986 3987

out_one_pinned:
L
Linus Torvalds 已提交
3988
	/* tune up the balancing interval */
3989 3990
	if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
			(sd->balance_interval < sd->max_interval))
L
Linus Torvalds 已提交
3991 3992
		sd->balance_interval *= 2;

3993
	if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
3994
	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
3995 3996 3997 3998
		ld_moved = -1;
	else
		ld_moved = 0;
out:
3999 4000
	if (ld_moved)
		update_shares(sd);
4001
	return ld_moved;
L
Linus Torvalds 已提交
4002 4003 4004 4005 4006 4007
}

/*
 * Check this_cpu to ensure it is balanced within domain. Attempt to move
 * tasks if there is an imbalance.
 *
I
Ingo Molnar 已提交
4008
 * Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE).
L
Linus Torvalds 已提交
4009 4010
 * this_rq is locked.
 */
4011
static int
4012
load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd)
L
Linus Torvalds 已提交
4013 4014
{
	struct sched_group *group;
4015
	struct rq *busiest = NULL;
L
Linus Torvalds 已提交
4016
	unsigned long imbalance;
P
Peter Williams 已提交
4017
	int ld_moved = 0;
N
Nick Piggin 已提交
4018
	int sd_idle = 0;
4019
	int all_pinned = 0;
4020
	struct cpumask *cpus = __get_cpu_var(load_balance_tmpmask);
4021

4022
	cpumask_setall(cpus);
N
Nick Piggin 已提交
4023

4024 4025 4026 4027
	/*
	 * When power savings policy is enabled for the parent domain, idle
	 * sibling can pick up load irrespective of busy siblings. In this case,
	 * let the state of idle sibling percolate up as IDLE, instead of
I
Ingo Molnar 已提交
4028
	 * portraying it as CPU_NOT_IDLE.
4029 4030 4031
	 */
	if (sd->flags & SD_SHARE_CPUPOWER &&
	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
N
Nick Piggin 已提交
4032
		sd_idle = 1;
L
Linus Torvalds 已提交
4033

4034
	schedstat_inc(sd, lb_count[CPU_NEWLY_IDLE]);
4035
redo:
4036
	update_shares_locked(this_rq, sd);
I
Ingo Molnar 已提交
4037
	group = find_busiest_group(sd, this_cpu, &imbalance, CPU_NEWLY_IDLE,
4038
				   &sd_idle, cpus, NULL);
L
Linus Torvalds 已提交
4039
	if (!group) {
I
Ingo Molnar 已提交
4040
		schedstat_inc(sd, lb_nobusyg[CPU_NEWLY_IDLE]);
4041
		goto out_balanced;
L
Linus Torvalds 已提交
4042 4043
	}

4044
	busiest = find_busiest_queue(group, CPU_NEWLY_IDLE, imbalance, cpus);
N
Nick Piggin 已提交
4045
	if (!busiest) {
I
Ingo Molnar 已提交
4046
		schedstat_inc(sd, lb_nobusyq[CPU_NEWLY_IDLE]);
4047
		goto out_balanced;
L
Linus Torvalds 已提交
4048 4049
	}

N
Nick Piggin 已提交
4050 4051
	BUG_ON(busiest == this_rq);

I
Ingo Molnar 已提交
4052
	schedstat_add(sd, lb_imbalance[CPU_NEWLY_IDLE], imbalance);
4053

P
Peter Williams 已提交
4054
	ld_moved = 0;
4055 4056 4057
	if (busiest->nr_running > 1) {
		/* Attempt to move tasks */
		double_lock_balance(this_rq, busiest);
4058 4059
		/* this_rq->clock is already updated */
		update_rq_clock(busiest);
P
Peter Williams 已提交
4060
		ld_moved = move_tasks(this_rq, this_cpu, busiest,
4061 4062
					imbalance, sd, CPU_NEWLY_IDLE,
					&all_pinned);
4063
		double_unlock_balance(this_rq, busiest);
4064

4065
		if (unlikely(all_pinned)) {
4066 4067
			cpumask_clear_cpu(cpu_of(busiest), cpus);
			if (!cpumask_empty(cpus))
4068 4069
				goto redo;
		}
4070 4071
	}

P
Peter Williams 已提交
4072
	if (!ld_moved) {
4073
		int active_balance = 0;
4074

I
Ingo Molnar 已提交
4075
		schedstat_inc(sd, lb_failed[CPU_NEWLY_IDLE]);
4076 4077
		if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
		    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
N
Nick Piggin 已提交
4078
			return -1;
4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114

		if (sched_mc_power_savings < POWERSAVINGS_BALANCE_WAKEUP)
			return -1;

		if (sd->nr_balance_failed++ < 2)
			return -1;

		/*
		 * The only task running in a non-idle cpu can be moved to this
		 * cpu in an attempt to completely freeup the other CPU
		 * package. The same method used to move task in load_balance()
		 * have been extended for load_balance_newidle() to speedup
		 * consolidation at sched_mc=POWERSAVINGS_BALANCE_WAKEUP (2)
		 *
		 * The package power saving logic comes from
		 * find_busiest_group().  If there are no imbalance, then
		 * f_b_g() will return NULL.  However when sched_mc={1,2} then
		 * f_b_g() will select a group from which a running task may be
		 * pulled to this cpu in order to make the other package idle.
		 * If there is no opportunity to make a package idle and if
		 * there are no imbalance, then f_b_g() will return NULL and no
		 * action will be taken in load_balance_newidle().
		 *
		 * Under normal task pull operation due to imbalance, there
		 * will be more than one task in the source run queue and
		 * move_tasks() will succeed.  ld_moved will be true and this
		 * active balance code will not be triggered.
		 */

		/* Lock busiest in correct order while this_rq is held */
		double_lock_balance(this_rq, busiest);

		/*
		 * don't kick the migration_thread, if the curr
		 * task on busiest cpu can't be moved to this_cpu
		 */
4115
		if (!cpumask_test_cpu(this_cpu, &busiest->curr->cpus_allowed)) {
4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127
			double_unlock_balance(this_rq, busiest);
			all_pinned = 1;
			return ld_moved;
		}

		if (!busiest->active_balance) {
			busiest->active_balance = 1;
			busiest->push_cpu = this_cpu;
			active_balance = 1;
		}

		double_unlock_balance(this_rq, busiest);
4128 4129 4130 4131
		/*
		 * Should not call ttwu while holding a rq->lock
		 */
		spin_unlock(&this_rq->lock);
4132 4133
		if (active_balance)
			wake_up_process(busiest->migration_thread);
4134
		spin_lock(&this_rq->lock);
4135

N
Nick Piggin 已提交
4136
	} else
4137
		sd->nr_balance_failed = 0;
L
Linus Torvalds 已提交
4138

4139
	update_shares_locked(this_rq, sd);
P
Peter Williams 已提交
4140
	return ld_moved;
4141 4142

out_balanced:
I
Ingo Molnar 已提交
4143
	schedstat_inc(sd, lb_balanced[CPU_NEWLY_IDLE]);
4144
	if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
4145
	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
N
Nick Piggin 已提交
4146
		return -1;
4147
	sd->nr_balance_failed = 0;
4148

4149
	return 0;
L
Linus Torvalds 已提交
4150 4151 4152 4153 4154 4155
}

/*
 * idle_balance is called by schedule() if this_cpu is about to become
 * idle. Attempts to pull tasks from other CPUs.
 */
4156
static void idle_balance(int this_cpu, struct rq *this_rq)
L
Linus Torvalds 已提交
4157 4158
{
	struct sched_domain *sd;
4159
	int pulled_task = 0;
I
Ingo Molnar 已提交
4160
	unsigned long next_balance = jiffies + HZ;
L
Linus Torvalds 已提交
4161 4162

	for_each_domain(this_cpu, sd) {
4163 4164 4165 4166 4167 4168
		unsigned long interval;

		if (!(sd->flags & SD_LOAD_BALANCE))
			continue;

		if (sd->flags & SD_BALANCE_NEWIDLE)
4169
			/* If we've pulled tasks over stop searching: */
4170
			pulled_task = load_balance_newidle(this_cpu, this_rq,
4171
							   sd);
4172 4173 4174 4175 4176 4177

		interval = msecs_to_jiffies(sd->balance_interval);
		if (time_after(next_balance, sd->last_balance + interval))
			next_balance = sd->last_balance + interval;
		if (pulled_task)
			break;
L
Linus Torvalds 已提交
4178
	}
I
Ingo Molnar 已提交
4179
	if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
4180 4181 4182 4183 4184
		/*
		 * We are going idle. next_balance may be set based on
		 * a busy processor. So reset next_balance.
		 */
		this_rq->next_balance = next_balance;
I
Ingo Molnar 已提交
4185
	}
L
Linus Torvalds 已提交
4186 4187 4188 4189 4190 4191 4192 4193 4194 4195
}

/*
 * active_load_balance is run by migration threads. It pushes running tasks
 * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
 * running on each physical CPU where possible, and avoids physical /
 * logical imbalances.
 *
 * Called with busiest_rq locked.
 */
4196
static void active_load_balance(struct rq *busiest_rq, int busiest_cpu)
L
Linus Torvalds 已提交
4197
{
4198
	int target_cpu = busiest_rq->push_cpu;
4199 4200
	struct sched_domain *sd;
	struct rq *target_rq;
4201

4202
	/* Is there any task to move? */
4203 4204 4205 4206
	if (busiest_rq->nr_running <= 1)
		return;

	target_rq = cpu_rq(target_cpu);
L
Linus Torvalds 已提交
4207 4208

	/*
4209
	 * This condition is "impossible", if it occurs
I
Ingo Molnar 已提交
4210
	 * we need to fix it. Originally reported by
4211
	 * Bjorn Helgaas on a 128-cpu setup.
L
Linus Torvalds 已提交
4212
	 */
4213
	BUG_ON(busiest_rq == target_rq);
L
Linus Torvalds 已提交
4214

4215 4216
	/* move a task from busiest_rq to target_rq */
	double_lock_balance(busiest_rq, target_rq);
4217 4218
	update_rq_clock(busiest_rq);
	update_rq_clock(target_rq);
4219 4220

	/* Search for an sd spanning us and the target CPU. */
4221
	for_each_domain(target_cpu, sd) {
4222
		if ((sd->flags & SD_LOAD_BALANCE) &&
4223
		    cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
4224
				break;
4225
	}
4226

4227
	if (likely(sd)) {
4228
		schedstat_inc(sd, alb_count);
4229

P
Peter Williams 已提交
4230 4231
		if (move_one_task(target_rq, target_cpu, busiest_rq,
				  sd, CPU_IDLE))
4232 4233 4234 4235
			schedstat_inc(sd, alb_pushed);
		else
			schedstat_inc(sd, alb_failed);
	}
4236
	double_unlock_balance(busiest_rq, target_rq);
L
Linus Torvalds 已提交
4237 4238
}

4239 4240 4241
#ifdef CONFIG_NO_HZ
static struct {
	atomic_t load_balancer;
4242
	cpumask_var_t cpu_mask;
4243 4244 4245 4246
} nohz ____cacheline_aligned = {
	.load_balancer = ATOMIC_INIT(-1),
};

4247
/*
4248 4249 4250 4251 4252 4253 4254 4255 4256 4257
 * This routine will try to nominate the ilb (idle load balancing)
 * owner among the cpus whose ticks are stopped. ilb owner will do the idle
 * load balancing on behalf of all those cpus. If all the cpus in the system
 * go into this tickless mode, then there will be no ilb owner (as there is
 * no need for one) and all the cpus will sleep till the next wakeup event
 * arrives...
 *
 * For the ilb owner, tick is not stopped. And this tick will be used
 * for idle load balancing. ilb owner will still be part of
 * nohz.cpu_mask..
4258
 *
4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273
 * While stopping the tick, this cpu will become the ilb owner if there
 * is no other owner. And will be the owner till that cpu becomes busy
 * or if all cpus in the system stop their ticks at which point
 * there is no need for ilb owner.
 *
 * When the ilb owner becomes busy, it nominates another owner, during the
 * next busy scheduler_tick()
 */
int select_nohz_load_balancer(int stop_tick)
{
	int cpu = smp_processor_id();

	if (stop_tick) {
		cpu_rq(cpu)->in_nohz_recently = 1;

4274 4275 4276 4277 4278 4279 4280 4281
		if (!cpu_active(cpu)) {
			if (atomic_read(&nohz.load_balancer) != cpu)
				return 0;

			/*
			 * If we are going offline and still the leader,
			 * give up!
			 */
4282 4283
			if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
				BUG();
4284

4285 4286 4287
			return 0;
		}

4288 4289
		cpumask_set_cpu(cpu, nohz.cpu_mask);

4290
		/* time for ilb owner also to sleep */
4291
		if (cpumask_weight(nohz.cpu_mask) == num_online_cpus()) {
4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303
			if (atomic_read(&nohz.load_balancer) == cpu)
				atomic_set(&nohz.load_balancer, -1);
			return 0;
		}

		if (atomic_read(&nohz.load_balancer) == -1) {
			/* make me the ilb owner */
			if (atomic_cmpxchg(&nohz.load_balancer, -1, cpu) == -1)
				return 1;
		} else if (atomic_read(&nohz.load_balancer) == cpu)
			return 1;
	} else {
4304
		if (!cpumask_test_cpu(cpu, nohz.cpu_mask))
4305 4306
			return 0;

4307
		cpumask_clear_cpu(cpu, nohz.cpu_mask);
4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319

		if (atomic_read(&nohz.load_balancer) == cpu)
			if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
				BUG();
	}
	return 0;
}
#endif

static DEFINE_SPINLOCK(balancing);

/*
4320 4321 4322 4323 4324
 * It checks each scheduling domain to see if it is due to be balanced,
 * and initiates a balancing operation if so.
 *
 * Balancing parameters are set up in arch_init_sched_domains.
 */
A
Alexey Dobriyan 已提交
4325
static void rebalance_domains(int cpu, enum cpu_idle_type idle)
4326
{
4327 4328
	int balance = 1;
	struct rq *rq = cpu_rq(cpu);
4329 4330
	unsigned long interval;
	struct sched_domain *sd;
4331
	/* Earliest time when we have to do rebalance again */
4332
	unsigned long next_balance = jiffies + 60*HZ;
4333
	int update_next_balance = 0;
4334
	int need_serialize;
L
Linus Torvalds 已提交
4335

4336
	for_each_domain(cpu, sd) {
L
Linus Torvalds 已提交
4337 4338 4339 4340
		if (!(sd->flags & SD_LOAD_BALANCE))
			continue;

		interval = sd->balance_interval;
I
Ingo Molnar 已提交
4341
		if (idle != CPU_IDLE)
L
Linus Torvalds 已提交
4342 4343 4344 4345 4346 4347
			interval *= sd->busy_factor;

		/* scale ms to jiffies */
		interval = msecs_to_jiffies(interval);
		if (unlikely(!interval))
			interval = 1;
I
Ingo Molnar 已提交
4348 4349 4350
		if (interval > HZ*NR_CPUS/10)
			interval = HZ*NR_CPUS/10;

4351
		need_serialize = sd->flags & SD_SERIALIZE;
L
Linus Torvalds 已提交
4352

4353
		if (need_serialize) {
4354 4355 4356 4357
			if (!spin_trylock(&balancing))
				goto out;
		}

4358
		if (time_after_eq(jiffies, sd->last_balance + interval)) {
4359
			if (load_balance(cpu, rq, sd, idle, &balance)) {
4360 4361
				/*
				 * We've pulled tasks over so either we're no
N
Nick Piggin 已提交
4362 4363 4364
				 * longer idle, or one of our SMT siblings is
				 * not idle.
				 */
I
Ingo Molnar 已提交
4365
				idle = CPU_NOT_IDLE;
L
Linus Torvalds 已提交
4366
			}
4367
			sd->last_balance = jiffies;
L
Linus Torvalds 已提交
4368
		}
4369
		if (need_serialize)
4370 4371
			spin_unlock(&balancing);
out:
4372
		if (time_after(next_balance, sd->last_balance + interval)) {
4373
			next_balance = sd->last_balance + interval;
4374 4375
			update_next_balance = 1;
		}
4376 4377 4378 4379 4380 4381 4382 4383

		/*
		 * Stop the load balance at this level. There is another
		 * CPU in our sched group which is doing load balancing more
		 * actively.
		 */
		if (!balance)
			break;
L
Linus Torvalds 已提交
4384
	}
4385 4386 4387 4388 4389 4390 4391 4392

	/*
	 * next_balance will be updated only when there is a need.
	 * When the cpu is attached to null domain for ex, it will not be
	 * updated.
	 */
	if (likely(update_next_balance))
		rq->next_balance = next_balance;
4393 4394 4395 4396 4397 4398 4399 4400 4401
}

/*
 * run_rebalance_domains is triggered when needed from the scheduler tick.
 * In CONFIG_NO_HZ case, the idle load balance owner will do the
 * rebalancing for all the cpus for whom scheduler ticks are stopped.
 */
static void run_rebalance_domains(struct softirq_action *h)
{
I
Ingo Molnar 已提交
4402 4403 4404 4405
	int this_cpu = smp_processor_id();
	struct rq *this_rq = cpu_rq(this_cpu);
	enum cpu_idle_type idle = this_rq->idle_at_tick ?
						CPU_IDLE : CPU_NOT_IDLE;
4406

I
Ingo Molnar 已提交
4407
	rebalance_domains(this_cpu, idle);
4408 4409 4410 4411 4412 4413 4414

#ifdef CONFIG_NO_HZ
	/*
	 * If this cpu is the owner for idle load balancing, then do the
	 * balancing on behalf of the other idle cpus whose ticks are
	 * stopped.
	 */
I
Ingo Molnar 已提交
4415 4416
	if (this_rq->idle_at_tick &&
	    atomic_read(&nohz.load_balancer) == this_cpu) {
4417 4418 4419
		struct rq *rq;
		int balance_cpu;

4420 4421 4422 4423
		for_each_cpu(balance_cpu, nohz.cpu_mask) {
			if (balance_cpu == this_cpu)
				continue;

4424 4425 4426 4427 4428 4429 4430 4431
			/*
			 * If this cpu gets work to do, stop the load balancing
			 * work being done for other cpus. Next load
			 * balancing owner will pick it up.
			 */
			if (need_resched())
				break;

4432
			rebalance_domains(balance_cpu, CPU_IDLE);
4433 4434

			rq = cpu_rq(balance_cpu);
I
Ingo Molnar 已提交
4435 4436
			if (time_after(this_rq->next_balance, rq->next_balance))
				this_rq->next_balance = rq->next_balance;
4437 4438 4439 4440 4441
		}
	}
#endif
}

4442 4443 4444 4445 4446
static inline int on_null_domain(int cpu)
{
	return !rcu_dereference(cpu_rq(cpu)->sd);
}

4447 4448 4449 4450 4451 4452 4453
/*
 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
 *
 * In case of CONFIG_NO_HZ, this is the place where we nominate a new
 * idle load balancing owner or decide to stop the periodic load balancing,
 * if the whole system is idle.
 */
I
Ingo Molnar 已提交
4454
static inline void trigger_load_balance(struct rq *rq, int cpu)
4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465
{
#ifdef CONFIG_NO_HZ
	/*
	 * If we were in the nohz mode recently and busy at the current
	 * scheduler tick, then check if we need to nominate new idle
	 * load balancer.
	 */
	if (rq->in_nohz_recently && !rq->idle_at_tick) {
		rq->in_nohz_recently = 0;

		if (atomic_read(&nohz.load_balancer) == cpu) {
4466
			cpumask_clear_cpu(cpu, nohz.cpu_mask);
4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478
			atomic_set(&nohz.load_balancer, -1);
		}

		if (atomic_read(&nohz.load_balancer) == -1) {
			/*
			 * simple selection for now: Nominate the
			 * first cpu in the nohz list to be the next
			 * ilb owner.
			 *
			 * TBD: Traverse the sched domains and nominate
			 * the nearest cpu in the nohz.cpu_mask.
			 */
4479
			int ilb = cpumask_first(nohz.cpu_mask);
4480

4481
			if (ilb < nr_cpu_ids)
4482 4483 4484 4485 4486 4487 4488 4489 4490
				resched_cpu(ilb);
		}
	}

	/*
	 * If this cpu is idle and doing idle load balancing for all the
	 * cpus with ticks stopped, is it time for that to stop?
	 */
	if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) == cpu &&
4491
	    cpumask_weight(nohz.cpu_mask) == num_online_cpus()) {
4492 4493 4494 4495 4496 4497 4498 4499 4500
		resched_cpu(cpu);
		return;
	}

	/*
	 * If this cpu is idle and the idle load balancing is done by
	 * someone else, then no need raise the SCHED_SOFTIRQ
	 */
	if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) != cpu &&
4501
	    cpumask_test_cpu(cpu, nohz.cpu_mask))
4502 4503
		return;
#endif
4504 4505 4506
	/* Don't need to rebalance while attached to NULL domain */
	if (time_after_eq(jiffies, rq->next_balance) &&
	    likely(!on_null_domain(cpu)))
4507
		raise_softirq(SCHED_SOFTIRQ);
L
Linus Torvalds 已提交
4508
}
I
Ingo Molnar 已提交
4509 4510 4511

#else	/* CONFIG_SMP */

L
Linus Torvalds 已提交
4512 4513 4514
/*
 * on UP we do not need to balance between CPUs:
 */
4515
static inline void idle_balance(int cpu, struct rq *rq)
L
Linus Torvalds 已提交
4516 4517
{
}
I
Ingo Molnar 已提交
4518

L
Linus Torvalds 已提交
4519 4520 4521 4522 4523 4524 4525
#endif

DEFINE_PER_CPU(struct kernel_stat, kstat);

EXPORT_PER_CPU_SYMBOL(kstat);

/*
4526
 * Return any ns on the sched_clock that have not yet been accounted in
4527
 * @p in case that task is currently running.
4528 4529
 *
 * Called with task_rq_lock() held on @rq.
L
Linus Torvalds 已提交
4530
 */
4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544
static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq)
{
	u64 ns = 0;

	if (task_current(rq, p)) {
		update_rq_clock(rq);
		ns = rq->clock - p->se.exec_start;
		if ((s64)ns < 0)
			ns = 0;
	}

	return ns;
}

4545
unsigned long long task_delta_exec(struct task_struct *p)
L
Linus Torvalds 已提交
4546 4547
{
	unsigned long flags;
4548
	struct rq *rq;
4549
	u64 ns = 0;
4550

4551
	rq = task_rq_lock(p, &flags);
4552 4553
	ns = do_task_delta_exec(p, rq);
	task_rq_unlock(rq, &flags);
4554

4555 4556
	return ns;
}
4557

4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574
/*
 * Return accounted runtime for the task.
 * In case the task is currently running, return the runtime plus current's
 * pending runtime that have not been accounted yet.
 */
unsigned long long task_sched_runtime(struct task_struct *p)
{
	unsigned long flags;
	struct rq *rq;
	u64 ns = 0;

	rq = task_rq_lock(p, &flags);
	ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq);
	task_rq_unlock(rq, &flags);

	return ns;
}
4575

4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594
/*
 * Return sum_exec_runtime for the thread group.
 * In case the task is currently running, return the sum plus current's
 * pending runtime that have not been accounted yet.
 *
 * Note that the thread group might have other running tasks as well,
 * so the return value not includes other pending runtime that other
 * running tasks might have.
 */
unsigned long long thread_group_sched_runtime(struct task_struct *p)
{
	struct task_cputime totals;
	unsigned long flags;
	struct rq *rq;
	u64 ns;

	rq = task_rq_lock(p, &flags);
	thread_group_cputime(p, &totals);
	ns = totals.sum_exec_runtime + do_task_delta_exec(p, rq);
4595
	task_rq_unlock(rq, &flags);
4596

L
Linus Torvalds 已提交
4597 4598 4599 4600 4601 4602 4603
	return ns;
}

/*
 * Account user cpu time to a process.
 * @p: the process that the cpu time gets accounted to
 * @cputime: the cpu time spent in user space since the last update
4604
 * @cputime_scaled: cputime scaled by cpu frequency
L
Linus Torvalds 已提交
4605
 */
4606 4607
void account_user_time(struct task_struct *p, cputime_t cputime,
		       cputime_t cputime_scaled)
L
Linus Torvalds 已提交
4608 4609 4610 4611
{
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
	cputime64_t tmp;

4612
	/* Add user time to process. */
L
Linus Torvalds 已提交
4613
	p->utime = cputime_add(p->utime, cputime);
4614
	p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
4615
	account_group_user_time(p, cputime);
L
Linus Torvalds 已提交
4616 4617 4618 4619 4620 4621 4622

	/* Add user time to cpustat. */
	tmp = cputime_to_cputime64(cputime);
	if (TASK_NICE(p) > 0)
		cpustat->nice = cputime64_add(cpustat->nice, tmp);
	else
		cpustat->user = cputime64_add(cpustat->user, tmp);
4623 4624

	cpuacct_update_stats(p, CPUACCT_STAT_USER, cputime);
4625 4626
	/* Account for user time used */
	acct_update_integrals(p);
L
Linus Torvalds 已提交
4627 4628
}

4629 4630 4631 4632
/*
 * Account guest cpu time to a process.
 * @p: the process that the cpu time gets accounted to
 * @cputime: the cpu time spent in virtual machine since the last update
4633
 * @cputime_scaled: cputime scaled by cpu frequency
4634
 */
4635 4636
static void account_guest_time(struct task_struct *p, cputime_t cputime,
			       cputime_t cputime_scaled)
4637 4638 4639 4640 4641 4642
{
	cputime64_t tmp;
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;

	tmp = cputime_to_cputime64(cputime);

4643
	/* Add guest time to process. */
4644
	p->utime = cputime_add(p->utime, cputime);
4645
	p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
4646
	account_group_user_time(p, cputime);
4647 4648
	p->gtime = cputime_add(p->gtime, cputime);

4649
	/* Add guest time to cpustat. */
4650 4651 4652 4653
	cpustat->user = cputime64_add(cpustat->user, tmp);
	cpustat->guest = cputime64_add(cpustat->guest, tmp);
}

L
Linus Torvalds 已提交
4654 4655 4656 4657 4658
/*
 * Account system cpu time to a process.
 * @p: the process that the cpu time gets accounted to
 * @hardirq_offset: the offset to subtract from hardirq_count()
 * @cputime: the cpu time spent in kernel space since the last update
4659
 * @cputime_scaled: cputime scaled by cpu frequency
L
Linus Torvalds 已提交
4660 4661
 */
void account_system_time(struct task_struct *p, int hardirq_offset,
4662
			 cputime_t cputime, cputime_t cputime_scaled)
L
Linus Torvalds 已提交
4663 4664 4665 4666
{
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
	cputime64_t tmp;

4667
	if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
4668
		account_guest_time(p, cputime, cputime_scaled);
4669 4670
		return;
	}
4671

4672
	/* Add system time to process. */
L
Linus Torvalds 已提交
4673
	p->stime = cputime_add(p->stime, cputime);
4674
	p->stimescaled = cputime_add(p->stimescaled, cputime_scaled);
4675
	account_group_system_time(p, cputime);
L
Linus Torvalds 已提交
4676 4677 4678 4679 4680 4681 4682 4683

	/* Add system time to cpustat. */
	tmp = cputime_to_cputime64(cputime);
	if (hardirq_count() - hardirq_offset)
		cpustat->irq = cputime64_add(cpustat->irq, tmp);
	else if (softirq_count())
		cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
	else
4684 4685
		cpustat->system = cputime64_add(cpustat->system, tmp);

4686 4687
	cpuacct_update_stats(p, CPUACCT_STAT_SYSTEM, cputime);

L
Linus Torvalds 已提交
4688 4689 4690 4691
	/* Account for system time used */
	acct_update_integrals(p);
}

4692
/*
L
Linus Torvalds 已提交
4693 4694
 * Account for involuntary wait time.
 * @steal: the cpu time spent in involuntary wait
4695
 */
4696
void account_steal_time(cputime_t cputime)
4697
{
4698 4699 4700 4701
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
	cputime64_t cputime64 = cputime_to_cputime64(cputime);

	cpustat->steal = cputime64_add(cpustat->steal, cputime64);
4702 4703
}

L
Linus Torvalds 已提交
4704
/*
4705 4706
 * Account for idle time.
 * @cputime: the cpu time spent in idle wait
L
Linus Torvalds 已提交
4707
 */
4708
void account_idle_time(cputime_t cputime)
L
Linus Torvalds 已提交
4709 4710
{
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
4711
	cputime64_t cputime64 = cputime_to_cputime64(cputime);
4712
	struct rq *rq = this_rq();
L
Linus Torvalds 已提交
4713

4714 4715 4716 4717
	if (atomic_read(&rq->nr_iowait) > 0)
		cpustat->iowait = cputime64_add(cpustat->iowait, cputime64);
	else
		cpustat->idle = cputime64_add(cpustat->idle, cputime64);
L
Linus Torvalds 已提交
4718 4719
}

4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736 4737 4738 4739 4740 4741 4742 4743 4744 4745 4746 4747 4748 4749 4750 4751 4752 4753 4754 4755 4756 4757 4758
#ifndef CONFIG_VIRT_CPU_ACCOUNTING

/*
 * Account a single tick of cpu time.
 * @p: the process that the cpu time gets accounted to
 * @user_tick: indicates if the tick is a user or a system tick
 */
void account_process_tick(struct task_struct *p, int user_tick)
{
	cputime_t one_jiffy = jiffies_to_cputime(1);
	cputime_t one_jiffy_scaled = cputime_to_scaled(one_jiffy);
	struct rq *rq = this_rq();

	if (user_tick)
		account_user_time(p, one_jiffy, one_jiffy_scaled);
	else if (p != rq->idle)
		account_system_time(p, HARDIRQ_OFFSET, one_jiffy,
				    one_jiffy_scaled);
	else
		account_idle_time(one_jiffy);
}

/*
 * Account multiple ticks of steal time.
 * @p: the process from which the cpu time has been stolen
 * @ticks: number of stolen ticks
 */
void account_steal_ticks(unsigned long ticks)
{
	account_steal_time(jiffies_to_cputime(ticks));
}

/*
 * Account multiple ticks of idle time.
 * @ticks: number of stolen ticks
 */
void account_idle_ticks(unsigned long ticks)
{
	account_idle_time(jiffies_to_cputime(ticks));
L
Linus Torvalds 已提交
4759 4760
}

4761 4762
#endif

4763 4764 4765 4766 4767 4768 4769 4770 4771 4772 4773 4774 4775 4776 4777 4778 4779 4780 4781 4782 4783 4784 4785 4786 4787 4788 4789 4790 4791 4792 4793 4794 4795 4796 4797 4798 4799 4800 4801 4802 4803 4804 4805 4806 4807 4808 4809 4810 4811 4812 4813 4814 4815 4816 4817 4818 4819 4820 4821
/*
 * Use precise platform statistics if available:
 */
#ifdef CONFIG_VIRT_CPU_ACCOUNTING
cputime_t task_utime(struct task_struct *p)
{
	return p->utime;
}

cputime_t task_stime(struct task_struct *p)
{
	return p->stime;
}
#else
cputime_t task_utime(struct task_struct *p)
{
	clock_t utime = cputime_to_clock_t(p->utime),
		total = utime + cputime_to_clock_t(p->stime);
	u64 temp;

	/*
	 * Use CFS's precise accounting:
	 */
	temp = (u64)nsec_to_clock_t(p->se.sum_exec_runtime);

	if (total) {
		temp *= utime;
		do_div(temp, total);
	}
	utime = (clock_t)temp;

	p->prev_utime = max(p->prev_utime, clock_t_to_cputime(utime));
	return p->prev_utime;
}

cputime_t task_stime(struct task_struct *p)
{
	clock_t stime;

	/*
	 * Use CFS's precise accounting. (we subtract utime from
	 * the total, to make sure the total observed by userspace
	 * grows monotonically - apps rely on that):
	 */
	stime = nsec_to_clock_t(p->se.sum_exec_runtime) -
			cputime_to_clock_t(task_utime(p));

	if (stime >= 0)
		p->prev_stime = max(p->prev_stime, clock_t_to_cputime(stime));

	return p->prev_stime;
}
#endif

inline cputime_t task_gtime(struct task_struct *p)
{
	return p->gtime;
}

4822 4823 4824 4825 4826 4827 4828 4829 4830 4831 4832
/*
 * This function gets called by the timer code, with HZ frequency.
 * We call it with interrupts disabled.
 *
 * It also gets called by the fork code, when changing the parent's
 * timeslices.
 */
void scheduler_tick(void)
{
	int cpu = smp_processor_id();
	struct rq *rq = cpu_rq(cpu);
I
Ingo Molnar 已提交
4833
	struct task_struct *curr = rq->curr;
4834 4835

	sched_clock_tick();
I
Ingo Molnar 已提交
4836 4837

	spin_lock(&rq->lock);
4838
	update_rq_clock(rq);
4839
	update_cpu_load(rq);
P
Peter Zijlstra 已提交
4840
	curr->sched_class->task_tick(rq, curr, 0);
I
Ingo Molnar 已提交
4841
	spin_unlock(&rq->lock);
4842

4843
#ifdef CONFIG_SMP
I
Ingo Molnar 已提交
4844 4845
	rq->idle_at_tick = idle_cpu(cpu);
	trigger_load_balance(rq, cpu);
4846
#endif
L
Linus Torvalds 已提交
4847 4848
}

4849
notrace unsigned long get_parent_ip(unsigned long addr)
4850 4851 4852 4853 4854 4855 4856 4857
{
	if (in_lock_functions(addr)) {
		addr = CALLER_ADDR2;
		if (in_lock_functions(addr))
			addr = CALLER_ADDR3;
	}
	return addr;
}
L
Linus Torvalds 已提交
4858

4859 4860 4861
#if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
				defined(CONFIG_PREEMPT_TRACER))

4862
void __kprobes add_preempt_count(int val)
L
Linus Torvalds 已提交
4863
{
4864
#ifdef CONFIG_DEBUG_PREEMPT
L
Linus Torvalds 已提交
4865 4866 4867
	/*
	 * Underflow?
	 */
4868 4869
	if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
		return;
4870
#endif
L
Linus Torvalds 已提交
4871
	preempt_count() += val;
4872
#ifdef CONFIG_DEBUG_PREEMPT
L
Linus Torvalds 已提交
4873 4874 4875
	/*
	 * Spinlock count overflowing soon?
	 */
4876 4877
	DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
				PREEMPT_MASK - 10);
4878 4879 4880
#endif
	if (preempt_count() == val)
		trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
L
Linus Torvalds 已提交
4881 4882 4883
}
EXPORT_SYMBOL(add_preempt_count);

4884
void __kprobes sub_preempt_count(int val)
L
Linus Torvalds 已提交
4885
{
4886
#ifdef CONFIG_DEBUG_PREEMPT
L
Linus Torvalds 已提交
4887 4888 4889
	/*
	 * Underflow?
	 */
4890
	if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
4891
		return;
L
Linus Torvalds 已提交
4892 4893 4894
	/*
	 * Is the spinlock portion underflowing?
	 */
4895 4896 4897
	if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
			!(preempt_count() & PREEMPT_MASK)))
		return;
4898
#endif
4899

4900 4901
	if (preempt_count() == val)
		trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
L
Linus Torvalds 已提交
4902 4903 4904 4905 4906 4907 4908
	preempt_count() -= val;
}
EXPORT_SYMBOL(sub_preempt_count);

#endif

/*
I
Ingo Molnar 已提交
4909
 * Print scheduling while atomic bug:
L
Linus Torvalds 已提交
4910
 */
I
Ingo Molnar 已提交
4911
static noinline void __schedule_bug(struct task_struct *prev)
L
Linus Torvalds 已提交
4912
{
4913 4914 4915 4916 4917
	struct pt_regs *regs = get_irq_regs();

	printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
		prev->comm, prev->pid, preempt_count());

I
Ingo Molnar 已提交
4918
	debug_show_held_locks(prev);
4919
	print_modules();
I
Ingo Molnar 已提交
4920 4921
	if (irqs_disabled())
		print_irqtrace_events(prev);
4922 4923 4924 4925 4926

	if (regs)
		show_regs(regs);
	else
		dump_stack();
I
Ingo Molnar 已提交
4927
}
L
Linus Torvalds 已提交
4928

I
Ingo Molnar 已提交
4929 4930 4931 4932 4933
/*
 * Various schedule()-time debugging checks and statistics:
 */
static inline void schedule_debug(struct task_struct *prev)
{
L
Linus Torvalds 已提交
4934
	/*
I
Ingo Molnar 已提交
4935
	 * Test if we are atomic. Since do_exit() needs to call into
L
Linus Torvalds 已提交
4936 4937 4938
	 * schedule() atomically, we ignore that path for now.
	 * Otherwise, whine if we are scheduling when we should not be.
	 */
4939
	if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
I
Ingo Molnar 已提交
4940 4941
		__schedule_bug(prev);

L
Linus Torvalds 已提交
4942 4943
	profile_hit(SCHED_PROFILING, __builtin_return_address(0));

4944
	schedstat_inc(this_rq(), sched_count);
I
Ingo Molnar 已提交
4945 4946
#ifdef CONFIG_SCHEDSTATS
	if (unlikely(prev->lock_depth >= 0)) {
4947 4948
		schedstat_inc(this_rq(), bkl_count);
		schedstat_inc(prev, sched_info.bkl_count);
I
Ingo Molnar 已提交
4949 4950
	}
#endif
I
Ingo Molnar 已提交
4951 4952
}

M
Mike Galbraith 已提交
4953 4954 4955 4956 4957 4958 4959 4960 4961 4962 4963 4964 4965 4966 4967 4968 4969 4970 4971 4972 4973 4974
static void put_prev_task(struct rq *rq, struct task_struct *prev)
{
	if (prev->state == TASK_RUNNING) {
		u64 runtime = prev->se.sum_exec_runtime;

		runtime -= prev->se.prev_sum_exec_runtime;
		runtime = min_t(u64, runtime, 2*sysctl_sched_migration_cost);

		/*
		 * In order to avoid avg_overlap growing stale when we are
		 * indeed overlapping and hence not getting put to sleep, grow
		 * the avg_overlap on preemption.
		 *
		 * We use the average preemption runtime because that
		 * correlates to the amount of cache footprint a task can
		 * build up.
		 */
		update_avg(&prev->se.avg_overlap, runtime);
	}
	prev->sched_class->put_prev_task(rq, prev);
}

I
Ingo Molnar 已提交
4975 4976 4977 4978
/*
 * Pick up the highest-prio task:
 */
static inline struct task_struct *
4979
pick_next_task(struct rq *rq)
I
Ingo Molnar 已提交
4980
{
4981
	const struct sched_class *class;
I
Ingo Molnar 已提交
4982
	struct task_struct *p;
L
Linus Torvalds 已提交
4983 4984

	/*
I
Ingo Molnar 已提交
4985 4986
	 * Optimization: we know that if all tasks are in
	 * the fair class we can call that function directly:
L
Linus Torvalds 已提交
4987
	 */
I
Ingo Molnar 已提交
4988
	if (likely(rq->nr_running == rq->cfs.nr_running)) {
4989
		p = fair_sched_class.pick_next_task(rq);
I
Ingo Molnar 已提交
4990 4991
		if (likely(p))
			return p;
L
Linus Torvalds 已提交
4992 4993
	}

I
Ingo Molnar 已提交
4994 4995
	class = sched_class_highest;
	for ( ; ; ) {
4996
		p = class->pick_next_task(rq);
I
Ingo Molnar 已提交
4997 4998 4999 5000 5001 5002 5003 5004 5005
		if (p)
			return p;
		/*
		 * Will never be NULL as the idle class always
		 * returns a non-NULL p:
		 */
		class = class->next;
	}
}
L
Linus Torvalds 已提交
5006

I
Ingo Molnar 已提交
5007 5008 5009
/*
 * schedule() is the main scheduler function.
 */
P
Peter Zijlstra 已提交
5010
asmlinkage void __sched __schedule(void)
I
Ingo Molnar 已提交
5011 5012
{
	struct task_struct *prev, *next;
5013
	unsigned long *switch_count;
I
Ingo Molnar 已提交
5014
	struct rq *rq;
5015
	int cpu;
I
Ingo Molnar 已提交
5016 5017 5018 5019 5020 5021 5022 5023 5024 5025 5026

	cpu = smp_processor_id();
	rq = cpu_rq(cpu);
	rcu_qsctr_inc(cpu);
	prev = rq->curr;
	switch_count = &prev->nivcsw;

	release_kernel_lock(prev);
need_resched_nonpreemptible:

	schedule_debug(prev);
L
Linus Torvalds 已提交
5027

5028
	if (sched_feat(HRTICK))
M
Mike Galbraith 已提交
5029
		hrtick_clear(rq);
P
Peter Zijlstra 已提交
5030

5031
	spin_lock_irq(&rq->lock);
5032
	update_rq_clock(rq);
5033
	clear_tsk_need_resched(prev);
L
Linus Torvalds 已提交
5034 5035

	if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
5036
		if (unlikely(signal_pending_state(prev->state, prev)))
L
Linus Torvalds 已提交
5037
			prev->state = TASK_RUNNING;
5038
		else
5039
			deactivate_task(rq, prev, 1);
I
Ingo Molnar 已提交
5040
		switch_count = &prev->nvcsw;
L
Linus Torvalds 已提交
5041 5042
	}

5043 5044 5045 5046
#ifdef CONFIG_SMP
	if (prev->sched_class->pre_schedule)
		prev->sched_class->pre_schedule(rq, prev);
#endif
5047

I
Ingo Molnar 已提交
5048
	if (unlikely(!rq->nr_running))
L
Linus Torvalds 已提交
5049 5050
		idle_balance(cpu, rq);

M
Mike Galbraith 已提交
5051
	put_prev_task(rq, prev);
5052
	next = pick_next_task(rq);
L
Linus Torvalds 已提交
5053 5054

	if (likely(prev != next)) {
5055 5056
		sched_info_switch(prev, next);

L
Linus Torvalds 已提交
5057 5058 5059 5060
		rq->nr_switches++;
		rq->curr = next;
		++*switch_count;

I
Ingo Molnar 已提交
5061
		context_switch(rq, prev, next); /* unlocks the rq */
P
Peter Zijlstra 已提交
5062 5063 5064 5065 5066 5067
		/*
		 * the context switch might have flipped the stack from under
		 * us, hence refresh the local variables.
		 */
		cpu = smp_processor_id();
		rq = cpu_rq(cpu);
L
Linus Torvalds 已提交
5068 5069 5070
	} else
		spin_unlock_irq(&rq->lock);

P
Peter Zijlstra 已提交
5071
	if (unlikely(reacquire_kernel_lock(current) < 0))
L
Linus Torvalds 已提交
5072
		goto need_resched_nonpreemptible;
P
Peter Zijlstra 已提交
5073
}
P
Peter Zijlstra 已提交
5074

P
Peter Zijlstra 已提交
5075 5076 5077 5078 5079
asmlinkage void __sched schedule(void)
{
need_resched:
	preempt_disable();
	__schedule();
L
Linus Torvalds 已提交
5080 5081 5082 5083 5084 5085
	preempt_enable_no_resched();
	if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
		goto need_resched;
}
EXPORT_SYMBOL(schedule);

5086 5087 5088 5089 5090 5091 5092 5093 5094 5095 5096 5097 5098 5099 5100 5101 5102 5103 5104 5105 5106 5107 5108 5109 5110 5111 5112 5113 5114 5115 5116 5117 5118 5119 5120 5121 5122 5123 5124 5125 5126 5127 5128 5129 5130 5131 5132 5133 5134 5135 5136 5137 5138 5139 5140 5141 5142 5143 5144 5145 5146
#ifdef CONFIG_SMP
/*
 * Look out! "owner" is an entirely speculative pointer
 * access and not reliable.
 */
int mutex_spin_on_owner(struct mutex *lock, struct thread_info *owner)
{
	unsigned int cpu;
	struct rq *rq;

	if (!sched_feat(OWNER_SPIN))
		return 0;

#ifdef CONFIG_DEBUG_PAGEALLOC
	/*
	 * Need to access the cpu field knowing that
	 * DEBUG_PAGEALLOC could have unmapped it if
	 * the mutex owner just released it and exited.
	 */
	if (probe_kernel_address(&owner->cpu, cpu))
		goto out;
#else
	cpu = owner->cpu;
#endif

	/*
	 * Even if the access succeeded (likely case),
	 * the cpu field may no longer be valid.
	 */
	if (cpu >= nr_cpumask_bits)
		goto out;

	/*
	 * We need to validate that we can do a
	 * get_cpu() and that we have the percpu area.
	 */
	if (!cpu_online(cpu))
		goto out;

	rq = cpu_rq(cpu);

	for (;;) {
		/*
		 * Owner changed, break to re-assess state.
		 */
		if (lock->owner != owner)
			break;

		/*
		 * Is that owner really running on that cpu?
		 */
		if (task_thread_info(rq->curr) != owner || need_resched())
			return 0;

		cpu_relax();
	}
out:
	return 1;
}
#endif

L
Linus Torvalds 已提交
5147 5148
#ifdef CONFIG_PREEMPT
/*
5149
 * this is the entry point to schedule() from in-kernel preemption
I
Ingo Molnar 已提交
5150
 * off of preempt_enable. Kernel preemptions off return from interrupt
L
Linus Torvalds 已提交
5151 5152 5153 5154 5155
 * occur there and call schedule directly.
 */
asmlinkage void __sched preempt_schedule(void)
{
	struct thread_info *ti = current_thread_info();
5156

L
Linus Torvalds 已提交
5157 5158
	/*
	 * If there is a non-zero preempt_count or interrupts are disabled,
I
Ingo Molnar 已提交
5159
	 * we do not want to preempt the current task. Just return..
L
Linus Torvalds 已提交
5160
	 */
N
Nick Piggin 已提交
5161
	if (likely(ti->preempt_count || irqs_disabled()))
L
Linus Torvalds 已提交
5162 5163
		return;

5164 5165 5166 5167
	do {
		add_preempt_count(PREEMPT_ACTIVE);
		schedule();
		sub_preempt_count(PREEMPT_ACTIVE);
L
Linus Torvalds 已提交
5168

5169 5170 5171 5172 5173
		/*
		 * Check again in case we missed a preemption opportunity
		 * between schedule and now.
		 */
		barrier();
5174
	} while (need_resched());
L
Linus Torvalds 已提交
5175 5176 5177 5178
}
EXPORT_SYMBOL(preempt_schedule);

/*
5179
 * this is the entry point to schedule() from kernel preemption
L
Linus Torvalds 已提交
5180 5181 5182 5183 5184 5185 5186
 * off of irq context.
 * Note, that this is called and return with irqs disabled. This will
 * protect us against recursive calling from irq.
 */
asmlinkage void __sched preempt_schedule_irq(void)
{
	struct thread_info *ti = current_thread_info();
5187

5188
	/* Catch callers which need to be fixed */
L
Linus Torvalds 已提交
5189 5190
	BUG_ON(ti->preempt_count || !irqs_disabled());

5191 5192 5193 5194 5195 5196
	do {
		add_preempt_count(PREEMPT_ACTIVE);
		local_irq_enable();
		schedule();
		local_irq_disable();
		sub_preempt_count(PREEMPT_ACTIVE);
L
Linus Torvalds 已提交
5197

5198 5199 5200 5201 5202
		/*
		 * Check again in case we missed a preemption opportunity
		 * between schedule and now.
		 */
		barrier();
5203
	} while (need_resched());
L
Linus Torvalds 已提交
5204 5205 5206 5207
}

#endif /* CONFIG_PREEMPT */

I
Ingo Molnar 已提交
5208 5209
int default_wake_function(wait_queue_t *curr, unsigned mode, int sync,
			  void *key)
L
Linus Torvalds 已提交
5210
{
5211
	return try_to_wake_up(curr->private, mode, sync);
L
Linus Torvalds 已提交
5212 5213 5214 5215
}
EXPORT_SYMBOL(default_wake_function);

/*
I
Ingo Molnar 已提交
5216 5217
 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
L
Linus Torvalds 已提交
5218 5219 5220
 * number) then we wake all the non-exclusive tasks and one exclusive task.
 *
 * There are circumstances in which we can try to wake a task which has already
I
Ingo Molnar 已提交
5221
 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
L
Linus Torvalds 已提交
5222 5223
 * zero in this (rare) case, and we handle it by continuing to scan the queue.
 */
5224 5225
void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
			int nr_exclusive, int sync, void *key)
L
Linus Torvalds 已提交
5226
{
5227
	wait_queue_t *curr, *next;
L
Linus Torvalds 已提交
5228

5229
	list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
5230 5231
		unsigned flags = curr->flags;

L
Linus Torvalds 已提交
5232
		if (curr->func(curr, mode, sync, key) &&
5233
				(flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
L
Linus Torvalds 已提交
5234 5235 5236 5237 5238 5239 5240 5241 5242
			break;
	}
}

/**
 * __wake_up - wake up threads blocked on a waitqueue.
 * @q: the waitqueue
 * @mode: which threads
 * @nr_exclusive: how many wake-one or wake-many threads to wake up
5243
 * @key: is directly passed to the wakeup function
L
Linus Torvalds 已提交
5244
 */
5245
void __wake_up(wait_queue_head_t *q, unsigned int mode,
I
Ingo Molnar 已提交
5246
			int nr_exclusive, void *key)
L
Linus Torvalds 已提交
5247 5248 5249 5250 5251 5252 5253 5254 5255 5256 5257 5258
{
	unsigned long flags;

	spin_lock_irqsave(&q->lock, flags);
	__wake_up_common(q, mode, nr_exclusive, 0, key);
	spin_unlock_irqrestore(&q->lock, flags);
}
EXPORT_SYMBOL(__wake_up);

/*
 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
 */
5259
void __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
L
Linus Torvalds 已提交
5260 5261 5262 5263
{
	__wake_up_common(q, mode, 1, 0, NULL);
}

5264 5265 5266 5267 5268
void __wake_up_locked_key(wait_queue_head_t *q, unsigned int mode, void *key)
{
	__wake_up_common(q, mode, 1, 0, key);
}

L
Linus Torvalds 已提交
5269
/**
5270
 * __wake_up_sync_key - wake up threads blocked on a waitqueue.
L
Linus Torvalds 已提交
5271 5272 5273
 * @q: the waitqueue
 * @mode: which threads
 * @nr_exclusive: how many wake-one or wake-many threads to wake up
5274
 * @key: opaque value to be passed to wakeup targets
L
Linus Torvalds 已提交
5275 5276 5277 5278 5279 5280 5281 5282
 *
 * The sync wakeup differs that the waker knows that it will schedule
 * away soon, so while the target thread will be woken up, it will not
 * be migrated to another CPU - ie. the two threads are 'synchronized'
 * with each other. This can prevent needless bouncing between CPUs.
 *
 * On UP it can prevent extra preemption.
 */
5283 5284
void __wake_up_sync_key(wait_queue_head_t *q, unsigned int mode,
			int nr_exclusive, void *key)
L
Linus Torvalds 已提交
5285 5286 5287 5288 5289 5290 5291 5292 5293 5294 5295
{
	unsigned long flags;
	int sync = 1;

	if (unlikely(!q))
		return;

	if (unlikely(!nr_exclusive))
		sync = 0;

	spin_lock_irqsave(&q->lock, flags);
5296
	__wake_up_common(q, mode, nr_exclusive, sync, key);
L
Linus Torvalds 已提交
5297 5298
	spin_unlock_irqrestore(&q->lock, flags);
}
5299 5300 5301 5302 5303 5304 5305 5306 5307
EXPORT_SYMBOL_GPL(__wake_up_sync_key);

/*
 * __wake_up_sync - see __wake_up_sync_key()
 */
void __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
{
	__wake_up_sync_key(q, mode, nr_exclusive, NULL);
}
L
Linus Torvalds 已提交
5308 5309
EXPORT_SYMBOL_GPL(__wake_up_sync);	/* For internal use only */

5310 5311 5312 5313 5314 5315 5316 5317 5318
/**
 * complete: - signals a single thread waiting on this completion
 * @x:  holds the state of this particular completion
 *
 * This will wake up a single thread waiting on this completion. Threads will be
 * awakened in the same order in which they were queued.
 *
 * See also complete_all(), wait_for_completion() and related routines.
 */
5319
void complete(struct completion *x)
L
Linus Torvalds 已提交
5320 5321 5322 5323 5324
{
	unsigned long flags;

	spin_lock_irqsave(&x->wait.lock, flags);
	x->done++;
5325
	__wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
L
Linus Torvalds 已提交
5326 5327 5328 5329
	spin_unlock_irqrestore(&x->wait.lock, flags);
}
EXPORT_SYMBOL(complete);

5330 5331 5332 5333 5334 5335
/**
 * complete_all: - signals all threads waiting on this completion
 * @x:  holds the state of this particular completion
 *
 * This will wake up all threads waiting on this particular completion event.
 */
5336
void complete_all(struct completion *x)
L
Linus Torvalds 已提交
5337 5338 5339 5340 5341
{
	unsigned long flags;

	spin_lock_irqsave(&x->wait.lock, flags);
	x->done += UINT_MAX/2;
5342
	__wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
L
Linus Torvalds 已提交
5343 5344 5345 5346
	spin_unlock_irqrestore(&x->wait.lock, flags);
}
EXPORT_SYMBOL(complete_all);

5347 5348
static inline long __sched
do_wait_for_common(struct completion *x, long timeout, int state)
L
Linus Torvalds 已提交
5349 5350 5351 5352 5353 5354 5355
{
	if (!x->done) {
		DECLARE_WAITQUEUE(wait, current);

		wait.flags |= WQ_FLAG_EXCLUSIVE;
		__add_wait_queue_tail(&x->wait, &wait);
		do {
5356
			if (signal_pending_state(state, current)) {
5357 5358
				timeout = -ERESTARTSYS;
				break;
5359 5360
			}
			__set_current_state(state);
L
Linus Torvalds 已提交
5361 5362 5363
			spin_unlock_irq(&x->wait.lock);
			timeout = schedule_timeout(timeout);
			spin_lock_irq(&x->wait.lock);
5364
		} while (!x->done && timeout);
L
Linus Torvalds 已提交
5365
		__remove_wait_queue(&x->wait, &wait);
5366 5367
		if (!x->done)
			return timeout;
L
Linus Torvalds 已提交
5368 5369
	}
	x->done--;
5370
	return timeout ?: 1;
L
Linus Torvalds 已提交
5371 5372
}

5373 5374
static long __sched
wait_for_common(struct completion *x, long timeout, int state)
L
Linus Torvalds 已提交
5375 5376 5377 5378
{
	might_sleep();

	spin_lock_irq(&x->wait.lock);
5379
	timeout = do_wait_for_common(x, timeout, state);
L
Linus Torvalds 已提交
5380
	spin_unlock_irq(&x->wait.lock);
5381 5382
	return timeout;
}
L
Linus Torvalds 已提交
5383

5384 5385 5386 5387 5388 5389 5390 5391 5392 5393
/**
 * wait_for_completion: - waits for completion of a task
 * @x:  holds the state of this particular completion
 *
 * This waits to be signaled for completion of a specific task. It is NOT
 * interruptible and there is no timeout.
 *
 * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
 * and interrupt capability. Also see complete().
 */
5394
void __sched wait_for_completion(struct completion *x)
5395 5396
{
	wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
L
Linus Torvalds 已提交
5397
}
5398
EXPORT_SYMBOL(wait_for_completion);
L
Linus Torvalds 已提交
5399

5400 5401 5402 5403 5404 5405 5406 5407 5408
/**
 * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
 * @x:  holds the state of this particular completion
 * @timeout:  timeout value in jiffies
 *
 * This waits for either a completion of a specific task to be signaled or for a
 * specified timeout to expire. The timeout is in jiffies. It is not
 * interruptible.
 */
5409
unsigned long __sched
5410
wait_for_completion_timeout(struct completion *x, unsigned long timeout)
L
Linus Torvalds 已提交
5411
{
5412
	return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
L
Linus Torvalds 已提交
5413
}
5414
EXPORT_SYMBOL(wait_for_completion_timeout);
L
Linus Torvalds 已提交
5415

5416 5417 5418 5419 5420 5421 5422
/**
 * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
 * @x:  holds the state of this particular completion
 *
 * This waits for completion of a specific task to be signaled. It is
 * interruptible.
 */
5423
int __sched wait_for_completion_interruptible(struct completion *x)
I
Ingo Molnar 已提交
5424
{
5425 5426 5427 5428
	long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
	if (t == -ERESTARTSYS)
		return t;
	return 0;
I
Ingo Molnar 已提交
5429
}
5430
EXPORT_SYMBOL(wait_for_completion_interruptible);
L
Linus Torvalds 已提交
5431

5432 5433 5434 5435 5436 5437 5438 5439
/**
 * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
 * @x:  holds the state of this particular completion
 * @timeout:  timeout value in jiffies
 *
 * This waits for either a completion of a specific task to be signaled or for a
 * specified timeout to expire. It is interruptible. The timeout is in jiffies.
 */
5440
unsigned long __sched
5441 5442
wait_for_completion_interruptible_timeout(struct completion *x,
					  unsigned long timeout)
I
Ingo Molnar 已提交
5443
{
5444
	return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
I
Ingo Molnar 已提交
5445
}
5446
EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
L
Linus Torvalds 已提交
5447

5448 5449 5450 5451 5452 5453 5454
/**
 * wait_for_completion_killable: - waits for completion of a task (killable)
 * @x:  holds the state of this particular completion
 *
 * This waits to be signaled for completion of a specific task. It can be
 * interrupted by a kill signal.
 */
M
Matthew Wilcox 已提交
5455 5456 5457 5458 5459 5460 5461 5462 5463
int __sched wait_for_completion_killable(struct completion *x)
{
	long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
	if (t == -ERESTARTSYS)
		return t;
	return 0;
}
EXPORT_SYMBOL(wait_for_completion_killable);

5464 5465 5466 5467 5468 5469 5470 5471 5472 5473 5474 5475 5476 5477 5478 5479 5480 5481 5482 5483 5484 5485 5486 5487 5488 5489 5490 5491 5492 5493 5494 5495 5496 5497 5498 5499 5500 5501 5502 5503 5504 5505 5506 5507 5508 5509
/**
 *	try_wait_for_completion - try to decrement a completion without blocking
 *	@x:	completion structure
 *
 *	Returns: 0 if a decrement cannot be done without blocking
 *		 1 if a decrement succeeded.
 *
 *	If a completion is being used as a counting completion,
 *	attempt to decrement the counter without blocking. This
 *	enables us to avoid waiting if the resource the completion
 *	is protecting is not available.
 */
bool try_wait_for_completion(struct completion *x)
{
	int ret = 1;

	spin_lock_irq(&x->wait.lock);
	if (!x->done)
		ret = 0;
	else
		x->done--;
	spin_unlock_irq(&x->wait.lock);
	return ret;
}
EXPORT_SYMBOL(try_wait_for_completion);

/**
 *	completion_done - Test to see if a completion has any waiters
 *	@x:	completion structure
 *
 *	Returns: 0 if there are waiters (wait_for_completion() in progress)
 *		 1 if there are no waiters.
 *
 */
bool completion_done(struct completion *x)
{
	int ret = 1;

	spin_lock_irq(&x->wait.lock);
	if (!x->done)
		ret = 0;
	spin_unlock_irq(&x->wait.lock);
	return ret;
}
EXPORT_SYMBOL(completion_done);

5510 5511
static long __sched
sleep_on_common(wait_queue_head_t *q, int state, long timeout)
L
Linus Torvalds 已提交
5512
{
I
Ingo Molnar 已提交
5513 5514 5515 5516
	unsigned long flags;
	wait_queue_t wait;

	init_waitqueue_entry(&wait, current);
L
Linus Torvalds 已提交
5517

5518
	__set_current_state(state);
L
Linus Torvalds 已提交
5519

5520 5521 5522 5523 5524 5525 5526 5527 5528 5529 5530 5531 5532 5533
	spin_lock_irqsave(&q->lock, flags);
	__add_wait_queue(q, &wait);
	spin_unlock(&q->lock);
	timeout = schedule_timeout(timeout);
	spin_lock_irq(&q->lock);
	__remove_wait_queue(q, &wait);
	spin_unlock_irqrestore(&q->lock, flags);

	return timeout;
}

void __sched interruptible_sleep_on(wait_queue_head_t *q)
{
	sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
L
Linus Torvalds 已提交
5534 5535 5536
}
EXPORT_SYMBOL(interruptible_sleep_on);

I
Ingo Molnar 已提交
5537
long __sched
I
Ingo Molnar 已提交
5538
interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
L
Linus Torvalds 已提交
5539
{
5540
	return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
L
Linus Torvalds 已提交
5541 5542 5543
}
EXPORT_SYMBOL(interruptible_sleep_on_timeout);

I
Ingo Molnar 已提交
5544
void __sched sleep_on(wait_queue_head_t *q)
L
Linus Torvalds 已提交
5545
{
5546
	sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
L
Linus Torvalds 已提交
5547 5548 5549
}
EXPORT_SYMBOL(sleep_on);

I
Ingo Molnar 已提交
5550
long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
L
Linus Torvalds 已提交
5551
{
5552
	return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
L
Linus Torvalds 已提交
5553 5554 5555
}
EXPORT_SYMBOL(sleep_on_timeout);

5556 5557 5558 5559 5560 5561 5562 5563 5564 5565 5566 5567
#ifdef CONFIG_RT_MUTEXES

/*
 * rt_mutex_setprio - set the current priority of a task
 * @p: task
 * @prio: prio value (kernel-internal form)
 *
 * This function changes the 'effective' priority of a task. It does
 * not touch ->normal_prio like __setscheduler().
 *
 * Used by the rt_mutex code to implement priority inheritance logic.
 */
5568
void rt_mutex_setprio(struct task_struct *p, int prio)
5569 5570
{
	unsigned long flags;
5571
	int oldprio, on_rq, running;
5572
	struct rq *rq;
5573
	const struct sched_class *prev_class = p->sched_class;
5574 5575 5576 5577

	BUG_ON(prio < 0 || prio > MAX_PRIO);

	rq = task_rq_lock(p, &flags);
I
Ingo Molnar 已提交
5578
	update_rq_clock(rq);
5579

5580
	oldprio = p->prio;
I
Ingo Molnar 已提交
5581
	on_rq = p->se.on_rq;
5582
	running = task_current(rq, p);
5583
	if (on_rq)
5584
		dequeue_task(rq, p, 0);
5585 5586
	if (running)
		p->sched_class->put_prev_task(rq, p);
I
Ingo Molnar 已提交
5587 5588 5589 5590 5591 5592

	if (rt_prio(prio))
		p->sched_class = &rt_sched_class;
	else
		p->sched_class = &fair_sched_class;

5593 5594
	p->prio = prio;

5595 5596
	if (running)
		p->sched_class->set_curr_task(rq);
I
Ingo Molnar 已提交
5597
	if (on_rq) {
5598
		enqueue_task(rq, p, 0);
5599 5600

		check_class_changed(rq, p, prev_class, oldprio, running);
5601 5602 5603 5604 5605 5606
	}
	task_rq_unlock(rq, &flags);
}

#endif

5607
void set_user_nice(struct task_struct *p, long nice)
L
Linus Torvalds 已提交
5608
{
I
Ingo Molnar 已提交
5609
	int old_prio, delta, on_rq;
L
Linus Torvalds 已提交
5610
	unsigned long flags;
5611
	struct rq *rq;
L
Linus Torvalds 已提交
5612 5613 5614 5615 5616 5617 5618 5619

	if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
		return;
	/*
	 * We have to be careful, if called from sys_setpriority(),
	 * the task might be in the middle of scheduling on another CPU.
	 */
	rq = task_rq_lock(p, &flags);
I
Ingo Molnar 已提交
5620
	update_rq_clock(rq);
L
Linus Torvalds 已提交
5621 5622 5623 5624
	/*
	 * The RT priorities are set via sched_setscheduler(), but we still
	 * allow the 'normal' nice value to be set - but as expected
	 * it wont have any effect on scheduling until the task is
I
Ingo Molnar 已提交
5625
	 * SCHED_FIFO/SCHED_RR:
L
Linus Torvalds 已提交
5626
	 */
5627
	if (task_has_rt_policy(p)) {
L
Linus Torvalds 已提交
5628 5629 5630
		p->static_prio = NICE_TO_PRIO(nice);
		goto out_unlock;
	}
I
Ingo Molnar 已提交
5631
	on_rq = p->se.on_rq;
5632
	if (on_rq)
5633
		dequeue_task(rq, p, 0);
L
Linus Torvalds 已提交
5634 5635

	p->static_prio = NICE_TO_PRIO(nice);
5636
	set_load_weight(p);
5637 5638 5639
	old_prio = p->prio;
	p->prio = effective_prio(p);
	delta = p->prio - old_prio;
L
Linus Torvalds 已提交
5640

I
Ingo Molnar 已提交
5641
	if (on_rq) {
5642
		enqueue_task(rq, p, 0);
L
Linus Torvalds 已提交
5643
		/*
5644 5645
		 * If the task increased its priority or is running and
		 * lowered its priority, then reschedule its CPU:
L
Linus Torvalds 已提交
5646
		 */
5647
		if (delta < 0 || (delta > 0 && task_running(rq, p)))
L
Linus Torvalds 已提交
5648 5649 5650 5651 5652 5653 5654
			resched_task(rq->curr);
	}
out_unlock:
	task_rq_unlock(rq, &flags);
}
EXPORT_SYMBOL(set_user_nice);

M
Matt Mackall 已提交
5655 5656 5657 5658 5659
/*
 * can_nice - check if a task can reduce its nice value
 * @p: task
 * @nice: nice value
 */
5660
int can_nice(const struct task_struct *p, const int nice)
M
Matt Mackall 已提交
5661
{
5662 5663
	/* convert nice value [19,-20] to rlimit style value [1,40] */
	int nice_rlim = 20 - nice;
5664

M
Matt Mackall 已提交
5665 5666 5667 5668
	return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
		capable(CAP_SYS_NICE));
}

L
Linus Torvalds 已提交
5669 5670 5671 5672 5673 5674 5675 5676 5677
#ifdef __ARCH_WANT_SYS_NICE

/*
 * sys_nice - change the priority of the current process.
 * @increment: priority increment
 *
 * sys_setpriority is a more generic, but much slower function that
 * does similar things.
 */
5678
SYSCALL_DEFINE1(nice, int, increment)
L
Linus Torvalds 已提交
5679
{
5680
	long nice, retval;
L
Linus Torvalds 已提交
5681 5682 5683 5684 5685 5686

	/*
	 * Setpriority might change our priority at the same moment.
	 * We don't have to worry. Conceptually one call occurs first
	 * and we have a single winner.
	 */
M
Matt Mackall 已提交
5687 5688
	if (increment < -40)
		increment = -40;
L
Linus Torvalds 已提交
5689 5690 5691
	if (increment > 40)
		increment = 40;

5692
	nice = TASK_NICE(current) + increment;
L
Linus Torvalds 已提交
5693 5694 5695 5696 5697
	if (nice < -20)
		nice = -20;
	if (nice > 19)
		nice = 19;

M
Matt Mackall 已提交
5698 5699 5700
	if (increment < 0 && !can_nice(current, nice))
		return -EPERM;

L
Linus Torvalds 已提交
5701 5702 5703 5704 5705 5706 5707 5708 5709 5710 5711 5712 5713 5714 5715 5716 5717 5718
	retval = security_task_setnice(current, nice);
	if (retval)
		return retval;

	set_user_nice(current, nice);
	return 0;
}

#endif

/**
 * task_prio - return the priority value of a given task.
 * @p: the task in question.
 *
 * This is the priority value as seen by users in /proc.
 * RT tasks are offset by -200. Normal tasks are centered
 * around 0, value goes from -16 to +15.
 */
5719
int task_prio(const struct task_struct *p)
L
Linus Torvalds 已提交
5720 5721 5722 5723 5724 5725 5726 5727
{
	return p->prio - MAX_RT_PRIO;
}

/**
 * task_nice - return the nice value of a given task.
 * @p: the task in question.
 */
5728
int task_nice(const struct task_struct *p)
L
Linus Torvalds 已提交
5729 5730 5731
{
	return TASK_NICE(p);
}
P
Pavel Roskin 已提交
5732
EXPORT_SYMBOL(task_nice);
L
Linus Torvalds 已提交
5733 5734 5735 5736 5737 5738 5739 5740 5741 5742 5743 5744 5745 5746

/**
 * idle_cpu - is a given cpu idle currently?
 * @cpu: the processor in question.
 */
int idle_cpu(int cpu)
{
	return cpu_curr(cpu) == cpu_rq(cpu)->idle;
}

/**
 * idle_task - return the idle task for a given cpu.
 * @cpu: the processor in question.
 */
5747
struct task_struct *idle_task(int cpu)
L
Linus Torvalds 已提交
5748 5749 5750 5751 5752 5753 5754 5755
{
	return cpu_rq(cpu)->idle;
}

/**
 * find_process_by_pid - find a process with a matching PID value.
 * @pid: the pid in question.
 */
A
Alexey Dobriyan 已提交
5756
static struct task_struct *find_process_by_pid(pid_t pid)
L
Linus Torvalds 已提交
5757
{
5758
	return pid ? find_task_by_vpid(pid) : current;
L
Linus Torvalds 已提交
5759 5760 5761
}

/* Actually do priority change: must hold rq lock. */
I
Ingo Molnar 已提交
5762 5763
static void
__setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
L
Linus Torvalds 已提交
5764
{
I
Ingo Molnar 已提交
5765
	BUG_ON(p->se.on_rq);
5766

L
Linus Torvalds 已提交
5767
	p->policy = policy;
I
Ingo Molnar 已提交
5768 5769 5770 5771 5772 5773 5774 5775 5776 5777 5778 5779
	switch (p->policy) {
	case SCHED_NORMAL:
	case SCHED_BATCH:
	case SCHED_IDLE:
		p->sched_class = &fair_sched_class;
		break;
	case SCHED_FIFO:
	case SCHED_RR:
		p->sched_class = &rt_sched_class;
		break;
	}

L
Linus Torvalds 已提交
5780
	p->rt_priority = prio;
5781 5782 5783
	p->normal_prio = normal_prio(p);
	/* we are holding p->pi_lock already */
	p->prio = rt_mutex_getprio(p);
5784
	set_load_weight(p);
L
Linus Torvalds 已提交
5785 5786
}

5787 5788 5789 5790 5791 5792 5793 5794 5795 5796 5797 5798 5799 5800 5801 5802
/*
 * check the target process has a UID that matches the current process's
 */
static bool check_same_owner(struct task_struct *p)
{
	const struct cred *cred = current_cred(), *pcred;
	bool match;

	rcu_read_lock();
	pcred = __task_cred(p);
	match = (cred->euid == pcred->euid ||
		 cred->euid == pcred->uid);
	rcu_read_unlock();
	return match;
}

5803 5804
static int __sched_setscheduler(struct task_struct *p, int policy,
				struct sched_param *param, bool user)
L
Linus Torvalds 已提交
5805
{
5806
	int retval, oldprio, oldpolicy = -1, on_rq, running;
L
Linus Torvalds 已提交
5807
	unsigned long flags;
5808
	const struct sched_class *prev_class = p->sched_class;
5809
	struct rq *rq;
L
Linus Torvalds 已提交
5810

5811 5812
	/* may grab non-irq protected spin_locks */
	BUG_ON(in_interrupt());
L
Linus Torvalds 已提交
5813 5814 5815 5816 5817
recheck:
	/* double check policy once rq lock held */
	if (policy < 0)
		policy = oldpolicy = p->policy;
	else if (policy != SCHED_FIFO && policy != SCHED_RR &&
I
Ingo Molnar 已提交
5818 5819
			policy != SCHED_NORMAL && policy != SCHED_BATCH &&
			policy != SCHED_IDLE)
5820
		return -EINVAL;
L
Linus Torvalds 已提交
5821 5822
	/*
	 * Valid priorities for SCHED_FIFO and SCHED_RR are
I
Ingo Molnar 已提交
5823 5824
	 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
	 * SCHED_BATCH and SCHED_IDLE is 0.
L
Linus Torvalds 已提交
5825 5826
	 */
	if (param->sched_priority < 0 ||
I
Ingo Molnar 已提交
5827
	    (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
5828
	    (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
L
Linus Torvalds 已提交
5829
		return -EINVAL;
5830
	if (rt_policy(policy) != (param->sched_priority != 0))
L
Linus Torvalds 已提交
5831 5832
		return -EINVAL;

5833 5834 5835
	/*
	 * Allow unprivileged RT tasks to decrease priority:
	 */
5836
	if (user && !capable(CAP_SYS_NICE)) {
5837
		if (rt_policy(policy)) {
5838 5839 5840 5841 5842 5843 5844 5845 5846 5847 5848 5849 5850 5851 5852 5853
			unsigned long rlim_rtprio;

			if (!lock_task_sighand(p, &flags))
				return -ESRCH;
			rlim_rtprio = p->signal->rlim[RLIMIT_RTPRIO].rlim_cur;
			unlock_task_sighand(p, &flags);

			/* can't set/change the rt policy */
			if (policy != p->policy && !rlim_rtprio)
				return -EPERM;

			/* can't increase priority */
			if (param->sched_priority > p->rt_priority &&
			    param->sched_priority > rlim_rtprio)
				return -EPERM;
		}
I
Ingo Molnar 已提交
5854 5855 5856 5857 5858 5859
		/*
		 * Like positive nice levels, dont allow tasks to
		 * move out of SCHED_IDLE either:
		 */
		if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
			return -EPERM;
5860

5861
		/* can't change other user's priorities */
5862
		if (!check_same_owner(p))
5863 5864
			return -EPERM;
	}
L
Linus Torvalds 已提交
5865

5866
	if (user) {
5867
#ifdef CONFIG_RT_GROUP_SCHED
5868 5869 5870 5871
		/*
		 * Do not allow realtime tasks into groups that have no runtime
		 * assigned.
		 */
P
Peter Zijlstra 已提交
5872 5873
		if (rt_bandwidth_enabled() && rt_policy(policy) &&
				task_group(p)->rt_bandwidth.rt_runtime == 0)
5874
			return -EPERM;
5875 5876
#endif

5877 5878 5879 5880 5881
		retval = security_task_setscheduler(p, policy, param);
		if (retval)
			return retval;
	}

5882 5883 5884 5885 5886
	/*
	 * make sure no PI-waiters arrive (or leave) while we are
	 * changing the priority of the task:
	 */
	spin_lock_irqsave(&p->pi_lock, flags);
L
Linus Torvalds 已提交
5887 5888 5889 5890
	/*
	 * To be able to change p->policy safely, the apropriate
	 * runqueue lock must be held.
	 */
5891
	rq = __task_rq_lock(p);
L
Linus Torvalds 已提交
5892 5893 5894
	/* recheck policy now with rq lock held */
	if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
		policy = oldpolicy = -1;
5895 5896
		__task_rq_unlock(rq);
		spin_unlock_irqrestore(&p->pi_lock, flags);
L
Linus Torvalds 已提交
5897 5898
		goto recheck;
	}
I
Ingo Molnar 已提交
5899
	update_rq_clock(rq);
I
Ingo Molnar 已提交
5900
	on_rq = p->se.on_rq;
5901
	running = task_current(rq, p);
5902
	if (on_rq)
5903
		deactivate_task(rq, p, 0);
5904 5905
	if (running)
		p->sched_class->put_prev_task(rq, p);
5906

L
Linus Torvalds 已提交
5907
	oldprio = p->prio;
I
Ingo Molnar 已提交
5908
	__setscheduler(rq, p, policy, param->sched_priority);
5909

5910 5911
	if (running)
		p->sched_class->set_curr_task(rq);
I
Ingo Molnar 已提交
5912 5913
	if (on_rq) {
		activate_task(rq, p, 0);
5914 5915

		check_class_changed(rq, p, prev_class, oldprio, running);
L
Linus Torvalds 已提交
5916
	}
5917 5918 5919
	__task_rq_unlock(rq);
	spin_unlock_irqrestore(&p->pi_lock, flags);

5920 5921
	rt_mutex_adjust_pi(p);

L
Linus Torvalds 已提交
5922 5923
	return 0;
}
5924 5925 5926 5927 5928 5929 5930 5931 5932 5933 5934 5935 5936 5937

/**
 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
 * @p: the task in question.
 * @policy: new policy.
 * @param: structure containing the new RT priority.
 *
 * NOTE that the task may be already dead.
 */
int sched_setscheduler(struct task_struct *p, int policy,
		       struct sched_param *param)
{
	return __sched_setscheduler(p, policy, param, true);
}
L
Linus Torvalds 已提交
5938 5939
EXPORT_SYMBOL_GPL(sched_setscheduler);

5940 5941 5942 5943 5944 5945 5946 5947 5948 5949 5950 5951 5952 5953 5954 5955 5956
/**
 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
 * @p: the task in question.
 * @policy: new policy.
 * @param: structure containing the new RT priority.
 *
 * Just like sched_setscheduler, only don't bother checking if the
 * current context has permission.  For example, this is needed in
 * stop_machine(): we create temporary high priority worker threads,
 * but our caller might not have that capability.
 */
int sched_setscheduler_nocheck(struct task_struct *p, int policy,
			       struct sched_param *param)
{
	return __sched_setscheduler(p, policy, param, false);
}

I
Ingo Molnar 已提交
5957 5958
static int
do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
L
Linus Torvalds 已提交
5959 5960 5961
{
	struct sched_param lparam;
	struct task_struct *p;
5962
	int retval;
L
Linus Torvalds 已提交
5963 5964 5965 5966 5967

	if (!param || pid < 0)
		return -EINVAL;
	if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
		return -EFAULT;
5968 5969 5970

	rcu_read_lock();
	retval = -ESRCH;
L
Linus Torvalds 已提交
5971
	p = find_process_by_pid(pid);
5972 5973 5974
	if (p != NULL)
		retval = sched_setscheduler(p, policy, &lparam);
	rcu_read_unlock();
5975

L
Linus Torvalds 已提交
5976 5977 5978 5979 5980 5981 5982 5983 5984
	return retval;
}

/**
 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
 * @pid: the pid in question.
 * @policy: new policy.
 * @param: structure containing the new RT priority.
 */
5985 5986
SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
		struct sched_param __user *, param)
L
Linus Torvalds 已提交
5987
{
5988 5989 5990 5991
	/* negative values for policy are not valid */
	if (policy < 0)
		return -EINVAL;

L
Linus Torvalds 已提交
5992 5993 5994 5995 5996 5997 5998 5999
	return do_sched_setscheduler(pid, policy, param);
}

/**
 * sys_sched_setparam - set/change the RT priority of a thread
 * @pid: the pid in question.
 * @param: structure containing the new RT priority.
 */
6000
SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
L
Linus Torvalds 已提交
6001 6002 6003 6004 6005 6006 6007 6008
{
	return do_sched_setscheduler(pid, -1, param);
}

/**
 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
 * @pid: the pid in question.
 */
6009
SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
L
Linus Torvalds 已提交
6010
{
6011
	struct task_struct *p;
6012
	int retval;
L
Linus Torvalds 已提交
6013 6014

	if (pid < 0)
6015
		return -EINVAL;
L
Linus Torvalds 已提交
6016 6017 6018 6019 6020 6021 6022 6023 6024 6025 6026 6027 6028 6029 6030 6031 6032 6033

	retval = -ESRCH;
	read_lock(&tasklist_lock);
	p = find_process_by_pid(pid);
	if (p) {
		retval = security_task_getscheduler(p);
		if (!retval)
			retval = p->policy;
	}
	read_unlock(&tasklist_lock);
	return retval;
}

/**
 * sys_sched_getscheduler - get the RT priority of a thread
 * @pid: the pid in question.
 * @param: structure containing the RT priority.
 */
6034
SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
L
Linus Torvalds 已提交
6035 6036
{
	struct sched_param lp;
6037
	struct task_struct *p;
6038
	int retval;
L
Linus Torvalds 已提交
6039 6040

	if (!param || pid < 0)
6041
		return -EINVAL;
L
Linus Torvalds 已提交
6042 6043 6044 6045 6046 6047 6048 6049 6050 6051 6052 6053 6054 6055 6056 6057 6058 6059 6060 6061 6062 6063 6064 6065 6066 6067

	read_lock(&tasklist_lock);
	p = find_process_by_pid(pid);
	retval = -ESRCH;
	if (!p)
		goto out_unlock;

	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

	lp.sched_priority = p->rt_priority;
	read_unlock(&tasklist_lock);

	/*
	 * This one might sleep, we cannot do it with a spinlock held ...
	 */
	retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;

	return retval;

out_unlock:
	read_unlock(&tasklist_lock);
	return retval;
}

6068
long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
L
Linus Torvalds 已提交
6069
{
6070
	cpumask_var_t cpus_allowed, new_mask;
6071 6072
	struct task_struct *p;
	int retval;
L
Linus Torvalds 已提交
6073

6074
	get_online_cpus();
L
Linus Torvalds 已提交
6075 6076 6077 6078 6079
	read_lock(&tasklist_lock);

	p = find_process_by_pid(pid);
	if (!p) {
		read_unlock(&tasklist_lock);
6080
		put_online_cpus();
L
Linus Torvalds 已提交
6081 6082 6083 6084 6085
		return -ESRCH;
	}

	/*
	 * It is not safe to call set_cpus_allowed with the
I
Ingo Molnar 已提交
6086
	 * tasklist_lock held. We will bump the task_struct's
L
Linus Torvalds 已提交
6087 6088 6089 6090 6091
	 * usage count and then drop tasklist_lock.
	 */
	get_task_struct(p);
	read_unlock(&tasklist_lock);

6092 6093 6094 6095 6096 6097 6098 6099
	if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
		retval = -ENOMEM;
		goto out_put_task;
	}
	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
		retval = -ENOMEM;
		goto out_free_cpus_allowed;
	}
L
Linus Torvalds 已提交
6100
	retval = -EPERM;
6101
	if (!check_same_owner(p) && !capable(CAP_SYS_NICE))
L
Linus Torvalds 已提交
6102 6103
		goto out_unlock;

6104 6105 6106 6107
	retval = security_task_setscheduler(p, 0, NULL);
	if (retval)
		goto out_unlock;

6108 6109
	cpuset_cpus_allowed(p, cpus_allowed);
	cpumask_and(new_mask, in_mask, cpus_allowed);
P
Paul Menage 已提交
6110
 again:
6111
	retval = set_cpus_allowed_ptr(p, new_mask);
L
Linus Torvalds 已提交
6112

P
Paul Menage 已提交
6113
	if (!retval) {
6114 6115
		cpuset_cpus_allowed(p, cpus_allowed);
		if (!cpumask_subset(new_mask, cpus_allowed)) {
P
Paul Menage 已提交
6116 6117 6118 6119 6120
			/*
			 * We must have raced with a concurrent cpuset
			 * update. Just reset the cpus_allowed to the
			 * cpuset's cpus_allowed
			 */
6121
			cpumask_copy(new_mask, cpus_allowed);
P
Paul Menage 已提交
6122 6123 6124
			goto again;
		}
	}
L
Linus Torvalds 已提交
6125
out_unlock:
6126 6127 6128 6129
	free_cpumask_var(new_mask);
out_free_cpus_allowed:
	free_cpumask_var(cpus_allowed);
out_put_task:
L
Linus Torvalds 已提交
6130
	put_task_struct(p);
6131
	put_online_cpus();
L
Linus Torvalds 已提交
6132 6133 6134 6135
	return retval;
}

static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
6136
			     struct cpumask *new_mask)
L
Linus Torvalds 已提交
6137
{
6138 6139 6140 6141 6142
	if (len < cpumask_size())
		cpumask_clear(new_mask);
	else if (len > cpumask_size())
		len = cpumask_size();

L
Linus Torvalds 已提交
6143 6144 6145 6146 6147 6148 6149 6150 6151
	return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
}

/**
 * sys_sched_setaffinity - set the cpu affinity of a process
 * @pid: pid of the process
 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
 * @user_mask_ptr: user-space pointer to the new cpu mask
 */
6152 6153
SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
		unsigned long __user *, user_mask_ptr)
L
Linus Torvalds 已提交
6154
{
6155
	cpumask_var_t new_mask;
L
Linus Torvalds 已提交
6156 6157
	int retval;

6158 6159
	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
		return -ENOMEM;
L
Linus Torvalds 已提交
6160

6161 6162 6163 6164 6165
	retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
	if (retval == 0)
		retval = sched_setaffinity(pid, new_mask);
	free_cpumask_var(new_mask);
	return retval;
L
Linus Torvalds 已提交
6166 6167
}

6168
long sched_getaffinity(pid_t pid, struct cpumask *mask)
L
Linus Torvalds 已提交
6169
{
6170
	struct task_struct *p;
L
Linus Torvalds 已提交
6171 6172
	int retval;

6173
	get_online_cpus();
L
Linus Torvalds 已提交
6174 6175 6176 6177 6178 6179 6180
	read_lock(&tasklist_lock);

	retval = -ESRCH;
	p = find_process_by_pid(pid);
	if (!p)
		goto out_unlock;

6181 6182 6183 6184
	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

6185
	cpumask_and(mask, &p->cpus_allowed, cpu_online_mask);
L
Linus Torvalds 已提交
6186 6187 6188

out_unlock:
	read_unlock(&tasklist_lock);
6189
	put_online_cpus();
L
Linus Torvalds 已提交
6190

6191
	return retval;
L
Linus Torvalds 已提交
6192 6193 6194 6195 6196 6197 6198 6199
}

/**
 * sys_sched_getaffinity - get the cpu affinity of a process
 * @pid: pid of the process
 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
 * @user_mask_ptr: user-space pointer to hold the current cpu mask
 */
6200 6201
SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
		unsigned long __user *, user_mask_ptr)
L
Linus Torvalds 已提交
6202 6203
{
	int ret;
6204
	cpumask_var_t mask;
L
Linus Torvalds 已提交
6205

6206
	if (len < cpumask_size())
L
Linus Torvalds 已提交
6207 6208
		return -EINVAL;

6209 6210
	if (!alloc_cpumask_var(&mask, GFP_KERNEL))
		return -ENOMEM;
L
Linus Torvalds 已提交
6211

6212 6213 6214 6215 6216 6217 6218 6219
	ret = sched_getaffinity(pid, mask);
	if (ret == 0) {
		if (copy_to_user(user_mask_ptr, mask, cpumask_size()))
			ret = -EFAULT;
		else
			ret = cpumask_size();
	}
	free_cpumask_var(mask);
L
Linus Torvalds 已提交
6220

6221
	return ret;
L
Linus Torvalds 已提交
6222 6223 6224 6225 6226
}

/**
 * sys_sched_yield - yield the current processor to other threads.
 *
I
Ingo Molnar 已提交
6227 6228
 * This function yields the current CPU to other tasks. If there are no
 * other threads running on this CPU then this function will return.
L
Linus Torvalds 已提交
6229
 */
6230
SYSCALL_DEFINE0(sched_yield)
L
Linus Torvalds 已提交
6231
{
6232
	struct rq *rq = this_rq_lock();
L
Linus Torvalds 已提交
6233

6234
	schedstat_inc(rq, yld_count);
6235
	current->sched_class->yield_task(rq);
L
Linus Torvalds 已提交
6236 6237 6238 6239 6240 6241

	/*
	 * Since we are going to call schedule() anyway, there's
	 * no need to preempt or enable interrupts:
	 */
	__release(rq->lock);
6242
	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
L
Linus Torvalds 已提交
6243 6244 6245 6246 6247 6248 6249 6250
	_raw_spin_unlock(&rq->lock);
	preempt_enable_no_resched();

	schedule();

	return 0;
}

A
Andrew Morton 已提交
6251
static void __cond_resched(void)
L
Linus Torvalds 已提交
6252
{
6253 6254 6255
#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
	__might_sleep(__FILE__, __LINE__);
#endif
6256 6257 6258 6259 6260
	/*
	 * The BKS might be reacquired before we have dropped
	 * PREEMPT_ACTIVE, which could trigger a second
	 * cond_resched() call.
	 */
L
Linus Torvalds 已提交
6261 6262 6263 6264 6265 6266 6267
	do {
		add_preempt_count(PREEMPT_ACTIVE);
		schedule();
		sub_preempt_count(PREEMPT_ACTIVE);
	} while (need_resched());
}

6268
int __sched _cond_resched(void)
L
Linus Torvalds 已提交
6269
{
6270 6271
	if (need_resched() && !(preempt_count() & PREEMPT_ACTIVE) &&
					system_state == SYSTEM_RUNNING) {
L
Linus Torvalds 已提交
6272 6273 6274 6275 6276
		__cond_resched();
		return 1;
	}
	return 0;
}
6277
EXPORT_SYMBOL(_cond_resched);
L
Linus Torvalds 已提交
6278 6279 6280 6281 6282

/*
 * cond_resched_lock() - if a reschedule is pending, drop the given lock,
 * call schedule, and on return reacquire the lock.
 *
I
Ingo Molnar 已提交
6283
 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
L
Linus Torvalds 已提交
6284 6285 6286
 * operations here to prevent schedule() from being called twice (once via
 * spin_unlock(), once by hand).
 */
I
Ingo Molnar 已提交
6287
int cond_resched_lock(spinlock_t *lock)
L
Linus Torvalds 已提交
6288
{
N
Nick Piggin 已提交
6289
	int resched = need_resched() && system_state == SYSTEM_RUNNING;
J
Jan Kara 已提交
6290 6291
	int ret = 0;

N
Nick Piggin 已提交
6292
	if (spin_needbreak(lock) || resched) {
L
Linus Torvalds 已提交
6293
		spin_unlock(lock);
N
Nick Piggin 已提交
6294 6295 6296 6297
		if (resched && need_resched())
			__cond_resched();
		else
			cpu_relax();
J
Jan Kara 已提交
6298
		ret = 1;
L
Linus Torvalds 已提交
6299 6300
		spin_lock(lock);
	}
J
Jan Kara 已提交
6301
	return ret;
L
Linus Torvalds 已提交
6302 6303 6304 6305 6306 6307 6308
}
EXPORT_SYMBOL(cond_resched_lock);

int __sched cond_resched_softirq(void)
{
	BUG_ON(!in_softirq());

6309
	if (need_resched() && system_state == SYSTEM_RUNNING) {
6310
		local_bh_enable();
L
Linus Torvalds 已提交
6311 6312 6313 6314 6315 6316 6317 6318 6319 6320 6321
		__cond_resched();
		local_bh_disable();
		return 1;
	}
	return 0;
}
EXPORT_SYMBOL(cond_resched_softirq);

/**
 * yield - yield the current processor to other threads.
 *
6322
 * This is a shortcut for kernel-space yielding - it marks the
L
Linus Torvalds 已提交
6323 6324 6325 6326 6327 6328 6329 6330 6331 6332
 * thread runnable and calls sys_sched_yield().
 */
void __sched yield(void)
{
	set_current_state(TASK_RUNNING);
	sys_sched_yield();
}
EXPORT_SYMBOL(yield);

/*
I
Ingo Molnar 已提交
6333
 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
L
Linus Torvalds 已提交
6334 6335 6336 6337 6338 6339 6340
 * that process accounting knows that this is a task in IO wait state.
 *
 * But don't do that if it is a deliberate, throttling IO wait (this task
 * has set its backing_dev_info: the queue against which it should throttle)
 */
void __sched io_schedule(void)
{
6341
	struct rq *rq = &__raw_get_cpu_var(runqueues);
L
Linus Torvalds 已提交
6342

6343
	delayacct_blkio_start();
L
Linus Torvalds 已提交
6344 6345 6346
	atomic_inc(&rq->nr_iowait);
	schedule();
	atomic_dec(&rq->nr_iowait);
6347
	delayacct_blkio_end();
L
Linus Torvalds 已提交
6348 6349 6350 6351 6352
}
EXPORT_SYMBOL(io_schedule);

long __sched io_schedule_timeout(long timeout)
{
6353
	struct rq *rq = &__raw_get_cpu_var(runqueues);
L
Linus Torvalds 已提交
6354 6355
	long ret;

6356
	delayacct_blkio_start();
L
Linus Torvalds 已提交
6357 6358 6359
	atomic_inc(&rq->nr_iowait);
	ret = schedule_timeout(timeout);
	atomic_dec(&rq->nr_iowait);
6360
	delayacct_blkio_end();
L
Linus Torvalds 已提交
6361 6362 6363 6364 6365 6366 6367 6368 6369 6370
	return ret;
}

/**
 * sys_sched_get_priority_max - return maximum RT priority.
 * @policy: scheduling class.
 *
 * this syscall returns the maximum rt_priority that can be used
 * by a given scheduling class.
 */
6371
SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
L
Linus Torvalds 已提交
6372 6373 6374 6375 6376 6377 6378 6379 6380
{
	int ret = -EINVAL;

	switch (policy) {
	case SCHED_FIFO:
	case SCHED_RR:
		ret = MAX_USER_RT_PRIO-1;
		break;
	case SCHED_NORMAL:
6381
	case SCHED_BATCH:
I
Ingo Molnar 已提交
6382
	case SCHED_IDLE:
L
Linus Torvalds 已提交
6383 6384 6385 6386 6387 6388 6389 6390 6391 6392 6393 6394 6395
		ret = 0;
		break;
	}
	return ret;
}

/**
 * sys_sched_get_priority_min - return minimum RT priority.
 * @policy: scheduling class.
 *
 * this syscall returns the minimum rt_priority that can be used
 * by a given scheduling class.
 */
6396
SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
L
Linus Torvalds 已提交
6397 6398 6399 6400 6401 6402 6403 6404 6405
{
	int ret = -EINVAL;

	switch (policy) {
	case SCHED_FIFO:
	case SCHED_RR:
		ret = 1;
		break;
	case SCHED_NORMAL:
6406
	case SCHED_BATCH:
I
Ingo Molnar 已提交
6407
	case SCHED_IDLE:
L
Linus Torvalds 已提交
6408 6409 6410 6411 6412 6413 6414 6415 6416 6417 6418 6419 6420
		ret = 0;
	}
	return ret;
}

/**
 * sys_sched_rr_get_interval - return the default timeslice of a process.
 * @pid: pid of the process.
 * @interval: userspace pointer to the timeslice value.
 *
 * this syscall writes the default timeslice value of a given process
 * into the user-space timespec buffer. A value of '0' means infinity.
 */
6421
SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
6422
		struct timespec __user *, interval)
L
Linus Torvalds 已提交
6423
{
6424
	struct task_struct *p;
D
Dmitry Adamushko 已提交
6425
	unsigned int time_slice;
6426
	int retval;
L
Linus Torvalds 已提交
6427 6428 6429
	struct timespec t;

	if (pid < 0)
6430
		return -EINVAL;
L
Linus Torvalds 已提交
6431 6432 6433 6434 6435 6436 6437 6438 6439 6440 6441

	retval = -ESRCH;
	read_lock(&tasklist_lock);
	p = find_process_by_pid(pid);
	if (!p)
		goto out_unlock;

	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

6442 6443 6444 6445 6446 6447
	/*
	 * Time slice is 0 for SCHED_FIFO tasks and for SCHED_OTHER
	 * tasks that are on an otherwise idle runqueue:
	 */
	time_slice = 0;
	if (p->policy == SCHED_RR) {
D
Dmitry Adamushko 已提交
6448
		time_slice = DEF_TIMESLICE;
6449
	} else if (p->policy != SCHED_FIFO) {
D
Dmitry Adamushko 已提交
6450 6451 6452 6453 6454
		struct sched_entity *se = &p->se;
		unsigned long flags;
		struct rq *rq;

		rq = task_rq_lock(p, &flags);
6455 6456
		if (rq->cfs.load.weight)
			time_slice = NS_TO_JIFFIES(sched_slice(&rq->cfs, se));
D
Dmitry Adamushko 已提交
6457 6458
		task_rq_unlock(rq, &flags);
	}
L
Linus Torvalds 已提交
6459
	read_unlock(&tasklist_lock);
D
Dmitry Adamushko 已提交
6460
	jiffies_to_timespec(time_slice, &t);
L
Linus Torvalds 已提交
6461 6462
	retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
	return retval;
6463

L
Linus Torvalds 已提交
6464 6465 6466 6467 6468
out_unlock:
	read_unlock(&tasklist_lock);
	return retval;
}

6469
static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
6470

6471
void sched_show_task(struct task_struct *p)
L
Linus Torvalds 已提交
6472 6473
{
	unsigned long free = 0;
6474
	unsigned state;
L
Linus Torvalds 已提交
6475 6476

	state = p->state ? __ffs(p->state) + 1 : 0;
I
Ingo Molnar 已提交
6477
	printk(KERN_INFO "%-13.13s %c", p->comm,
6478
		state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
6479
#if BITS_PER_LONG == 32
L
Linus Torvalds 已提交
6480
	if (state == TASK_RUNNING)
I
Ingo Molnar 已提交
6481
		printk(KERN_CONT " running  ");
L
Linus Torvalds 已提交
6482
	else
I
Ingo Molnar 已提交
6483
		printk(KERN_CONT " %08lx ", thread_saved_pc(p));
L
Linus Torvalds 已提交
6484 6485
#else
	if (state == TASK_RUNNING)
I
Ingo Molnar 已提交
6486
		printk(KERN_CONT "  running task    ");
L
Linus Torvalds 已提交
6487
	else
I
Ingo Molnar 已提交
6488
		printk(KERN_CONT " %016lx ", thread_saved_pc(p));
L
Linus Torvalds 已提交
6489 6490
#endif
#ifdef CONFIG_DEBUG_STACK_USAGE
6491
	free = stack_not_used(p);
L
Linus Torvalds 已提交
6492
#endif
6493
	printk(KERN_CONT "%5lu %5d %6d\n", free,
R
Roland McGrath 已提交
6494
		task_pid_nr(p), task_pid_nr(p->real_parent));
L
Linus Torvalds 已提交
6495

6496
	show_stack(p, NULL);
L
Linus Torvalds 已提交
6497 6498
}

I
Ingo Molnar 已提交
6499
void show_state_filter(unsigned long state_filter)
L
Linus Torvalds 已提交
6500
{
6501
	struct task_struct *g, *p;
L
Linus Torvalds 已提交
6502

6503 6504 6505
#if BITS_PER_LONG == 32
	printk(KERN_INFO
		"  task                PC stack   pid father\n");
L
Linus Torvalds 已提交
6506
#else
6507 6508
	printk(KERN_INFO
		"  task                        PC stack   pid father\n");
L
Linus Torvalds 已提交
6509 6510 6511 6512 6513 6514 6515 6516
#endif
	read_lock(&tasklist_lock);
	do_each_thread(g, p) {
		/*
		 * reset the NMI-timeout, listing all files on a slow
		 * console might take alot of time:
		 */
		touch_nmi_watchdog();
I
Ingo Molnar 已提交
6517
		if (!state_filter || (p->state & state_filter))
6518
			sched_show_task(p);
L
Linus Torvalds 已提交
6519 6520
	} while_each_thread(g, p);

6521 6522
	touch_all_softlockup_watchdogs();

I
Ingo Molnar 已提交
6523 6524 6525
#ifdef CONFIG_SCHED_DEBUG
	sysrq_sched_debug_show();
#endif
L
Linus Torvalds 已提交
6526
	read_unlock(&tasklist_lock);
I
Ingo Molnar 已提交
6527 6528 6529 6530 6531
	/*
	 * Only show locks if all tasks are dumped:
	 */
	if (state_filter == -1)
		debug_show_all_locks();
L
Linus Torvalds 已提交
6532 6533
}

I
Ingo Molnar 已提交
6534 6535
void __cpuinit init_idle_bootup_task(struct task_struct *idle)
{
I
Ingo Molnar 已提交
6536
	idle->sched_class = &idle_sched_class;
I
Ingo Molnar 已提交
6537 6538
}

6539 6540 6541 6542 6543 6544 6545 6546
/**
 * init_idle - set up an idle thread for a given CPU
 * @idle: task in question
 * @cpu: cpu the idle task belongs to
 *
 * NOTE: this function does not set the idle thread's NEED_RESCHED
 * flag, to make booting more robust.
 */
6547
void __cpuinit init_idle(struct task_struct *idle, int cpu)
L
Linus Torvalds 已提交
6548
{
6549
	struct rq *rq = cpu_rq(cpu);
L
Linus Torvalds 已提交
6550 6551
	unsigned long flags;

6552 6553
	spin_lock_irqsave(&rq->lock, flags);

I
Ingo Molnar 已提交
6554 6555 6556
	__sched_fork(idle);
	idle->se.exec_start = sched_clock();

6557
	idle->prio = idle->normal_prio = MAX_PRIO;
6558
	cpumask_copy(&idle->cpus_allowed, cpumask_of(cpu));
I
Ingo Molnar 已提交
6559
	__set_task_cpu(idle, cpu);
L
Linus Torvalds 已提交
6560 6561

	rq->curr = rq->idle = idle;
6562 6563 6564
#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
	idle->oncpu = 1;
#endif
L
Linus Torvalds 已提交
6565 6566 6567
	spin_unlock_irqrestore(&rq->lock, flags);

	/* Set the preempt count _outside_ the spinlocks! */
6568 6569 6570
#if defined(CONFIG_PREEMPT)
	task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
#else
A
Al Viro 已提交
6571
	task_thread_info(idle)->preempt_count = 0;
6572
#endif
I
Ingo Molnar 已提交
6573 6574 6575 6576
	/*
	 * The idle tasks have their own, simple scheduling class:
	 */
	idle->sched_class = &idle_sched_class;
6577
	ftrace_graph_init_task(idle);
L
Linus Torvalds 已提交
6578 6579 6580 6581 6582 6583 6584
}

/*
 * In a system that switches off the HZ timer nohz_cpu_mask
 * indicates which cpus entered this state. This is used
 * in the rcu update to wait only for active cpus. For system
 * which do not switch off the HZ timer nohz_cpu_mask should
6585
 * always be CPU_BITS_NONE.
L
Linus Torvalds 已提交
6586
 */
6587
cpumask_var_t nohz_cpu_mask;
L
Linus Torvalds 已提交
6588

I
Ingo Molnar 已提交
6589 6590 6591 6592 6593 6594 6595 6596 6597 6598 6599 6600 6601 6602 6603 6604 6605 6606 6607 6608 6609 6610 6611
/*
 * Increase the granularity value when there are more CPUs,
 * because with more CPUs the 'effective latency' as visible
 * to users decreases. But the relationship is not linear,
 * so pick a second-best guess by going with the log2 of the
 * number of CPUs.
 *
 * This idea comes from the SD scheduler of Con Kolivas:
 */
static inline void sched_init_granularity(void)
{
	unsigned int factor = 1 + ilog2(num_online_cpus());
	const unsigned long limit = 200000000;

	sysctl_sched_min_granularity *= factor;
	if (sysctl_sched_min_granularity > limit)
		sysctl_sched_min_granularity = limit;

	sysctl_sched_latency *= factor;
	if (sysctl_sched_latency > limit)
		sysctl_sched_latency = limit;

	sysctl_sched_wakeup_granularity *= factor;
6612 6613

	sysctl_sched_shares_ratelimit *= factor;
I
Ingo Molnar 已提交
6614 6615
}

L
Linus Torvalds 已提交
6616 6617 6618 6619
#ifdef CONFIG_SMP
/*
 * This is how migration works:
 *
6620
 * 1) we queue a struct migration_req structure in the source CPU's
L
Linus Torvalds 已提交
6621 6622 6623 6624 6625 6626 6627 6628 6629 6630 6631 6632 6633 6634 6635 6636 6637 6638
 *    runqueue and wake up that CPU's migration thread.
 * 2) we down() the locked semaphore => thread blocks.
 * 3) migration thread wakes up (implicitly it forces the migrated
 *    thread off the CPU)
 * 4) it gets the migration request and checks whether the migrated
 *    task is still in the wrong runqueue.
 * 5) if it's in the wrong runqueue then the migration thread removes
 *    it and puts it into the right queue.
 * 6) migration thread up()s the semaphore.
 * 7) we wake up and the migration is done.
 */

/*
 * Change a given task's CPU affinity. Migrate the thread to a
 * proper CPU and schedule it away if the CPU it's executing on
 * is removed from the allowed bitmask.
 *
 * NOTE: the caller must have a valid reference to the task, the
I
Ingo Molnar 已提交
6639
 * task must not exit() & deallocate itself prematurely. The
L
Linus Torvalds 已提交
6640 6641
 * call is not atomic; no spinlocks may be held.
 */
6642
int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
L
Linus Torvalds 已提交
6643
{
6644
	struct migration_req req;
L
Linus Torvalds 已提交
6645
	unsigned long flags;
6646
	struct rq *rq;
6647
	int ret = 0;
L
Linus Torvalds 已提交
6648 6649

	rq = task_rq_lock(p, &flags);
6650
	if (!cpumask_intersects(new_mask, cpu_online_mask)) {
L
Linus Torvalds 已提交
6651 6652 6653 6654
		ret = -EINVAL;
		goto out;
	}

6655
	if (unlikely((p->flags & PF_THREAD_BOUND) && p != current &&
6656
		     !cpumask_equal(&p->cpus_allowed, new_mask))) {
6657 6658 6659 6660
		ret = -EINVAL;
		goto out;
	}

6661
	if (p->sched_class->set_cpus_allowed)
6662
		p->sched_class->set_cpus_allowed(p, new_mask);
6663
	else {
6664 6665
		cpumask_copy(&p->cpus_allowed, new_mask);
		p->rt.nr_cpus_allowed = cpumask_weight(new_mask);
6666 6667
	}

L
Linus Torvalds 已提交
6668
	/* Can the task run on the task's current CPU? If so, we're done */
6669
	if (cpumask_test_cpu(task_cpu(p), new_mask))
L
Linus Torvalds 已提交
6670 6671
		goto out;

R
Rusty Russell 已提交
6672
	if (migrate_task(p, cpumask_any_and(cpu_online_mask, new_mask), &req)) {
L
Linus Torvalds 已提交
6673 6674 6675 6676 6677 6678 6679 6680 6681
		/* Need help from migration thread: drop lock and wait. */
		task_rq_unlock(rq, &flags);
		wake_up_process(rq->migration_thread);
		wait_for_completion(&req.done);
		tlb_migrate_finish(p->mm);
		return 0;
	}
out:
	task_rq_unlock(rq, &flags);
6682

L
Linus Torvalds 已提交
6683 6684
	return ret;
}
6685
EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
L
Linus Torvalds 已提交
6686 6687

/*
I
Ingo Molnar 已提交
6688
 * Move (not current) task off this cpu, onto dest cpu. We're doing
L
Linus Torvalds 已提交
6689 6690 6691 6692 6693 6694
 * this because either it can't run here any more (set_cpus_allowed()
 * away from this CPU, or CPU going down), or because we're
 * attempting to rebalance this task on exec (sched_exec).
 *
 * So we race with normal scheduler movements, but that's OK, as long
 * as the task is no longer on this CPU.
6695 6696
 *
 * Returns non-zero if task was successfully migrated.
L
Linus Torvalds 已提交
6697
 */
6698
static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
L
Linus Torvalds 已提交
6699
{
6700
	struct rq *rq_dest, *rq_src;
I
Ingo Molnar 已提交
6701
	int ret = 0, on_rq;
L
Linus Torvalds 已提交
6702

6703
	if (unlikely(!cpu_active(dest_cpu)))
6704
		return ret;
L
Linus Torvalds 已提交
6705 6706 6707 6708 6709 6710 6711

	rq_src = cpu_rq(src_cpu);
	rq_dest = cpu_rq(dest_cpu);

	double_rq_lock(rq_src, rq_dest);
	/* Already moved. */
	if (task_cpu(p) != src_cpu)
L
Linus Torvalds 已提交
6712
		goto done;
L
Linus Torvalds 已提交
6713
	/* Affinity changed (again). */
6714
	if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
L
Linus Torvalds 已提交
6715
		goto fail;
L
Linus Torvalds 已提交
6716

I
Ingo Molnar 已提交
6717
	on_rq = p->se.on_rq;
6718
	if (on_rq)
6719
		deactivate_task(rq_src, p, 0);
6720

L
Linus Torvalds 已提交
6721
	set_task_cpu(p, dest_cpu);
I
Ingo Molnar 已提交
6722 6723
	if (on_rq) {
		activate_task(rq_dest, p, 0);
6724
		check_preempt_curr(rq_dest, p, 0);
L
Linus Torvalds 已提交
6725
	}
L
Linus Torvalds 已提交
6726
done:
6727
	ret = 1;
L
Linus Torvalds 已提交
6728
fail:
L
Linus Torvalds 已提交
6729
	double_rq_unlock(rq_src, rq_dest);
6730
	return ret;
L
Linus Torvalds 已提交
6731 6732 6733 6734 6735 6736 6737
}

/*
 * migration_thread - this is a highprio system thread that performs
 * thread migration by bumping thread off CPU then 'pushing' onto
 * another runqueue.
 */
I
Ingo Molnar 已提交
6738
static int migration_thread(void *data)
L
Linus Torvalds 已提交
6739 6740
{
	int cpu = (long)data;
6741
	struct rq *rq;
L
Linus Torvalds 已提交
6742 6743 6744 6745 6746 6747

	rq = cpu_rq(cpu);
	BUG_ON(rq->migration_thread != current);

	set_current_state(TASK_INTERRUPTIBLE);
	while (!kthread_should_stop()) {
6748
		struct migration_req *req;
L
Linus Torvalds 已提交
6749 6750 6751 6752 6753 6754 6755 6756 6757 6758 6759 6760 6761 6762 6763 6764 6765 6766 6767 6768 6769 6770
		struct list_head *head;

		spin_lock_irq(&rq->lock);

		if (cpu_is_offline(cpu)) {
			spin_unlock_irq(&rq->lock);
			goto wait_to_die;
		}

		if (rq->active_balance) {
			active_load_balance(rq, cpu);
			rq->active_balance = 0;
		}

		head = &rq->migration_queue;

		if (list_empty(head)) {
			spin_unlock_irq(&rq->lock);
			schedule();
			set_current_state(TASK_INTERRUPTIBLE);
			continue;
		}
6771
		req = list_entry(head->next, struct migration_req, list);
L
Linus Torvalds 已提交
6772 6773
		list_del_init(head->next);

N
Nick Piggin 已提交
6774 6775 6776
		spin_unlock(&rq->lock);
		__migrate_task(req->task, cpu, req->dest_cpu);
		local_irq_enable();
L
Linus Torvalds 已提交
6777 6778 6779 6780 6781 6782 6783 6784 6785 6786 6787 6788 6789 6790 6791 6792 6793 6794

		complete(&req->done);
	}
	__set_current_state(TASK_RUNNING);
	return 0;

wait_to_die:
	/* Wait for kthread_stop */
	set_current_state(TASK_INTERRUPTIBLE);
	while (!kthread_should_stop()) {
		schedule();
		set_current_state(TASK_INTERRUPTIBLE);
	}
	__set_current_state(TASK_RUNNING);
	return 0;
}

#ifdef CONFIG_HOTPLUG_CPU
6795 6796 6797 6798 6799 6800 6801 6802 6803 6804 6805

static int __migrate_task_irq(struct task_struct *p, int src_cpu, int dest_cpu)
{
	int ret;

	local_irq_disable();
	ret = __migrate_task(p, src_cpu, dest_cpu);
	local_irq_enable();
	return ret;
}

6806
/*
6807
 * Figure out where task on dead CPU should go, use force if necessary.
6808
 */
6809
static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
L
Linus Torvalds 已提交
6810
{
6811
	int dest_cpu;
6812
	const struct cpumask *nodemask = cpumask_of_node(cpu_to_node(dead_cpu));
6813 6814 6815 6816 6817 6818 6819 6820 6821 6822 6823 6824 6825 6826 6827 6828

again:
	/* Look for allowed, online CPU in same node. */
	for_each_cpu_and(dest_cpu, nodemask, cpu_online_mask)
		if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
			goto move;

	/* Any allowed, online CPU? */
	dest_cpu = cpumask_any_and(&p->cpus_allowed, cpu_online_mask);
	if (dest_cpu < nr_cpu_ids)
		goto move;

	/* No more Mr. Nice Guy. */
	if (dest_cpu >= nr_cpu_ids) {
		cpuset_cpus_allowed_locked(p, &p->cpus_allowed);
		dest_cpu = cpumask_any_and(cpu_online_mask, &p->cpus_allowed);
L
Linus Torvalds 已提交
6829

6830 6831 6832 6833 6834 6835 6836 6837 6838
		/*
		 * Don't tell them about moving exiting tasks or
		 * kernel threads (both mm NULL), since they never
		 * leave kernel.
		 */
		if (p->mm && printk_ratelimit()) {
			printk(KERN_INFO "process %d (%s) no "
			       "longer affine to cpu%d\n",
			       task_pid_nr(p), p->comm, dead_cpu);
6839
		}
6840 6841 6842 6843 6844 6845
	}

move:
	/* It can have affinity changed while we were choosing. */
	if (unlikely(!__migrate_task_irq(p, dead_cpu, dest_cpu)))
		goto again;
L
Linus Torvalds 已提交
6846 6847 6848 6849 6850 6851 6852 6853 6854
}

/*
 * While a dead CPU has no uninterruptible tasks queued at this point,
 * it might still have a nonzero ->nr_uninterruptible counter, because
 * for performance reasons the counter is not stricly tracking tasks to
 * their home CPUs. So we just add the counter to another CPU's counter,
 * to keep the global sum constant after CPU-down:
 */
6855
static void migrate_nr_uninterruptible(struct rq *rq_src)
L
Linus Torvalds 已提交
6856
{
R
Rusty Russell 已提交
6857
	struct rq *rq_dest = cpu_rq(cpumask_any(cpu_online_mask));
L
Linus Torvalds 已提交
6858 6859 6860 6861 6862 6863 6864 6865 6866 6867 6868 6869 6870
	unsigned long flags;

	local_irq_save(flags);
	double_rq_lock(rq_src, rq_dest);
	rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
	rq_src->nr_uninterruptible = 0;
	double_rq_unlock(rq_src, rq_dest);
	local_irq_restore(flags);
}

/* Run through task list and migrate tasks from the dead cpu. */
static void migrate_live_tasks(int src_cpu)
{
6871
	struct task_struct *p, *t;
L
Linus Torvalds 已提交
6872

6873
	read_lock(&tasklist_lock);
L
Linus Torvalds 已提交
6874

6875 6876
	do_each_thread(t, p) {
		if (p == current)
L
Linus Torvalds 已提交
6877 6878
			continue;

6879 6880 6881
		if (task_cpu(p) == src_cpu)
			move_task_off_dead_cpu(src_cpu, p);
	} while_each_thread(t, p);
L
Linus Torvalds 已提交
6882

6883
	read_unlock(&tasklist_lock);
L
Linus Torvalds 已提交
6884 6885
}

I
Ingo Molnar 已提交
6886 6887
/*
 * Schedules idle task to be the next runnable task on current CPU.
6888 6889
 * It does so by boosting its priority to highest possible.
 * Used by CPU offline code.
L
Linus Torvalds 已提交
6890 6891 6892
 */
void sched_idle_next(void)
{
6893
	int this_cpu = smp_processor_id();
6894
	struct rq *rq = cpu_rq(this_cpu);
L
Linus Torvalds 已提交
6895 6896 6897 6898
	struct task_struct *p = rq->idle;
	unsigned long flags;

	/* cpu has to be offline */
6899
	BUG_ON(cpu_online(this_cpu));
L
Linus Torvalds 已提交
6900

6901 6902 6903
	/*
	 * Strictly not necessary since rest of the CPUs are stopped by now
	 * and interrupts disabled on the current cpu.
L
Linus Torvalds 已提交
6904 6905 6906
	 */
	spin_lock_irqsave(&rq->lock, flags);

I
Ingo Molnar 已提交
6907
	__setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
6908

6909 6910
	update_rq_clock(rq);
	activate_task(rq, p, 0);
L
Linus Torvalds 已提交
6911 6912 6913 6914

	spin_unlock_irqrestore(&rq->lock, flags);
}

6915 6916
/*
 * Ensures that the idle task is using init_mm right before its cpu goes
L
Linus Torvalds 已提交
6917 6918 6919 6920 6921 6922 6923 6924 6925 6926 6927 6928 6929
 * offline.
 */
void idle_task_exit(void)
{
	struct mm_struct *mm = current->active_mm;

	BUG_ON(cpu_online(smp_processor_id()));

	if (mm != &init_mm)
		switch_mm(mm, &init_mm, current);
	mmdrop(mm);
}

6930
/* called under rq->lock with disabled interrupts */
6931
static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
L
Linus Torvalds 已提交
6932
{
6933
	struct rq *rq = cpu_rq(dead_cpu);
L
Linus Torvalds 已提交
6934 6935

	/* Must be exiting, otherwise would be on tasklist. */
E
Eugene Teo 已提交
6936
	BUG_ON(!p->exit_state);
L
Linus Torvalds 已提交
6937 6938

	/* Cannot have done final schedule yet: would have vanished. */
6939
	BUG_ON(p->state == TASK_DEAD);
L
Linus Torvalds 已提交
6940

6941
	get_task_struct(p);
L
Linus Torvalds 已提交
6942 6943 6944

	/*
	 * Drop lock around migration; if someone else moves it,
I
Ingo Molnar 已提交
6945
	 * that's OK. No task can be added to this CPU, so iteration is
L
Linus Torvalds 已提交
6946 6947
	 * fine.
	 */
6948
	spin_unlock_irq(&rq->lock);
6949
	move_task_off_dead_cpu(dead_cpu, p);
6950
	spin_lock_irq(&rq->lock);
L
Linus Torvalds 已提交
6951

6952
	put_task_struct(p);
L
Linus Torvalds 已提交
6953 6954 6955 6956 6957
}

/* release_task() removes task from tasklist, so we won't find dead tasks. */
static void migrate_dead_tasks(unsigned int dead_cpu)
{
6958
	struct rq *rq = cpu_rq(dead_cpu);
I
Ingo Molnar 已提交
6959
	struct task_struct *next;
6960

I
Ingo Molnar 已提交
6961 6962 6963
	for ( ; ; ) {
		if (!rq->nr_running)
			break;
I
Ingo Molnar 已提交
6964
		update_rq_clock(rq);
6965
		next = pick_next_task(rq);
I
Ingo Molnar 已提交
6966 6967
		if (!next)
			break;
D
Dmitry Adamushko 已提交
6968
		next->sched_class->put_prev_task(rq, next);
I
Ingo Molnar 已提交
6969
		migrate_dead(dead_cpu, next);
6970

L
Linus Torvalds 已提交
6971 6972 6973 6974
	}
}
#endif /* CONFIG_HOTPLUG_CPU */

6975 6976 6977
#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)

static struct ctl_table sd_ctl_dir[] = {
6978 6979
	{
		.procname	= "sched_domain",
6980
		.mode		= 0555,
6981
	},
I
Ingo Molnar 已提交
6982
	{0, },
6983 6984 6985
};

static struct ctl_table sd_ctl_root[] = {
6986
	{
6987
		.ctl_name	= CTL_KERN,
6988
		.procname	= "kernel",
6989
		.mode		= 0555,
6990 6991
		.child		= sd_ctl_dir,
	},
I
Ingo Molnar 已提交
6992
	{0, },
6993 6994 6995 6996 6997
};

static struct ctl_table *sd_alloc_ctl_entry(int n)
{
	struct ctl_table *entry =
6998
		kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
6999 7000 7001 7002

	return entry;
}

7003 7004
static void sd_free_ctl_entry(struct ctl_table **tablep)
{
7005
	struct ctl_table *entry;
7006

7007 7008 7009
	/*
	 * In the intermediate directories, both the child directory and
	 * procname are dynamically allocated and could fail but the mode
I
Ingo Molnar 已提交
7010
	 * will always be set. In the lowest directory the names are
7011 7012 7013
	 * static strings and all have proc handlers.
	 */
	for (entry = *tablep; entry->mode; entry++) {
7014 7015
		if (entry->child)
			sd_free_ctl_entry(&entry->child);
7016 7017 7018
		if (entry->proc_handler == NULL)
			kfree(entry->procname);
	}
7019 7020 7021 7022 7023

	kfree(*tablep);
	*tablep = NULL;
}

7024
static void
7025
set_table_entry(struct ctl_table *entry,
7026 7027 7028 7029 7030 7031 7032 7033 7034 7035 7036 7037 7038
		const char *procname, void *data, int maxlen,
		mode_t mode, proc_handler *proc_handler)
{
	entry->procname = procname;
	entry->data = data;
	entry->maxlen = maxlen;
	entry->mode = mode;
	entry->proc_handler = proc_handler;
}

static struct ctl_table *
sd_alloc_ctl_domain_table(struct sched_domain *sd)
{
7039
	struct ctl_table *table = sd_alloc_ctl_entry(13);
7040

7041 7042 7043
	if (table == NULL)
		return NULL;

7044
	set_table_entry(&table[0], "min_interval", &sd->min_interval,
7045
		sizeof(long), 0644, proc_doulongvec_minmax);
7046
	set_table_entry(&table[1], "max_interval", &sd->max_interval,
7047
		sizeof(long), 0644, proc_doulongvec_minmax);
7048
	set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
7049
		sizeof(int), 0644, proc_dointvec_minmax);
7050
	set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
7051
		sizeof(int), 0644, proc_dointvec_minmax);
7052
	set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
7053
		sizeof(int), 0644, proc_dointvec_minmax);
7054
	set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
7055
		sizeof(int), 0644, proc_dointvec_minmax);
7056
	set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
7057
		sizeof(int), 0644, proc_dointvec_minmax);
7058
	set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
7059
		sizeof(int), 0644, proc_dointvec_minmax);
7060
	set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
7061
		sizeof(int), 0644, proc_dointvec_minmax);
7062
	set_table_entry(&table[9], "cache_nice_tries",
7063 7064
		&sd->cache_nice_tries,
		sizeof(int), 0644, proc_dointvec_minmax);
7065
	set_table_entry(&table[10], "flags", &sd->flags,
7066
		sizeof(int), 0644, proc_dointvec_minmax);
7067 7068 7069
	set_table_entry(&table[11], "name", sd->name,
		CORENAME_MAX_SIZE, 0444, proc_dostring);
	/* &table[12] is terminator */
7070 7071 7072 7073

	return table;
}

7074
static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
7075 7076 7077 7078 7079 7080 7081 7082 7083
{
	struct ctl_table *entry, *table;
	struct sched_domain *sd;
	int domain_num = 0, i;
	char buf[32];

	for_each_domain(cpu, sd)
		domain_num++;
	entry = table = sd_alloc_ctl_entry(domain_num + 1);
7084 7085
	if (table == NULL)
		return NULL;
7086 7087 7088 7089 7090

	i = 0;
	for_each_domain(cpu, sd) {
		snprintf(buf, 32, "domain%d", i);
		entry->procname = kstrdup(buf, GFP_KERNEL);
7091
		entry->mode = 0555;
7092 7093 7094 7095 7096 7097 7098 7099
		entry->child = sd_alloc_ctl_domain_table(sd);
		entry++;
		i++;
	}
	return table;
}

static struct ctl_table_header *sd_sysctl_header;
7100
static void register_sched_domain_sysctl(void)
7101 7102 7103 7104 7105
{
	int i, cpu_num = num_online_cpus();
	struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
	char buf[32];

7106 7107 7108
	WARN_ON(sd_ctl_dir[0].child);
	sd_ctl_dir[0].child = entry;

7109 7110 7111
	if (entry == NULL)
		return;

7112
	for_each_online_cpu(i) {
7113 7114
		snprintf(buf, 32, "cpu%d", i);
		entry->procname = kstrdup(buf, GFP_KERNEL);
7115
		entry->mode = 0555;
7116
		entry->child = sd_alloc_ctl_cpu_table(i);
7117
		entry++;
7118
	}
7119 7120

	WARN_ON(sd_sysctl_header);
7121 7122
	sd_sysctl_header = register_sysctl_table(sd_ctl_root);
}
7123

7124
/* may be called multiple times per register */
7125 7126
static void unregister_sched_domain_sysctl(void)
{
7127 7128
	if (sd_sysctl_header)
		unregister_sysctl_table(sd_sysctl_header);
7129
	sd_sysctl_header = NULL;
7130 7131
	if (sd_ctl_dir[0].child)
		sd_free_ctl_entry(&sd_ctl_dir[0].child);
7132
}
7133
#else
7134 7135 7136 7137
static void register_sched_domain_sysctl(void)
{
}
static void unregister_sched_domain_sysctl(void)
7138 7139 7140 7141
{
}
#endif

7142 7143 7144 7145 7146
static void set_rq_online(struct rq *rq)
{
	if (!rq->online) {
		const struct sched_class *class;

7147
		cpumask_set_cpu(rq->cpu, rq->rd->online);
7148 7149 7150 7151 7152 7153 7154 7155 7156 7157 7158 7159 7160 7161 7162 7163 7164 7165 7166
		rq->online = 1;

		for_each_class(class) {
			if (class->rq_online)
				class->rq_online(rq);
		}
	}
}

static void set_rq_offline(struct rq *rq)
{
	if (rq->online) {
		const struct sched_class *class;

		for_each_class(class) {
			if (class->rq_offline)
				class->rq_offline(rq);
		}

7167
		cpumask_clear_cpu(rq->cpu, rq->rd->online);
7168 7169 7170 7171
		rq->online = 0;
	}
}

L
Linus Torvalds 已提交
7172 7173 7174 7175
/*
 * migration_call - callback that gets triggered when a CPU is added.
 * Here we can start up the necessary migration thread for the new CPU.
 */
7176 7177
static int __cpuinit
migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
L
Linus Torvalds 已提交
7178 7179
{
	struct task_struct *p;
7180
	int cpu = (long)hcpu;
L
Linus Torvalds 已提交
7181
	unsigned long flags;
7182
	struct rq *rq;
L
Linus Torvalds 已提交
7183 7184

	switch (action) {
7185

L
Linus Torvalds 已提交
7186
	case CPU_UP_PREPARE:
7187
	case CPU_UP_PREPARE_FROZEN:
I
Ingo Molnar 已提交
7188
		p = kthread_create(migration_thread, hcpu, "migration/%d", cpu);
L
Linus Torvalds 已提交
7189 7190 7191 7192 7193
		if (IS_ERR(p))
			return NOTIFY_BAD;
		kthread_bind(p, cpu);
		/* Must be high prio: stop_machine expects to yield to it. */
		rq = task_rq_lock(p, &flags);
I
Ingo Molnar 已提交
7194
		__setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
L
Linus Torvalds 已提交
7195 7196 7197
		task_rq_unlock(rq, &flags);
		cpu_rq(cpu)->migration_thread = p;
		break;
7198

L
Linus Torvalds 已提交
7199
	case CPU_ONLINE:
7200
	case CPU_ONLINE_FROZEN:
7201
		/* Strictly unnecessary, as first user will wake it. */
L
Linus Torvalds 已提交
7202
		wake_up_process(cpu_rq(cpu)->migration_thread);
7203 7204 7205 7206 7207

		/* Update our root-domain */
		rq = cpu_rq(cpu);
		spin_lock_irqsave(&rq->lock, flags);
		if (rq->rd) {
7208
			BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
7209 7210

			set_rq_online(rq);
7211 7212
		}
		spin_unlock_irqrestore(&rq->lock, flags);
L
Linus Torvalds 已提交
7213
		break;
7214

L
Linus Torvalds 已提交
7215 7216
#ifdef CONFIG_HOTPLUG_CPU
	case CPU_UP_CANCELED:
7217
	case CPU_UP_CANCELED_FROZEN:
7218 7219
		if (!cpu_rq(cpu)->migration_thread)
			break;
I
Ingo Molnar 已提交
7220
		/* Unbind it from offline cpu so it can run. Fall thru. */
7221
		kthread_bind(cpu_rq(cpu)->migration_thread,
R
Rusty Russell 已提交
7222
			     cpumask_any(cpu_online_mask));
L
Linus Torvalds 已提交
7223 7224 7225
		kthread_stop(cpu_rq(cpu)->migration_thread);
		cpu_rq(cpu)->migration_thread = NULL;
		break;
7226

L
Linus Torvalds 已提交
7227
	case CPU_DEAD:
7228
	case CPU_DEAD_FROZEN:
7229
		cpuset_lock(); /* around calls to cpuset_cpus_allowed_lock() */
L
Linus Torvalds 已提交
7230 7231 7232 7233 7234
		migrate_live_tasks(cpu);
		rq = cpu_rq(cpu);
		kthread_stop(rq->migration_thread);
		rq->migration_thread = NULL;
		/* Idle task back to normal (off runqueue, low prio) */
7235
		spin_lock_irq(&rq->lock);
I
Ingo Molnar 已提交
7236
		update_rq_clock(rq);
7237
		deactivate_task(rq, rq->idle, 0);
L
Linus Torvalds 已提交
7238
		rq->idle->static_prio = MAX_PRIO;
I
Ingo Molnar 已提交
7239 7240
		__setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
		rq->idle->sched_class = &idle_sched_class;
L
Linus Torvalds 已提交
7241
		migrate_dead_tasks(cpu);
7242
		spin_unlock_irq(&rq->lock);
7243
		cpuset_unlock();
L
Linus Torvalds 已提交
7244 7245 7246
		migrate_nr_uninterruptible(rq);
		BUG_ON(rq->nr_running != 0);

I
Ingo Molnar 已提交
7247 7248 7249 7250 7251
		/*
		 * No need to migrate the tasks: it was best-effort if
		 * they didn't take sched_hotcpu_mutex. Just wake up
		 * the requestors.
		 */
L
Linus Torvalds 已提交
7252 7253
		spin_lock_irq(&rq->lock);
		while (!list_empty(&rq->migration_queue)) {
7254 7255
			struct migration_req *req;

L
Linus Torvalds 已提交
7256
			req = list_entry(rq->migration_queue.next,
7257
					 struct migration_req, list);
L
Linus Torvalds 已提交
7258
			list_del_init(&req->list);
B
Brian King 已提交
7259
			spin_unlock_irq(&rq->lock);
L
Linus Torvalds 已提交
7260
			complete(&req->done);
B
Brian King 已提交
7261
			spin_lock_irq(&rq->lock);
L
Linus Torvalds 已提交
7262 7263 7264
		}
		spin_unlock_irq(&rq->lock);
		break;
G
Gregory Haskins 已提交
7265

7266 7267
	case CPU_DYING:
	case CPU_DYING_FROZEN:
G
Gregory Haskins 已提交
7268 7269 7270 7271
		/* Update our root-domain */
		rq = cpu_rq(cpu);
		spin_lock_irqsave(&rq->lock, flags);
		if (rq->rd) {
7272
			BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
7273
			set_rq_offline(rq);
G
Gregory Haskins 已提交
7274 7275 7276
		}
		spin_unlock_irqrestore(&rq->lock, flags);
		break;
L
Linus Torvalds 已提交
7277 7278 7279 7280 7281 7282 7283 7284
#endif
	}
	return NOTIFY_OK;
}

/* Register at highest priority so that task migration (migrate_all_tasks)
 * happens before everything else.
 */
7285
static struct notifier_block __cpuinitdata migration_notifier = {
L
Linus Torvalds 已提交
7286 7287 7288 7289
	.notifier_call = migration_call,
	.priority = 10
};

7290
static int __init migration_init(void)
L
Linus Torvalds 已提交
7291 7292
{
	void *cpu = (void *)(long)smp_processor_id();
7293
	int err;
7294 7295

	/* Start one for the boot CPU: */
7296 7297
	err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
	BUG_ON(err == NOTIFY_BAD);
L
Linus Torvalds 已提交
7298 7299
	migration_call(&migration_notifier, CPU_ONLINE, cpu);
	register_cpu_notifier(&migration_notifier);
7300 7301

	return err;
L
Linus Torvalds 已提交
7302
}
7303
early_initcall(migration_init);
L
Linus Torvalds 已提交
7304 7305 7306
#endif

#ifdef CONFIG_SMP
7307

7308
#ifdef CONFIG_SCHED_DEBUG
I
Ingo Molnar 已提交
7309

7310
static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
7311
				  struct cpumask *groupmask)
L
Linus Torvalds 已提交
7312
{
I
Ingo Molnar 已提交
7313
	struct sched_group *group = sd->groups;
7314
	char str[256];
L
Linus Torvalds 已提交
7315

R
Rusty Russell 已提交
7316
	cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
7317
	cpumask_clear(groupmask);
I
Ingo Molnar 已提交
7318 7319 7320 7321 7322 7323 7324 7325 7326

	printk(KERN_DEBUG "%*s domain %d: ", level, "", level);

	if (!(sd->flags & SD_LOAD_BALANCE)) {
		printk("does not load-balance\n");
		if (sd->parent)
			printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
					" has parent");
		return -1;
N
Nick Piggin 已提交
7327 7328
	}

7329
	printk(KERN_CONT "span %s level %s\n", str, sd->name);
I
Ingo Molnar 已提交
7330

7331
	if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
I
Ingo Molnar 已提交
7332 7333 7334
		printk(KERN_ERR "ERROR: domain->span does not contain "
				"CPU%d\n", cpu);
	}
7335
	if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
I
Ingo Molnar 已提交
7336 7337 7338
		printk(KERN_ERR "ERROR: domain->groups does not contain"
				" CPU%d\n", cpu);
	}
L
Linus Torvalds 已提交
7339

I
Ingo Molnar 已提交
7340
	printk(KERN_DEBUG "%*s groups:", level + 1, "");
L
Linus Torvalds 已提交
7341
	do {
I
Ingo Molnar 已提交
7342 7343 7344
		if (!group) {
			printk("\n");
			printk(KERN_ERR "ERROR: group is NULL\n");
L
Linus Torvalds 已提交
7345 7346 7347
			break;
		}

I
Ingo Molnar 已提交
7348 7349 7350 7351 7352 7353
		if (!group->__cpu_power) {
			printk(KERN_CONT "\n");
			printk(KERN_ERR "ERROR: domain->cpu_power not "
					"set\n");
			break;
		}
L
Linus Torvalds 已提交
7354

7355
		if (!cpumask_weight(sched_group_cpus(group))) {
I
Ingo Molnar 已提交
7356 7357 7358 7359
			printk(KERN_CONT "\n");
			printk(KERN_ERR "ERROR: empty group\n");
			break;
		}
L
Linus Torvalds 已提交
7360

7361
		if (cpumask_intersects(groupmask, sched_group_cpus(group))) {
I
Ingo Molnar 已提交
7362 7363 7364 7365
			printk(KERN_CONT "\n");
			printk(KERN_ERR "ERROR: repeated CPUs\n");
			break;
		}
L
Linus Torvalds 已提交
7366

7367
		cpumask_or(groupmask, groupmask, sched_group_cpus(group));
L
Linus Torvalds 已提交
7368

R
Rusty Russell 已提交
7369
		cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
7370 7371 7372 7373 7374 7375

		printk(KERN_CONT " %s", str);
		if (group->__cpu_power != SCHED_LOAD_SCALE) {
			printk(KERN_CONT " (__cpu_power = %d)",
				group->__cpu_power);
		}
L
Linus Torvalds 已提交
7376

I
Ingo Molnar 已提交
7377 7378 7379
		group = group->next;
	} while (group != sd->groups);
	printk(KERN_CONT "\n");
L
Linus Torvalds 已提交
7380

7381
	if (!cpumask_equal(sched_domain_span(sd), groupmask))
I
Ingo Molnar 已提交
7382
		printk(KERN_ERR "ERROR: groups don't span domain->span\n");
L
Linus Torvalds 已提交
7383

7384 7385
	if (sd->parent &&
	    !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
I
Ingo Molnar 已提交
7386 7387 7388 7389
		printk(KERN_ERR "ERROR: parent span is not a superset "
			"of domain->span\n");
	return 0;
}
L
Linus Torvalds 已提交
7390

I
Ingo Molnar 已提交
7391 7392
static void sched_domain_debug(struct sched_domain *sd, int cpu)
{
7393
	cpumask_var_t groupmask;
I
Ingo Molnar 已提交
7394
	int level = 0;
L
Linus Torvalds 已提交
7395

I
Ingo Molnar 已提交
7396 7397 7398 7399
	if (!sd) {
		printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
		return;
	}
L
Linus Torvalds 已提交
7400

I
Ingo Molnar 已提交
7401 7402
	printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);

7403
	if (!alloc_cpumask_var(&groupmask, GFP_KERNEL)) {
7404 7405 7406 7407
		printk(KERN_DEBUG "Cannot load-balance (out of memory)\n");
		return;
	}

I
Ingo Molnar 已提交
7408
	for (;;) {
7409
		if (sched_domain_debug_one(sd, cpu, level, groupmask))
I
Ingo Molnar 已提交
7410
			break;
L
Linus Torvalds 已提交
7411 7412
		level++;
		sd = sd->parent;
7413
		if (!sd)
I
Ingo Molnar 已提交
7414 7415
			break;
	}
7416
	free_cpumask_var(groupmask);
L
Linus Torvalds 已提交
7417
}
7418
#else /* !CONFIG_SCHED_DEBUG */
7419
# define sched_domain_debug(sd, cpu) do { } while (0)
7420
#endif /* CONFIG_SCHED_DEBUG */
L
Linus Torvalds 已提交
7421

7422
static int sd_degenerate(struct sched_domain *sd)
7423
{
7424
	if (cpumask_weight(sched_domain_span(sd)) == 1)
7425 7426 7427 7428 7429 7430
		return 1;

	/* Following flags need at least 2 groups */
	if (sd->flags & (SD_LOAD_BALANCE |
			 SD_BALANCE_NEWIDLE |
			 SD_BALANCE_FORK |
7431 7432 7433
			 SD_BALANCE_EXEC |
			 SD_SHARE_CPUPOWER |
			 SD_SHARE_PKG_RESOURCES)) {
7434 7435 7436 7437 7438 7439 7440 7441 7442 7443 7444 7445 7446
		if (sd->groups != sd->groups->next)
			return 0;
	}

	/* Following flags don't use groups */
	if (sd->flags & (SD_WAKE_IDLE |
			 SD_WAKE_AFFINE |
			 SD_WAKE_BALANCE))
		return 0;

	return 1;
}

7447 7448
static int
sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
7449 7450 7451 7452 7453 7454
{
	unsigned long cflags = sd->flags, pflags = parent->flags;

	if (sd_degenerate(parent))
		return 1;

7455
	if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
7456 7457 7458 7459 7460 7461 7462 7463 7464 7465 7466
		return 0;

	/* Does parent contain flags not in child? */
	/* WAKE_BALANCE is a subset of WAKE_AFFINE */
	if (cflags & SD_WAKE_AFFINE)
		pflags &= ~SD_WAKE_BALANCE;
	/* Flags needing groups don't count if only 1 group in parent */
	if (parent->groups == parent->groups->next) {
		pflags &= ~(SD_LOAD_BALANCE |
				SD_BALANCE_NEWIDLE |
				SD_BALANCE_FORK |
7467 7468 7469
				SD_BALANCE_EXEC |
				SD_SHARE_CPUPOWER |
				SD_SHARE_PKG_RESOURCES);
7470 7471
		if (nr_node_ids == 1)
			pflags &= ~SD_SERIALIZE;
7472 7473 7474 7475 7476 7477 7478
	}
	if (~cflags & pflags)
		return 0;

	return 1;
}

7479 7480
static void free_rootdomain(struct root_domain *rd)
{
7481 7482
	cpupri_cleanup(&rd->cpupri);

7483 7484 7485 7486 7487 7488
	free_cpumask_var(rd->rto_mask);
	free_cpumask_var(rd->online);
	free_cpumask_var(rd->span);
	kfree(rd);
}

G
Gregory Haskins 已提交
7489 7490
static void rq_attach_root(struct rq *rq, struct root_domain *rd)
{
I
Ingo Molnar 已提交
7491
	struct root_domain *old_rd = NULL;
G
Gregory Haskins 已提交
7492 7493 7494 7495 7496
	unsigned long flags;

	spin_lock_irqsave(&rq->lock, flags);

	if (rq->rd) {
I
Ingo Molnar 已提交
7497
		old_rd = rq->rd;
G
Gregory Haskins 已提交
7498

7499
		if (cpumask_test_cpu(rq->cpu, old_rd->online))
7500
			set_rq_offline(rq);
G
Gregory Haskins 已提交
7501

7502
		cpumask_clear_cpu(rq->cpu, old_rd->span);
7503

I
Ingo Molnar 已提交
7504 7505 7506 7507 7508 7509 7510
		/*
		 * If we dont want to free the old_rt yet then
		 * set old_rd to NULL to skip the freeing later
		 * in this function:
		 */
		if (!atomic_dec_and_test(&old_rd->refcount))
			old_rd = NULL;
G
Gregory Haskins 已提交
7511 7512 7513 7514 7515
	}

	atomic_inc(&rd->refcount);
	rq->rd = rd;

7516 7517
	cpumask_set_cpu(rq->cpu, rd->span);
	if (cpumask_test_cpu(rq->cpu, cpu_online_mask))
7518
		set_rq_online(rq);
G
Gregory Haskins 已提交
7519 7520

	spin_unlock_irqrestore(&rq->lock, flags);
I
Ingo Molnar 已提交
7521 7522 7523

	if (old_rd)
		free_rootdomain(old_rd);
G
Gregory Haskins 已提交
7524 7525
}

L
Li Zefan 已提交
7526
static int __init_refok init_rootdomain(struct root_domain *rd, bool bootmem)
G
Gregory Haskins 已提交
7527 7528 7529
{
	memset(rd, 0, sizeof(*rd));

7530 7531 7532 7533
	if (bootmem) {
		alloc_bootmem_cpumask_var(&def_root_domain.span);
		alloc_bootmem_cpumask_var(&def_root_domain.online);
		alloc_bootmem_cpumask_var(&def_root_domain.rto_mask);
7534
		cpupri_init(&rd->cpupri, true);
7535 7536 7537 7538
		return 0;
	}

	if (!alloc_cpumask_var(&rd->span, GFP_KERNEL))
7539
		goto out;
7540 7541 7542 7543
	if (!alloc_cpumask_var(&rd->online, GFP_KERNEL))
		goto free_span;
	if (!alloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
		goto free_online;
7544

7545 7546
	if (cpupri_init(&rd->cpupri, false) != 0)
		goto free_rto_mask;
7547
	return 0;
7548

7549 7550
free_rto_mask:
	free_cpumask_var(rd->rto_mask);
7551 7552 7553 7554
free_online:
	free_cpumask_var(rd->online);
free_span:
	free_cpumask_var(rd->span);
7555
out:
7556
	return -ENOMEM;
G
Gregory Haskins 已提交
7557 7558 7559 7560
}

static void init_defrootdomain(void)
{
7561 7562
	init_rootdomain(&def_root_domain, true);

G
Gregory Haskins 已提交
7563 7564 7565
	atomic_set(&def_root_domain.refcount, 1);
}

7566
static struct root_domain *alloc_rootdomain(void)
G
Gregory Haskins 已提交
7567 7568 7569 7570 7571 7572 7573
{
	struct root_domain *rd;

	rd = kmalloc(sizeof(*rd), GFP_KERNEL);
	if (!rd)
		return NULL;

7574 7575 7576 7577
	if (init_rootdomain(rd, false) != 0) {
		kfree(rd);
		return NULL;
	}
G
Gregory Haskins 已提交
7578 7579 7580 7581

	return rd;
}

L
Linus Torvalds 已提交
7582
/*
I
Ingo Molnar 已提交
7583
 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
L
Linus Torvalds 已提交
7584 7585
 * hold the hotplug lock.
 */
I
Ingo Molnar 已提交
7586 7587
static void
cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
L
Linus Torvalds 已提交
7588
{
7589
	struct rq *rq = cpu_rq(cpu);
7590 7591 7592
	struct sched_domain *tmp;

	/* Remove the sched domains which do not contribute to scheduling. */
7593
	for (tmp = sd; tmp; ) {
7594 7595 7596
		struct sched_domain *parent = tmp->parent;
		if (!parent)
			break;
7597

7598
		if (sd_parent_degenerate(tmp, parent)) {
7599
			tmp->parent = parent->parent;
7600 7601
			if (parent->parent)
				parent->parent->child = tmp;
7602 7603
		} else
			tmp = tmp->parent;
7604 7605
	}

7606
	if (sd && sd_degenerate(sd)) {
7607
		sd = sd->parent;
7608 7609 7610
		if (sd)
			sd->child = NULL;
	}
L
Linus Torvalds 已提交
7611 7612 7613

	sched_domain_debug(sd, cpu);

G
Gregory Haskins 已提交
7614
	rq_attach_root(rq, rd);
N
Nick Piggin 已提交
7615
	rcu_assign_pointer(rq->sd, sd);
L
Linus Torvalds 已提交
7616 7617 7618
}

/* cpus with isolated domains */
7619
static cpumask_var_t cpu_isolated_map;
L
Linus Torvalds 已提交
7620 7621 7622 7623

/* Setup the mask of cpus configured for isolated domains */
static int __init isolated_cpu_setup(char *str)
{
R
Rusty Russell 已提交
7624
	cpulist_parse(str, cpu_isolated_map);
L
Linus Torvalds 已提交
7625 7626 7627
	return 1;
}

I
Ingo Molnar 已提交
7628
__setup("isolcpus=", isolated_cpu_setup);
L
Linus Torvalds 已提交
7629 7630

/*
7631 7632
 * init_sched_build_groups takes the cpumask we wish to span, and a pointer
 * to a function which identifies what group(along with sched group) a CPU
7633 7634
 * belongs to. The return value of group_fn must be a >= 0 and < nr_cpu_ids
 * (due to the fact that we keep track of groups covered with a struct cpumask).
L
Linus Torvalds 已提交
7635 7636 7637 7638 7639
 *
 * init_sched_build_groups will build a circular linked list of the groups
 * covered by the given span, and will set each group's ->cpumask correctly,
 * and ->cpu_power to 0.
 */
7640
static void
7641 7642 7643
init_sched_build_groups(const struct cpumask *span,
			const struct cpumask *cpu_map,
			int (*group_fn)(int cpu, const struct cpumask *cpu_map,
7644
					struct sched_group **sg,
7645 7646
					struct cpumask *tmpmask),
			struct cpumask *covered, struct cpumask *tmpmask)
L
Linus Torvalds 已提交
7647 7648 7649 7650
{
	struct sched_group *first = NULL, *last = NULL;
	int i;

7651
	cpumask_clear(covered);
7652

7653
	for_each_cpu(i, span) {
7654
		struct sched_group *sg;
7655
		int group = group_fn(i, cpu_map, &sg, tmpmask);
L
Linus Torvalds 已提交
7656 7657
		int j;

7658
		if (cpumask_test_cpu(i, covered))
L
Linus Torvalds 已提交
7659 7660
			continue;

7661
		cpumask_clear(sched_group_cpus(sg));
7662
		sg->__cpu_power = 0;
L
Linus Torvalds 已提交
7663

7664
		for_each_cpu(j, span) {
7665
			if (group_fn(j, cpu_map, NULL, tmpmask) != group)
L
Linus Torvalds 已提交
7666 7667
				continue;

7668
			cpumask_set_cpu(j, covered);
7669
			cpumask_set_cpu(j, sched_group_cpus(sg));
L
Linus Torvalds 已提交
7670 7671 7672 7673 7674 7675 7676 7677 7678 7679
		}
		if (!first)
			first = sg;
		if (last)
			last->next = sg;
		last = sg;
	}
	last->next = first;
}

7680
#define SD_NODES_PER_DOMAIN 16
L
Linus Torvalds 已提交
7681

7682
#ifdef CONFIG_NUMA
7683

7684 7685 7686 7687 7688
/**
 * find_next_best_node - find the next node to include in a sched_domain
 * @node: node whose sched_domain we're building
 * @used_nodes: nodes already in the sched_domain
 *
I
Ingo Molnar 已提交
7689
 * Find the next node to include in a given scheduling domain. Simply
7690 7691 7692 7693
 * finds the closest node not already in the @used_nodes map.
 *
 * Should use nodemask_t.
 */
7694
static int find_next_best_node(int node, nodemask_t *used_nodes)
7695 7696 7697 7698 7699
{
	int i, n, val, min_val, best_node = 0;

	min_val = INT_MAX;

7700
	for (i = 0; i < nr_node_ids; i++) {
7701
		/* Start at @node */
7702
		n = (node + i) % nr_node_ids;
7703 7704 7705 7706 7707

		if (!nr_cpus_node(n))
			continue;

		/* Skip already used nodes */
7708
		if (node_isset(n, *used_nodes))
7709 7710 7711 7712 7713 7714 7715 7716 7717 7718 7719
			continue;

		/* Simple min distance search */
		val = node_distance(node, n);

		if (val < min_val) {
			min_val = val;
			best_node = n;
		}
	}

7720
	node_set(best_node, *used_nodes);
7721 7722 7723 7724 7725 7726
	return best_node;
}

/**
 * sched_domain_node_span - get a cpumask for a node's sched_domain
 * @node: node whose cpumask we're constructing
7727
 * @span: resulting cpumask
7728
 *
I
Ingo Molnar 已提交
7729
 * Given a node, construct a good cpumask for its sched_domain to span. It
7730 7731 7732
 * should be one that prevents unnecessary balancing, but also spreads tasks
 * out optimally.
 */
7733
static void sched_domain_node_span(int node, struct cpumask *span)
7734
{
7735
	nodemask_t used_nodes;
7736
	int i;
7737

7738
	cpumask_clear(span);
7739
	nodes_clear(used_nodes);
7740

7741
	cpumask_or(span, span, cpumask_of_node(node));
7742
	node_set(node, used_nodes);
7743 7744

	for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
7745
		int next_node = find_next_best_node(node, &used_nodes);
7746

7747
		cpumask_or(span, span, cpumask_of_node(next_node));
7748 7749
	}
}
7750
#endif /* CONFIG_NUMA */
7751

7752
int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
7753

7754 7755 7756 7757 7758 7759 7760 7761 7762 7763 7764 7765 7766 7767 7768
/*
 * The cpus mask in sched_group and sched_domain hangs off the end.
 * FIXME: use cpumask_var_t or dynamic percpu alloc to avoid wasting space
 * for nr_cpu_ids < CONFIG_NR_CPUS.
 */
struct static_sched_group {
	struct sched_group sg;
	DECLARE_BITMAP(cpus, CONFIG_NR_CPUS);
};

struct static_sched_domain {
	struct sched_domain sd;
	DECLARE_BITMAP(span, CONFIG_NR_CPUS);
};

7769
/*
7770
 * SMT sched-domains:
7771
 */
L
Linus Torvalds 已提交
7772
#ifdef CONFIG_SCHED_SMT
7773 7774
static DEFINE_PER_CPU(struct static_sched_domain, cpu_domains);
static DEFINE_PER_CPU(struct static_sched_group, sched_group_cpus);
7775

I
Ingo Molnar 已提交
7776
static int
7777 7778
cpu_to_cpu_group(int cpu, const struct cpumask *cpu_map,
		 struct sched_group **sg, struct cpumask *unused)
L
Linus Torvalds 已提交
7779
{
7780
	if (sg)
7781
		*sg = &per_cpu(sched_group_cpus, cpu).sg;
L
Linus Torvalds 已提交
7782 7783
	return cpu;
}
7784
#endif /* CONFIG_SCHED_SMT */
L
Linus Torvalds 已提交
7785

7786 7787 7788
/*
 * multi-core sched-domains:
 */
7789
#ifdef CONFIG_SCHED_MC
7790 7791
static DEFINE_PER_CPU(struct static_sched_domain, core_domains);
static DEFINE_PER_CPU(struct static_sched_group, sched_group_core);
7792
#endif /* CONFIG_SCHED_MC */
7793 7794

#if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
I
Ingo Molnar 已提交
7795
static int
7796 7797
cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
		  struct sched_group **sg, struct cpumask *mask)
7798
{
7799
	int group;
7800

7801
	cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
7802
	group = cpumask_first(mask);
7803
	if (sg)
7804
		*sg = &per_cpu(sched_group_core, group).sg;
7805
	return group;
7806 7807
}
#elif defined(CONFIG_SCHED_MC)
I
Ingo Molnar 已提交
7808
static int
7809 7810
cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
		  struct sched_group **sg, struct cpumask *unused)
7811
{
7812
	if (sg)
7813
		*sg = &per_cpu(sched_group_core, cpu).sg;
7814 7815 7816 7817
	return cpu;
}
#endif

7818 7819
static DEFINE_PER_CPU(struct static_sched_domain, phys_domains);
static DEFINE_PER_CPU(struct static_sched_group, sched_group_phys);
7820

I
Ingo Molnar 已提交
7821
static int
7822 7823
cpu_to_phys_group(int cpu, const struct cpumask *cpu_map,
		  struct sched_group **sg, struct cpumask *mask)
L
Linus Torvalds 已提交
7824
{
7825
	int group;
7826
#ifdef CONFIG_SCHED_MC
7827
	cpumask_and(mask, cpu_coregroup_mask(cpu), cpu_map);
7828
	group = cpumask_first(mask);
7829
#elif defined(CONFIG_SCHED_SMT)
7830
	cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
7831
	group = cpumask_first(mask);
L
Linus Torvalds 已提交
7832
#else
7833
	group = cpu;
L
Linus Torvalds 已提交
7834
#endif
7835
	if (sg)
7836
		*sg = &per_cpu(sched_group_phys, group).sg;
7837
	return group;
L
Linus Torvalds 已提交
7838 7839 7840 7841
}

#ifdef CONFIG_NUMA
/*
7842 7843 7844
 * The init_sched_build_groups can't handle what we want to do with node
 * groups, so roll our own. Now each node has its own list of groups which
 * gets dynamically allocated.
L
Linus Torvalds 已提交
7845
 */
7846
static DEFINE_PER_CPU(struct static_sched_domain, node_domains);
7847
static struct sched_group ***sched_group_nodes_bycpu;
L
Linus Torvalds 已提交
7848

7849
static DEFINE_PER_CPU(struct static_sched_domain, allnodes_domains);
7850
static DEFINE_PER_CPU(struct static_sched_group, sched_group_allnodes);
7851

7852 7853 7854
static int cpu_to_allnodes_group(int cpu, const struct cpumask *cpu_map,
				 struct sched_group **sg,
				 struct cpumask *nodemask)
7855
{
7856 7857
	int group;

7858
	cpumask_and(nodemask, cpumask_of_node(cpu_to_node(cpu)), cpu_map);
7859
	group = cpumask_first(nodemask);
7860 7861

	if (sg)
7862
		*sg = &per_cpu(sched_group_allnodes, group).sg;
7863
	return group;
L
Linus Torvalds 已提交
7864
}
7865

7866 7867 7868 7869 7870 7871 7872
static void init_numa_sched_groups_power(struct sched_group *group_head)
{
	struct sched_group *sg = group_head;
	int j;

	if (!sg)
		return;
7873
	do {
7874
		for_each_cpu(j, sched_group_cpus(sg)) {
7875
			struct sched_domain *sd;
7876

7877
			sd = &per_cpu(phys_domains, j).sd;
7878
			if (j != cpumask_first(sched_group_cpus(sd->groups))) {
7879 7880 7881 7882 7883 7884
				/*
				 * Only add "power" once for each
				 * physical package.
				 */
				continue;
			}
7885

7886 7887 7888 7889
			sg_inc_cpu_power(sg, sd->groups->__cpu_power);
		}
		sg = sg->next;
	} while (sg != group_head);
7890
}
7891
#endif /* CONFIG_NUMA */
L
Linus Torvalds 已提交
7892

7893
#ifdef CONFIG_NUMA
7894
/* Free memory allocated for various sched_group structures */
7895 7896
static void free_sched_groups(const struct cpumask *cpu_map,
			      struct cpumask *nodemask)
7897
{
7898
	int cpu, i;
7899

7900
	for_each_cpu(cpu, cpu_map) {
7901 7902 7903 7904 7905 7906
		struct sched_group **sched_group_nodes
			= sched_group_nodes_bycpu[cpu];

		if (!sched_group_nodes)
			continue;

7907
		for (i = 0; i < nr_node_ids; i++) {
7908 7909
			struct sched_group *oldsg, *sg = sched_group_nodes[i];

7910
			cpumask_and(nodemask, cpumask_of_node(i), cpu_map);
7911
			if (cpumask_empty(nodemask))
7912 7913 7914 7915 7916 7917 7918 7919 7920 7921 7922 7923 7924 7925 7926 7927
				continue;

			if (sg == NULL)
				continue;
			sg = sg->next;
next_sg:
			oldsg = sg;
			sg = sg->next;
			kfree(oldsg);
			if (oldsg != sched_group_nodes[i])
				goto next_sg;
		}
		kfree(sched_group_nodes);
		sched_group_nodes_bycpu[cpu] = NULL;
	}
}
7928
#else /* !CONFIG_NUMA */
7929 7930
static void free_sched_groups(const struct cpumask *cpu_map,
			      struct cpumask *nodemask)
7931 7932
{
}
7933
#endif /* CONFIG_NUMA */
7934

7935 7936 7937 7938 7939 7940 7941 7942 7943 7944 7945 7946 7947 7948 7949 7950 7951 7952 7953 7954 7955
/*
 * Initialize sched groups cpu_power.
 *
 * cpu_power indicates the capacity of sched group, which is used while
 * distributing the load between different sched groups in a sched domain.
 * Typically cpu_power for all the groups in a sched domain will be same unless
 * there are asymmetries in the topology. If there are asymmetries, group
 * having more cpu_power will pickup more load compared to the group having
 * less cpu_power.
 *
 * cpu_power will be a multiple of SCHED_LOAD_SCALE. This multiple represents
 * the maximum number of tasks a group can handle in the presence of other idle
 * or lightly loaded groups in the same sched domain.
 */
static void init_sched_groups_power(int cpu, struct sched_domain *sd)
{
	struct sched_domain *child;
	struct sched_group *group;

	WARN_ON(!sd || !sd->groups);

7956
	if (cpu != cpumask_first(sched_group_cpus(sd->groups)))
7957 7958 7959 7960
		return;

	child = sd->child;

7961 7962
	sd->groups->__cpu_power = 0;

7963 7964 7965 7966 7967 7968 7969 7970 7971 7972
	/*
	 * For perf policy, if the groups in child domain share resources
	 * (for example cores sharing some portions of the cache hierarchy
	 * or SMT), then set this domain groups cpu_power such that each group
	 * can handle only one task, when there are other idle groups in the
	 * same sched domain.
	 */
	if (!child || (!(sd->flags & SD_POWERSAVINGS_BALANCE) &&
		       (child->flags &
			(SD_SHARE_CPUPOWER | SD_SHARE_PKG_RESOURCES)))) {
7973
		sg_inc_cpu_power(sd->groups, SCHED_LOAD_SCALE);
7974 7975 7976 7977 7978 7979 7980 7981
		return;
	}

	/*
	 * add cpu_power of each child group to this groups cpu_power
	 */
	group = child->groups;
	do {
7982
		sg_inc_cpu_power(sd->groups, group->__cpu_power);
7983 7984 7985 7986
		group = group->next;
	} while (group != child->groups);
}

7987 7988 7989 7990 7991
/*
 * Initializers for schedule domains
 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
 */

7992 7993 7994 7995 7996 7997
#ifdef CONFIG_SCHED_DEBUG
# define SD_INIT_NAME(sd, type)		sd->name = #type
#else
# define SD_INIT_NAME(sd, type)		do { } while (0)
#endif

7998
#define	SD_INIT(sd, type)	sd_init_##type(sd)
7999

8000 8001 8002 8003 8004
#define SD_INIT_FUNC(type)	\
static noinline void sd_init_##type(struct sched_domain *sd)	\
{								\
	memset(sd, 0, sizeof(*sd));				\
	*sd = SD_##type##_INIT;					\
8005
	sd->level = SD_LV_##type;				\
8006
	SD_INIT_NAME(sd, type);					\
8007 8008 8009 8010 8011 8012 8013 8014 8015 8016 8017 8018 8019 8020
}

SD_INIT_FUNC(CPU)
#ifdef CONFIG_NUMA
 SD_INIT_FUNC(ALLNODES)
 SD_INIT_FUNC(NODE)
#endif
#ifdef CONFIG_SCHED_SMT
 SD_INIT_FUNC(SIBLING)
#endif
#ifdef CONFIG_SCHED_MC
 SD_INIT_FUNC(MC)
#endif

8021 8022 8023 8024
static int default_relax_domain_level = -1;

static int __init setup_relax_domain_level(char *str)
{
8025 8026 8027 8028 8029 8030
	unsigned long val;

	val = simple_strtoul(str, NULL, 0);
	if (val < SD_LV_MAX)
		default_relax_domain_level = val;

8031 8032 8033 8034 8035 8036 8037 8038 8039 8040 8041 8042 8043 8044 8045 8046 8047 8048 8049 8050 8051 8052 8053 8054 8055
	return 1;
}
__setup("relax_domain_level=", setup_relax_domain_level);

static void set_domain_attribute(struct sched_domain *sd,
				 struct sched_domain_attr *attr)
{
	int request;

	if (!attr || attr->relax_domain_level < 0) {
		if (default_relax_domain_level < 0)
			return;
		else
			request = default_relax_domain_level;
	} else
		request = attr->relax_domain_level;
	if (request < sd->level) {
		/* turn off idle balance on this domain */
		sd->flags &= ~(SD_WAKE_IDLE|SD_BALANCE_NEWIDLE);
	} else {
		/* turn on idle balance on this domain */
		sd->flags |= (SD_WAKE_IDLE_FAR|SD_BALANCE_NEWIDLE);
	}
}

L
Linus Torvalds 已提交
8056
/*
8057 8058
 * Build sched domains for a given set of cpus and attach the sched domains
 * to the individual cpus
L
Linus Torvalds 已提交
8059
 */
8060
static int __build_sched_domains(const struct cpumask *cpu_map,
8061
				 struct sched_domain_attr *attr)
L
Linus Torvalds 已提交
8062
{
8063
	int i, err = -ENOMEM;
G
Gregory Haskins 已提交
8064
	struct root_domain *rd;
8065 8066
	cpumask_var_t nodemask, this_sibling_map, this_core_map, send_covered,
		tmpmask;
8067
#ifdef CONFIG_NUMA
8068
	cpumask_var_t domainspan, covered, notcovered;
8069
	struct sched_group **sched_group_nodes = NULL;
8070
	int sd_allnodes = 0;
8071

8072 8073 8074 8075 8076 8077 8078 8079 8080 8081 8082 8083 8084 8085 8086 8087 8088 8089 8090 8091
	if (!alloc_cpumask_var(&domainspan, GFP_KERNEL))
		goto out;
	if (!alloc_cpumask_var(&covered, GFP_KERNEL))
		goto free_domainspan;
	if (!alloc_cpumask_var(&notcovered, GFP_KERNEL))
		goto free_covered;
#endif

	if (!alloc_cpumask_var(&nodemask, GFP_KERNEL))
		goto free_notcovered;
	if (!alloc_cpumask_var(&this_sibling_map, GFP_KERNEL))
		goto free_nodemask;
	if (!alloc_cpumask_var(&this_core_map, GFP_KERNEL))
		goto free_this_sibling_map;
	if (!alloc_cpumask_var(&send_covered, GFP_KERNEL))
		goto free_this_core_map;
	if (!alloc_cpumask_var(&tmpmask, GFP_KERNEL))
		goto free_send_covered;

#ifdef CONFIG_NUMA
8092 8093 8094
	/*
	 * Allocate the per-node list of sched groups
	 */
8095
	sched_group_nodes = kcalloc(nr_node_ids, sizeof(struct sched_group *),
I
Ingo Molnar 已提交
8096
				    GFP_KERNEL);
8097 8098
	if (!sched_group_nodes) {
		printk(KERN_WARNING "Can not alloc sched group node list\n");
8099
		goto free_tmpmask;
8100 8101
	}
#endif
L
Linus Torvalds 已提交
8102

8103
	rd = alloc_rootdomain();
G
Gregory Haskins 已提交
8104 8105
	if (!rd) {
		printk(KERN_WARNING "Cannot alloc root domain\n");
8106
		goto free_sched_groups;
G
Gregory Haskins 已提交
8107 8108
	}

8109
#ifdef CONFIG_NUMA
8110
	sched_group_nodes_bycpu[cpumask_first(cpu_map)] = sched_group_nodes;
8111 8112
#endif

L
Linus Torvalds 已提交
8113
	/*
8114
	 * Set up domains for cpus specified by the cpu_map.
L
Linus Torvalds 已提交
8115
	 */
8116
	for_each_cpu(i, cpu_map) {
L
Linus Torvalds 已提交
8117 8118
		struct sched_domain *sd = NULL, *p;

8119
		cpumask_and(nodemask, cpumask_of_node(cpu_to_node(i)), cpu_map);
L
Linus Torvalds 已提交
8120 8121

#ifdef CONFIG_NUMA
8122 8123
		if (cpumask_weight(cpu_map) >
				SD_NODES_PER_DOMAIN*cpumask_weight(nodemask)) {
8124
			sd = &per_cpu(allnodes_domains, i).sd;
8125
			SD_INIT(sd, ALLNODES);
8126
			set_domain_attribute(sd, attr);
8127
			cpumask_copy(sched_domain_span(sd), cpu_map);
8128
			cpu_to_allnodes_group(i, cpu_map, &sd->groups, tmpmask);
8129
			p = sd;
8130
			sd_allnodes = 1;
8131 8132 8133
		} else
			p = NULL;

8134
		sd = &per_cpu(node_domains, i).sd;
8135
		SD_INIT(sd, NODE);
8136
		set_domain_attribute(sd, attr);
8137
		sched_domain_node_span(cpu_to_node(i), sched_domain_span(sd));
8138
		sd->parent = p;
8139 8140
		if (p)
			p->child = sd;
8141 8142
		cpumask_and(sched_domain_span(sd),
			    sched_domain_span(sd), cpu_map);
L
Linus Torvalds 已提交
8143 8144 8145
#endif

		p = sd;
8146
		sd = &per_cpu(phys_domains, i).sd;
8147
		SD_INIT(sd, CPU);
8148
		set_domain_attribute(sd, attr);
8149
		cpumask_copy(sched_domain_span(sd), nodemask);
L
Linus Torvalds 已提交
8150
		sd->parent = p;
8151 8152
		if (p)
			p->child = sd;
8153
		cpu_to_phys_group(i, cpu_map, &sd->groups, tmpmask);
L
Linus Torvalds 已提交
8154

8155 8156
#ifdef CONFIG_SCHED_MC
		p = sd;
8157
		sd = &per_cpu(core_domains, i).sd;
8158
		SD_INIT(sd, MC);
8159
		set_domain_attribute(sd, attr);
8160 8161
		cpumask_and(sched_domain_span(sd), cpu_map,
						   cpu_coregroup_mask(i));
8162
		sd->parent = p;
8163
		p->child = sd;
8164
		cpu_to_core_group(i, cpu_map, &sd->groups, tmpmask);
8165 8166
#endif

L
Linus Torvalds 已提交
8167 8168
#ifdef CONFIG_SCHED_SMT
		p = sd;
8169
		sd = &per_cpu(cpu_domains, i).sd;
8170
		SD_INIT(sd, SIBLING);
8171
		set_domain_attribute(sd, attr);
8172
		cpumask_and(sched_domain_span(sd),
8173
			    topology_thread_cpumask(i), cpu_map);
L
Linus Torvalds 已提交
8174
		sd->parent = p;
8175
		p->child = sd;
8176
		cpu_to_cpu_group(i, cpu_map, &sd->groups, tmpmask);
L
Linus Torvalds 已提交
8177 8178 8179 8180 8181
#endif
	}

#ifdef CONFIG_SCHED_SMT
	/* Set up CPU (sibling) groups */
8182
	for_each_cpu(i, cpu_map) {
8183
		cpumask_and(this_sibling_map,
8184
			    topology_thread_cpumask(i), cpu_map);
8185
		if (i != cpumask_first(this_sibling_map))
L
Linus Torvalds 已提交
8186 8187
			continue;

I
Ingo Molnar 已提交
8188
		init_sched_build_groups(this_sibling_map, cpu_map,
8189 8190
					&cpu_to_cpu_group,
					send_covered, tmpmask);
L
Linus Torvalds 已提交
8191 8192 8193
	}
#endif

8194 8195
#ifdef CONFIG_SCHED_MC
	/* Set up multi-core groups */
8196
	for_each_cpu(i, cpu_map) {
8197
		cpumask_and(this_core_map, cpu_coregroup_mask(i), cpu_map);
8198
		if (i != cpumask_first(this_core_map))
8199
			continue;
8200

I
Ingo Molnar 已提交
8201
		init_sched_build_groups(this_core_map, cpu_map,
8202 8203
					&cpu_to_core_group,
					send_covered, tmpmask);
8204 8205 8206
	}
#endif

L
Linus Torvalds 已提交
8207
	/* Set up physical groups */
8208
	for (i = 0; i < nr_node_ids; i++) {
8209
		cpumask_and(nodemask, cpumask_of_node(i), cpu_map);
8210
		if (cpumask_empty(nodemask))
L
Linus Torvalds 已提交
8211 8212
			continue;

8213 8214 8215
		init_sched_build_groups(nodemask, cpu_map,
					&cpu_to_phys_group,
					send_covered, tmpmask);
L
Linus Torvalds 已提交
8216 8217 8218 8219
	}

#ifdef CONFIG_NUMA
	/* Set up node groups */
8220 8221 8222 8223 8224
	if (sd_allnodes) {
		init_sched_build_groups(cpu_map, cpu_map,
					&cpu_to_allnodes_group,
					send_covered, tmpmask);
	}
8225

8226
	for (i = 0; i < nr_node_ids; i++) {
8227 8228 8229 8230
		/* Set up node groups */
		struct sched_group *sg, *prev;
		int j;

8231
		cpumask_clear(covered);
8232
		cpumask_and(nodemask, cpumask_of_node(i), cpu_map);
8233
		if (cpumask_empty(nodemask)) {
8234
			sched_group_nodes[i] = NULL;
8235
			continue;
8236
		}
8237

8238
		sched_domain_node_span(i, domainspan);
8239
		cpumask_and(domainspan, domainspan, cpu_map);
8240

8241 8242
		sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(),
				  GFP_KERNEL, i);
8243 8244 8245 8246 8247
		if (!sg) {
			printk(KERN_WARNING "Can not alloc domain group for "
				"node %d\n", i);
			goto error;
		}
8248
		sched_group_nodes[i] = sg;
8249
		for_each_cpu(j, nodemask) {
8250
			struct sched_domain *sd;
I
Ingo Molnar 已提交
8251

8252
			sd = &per_cpu(node_domains, j).sd;
8253 8254
			sd->groups = sg;
		}
8255
		sg->__cpu_power = 0;
8256
		cpumask_copy(sched_group_cpus(sg), nodemask);
8257
		sg->next = sg;
8258
		cpumask_or(covered, covered, nodemask);
8259 8260
		prev = sg;

8261 8262
		for (j = 0; j < nr_node_ids; j++) {
			int n = (i + j) % nr_node_ids;
8263

8264 8265 8266 8267
			cpumask_complement(notcovered, covered);
			cpumask_and(tmpmask, notcovered, cpu_map);
			cpumask_and(tmpmask, tmpmask, domainspan);
			if (cpumask_empty(tmpmask))
8268 8269
				break;

8270
			cpumask_and(tmpmask, tmpmask, cpumask_of_node(n));
8271
			if (cpumask_empty(tmpmask))
8272 8273
				continue;

8274 8275
			sg = kmalloc_node(sizeof(struct sched_group) +
					  cpumask_size(),
8276
					  GFP_KERNEL, i);
8277 8278 8279
			if (!sg) {
				printk(KERN_WARNING
				"Can not alloc domain group for node %d\n", j);
8280
				goto error;
8281
			}
8282
			sg->__cpu_power = 0;
8283
			cpumask_copy(sched_group_cpus(sg), tmpmask);
8284
			sg->next = prev->next;
8285
			cpumask_or(covered, covered, tmpmask);
8286 8287 8288 8289
			prev->next = sg;
			prev = sg;
		}
	}
L
Linus Torvalds 已提交
8290 8291 8292
#endif

	/* Calculate CPU power for physical packages and nodes */
8293
#ifdef CONFIG_SCHED_SMT
8294
	for_each_cpu(i, cpu_map) {
8295
		struct sched_domain *sd = &per_cpu(cpu_domains, i).sd;
I
Ingo Molnar 已提交
8296

8297
		init_sched_groups_power(i, sd);
8298
	}
L
Linus Torvalds 已提交
8299
#endif
8300
#ifdef CONFIG_SCHED_MC
8301
	for_each_cpu(i, cpu_map) {
8302
		struct sched_domain *sd = &per_cpu(core_domains, i).sd;
I
Ingo Molnar 已提交
8303

8304
		init_sched_groups_power(i, sd);
8305 8306
	}
#endif
8307

8308
	for_each_cpu(i, cpu_map) {
8309
		struct sched_domain *sd = &per_cpu(phys_domains, i).sd;
I
Ingo Molnar 已提交
8310

8311
		init_sched_groups_power(i, sd);
L
Linus Torvalds 已提交
8312 8313
	}

8314
#ifdef CONFIG_NUMA
8315
	for (i = 0; i < nr_node_ids; i++)
8316
		init_numa_sched_groups_power(sched_group_nodes[i]);
8317

8318 8319
	if (sd_allnodes) {
		struct sched_group *sg;
8320

8321
		cpu_to_allnodes_group(cpumask_first(cpu_map), cpu_map, &sg,
8322
								tmpmask);
8323 8324
		init_numa_sched_groups_power(sg);
	}
8325 8326
#endif

L
Linus Torvalds 已提交
8327
	/* Attach the domains */
8328
	for_each_cpu(i, cpu_map) {
L
Linus Torvalds 已提交
8329 8330
		struct sched_domain *sd;
#ifdef CONFIG_SCHED_SMT
8331
		sd = &per_cpu(cpu_domains, i).sd;
8332
#elif defined(CONFIG_SCHED_MC)
8333
		sd = &per_cpu(core_domains, i).sd;
L
Linus Torvalds 已提交
8334
#else
8335
		sd = &per_cpu(phys_domains, i).sd;
L
Linus Torvalds 已提交
8336
#endif
G
Gregory Haskins 已提交
8337
		cpu_attach_domain(sd, rd, i);
L
Linus Torvalds 已提交
8338
	}
8339

8340 8341 8342 8343 8344 8345 8346 8347 8348 8349 8350 8351 8352 8353 8354 8355 8356 8357 8358 8359 8360 8361 8362 8363 8364 8365 8366 8367
	err = 0;

free_tmpmask:
	free_cpumask_var(tmpmask);
free_send_covered:
	free_cpumask_var(send_covered);
free_this_core_map:
	free_cpumask_var(this_core_map);
free_this_sibling_map:
	free_cpumask_var(this_sibling_map);
free_nodemask:
	free_cpumask_var(nodemask);
free_notcovered:
#ifdef CONFIG_NUMA
	free_cpumask_var(notcovered);
free_covered:
	free_cpumask_var(covered);
free_domainspan:
	free_cpumask_var(domainspan);
out:
#endif
	return err;

free_sched_groups:
#ifdef CONFIG_NUMA
	kfree(sched_group_nodes);
#endif
	goto free_tmpmask;
8368

8369
#ifdef CONFIG_NUMA
8370
error:
8371
	free_sched_groups(cpu_map, tmpmask);
8372
	free_rootdomain(rd);
8373
	goto free_tmpmask;
8374
#endif
L
Linus Torvalds 已提交
8375
}
P
Paul Jackson 已提交
8376

8377
static int build_sched_domains(const struct cpumask *cpu_map)
8378 8379 8380 8381
{
	return __build_sched_domains(cpu_map, NULL);
}

8382
static struct cpumask *doms_cur;	/* current sched domains */
P
Paul Jackson 已提交
8383
static int ndoms_cur;		/* number of sched domains in 'doms_cur' */
I
Ingo Molnar 已提交
8384 8385
static struct sched_domain_attr *dattr_cur;
				/* attribues of custom domains in 'doms_cur' */
P
Paul Jackson 已提交
8386 8387 8388

/*
 * Special case: If a kmalloc of a doms_cur partition (array of
8389 8390
 * cpumask) fails, then fallback to a single sched domain,
 * as determined by the single cpumask fallback_doms.
P
Paul Jackson 已提交
8391
 */
8392
static cpumask_var_t fallback_doms;
P
Paul Jackson 已提交
8393

8394 8395 8396 8397 8398 8399
/*
 * arch_update_cpu_topology lets virtualized architectures update the
 * cpu core maps. It is supposed to return 1 if the topology changed
 * or 0 if it stayed the same.
 */
int __attribute__((weak)) arch_update_cpu_topology(void)
8400
{
8401
	return 0;
8402 8403
}

8404
/*
I
Ingo Molnar 已提交
8405
 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
P
Paul Jackson 已提交
8406 8407
 * For now this just excludes isolated cpus, but could be used to
 * exclude other special cases in the future.
8408
 */
8409
static int arch_init_sched_domains(const struct cpumask *cpu_map)
8410
{
8411 8412
	int err;

8413
	arch_update_cpu_topology();
P
Paul Jackson 已提交
8414
	ndoms_cur = 1;
8415
	doms_cur = kmalloc(cpumask_size(), GFP_KERNEL);
P
Paul Jackson 已提交
8416
	if (!doms_cur)
8417
		doms_cur = fallback_doms;
8418
	cpumask_andnot(doms_cur, cpu_map, cpu_isolated_map);
8419
	dattr_cur = NULL;
8420
	err = build_sched_domains(doms_cur);
8421
	register_sched_domain_sysctl();
8422 8423

	return err;
8424 8425
}

8426 8427
static void arch_destroy_sched_domains(const struct cpumask *cpu_map,
				       struct cpumask *tmpmask)
L
Linus Torvalds 已提交
8428
{
8429
	free_sched_groups(cpu_map, tmpmask);
8430
}
L
Linus Torvalds 已提交
8431

8432 8433 8434 8435
/*
 * Detach sched domains from a group of cpus specified in cpu_map
 * These cpus will now be attached to the NULL domain
 */
8436
static void detach_destroy_domains(const struct cpumask *cpu_map)
8437
{
8438 8439
	/* Save because hotplug lock held. */
	static DECLARE_BITMAP(tmpmask, CONFIG_NR_CPUS);
8440 8441
	int i;

8442
	for_each_cpu(i, cpu_map)
G
Gregory Haskins 已提交
8443
		cpu_attach_domain(NULL, &def_root_domain, i);
8444
	synchronize_sched();
8445
	arch_destroy_sched_domains(cpu_map, to_cpumask(tmpmask));
8446 8447
}

8448 8449 8450 8451 8452 8453 8454 8455 8456 8457 8458 8459 8460 8461 8462 8463
/* handle null as "default" */
static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
			struct sched_domain_attr *new, int idx_new)
{
	struct sched_domain_attr tmp;

	/* fast path */
	if (!new && !cur)
		return 1;

	tmp = SD_ATTR_INIT;
	return !memcmp(cur ? (cur + idx_cur) : &tmp,
			new ? (new + idx_new) : &tmp,
			sizeof(struct sched_domain_attr));
}

P
Paul Jackson 已提交
8464 8465
/*
 * Partition sched domains as specified by the 'ndoms_new'
I
Ingo Molnar 已提交
8466
 * cpumasks in the array doms_new[] of cpumasks. This compares
P
Paul Jackson 已提交
8467 8468 8469
 * doms_new[] to the current sched domain partitioning, doms_cur[].
 * It destroys each deleted domain and builds each new domain.
 *
8470
 * 'doms_new' is an array of cpumask's of length 'ndoms_new'.
I
Ingo Molnar 已提交
8471 8472 8473
 * The masks don't intersect (don't overlap.) We should setup one
 * sched domain for each mask. CPUs not in any of the cpumasks will
 * not be load balanced. If the same cpumask appears both in the
P
Paul Jackson 已提交
8474 8475 8476
 * current 'doms_cur' domains and in the new 'doms_new', we can leave
 * it as it is.
 *
I
Ingo Molnar 已提交
8477 8478
 * The passed in 'doms_new' should be kmalloc'd. This routine takes
 * ownership of it and will kfree it when done with it. If the caller
8479 8480 8481 8482
 * failed the kmalloc call, then it can pass in doms_new == NULL &&
 * ndoms_new == 1, and partition_sched_domains() will fallback to
 * the single partition 'fallback_doms', it also forces the domains
 * to be rebuilt.
P
Paul Jackson 已提交
8483
 *
8484
 * If doms_new == NULL it will be replaced with cpu_online_mask.
8485 8486
 * ndoms_new == 0 is a special case for destroying existing domains,
 * and it will not create the default domain.
8487
 *
P
Paul Jackson 已提交
8488 8489
 * Call with hotplug lock held
 */
8490 8491
/* FIXME: Change to struct cpumask *doms_new[] */
void partition_sched_domains(int ndoms_new, struct cpumask *doms_new,
8492
			     struct sched_domain_attr *dattr_new)
P
Paul Jackson 已提交
8493
{
8494
	int i, j, n;
8495
	int new_topology;
P
Paul Jackson 已提交
8496

8497
	mutex_lock(&sched_domains_mutex);
8498

8499 8500 8501
	/* always unregister in case we don't destroy any domains */
	unregister_sched_domain_sysctl();

8502 8503 8504
	/* Let architecture update cpu core mappings. */
	new_topology = arch_update_cpu_topology();

8505
	n = doms_new ? ndoms_new : 0;
P
Paul Jackson 已提交
8506 8507 8508

	/* Destroy deleted domains */
	for (i = 0; i < ndoms_cur; i++) {
8509
		for (j = 0; j < n && !new_topology; j++) {
8510
			if (cpumask_equal(&doms_cur[i], &doms_new[j])
8511
			    && dattrs_equal(dattr_cur, i, dattr_new, j))
P
Paul Jackson 已提交
8512 8513 8514 8515 8516 8517 8518 8519
				goto match1;
		}
		/* no match - a current sched domain not in new doms_new[] */
		detach_destroy_domains(doms_cur + i);
match1:
		;
	}

8520 8521
	if (doms_new == NULL) {
		ndoms_cur = 0;
8522
		doms_new = fallback_doms;
8523
		cpumask_andnot(&doms_new[0], cpu_online_mask, cpu_isolated_map);
8524
		WARN_ON_ONCE(dattr_new);
8525 8526
	}

P
Paul Jackson 已提交
8527 8528
	/* Build new domains */
	for (i = 0; i < ndoms_new; i++) {
8529
		for (j = 0; j < ndoms_cur && !new_topology; j++) {
8530
			if (cpumask_equal(&doms_new[i], &doms_cur[j])
8531
			    && dattrs_equal(dattr_new, i, dattr_cur, j))
P
Paul Jackson 已提交
8532 8533 8534
				goto match2;
		}
		/* no match - add a new doms_new */
8535 8536
		__build_sched_domains(doms_new + i,
					dattr_new ? dattr_new + i : NULL);
P
Paul Jackson 已提交
8537 8538 8539 8540 8541
match2:
		;
	}

	/* Remember the new sched domains */
8542
	if (doms_cur != fallback_doms)
P
Paul Jackson 已提交
8543
		kfree(doms_cur);
8544
	kfree(dattr_cur);	/* kfree(NULL) is safe */
P
Paul Jackson 已提交
8545
	doms_cur = doms_new;
8546
	dattr_cur = dattr_new;
P
Paul Jackson 已提交
8547
	ndoms_cur = ndoms_new;
8548 8549

	register_sched_domain_sysctl();
8550

8551
	mutex_unlock(&sched_domains_mutex);
P
Paul Jackson 已提交
8552 8553
}

8554
#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
8555
static void arch_reinit_sched_domains(void)
8556
{
8557
	get_online_cpus();
8558 8559 8560 8561

	/* Destroy domains first to force the rebuild */
	partition_sched_domains(0, NULL, NULL);

8562
	rebuild_sched_domains();
8563
	put_online_cpus();
8564 8565 8566 8567
}

static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
{
8568
	unsigned int level = 0;
8569

8570 8571 8572 8573 8574 8575 8576 8577 8578 8579 8580
	if (sscanf(buf, "%u", &level) != 1)
		return -EINVAL;

	/*
	 * level is always be positive so don't check for
	 * level < POWERSAVINGS_BALANCE_NONE which is 0
	 * What happens on 0 or 1 byte write,
	 * need to check for count as well?
	 */

	if (level >= MAX_POWERSAVINGS_BALANCE_LEVELS)
8581 8582 8583
		return -EINVAL;

	if (smt)
8584
		sched_smt_power_savings = level;
8585
	else
8586
		sched_mc_power_savings = level;
8587

8588
	arch_reinit_sched_domains();
8589

8590
	return count;
8591 8592 8593
}

#ifdef CONFIG_SCHED_MC
8594 8595
static ssize_t sched_mc_power_savings_show(struct sysdev_class *class,
					   char *page)
8596 8597 8598
{
	return sprintf(page, "%u\n", sched_mc_power_savings);
}
8599
static ssize_t sched_mc_power_savings_store(struct sysdev_class *class,
8600
					    const char *buf, size_t count)
8601 8602 8603
{
	return sched_power_savings_store(buf, count, 0);
}
8604 8605 8606
static SYSDEV_CLASS_ATTR(sched_mc_power_savings, 0644,
			 sched_mc_power_savings_show,
			 sched_mc_power_savings_store);
8607 8608 8609
#endif

#ifdef CONFIG_SCHED_SMT
8610 8611
static ssize_t sched_smt_power_savings_show(struct sysdev_class *dev,
					    char *page)
8612 8613 8614
{
	return sprintf(page, "%u\n", sched_smt_power_savings);
}
8615
static ssize_t sched_smt_power_savings_store(struct sysdev_class *dev,
8616
					     const char *buf, size_t count)
8617 8618 8619
{
	return sched_power_savings_store(buf, count, 1);
}
8620 8621
static SYSDEV_CLASS_ATTR(sched_smt_power_savings, 0644,
		   sched_smt_power_savings_show,
A
Adrian Bunk 已提交
8622 8623 8624
		   sched_smt_power_savings_store);
#endif

8625
int __init sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
A
Adrian Bunk 已提交
8626 8627 8628 8629 8630 8631 8632 8633 8634 8635 8636 8637 8638 8639 8640
{
	int err = 0;

#ifdef CONFIG_SCHED_SMT
	if (smt_capable())
		err = sysfs_create_file(&cls->kset.kobj,
					&attr_sched_smt_power_savings.attr);
#endif
#ifdef CONFIG_SCHED_MC
	if (!err && mc_capable())
		err = sysfs_create_file(&cls->kset.kobj,
					&attr_sched_mc_power_savings.attr);
#endif
	return err;
}
8641
#endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
8642

8643
#ifndef CONFIG_CPUSETS
L
Linus Torvalds 已提交
8644
/*
8645 8646
 * Add online and remove offline CPUs from the scheduler domains.
 * When cpusets are enabled they take over this function.
L
Linus Torvalds 已提交
8647 8648 8649
 */
static int update_sched_domains(struct notifier_block *nfb,
				unsigned long action, void *hcpu)
8650 8651 8652 8653 8654 8655
{
	switch (action) {
	case CPU_ONLINE:
	case CPU_ONLINE_FROZEN:
	case CPU_DEAD:
	case CPU_DEAD_FROZEN:
8656
		partition_sched_domains(1, NULL, NULL);
8657 8658 8659 8660 8661 8662 8663 8664 8665 8666
		return NOTIFY_OK;

	default:
		return NOTIFY_DONE;
	}
}
#endif

static int update_runtime(struct notifier_block *nfb,
				unsigned long action, void *hcpu)
L
Linus Torvalds 已提交
8667
{
P
Peter Zijlstra 已提交
8668 8669
	int cpu = (int)(long)hcpu;

L
Linus Torvalds 已提交
8670 8671
	switch (action) {
	case CPU_DOWN_PREPARE:
8672
	case CPU_DOWN_PREPARE_FROZEN:
P
Peter Zijlstra 已提交
8673
		disable_runtime(cpu_rq(cpu));
L
Linus Torvalds 已提交
8674 8675 8676
		return NOTIFY_OK;

	case CPU_DOWN_FAILED:
8677
	case CPU_DOWN_FAILED_FROZEN:
L
Linus Torvalds 已提交
8678
	case CPU_ONLINE:
8679
	case CPU_ONLINE_FROZEN:
P
Peter Zijlstra 已提交
8680
		enable_runtime(cpu_rq(cpu));
8681 8682
		return NOTIFY_OK;

L
Linus Torvalds 已提交
8683 8684 8685 8686 8687 8688 8689
	default:
		return NOTIFY_DONE;
	}
}

void __init sched_init_smp(void)
{
8690 8691 8692
	cpumask_var_t non_isolated_cpus;

	alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
8693

8694 8695 8696 8697 8698
#if defined(CONFIG_NUMA)
	sched_group_nodes_bycpu = kzalloc(nr_cpu_ids * sizeof(void **),
								GFP_KERNEL);
	BUG_ON(sched_group_nodes_bycpu == NULL);
#endif
8699
	get_online_cpus();
8700
	mutex_lock(&sched_domains_mutex);
8701 8702 8703 8704
	arch_init_sched_domains(cpu_online_mask);
	cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
	if (cpumask_empty(non_isolated_cpus))
		cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
8705
	mutex_unlock(&sched_domains_mutex);
8706
	put_online_cpus();
8707 8708

#ifndef CONFIG_CPUSETS
L
Linus Torvalds 已提交
8709 8710
	/* XXX: Theoretical race here - CPU may be hotplugged now */
	hotcpu_notifier(update_sched_domains, 0);
8711 8712 8713 8714 8715
#endif

	/* RT runtime code needs to handle some hotplug events */
	hotcpu_notifier(update_runtime, 0);

8716
	init_hrtick();
8717 8718

	/* Move init over to a non-isolated CPU */
8719
	if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
8720
		BUG();
I
Ingo Molnar 已提交
8721
	sched_init_granularity();
8722
	free_cpumask_var(non_isolated_cpus);
8723 8724

	alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
8725
	init_sched_rt_class();
L
Linus Torvalds 已提交
8726 8727 8728 8729
}
#else
void __init sched_init_smp(void)
{
I
Ingo Molnar 已提交
8730
	sched_init_granularity();
L
Linus Torvalds 已提交
8731 8732 8733
}
#endif /* CONFIG_SMP */

8734 8735
const_debug unsigned int sysctl_timer_migration = 1;

L
Linus Torvalds 已提交
8736 8737 8738 8739 8740 8741 8742
int in_sched_functions(unsigned long addr)
{
	return in_lock_functions(addr) ||
		(addr >= (unsigned long)__sched_text_start
		&& addr < (unsigned long)__sched_text_end);
}

A
Alexey Dobriyan 已提交
8743
static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
I
Ingo Molnar 已提交
8744 8745
{
	cfs_rq->tasks_timeline = RB_ROOT;
8746
	INIT_LIST_HEAD(&cfs_rq->tasks);
I
Ingo Molnar 已提交
8747 8748 8749
#ifdef CONFIG_FAIR_GROUP_SCHED
	cfs_rq->rq = rq;
#endif
P
Peter Zijlstra 已提交
8750
	cfs_rq->min_vruntime = (u64)(-(1LL << 20));
I
Ingo Molnar 已提交
8751 8752
}

P
Peter Zijlstra 已提交
8753 8754 8755 8756 8757 8758 8759 8760 8761 8762 8763 8764 8765
static void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
{
	struct rt_prio_array *array;
	int i;

	array = &rt_rq->active;
	for (i = 0; i < MAX_RT_PRIO; i++) {
		INIT_LIST_HEAD(array->queue + i);
		__clear_bit(i, array->bitmap);
	}
	/* delimiter for bitsearch: */
	__set_bit(MAX_RT_PRIO, array->bitmap);

8766
#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
8767
	rt_rq->highest_prio.curr = MAX_RT_PRIO;
8768
#ifdef CONFIG_SMP
8769
	rt_rq->highest_prio.next = MAX_RT_PRIO;
P
Peter Zijlstra 已提交
8770 8771
#endif
#endif
P
Peter Zijlstra 已提交
8772 8773 8774
#ifdef CONFIG_SMP
	rt_rq->rt_nr_migratory = 0;
	rt_rq->overloaded = 0;
8775
	plist_head_init(&rq->rt.pushable_tasks, &rq->lock);
P
Peter Zijlstra 已提交
8776 8777 8778 8779
#endif

	rt_rq->rt_time = 0;
	rt_rq->rt_throttled = 0;
P
Peter Zijlstra 已提交
8780 8781
	rt_rq->rt_runtime = 0;
	spin_lock_init(&rt_rq->rt_runtime_lock);
P
Peter Zijlstra 已提交
8782

8783
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
8784
	rt_rq->rt_nr_boosted = 0;
P
Peter Zijlstra 已提交
8785 8786
	rt_rq->rq = rq;
#endif
P
Peter Zijlstra 已提交
8787 8788
}

P
Peter Zijlstra 已提交
8789
#ifdef CONFIG_FAIR_GROUP_SCHED
8790 8791 8792
static void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
				struct sched_entity *se, int cpu, int add,
				struct sched_entity *parent)
P
Peter Zijlstra 已提交
8793
{
8794
	struct rq *rq = cpu_rq(cpu);
P
Peter Zijlstra 已提交
8795 8796 8797 8798 8799 8800 8801
	tg->cfs_rq[cpu] = cfs_rq;
	init_cfs_rq(cfs_rq, rq);
	cfs_rq->tg = tg;
	if (add)
		list_add(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);

	tg->se[cpu] = se;
D
Dhaval Giani 已提交
8802 8803 8804 8805
	/* se could be NULL for init_task_group */
	if (!se)
		return;

8806 8807 8808 8809 8810
	if (!parent)
		se->cfs_rq = &rq->cfs;
	else
		se->cfs_rq = parent->my_q;

P
Peter Zijlstra 已提交
8811 8812
	se->my_q = cfs_rq;
	se->load.weight = tg->shares;
8813
	se->load.inv_weight = 0;
8814
	se->parent = parent;
P
Peter Zijlstra 已提交
8815
}
8816
#endif
P
Peter Zijlstra 已提交
8817

8818
#ifdef CONFIG_RT_GROUP_SCHED
8819 8820 8821
static void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
		struct sched_rt_entity *rt_se, int cpu, int add,
		struct sched_rt_entity *parent)
P
Peter Zijlstra 已提交
8822
{
8823 8824
	struct rq *rq = cpu_rq(cpu);

P
Peter Zijlstra 已提交
8825 8826 8827 8828
	tg->rt_rq[cpu] = rt_rq;
	init_rt_rq(rt_rq, rq);
	rt_rq->tg = tg;
	rt_rq->rt_se = rt_se;
P
Peter Zijlstra 已提交
8829
	rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
P
Peter Zijlstra 已提交
8830 8831 8832 8833
	if (add)
		list_add(&rt_rq->leaf_rt_rq_list, &rq->leaf_rt_rq_list);

	tg->rt_se[cpu] = rt_se;
D
Dhaval Giani 已提交
8834 8835 8836
	if (!rt_se)
		return;

8837 8838 8839 8840 8841
	if (!parent)
		rt_se->rt_rq = &rq->rt;
	else
		rt_se->rt_rq = parent->my_q;

P
Peter Zijlstra 已提交
8842
	rt_se->my_q = rt_rq;
8843
	rt_se->parent = parent;
P
Peter Zijlstra 已提交
8844 8845 8846 8847
	INIT_LIST_HEAD(&rt_se->run_list);
}
#endif

L
Linus Torvalds 已提交
8848 8849
void __init sched_init(void)
{
I
Ingo Molnar 已提交
8850
	int i, j;
8851 8852 8853 8854 8855 8856 8857
	unsigned long alloc_size = 0, ptr;

#ifdef CONFIG_FAIR_GROUP_SCHED
	alloc_size += 2 * nr_cpu_ids * sizeof(void **);
#endif
#ifdef CONFIG_RT_GROUP_SCHED
	alloc_size += 2 * nr_cpu_ids * sizeof(void **);
8858 8859 8860
#endif
#ifdef CONFIG_USER_SCHED
	alloc_size *= 2;
8861 8862
#endif
#ifdef CONFIG_CPUMASK_OFFSTACK
8863
	alloc_size += num_possible_cpus() * cpumask_size();
8864 8865 8866 8867 8868 8869
#endif
	/*
	 * As sched_init() is called before page_alloc is setup,
	 * we use alloc_bootmem().
	 */
	if (alloc_size) {
8870
		ptr = (unsigned long)alloc_bootmem(alloc_size);
8871 8872 8873 8874 8875 8876 8877

#ifdef CONFIG_FAIR_GROUP_SCHED
		init_task_group.se = (struct sched_entity **)ptr;
		ptr += nr_cpu_ids * sizeof(void **);

		init_task_group.cfs_rq = (struct cfs_rq **)ptr;
		ptr += nr_cpu_ids * sizeof(void **);
8878 8879 8880 8881 8882 8883 8884

#ifdef CONFIG_USER_SCHED
		root_task_group.se = (struct sched_entity **)ptr;
		ptr += nr_cpu_ids * sizeof(void **);

		root_task_group.cfs_rq = (struct cfs_rq **)ptr;
		ptr += nr_cpu_ids * sizeof(void **);
8885 8886
#endif /* CONFIG_USER_SCHED */
#endif /* CONFIG_FAIR_GROUP_SCHED */
8887 8888 8889 8890 8891
#ifdef CONFIG_RT_GROUP_SCHED
		init_task_group.rt_se = (struct sched_rt_entity **)ptr;
		ptr += nr_cpu_ids * sizeof(void **);

		init_task_group.rt_rq = (struct rt_rq **)ptr;
8892 8893 8894 8895 8896 8897 8898 8899
		ptr += nr_cpu_ids * sizeof(void **);

#ifdef CONFIG_USER_SCHED
		root_task_group.rt_se = (struct sched_rt_entity **)ptr;
		ptr += nr_cpu_ids * sizeof(void **);

		root_task_group.rt_rq = (struct rt_rq **)ptr;
		ptr += nr_cpu_ids * sizeof(void **);
8900 8901
#endif /* CONFIG_USER_SCHED */
#endif /* CONFIG_RT_GROUP_SCHED */
8902 8903 8904 8905 8906 8907
#ifdef CONFIG_CPUMASK_OFFSTACK
		for_each_possible_cpu(i) {
			per_cpu(load_balance_tmpmask, i) = (void *)ptr;
			ptr += cpumask_size();
		}
#endif /* CONFIG_CPUMASK_OFFSTACK */
8908
	}
I
Ingo Molnar 已提交
8909

G
Gregory Haskins 已提交
8910 8911 8912 8913
#ifdef CONFIG_SMP
	init_defrootdomain();
#endif

8914 8915 8916 8917 8918 8919
	init_rt_bandwidth(&def_rt_bandwidth,
			global_rt_period(), global_rt_runtime());

#ifdef CONFIG_RT_GROUP_SCHED
	init_rt_bandwidth(&init_task_group.rt_bandwidth,
			global_rt_period(), global_rt_runtime());
8920 8921 8922
#ifdef CONFIG_USER_SCHED
	init_rt_bandwidth(&root_task_group.rt_bandwidth,
			global_rt_period(), RUNTIME_INF);
8923 8924
#endif /* CONFIG_USER_SCHED */
#endif /* CONFIG_RT_GROUP_SCHED */
8925

8926
#ifdef CONFIG_GROUP_SCHED
P
Peter Zijlstra 已提交
8927
	list_add(&init_task_group.list, &task_groups);
P
Peter Zijlstra 已提交
8928 8929 8930 8931 8932 8933
	INIT_LIST_HEAD(&init_task_group.children);

#ifdef CONFIG_USER_SCHED
	INIT_LIST_HEAD(&root_task_group.children);
	init_task_group.parent = &root_task_group;
	list_add(&init_task_group.siblings, &root_task_group.children);
8934 8935
#endif /* CONFIG_USER_SCHED */
#endif /* CONFIG_GROUP_SCHED */
P
Peter Zijlstra 已提交
8936

8937
	for_each_possible_cpu(i) {
8938
		struct rq *rq;
L
Linus Torvalds 已提交
8939 8940 8941

		rq = cpu_rq(i);
		spin_lock_init(&rq->lock);
N
Nick Piggin 已提交
8942
		rq->nr_running = 0;
I
Ingo Molnar 已提交
8943
		init_cfs_rq(&rq->cfs, rq);
P
Peter Zijlstra 已提交
8944
		init_rt_rq(&rq->rt, rq);
I
Ingo Molnar 已提交
8945
#ifdef CONFIG_FAIR_GROUP_SCHED
8946
		init_task_group.shares = init_task_group_load;
P
Peter Zijlstra 已提交
8947
		INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
D
Dhaval Giani 已提交
8948 8949 8950 8951 8952 8953 8954 8955 8956 8957 8958 8959 8960 8961 8962 8963 8964 8965 8966 8967
#ifdef CONFIG_CGROUP_SCHED
		/*
		 * How much cpu bandwidth does init_task_group get?
		 *
		 * In case of task-groups formed thr' the cgroup filesystem, it
		 * gets 100% of the cpu resources in the system. This overall
		 * system cpu resource is divided among the tasks of
		 * init_task_group and its child task-groups in a fair manner,
		 * based on each entity's (task or task-group's) weight
		 * (se->load.weight).
		 *
		 * In other words, if init_task_group has 10 tasks of weight
		 * 1024) and two child groups A0 and A1 (of weight 1024 each),
		 * then A0's share of the cpu resource is:
		 *
		 * 	A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
		 *
		 * We achieve this by letting init_task_group's tasks sit
		 * directly in rq->cfs (i.e init_task_group->se[] = NULL).
		 */
8968
		init_tg_cfs_entry(&init_task_group, &rq->cfs, NULL, i, 1, NULL);
D
Dhaval Giani 已提交
8969
#elif defined CONFIG_USER_SCHED
8970 8971
		root_task_group.shares = NICE_0_LOAD;
		init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, 0, NULL);
D
Dhaval Giani 已提交
8972 8973 8974 8975 8976 8977 8978 8979 8980 8981 8982
		/*
		 * In case of task-groups formed thr' the user id of tasks,
		 * init_task_group represents tasks belonging to root user.
		 * Hence it forms a sibling of all subsequent groups formed.
		 * In this case, init_task_group gets only a fraction of overall
		 * system cpu resource, based on the weight assigned to root
		 * user's cpu share (INIT_TASK_GROUP_LOAD). This is accomplished
		 * by letting tasks of init_task_group sit in a separate cfs_rq
		 * (init_cfs_rq) and having one entity represent this group of
		 * tasks in rq->cfs (i.e init_task_group->se[] != NULL).
		 */
8983
		init_tg_cfs_entry(&init_task_group,
P
Peter Zijlstra 已提交
8984
				&per_cpu(init_cfs_rq, i),
8985 8986
				&per_cpu(init_sched_entity, i), i, 1,
				root_task_group.se[i]);
P
Peter Zijlstra 已提交
8987

8988
#endif
D
Dhaval Giani 已提交
8989 8990 8991
#endif /* CONFIG_FAIR_GROUP_SCHED */

		rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
8992
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
8993
		INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
D
Dhaval Giani 已提交
8994
#ifdef CONFIG_CGROUP_SCHED
8995
		init_tg_rt_entry(&init_task_group, &rq->rt, NULL, i, 1, NULL);
D
Dhaval Giani 已提交
8996
#elif defined CONFIG_USER_SCHED
8997
		init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, 0, NULL);
8998
		init_tg_rt_entry(&init_task_group,
P
Peter Zijlstra 已提交
8999
				&per_cpu(init_rt_rq, i),
9000 9001
				&per_cpu(init_sched_rt_entity, i), i, 1,
				root_task_group.rt_se[i]);
D
Dhaval Giani 已提交
9002
#endif
I
Ingo Molnar 已提交
9003
#endif
L
Linus Torvalds 已提交
9004

I
Ingo Molnar 已提交
9005 9006
		for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
			rq->cpu_load[j] = 0;
L
Linus Torvalds 已提交
9007
#ifdef CONFIG_SMP
N
Nick Piggin 已提交
9008
		rq->sd = NULL;
G
Gregory Haskins 已提交
9009
		rq->rd = NULL;
L
Linus Torvalds 已提交
9010
		rq->active_balance = 0;
I
Ingo Molnar 已提交
9011
		rq->next_balance = jiffies;
L
Linus Torvalds 已提交
9012
		rq->push_cpu = 0;
9013
		rq->cpu = i;
9014
		rq->online = 0;
L
Linus Torvalds 已提交
9015 9016
		rq->migration_thread = NULL;
		INIT_LIST_HEAD(&rq->migration_queue);
9017
		rq_attach_root(rq, &def_root_domain);
L
Linus Torvalds 已提交
9018
#endif
P
Peter Zijlstra 已提交
9019
		init_rq_hrtick(rq);
L
Linus Torvalds 已提交
9020 9021 9022
		atomic_set(&rq->nr_iowait, 0);
	}

9023
	set_load_weight(&init_task);
9024

9025 9026 9027 9028
#ifdef CONFIG_PREEMPT_NOTIFIERS
	INIT_HLIST_HEAD(&init_task.preempt_notifiers);
#endif

9029
#ifdef CONFIG_SMP
9030
	open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
9031 9032
#endif

9033 9034 9035 9036
#ifdef CONFIG_RT_MUTEXES
	plist_head_init(&init_task.pi_waiters, &init_task.pi_lock);
#endif

L
Linus Torvalds 已提交
9037 9038 9039 9040 9041 9042 9043 9044 9045 9046 9047 9048 9049
	/*
	 * The boot idle thread does lazy MMU switching as well:
	 */
	atomic_inc(&init_mm.mm_count);
	enter_lazy_tlb(&init_mm, current);

	/*
	 * Make us the idle thread. Technically, schedule() should not be
	 * called from this thread, however somewhere below it might be,
	 * but because we are the idle thread, we just pick up running again
	 * when this runqueue becomes "idle".
	 */
	init_idle(current, smp_processor_id());
I
Ingo Molnar 已提交
9050 9051 9052 9053
	/*
	 * During early bootup we pretend to be a normal task:
	 */
	current->sched_class = &fair_sched_class;
9054

9055 9056
	/* Allocate the nohz_cpu_mask if CONFIG_CPUMASK_OFFSTACK */
	alloc_bootmem_cpumask_var(&nohz_cpu_mask);
9057
#ifdef CONFIG_SMP
9058 9059 9060
#ifdef CONFIG_NO_HZ
	alloc_bootmem_cpumask_var(&nohz.cpu_mask);
#endif
9061
	alloc_bootmem_cpumask_var(&cpu_isolated_map);
9062
#endif /* SMP */
9063

9064
	scheduler_running = 1;
L
Linus Torvalds 已提交
9065 9066 9067 9068 9069
}

#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
void __might_sleep(char *file, int line)
{
9070
#ifdef in_atomic
L
Linus Torvalds 已提交
9071 9072
	static unsigned long prev_jiffy;	/* ratelimiting */

I
Ingo Molnar 已提交
9073 9074 9075 9076 9077 9078 9079 9080 9081 9082 9083 9084 9085 9086 9087 9088 9089 9090 9091
	if ((!in_atomic() && !irqs_disabled()) ||
		    system_state != SYSTEM_RUNNING || oops_in_progress)
		return;
	if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
		return;
	prev_jiffy = jiffies;

	printk(KERN_ERR
		"BUG: sleeping function called from invalid context at %s:%d\n",
			file, line);
	printk(KERN_ERR
		"in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
			in_atomic(), irqs_disabled(),
			current->pid, current->comm);

	debug_show_held_locks(current);
	if (irqs_disabled())
		print_irqtrace_events(current);
	dump_stack();
L
Linus Torvalds 已提交
9092 9093 9094 9095 9096 9097
#endif
}
EXPORT_SYMBOL(__might_sleep);
#endif

#ifdef CONFIG_MAGIC_SYSRQ
9098 9099 9100
static void normalize_task(struct rq *rq, struct task_struct *p)
{
	int on_rq;
9101

9102 9103 9104 9105 9106 9107 9108 9109 9110 9111 9112
	update_rq_clock(rq);
	on_rq = p->se.on_rq;
	if (on_rq)
		deactivate_task(rq, p, 0);
	__setscheduler(rq, p, SCHED_NORMAL, 0);
	if (on_rq) {
		activate_task(rq, p, 0);
		resched_task(rq->curr);
	}
}

L
Linus Torvalds 已提交
9113 9114
void normalize_rt_tasks(void)
{
9115
	struct task_struct *g, *p;
L
Linus Torvalds 已提交
9116
	unsigned long flags;
9117
	struct rq *rq;
L
Linus Torvalds 已提交
9118

9119
	read_lock_irqsave(&tasklist_lock, flags);
9120
	do_each_thread(g, p) {
9121 9122 9123 9124 9125 9126
		/*
		 * Only normalize user tasks:
		 */
		if (!p->mm)
			continue;

I
Ingo Molnar 已提交
9127 9128
		p->se.exec_start		= 0;
#ifdef CONFIG_SCHEDSTATS
I
Ingo Molnar 已提交
9129 9130 9131
		p->se.wait_start		= 0;
		p->se.sleep_start		= 0;
		p->se.block_start		= 0;
I
Ingo Molnar 已提交
9132
#endif
I
Ingo Molnar 已提交
9133 9134 9135 9136 9137 9138 9139 9140

		if (!rt_task(p)) {
			/*
			 * Renice negative nice level userspace
			 * tasks back to 0:
			 */
			if (TASK_NICE(p) < 0 && p->mm)
				set_user_nice(p, 0);
L
Linus Torvalds 已提交
9141
			continue;
I
Ingo Molnar 已提交
9142
		}
L
Linus Torvalds 已提交
9143

9144
		spin_lock(&p->pi_lock);
9145
		rq = __task_rq_lock(p);
L
Linus Torvalds 已提交
9146

9147
		normalize_task(rq, p);
9148

9149
		__task_rq_unlock(rq);
9150
		spin_unlock(&p->pi_lock);
9151 9152
	} while_each_thread(g, p);

9153
	read_unlock_irqrestore(&tasklist_lock, flags);
L
Linus Torvalds 已提交
9154 9155 9156
}

#endif /* CONFIG_MAGIC_SYSRQ */
9157 9158 9159 9160 9161 9162 9163 9164 9165 9166 9167 9168 9169 9170 9171 9172 9173 9174

#ifdef CONFIG_IA64
/*
 * These functions are only useful for the IA64 MCA handling.
 *
 * They can only be called when the whole system has been
 * stopped - every CPU needs to be quiescent, and no scheduling
 * activity can take place. Using them for anything else would
 * be a serious bug, and as a result, they aren't even visible
 * under any other configuration.
 */

/**
 * curr_task - return the current task for a given cpu.
 * @cpu: the processor in question.
 *
 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
 */
9175
struct task_struct *curr_task(int cpu)
9176 9177 9178 9179 9180 9181 9182 9183 9184 9185
{
	return cpu_curr(cpu);
}

/**
 * set_curr_task - set the current task for a given cpu.
 * @cpu: the processor in question.
 * @p: the task pointer to set.
 *
 * Description: This function must only be used when non-maskable interrupts
I
Ingo Molnar 已提交
9186 9187
 * are serviced on a separate stack. It allows the architecture to switch the
 * notion of the current task on a cpu in a non-blocking manner. This function
9188 9189 9190 9191 9192 9193 9194
 * must be called with all CPU's synchronized, and interrupts disabled, the
 * and caller must save the original value of the current task (see
 * curr_task() above) and restore that value before reenabling interrupts and
 * re-starting the system.
 *
 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
 */
9195
void set_curr_task(int cpu, struct task_struct *p)
9196 9197 9198 9199 9200
{
	cpu_curr(cpu) = p;
}

#endif
S
Srivatsa Vaddagiri 已提交
9201

9202 9203
#ifdef CONFIG_FAIR_GROUP_SCHED
static void free_fair_sched_group(struct task_group *tg)
P
Peter Zijlstra 已提交
9204 9205 9206 9207 9208 9209 9210 9211 9212 9213 9214 9215 9216 9217
{
	int i;

	for_each_possible_cpu(i) {
		if (tg->cfs_rq)
			kfree(tg->cfs_rq[i]);
		if (tg->se)
			kfree(tg->se[i]);
	}

	kfree(tg->cfs_rq);
	kfree(tg->se);
}

9218 9219
static
int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
S
Srivatsa Vaddagiri 已提交
9220 9221
{
	struct cfs_rq *cfs_rq;
9222
	struct sched_entity *se;
9223
	struct rq *rq;
S
Srivatsa Vaddagiri 已提交
9224 9225
	int i;

9226
	tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
S
Srivatsa Vaddagiri 已提交
9227 9228
	if (!tg->cfs_rq)
		goto err;
9229
	tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
S
Srivatsa Vaddagiri 已提交
9230 9231
	if (!tg->se)
		goto err;
9232 9233

	tg->shares = NICE_0_LOAD;
S
Srivatsa Vaddagiri 已提交
9234 9235

	for_each_possible_cpu(i) {
9236
		rq = cpu_rq(i);
S
Srivatsa Vaddagiri 已提交
9237

9238 9239
		cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
				      GFP_KERNEL, cpu_to_node(i));
S
Srivatsa Vaddagiri 已提交
9240 9241 9242
		if (!cfs_rq)
			goto err;

9243 9244
		se = kzalloc_node(sizeof(struct sched_entity),
				  GFP_KERNEL, cpu_to_node(i));
S
Srivatsa Vaddagiri 已提交
9245 9246 9247
		if (!se)
			goto err;

9248
		init_tg_cfs_entry(tg, cfs_rq, se, i, 0, parent->se[i]);
9249 9250 9251 9252 9253 9254 9255 9256 9257 9258 9259 9260 9261 9262 9263 9264 9265 9266
	}

	return 1;

 err:
	return 0;
}

static inline void register_fair_sched_group(struct task_group *tg, int cpu)
{
	list_add_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list,
			&cpu_rq(cpu)->leaf_cfs_rq_list);
}

static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
{
	list_del_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list);
}
9267
#else /* !CONFG_FAIR_GROUP_SCHED */
9268 9269 9270 9271
static inline void free_fair_sched_group(struct task_group *tg)
{
}

9272 9273
static inline
int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
9274 9275 9276 9277 9278 9279 9280 9281 9282 9283 9284
{
	return 1;
}

static inline void register_fair_sched_group(struct task_group *tg, int cpu)
{
}

static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
{
}
9285
#endif /* CONFIG_FAIR_GROUP_SCHED */
9286 9287

#ifdef CONFIG_RT_GROUP_SCHED
9288 9289 9290 9291
static void free_rt_sched_group(struct task_group *tg)
{
	int i;

9292 9293
	destroy_rt_bandwidth(&tg->rt_bandwidth);

9294 9295 9296 9297 9298 9299 9300 9301 9302 9303 9304
	for_each_possible_cpu(i) {
		if (tg->rt_rq)
			kfree(tg->rt_rq[i]);
		if (tg->rt_se)
			kfree(tg->rt_se[i]);
	}

	kfree(tg->rt_rq);
	kfree(tg->rt_se);
}

9305 9306
static
int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
9307 9308
{
	struct rt_rq *rt_rq;
9309
	struct sched_rt_entity *rt_se;
9310 9311 9312
	struct rq *rq;
	int i;

9313
	tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
9314 9315
	if (!tg->rt_rq)
		goto err;
9316
	tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
9317 9318 9319
	if (!tg->rt_se)
		goto err;

9320 9321
	init_rt_bandwidth(&tg->rt_bandwidth,
			ktime_to_ns(def_rt_bandwidth.rt_period), 0);
9322 9323 9324 9325

	for_each_possible_cpu(i) {
		rq = cpu_rq(i);

9326 9327
		rt_rq = kzalloc_node(sizeof(struct rt_rq),
				     GFP_KERNEL, cpu_to_node(i));
P
Peter Zijlstra 已提交
9328 9329
		if (!rt_rq)
			goto err;
S
Srivatsa Vaddagiri 已提交
9330

9331 9332
		rt_se = kzalloc_node(sizeof(struct sched_rt_entity),
				     GFP_KERNEL, cpu_to_node(i));
P
Peter Zijlstra 已提交
9333 9334
		if (!rt_se)
			goto err;
S
Srivatsa Vaddagiri 已提交
9335

9336
		init_tg_rt_entry(tg, rt_rq, rt_se, i, 0, parent->rt_se[i]);
S
Srivatsa Vaddagiri 已提交
9337 9338
	}

9339 9340 9341 9342 9343 9344 9345 9346 9347 9348 9349 9350 9351 9352 9353 9354
	return 1;

 err:
	return 0;
}

static inline void register_rt_sched_group(struct task_group *tg, int cpu)
{
	list_add_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list,
			&cpu_rq(cpu)->leaf_rt_rq_list);
}

static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
{
	list_del_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list);
}
9355
#else /* !CONFIG_RT_GROUP_SCHED */
9356 9357 9358 9359
static inline void free_rt_sched_group(struct task_group *tg)
{
}

9360 9361
static inline
int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
9362 9363 9364 9365 9366 9367 9368 9369 9370 9371 9372
{
	return 1;
}

static inline void register_rt_sched_group(struct task_group *tg, int cpu)
{
}

static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
{
}
9373
#endif /* CONFIG_RT_GROUP_SCHED */
9374

9375
#ifdef CONFIG_GROUP_SCHED
9376 9377 9378 9379 9380 9381 9382 9383
static void free_sched_group(struct task_group *tg)
{
	free_fair_sched_group(tg);
	free_rt_sched_group(tg);
	kfree(tg);
}

/* allocate runqueue etc for a new task group */
9384
struct task_group *sched_create_group(struct task_group *parent)
9385 9386 9387 9388 9389 9390 9391 9392 9393
{
	struct task_group *tg;
	unsigned long flags;
	int i;

	tg = kzalloc(sizeof(*tg), GFP_KERNEL);
	if (!tg)
		return ERR_PTR(-ENOMEM);

9394
	if (!alloc_fair_sched_group(tg, parent))
9395 9396
		goto err;

9397
	if (!alloc_rt_sched_group(tg, parent))
9398 9399
		goto err;

9400
	spin_lock_irqsave(&task_group_lock, flags);
9401
	for_each_possible_cpu(i) {
9402 9403
		register_fair_sched_group(tg, i);
		register_rt_sched_group(tg, i);
9404
	}
P
Peter Zijlstra 已提交
9405
	list_add_rcu(&tg->list, &task_groups);
P
Peter Zijlstra 已提交
9406 9407 9408 9409 9410

	WARN_ON(!parent); /* root should already exist */

	tg->parent = parent;
	INIT_LIST_HEAD(&tg->children);
9411
	list_add_rcu(&tg->siblings, &parent->children);
9412
	spin_unlock_irqrestore(&task_group_lock, flags);
S
Srivatsa Vaddagiri 已提交
9413

9414
	return tg;
S
Srivatsa Vaddagiri 已提交
9415 9416

err:
P
Peter Zijlstra 已提交
9417
	free_sched_group(tg);
S
Srivatsa Vaddagiri 已提交
9418 9419 9420
	return ERR_PTR(-ENOMEM);
}

9421
/* rcu callback to free various structures associated with a task group */
P
Peter Zijlstra 已提交
9422
static void free_sched_group_rcu(struct rcu_head *rhp)
S
Srivatsa Vaddagiri 已提交
9423 9424
{
	/* now it should be safe to free those cfs_rqs */
P
Peter Zijlstra 已提交
9425
	free_sched_group(container_of(rhp, struct task_group, rcu));
S
Srivatsa Vaddagiri 已提交
9426 9427
}

9428
/* Destroy runqueue etc associated with a task group */
9429
void sched_destroy_group(struct task_group *tg)
S
Srivatsa Vaddagiri 已提交
9430
{
9431
	unsigned long flags;
9432
	int i;
S
Srivatsa Vaddagiri 已提交
9433

9434
	spin_lock_irqsave(&task_group_lock, flags);
9435
	for_each_possible_cpu(i) {
9436 9437
		unregister_fair_sched_group(tg, i);
		unregister_rt_sched_group(tg, i);
9438
	}
P
Peter Zijlstra 已提交
9439
	list_del_rcu(&tg->list);
P
Peter Zijlstra 已提交
9440
	list_del_rcu(&tg->siblings);
9441
	spin_unlock_irqrestore(&task_group_lock, flags);
9442 9443

	/* wait for possible concurrent references to cfs_rqs complete */
P
Peter Zijlstra 已提交
9444
	call_rcu(&tg->rcu, free_sched_group_rcu);
S
Srivatsa Vaddagiri 已提交
9445 9446
}

9447
/* change task's runqueue when it moves between groups.
I
Ingo Molnar 已提交
9448 9449 9450
 *	The caller of this function should have put the task in its new group
 *	by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
 *	reflect its new group.
9451 9452
 */
void sched_move_task(struct task_struct *tsk)
S
Srivatsa Vaddagiri 已提交
9453 9454 9455 9456 9457 9458 9459 9460 9461
{
	int on_rq, running;
	unsigned long flags;
	struct rq *rq;

	rq = task_rq_lock(tsk, &flags);

	update_rq_clock(rq);

9462
	running = task_current(rq, tsk);
S
Srivatsa Vaddagiri 已提交
9463 9464
	on_rq = tsk->se.on_rq;

9465
	if (on_rq)
S
Srivatsa Vaddagiri 已提交
9466
		dequeue_task(rq, tsk, 0);
9467 9468
	if (unlikely(running))
		tsk->sched_class->put_prev_task(rq, tsk);
S
Srivatsa Vaddagiri 已提交
9469

P
Peter Zijlstra 已提交
9470
	set_task_rq(tsk, task_cpu(tsk));
S
Srivatsa Vaddagiri 已提交
9471

P
Peter Zijlstra 已提交
9472 9473 9474 9475 9476
#ifdef CONFIG_FAIR_GROUP_SCHED
	if (tsk->sched_class->moved_group)
		tsk->sched_class->moved_group(tsk);
#endif

9477 9478 9479
	if (unlikely(running))
		tsk->sched_class->set_curr_task(rq);
	if (on_rq)
9480
		enqueue_task(rq, tsk, 0);
S
Srivatsa Vaddagiri 已提交
9481 9482 9483

	task_rq_unlock(rq, &flags);
}
9484
#endif /* CONFIG_GROUP_SCHED */
S
Srivatsa Vaddagiri 已提交
9485

9486
#ifdef CONFIG_FAIR_GROUP_SCHED
9487
static void __set_se_shares(struct sched_entity *se, unsigned long shares)
S
Srivatsa Vaddagiri 已提交
9488 9489 9490 9491 9492
{
	struct cfs_rq *cfs_rq = se->cfs_rq;
	int on_rq;

	on_rq = se->on_rq;
9493
	if (on_rq)
S
Srivatsa Vaddagiri 已提交
9494 9495 9496
		dequeue_entity(cfs_rq, se, 0);

	se->load.weight = shares;
9497
	se->load.inv_weight = 0;
S
Srivatsa Vaddagiri 已提交
9498

9499
	if (on_rq)
S
Srivatsa Vaddagiri 已提交
9500
		enqueue_entity(cfs_rq, se, 0);
9501
}
9502

9503 9504 9505 9506 9507 9508 9509 9510 9511
static void set_se_shares(struct sched_entity *se, unsigned long shares)
{
	struct cfs_rq *cfs_rq = se->cfs_rq;
	struct rq *rq = cfs_rq->rq;
	unsigned long flags;

	spin_lock_irqsave(&rq->lock, flags);
	__set_se_shares(se, shares);
	spin_unlock_irqrestore(&rq->lock, flags);
S
Srivatsa Vaddagiri 已提交
9512 9513
}

9514 9515
static DEFINE_MUTEX(shares_mutex);

9516
int sched_group_set_shares(struct task_group *tg, unsigned long shares)
S
Srivatsa Vaddagiri 已提交
9517 9518
{
	int i;
9519
	unsigned long flags;
9520

9521 9522 9523 9524 9525 9526
	/*
	 * We can't change the weight of the root cgroup.
	 */
	if (!tg->se[0])
		return -EINVAL;

9527 9528
	if (shares < MIN_SHARES)
		shares = MIN_SHARES;
9529 9530
	else if (shares > MAX_SHARES)
		shares = MAX_SHARES;
9531

9532
	mutex_lock(&shares_mutex);
9533
	if (tg->shares == shares)
9534
		goto done;
S
Srivatsa Vaddagiri 已提交
9535

9536
	spin_lock_irqsave(&task_group_lock, flags);
9537 9538
	for_each_possible_cpu(i)
		unregister_fair_sched_group(tg, i);
P
Peter Zijlstra 已提交
9539
	list_del_rcu(&tg->siblings);
9540
	spin_unlock_irqrestore(&task_group_lock, flags);
9541 9542 9543 9544 9545 9546 9547 9548

	/* wait for any ongoing reference to this group to finish */
	synchronize_sched();

	/*
	 * Now we are free to modify the group's share on each cpu
	 * w/o tripping rebalance_share or load_balance_fair.
	 */
9549
	tg->shares = shares;
9550 9551 9552 9553 9554
	for_each_possible_cpu(i) {
		/*
		 * force a rebalance
		 */
		cfs_rq_set_shares(tg->cfs_rq[i], 0);
9555
		set_se_shares(tg->se[i], shares);
9556
	}
S
Srivatsa Vaddagiri 已提交
9557

9558 9559 9560 9561
	/*
	 * Enable load balance activity on this group, by inserting it back on
	 * each cpu's rq->leaf_cfs_rq_list.
	 */
9562
	spin_lock_irqsave(&task_group_lock, flags);
9563 9564
	for_each_possible_cpu(i)
		register_fair_sched_group(tg, i);
P
Peter Zijlstra 已提交
9565
	list_add_rcu(&tg->siblings, &tg->parent->children);
9566
	spin_unlock_irqrestore(&task_group_lock, flags);
9567
done:
9568
	mutex_unlock(&shares_mutex);
9569
	return 0;
S
Srivatsa Vaddagiri 已提交
9570 9571
}

9572 9573 9574 9575
unsigned long sched_group_shares(struct task_group *tg)
{
	return tg->shares;
}
9576
#endif
9577

9578
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
9579
/*
P
Peter Zijlstra 已提交
9580
 * Ensure that the real time constraints are schedulable.
P
Peter Zijlstra 已提交
9581
 */
P
Peter Zijlstra 已提交
9582 9583 9584 9585 9586
static DEFINE_MUTEX(rt_constraints_mutex);

static unsigned long to_ratio(u64 period, u64 runtime)
{
	if (runtime == RUNTIME_INF)
P
Peter Zijlstra 已提交
9587
		return 1ULL << 20;
P
Peter Zijlstra 已提交
9588

P
Peter Zijlstra 已提交
9589
	return div64_u64(runtime << 20, period);
P
Peter Zijlstra 已提交
9590 9591
}

P
Peter Zijlstra 已提交
9592 9593
/* Must be called with tasklist_lock held */
static inline int tg_has_rt_tasks(struct task_group *tg)
9594
{
P
Peter Zijlstra 已提交
9595
	struct task_struct *g, *p;
9596

P
Peter Zijlstra 已提交
9597 9598 9599 9600
	do_each_thread(g, p) {
		if (rt_task(p) && rt_rq_of_se(&p->rt)->tg == tg)
			return 1;
	} while_each_thread(g, p);
9601

P
Peter Zijlstra 已提交
9602 9603
	return 0;
}
9604

P
Peter Zijlstra 已提交
9605 9606 9607 9608 9609
struct rt_schedulable_data {
	struct task_group *tg;
	u64 rt_period;
	u64 rt_runtime;
};
9610

P
Peter Zijlstra 已提交
9611 9612 9613 9614 9615 9616
static int tg_schedulable(struct task_group *tg, void *data)
{
	struct rt_schedulable_data *d = data;
	struct task_group *child;
	unsigned long total, sum = 0;
	u64 period, runtime;
9617

P
Peter Zijlstra 已提交
9618 9619
	period = ktime_to_ns(tg->rt_bandwidth.rt_period);
	runtime = tg->rt_bandwidth.rt_runtime;
9620

P
Peter Zijlstra 已提交
9621 9622 9623
	if (tg == d->tg) {
		period = d->rt_period;
		runtime = d->rt_runtime;
9624 9625
	}

9626 9627 9628 9629 9630 9631 9632
#ifdef CONFIG_USER_SCHED
	if (tg == &root_task_group) {
		period = global_rt_period();
		runtime = global_rt_runtime();
	}
#endif

9633 9634 9635 9636 9637
	/*
	 * Cannot have more runtime than the period.
	 */
	if (runtime > period && runtime != RUNTIME_INF)
		return -EINVAL;
P
Peter Zijlstra 已提交
9638

9639 9640 9641
	/*
	 * Ensure we don't starve existing RT tasks.
	 */
P
Peter Zijlstra 已提交
9642 9643
	if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
		return -EBUSY;
P
Peter Zijlstra 已提交
9644

P
Peter Zijlstra 已提交
9645
	total = to_ratio(period, runtime);
P
Peter Zijlstra 已提交
9646

9647 9648 9649 9650 9651
	/*
	 * Nobody can have more than the global setting allows.
	 */
	if (total > to_ratio(global_rt_period(), global_rt_runtime()))
		return -EINVAL;
P
Peter Zijlstra 已提交
9652

9653 9654 9655
	/*
	 * The sum of our children's runtime should not exceed our own.
	 */
P
Peter Zijlstra 已提交
9656 9657 9658
	list_for_each_entry_rcu(child, &tg->children, siblings) {
		period = ktime_to_ns(child->rt_bandwidth.rt_period);
		runtime = child->rt_bandwidth.rt_runtime;
P
Peter Zijlstra 已提交
9659

P
Peter Zijlstra 已提交
9660 9661 9662 9663
		if (child == d->tg) {
			period = d->rt_period;
			runtime = d->rt_runtime;
		}
P
Peter Zijlstra 已提交
9664

P
Peter Zijlstra 已提交
9665
		sum += to_ratio(period, runtime);
P
Peter Zijlstra 已提交
9666
	}
P
Peter Zijlstra 已提交
9667

P
Peter Zijlstra 已提交
9668 9669 9670 9671
	if (sum > total)
		return -EINVAL;

	return 0;
P
Peter Zijlstra 已提交
9672 9673
}

P
Peter Zijlstra 已提交
9674
static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
9675
{
P
Peter Zijlstra 已提交
9676 9677 9678 9679 9680 9681 9682
	struct rt_schedulable_data data = {
		.tg = tg,
		.rt_period = period,
		.rt_runtime = runtime,
	};

	return walk_tg_tree(tg_schedulable, tg_nop, &data);
9683 9684
}

9685 9686
static int tg_set_bandwidth(struct task_group *tg,
		u64 rt_period, u64 rt_runtime)
P
Peter Zijlstra 已提交
9687
{
P
Peter Zijlstra 已提交
9688
	int i, err = 0;
P
Peter Zijlstra 已提交
9689 9690

	mutex_lock(&rt_constraints_mutex);
9691
	read_lock(&tasklist_lock);
P
Peter Zijlstra 已提交
9692 9693
	err = __rt_schedulable(tg, rt_period, rt_runtime);
	if (err)
P
Peter Zijlstra 已提交
9694
		goto unlock;
P
Peter Zijlstra 已提交
9695 9696

	spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
9697 9698
	tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
	tg->rt_bandwidth.rt_runtime = rt_runtime;
P
Peter Zijlstra 已提交
9699 9700 9701 9702 9703 9704 9705 9706 9707

	for_each_possible_cpu(i) {
		struct rt_rq *rt_rq = tg->rt_rq[i];

		spin_lock(&rt_rq->rt_runtime_lock);
		rt_rq->rt_runtime = rt_runtime;
		spin_unlock(&rt_rq->rt_runtime_lock);
	}
	spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
P
Peter Zijlstra 已提交
9708
 unlock:
9709
	read_unlock(&tasklist_lock);
P
Peter Zijlstra 已提交
9710 9711 9712
	mutex_unlock(&rt_constraints_mutex);

	return err;
P
Peter Zijlstra 已提交
9713 9714
}

9715 9716 9717 9718 9719 9720 9721 9722 9723 9724 9725 9726
int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
{
	u64 rt_runtime, rt_period;

	rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
	rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
	if (rt_runtime_us < 0)
		rt_runtime = RUNTIME_INF;

	return tg_set_bandwidth(tg, rt_period, rt_runtime);
}

P
Peter Zijlstra 已提交
9727 9728 9729 9730
long sched_group_rt_runtime(struct task_group *tg)
{
	u64 rt_runtime_us;

9731
	if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
P
Peter Zijlstra 已提交
9732 9733
		return -1;

9734
	rt_runtime_us = tg->rt_bandwidth.rt_runtime;
P
Peter Zijlstra 已提交
9735 9736 9737
	do_div(rt_runtime_us, NSEC_PER_USEC);
	return rt_runtime_us;
}
9738 9739 9740 9741 9742 9743 9744 9745

int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
{
	u64 rt_runtime, rt_period;

	rt_period = (u64)rt_period_us * NSEC_PER_USEC;
	rt_runtime = tg->rt_bandwidth.rt_runtime;

9746 9747 9748
	if (rt_period == 0)
		return -EINVAL;

9749 9750 9751 9752 9753 9754 9755 9756 9757 9758 9759 9760 9761 9762
	return tg_set_bandwidth(tg, rt_period, rt_runtime);
}

long sched_group_rt_period(struct task_group *tg)
{
	u64 rt_period_us;

	rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
	do_div(rt_period_us, NSEC_PER_USEC);
	return rt_period_us;
}

static int sched_rt_global_constraints(void)
{
9763
	u64 runtime, period;
9764 9765
	int ret = 0;

9766 9767 9768
	if (sysctl_sched_rt_period <= 0)
		return -EINVAL;

9769 9770 9771 9772 9773 9774 9775 9776
	runtime = global_rt_runtime();
	period = global_rt_period();

	/*
	 * Sanity check on the sysctl variables.
	 */
	if (runtime > period && runtime != RUNTIME_INF)
		return -EINVAL;
9777

9778
	mutex_lock(&rt_constraints_mutex);
P
Peter Zijlstra 已提交
9779
	read_lock(&tasklist_lock);
9780
	ret = __rt_schedulable(NULL, 0, 0);
P
Peter Zijlstra 已提交
9781
	read_unlock(&tasklist_lock);
9782 9783 9784 9785
	mutex_unlock(&rt_constraints_mutex);

	return ret;
}
9786 9787 9788 9789 9790 9791 9792 9793 9794 9795

int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
{
	/* Don't accept realtime tasks when there is no way for them to run */
	if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
		return 0;

	return 1;
}

9796
#else /* !CONFIG_RT_GROUP_SCHED */
9797 9798
static int sched_rt_global_constraints(void)
{
P
Peter Zijlstra 已提交
9799 9800 9801
	unsigned long flags;
	int i;

9802 9803 9804
	if (sysctl_sched_rt_period <= 0)
		return -EINVAL;

P
Peter Zijlstra 已提交
9805 9806 9807 9808 9809 9810 9811 9812 9813 9814
	spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
	for_each_possible_cpu(i) {
		struct rt_rq *rt_rq = &cpu_rq(i)->rt;

		spin_lock(&rt_rq->rt_runtime_lock);
		rt_rq->rt_runtime = global_rt_runtime();
		spin_unlock(&rt_rq->rt_runtime_lock);
	}
	spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);

9815 9816
	return 0;
}
9817
#endif /* CONFIG_RT_GROUP_SCHED */
9818 9819 9820 9821 9822 9823 9824 9825 9826 9827 9828 9829 9830 9831 9832 9833 9834 9835 9836 9837 9838 9839 9840 9841 9842 9843 9844 9845 9846 9847

int sched_rt_handler(struct ctl_table *table, int write,
		struct file *filp, void __user *buffer, size_t *lenp,
		loff_t *ppos)
{
	int ret;
	int old_period, old_runtime;
	static DEFINE_MUTEX(mutex);

	mutex_lock(&mutex);
	old_period = sysctl_sched_rt_period;
	old_runtime = sysctl_sched_rt_runtime;

	ret = proc_dointvec(table, write, filp, buffer, lenp, ppos);

	if (!ret && write) {
		ret = sched_rt_global_constraints();
		if (ret) {
			sysctl_sched_rt_period = old_period;
			sysctl_sched_rt_runtime = old_runtime;
		} else {
			def_rt_bandwidth.rt_runtime = global_rt_runtime();
			def_rt_bandwidth.rt_period =
				ns_to_ktime(global_rt_period());
		}
	}
	mutex_unlock(&mutex);

	return ret;
}
9848

9849
#ifdef CONFIG_CGROUP_SCHED
9850 9851

/* return corresponding task_group object of a cgroup */
9852
static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
9853
{
9854 9855
	return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
			    struct task_group, css);
9856 9857 9858
}

static struct cgroup_subsys_state *
9859
cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
9860
{
9861
	struct task_group *tg, *parent;
9862

9863
	if (!cgrp->parent) {
9864 9865 9866 9867
		/* This is early initialization for the top cgroup */
		return &init_task_group.css;
	}

9868 9869
	parent = cgroup_tg(cgrp->parent);
	tg = sched_create_group(parent);
9870 9871 9872 9873 9874 9875
	if (IS_ERR(tg))
		return ERR_PTR(-ENOMEM);

	return &tg->css;
}

I
Ingo Molnar 已提交
9876 9877
static void
cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
9878
{
9879
	struct task_group *tg = cgroup_tg(cgrp);
9880 9881 9882 9883

	sched_destroy_group(tg);
}

I
Ingo Molnar 已提交
9884 9885 9886
static int
cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
		      struct task_struct *tsk)
9887
{
9888
#ifdef CONFIG_RT_GROUP_SCHED
9889
	if (!sched_rt_can_attach(cgroup_tg(cgrp), tsk))
9890 9891
		return -EINVAL;
#else
9892 9893 9894
	/* We don't support RT-tasks being in separate groups */
	if (tsk->sched_class != &fair_sched_class)
		return -EINVAL;
9895
#endif
9896 9897 9898 9899 9900

	return 0;
}

static void
9901
cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
9902 9903 9904 9905 9906
			struct cgroup *old_cont, struct task_struct *tsk)
{
	sched_move_task(tsk);
}

9907
#ifdef CONFIG_FAIR_GROUP_SCHED
9908
static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
9909
				u64 shareval)
9910
{
9911
	return sched_group_set_shares(cgroup_tg(cgrp), shareval);
9912 9913
}

9914
static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
9915
{
9916
	struct task_group *tg = cgroup_tg(cgrp);
9917 9918 9919

	return (u64) tg->shares;
}
9920
#endif /* CONFIG_FAIR_GROUP_SCHED */
9921

9922
#ifdef CONFIG_RT_GROUP_SCHED
M
Mirco Tischler 已提交
9923
static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
9924
				s64 val)
P
Peter Zijlstra 已提交
9925
{
9926
	return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
P
Peter Zijlstra 已提交
9927 9928
}

9929
static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
P
Peter Zijlstra 已提交
9930
{
9931
	return sched_group_rt_runtime(cgroup_tg(cgrp));
P
Peter Zijlstra 已提交
9932
}
9933 9934 9935 9936 9937 9938 9939 9940 9941 9942 9943

static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
		u64 rt_period_us)
{
	return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
}

static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
{
	return sched_group_rt_period(cgroup_tg(cgrp));
}
9944
#endif /* CONFIG_RT_GROUP_SCHED */
P
Peter Zijlstra 已提交
9945

9946
static struct cftype cpu_files[] = {
9947
#ifdef CONFIG_FAIR_GROUP_SCHED
9948 9949
	{
		.name = "shares",
9950 9951
		.read_u64 = cpu_shares_read_u64,
		.write_u64 = cpu_shares_write_u64,
9952
	},
9953 9954
#endif
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
9955
	{
P
Peter Zijlstra 已提交
9956
		.name = "rt_runtime_us",
9957 9958
		.read_s64 = cpu_rt_runtime_read,
		.write_s64 = cpu_rt_runtime_write,
P
Peter Zijlstra 已提交
9959
	},
9960 9961
	{
		.name = "rt_period_us",
9962 9963
		.read_u64 = cpu_rt_period_read_uint,
		.write_u64 = cpu_rt_period_write_uint,
9964
	},
9965
#endif
9966 9967 9968 9969
};

static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
{
9970
	return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
9971 9972 9973
}

struct cgroup_subsys cpu_cgroup_subsys = {
I
Ingo Molnar 已提交
9974 9975 9976 9977 9978 9979 9980
	.name		= "cpu",
	.create		= cpu_cgroup_create,
	.destroy	= cpu_cgroup_destroy,
	.can_attach	= cpu_cgroup_can_attach,
	.attach		= cpu_cgroup_attach,
	.populate	= cpu_cgroup_populate,
	.subsys_id	= cpu_cgroup_subsys_id,
9981 9982 9983
	.early_init	= 1,
};

9984
#endif	/* CONFIG_CGROUP_SCHED */
9985 9986 9987 9988 9989 9990 9991 9992 9993 9994

#ifdef CONFIG_CGROUP_CPUACCT

/*
 * CPU accounting code for task groups.
 *
 * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
 * (balbir@in.ibm.com).
 */

9995
/* track cpu usage of a group of tasks and its child groups */
9996 9997 9998 9999
struct cpuacct {
	struct cgroup_subsys_state css;
	/* cpuusage holds pointer to a u64-type object on every cpu */
	u64 *cpuusage;
10000
	struct percpu_counter cpustat[CPUACCT_STAT_NSTATS];
10001
	struct cpuacct *parent;
10002 10003 10004 10005 10006
};

struct cgroup_subsys cpuacct_subsys;

/* return cpu accounting group corresponding to this container */
10007
static inline struct cpuacct *cgroup_ca(struct cgroup *cgrp)
10008
{
10009
	return container_of(cgroup_subsys_state(cgrp, cpuacct_subsys_id),
10010 10011 10012 10013 10014 10015 10016 10017 10018 10019 10020 10021
			    struct cpuacct, css);
}

/* return cpu accounting group to which this task belongs */
static inline struct cpuacct *task_ca(struct task_struct *tsk)
{
	return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
			    struct cpuacct, css);
}

/* create a new cpu accounting group */
static struct cgroup_subsys_state *cpuacct_create(
10022
	struct cgroup_subsys *ss, struct cgroup *cgrp)
10023 10024
{
	struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL);
10025
	int i;
10026 10027

	if (!ca)
10028
		goto out;
10029 10030

	ca->cpuusage = alloc_percpu(u64);
10031 10032 10033 10034 10035 10036
	if (!ca->cpuusage)
		goto out_free_ca;

	for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
		if (percpu_counter_init(&ca->cpustat[i], 0))
			goto out_free_counters;
10037

10038 10039 10040
	if (cgrp->parent)
		ca->parent = cgroup_ca(cgrp->parent);

10041
	return &ca->css;
10042 10043 10044 10045 10046 10047 10048 10049 10050

out_free_counters:
	while (--i >= 0)
		percpu_counter_destroy(&ca->cpustat[i]);
	free_percpu(ca->cpuusage);
out_free_ca:
	kfree(ca);
out:
	return ERR_PTR(-ENOMEM);
10051 10052 10053
}

/* destroy an existing cpu accounting group */
I
Ingo Molnar 已提交
10054
static void
10055
cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
10056
{
10057
	struct cpuacct *ca = cgroup_ca(cgrp);
10058
	int i;
10059

10060 10061
	for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
		percpu_counter_destroy(&ca->cpustat[i]);
10062 10063 10064 10065
	free_percpu(ca->cpuusage);
	kfree(ca);
}

10066 10067
static u64 cpuacct_cpuusage_read(struct cpuacct *ca, int cpu)
{
10068
	u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
10069 10070 10071 10072 10073 10074 10075 10076 10077 10078 10079 10080 10081 10082 10083 10084 10085 10086
	u64 data;

#ifndef CONFIG_64BIT
	/*
	 * Take rq->lock to make 64-bit read safe on 32-bit platforms.
	 */
	spin_lock_irq(&cpu_rq(cpu)->lock);
	data = *cpuusage;
	spin_unlock_irq(&cpu_rq(cpu)->lock);
#else
	data = *cpuusage;
#endif

	return data;
}

static void cpuacct_cpuusage_write(struct cpuacct *ca, int cpu, u64 val)
{
10087
	u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
10088 10089 10090 10091 10092 10093 10094 10095 10096 10097 10098 10099 10100

#ifndef CONFIG_64BIT
	/*
	 * Take rq->lock to make 64-bit write safe on 32-bit platforms.
	 */
	spin_lock_irq(&cpu_rq(cpu)->lock);
	*cpuusage = val;
	spin_unlock_irq(&cpu_rq(cpu)->lock);
#else
	*cpuusage = val;
#endif
}

10101
/* return total cpu usage (in nanoseconds) of a group */
10102
static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
10103
{
10104
	struct cpuacct *ca = cgroup_ca(cgrp);
10105 10106 10107
	u64 totalcpuusage = 0;
	int i;

10108 10109
	for_each_present_cpu(i)
		totalcpuusage += cpuacct_cpuusage_read(ca, i);
10110 10111 10112 10113

	return totalcpuusage;
}

10114 10115 10116 10117 10118 10119 10120 10121 10122 10123 10124 10125
static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
								u64 reset)
{
	struct cpuacct *ca = cgroup_ca(cgrp);
	int err = 0;
	int i;

	if (reset) {
		err = -EINVAL;
		goto out;
	}

10126 10127
	for_each_present_cpu(i)
		cpuacct_cpuusage_write(ca, i, 0);
10128 10129 10130 10131 10132

out:
	return err;
}

10133 10134 10135 10136 10137 10138 10139 10140 10141 10142 10143 10144 10145 10146 10147
static int cpuacct_percpu_seq_read(struct cgroup *cgroup, struct cftype *cft,
				   struct seq_file *m)
{
	struct cpuacct *ca = cgroup_ca(cgroup);
	u64 percpu;
	int i;

	for_each_present_cpu(i) {
		percpu = cpuacct_cpuusage_read(ca, i);
		seq_printf(m, "%llu ", (unsigned long long) percpu);
	}
	seq_printf(m, "\n");
	return 0;
}

10148 10149 10150 10151 10152 10153 10154 10155 10156 10157 10158 10159 10160 10161 10162 10163 10164 10165 10166
static const char *cpuacct_stat_desc[] = {
	[CPUACCT_STAT_USER] = "user",
	[CPUACCT_STAT_SYSTEM] = "system",
};

static int cpuacct_stats_show(struct cgroup *cgrp, struct cftype *cft,
		struct cgroup_map_cb *cb)
{
	struct cpuacct *ca = cgroup_ca(cgrp);
	int i;

	for (i = 0; i < CPUACCT_STAT_NSTATS; i++) {
		s64 val = percpu_counter_read(&ca->cpustat[i]);
		val = cputime64_to_clock_t(val);
		cb->fill(cb, cpuacct_stat_desc[i], val);
	}
	return 0;
}

10167 10168 10169
static struct cftype files[] = {
	{
		.name = "usage",
10170 10171
		.read_u64 = cpuusage_read,
		.write_u64 = cpuusage_write,
10172
	},
10173 10174 10175 10176
	{
		.name = "usage_percpu",
		.read_seq_string = cpuacct_percpu_seq_read,
	},
10177 10178 10179 10180
	{
		.name = "stat",
		.read_map = cpuacct_stats_show,
	},
10181 10182
};

10183
static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cgrp)
10184
{
10185
	return cgroup_add_files(cgrp, ss, files, ARRAY_SIZE(files));
10186 10187 10188 10189 10190 10191 10192 10193 10194 10195
}

/*
 * charge this task's execution time to its accounting group.
 *
 * called with rq->lock held.
 */
static void cpuacct_charge(struct task_struct *tsk, u64 cputime)
{
	struct cpuacct *ca;
10196
	int cpu;
10197

L
Li Zefan 已提交
10198
	if (unlikely(!cpuacct_subsys.active))
10199 10200
		return;

10201
	cpu = task_cpu(tsk);
10202 10203 10204

	rcu_read_lock();

10205 10206
	ca = task_ca(tsk);

10207
	for (; ca; ca = ca->parent) {
10208
		u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
10209 10210
		*cpuusage += cputime;
	}
10211 10212

	rcu_read_unlock();
10213 10214
}

10215 10216 10217 10218 10219 10220 10221 10222 10223 10224 10225 10226 10227 10228 10229 10230 10231 10232 10233 10234 10235
/*
 * Charge the system/user time to the task's accounting group.
 */
static void cpuacct_update_stats(struct task_struct *tsk,
		enum cpuacct_stat_index idx, cputime_t val)
{
	struct cpuacct *ca;

	if (unlikely(!cpuacct_subsys.active))
		return;

	rcu_read_lock();
	ca = task_ca(tsk);

	do {
		percpu_counter_add(&ca->cpustat[idx], val);
		ca = ca->parent;
	} while (ca);
	rcu_read_unlock();
}

10236 10237 10238 10239 10240 10241 10242 10243
struct cgroup_subsys cpuacct_subsys = {
	.name = "cpuacct",
	.create = cpuacct_create,
	.destroy = cpuacct_destroy,
	.populate = cpuacct_populate,
	.subsys_id = cpuacct_subsys_id,
};
#endif	/* CONFIG_CGROUP_CPUACCT */