sched.c 239.7 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
/*
 *  kernel/sched.c
 *
 *  Kernel scheduler and related syscalls
 *
 *  Copyright (C) 1991-2002  Linus Torvalds
 *
 *  1996-12-23  Modified by Dave Grothe to fix bugs in semaphores and
 *		make semaphores SMP safe
 *  1998-11-19	Implemented schedule_timeout() and related stuff
 *		by Andrea Arcangeli
 *  2002-01-04	New ultra-scalable O(1) scheduler by Ingo Molnar:
 *		hybrid priority-list and round-robin design with
 *		an array-switch method of distributing timeslices
 *		and per-CPU runqueues.  Cleanups and useful suggestions
 *		by Davide Libenzi, preemptible kernel bits by Robert Love.
 *  2003-09-03	Interactivity tuning by Con Kolivas.
 *  2004-04-02	Scheduler domains code by Nick Piggin
I
Ingo Molnar 已提交
19 20 21 22 23 24
 *  2007-04-15  Work begun on replacing all interactivity tuning with a
 *              fair scheduling design by Con Kolivas.
 *  2007-05-05  Load balancing (smp-nice) and other improvements
 *              by Peter Williams
 *  2007-05-06  Interactivity improvements to CFS by Mike Galbraith
 *  2007-07-01  Group scheduling enhancements by Srivatsa Vaddagiri
25 26
 *  2007-11-29  RT balancing improvements by Steven Rostedt, Gregory Haskins,
 *              Thomas Gleixner, Mike Kravetz
L
Linus Torvalds 已提交
27 28 29 30 31 32
 */

#include <linux/mm.h>
#include <linux/module.h>
#include <linux/nmi.h>
#include <linux/init.h>
33
#include <linux/uaccess.h>
L
Linus Torvalds 已提交
34 35 36 37
#include <linux/highmem.h>
#include <linux/smp_lock.h>
#include <asm/mmu_context.h>
#include <linux/interrupt.h>
38
#include <linux/capability.h>
L
Linus Torvalds 已提交
39 40
#include <linux/completion.h>
#include <linux/kernel_stat.h>
41
#include <linux/debug_locks.h>
L
Linus Torvalds 已提交
42 43 44
#include <linux/security.h>
#include <linux/notifier.h>
#include <linux/profile.h>
45
#include <linux/freezer.h>
46
#include <linux/vmalloc.h>
L
Linus Torvalds 已提交
47 48
#include <linux/blkdev.h>
#include <linux/delay.h>
49
#include <linux/pid_namespace.h>
L
Linus Torvalds 已提交
50 51 52 53 54 55 56 57
#include <linux/smp.h>
#include <linux/threads.h>
#include <linux/timer.h>
#include <linux/rcupdate.h>
#include <linux/cpu.h>
#include <linux/cpuset.h>
#include <linux/percpu.h>
#include <linux/kthread.h>
58
#include <linux/proc_fs.h>
L
Linus Torvalds 已提交
59
#include <linux/seq_file.h>
60
#include <linux/sysctl.h>
L
Linus Torvalds 已提交
61 62
#include <linux/syscalls.h>
#include <linux/times.h>
63
#include <linux/tsacct_kern.h>
64
#include <linux/kprobes.h>
65
#include <linux/delayacct.h>
66
#include <linux/reciprocal_div.h>
67
#include <linux/unistd.h>
J
Jens Axboe 已提交
68
#include <linux/pagemap.h>
P
Peter Zijlstra 已提交
69
#include <linux/hrtimer.h>
R
Reynes Philippe 已提交
70
#include <linux/tick.h>
71
#include <linux/bootmem.h>
P
Peter Zijlstra 已提交
72 73
#include <linux/debugfs.h>
#include <linux/ctype.h>
74
#include <linux/ftrace.h>
75
#include <trace/sched.h>
L
Linus Torvalds 已提交
76

77
#include <asm/tlb.h>
78
#include <asm/irq_regs.h>
L
Linus Torvalds 已提交
79

80 81
#include "sched_cpupri.h"

L
Linus Torvalds 已提交
82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100
/*
 * Convert user-nice values [ -20 ... 0 ... 19 ]
 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
 * and back.
 */
#define NICE_TO_PRIO(nice)	(MAX_RT_PRIO + (nice) + 20)
#define PRIO_TO_NICE(prio)	((prio) - MAX_RT_PRIO - 20)
#define TASK_NICE(p)		PRIO_TO_NICE((p)->static_prio)

/*
 * 'User priority' is the nice value converted to something we
 * can work with better when scaling various scheduler parameters,
 * it's a [ 0 ... 39 ] range.
 */
#define USER_PRIO(p)		((p)-MAX_RT_PRIO)
#define TASK_USER_PRIO(p)	USER_PRIO((p)->static_prio)
#define MAX_USER_PRIO		(USER_PRIO(MAX_PRIO))

/*
101
 * Helpers for converting nanosecond timing to jiffy resolution
L
Linus Torvalds 已提交
102
 */
103
#define NS_TO_JIFFIES(TIME)	((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
L
Linus Torvalds 已提交
104

I
Ingo Molnar 已提交
105 106 107
#define NICE_0_LOAD		SCHED_LOAD_SCALE
#define NICE_0_SHIFT		SCHED_LOAD_SHIFT

L
Linus Torvalds 已提交
108 109 110
/*
 * These are the 'tuning knobs' of the scheduler:
 *
D
Dmitry Adamushko 已提交
111
 * default timeslice is 100 msecs (used only for SCHED_RR tasks).
L
Linus Torvalds 已提交
112 113 114
 * Timeslices get refilled after they expire.
 */
#define DEF_TIMESLICE		(100 * HZ / 1000)
115

116 117 118 119 120
/*
 * single value that denotes runtime == period, ie unlimited time.
 */
#define RUNTIME_INF	((u64)~0ULL)

121 122 123 124 125 126
DEFINE_TRACE(sched_wait_task);
DEFINE_TRACE(sched_wakeup);
DEFINE_TRACE(sched_wakeup_new);
DEFINE_TRACE(sched_switch);
DEFINE_TRACE(sched_migrate_task);

127
#ifdef CONFIG_SMP
128 129 130

static void double_rq_lock(struct rq *rq1, struct rq *rq2);

131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150
/*
 * Divide a load by a sched group cpu_power : (load / sg->__cpu_power)
 * Since cpu_power is a 'constant', we can use a reciprocal divide.
 */
static inline u32 sg_div_cpu_power(const struct sched_group *sg, u32 load)
{
	return reciprocal_divide(load, sg->reciprocal_cpu_power);
}

/*
 * Each time a sched group cpu_power is changed,
 * we must compute its reciprocal value
 */
static inline void sg_inc_cpu_power(struct sched_group *sg, u32 val)
{
	sg->__cpu_power += val;
	sg->reciprocal_cpu_power = reciprocal_value(sg->__cpu_power);
}
#endif

151 152
static inline int rt_policy(int policy)
{
153
	if (unlikely(policy == SCHED_FIFO || policy == SCHED_RR))
154 155 156 157 158 159 160 161 162
		return 1;
	return 0;
}

static inline int task_has_rt_policy(struct task_struct *p)
{
	return rt_policy(p->policy);
}

L
Linus Torvalds 已提交
163
/*
I
Ingo Molnar 已提交
164
 * This is the priority-queue data structure of the RT scheduling class:
L
Linus Torvalds 已提交
165
 */
I
Ingo Molnar 已提交
166 167 168 169 170
struct rt_prio_array {
	DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
	struct list_head queue[MAX_RT_PRIO];
};

171
struct rt_bandwidth {
I
Ingo Molnar 已提交
172 173 174 175 176
	/* nests inside the rq lock: */
	spinlock_t		rt_runtime_lock;
	ktime_t			rt_period;
	u64			rt_runtime;
	struct hrtimer		rt_period_timer;
177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209
};

static struct rt_bandwidth def_rt_bandwidth;

static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);

static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
{
	struct rt_bandwidth *rt_b =
		container_of(timer, struct rt_bandwidth, rt_period_timer);
	ktime_t now;
	int overrun;
	int idle = 0;

	for (;;) {
		now = hrtimer_cb_get_time(timer);
		overrun = hrtimer_forward(timer, now, rt_b->rt_period);

		if (!overrun)
			break;

		idle = do_sched_rt_period_timer(rt_b, overrun);
	}

	return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
}

static
void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
{
	rt_b->rt_period = ns_to_ktime(period);
	rt_b->rt_runtime = runtime;

P
Peter Zijlstra 已提交
210 211
	spin_lock_init(&rt_b->rt_runtime_lock);

212 213 214 215 216
	hrtimer_init(&rt_b->rt_period_timer,
			CLOCK_MONOTONIC, HRTIMER_MODE_REL);
	rt_b->rt_period_timer.function = sched_rt_period_timer;
}

217 218 219
static inline int rt_bandwidth_enabled(void)
{
	return sysctl_sched_rt_runtime >= 0;
220 221 222 223 224 225
}

static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
{
	ktime_t now;

226
	if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)
227 228 229 230 231 232 233 234 235 236 237 238
		return;

	if (hrtimer_active(&rt_b->rt_period_timer))
		return;

	spin_lock(&rt_b->rt_runtime_lock);
	for (;;) {
		if (hrtimer_active(&rt_b->rt_period_timer))
			break;

		now = hrtimer_cb_get_time(&rt_b->rt_period_timer);
		hrtimer_forward(&rt_b->rt_period_timer, now, rt_b->rt_period);
239 240
		hrtimer_start_expires(&rt_b->rt_period_timer,
				HRTIMER_MODE_ABS);
241 242 243 244 245 246 247 248 249 250 251
	}
	spin_unlock(&rt_b->rt_runtime_lock);
}

#ifdef CONFIG_RT_GROUP_SCHED
static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
{
	hrtimer_cancel(&rt_b->rt_period_timer);
}
#endif

252 253 254 255 256 257
/*
 * sched_domains_mutex serializes calls to arch_init_sched_domains,
 * detach_destroy_domains and partition_sched_domains.
 */
static DEFINE_MUTEX(sched_domains_mutex);

258
#ifdef CONFIG_GROUP_SCHED
S
Srivatsa Vaddagiri 已提交
259

260 261
#include <linux/cgroup.h>

S
Srivatsa Vaddagiri 已提交
262 263
struct cfs_rq;

P
Peter Zijlstra 已提交
264 265
static LIST_HEAD(task_groups);

S
Srivatsa Vaddagiri 已提交
266
/* task group related information */
267
struct task_group {
268
#ifdef CONFIG_CGROUP_SCHED
269 270
	struct cgroup_subsys_state css;
#endif
271

272 273 274 275
#ifdef CONFIG_USER_SCHED
	uid_t uid;
#endif

276
#ifdef CONFIG_FAIR_GROUP_SCHED
S
Srivatsa Vaddagiri 已提交
277 278 279 280 281
	/* schedulable entities of this group on each cpu */
	struct sched_entity **se;
	/* runqueue "owned" by this group on each cpu */
	struct cfs_rq **cfs_rq;
	unsigned long shares;
282 283 284 285 286 287
#endif

#ifdef CONFIG_RT_GROUP_SCHED
	struct sched_rt_entity **rt_se;
	struct rt_rq **rt_rq;

288
	struct rt_bandwidth rt_bandwidth;
289
#endif
290

291
	struct rcu_head rcu;
P
Peter Zijlstra 已提交
292
	struct list_head list;
P
Peter Zijlstra 已提交
293 294 295 296

	struct task_group *parent;
	struct list_head siblings;
	struct list_head children;
S
Srivatsa Vaddagiri 已提交
297 298
};

D
Dhaval Giani 已提交
299
#ifdef CONFIG_USER_SCHED
300

301 302 303 304 305 306
/* Helper function to pass uid information to create_sched_user() */
void set_tg_uid(struct user_struct *user)
{
	user->tg->uid = user->uid;
}

307 308 309 310 311 312 313
/*
 * Root task group.
 * 	Every UID task group (including init_task_group aka UID-0) will
 * 	be a child to this group.
 */
struct task_group root_task_group;

314
#ifdef CONFIG_FAIR_GROUP_SCHED
S
Srivatsa Vaddagiri 已提交
315 316 317 318
/* Default task group's sched entity on each cpu */
static DEFINE_PER_CPU(struct sched_entity, init_sched_entity);
/* Default task group's cfs_rq on each cpu */
static DEFINE_PER_CPU(struct cfs_rq, init_cfs_rq) ____cacheline_aligned_in_smp;
319
#endif /* CONFIG_FAIR_GROUP_SCHED */
320 321 322 323

#ifdef CONFIG_RT_GROUP_SCHED
static DEFINE_PER_CPU(struct sched_rt_entity, init_sched_rt_entity);
static DEFINE_PER_CPU(struct rt_rq, init_rt_rq) ____cacheline_aligned_in_smp;
324
#endif /* CONFIG_RT_GROUP_SCHED */
P
Peter Zijlstra 已提交
325
#else /* !CONFIG_USER_SCHED */
326
#define root_task_group init_task_group
P
Peter Zijlstra 已提交
327
#endif /* CONFIG_USER_SCHED */
P
Peter Zijlstra 已提交
328

329
/* task_group_lock serializes add/remove of task groups and also changes to
330 331
 * a task group's cpu shares.
 */
332
static DEFINE_SPINLOCK(task_group_lock);
333

334 335 336 337 338 339 340
#ifdef CONFIG_SMP
static int root_task_group_empty(void)
{
	return list_empty(&root_task_group.children);
}
#endif

341 342 343
#ifdef CONFIG_FAIR_GROUP_SCHED
#ifdef CONFIG_USER_SCHED
# define INIT_TASK_GROUP_LOAD	(2*NICE_0_LOAD)
344
#else /* !CONFIG_USER_SCHED */
345
# define INIT_TASK_GROUP_LOAD	NICE_0_LOAD
346
#endif /* CONFIG_USER_SCHED */
347

348
/*
349 350 351 352
 * A weight of 0 or 1 can cause arithmetics problems.
 * A weight of a cfs_rq is the sum of weights of which entities
 * are queued on this cfs_rq, so a weight of a entity should not be
 * too large, so as the shares value of a task group.
353 354 355
 * (The default weight is 1024 - so there's no practical
 *  limitation from this.)
 */
356
#define MIN_SHARES	2
357
#define MAX_SHARES	(1UL << 18)
358

359 360 361
static int init_task_group_load = INIT_TASK_GROUP_LOAD;
#endif

S
Srivatsa Vaddagiri 已提交
362
/* Default task group.
I
Ingo Molnar 已提交
363
 *	Every task in system belong to this group at bootup.
S
Srivatsa Vaddagiri 已提交
364
 */
365
struct task_group init_task_group;
S
Srivatsa Vaddagiri 已提交
366 367

/* return group to which a task belongs */
368
static inline struct task_group *task_group(struct task_struct *p)
S
Srivatsa Vaddagiri 已提交
369
{
370
	struct task_group *tg;
371

372
#ifdef CONFIG_USER_SCHED
373 374 375
	rcu_read_lock();
	tg = __task_cred(p)->user->tg;
	rcu_read_unlock();
376
#elif defined(CONFIG_CGROUP_SCHED)
377 378
	tg = container_of(task_subsys_state(p, cpu_cgroup_subsys_id),
				struct task_group, css);
379
#else
I
Ingo Molnar 已提交
380
	tg = &init_task_group;
381
#endif
382
	return tg;
S
Srivatsa Vaddagiri 已提交
383 384 385
}

/* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
P
Peter Zijlstra 已提交
386
static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
S
Srivatsa Vaddagiri 已提交
387
{
388
#ifdef CONFIG_FAIR_GROUP_SCHED
389 390
	p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
	p->se.parent = task_group(p)->se[cpu];
391
#endif
P
Peter Zijlstra 已提交
392

393
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
394 395
	p->rt.rt_rq  = task_group(p)->rt_rq[cpu];
	p->rt.parent = task_group(p)->rt_se[cpu];
396
#endif
S
Srivatsa Vaddagiri 已提交
397 398 399 400
}

#else

401 402 403 404 405 406 407
#ifdef CONFIG_SMP
static int root_task_group_empty(void)
{
	return 1;
}
#endif

P
Peter Zijlstra 已提交
408
static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
409 410 411 412
static inline struct task_group *task_group(struct task_struct *p)
{
	return NULL;
}
S
Srivatsa Vaddagiri 已提交
413

414
#endif	/* CONFIG_GROUP_SCHED */
S
Srivatsa Vaddagiri 已提交
415

I
Ingo Molnar 已提交
416 417 418 419 420 421
/* CFS-related fields in a runqueue */
struct cfs_rq {
	struct load_weight load;
	unsigned long nr_running;

	u64 exec_clock;
I
Ingo Molnar 已提交
422
	u64 min_vruntime;
I
Ingo Molnar 已提交
423 424 425

	struct rb_root tasks_timeline;
	struct rb_node *rb_leftmost;
426 427 428 429 430 431

	struct list_head tasks;
	struct list_head *balance_iterator;

	/*
	 * 'curr' points to currently running entity on this cfs_rq.
I
Ingo Molnar 已提交
432 433
	 * It is set to NULL otherwise (i.e when none are currently running).
	 */
P
Peter Zijlstra 已提交
434
	struct sched_entity *curr, *next, *last;
P
Peter Zijlstra 已提交
435

P
Peter Zijlstra 已提交
436
	unsigned int nr_spread_over;
P
Peter Zijlstra 已提交
437

438
#ifdef CONFIG_FAIR_GROUP_SCHED
I
Ingo Molnar 已提交
439 440
	struct rq *rq;	/* cpu runqueue to which this cfs_rq is attached */

I
Ingo Molnar 已提交
441 442
	/*
	 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
I
Ingo Molnar 已提交
443 444 445 446 447 448
	 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
	 * (like users, containers etc.)
	 *
	 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
	 * list is used during load balance.
	 */
I
Ingo Molnar 已提交
449 450
	struct list_head leaf_cfs_rq_list;
	struct task_group *tg;	/* group that "owns" this runqueue */
451 452 453

#ifdef CONFIG_SMP
	/*
454
	 * the part of load.weight contributed by tasks
455
	 */
456
	unsigned long task_weight;
457

458 459 460 461 462 463 464
	/*
	 *   h_load = weight * f(tg)
	 *
	 * Where f(tg) is the recursive weight fraction assigned to
	 * this group.
	 */
	unsigned long h_load;
465

466 467 468 469
	/*
	 * this cpu's part of tg->shares
	 */
	unsigned long shares;
470 471 472 473 474

	/*
	 * load.weight at the time we set shares
	 */
	unsigned long rq_weight;
475
#endif
I
Ingo Molnar 已提交
476 477
#endif
};
L
Linus Torvalds 已提交
478

I
Ingo Molnar 已提交
479 480 481
/* Real-Time classes' related field in a runqueue: */
struct rt_rq {
	struct rt_prio_array active;
482
	unsigned long rt_nr_running;
483
#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
484 485
	struct {
		int curr; /* highest queued rt task prio */
486
#ifdef CONFIG_SMP
487
		int next; /* next highest */
488
#endif
489
	} highest_prio;
P
Peter Zijlstra 已提交
490
#endif
P
Peter Zijlstra 已提交
491
#ifdef CONFIG_SMP
492
	unsigned long rt_nr_migratory;
G
Gregory Haskins 已提交
493
	int overloaded;
494
	struct plist_head pushable_tasks;
P
Peter Zijlstra 已提交
495
#endif
P
Peter Zijlstra 已提交
496
	int rt_throttled;
P
Peter Zijlstra 已提交
497
	u64 rt_time;
P
Peter Zijlstra 已提交
498
	u64 rt_runtime;
I
Ingo Molnar 已提交
499
	/* Nests inside the rq lock: */
P
Peter Zijlstra 已提交
500
	spinlock_t rt_runtime_lock;
P
Peter Zijlstra 已提交
501

502
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
503 504
	unsigned long rt_nr_boosted;

P
Peter Zijlstra 已提交
505 506 507 508 509
	struct rq *rq;
	struct list_head leaf_rt_rq_list;
	struct task_group *tg;
	struct sched_rt_entity *rt_se;
#endif
I
Ingo Molnar 已提交
510 511
};

G
Gregory Haskins 已提交
512 513 514 515
#ifdef CONFIG_SMP

/*
 * We add the notion of a root-domain which will be used to define per-domain
I
Ingo Molnar 已提交
516 517
 * variables. Each exclusive cpuset essentially defines an island domain by
 * fully partitioning the member cpus from any other cpuset. Whenever a new
G
Gregory Haskins 已提交
518 519 520 521 522 523
 * exclusive cpuset is created, we also create and attach a new root-domain
 * object.
 *
 */
struct root_domain {
	atomic_t refcount;
524 525
	cpumask_var_t span;
	cpumask_var_t online;
526

I
Ingo Molnar 已提交
527
	/*
528 529 530
	 * The "RT overload" flag: it gets set if a CPU has more than
	 * one runnable RT task.
	 */
531
	cpumask_var_t rto_mask;
I
Ingo Molnar 已提交
532
	atomic_t rto_count;
533 534 535
#ifdef CONFIG_SMP
	struct cpupri cpupri;
#endif
536 537 538 539 540 541 542 543
#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
	/*
	 * Preferred wake up cpu nominated by sched_mc balance that will be
	 * used when most cpus are idle in the system indicating overall very
	 * low system utilisation. Triggered at POWERSAVINGS_BALANCE_WAKEUP(2)
	 */
	unsigned int sched_mc_preferred_wakeup_cpu;
#endif
G
Gregory Haskins 已提交
544 545
};

546 547 548 549
/*
 * By default the system creates a single root-domain with all cpus as
 * members (mimicking the global state we have today).
 */
G
Gregory Haskins 已提交
550 551 552 553
static struct root_domain def_root_domain;

#endif

L
Linus Torvalds 已提交
554 555 556 557 558 559 560
/*
 * This is the main, per-CPU runqueue data structure.
 *
 * Locking rule: those places that want to lock multiple runqueues
 * (such as the load balancing or the thread migration code), lock
 * acquire operations must be ordered by ascending &runqueue.
 */
561
struct rq {
562 563
	/* runqueue lock: */
	spinlock_t lock;
L
Linus Torvalds 已提交
564 565 566 567 568 569

	/*
	 * nr_running and cpu_load should be in the same cacheline because
	 * remote CPUs use both these fields when doing load calculation.
	 */
	unsigned long nr_running;
I
Ingo Molnar 已提交
570 571
	#define CPU_LOAD_IDX_MAX 5
	unsigned long cpu_load[CPU_LOAD_IDX_MAX];
572
#ifdef CONFIG_NO_HZ
573
	unsigned long last_tick_seen;
574 575
	unsigned char in_nohz_recently;
#endif
576 577
	/* capture load from *all* tasks on this cpu: */
	struct load_weight load;
I
Ingo Molnar 已提交
578 579 580 581
	unsigned long nr_load_updates;
	u64 nr_switches;

	struct cfs_rq cfs;
P
Peter Zijlstra 已提交
582 583
	struct rt_rq rt;

I
Ingo Molnar 已提交
584
#ifdef CONFIG_FAIR_GROUP_SCHED
585 586
	/* list of leaf cfs_rq on this cpu: */
	struct list_head leaf_cfs_rq_list;
587 588
#endif
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
589
	struct list_head leaf_rt_rq_list;
L
Linus Torvalds 已提交
590 591 592 593 594 595 596 597 598 599
#endif

	/*
	 * This is part of a global counter where only the total sum
	 * over all CPUs matters. A task can increase this counter on
	 * one CPU and if it got migrated afterwards it may decrease
	 * it on another CPU. Always updated under the runqueue lock:
	 */
	unsigned long nr_uninterruptible;

600
	struct task_struct *curr, *idle;
601
	unsigned long next_balance;
L
Linus Torvalds 已提交
602
	struct mm_struct *prev_mm;
I
Ingo Molnar 已提交
603

604
	u64 clock;
I
Ingo Molnar 已提交
605

L
Linus Torvalds 已提交
606 607 608
	atomic_t nr_iowait;

#ifdef CONFIG_SMP
I
Ingo Molnar 已提交
609
	struct root_domain *rd;
L
Linus Torvalds 已提交
610 611
	struct sched_domain *sd;

612
	unsigned char idle_at_tick;
L
Linus Torvalds 已提交
613 614 615
	/* For active balancing */
	int active_balance;
	int push_cpu;
616 617
	/* cpu of this runqueue: */
	int cpu;
618
	int online;
L
Linus Torvalds 已提交
619

620
	unsigned long avg_load_per_task;
L
Linus Torvalds 已提交
621

622
	struct task_struct *migration_thread;
L
Linus Torvalds 已提交
623 624 625
	struct list_head migration_queue;
#endif

P
Peter Zijlstra 已提交
626
#ifdef CONFIG_SCHED_HRTICK
627 628 629 630
#ifdef CONFIG_SMP
	int hrtick_csd_pending;
	struct call_single_data hrtick_csd;
#endif
P
Peter Zijlstra 已提交
631 632 633
	struct hrtimer hrtick_timer;
#endif

L
Linus Torvalds 已提交
634 635 636
#ifdef CONFIG_SCHEDSTATS
	/* latency stats */
	struct sched_info rq_sched_info;
637 638
	unsigned long long rq_cpu_time;
	/* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
L
Linus Torvalds 已提交
639 640

	/* sys_sched_yield() stats */
641
	unsigned int yld_count;
L
Linus Torvalds 已提交
642 643

	/* schedule() stats */
644 645 646
	unsigned int sched_switch;
	unsigned int sched_count;
	unsigned int sched_goidle;
L
Linus Torvalds 已提交
647 648

	/* try_to_wake_up() stats */
649 650
	unsigned int ttwu_count;
	unsigned int ttwu_local;
I
Ingo Molnar 已提交
651 652

	/* BKL stats */
653
	unsigned int bkl_count;
L
Linus Torvalds 已提交
654 655 656
#endif
};

657
static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
L
Linus Torvalds 已提交
658

659
static inline void check_preempt_curr(struct rq *rq, struct task_struct *p, int sync)
I
Ingo Molnar 已提交
660
{
661
	rq->curr->sched_class->check_preempt_curr(rq, p, sync);
I
Ingo Molnar 已提交
662 663
}

664 665 666 667 668 669 670 671 672
static inline int cpu_of(struct rq *rq)
{
#ifdef CONFIG_SMP
	return rq->cpu;
#else
	return 0;
#endif
}

N
Nick Piggin 已提交
673 674
/*
 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
675
 * See detach_destroy_domains: synchronize_sched for details.
N
Nick Piggin 已提交
676 677 678 679
 *
 * The domain tree of any CPU may only be accessed from within
 * preempt-disabled sections.
 */
680 681
#define for_each_domain(cpu, __sd) \
	for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
L
Linus Torvalds 已提交
682 683 684 685 686 687

#define cpu_rq(cpu)		(&per_cpu(runqueues, (cpu)))
#define this_rq()		(&__get_cpu_var(runqueues))
#define task_rq(p)		cpu_rq(task_cpu(p))
#define cpu_curr(cpu)		(cpu_rq(cpu)->curr)

688 689 690 691 692
static inline void update_rq_clock(struct rq *rq)
{
	rq->clock = sched_clock_cpu(cpu_of(rq));
}

I
Ingo Molnar 已提交
693 694 695 696 697 698 699 700 701
/*
 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
 */
#ifdef CONFIG_SCHED_DEBUG
# define const_debug __read_mostly
#else
# define const_debug static const
#endif

I
Ingo Molnar 已提交
702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719
/**
 * runqueue_is_locked
 *
 * Returns true if the current cpu runqueue is locked.
 * This interface allows printk to be called with the runqueue lock
 * held and know whether or not it is OK to wake up the klogd.
 */
int runqueue_is_locked(void)
{
	int cpu = get_cpu();
	struct rq *rq = cpu_rq(cpu);
	int ret;

	ret = spin_is_locked(&rq->lock);
	put_cpu();
	return ret;
}

I
Ingo Molnar 已提交
720 721 722
/*
 * Debugging: various feature bits
 */
P
Peter Zijlstra 已提交
723 724 725 726

#define SCHED_FEAT(name, enabled)	\
	__SCHED_FEAT_##name ,

I
Ingo Molnar 已提交
727
enum {
P
Peter Zijlstra 已提交
728
#include "sched_features.h"
I
Ingo Molnar 已提交
729 730
};

P
Peter Zijlstra 已提交
731 732 733 734 735
#undef SCHED_FEAT

#define SCHED_FEAT(name, enabled)	\
	(1UL << __SCHED_FEAT_##name) * enabled |

I
Ingo Molnar 已提交
736
const_debug unsigned int sysctl_sched_features =
P
Peter Zijlstra 已提交
737 738 739 740 741 742 743 744 745
#include "sched_features.h"
	0;

#undef SCHED_FEAT

#ifdef CONFIG_SCHED_DEBUG
#define SCHED_FEAT(name, enabled)	\
	#name ,

746
static __read_mostly char *sched_feat_names[] = {
P
Peter Zijlstra 已提交
747 748 749 750 751 752
#include "sched_features.h"
	NULL
};

#undef SCHED_FEAT

L
Li Zefan 已提交
753
static int sched_feat_show(struct seq_file *m, void *v)
P
Peter Zijlstra 已提交
754 755 756 757
{
	int i;

	for (i = 0; sched_feat_names[i]; i++) {
L
Li Zefan 已提交
758 759 760
		if (!(sysctl_sched_features & (1UL << i)))
			seq_puts(m, "NO_");
		seq_printf(m, "%s ", sched_feat_names[i]);
P
Peter Zijlstra 已提交
761
	}
L
Li Zefan 已提交
762
	seq_puts(m, "\n");
P
Peter Zijlstra 已提交
763

L
Li Zefan 已提交
764
	return 0;
P
Peter Zijlstra 已提交
765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783
}

static ssize_t
sched_feat_write(struct file *filp, const char __user *ubuf,
		size_t cnt, loff_t *ppos)
{
	char buf[64];
	char *cmp = buf;
	int neg = 0;
	int i;

	if (cnt > 63)
		cnt = 63;

	if (copy_from_user(&buf, ubuf, cnt))
		return -EFAULT;

	buf[cnt] = 0;

I
Ingo Molnar 已提交
784
	if (strncmp(buf, "NO_", 3) == 0) {
P
Peter Zijlstra 已提交
785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808
		neg = 1;
		cmp += 3;
	}

	for (i = 0; sched_feat_names[i]; i++) {
		int len = strlen(sched_feat_names[i]);

		if (strncmp(cmp, sched_feat_names[i], len) == 0) {
			if (neg)
				sysctl_sched_features &= ~(1UL << i);
			else
				sysctl_sched_features |= (1UL << i);
			break;
		}
	}

	if (!sched_feat_names[i])
		return -EINVAL;

	filp->f_pos += cnt;

	return cnt;
}

L
Li Zefan 已提交
809 810 811 812 813
static int sched_feat_open(struct inode *inode, struct file *filp)
{
	return single_open(filp, sched_feat_show, NULL);
}

P
Peter Zijlstra 已提交
814
static struct file_operations sched_feat_fops = {
L
Li Zefan 已提交
815 816 817 818 819
	.open		= sched_feat_open,
	.write		= sched_feat_write,
	.read		= seq_read,
	.llseek		= seq_lseek,
	.release	= single_release,
P
Peter Zijlstra 已提交
820 821 822 823 824 825 826 827 828 829 830 831 832 833
};

static __init int sched_init_debug(void)
{
	debugfs_create_file("sched_features", 0644, NULL, NULL,
			&sched_feat_fops);

	return 0;
}
late_initcall(sched_init_debug);

#endif

#define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
I
Ingo Molnar 已提交
834

835 836 837 838 839 840
/*
 * Number of tasks to iterate in a single balance run.
 * Limited because this is done with IRQs disabled.
 */
const_debug unsigned int sysctl_sched_nr_migrate = 32;

P
Peter Zijlstra 已提交
841 842
/*
 * ratelimit for updating the group shares.
843
 * default: 0.25ms
P
Peter Zijlstra 已提交
844
 */
845
unsigned int sysctl_sched_shares_ratelimit = 250000;
P
Peter Zijlstra 已提交
846

847 848 849 850 851 852 853
/*
 * Inject some fuzzyness into changing the per-cpu group shares
 * this avoids remote rq-locks at the expense of fairness.
 * default: 4
 */
unsigned int sysctl_sched_shares_thresh = 4;

P
Peter Zijlstra 已提交
854
/*
P
Peter Zijlstra 已提交
855
 * period over which we measure -rt task cpu usage in us.
P
Peter Zijlstra 已提交
856 857
 * default: 1s
 */
P
Peter Zijlstra 已提交
858
unsigned int sysctl_sched_rt_period = 1000000;
P
Peter Zijlstra 已提交
859

860 861
static __read_mostly int scheduler_running;

P
Peter Zijlstra 已提交
862 863 864 865 866
/*
 * part of the period that we allow rt tasks to run in us.
 * default: 0.95s
 */
int sysctl_sched_rt_runtime = 950000;
P
Peter Zijlstra 已提交
867

868 869 870 871 872 873 874
static inline u64 global_rt_period(void)
{
	return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
}

static inline u64 global_rt_runtime(void)
{
875
	if (sysctl_sched_rt_runtime < 0)
876 877 878 879
		return RUNTIME_INF;

	return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
}
P
Peter Zijlstra 已提交
880

L
Linus Torvalds 已提交
881
#ifndef prepare_arch_switch
882 883 884 885 886 887
# define prepare_arch_switch(next)	do { } while (0)
#endif
#ifndef finish_arch_switch
# define finish_arch_switch(prev)	do { } while (0)
#endif

888 889 890 891 892
static inline int task_current(struct rq *rq, struct task_struct *p)
{
	return rq->curr == p;
}

893
#ifndef __ARCH_WANT_UNLOCKED_CTXSW
894
static inline int task_running(struct rq *rq, struct task_struct *p)
895
{
896
	return task_current(rq, p);
897 898
}

899
static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
900 901 902
{
}

903
static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
904
{
905 906 907 908
#ifdef CONFIG_DEBUG_SPINLOCK
	/* this is a valid case when another task releases the spinlock */
	rq->lock.owner = current;
#endif
909 910 911 912 913 914 915
	/*
	 * If we are tracking spinlock dependencies then we have to
	 * fix up the runqueue lock - which gets 'carried over' from
	 * prev into current:
	 */
	spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);

916 917 918 919
	spin_unlock_irq(&rq->lock);
}

#else /* __ARCH_WANT_UNLOCKED_CTXSW */
920
static inline int task_running(struct rq *rq, struct task_struct *p)
921 922 923 924
{
#ifdef CONFIG_SMP
	return p->oncpu;
#else
925
	return task_current(rq, p);
926 927 928
#endif
}

929
static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945
{
#ifdef CONFIG_SMP
	/*
	 * We can optimise this out completely for !SMP, because the
	 * SMP rebalancing from interrupt is the only thing that cares
	 * here.
	 */
	next->oncpu = 1;
#endif
#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
	spin_unlock_irq(&rq->lock);
#else
	spin_unlock(&rq->lock);
#endif
}

946
static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
947 948 949 950 951 952 953 954 955 956 957 958
{
#ifdef CONFIG_SMP
	/*
	 * After ->oncpu is cleared, the task can be moved to a different CPU.
	 * We must ensure this doesn't happen until the switch is completely
	 * finished.
	 */
	smp_wmb();
	prev->oncpu = 0;
#endif
#ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
	local_irq_enable();
L
Linus Torvalds 已提交
959
#endif
960 961
}
#endif /* __ARCH_WANT_UNLOCKED_CTXSW */
L
Linus Torvalds 已提交
962

963 964 965 966
/*
 * __task_rq_lock - lock the runqueue a given task resides on.
 * Must be called interrupts disabled.
 */
967
static inline struct rq *__task_rq_lock(struct task_struct *p)
968 969
	__acquires(rq->lock)
{
970 971 972 973 974
	for (;;) {
		struct rq *rq = task_rq(p);
		spin_lock(&rq->lock);
		if (likely(rq == task_rq(p)))
			return rq;
975 976 977 978
		spin_unlock(&rq->lock);
	}
}

L
Linus Torvalds 已提交
979 980
/*
 * task_rq_lock - lock the runqueue a given task resides on and disable
I
Ingo Molnar 已提交
981
 * interrupts. Note the ordering: we can safely lookup the task_rq without
L
Linus Torvalds 已提交
982 983
 * explicitly disabling preemption.
 */
984
static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
L
Linus Torvalds 已提交
985 986
	__acquires(rq->lock)
{
987
	struct rq *rq;
L
Linus Torvalds 已提交
988

989 990 991 992 993 994
	for (;;) {
		local_irq_save(*flags);
		rq = task_rq(p);
		spin_lock(&rq->lock);
		if (likely(rq == task_rq(p)))
			return rq;
L
Linus Torvalds 已提交
995 996 997 998
		spin_unlock_irqrestore(&rq->lock, *flags);
	}
}

999 1000 1001 1002 1003 1004 1005 1006
void task_rq_unlock_wait(struct task_struct *p)
{
	struct rq *rq = task_rq(p);

	smp_mb(); /* spin-unlock-wait is not a full memory barrier */
	spin_unlock_wait(&rq->lock);
}

A
Alexey Dobriyan 已提交
1007
static void __task_rq_unlock(struct rq *rq)
1008 1009 1010 1011 1012
	__releases(rq->lock)
{
	spin_unlock(&rq->lock);
}

1013
static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
L
Linus Torvalds 已提交
1014 1015 1016 1017 1018 1019
	__releases(rq->lock)
{
	spin_unlock_irqrestore(&rq->lock, *flags);
}

/*
1020
 * this_rq_lock - lock this runqueue and disable interrupts.
L
Linus Torvalds 已提交
1021
 */
A
Alexey Dobriyan 已提交
1022
static struct rq *this_rq_lock(void)
L
Linus Torvalds 已提交
1023 1024
	__acquires(rq->lock)
{
1025
	struct rq *rq;
L
Linus Torvalds 已提交
1026 1027 1028 1029 1030 1031 1032 1033

	local_irq_disable();
	rq = this_rq();
	spin_lock(&rq->lock);

	return rq;
}

P
Peter Zijlstra 已提交
1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054
#ifdef CONFIG_SCHED_HRTICK
/*
 * Use HR-timers to deliver accurate preemption points.
 *
 * Its all a bit involved since we cannot program an hrt while holding the
 * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
 * reschedule event.
 *
 * When we get rescheduled we reprogram the hrtick_timer outside of the
 * rq->lock.
 */

/*
 * Use hrtick when:
 *  - enabled by features
 *  - hrtimer is actually high res
 */
static inline int hrtick_enabled(struct rq *rq)
{
	if (!sched_feat(HRTICK))
		return 0;
1055
	if (!cpu_active(cpu_of(rq)))
1056
		return 0;
P
Peter Zijlstra 已提交
1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076
	return hrtimer_is_hres_active(&rq->hrtick_timer);
}

static void hrtick_clear(struct rq *rq)
{
	if (hrtimer_active(&rq->hrtick_timer))
		hrtimer_cancel(&rq->hrtick_timer);
}

/*
 * High-resolution timer tick.
 * Runs from hardirq context with interrupts disabled.
 */
static enum hrtimer_restart hrtick(struct hrtimer *timer)
{
	struct rq *rq = container_of(timer, struct rq, hrtick_timer);

	WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());

	spin_lock(&rq->lock);
1077
	update_rq_clock(rq);
P
Peter Zijlstra 已提交
1078 1079 1080 1081 1082 1083
	rq->curr->sched_class->task_tick(rq, rq->curr, 1);
	spin_unlock(&rq->lock);

	return HRTIMER_NORESTART;
}

1084
#ifdef CONFIG_SMP
1085 1086 1087 1088
/*
 * called from hardirq (IPI) context
 */
static void __hrtick_start(void *arg)
1089
{
1090
	struct rq *rq = arg;
1091

1092 1093 1094 1095
	spin_lock(&rq->lock);
	hrtimer_restart(&rq->hrtick_timer);
	rq->hrtick_csd_pending = 0;
	spin_unlock(&rq->lock);
1096 1097
}

1098 1099 1100 1101 1102 1103
/*
 * Called to set the hrtick timer state.
 *
 * called with rq->lock held and irqs disabled
 */
static void hrtick_start(struct rq *rq, u64 delay)
1104
{
1105 1106
	struct hrtimer *timer = &rq->hrtick_timer;
	ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
1107

1108
	hrtimer_set_expires(timer, time);
1109 1110 1111 1112 1113 1114 1115

	if (rq == this_rq()) {
		hrtimer_restart(timer);
	} else if (!rq->hrtick_csd_pending) {
		__smp_call_function_single(cpu_of(rq), &rq->hrtick_csd);
		rq->hrtick_csd_pending = 1;
	}
1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129
}

static int
hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
{
	int cpu = (int)(long)hcpu;

	switch (action) {
	case CPU_UP_CANCELED:
	case CPU_UP_CANCELED_FROZEN:
	case CPU_DOWN_PREPARE:
	case CPU_DOWN_PREPARE_FROZEN:
	case CPU_DEAD:
	case CPU_DEAD_FROZEN:
1130
		hrtick_clear(cpu_rq(cpu));
1131 1132 1133 1134 1135 1136
		return NOTIFY_OK;
	}

	return NOTIFY_DONE;
}

1137
static __init void init_hrtick(void)
1138 1139 1140
{
	hotcpu_notifier(hotplug_hrtick, 0);
}
1141 1142 1143 1144 1145 1146 1147 1148 1149 1150
#else
/*
 * Called to set the hrtick timer state.
 *
 * called with rq->lock held and irqs disabled
 */
static void hrtick_start(struct rq *rq, u64 delay)
{
	hrtimer_start(&rq->hrtick_timer, ns_to_ktime(delay), HRTIMER_MODE_REL);
}
1151

A
Andrew Morton 已提交
1152
static inline void init_hrtick(void)
P
Peter Zijlstra 已提交
1153 1154
{
}
1155
#endif /* CONFIG_SMP */
P
Peter Zijlstra 已提交
1156

1157
static void init_rq_hrtick(struct rq *rq)
P
Peter Zijlstra 已提交
1158
{
1159 1160
#ifdef CONFIG_SMP
	rq->hrtick_csd_pending = 0;
P
Peter Zijlstra 已提交
1161

1162 1163 1164 1165
	rq->hrtick_csd.flags = 0;
	rq->hrtick_csd.func = __hrtick_start;
	rq->hrtick_csd.info = rq;
#endif
P
Peter Zijlstra 已提交
1166

1167 1168
	hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
	rq->hrtick_timer.function = hrtick;
P
Peter Zijlstra 已提交
1169
}
A
Andrew Morton 已提交
1170
#else	/* CONFIG_SCHED_HRTICK */
P
Peter Zijlstra 已提交
1171 1172 1173 1174 1175 1176 1177 1178
static inline void hrtick_clear(struct rq *rq)
{
}

static inline void init_rq_hrtick(struct rq *rq)
{
}

1179 1180 1181
static inline void init_hrtick(void)
{
}
A
Andrew Morton 已提交
1182
#endif	/* CONFIG_SCHED_HRTICK */
P
Peter Zijlstra 已提交
1183

I
Ingo Molnar 已提交
1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196
/*
 * resched_task - mark a task 'to be rescheduled now'.
 *
 * On UP this means the setting of the need_resched flag, on SMP it
 * might also involve a cross-CPU call to trigger the scheduler on
 * the target CPU.
 */
#ifdef CONFIG_SMP

#ifndef tsk_is_polling
#define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
#endif

1197
static void resched_task(struct task_struct *p)
I
Ingo Molnar 已提交
1198 1199 1200 1201 1202
{
	int cpu;

	assert_spin_locked(&task_rq(p)->lock);

1203
	if (test_tsk_need_resched(p))
I
Ingo Molnar 已提交
1204 1205
		return;

1206
	set_tsk_need_resched(p);
I
Ingo Molnar 已提交
1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227

	cpu = task_cpu(p);
	if (cpu == smp_processor_id())
		return;

	/* NEED_RESCHED must be visible before we test polling */
	smp_mb();
	if (!tsk_is_polling(p))
		smp_send_reschedule(cpu);
}

static void resched_cpu(int cpu)
{
	struct rq *rq = cpu_rq(cpu);
	unsigned long flags;

	if (!spin_trylock_irqsave(&rq->lock, flags))
		return;
	resched_task(cpu_curr(cpu));
	spin_unlock_irqrestore(&rq->lock, flags);
}
1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261

#ifdef CONFIG_NO_HZ
/*
 * When add_timer_on() enqueues a timer into the timer wheel of an
 * idle CPU then this timer might expire before the next timer event
 * which is scheduled to wake up that CPU. In case of a completely
 * idle system the next event might even be infinite time into the
 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
 * leaves the inner idle loop so the newly added timer is taken into
 * account when the CPU goes back to idle and evaluates the timer
 * wheel for the next timer event.
 */
void wake_up_idle_cpu(int cpu)
{
	struct rq *rq = cpu_rq(cpu);

	if (cpu == smp_processor_id())
		return;

	/*
	 * This is safe, as this function is called with the timer
	 * wheel base lock of (cpu) held. When the CPU is on the way
	 * to idle and has not yet set rq->curr to idle then it will
	 * be serialized on the timer wheel base lock and take the new
	 * timer into account automatically.
	 */
	if (rq->curr != rq->idle)
		return;

	/*
	 * We can set TIF_RESCHED on the idle task of the other CPU
	 * lockless. The worst case is that the other CPU runs the
	 * idle task through an additional NOOP schedule()
	 */
1262
	set_tsk_need_resched(rq->idle);
1263 1264 1265 1266 1267 1268

	/* NEED_RESCHED must be visible before we test polling */
	smp_mb();
	if (!tsk_is_polling(rq->idle))
		smp_send_reschedule(cpu);
}
1269
#endif /* CONFIG_NO_HZ */
1270

1271
#else /* !CONFIG_SMP */
1272
static void resched_task(struct task_struct *p)
I
Ingo Molnar 已提交
1273 1274
{
	assert_spin_locked(&task_rq(p)->lock);
1275
	set_tsk_need_resched(p);
I
Ingo Molnar 已提交
1276
}
1277
#endif /* CONFIG_SMP */
I
Ingo Molnar 已提交
1278

1279 1280 1281 1282 1283 1284 1285 1286
#if BITS_PER_LONG == 32
# define WMULT_CONST	(~0UL)
#else
# define WMULT_CONST	(1UL << 32)
#endif

#define WMULT_SHIFT	32

I
Ingo Molnar 已提交
1287 1288 1289
/*
 * Shift right and round:
 */
I
Ingo Molnar 已提交
1290
#define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
I
Ingo Molnar 已提交
1291

1292 1293 1294
/*
 * delta *= weight / lw
 */
1295
static unsigned long
1296 1297 1298 1299 1300
calc_delta_mine(unsigned long delta_exec, unsigned long weight,
		struct load_weight *lw)
{
	u64 tmp;

1301 1302 1303 1304 1305 1306 1307
	if (!lw->inv_weight) {
		if (BITS_PER_LONG > 32 && unlikely(lw->weight >= WMULT_CONST))
			lw->inv_weight = 1;
		else
			lw->inv_weight = 1 + (WMULT_CONST-lw->weight/2)
				/ (lw->weight+1);
	}
1308 1309 1310 1311 1312

	tmp = (u64)delta_exec * weight;
	/*
	 * Check whether we'd overflow the 64-bit multiplication:
	 */
I
Ingo Molnar 已提交
1313
	if (unlikely(tmp > WMULT_CONST))
I
Ingo Molnar 已提交
1314
		tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
I
Ingo Molnar 已提交
1315 1316
			WMULT_SHIFT/2);
	else
I
Ingo Molnar 已提交
1317
		tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
1318

1319
	return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
1320 1321
}

1322
static inline void update_load_add(struct load_weight *lw, unsigned long inc)
1323 1324
{
	lw->weight += inc;
I
Ingo Molnar 已提交
1325
	lw->inv_weight = 0;
1326 1327
}

1328
static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
1329 1330
{
	lw->weight -= dec;
I
Ingo Molnar 已提交
1331
	lw->inv_weight = 0;
1332 1333
}

1334 1335 1336 1337
/*
 * To aid in avoiding the subversion of "niceness" due to uneven distribution
 * of tasks with abnormal "nice" values across CPUs the contribution that
 * each task makes to its run queue's load is weighted according to its
I
Ingo Molnar 已提交
1338
 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
1339 1340 1341 1342
 * scaled version of the new time slice allocation that they receive on time
 * slice expiry etc.
 */

P
Peter Zijlstra 已提交
1343 1344
#define WEIGHT_IDLEPRIO                3
#define WMULT_IDLEPRIO         1431655765
I
Ingo Molnar 已提交
1345 1346 1347 1348 1349 1350 1351 1352 1353

/*
 * Nice levels are multiplicative, with a gentle 10% change for every
 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
 * nice 1, it will get ~10% less CPU time than another CPU-bound task
 * that remained on nice 0.
 *
 * The "10% effect" is relative and cumulative: from _any_ nice level,
 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
1354 1355 1356
 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
 * If a task goes up by ~10% and another task goes down by ~10% then
 * the relative distance between them is ~25%.)
I
Ingo Molnar 已提交
1357 1358
 */
static const int prio_to_weight[40] = {
1359 1360 1361 1362 1363 1364 1365 1366
 /* -20 */     88761,     71755,     56483,     46273,     36291,
 /* -15 */     29154,     23254,     18705,     14949,     11916,
 /* -10 */      9548,      7620,      6100,      4904,      3906,
 /*  -5 */      3121,      2501,      1991,      1586,      1277,
 /*   0 */      1024,       820,       655,       526,       423,
 /*   5 */       335,       272,       215,       172,       137,
 /*  10 */       110,        87,        70,        56,        45,
 /*  15 */        36,        29,        23,        18,        15,
I
Ingo Molnar 已提交
1367 1368
};

1369 1370 1371 1372 1373 1374 1375
/*
 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
 *
 * In cases where the weight does not change often, we can use the
 * precalculated inverse to speed up arithmetics by turning divisions
 * into multiplications:
 */
I
Ingo Molnar 已提交
1376
static const u32 prio_to_wmult[40] = {
1377 1378 1379 1380 1381 1382 1383 1384
 /* -20 */     48388,     59856,     76040,     92818,    118348,
 /* -15 */    147320,    184698,    229616,    287308,    360437,
 /* -10 */    449829,    563644,    704093,    875809,   1099582,
 /*  -5 */   1376151,   1717300,   2157191,   2708050,   3363326,
 /*   0 */   4194304,   5237765,   6557202,   8165337,  10153587,
 /*   5 */  12820798,  15790321,  19976592,  24970740,  31350126,
 /*  10 */  39045157,  49367440,  61356676,  76695844,  95443717,
 /*  15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
I
Ingo Molnar 已提交
1385
};
1386

I
Ingo Molnar 已提交
1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399
static void activate_task(struct rq *rq, struct task_struct *p, int wakeup);

/*
 * runqueue iterator, to support SMP load-balancing between different
 * scheduling classes, without having to expose their internal data
 * structures to the load-balancing proper:
 */
struct rq_iterator {
	void *arg;
	struct task_struct *(*start)(void *);
	struct task_struct *(*next)(void *);
};

1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411
#ifdef CONFIG_SMP
static unsigned long
balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
	      unsigned long max_load_move, struct sched_domain *sd,
	      enum cpu_idle_type idle, int *all_pinned,
	      int *this_best_prio, struct rq_iterator *iterator);

static int
iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
		   struct sched_domain *sd, enum cpu_idle_type idle,
		   struct rq_iterator *iterator);
#endif
I
Ingo Molnar 已提交
1412

1413 1414 1415 1416 1417 1418
#ifdef CONFIG_CGROUP_CPUACCT
static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
#else
static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
#endif

1419 1420 1421 1422 1423 1424 1425 1426 1427 1428
static inline void inc_cpu_load(struct rq *rq, unsigned long load)
{
	update_load_add(&rq->load, load);
}

static inline void dec_cpu_load(struct rq *rq, unsigned long load)
{
	update_load_sub(&rq->load, load);
}

I
Ingo Molnar 已提交
1429
#if (defined(CONFIG_SMP) && defined(CONFIG_FAIR_GROUP_SCHED)) || defined(CONFIG_RT_GROUP_SCHED)
P
Peter Zijlstra 已提交
1430
typedef int (*tg_visitor)(struct task_group *, void *);
1431 1432 1433 1434 1435

/*
 * Iterate the full tree, calling @down when first entering a node and @up when
 * leaving it for the final time.
 */
P
Peter Zijlstra 已提交
1436
static int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
1437 1438
{
	struct task_group *parent, *child;
P
Peter Zijlstra 已提交
1439
	int ret;
1440 1441 1442 1443

	rcu_read_lock();
	parent = &root_task_group;
down:
P
Peter Zijlstra 已提交
1444 1445 1446
	ret = (*down)(parent, data);
	if (ret)
		goto out_unlock;
1447 1448 1449 1450 1451 1452 1453
	list_for_each_entry_rcu(child, &parent->children, siblings) {
		parent = child;
		goto down;

up:
		continue;
	}
P
Peter Zijlstra 已提交
1454 1455 1456
	ret = (*up)(parent, data);
	if (ret)
		goto out_unlock;
1457 1458 1459 1460 1461

	child = parent;
	parent = parent->parent;
	if (parent)
		goto up;
P
Peter Zijlstra 已提交
1462
out_unlock:
1463
	rcu_read_unlock();
P
Peter Zijlstra 已提交
1464 1465

	return ret;
1466 1467
}

P
Peter Zijlstra 已提交
1468 1469 1470
static int tg_nop(struct task_group *tg, void *data)
{
	return 0;
1471
}
P
Peter Zijlstra 已提交
1472 1473 1474 1475 1476 1477 1478 1479 1480 1481
#endif

#ifdef CONFIG_SMP
static unsigned long source_load(int cpu, int type);
static unsigned long target_load(int cpu, int type);
static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd);

static unsigned long cpu_avg_load_per_task(int cpu)
{
	struct rq *rq = cpu_rq(cpu);
1482
	unsigned long nr_running = ACCESS_ONCE(rq->nr_running);
P
Peter Zijlstra 已提交
1483

1484 1485
	if (nr_running)
		rq->avg_load_per_task = rq->load.weight / nr_running;
1486 1487
	else
		rq->avg_load_per_task = 0;
P
Peter Zijlstra 已提交
1488 1489 1490 1491 1492

	return rq->avg_load_per_task;
}

#ifdef CONFIG_FAIR_GROUP_SCHED
1493 1494 1495 1496 1497 1498 1499

static void __set_se_shares(struct sched_entity *se, unsigned long shares);

/*
 * Calculate and set the cpu's group shares.
 */
static void
1500 1501
update_group_shares_cpu(struct task_group *tg, int cpu,
			unsigned long sd_shares, unsigned long sd_rq_weight)
1502
{
1503 1504 1505
	unsigned long shares;
	unsigned long rq_weight;

1506
	if (!tg->se[cpu])
1507 1508
		return;

1509
	rq_weight = tg->cfs_rq[cpu]->rq_weight;
1510

1511 1512 1513 1514 1515 1516
	/*
	 *           \Sum shares * rq_weight
	 * shares =  -----------------------
	 *               \Sum rq_weight
	 *
	 */
1517
	shares = (sd_shares * rq_weight) / sd_rq_weight;
1518
	shares = clamp_t(unsigned long, shares, MIN_SHARES, MAX_SHARES);
1519

1520 1521 1522 1523
	if (abs(shares - tg->se[cpu]->load.weight) >
			sysctl_sched_shares_thresh) {
		struct rq *rq = cpu_rq(cpu);
		unsigned long flags;
1524

1525
		spin_lock_irqsave(&rq->lock, flags);
1526
		tg->cfs_rq[cpu]->shares = shares;
1527

1528 1529 1530
		__set_se_shares(tg->se[cpu], shares);
		spin_unlock_irqrestore(&rq->lock, flags);
	}
1531
}
1532 1533

/*
1534 1535 1536
 * Re-compute the task group their per cpu shares over the given domain.
 * This needs to be done in a bottom-up fashion because the rq weight of a
 * parent group depends on the shares of its child groups.
1537
 */
P
Peter Zijlstra 已提交
1538
static int tg_shares_up(struct task_group *tg, void *data)
1539
{
1540
	unsigned long weight, rq_weight = 0;
1541
	unsigned long shares = 0;
P
Peter Zijlstra 已提交
1542
	struct sched_domain *sd = data;
1543
	int i;
1544

1545
	for_each_cpu(i, sched_domain_span(sd)) {
1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556
		/*
		 * If there are currently no tasks on the cpu pretend there
		 * is one of average load so that when a new task gets to
		 * run here it will not get delayed by group starvation.
		 */
		weight = tg->cfs_rq[i]->load.weight;
		if (!weight)
			weight = NICE_0_LOAD;

		tg->cfs_rq[i]->rq_weight = weight;
		rq_weight += weight;
1557
		shares += tg->cfs_rq[i]->shares;
1558 1559
	}

1560 1561 1562 1563 1564
	if ((!shares && rq_weight) || shares > tg->shares)
		shares = tg->shares;

	if (!sd->parent || !(sd->parent->flags & SD_LOAD_BALANCE))
		shares = tg->shares;
1565

1566
	for_each_cpu(i, sched_domain_span(sd))
1567
		update_group_shares_cpu(tg, i, shares, rq_weight);
P
Peter Zijlstra 已提交
1568 1569

	return 0;
1570 1571 1572
}

/*
1573 1574 1575
 * Compute the cpu's hierarchical load factor for each task group.
 * This needs to be done in a top-down fashion because the load of a child
 * group is a fraction of its parents load.
1576
 */
P
Peter Zijlstra 已提交
1577
static int tg_load_down(struct task_group *tg, void *data)
1578
{
1579
	unsigned long load;
P
Peter Zijlstra 已提交
1580
	long cpu = (long)data;
1581

1582 1583 1584 1585 1586 1587 1588
	if (!tg->parent) {
		load = cpu_rq(cpu)->load.weight;
	} else {
		load = tg->parent->cfs_rq[cpu]->h_load;
		load *= tg->cfs_rq[cpu]->shares;
		load /= tg->parent->cfs_rq[cpu]->load.weight + 1;
	}
1589

1590
	tg->cfs_rq[cpu]->h_load = load;
1591

P
Peter Zijlstra 已提交
1592
	return 0;
1593 1594
}

1595
static void update_shares(struct sched_domain *sd)
1596
{
P
Peter Zijlstra 已提交
1597 1598 1599 1600 1601
	u64 now = cpu_clock(raw_smp_processor_id());
	s64 elapsed = now - sd->last_update;

	if (elapsed >= (s64)(u64)sysctl_sched_shares_ratelimit) {
		sd->last_update = now;
P
Peter Zijlstra 已提交
1602
		walk_tg_tree(tg_nop, tg_shares_up, sd);
P
Peter Zijlstra 已提交
1603
	}
1604 1605
}

1606 1607 1608 1609 1610 1611 1612
static void update_shares_locked(struct rq *rq, struct sched_domain *sd)
{
	spin_unlock(&rq->lock);
	update_shares(sd);
	spin_lock(&rq->lock);
}

P
Peter Zijlstra 已提交
1613
static void update_h_load(long cpu)
1614
{
P
Peter Zijlstra 已提交
1615
	walk_tg_tree(tg_load_down, tg_nop, (void *)cpu);
1616 1617 1618 1619
}

#else

1620
static inline void update_shares(struct sched_domain *sd)
1621 1622 1623
{
}

1624 1625 1626 1627
static inline void update_shares_locked(struct rq *rq, struct sched_domain *sd)
{
}

1628 1629
#endif

1630 1631
#ifdef CONFIG_PREEMPT

1632
/*
1633 1634 1635 1636 1637 1638
 * fair double_lock_balance: Safely acquires both rq->locks in a fair
 * way at the expense of forcing extra atomic operations in all
 * invocations.  This assures that the double_lock is acquired using the
 * same underlying policy as the spinlock_t on this architecture, which
 * reduces latency compared to the unfair variant below.  However, it
 * also adds more overhead and therefore may reduce throughput.
1639
 */
1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659
static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
	__releases(this_rq->lock)
	__acquires(busiest->lock)
	__acquires(this_rq->lock)
{
	spin_unlock(&this_rq->lock);
	double_rq_lock(this_rq, busiest);

	return 1;
}

#else
/*
 * Unfair double_lock_balance: Optimizes throughput at the expense of
 * latency by eliminating extra atomic operations when the locks are
 * already in proper order on entry.  This favors lower cpu-ids and will
 * grant the double lock to lower cpus over higher ids under contention,
 * regardless of entry order into the function.
 */
static int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677
	__releases(this_rq->lock)
	__acquires(busiest->lock)
	__acquires(this_rq->lock)
{
	int ret = 0;

	if (unlikely(!spin_trylock(&busiest->lock))) {
		if (busiest < this_rq) {
			spin_unlock(&this_rq->lock);
			spin_lock(&busiest->lock);
			spin_lock_nested(&this_rq->lock, SINGLE_DEPTH_NESTING);
			ret = 1;
		} else
			spin_lock_nested(&busiest->lock, SINGLE_DEPTH_NESTING);
	}
	return ret;
}

1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693
#endif /* CONFIG_PREEMPT */

/*
 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
 */
static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
{
	if (unlikely(!irqs_disabled())) {
		/* printk() doesn't work good under rq->lock */
		spin_unlock(&this_rq->lock);
		BUG_ON(1);
	}

	return _double_lock_balance(this_rq, busiest);
}

1694 1695 1696 1697 1698 1699
static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
	__releases(busiest->lock)
{
	spin_unlock(&busiest->lock);
	lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
}
1700 1701
#endif

V
Vegard Nossum 已提交
1702
#ifdef CONFIG_FAIR_GROUP_SCHED
I
Ingo Molnar 已提交
1703 1704
static void cfs_rq_set_shares(struct cfs_rq *cfs_rq, unsigned long shares)
{
V
Vegard Nossum 已提交
1705
#ifdef CONFIG_SMP
I
Ingo Molnar 已提交
1706 1707 1708
	cfs_rq->shares = shares;
#endif
}
V
Vegard Nossum 已提交
1709
#endif
1710

I
Ingo Molnar 已提交
1711 1712
#include "sched_stats.h"
#include "sched_idletask.c"
1713 1714
#include "sched_fair.c"
#include "sched_rt.c"
I
Ingo Molnar 已提交
1715 1716 1717 1718 1719
#ifdef CONFIG_SCHED_DEBUG
# include "sched_debug.c"
#endif

#define sched_class_highest (&rt_sched_class)
1720 1721
#define for_each_class(class) \
   for (class = sched_class_highest; class; class = class->next)
I
Ingo Molnar 已提交
1722

1723
static void inc_nr_running(struct rq *rq)
1724 1725 1726 1727
{
	rq->nr_running++;
}

1728
static void dec_nr_running(struct rq *rq)
1729 1730 1731 1732
{
	rq->nr_running--;
}

1733 1734 1735
static void set_load_weight(struct task_struct *p)
{
	if (task_has_rt_policy(p)) {
I
Ingo Molnar 已提交
1736 1737 1738 1739
		p->se.load.weight = prio_to_weight[0] * 2;
		p->se.load.inv_weight = prio_to_wmult[0] >> 1;
		return;
	}
1740

I
Ingo Molnar 已提交
1741 1742 1743 1744 1745 1746 1747 1748
	/*
	 * SCHED_IDLE tasks get minimal weight:
	 */
	if (p->policy == SCHED_IDLE) {
		p->se.load.weight = WEIGHT_IDLEPRIO;
		p->se.load.inv_weight = WMULT_IDLEPRIO;
		return;
	}
1749

I
Ingo Molnar 已提交
1750 1751
	p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
	p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
1752 1753
}

1754 1755 1756 1757 1758 1759
static void update_avg(u64 *avg, u64 sample)
{
	s64 diff = sample - *avg;
	*avg += diff >> 3;
}

1760
static void enqueue_task(struct rq *rq, struct task_struct *p, int wakeup)
1761
{
P
Peter Zijlstra 已提交
1762 1763 1764
	if (wakeup)
		p->se.start_runtime = p->se.sum_exec_runtime;

I
Ingo Molnar 已提交
1765
	sched_info_queued(p);
1766
	p->sched_class->enqueue_task(rq, p, wakeup);
I
Ingo Molnar 已提交
1767
	p->se.on_rq = 1;
1768 1769
}

1770
static void dequeue_task(struct rq *rq, struct task_struct *p, int sleep)
1771
{
P
Peter Zijlstra 已提交
1772 1773 1774 1775 1776 1777 1778 1779 1780
	if (sleep) {
		if (p->se.last_wakeup) {
			update_avg(&p->se.avg_overlap,
				p->se.sum_exec_runtime - p->se.last_wakeup);
			p->se.last_wakeup = 0;
		} else {
			update_avg(&p->se.avg_wakeup,
				sysctl_sched_wakeup_granularity);
		}
1781 1782
	}

1783
	sched_info_dequeued(p);
1784
	p->sched_class->dequeue_task(rq, p, sleep);
I
Ingo Molnar 已提交
1785
	p->se.on_rq = 0;
1786 1787
}

1788
/*
I
Ingo Molnar 已提交
1789
 * __normal_prio - return the priority that is based on the static prio
1790 1791 1792
 */
static inline int __normal_prio(struct task_struct *p)
{
I
Ingo Molnar 已提交
1793
	return p->static_prio;
1794 1795
}

1796 1797 1798 1799 1800 1801 1802
/*
 * Calculate the expected normal priority: i.e. priority
 * without taking RT-inheritance into account. Might be
 * boosted by interactivity modifiers. Changes upon fork,
 * setprio syscalls, and whenever the interactivity
 * estimator recalculates.
 */
1803
static inline int normal_prio(struct task_struct *p)
1804 1805 1806
{
	int prio;

1807
	if (task_has_rt_policy(p))
1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820
		prio = MAX_RT_PRIO-1 - p->rt_priority;
	else
		prio = __normal_prio(p);
	return prio;
}

/*
 * Calculate the current priority, i.e. the priority
 * taken into account by the scheduler. This value might
 * be boosted by RT tasks, or might be boosted by
 * interactivity modifiers. Will be RT if the task got
 * RT-boosted. If not then it returns p->normal_prio.
 */
1821
static int effective_prio(struct task_struct *p)
1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833
{
	p->normal_prio = normal_prio(p);
	/*
	 * If we are RT tasks or we were boosted to RT priority,
	 * keep the priority unchanged. Otherwise, update priority
	 * to the normal priority:
	 */
	if (!rt_prio(p->prio))
		return p->normal_prio;
	return p->prio;
}

L
Linus Torvalds 已提交
1834
/*
I
Ingo Molnar 已提交
1835
 * activate_task - move a task to the runqueue.
L
Linus Torvalds 已提交
1836
 */
I
Ingo Molnar 已提交
1837
static void activate_task(struct rq *rq, struct task_struct *p, int wakeup)
L
Linus Torvalds 已提交
1838
{
1839
	if (task_contributes_to_load(p))
I
Ingo Molnar 已提交
1840
		rq->nr_uninterruptible--;
L
Linus Torvalds 已提交
1841

1842
	enqueue_task(rq, p, wakeup);
1843
	inc_nr_running(rq);
L
Linus Torvalds 已提交
1844 1845 1846 1847 1848
}

/*
 * deactivate_task - remove a task from the runqueue.
 */
1849
static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep)
L
Linus Torvalds 已提交
1850
{
1851
	if (task_contributes_to_load(p))
I
Ingo Molnar 已提交
1852 1853
		rq->nr_uninterruptible++;

1854
	dequeue_task(rq, p, sleep);
1855
	dec_nr_running(rq);
L
Linus Torvalds 已提交
1856 1857 1858 1859 1860 1861
}

/**
 * task_curr - is this task currently executing on a CPU?
 * @p: the task in question.
 */
1862
inline int task_curr(const struct task_struct *p)
L
Linus Torvalds 已提交
1863 1864 1865 1866
{
	return cpu_curr(task_cpu(p)) == p;
}

I
Ingo Molnar 已提交
1867 1868
static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
{
P
Peter Zijlstra 已提交
1869
	set_task_rq(p, cpu);
I
Ingo Molnar 已提交
1870
#ifdef CONFIG_SMP
1871 1872 1873 1874 1875 1876
	/*
	 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
	 * successfuly executed on another CPU. We must ensure that updates of
	 * per-task data have been completed by this moment.
	 */
	smp_wmb();
I
Ingo Molnar 已提交
1877 1878
	task_thread_info(p)->cpu = cpu;
#endif
1879 1880
}

1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892
static inline void check_class_changed(struct rq *rq, struct task_struct *p,
				       const struct sched_class *prev_class,
				       int oldprio, int running)
{
	if (prev_class != p->sched_class) {
		if (prev_class->switched_from)
			prev_class->switched_from(rq, p, running);
		p->sched_class->switched_to(rq, p, running);
	} else
		p->sched_class->prio_changed(rq, p, oldprio, running);
}

L
Linus Torvalds 已提交
1893
#ifdef CONFIG_SMP
I
Ingo Molnar 已提交
1894

1895 1896 1897 1898 1899 1900
/* Used instead of source_load when we know the type == 0 */
static unsigned long weighted_cpuload(const int cpu)
{
	return cpu_rq(cpu)->load.weight;
}

1901 1902 1903
/*
 * Is this task likely cache-hot:
 */
1904
static int
1905 1906 1907 1908
task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
{
	s64 delta;

1909 1910 1911
	/*
	 * Buddy candidates are cache hot:
	 */
P
Peter Zijlstra 已提交
1912 1913 1914
	if (sched_feat(CACHE_HOT_BUDDY) &&
			(&p->se == cfs_rq_of(&p->se)->next ||
			 &p->se == cfs_rq_of(&p->se)->last))
1915 1916
		return 1;

1917 1918 1919
	if (p->sched_class != &fair_sched_class)
		return 0;

1920 1921 1922 1923 1924
	if (sysctl_sched_migration_cost == -1)
		return 1;
	if (sysctl_sched_migration_cost == 0)
		return 0;

1925 1926 1927 1928 1929 1930
	delta = now - p->se.exec_start;

	return delta < (s64)sysctl_sched_migration_cost;
}


I
Ingo Molnar 已提交
1931
void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
I
Ingo Molnar 已提交
1932
{
I
Ingo Molnar 已提交
1933 1934
	int old_cpu = task_cpu(p);
	struct rq *old_rq = cpu_rq(old_cpu), *new_rq = cpu_rq(new_cpu);
1935 1936
	struct cfs_rq *old_cfsrq = task_cfs_rq(p),
		      *new_cfsrq = cpu_cfs_rq(old_cfsrq, new_cpu);
1937
	u64 clock_offset;
I
Ingo Molnar 已提交
1938 1939

	clock_offset = old_rq->clock - new_rq->clock;
I
Ingo Molnar 已提交
1940

1941 1942
	trace_sched_migrate_task(p, task_cpu(p), new_cpu);

I
Ingo Molnar 已提交
1943 1944 1945
#ifdef CONFIG_SCHEDSTATS
	if (p->se.wait_start)
		p->se.wait_start -= clock_offset;
I
Ingo Molnar 已提交
1946 1947 1948 1949
	if (p->se.sleep_start)
		p->se.sleep_start -= clock_offset;
	if (p->se.block_start)
		p->se.block_start -= clock_offset;
1950 1951 1952 1953 1954
	if (old_cpu != new_cpu) {
		schedstat_inc(p, se.nr_migrations);
		if (task_hot(p, old_rq->clock, NULL))
			schedstat_inc(p, se.nr_forced2_migrations);
	}
I
Ingo Molnar 已提交
1955
#endif
1956 1957
	p->se.vruntime -= old_cfsrq->min_vruntime -
					 new_cfsrq->min_vruntime;
I
Ingo Molnar 已提交
1958 1959

	__set_task_cpu(p, new_cpu);
I
Ingo Molnar 已提交
1960 1961
}

1962
struct migration_req {
L
Linus Torvalds 已提交
1963 1964
	struct list_head list;

1965
	struct task_struct *task;
L
Linus Torvalds 已提交
1966 1967 1968
	int dest_cpu;

	struct completion done;
1969
};
L
Linus Torvalds 已提交
1970 1971 1972 1973 1974

/*
 * The task's runqueue lock must be held.
 * Returns true if you have to wait for migration thread.
 */
1975
static int
1976
migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
L
Linus Torvalds 已提交
1977
{
1978
	struct rq *rq = task_rq(p);
L
Linus Torvalds 已提交
1979 1980 1981 1982 1983

	/*
	 * If the task is not on a runqueue (and not running), then
	 * it is sufficient to simply update the task's cpu field.
	 */
I
Ingo Molnar 已提交
1984
	if (!p->se.on_rq && !task_running(rq, p)) {
L
Linus Torvalds 已提交
1985 1986 1987 1988 1989 1990 1991 1992
		set_task_cpu(p, dest_cpu);
		return 0;
	}

	init_completion(&req->done);
	req->task = p;
	req->dest_cpu = dest_cpu;
	list_add(&req->list, &rq->migration_queue);
1993

L
Linus Torvalds 已提交
1994 1995 1996 1997 1998 1999
	return 1;
}

/*
 * wait_task_inactive - wait for a thread to unschedule.
 *
R
Roland McGrath 已提交
2000 2001 2002 2003 2004 2005 2006
 * If @match_state is nonzero, it's the @p->state value just checked and
 * not expected to change.  If it changes, i.e. @p might have woken up,
 * then return zero.  When we succeed in waiting for @p to be off its CPU,
 * we return a positive number (its total switch count).  If a second call
 * a short while later returns the same number, the caller can be sure that
 * @p has remained unscheduled the whole time.
 *
L
Linus Torvalds 已提交
2007 2008 2009 2010 2011 2012
 * The caller must ensure that the task *will* unschedule sometime soon,
 * else this function might spin for a *long* time. This function can't
 * be called with interrupts off, or it may introduce deadlock with
 * smp_call_function() if an IPI is sent by the same process we are
 * waiting to become inactive.
 */
R
Roland McGrath 已提交
2013
unsigned long wait_task_inactive(struct task_struct *p, long match_state)
L
Linus Torvalds 已提交
2014 2015
{
	unsigned long flags;
I
Ingo Molnar 已提交
2016
	int running, on_rq;
R
Roland McGrath 已提交
2017
	unsigned long ncsw;
2018
	struct rq *rq;
L
Linus Torvalds 已提交
2019

2020 2021 2022 2023 2024 2025 2026 2027
	for (;;) {
		/*
		 * We do the initial early heuristics without holding
		 * any task-queue locks at all. We'll only try to get
		 * the runqueue lock when things look like they will
		 * work out!
		 */
		rq = task_rq(p);
2028

2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039
		/*
		 * If the task is actively running on another CPU
		 * still, just relax and busy-wait without holding
		 * any locks.
		 *
		 * NOTE! Since we don't hold any locks, it's not
		 * even sure that "rq" stays as the right runqueue!
		 * But we don't care, since "task_running()" will
		 * return false if the runqueue has changed and p
		 * is actually now running somewhere else!
		 */
R
Roland McGrath 已提交
2040 2041 2042
		while (task_running(rq, p)) {
			if (match_state && unlikely(p->state != match_state))
				return 0;
2043
			cpu_relax();
R
Roland McGrath 已提交
2044
		}
2045

2046 2047 2048 2049 2050 2051
		/*
		 * Ok, time to look more closely! We need the rq
		 * lock now, to be *sure*. If we're wrong, we'll
		 * just go back and repeat.
		 */
		rq = task_rq_lock(p, &flags);
2052
		trace_sched_wait_task(rq, p);
2053 2054
		running = task_running(rq, p);
		on_rq = p->se.on_rq;
R
Roland McGrath 已提交
2055
		ncsw = 0;
2056
		if (!match_state || p->state == match_state)
2057
			ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
2058
		task_rq_unlock(rq, &flags);
2059

R
Roland McGrath 已提交
2060 2061 2062 2063 2064 2065
		/*
		 * If it changed from the expected state, bail out now.
		 */
		if (unlikely(!ncsw))
			break;

2066 2067 2068 2069 2070 2071 2072 2073 2074 2075
		/*
		 * Was it really running after all now that we
		 * checked with the proper locks actually held?
		 *
		 * Oops. Go back and try again..
		 */
		if (unlikely(running)) {
			cpu_relax();
			continue;
		}
2076

2077 2078 2079 2080 2081
		/*
		 * It's not enough that it's not actively running,
		 * it must be off the runqueue _entirely_, and not
		 * preempted!
		 *
2082
		 * So if it was still runnable (but just not actively
2083 2084 2085 2086 2087 2088 2089
		 * running right now), it's preempted, and we should
		 * yield - it could be a while.
		 */
		if (unlikely(on_rq)) {
			schedule_timeout_uninterruptible(1);
			continue;
		}
2090

2091 2092 2093 2094 2095 2096 2097
		/*
		 * Ahh, all good. It wasn't running, and it wasn't
		 * runnable, which means that it will never become
		 * running in the future either. We're all done!
		 */
		break;
	}
R
Roland McGrath 已提交
2098 2099

	return ncsw;
L
Linus Torvalds 已提交
2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114
}

/***
 * kick_process - kick a running thread to enter/exit the kernel
 * @p: the to-be-kicked thread
 *
 * Cause a process which is running on another CPU to enter
 * kernel-mode, without any delay. (to get signals handled.)
 *
 * NOTE: this function doesnt have to take the runqueue lock,
 * because all it wants to ensure is that the remote task enters
 * the kernel. If the IPI races and the task has been migrated
 * to another CPU then no harm is done and the purpose has been
 * achieved as well.
 */
2115
void kick_process(struct task_struct *p)
L
Linus Torvalds 已提交
2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126
{
	int cpu;

	preempt_disable();
	cpu = task_cpu(p);
	if ((cpu != smp_processor_id()) && task_curr(p))
		smp_send_reschedule(cpu);
	preempt_enable();
}

/*
2127 2128
 * Return a low guess at the load of a migration-source cpu weighted
 * according to the scheduling class and "nice" value.
L
Linus Torvalds 已提交
2129 2130 2131 2132
 *
 * We want to under-estimate the load of migration sources, to
 * balance conservatively.
 */
A
Alexey Dobriyan 已提交
2133
static unsigned long source_load(int cpu, int type)
L
Linus Torvalds 已提交
2134
{
2135
	struct rq *rq = cpu_rq(cpu);
I
Ingo Molnar 已提交
2136
	unsigned long total = weighted_cpuload(cpu);
2137

2138
	if (type == 0 || !sched_feat(LB_BIAS))
I
Ingo Molnar 已提交
2139
		return total;
2140

I
Ingo Molnar 已提交
2141
	return min(rq->cpu_load[type-1], total);
L
Linus Torvalds 已提交
2142 2143 2144
}

/*
2145 2146
 * Return a high guess at the load of a migration-target cpu weighted
 * according to the scheduling class and "nice" value.
L
Linus Torvalds 已提交
2147
 */
A
Alexey Dobriyan 已提交
2148
static unsigned long target_load(int cpu, int type)
L
Linus Torvalds 已提交
2149
{
2150
	struct rq *rq = cpu_rq(cpu);
I
Ingo Molnar 已提交
2151
	unsigned long total = weighted_cpuload(cpu);
2152

2153
	if (type == 0 || !sched_feat(LB_BIAS))
I
Ingo Molnar 已提交
2154
		return total;
2155

I
Ingo Molnar 已提交
2156
	return max(rq->cpu_load[type-1], total);
2157 2158
}

N
Nick Piggin 已提交
2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175
/*
 * find_idlest_group finds and returns the least busy CPU group within the
 * domain.
 */
static struct sched_group *
find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
{
	struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups;
	unsigned long min_load = ULONG_MAX, this_load = 0;
	int load_idx = sd->forkexec_idx;
	int imbalance = 100 + (sd->imbalance_pct-100)/2;

	do {
		unsigned long load, avg_load;
		int local_group;
		int i;

2176
		/* Skip over this group if it has no CPUs allowed */
2177 2178
		if (!cpumask_intersects(sched_group_cpus(group),
					&p->cpus_allowed))
2179
			continue;
2180

2181 2182
		local_group = cpumask_test_cpu(this_cpu,
					       sched_group_cpus(group));
N
Nick Piggin 已提交
2183 2184 2185 2186

		/* Tally up the load of all CPUs in the group */
		avg_load = 0;

2187
		for_each_cpu(i, sched_group_cpus(group)) {
N
Nick Piggin 已提交
2188 2189 2190 2191 2192 2193 2194 2195 2196 2197
			/* Bias balancing toward cpus of our domain */
			if (local_group)
				load = source_load(i, load_idx);
			else
				load = target_load(i, load_idx);

			avg_load += load;
		}

		/* Adjust by relative CPU power of the group */
2198 2199
		avg_load = sg_div_cpu_power(group,
				avg_load * SCHED_LOAD_SCALE);
N
Nick Piggin 已提交
2200 2201 2202 2203 2204 2205 2206 2207

		if (local_group) {
			this_load = avg_load;
			this = group;
		} else if (avg_load < min_load) {
			min_load = avg_load;
			idlest = group;
		}
2208
	} while (group = group->next, group != sd->groups);
N
Nick Piggin 已提交
2209 2210 2211 2212 2213 2214 2215

	if (!idlest || 100*this_load < imbalance*min_load)
		return NULL;
	return idlest;
}

/*
2216
 * find_idlest_cpu - find the idlest cpu among the cpus in group.
N
Nick Piggin 已提交
2217
 */
I
Ingo Molnar 已提交
2218
static int
2219
find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
N
Nick Piggin 已提交
2220 2221 2222 2223 2224
{
	unsigned long load, min_load = ULONG_MAX;
	int idlest = -1;
	int i;

2225
	/* Traverse only the allowed CPUs */
2226
	for_each_cpu_and(i, sched_group_cpus(group), &p->cpus_allowed) {
2227
		load = weighted_cpuload(i);
N
Nick Piggin 已提交
2228 2229 2230 2231 2232 2233 2234 2235 2236 2237

		if (load < min_load || (load == min_load && i == this_cpu)) {
			min_load = load;
			idlest = i;
		}
	}

	return idlest;
}

N
Nick Piggin 已提交
2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252
/*
 * sched_balance_self: balance the current task (running on cpu) in domains
 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
 * SD_BALANCE_EXEC.
 *
 * Balance, ie. select the least loaded group.
 *
 * Returns the target CPU number, or the same CPU if no balancing is needed.
 *
 * preempt must be disabled.
 */
static int sched_balance_self(int cpu, int flag)
{
	struct task_struct *t = current;
	struct sched_domain *tmp, *sd = NULL;
N
Nick Piggin 已提交
2253

2254
	for_each_domain(cpu, tmp) {
I
Ingo Molnar 已提交
2255 2256 2257
		/*
		 * If power savings logic is enabled for a domain, stop there.
		 */
2258 2259
		if (tmp->flags & SD_POWERSAVINGS_BALANCE)
			break;
N
Nick Piggin 已提交
2260 2261
		if (tmp->flags & flag)
			sd = tmp;
2262
	}
N
Nick Piggin 已提交
2263

2264 2265 2266
	if (sd)
		update_shares(sd);

N
Nick Piggin 已提交
2267 2268
	while (sd) {
		struct sched_group *group;
2269 2270 2271 2272 2273 2274
		int new_cpu, weight;

		if (!(sd->flags & flag)) {
			sd = sd->child;
			continue;
		}
N
Nick Piggin 已提交
2275 2276

		group = find_idlest_group(sd, t, cpu);
2277 2278 2279 2280
		if (!group) {
			sd = sd->child;
			continue;
		}
N
Nick Piggin 已提交
2281

2282
		new_cpu = find_idlest_cpu(group, t, cpu);
2283 2284 2285 2286 2287
		if (new_cpu == -1 || new_cpu == cpu) {
			/* Now try balancing at a lower domain level of cpu */
			sd = sd->child;
			continue;
		}
N
Nick Piggin 已提交
2288

2289
		/* Now try balancing at a lower domain level of new_cpu */
N
Nick Piggin 已提交
2290
		cpu = new_cpu;
2291
		weight = cpumask_weight(sched_domain_span(sd));
N
Nick Piggin 已提交
2292 2293
		sd = NULL;
		for_each_domain(cpu, tmp) {
2294
			if (weight <= cpumask_weight(sched_domain_span(tmp)))
N
Nick Piggin 已提交
2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305
				break;
			if (tmp->flags & flag)
				sd = tmp;
		}
		/* while loop will break here if sd == NULL */
	}

	return cpu;
}

#endif /* CONFIG_SMP */
L
Linus Torvalds 已提交
2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320

/***
 * try_to_wake_up - wake up a thread
 * @p: the to-be-woken-up thread
 * @state: the mask of task states that can be woken
 * @sync: do a synchronous wakeup?
 *
 * Put it on the run-queue if it's not already there. The "current"
 * thread is always on the run-queue (except when the actual
 * re-schedule is in progress), and as such you're allowed to do
 * the simpler "current->state = TASK_RUNNING" to mark yourself
 * runnable without the overhead of this.
 *
 * returns failure only if the task is already active.
 */
2321
static int try_to_wake_up(struct task_struct *p, unsigned int state, int sync)
L
Linus Torvalds 已提交
2322
{
2323
	int cpu, orig_cpu, this_cpu, success = 0;
L
Linus Torvalds 已提交
2324 2325
	unsigned long flags;
	long old_state;
2326
	struct rq *rq;
L
Linus Torvalds 已提交
2327

2328 2329 2330
	if (!sched_feat(SYNC_WAKEUPS))
		sync = 0;

P
Peter Zijlstra 已提交
2331
#ifdef CONFIG_SMP
2332
	if (sched_feat(LB_WAKEUP_UPDATE) && !root_task_group_empty()) {
P
Peter Zijlstra 已提交
2333 2334 2335 2336 2337 2338
		struct sched_domain *sd;

		this_cpu = raw_smp_processor_id();
		cpu = task_cpu(p);

		for_each_domain(this_cpu, sd) {
2339
			if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
P
Peter Zijlstra 已提交
2340 2341 2342 2343 2344 2345 2346
				update_shares(sd);
				break;
			}
		}
	}
#endif

2347
	smp_wmb();
L
Linus Torvalds 已提交
2348
	rq = task_rq_lock(p, &flags);
2349
	update_rq_clock(rq);
L
Linus Torvalds 已提交
2350 2351 2352 2353
	old_state = p->state;
	if (!(old_state & state))
		goto out;

I
Ingo Molnar 已提交
2354
	if (p->se.on_rq)
L
Linus Torvalds 已提交
2355 2356 2357
		goto out_running;

	cpu = task_cpu(p);
2358
	orig_cpu = cpu;
L
Linus Torvalds 已提交
2359 2360 2361 2362 2363 2364
	this_cpu = smp_processor_id();

#ifdef CONFIG_SMP
	if (unlikely(task_running(rq, p)))
		goto out_activate;

2365 2366 2367
	cpu = p->sched_class->select_task_rq(p, sync);
	if (cpu != orig_cpu) {
		set_task_cpu(p, cpu);
L
Linus Torvalds 已提交
2368 2369 2370 2371 2372 2373
		task_rq_unlock(rq, &flags);
		/* might preempt at this point */
		rq = task_rq_lock(p, &flags);
		old_state = p->state;
		if (!(old_state & state))
			goto out;
I
Ingo Molnar 已提交
2374
		if (p->se.on_rq)
L
Linus Torvalds 已提交
2375 2376 2377 2378 2379 2380
			goto out_running;

		this_cpu = smp_processor_id();
		cpu = task_cpu(p);
	}

2381 2382 2383 2384 2385 2386 2387
#ifdef CONFIG_SCHEDSTATS
	schedstat_inc(rq, ttwu_count);
	if (cpu == this_cpu)
		schedstat_inc(rq, ttwu_local);
	else {
		struct sched_domain *sd;
		for_each_domain(this_cpu, sd) {
2388
			if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
2389 2390 2391 2392 2393
				schedstat_inc(sd, ttwu_wake_remote);
				break;
			}
		}
	}
2394
#endif /* CONFIG_SCHEDSTATS */
2395

L
Linus Torvalds 已提交
2396 2397
out_activate:
#endif /* CONFIG_SMP */
2398 2399 2400 2401 2402 2403 2404 2405 2406
	schedstat_inc(p, se.nr_wakeups);
	if (sync)
		schedstat_inc(p, se.nr_wakeups_sync);
	if (orig_cpu != cpu)
		schedstat_inc(p, se.nr_wakeups_migrate);
	if (cpu == this_cpu)
		schedstat_inc(p, se.nr_wakeups_local);
	else
		schedstat_inc(p, se.nr_wakeups_remote);
I
Ingo Molnar 已提交
2407
	activate_task(rq, p, 1);
L
Linus Torvalds 已提交
2408 2409
	success = 1;

P
Peter Zijlstra 已提交
2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425
	/*
	 * Only attribute actual wakeups done by this task.
	 */
	if (!in_interrupt()) {
		struct sched_entity *se = &current->se;
		u64 sample = se->sum_exec_runtime;

		if (se->last_wakeup)
			sample -= se->last_wakeup;
		else
			sample -= se->start_runtime;
		update_avg(&se->avg_wakeup, sample);

		se->last_wakeup = se->sum_exec_runtime;
	}

L
Linus Torvalds 已提交
2426
out_running:
2427
	trace_sched_wakeup(rq, p, success);
2428
	check_preempt_curr(rq, p, sync);
I
Ingo Molnar 已提交
2429

L
Linus Torvalds 已提交
2430
	p->state = TASK_RUNNING;
2431 2432 2433 2434
#ifdef CONFIG_SMP
	if (p->sched_class->task_wake_up)
		p->sched_class->task_wake_up(rq, p);
#endif
L
Linus Torvalds 已提交
2435 2436 2437 2438 2439 2440
out:
	task_rq_unlock(rq, &flags);

	return success;
}

2441
int wake_up_process(struct task_struct *p)
L
Linus Torvalds 已提交
2442
{
2443
	return try_to_wake_up(p, TASK_ALL, 0);
L
Linus Torvalds 已提交
2444 2445 2446
}
EXPORT_SYMBOL(wake_up_process);

2447
int wake_up_state(struct task_struct *p, unsigned int state)
L
Linus Torvalds 已提交
2448 2449 2450 2451 2452 2453 2454
{
	return try_to_wake_up(p, state, 0);
}

/*
 * Perform scheduler related setup for a newly forked process p.
 * p is forked by current.
I
Ingo Molnar 已提交
2455 2456 2457 2458 2459 2460 2461
 *
 * __sched_fork() is basic setup used by init_idle() too:
 */
static void __sched_fork(struct task_struct *p)
{
	p->se.exec_start		= 0;
	p->se.sum_exec_runtime		= 0;
2462
	p->se.prev_sum_exec_runtime	= 0;
I
Ingo Molnar 已提交
2463 2464
	p->se.last_wakeup		= 0;
	p->se.avg_overlap		= 0;
P
Peter Zijlstra 已提交
2465 2466
	p->se.start_runtime		= 0;
	p->se.avg_wakeup		= sysctl_sched_wakeup_granularity;
I
Ingo Molnar 已提交
2467 2468 2469

#ifdef CONFIG_SCHEDSTATS
	p->se.wait_start		= 0;
I
Ingo Molnar 已提交
2470 2471 2472 2473 2474 2475
	p->se.sum_sleep_runtime		= 0;
	p->se.sleep_start		= 0;
	p->se.block_start		= 0;
	p->se.sleep_max			= 0;
	p->se.block_max			= 0;
	p->se.exec_max			= 0;
I
Ingo Molnar 已提交
2476
	p->se.slice_max			= 0;
I
Ingo Molnar 已提交
2477
	p->se.wait_max			= 0;
I
Ingo Molnar 已提交
2478
#endif
N
Nick Piggin 已提交
2479

P
Peter Zijlstra 已提交
2480
	INIT_LIST_HEAD(&p->rt.run_list);
I
Ingo Molnar 已提交
2481
	p->se.on_rq = 0;
2482
	INIT_LIST_HEAD(&p->se.group_node);
N
Nick Piggin 已提交
2483

2484 2485 2486 2487
#ifdef CONFIG_PREEMPT_NOTIFIERS
	INIT_HLIST_HEAD(&p->preempt_notifiers);
#endif

L
Linus Torvalds 已提交
2488 2489 2490 2491 2492 2493 2494
	/*
	 * We mark the process as running here, but have not actually
	 * inserted it onto the runqueue yet. This guarantees that
	 * nobody will actually run it, and a signal or other external
	 * event cannot wake it up and insert it on the runqueue either.
	 */
	p->state = TASK_RUNNING;
I
Ingo Molnar 已提交
2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508
}

/*
 * fork()/clone()-time setup:
 */
void sched_fork(struct task_struct *p, int clone_flags)
{
	int cpu = get_cpu();

	__sched_fork(p);

#ifdef CONFIG_SMP
	cpu = sched_balance_self(cpu, SD_BALANCE_FORK);
#endif
I
Ingo Molnar 已提交
2509
	set_task_cpu(p, cpu);
2510 2511 2512 2513 2514

	/*
	 * Make sure we do not leak PI boosting priority to the child:
	 */
	p->prio = current->normal_prio;
H
Hiroshi Shimamoto 已提交
2515 2516
	if (!rt_prio(p->prio))
		p->sched_class = &fair_sched_class;
2517

2518
#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
I
Ingo Molnar 已提交
2519
	if (likely(sched_info_on()))
2520
		memset(&p->sched_info, 0, sizeof(p->sched_info));
L
Linus Torvalds 已提交
2521
#endif
2522
#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
2523 2524
	p->oncpu = 0;
#endif
L
Linus Torvalds 已提交
2525
#ifdef CONFIG_PREEMPT
2526
	/* Want to start with kernel preemption disabled. */
A
Al Viro 已提交
2527
	task_thread_info(p)->preempt_count = 1;
L
Linus Torvalds 已提交
2528
#endif
2529 2530
	plist_node_init(&p->pushable_tasks, MAX_PRIO);

N
Nick Piggin 已提交
2531
	put_cpu();
L
Linus Torvalds 已提交
2532 2533 2534 2535 2536 2537 2538 2539 2540
}

/*
 * wake_up_new_task - wake up a newly created task for the first time.
 *
 * This function will do some initial scheduler statistics housekeeping
 * that must be done for every newly created context, then puts the task
 * on the runqueue and wakes it.
 */
2541
void wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
L
Linus Torvalds 已提交
2542 2543
{
	unsigned long flags;
I
Ingo Molnar 已提交
2544
	struct rq *rq;
L
Linus Torvalds 已提交
2545 2546

	rq = task_rq_lock(p, &flags);
N
Nick Piggin 已提交
2547
	BUG_ON(p->state != TASK_RUNNING);
I
Ingo Molnar 已提交
2548
	update_rq_clock(rq);
L
Linus Torvalds 已提交
2549 2550 2551

	p->prio = effective_prio(p);

2552
	if (!p->sched_class->task_new || !current->se.on_rq) {
I
Ingo Molnar 已提交
2553
		activate_task(rq, p, 0);
L
Linus Torvalds 已提交
2554 2555
	} else {
		/*
I
Ingo Molnar 已提交
2556 2557
		 * Let the scheduling class do new task startup
		 * management (if any):
L
Linus Torvalds 已提交
2558
		 */
2559
		p->sched_class->task_new(rq, p);
2560
		inc_nr_running(rq);
L
Linus Torvalds 已提交
2561
	}
2562
	trace_sched_wakeup_new(rq, p, 1);
2563
	check_preempt_curr(rq, p, 0);
2564 2565 2566 2567
#ifdef CONFIG_SMP
	if (p->sched_class->task_wake_up)
		p->sched_class->task_wake_up(rq, p);
#endif
I
Ingo Molnar 已提交
2568
	task_rq_unlock(rq, &flags);
L
Linus Torvalds 已提交
2569 2570
}

2571 2572 2573
#ifdef CONFIG_PREEMPT_NOTIFIERS

/**
2574
 * preempt_notifier_register - tell me when current is being preempted & rescheduled
R
Randy Dunlap 已提交
2575
 * @notifier: notifier struct to register
2576 2577 2578 2579 2580 2581 2582 2583 2584
 */
void preempt_notifier_register(struct preempt_notifier *notifier)
{
	hlist_add_head(&notifier->link, &current->preempt_notifiers);
}
EXPORT_SYMBOL_GPL(preempt_notifier_register);

/**
 * preempt_notifier_unregister - no longer interested in preemption notifications
R
Randy Dunlap 已提交
2585
 * @notifier: notifier struct to unregister
2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614
 *
 * This is safe to call from within a preemption notifier.
 */
void preempt_notifier_unregister(struct preempt_notifier *notifier)
{
	hlist_del(&notifier->link);
}
EXPORT_SYMBOL_GPL(preempt_notifier_unregister);

static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
{
	struct preempt_notifier *notifier;
	struct hlist_node *node;

	hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
		notifier->ops->sched_in(notifier, raw_smp_processor_id());
}

static void
fire_sched_out_preempt_notifiers(struct task_struct *curr,
				 struct task_struct *next)
{
	struct preempt_notifier *notifier;
	struct hlist_node *node;

	hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
		notifier->ops->sched_out(notifier, next);
}

2615
#else /* !CONFIG_PREEMPT_NOTIFIERS */
2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626

static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
{
}

static void
fire_sched_out_preempt_notifiers(struct task_struct *curr,
				 struct task_struct *next)
{
}

2627
#endif /* CONFIG_PREEMPT_NOTIFIERS */
2628

2629 2630 2631
/**
 * prepare_task_switch - prepare to switch tasks
 * @rq: the runqueue preparing to switch
R
Randy Dunlap 已提交
2632
 * @prev: the current task that is being switched out
2633 2634 2635 2636 2637 2638 2639 2640 2641
 * @next: the task we are going to switch to.
 *
 * This is called with the rq lock held and interrupts off. It must
 * be paired with a subsequent finish_task_switch after the context
 * switch.
 *
 * prepare_task_switch sets up locking and calls architecture specific
 * hooks.
 */
2642 2643 2644
static inline void
prepare_task_switch(struct rq *rq, struct task_struct *prev,
		    struct task_struct *next)
2645
{
2646
	fire_sched_out_preempt_notifiers(prev, next);
2647 2648 2649 2650
	prepare_lock_switch(rq, next);
	prepare_arch_switch(next);
}

L
Linus Torvalds 已提交
2651 2652
/**
 * finish_task_switch - clean up after a task-switch
2653
 * @rq: runqueue associated with task-switch
L
Linus Torvalds 已提交
2654 2655
 * @prev: the thread we just switched away from.
 *
2656 2657 2658 2659
 * finish_task_switch must be called after the context switch, paired
 * with a prepare_task_switch call before the context switch.
 * finish_task_switch will reconcile locking set up by prepare_task_switch,
 * and do any other architecture-specific cleanup actions.
L
Linus Torvalds 已提交
2660 2661
 *
 * Note that we may have delayed dropping an mm in context_switch(). If
I
Ingo Molnar 已提交
2662
 * so, we finish that here outside of the runqueue lock. (Doing it
L
Linus Torvalds 已提交
2663 2664 2665
 * with the lock held can cause deadlocks; see schedule() for
 * details.)
 */
A
Alexey Dobriyan 已提交
2666
static void finish_task_switch(struct rq *rq, struct task_struct *prev)
L
Linus Torvalds 已提交
2667 2668 2669
	__releases(rq->lock)
{
	struct mm_struct *mm = rq->prev_mm;
O
Oleg Nesterov 已提交
2670
	long prev_state;
2671 2672 2673 2674 2675 2676
#ifdef CONFIG_SMP
	int post_schedule = 0;

	if (current->sched_class->needs_post_schedule)
		post_schedule = current->sched_class->needs_post_schedule(rq);
#endif
L
Linus Torvalds 已提交
2677 2678 2679 2680 2681

	rq->prev_mm = NULL;

	/*
	 * A task struct has one reference for the use as "current".
2682
	 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
O
Oleg Nesterov 已提交
2683 2684
	 * schedule one last time. The schedule call will never return, and
	 * the scheduled task must drop that reference.
2685
	 * The test for TASK_DEAD must occur while the runqueue locks are
L
Linus Torvalds 已提交
2686 2687 2688 2689 2690
	 * still held, otherwise prev could be scheduled on another cpu, die
	 * there before we look at prev->state, and then the reference would
	 * be dropped twice.
	 *		Manfred Spraul <manfred@colorfullife.com>
	 */
O
Oleg Nesterov 已提交
2691
	prev_state = prev->state;
2692 2693
	finish_arch_switch(prev);
	finish_lock_switch(rq, prev);
2694
#ifdef CONFIG_SMP
2695
	if (post_schedule)
2696 2697
		current->sched_class->post_schedule(rq);
#endif
S
Steven Rostedt 已提交
2698

2699
	fire_sched_in_preempt_notifiers(current);
L
Linus Torvalds 已提交
2700 2701
	if (mm)
		mmdrop(mm);
2702
	if (unlikely(prev_state == TASK_DEAD)) {
2703 2704 2705
		/*
		 * Remove function-return probe instances associated with this
		 * task and put them back on the free list.
I
Ingo Molnar 已提交
2706
		 */
2707
		kprobe_flush_task(prev);
L
Linus Torvalds 已提交
2708
		put_task_struct(prev);
2709
	}
L
Linus Torvalds 已提交
2710 2711 2712 2713 2714 2715
}

/**
 * schedule_tail - first thing a freshly forked thread must call.
 * @prev: the thread we just switched away from.
 */
2716
asmlinkage void schedule_tail(struct task_struct *prev)
L
Linus Torvalds 已提交
2717 2718
	__releases(rq->lock)
{
2719 2720
	struct rq *rq = this_rq();

2721 2722 2723 2724 2725
	finish_task_switch(rq, prev);
#ifdef __ARCH_WANT_UNLOCKED_CTXSW
	/* In this case, finish_task_switch does not reenable preemption */
	preempt_enable();
#endif
L
Linus Torvalds 已提交
2726
	if (current->set_child_tid)
2727
		put_user(task_pid_vnr(current), current->set_child_tid);
L
Linus Torvalds 已提交
2728 2729 2730 2731 2732 2733
}

/*
 * context_switch - switch to the new MM and the new
 * thread's register state.
 */
I
Ingo Molnar 已提交
2734
static inline void
2735
context_switch(struct rq *rq, struct task_struct *prev,
2736
	       struct task_struct *next)
L
Linus Torvalds 已提交
2737
{
I
Ingo Molnar 已提交
2738
	struct mm_struct *mm, *oldmm;
L
Linus Torvalds 已提交
2739

2740
	prepare_task_switch(rq, prev, next);
2741
	trace_sched_switch(rq, prev, next);
I
Ingo Molnar 已提交
2742 2743
	mm = next->mm;
	oldmm = prev->active_mm;
2744 2745 2746 2747 2748 2749 2750
	/*
	 * For paravirt, this is coupled with an exit in switch_to to
	 * combine the page table reload and the switch backend into
	 * one hypercall.
	 */
	arch_enter_lazy_cpu_mode();

I
Ingo Molnar 已提交
2751
	if (unlikely(!mm)) {
L
Linus Torvalds 已提交
2752 2753 2754 2755 2756 2757
		next->active_mm = oldmm;
		atomic_inc(&oldmm->mm_count);
		enter_lazy_tlb(oldmm, next);
	} else
		switch_mm(oldmm, mm, next);

I
Ingo Molnar 已提交
2758
	if (unlikely(!prev->mm)) {
L
Linus Torvalds 已提交
2759 2760 2761
		prev->active_mm = NULL;
		rq->prev_mm = oldmm;
	}
2762 2763 2764 2765 2766 2767 2768
	/*
	 * Since the runqueue lock will be released by the next
	 * task (which is an invalid locking op but in the case
	 * of the scheduler it's an obvious special-case), so we
	 * do an early lockdep release here:
	 */
#ifndef __ARCH_WANT_UNLOCKED_CTXSW
2769
	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
2770
#endif
L
Linus Torvalds 已提交
2771 2772 2773 2774

	/* Here we just switch the register state and the stack. */
	switch_to(prev, next, prev);

I
Ingo Molnar 已提交
2775 2776 2777 2778 2779 2780 2781
	barrier();
	/*
	 * this_rq must be evaluated again because prev may have moved
	 * CPUs since it called schedule(), thus the 'rq' on its stack
	 * frame will be invalid.
	 */
	finish_task_switch(this_rq(), prev);
L
Linus Torvalds 已提交
2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804
}

/*
 * nr_running, nr_uninterruptible and nr_context_switches:
 *
 * externally visible scheduler statistics: current number of runnable
 * threads, current number of uninterruptible-sleeping threads, total
 * number of context switches performed since bootup.
 */
unsigned long nr_running(void)
{
	unsigned long i, sum = 0;

	for_each_online_cpu(i)
		sum += cpu_rq(i)->nr_running;

	return sum;
}

unsigned long nr_uninterruptible(void)
{
	unsigned long i, sum = 0;

2805
	for_each_possible_cpu(i)
L
Linus Torvalds 已提交
2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819
		sum += cpu_rq(i)->nr_uninterruptible;

	/*
	 * Since we read the counters lockless, it might be slightly
	 * inaccurate. Do not allow it to go below zero though:
	 */
	if (unlikely((long)sum < 0))
		sum = 0;

	return sum;
}

unsigned long long nr_context_switches(void)
{
2820 2821
	int i;
	unsigned long long sum = 0;
L
Linus Torvalds 已提交
2822

2823
	for_each_possible_cpu(i)
L
Linus Torvalds 已提交
2824 2825 2826 2827 2828 2829 2830 2831 2832
		sum += cpu_rq(i)->nr_switches;

	return sum;
}

unsigned long nr_iowait(void)
{
	unsigned long i, sum = 0;

2833
	for_each_possible_cpu(i)
L
Linus Torvalds 已提交
2834 2835 2836 2837 2838
		sum += atomic_read(&cpu_rq(i)->nr_iowait);

	return sum;
}

2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853
unsigned long nr_active(void)
{
	unsigned long i, running = 0, uninterruptible = 0;

	for_each_online_cpu(i) {
		running += cpu_rq(i)->nr_running;
		uninterruptible += cpu_rq(i)->nr_uninterruptible;
	}

	if (unlikely((long)uninterruptible < 0))
		uninterruptible = 0;

	return running + uninterruptible;
}

2854
/*
I
Ingo Molnar 已提交
2855 2856
 * Update rq->cpu_load[] statistics. This function is usually called every
 * scheduler tick (TICK_NSEC).
2857
 */
I
Ingo Molnar 已提交
2858
static void update_cpu_load(struct rq *this_rq)
2859
{
2860
	unsigned long this_load = this_rq->load.weight;
I
Ingo Molnar 已提交
2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872
	int i, scale;

	this_rq->nr_load_updates++;

	/* Update our load: */
	for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
		unsigned long old_load, new_load;

		/* scale is effectively 1 << i now, and >> i divides by scale */

		old_load = this_rq->cpu_load[i];
		new_load = this_load;
I
Ingo Molnar 已提交
2873 2874 2875 2876 2877 2878 2879
		/*
		 * Round up the averaging division if load is increasing. This
		 * prevents us from getting stuck on 9 if the load is 10, for
		 * example.
		 */
		if (new_load > old_load)
			new_load += scale-1;
I
Ingo Molnar 已提交
2880 2881
		this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
	}
2882 2883
}

I
Ingo Molnar 已提交
2884 2885
#ifdef CONFIG_SMP

L
Linus Torvalds 已提交
2886 2887 2888 2889 2890 2891
/*
 * double_rq_lock - safely lock two runqueues
 *
 * Note this does not disable interrupts like task_rq_lock,
 * you need to do so manually before calling.
 */
2892
static void double_rq_lock(struct rq *rq1, struct rq *rq2)
L
Linus Torvalds 已提交
2893 2894 2895
	__acquires(rq1->lock)
	__acquires(rq2->lock)
{
2896
	BUG_ON(!irqs_disabled());
L
Linus Torvalds 已提交
2897 2898 2899 2900
	if (rq1 == rq2) {
		spin_lock(&rq1->lock);
		__acquire(rq2->lock);	/* Fake it out ;) */
	} else {
2901
		if (rq1 < rq2) {
L
Linus Torvalds 已提交
2902
			spin_lock(&rq1->lock);
2903
			spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
L
Linus Torvalds 已提交
2904 2905
		} else {
			spin_lock(&rq2->lock);
2906
			spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
L
Linus Torvalds 已提交
2907 2908
		}
	}
2909 2910
	update_rq_clock(rq1);
	update_rq_clock(rq2);
L
Linus Torvalds 已提交
2911 2912 2913 2914 2915 2916 2917 2918
}

/*
 * double_rq_unlock - safely unlock two runqueues
 *
 * Note this does not restore interrupts like task_rq_unlock,
 * you need to do so manually after calling.
 */
2919
static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
L
Linus Torvalds 已提交
2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932
	__releases(rq1->lock)
	__releases(rq2->lock)
{
	spin_unlock(&rq1->lock);
	if (rq1 != rq2)
		spin_unlock(&rq2->lock);
	else
		__release(rq2->lock);
}

/*
 * If dest_cpu is allowed for this process, migrate the task to it.
 * This is accomplished by forcing the cpu_allowed mask to only
I
Ingo Molnar 已提交
2933
 * allow dest_cpu, which will force the cpu onto dest_cpu. Then
L
Linus Torvalds 已提交
2934 2935
 * the cpu_allowed mask is restored.
 */
2936
static void sched_migrate_task(struct task_struct *p, int dest_cpu)
L
Linus Torvalds 已提交
2937
{
2938
	struct migration_req req;
L
Linus Torvalds 已提交
2939
	unsigned long flags;
2940
	struct rq *rq;
L
Linus Torvalds 已提交
2941 2942

	rq = task_rq_lock(p, &flags);
2943
	if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed)
2944
	    || unlikely(!cpu_active(dest_cpu)))
L
Linus Torvalds 已提交
2945 2946 2947 2948 2949 2950
		goto out;

	/* force the process onto the specified CPU */
	if (migrate_task(p, dest_cpu, &req)) {
		/* Need to wait for migration thread (might exit: take ref). */
		struct task_struct *mt = rq->migration_thread;
2951

L
Linus Torvalds 已提交
2952 2953 2954 2955 2956
		get_task_struct(mt);
		task_rq_unlock(rq, &flags);
		wake_up_process(mt);
		put_task_struct(mt);
		wait_for_completion(&req.done);
2957

L
Linus Torvalds 已提交
2958 2959 2960 2961 2962 2963 2964
		return;
	}
out:
	task_rq_unlock(rq, &flags);
}

/*
N
Nick Piggin 已提交
2965 2966
 * sched_exec - execve() is a valuable balancing opportunity, because at
 * this point the task has the smallest effective memory and cache footprint.
L
Linus Torvalds 已提交
2967 2968 2969 2970
 */
void sched_exec(void)
{
	int new_cpu, this_cpu = get_cpu();
N
Nick Piggin 已提交
2971
	new_cpu = sched_balance_self(this_cpu, SD_BALANCE_EXEC);
L
Linus Torvalds 已提交
2972
	put_cpu();
N
Nick Piggin 已提交
2973 2974
	if (new_cpu != this_cpu)
		sched_migrate_task(current, new_cpu);
L
Linus Torvalds 已提交
2975 2976 2977 2978 2979 2980
}

/*
 * pull_task - move a task from a remote runqueue to the local runqueue.
 * Both runqueues must be locked.
 */
I
Ingo Molnar 已提交
2981 2982
static void pull_task(struct rq *src_rq, struct task_struct *p,
		      struct rq *this_rq, int this_cpu)
L
Linus Torvalds 已提交
2983
{
2984
	deactivate_task(src_rq, p, 0);
L
Linus Torvalds 已提交
2985
	set_task_cpu(p, this_cpu);
I
Ingo Molnar 已提交
2986
	activate_task(this_rq, p, 0);
L
Linus Torvalds 已提交
2987 2988 2989 2990
	/*
	 * Note that idle threads have a prio of MAX_PRIO, for this test
	 * to be always true for them.
	 */
2991
	check_preempt_curr(this_rq, p, 0);
L
Linus Torvalds 已提交
2992 2993 2994 2995 2996
}

/*
 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
 */
2997
static
2998
int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
I
Ingo Molnar 已提交
2999
		     struct sched_domain *sd, enum cpu_idle_type idle,
I
Ingo Molnar 已提交
3000
		     int *all_pinned)
L
Linus Torvalds 已提交
3001
{
3002
	int tsk_cache_hot = 0;
L
Linus Torvalds 已提交
3003 3004 3005 3006 3007 3008
	/*
	 * We do not migrate tasks that are:
	 * 1) running (obviously), or
	 * 2) cannot be migrated to this CPU due to cpus_allowed, or
	 * 3) are cache-hot on their current CPU.
	 */
3009
	if (!cpumask_test_cpu(this_cpu, &p->cpus_allowed)) {
3010
		schedstat_inc(p, se.nr_failed_migrations_affine);
L
Linus Torvalds 已提交
3011
		return 0;
3012
	}
3013 3014
	*all_pinned = 0;

3015 3016
	if (task_running(rq, p)) {
		schedstat_inc(p, se.nr_failed_migrations_running);
3017
		return 0;
3018
	}
L
Linus Torvalds 已提交
3019

3020 3021 3022 3023 3024 3025
	/*
	 * Aggressive migration if:
	 * 1) task is cache cold, or
	 * 2) too many balance attempts have failed.
	 */

3026 3027 3028
	tsk_cache_hot = task_hot(p, rq->clock, sd);
	if (!tsk_cache_hot ||
		sd->nr_balance_failed > sd->cache_nice_tries) {
3029
#ifdef CONFIG_SCHEDSTATS
3030
		if (tsk_cache_hot) {
3031
			schedstat_inc(sd, lb_hot_gained[idle]);
3032 3033
			schedstat_inc(p, se.nr_forced_migrations);
		}
3034 3035 3036 3037
#endif
		return 1;
	}

3038
	if (tsk_cache_hot) {
3039
		schedstat_inc(p, se.nr_failed_migrations_hot);
3040
		return 0;
3041
	}
L
Linus Torvalds 已提交
3042 3043 3044
	return 1;
}

3045 3046 3047 3048 3049
static unsigned long
balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
	      unsigned long max_load_move, struct sched_domain *sd,
	      enum cpu_idle_type idle, int *all_pinned,
	      int *this_best_prio, struct rq_iterator *iterator)
L
Linus Torvalds 已提交
3050
{
3051
	int loops = 0, pulled = 0, pinned = 0;
I
Ingo Molnar 已提交
3052 3053
	struct task_struct *p;
	long rem_load_move = max_load_move;
L
Linus Torvalds 已提交
3054

3055
	if (max_load_move == 0)
L
Linus Torvalds 已提交
3056 3057
		goto out;

3058 3059
	pinned = 1;

L
Linus Torvalds 已提交
3060
	/*
I
Ingo Molnar 已提交
3061
	 * Start the load-balancing iterator:
L
Linus Torvalds 已提交
3062
	 */
I
Ingo Molnar 已提交
3063 3064
	p = iterator->start(iterator->arg);
next:
3065
	if (!p || loops++ > sysctl_sched_nr_migrate)
L
Linus Torvalds 已提交
3066
		goto out;
3067 3068

	if ((p->se.load.weight >> 1) > rem_load_move ||
I
Ingo Molnar 已提交
3069 3070 3071
	    !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
		p = iterator->next(iterator->arg);
		goto next;
L
Linus Torvalds 已提交
3072 3073
	}

I
Ingo Molnar 已提交
3074
	pull_task(busiest, p, this_rq, this_cpu);
L
Linus Torvalds 已提交
3075
	pulled++;
I
Ingo Molnar 已提交
3076
	rem_load_move -= p->se.load.weight;
L
Linus Torvalds 已提交
3077

3078 3079 3080 3081 3082 3083 3084 3085 3086 3087
#ifdef CONFIG_PREEMPT
	/*
	 * NEWIDLE balancing is a source of latency, so preemptible kernels
	 * will stop after the first task is pulled to minimize the critical
	 * section.
	 */
	if (idle == CPU_NEWLY_IDLE)
		goto out;
#endif

3088
	/*
3089
	 * We only want to steal up to the prescribed amount of weighted load.
3090
	 */
3091
	if (rem_load_move > 0) {
3092 3093
		if (p->prio < *this_best_prio)
			*this_best_prio = p->prio;
I
Ingo Molnar 已提交
3094 3095
		p = iterator->next(iterator->arg);
		goto next;
L
Linus Torvalds 已提交
3096 3097 3098
	}
out:
	/*
3099
	 * Right now, this is one of only two places pull_task() is called,
L
Linus Torvalds 已提交
3100 3101 3102 3103
	 * so we can safely collect pull_task() stats here rather than
	 * inside pull_task().
	 */
	schedstat_add(sd, lb_gained[idle], pulled);
3104 3105 3106

	if (all_pinned)
		*all_pinned = pinned;
3107 3108

	return max_load_move - rem_load_move;
L
Linus Torvalds 已提交
3109 3110
}

I
Ingo Molnar 已提交
3111
/*
P
Peter Williams 已提交
3112 3113 3114
 * move_tasks tries to move up to max_load_move weighted load from busiest to
 * this_rq, as part of a balancing operation within domain "sd".
 * Returns 1 if successful and 0 otherwise.
I
Ingo Molnar 已提交
3115 3116 3117 3118
 *
 * Called with both runqueues locked.
 */
static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
P
Peter Williams 已提交
3119
		      unsigned long max_load_move,
I
Ingo Molnar 已提交
3120 3121 3122
		      struct sched_domain *sd, enum cpu_idle_type idle,
		      int *all_pinned)
{
3123
	const struct sched_class *class = sched_class_highest;
P
Peter Williams 已提交
3124
	unsigned long total_load_moved = 0;
3125
	int this_best_prio = this_rq->curr->prio;
I
Ingo Molnar 已提交
3126 3127

	do {
P
Peter Williams 已提交
3128 3129
		total_load_moved +=
			class->load_balance(this_rq, this_cpu, busiest,
3130
				max_load_move - total_load_moved,
3131
				sd, idle, all_pinned, &this_best_prio);
I
Ingo Molnar 已提交
3132
		class = class->next;
3133

3134 3135 3136 3137 3138 3139
#ifdef CONFIG_PREEMPT
		/*
		 * NEWIDLE balancing is a source of latency, so preemptible
		 * kernels will stop after the first task is pulled to minimize
		 * the critical section.
		 */
3140 3141
		if (idle == CPU_NEWLY_IDLE && this_rq->nr_running)
			break;
3142
#endif
P
Peter Williams 已提交
3143
	} while (class && max_load_move > total_load_moved);
I
Ingo Molnar 已提交
3144

P
Peter Williams 已提交
3145 3146 3147
	return total_load_moved > 0;
}

3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173
static int
iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
		   struct sched_domain *sd, enum cpu_idle_type idle,
		   struct rq_iterator *iterator)
{
	struct task_struct *p = iterator->start(iterator->arg);
	int pinned = 0;

	while (p) {
		if (can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
			pull_task(busiest, p, this_rq, this_cpu);
			/*
			 * Right now, this is only the second place pull_task()
			 * is called, so we can safely collect pull_task()
			 * stats here rather than inside pull_task().
			 */
			schedstat_inc(sd, lb_gained[idle]);

			return 1;
		}
		p = iterator->next(iterator->arg);
	}

	return 0;
}

P
Peter Williams 已提交
3174 3175 3176 3177 3178 3179 3180 3181 3182 3183
/*
 * move_one_task tries to move exactly one task from busiest to this_rq, as
 * part of active balancing operations within "domain".
 * Returns 1 if successful and 0 otherwise.
 *
 * Called with both runqueues locked.
 */
static int move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
			 struct sched_domain *sd, enum cpu_idle_type idle)
{
3184
	const struct sched_class *class;
P
Peter Williams 已提交
3185 3186

	for (class = sched_class_highest; class; class = class->next)
3187
		if (class->move_one_task(this_rq, this_cpu, busiest, sd, idle))
P
Peter Williams 已提交
3188 3189 3190
			return 1;

	return 0;
I
Ingo Molnar 已提交
3191
}
3192
/********** Helpers for find_busiest_group ************************/
3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223
/**
 * sd_lb_stats - Structure to store the statistics of a sched_domain
 * 		during load balancing.
 */
struct sd_lb_stats {
	struct sched_group *busiest; /* Busiest group in this sd */
	struct sched_group *this;  /* Local group in this sd */
	unsigned long total_load;  /* Total load of all groups in sd */
	unsigned long total_pwr;   /*	Total power of all groups in sd */
	unsigned long avg_load;	   /* Average load across all groups in sd */

	/** Statistics of this group */
	unsigned long this_load;
	unsigned long this_load_per_task;
	unsigned long this_nr_running;

	/* Statistics of the busiest group */
	unsigned long max_load;
	unsigned long busiest_load_per_task;
	unsigned long busiest_nr_running;

	int group_imb; /* Is there imbalance in this sd */
#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
	int power_savings_balance; /* Is powersave balance needed for this sd */
	struct sched_group *group_min; /* Least loaded group in sd */
	struct sched_group *group_leader; /* Group which relieves group_min */
	unsigned long min_load_per_task; /* load_per_task in group_min */
	unsigned long leader_nr_running; /* Nr running of group_leader */
	unsigned long min_nr_running; /* Nr running of group_min */
#endif
};
3224

3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236
/**
 * sg_lb_stats - stats of a sched_group required for load_balancing
 */
struct sg_lb_stats {
	unsigned long avg_load; /*Avg load across the CPUs of the group */
	unsigned long group_load; /* Total load over the CPUs of the group */
	unsigned long sum_nr_running; /* Nr tasks running in the group */
	unsigned long sum_weighted_load; /* Weighted load of group's tasks */
	unsigned long group_capacity;
	int group_imb; /* Is there an imbalance in the group ? */
};

3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270
/**
 * group_first_cpu - Returns the first cpu in the cpumask of a sched_group.
 * @group: The group whose first cpu is to be returned.
 */
static inline unsigned int group_first_cpu(struct sched_group *group)
{
	return cpumask_first(sched_group_cpus(group));
}

/**
 * get_sd_load_idx - Obtain the load index for a given sched domain.
 * @sd: The sched_domain whose load_idx is to be obtained.
 * @idle: The Idle status of the CPU for whose sd load_icx is obtained.
 */
static inline int get_sd_load_idx(struct sched_domain *sd,
					enum cpu_idle_type idle)
{
	int load_idx;

	switch (idle) {
	case CPU_NOT_IDLE:
		load_idx = sd->busy_idx;
		break;

	case CPU_NEWLY_IDLE:
		load_idx = sd->newidle_idx;
		break;
	default:
		load_idx = sd->idle_idx;
		break;
	}

	return load_idx;
}
3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367


/**
 * update_sg_lb_stats - Update sched_group's statistics for load balancing.
 * @group: sched_group whose statistics are to be updated.
 * @this_cpu: Cpu for which load balance is currently performed.
 * @idle: Idle status of this_cpu
 * @load_idx: Load index of sched_domain of this_cpu for load calc.
 * @sd_idle: Idle status of the sched_domain containing group.
 * @local_group: Does group contain this_cpu.
 * @cpus: Set of cpus considered for load balancing.
 * @balance: Should we balance.
 * @sgs: variable to hold the statistics for this group.
 */
static inline void update_sg_lb_stats(struct sched_group *group, int this_cpu,
			enum cpu_idle_type idle, int load_idx, int *sd_idle,
			int local_group, const struct cpumask *cpus,
			int *balance, struct sg_lb_stats *sgs)
{
	unsigned long load, max_cpu_load, min_cpu_load;
	int i;
	unsigned int balance_cpu = -1, first_idle_cpu = 0;
	unsigned long sum_avg_load_per_task;
	unsigned long avg_load_per_task;

	if (local_group)
		balance_cpu = group_first_cpu(group);

	/* Tally up the load of all CPUs in the group */
	sum_avg_load_per_task = avg_load_per_task = 0;
	max_cpu_load = 0;
	min_cpu_load = ~0UL;

	for_each_cpu_and(i, sched_group_cpus(group), cpus) {
		struct rq *rq = cpu_rq(i);

		if (*sd_idle && rq->nr_running)
			*sd_idle = 0;

		/* Bias balancing toward cpus of our domain */
		if (local_group) {
			if (idle_cpu(i) && !first_idle_cpu) {
				first_idle_cpu = 1;
				balance_cpu = i;
			}

			load = target_load(i, load_idx);
		} else {
			load = source_load(i, load_idx);
			if (load > max_cpu_load)
				max_cpu_load = load;
			if (min_cpu_load > load)
				min_cpu_load = load;
		}

		sgs->group_load += load;
		sgs->sum_nr_running += rq->nr_running;
		sgs->sum_weighted_load += weighted_cpuload(i);

		sum_avg_load_per_task += cpu_avg_load_per_task(i);
	}

	/*
	 * First idle cpu or the first cpu(busiest) in this sched group
	 * is eligible for doing load balancing at this and above
	 * domains. In the newly idle case, we will allow all the cpu's
	 * to do the newly idle load balance.
	 */
	if (idle != CPU_NEWLY_IDLE && local_group &&
	    balance_cpu != this_cpu && balance) {
		*balance = 0;
		return;
	}

	/* Adjust by relative CPU power of the group */
	sgs->avg_load = sg_div_cpu_power(group,
			sgs->group_load * SCHED_LOAD_SCALE);


	/*
	 * Consider the group unbalanced when the imbalance is larger
	 * than the average weight of two tasks.
	 *
	 * APZ: with cgroup the avg task weight can vary wildly and
	 *      might not be a suitable number - should we keep a
	 *      normalized nr_running number somewhere that negates
	 *      the hierarchy?
	 */
	avg_load_per_task = sg_div_cpu_power(group,
			sum_avg_load_per_task * SCHED_LOAD_SCALE);

	if ((max_cpu_load - min_cpu_load) > 2*avg_load_per_task)
		sgs->group_imb = 1;

	sgs->group_capacity = group->__cpu_power / SCHED_LOAD_SCALE;

}
I
Ingo Molnar 已提交
3368

3369 3370 3371 3372 3373 3374 3375 3376 3377
/**
 * update_sd_lb_stats - Update sched_group's statistics for load balancing.
 * @sd: sched_domain whose statistics are to be updated.
 * @this_cpu: Cpu for which load balance is currently performed.
 * @idle: Idle status of this_cpu
 * @sd_idle: Idle status of the sched_domain containing group.
 * @cpus: Set of cpus considered for load balancing.
 * @balance: Should we balance.
 * @sds: variable to hold the statistics for this sched_domain.
L
Linus Torvalds 已提交
3378
 */
3379 3380 3381 3382
static inline void update_sd_lb_stats(struct sched_domain *sd, int this_cpu,
			enum cpu_idle_type idle, int *sd_idle,
			const struct cpumask *cpus, int *balance,
			struct sd_lb_stats *sds)
L
Linus Torvalds 已提交
3383
{
3384
	struct sched_group *group = sd->groups;
3385
	struct sg_lb_stats sgs;
3386 3387
	int load_idx;

3388
#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
3389 3390
	sds->power_savings_balance = 1;
	sds->min_nr_running = ULONG_MAX;
3391
#endif
3392
	load_idx = get_sd_load_idx(sd, idle);
L
Linus Torvalds 已提交
3393 3394 3395 3396

	do {
		int local_group;

3397 3398
		local_group = cpumask_test_cpu(this_cpu,
					       sched_group_cpus(group));
3399
		memset(&sgs, 0, sizeof(sgs));
3400 3401
		update_sg_lb_stats(group, this_cpu, idle, load_idx, sd_idle,
				local_group, cpus, balance, &sgs);
L
Linus Torvalds 已提交
3402

3403 3404
		if (local_group && balance && !(*balance))
			return;
3405

3406 3407
		sds->total_load += sgs.group_load;
		sds->total_pwr += group->__cpu_power;
L
Linus Torvalds 已提交
3408 3409

		if (local_group) {
3410 3411 3412 3413 3414
			sds->this_load = sgs.avg_load;
			sds->this = group;
			sds->this_nr_running = sgs.sum_nr_running;
			sds->this_load_per_task = sgs.sum_weighted_load;
		} else if (sgs.avg_load > sds->max_load &&
3415 3416
			   (sgs.sum_nr_running > sgs.group_capacity ||
				sgs.group_imb)) {
3417 3418 3419 3420 3421
			sds->max_load = sgs.avg_load;
			sds->busiest = group;
			sds->busiest_nr_running = sgs.sum_nr_running;
			sds->busiest_load_per_task = sgs.sum_weighted_load;
			sds->group_imb = sgs.group_imb;
L
Linus Torvalds 已提交
3422
		}
3423 3424 3425 3426 3427 3428

#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
		/*
		 * Busy processors will not participate in power savings
		 * balance.
		 */
I
Ingo Molnar 已提交
3429 3430 3431
		if (idle == CPU_NOT_IDLE ||
				!(sd->flags & SD_POWERSAVINGS_BALANCE))
			goto group_next;
3432 3433 3434 3435 3436

		/*
		 * If the local group is idle or completely loaded
		 * no need to do power savings balance at this domain
		 */
3437
		if (local_group &&
3438 3439 3440
			(sds->this_nr_running >= sgs.group_capacity ||
			!sds->this_nr_running))
			sds->power_savings_balance = 0;
3441

I
Ingo Molnar 已提交
3442
		/*
3443 3444
		 * If a group is already running at full capacity or idle,
		 * don't include that group in power savings calculations
I
Ingo Molnar 已提交
3445
		 */
3446
		if (!sds->power_savings_balance ||
3447 3448
			sgs.sum_nr_running >= sgs.group_capacity ||
			!sgs.sum_nr_running)
I
Ingo Molnar 已提交
3449
			goto group_next;
3450

I
Ingo Molnar 已提交
3451
		/*
3452
		 * Calculate the group which has the least non-idle load.
I
Ingo Molnar 已提交
3453 3454 3455
		 * This is the group from where we need to pick up the load
		 * for saving power
		 */
3456 3457
		if ((sgs.sum_nr_running < sds->min_nr_running) ||
		    (sgs.sum_nr_running == sds->min_nr_running &&
3458
		     group_first_cpu(group) >
3459 3460 3461 3462
			group_first_cpu(sds->group_min))) {
			sds->group_min = group;
			sds->min_nr_running = sgs.sum_nr_running;
			sds->min_load_per_task = sgs.sum_weighted_load /
3463
						sgs.sum_nr_running;
I
Ingo Molnar 已提交
3464
		}
3465

I
Ingo Molnar 已提交
3466
		/*
3467
		 * Calculate the group which is almost near its
I
Ingo Molnar 已提交
3468 3469 3470
		 * capacity but still has some space to pick up some load
		 * from other group and save more power
		 */
3471
		if (sgs.sum_nr_running > sgs.group_capacity - 1)
3472 3473
			goto group_next;

3474 3475
		if (sgs.sum_nr_running > sds->leader_nr_running ||
		    (sgs.sum_nr_running == sds->leader_nr_running &&
3476
		     group_first_cpu(group) <
3477 3478 3479
			group_first_cpu(sds->group_leader))) {
			sds->group_leader = group;
			sds->leader_nr_running = sgs.sum_nr_running;
3480
		}
3481 3482
group_next:
#endif
L
Linus Torvalds 已提交
3483 3484 3485
		group = group->next;
	} while (group != sd->groups);

3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513
}
/******* find_busiest_group() helpers end here *********************/

/*
 * find_busiest_group finds and returns the busiest CPU group within the
 * domain. It calculates and returns the amount of weighted load which
 * should be moved to restore balance via the imbalance parameter.
 */
static struct sched_group *
find_busiest_group(struct sched_domain *sd, int this_cpu,
		   unsigned long *imbalance, enum cpu_idle_type idle,
		   int *sd_idle, const struct cpumask *cpus, int *balance)
{
	struct sd_lb_stats sds;
	unsigned long max_pull;

	memset(&sds, 0, sizeof(sds));

	/*
	 * Compute the various statistics relavent for load balancing at
	 * this level.
	 */
	update_sd_lb_stats(sd, this_cpu, idle, sd_idle, cpus,
					balance, &sds);

	if (balance && !(*balance))
		goto ret;

3514 3515
	if (!sds.busiest || sds.this_load >= sds.max_load
		|| sds.busiest_nr_running == 0)
L
Linus Torvalds 已提交
3516 3517
		goto out_balanced;

3518
	sds.avg_load = (SCHED_LOAD_SCALE * sds.total_load) / sds.total_pwr;
L
Linus Torvalds 已提交
3519

3520 3521
	if (sds.this_load >= sds.avg_load ||
			100*sds.max_load <= sd->imbalance_pct * sds.this_load)
L
Linus Torvalds 已提交
3522 3523
		goto out_balanced;

3524 3525 3526 3527
	sds.busiest_load_per_task /= sds.busiest_nr_running;
	if (sds.group_imb)
		sds.busiest_load_per_task =
			min(sds.busiest_load_per_task, sds.avg_load);
3528

L
Linus Torvalds 已提交
3529 3530 3531 3532 3533 3534 3535 3536
	/*
	 * We're trying to get all the cpus to the average_load, so we don't
	 * want to push ourselves above the average load, nor do we wish to
	 * reduce the max loaded cpu below the average load, as either of these
	 * actions would just result in more rebalancing later, and ping-pong
	 * tasks around. Thus we look for the minimum possible imbalance.
	 * Negative imbalances (*we* are more loaded than anyone else) will
	 * be counted as no imbalance for these purposes -- we can't fix that
I
Ingo Molnar 已提交
3537
	 * by pulling tasks to us. Be careful of negative numbers as they'll
L
Linus Torvalds 已提交
3538 3539
	 * appear as very large values with unsigned longs.
	 */
3540
	if (sds.max_load <= sds.busiest_load_per_task)
3541 3542 3543 3544 3545 3546 3547
		goto out_balanced;

	/*
	 * In the presence of smp nice balancing, certain scenarios can have
	 * max load less than avg load(as we skip the groups at or below
	 * its cpu_power, while calculating max_load..)
	 */
3548
	if (sds.max_load < sds.avg_load) {
3549 3550 3551
		*imbalance = 0;
		goto small_imbalance;
	}
3552 3553

	/* Don't want to pull so many tasks that a group would go idle */
3554 3555
	max_pull = min(sds.max_load - sds.avg_load,
			sds.max_load - sds.busiest_load_per_task);
3556

L
Linus Torvalds 已提交
3557
	/* How much load to actually move to equalise the imbalance */
3558 3559
	*imbalance = min(max_pull * sds.busiest->__cpu_power,
			(sds.avg_load - sds.this_load) * sds.this->__cpu_power)
L
Linus Torvalds 已提交
3560 3561
			/ SCHED_LOAD_SCALE;

3562 3563 3564 3565 3566 3567
	/*
	 * if *imbalance is less than the average load per runnable task
	 * there is no gaurantee that any tasks will be moved so we'll have
	 * a think about bumping its value to force at least one task to be
	 * moved
	 */
3568
	if (*imbalance < sds.busiest_load_per_task) {
3569
		unsigned long tmp, pwr_now, pwr_move;
3570 3571 3572 3573 3574
		unsigned int imbn;

small_imbalance:
		pwr_move = pwr_now = 0;
		imbn = 2;
3575 3576 3577 3578
		if (sds.this_nr_running) {
			sds.this_load_per_task /= sds.this_nr_running;
			if (sds.busiest_load_per_task >
					sds.this_load_per_task)
3579 3580
				imbn = 1;
		} else
3581 3582 3583 3584 3585 3586 3587 3588
			sds.this_load_per_task =
				cpu_avg_load_per_task(this_cpu);

		if (sds.max_load - sds.this_load +
			sds.busiest_load_per_task >=
				sds.busiest_load_per_task * imbn) {
			*imbalance = sds.busiest_load_per_task;
			return sds.busiest;
L
Linus Torvalds 已提交
3589 3590 3591 3592 3593 3594 3595 3596
		}

		/*
		 * OK, we don't have enough imbalance to justify moving tasks,
		 * however we may be able to increase total CPU power used by
		 * moving them.
		 */

3597 3598 3599 3600
		pwr_now += sds.busiest->__cpu_power *
				min(sds.busiest_load_per_task, sds.max_load);
		pwr_now += sds.this->__cpu_power *
				min(sds.this_load_per_task, sds.this_load);
L
Linus Torvalds 已提交
3601 3602 3603
		pwr_now /= SCHED_LOAD_SCALE;

		/* Amount of load we'd subtract */
3604 3605 3606 3607 3608 3609
		tmp = sg_div_cpu_power(sds.busiest,
				sds.busiest_load_per_task * SCHED_LOAD_SCALE);
		if (sds.max_load > tmp)
			pwr_move += sds.busiest->__cpu_power *
				min(sds.busiest_load_per_task,
						sds.max_load - tmp);
L
Linus Torvalds 已提交
3610 3611

		/* Amount of load we'd add */
3612 3613 3614 3615
		if (sds.max_load * sds.busiest->__cpu_power <
				sds.busiest_load_per_task * SCHED_LOAD_SCALE)
			tmp = sg_div_cpu_power(sds.this,
				sds.max_load * sds.busiest->__cpu_power);
L
Linus Torvalds 已提交
3616
		else
3617 3618 3619 3620 3621
			tmp = sg_div_cpu_power(sds.this,
				sds.busiest_load_per_task * SCHED_LOAD_SCALE);
		pwr_move += sds.this->__cpu_power *
				min(sds.this_load_per_task,
					sds.this_load + tmp);
L
Linus Torvalds 已提交
3622 3623 3624
		pwr_move /= SCHED_LOAD_SCALE;

		/* Move if we gain throughput */
3625
		if (pwr_move > pwr_now)
3626
			*imbalance = sds.busiest_load_per_task;
L
Linus Torvalds 已提交
3627 3628
	}

3629
	return sds.busiest;
L
Linus Torvalds 已提交
3630 3631

out_balanced:
3632
#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
I
Ingo Molnar 已提交
3633
	if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
3634
		goto ret;
L
Linus Torvalds 已提交
3635

3636
	if (sds.this != sds.group_leader || sds.group_leader == sds.group_min)
3637 3638
		goto ret;

3639
	*imbalance = sds.min_load_per_task;
3640 3641
	if (sched_mc_power_savings >= POWERSAVINGS_BALANCE_WAKEUP) {
		cpu_rq(this_cpu)->rd->sched_mc_preferred_wakeup_cpu =
3642
			group_first_cpu(sds.group_leader);
3643
	}
3644
	return sds.group_min;
3645

3646
#endif
3647
ret:
L
Linus Torvalds 已提交
3648 3649 3650 3651 3652 3653 3654
	*imbalance = 0;
	return NULL;
}

/*
 * find_busiest_queue - find the busiest runqueue among the cpus in group.
 */
3655
static struct rq *
I
Ingo Molnar 已提交
3656
find_busiest_queue(struct sched_group *group, enum cpu_idle_type idle,
3657
		   unsigned long imbalance, const struct cpumask *cpus)
L
Linus Torvalds 已提交
3658
{
3659
	struct rq *busiest = NULL, *rq;
3660
	unsigned long max_load = 0;
L
Linus Torvalds 已提交
3661 3662
	int i;

3663
	for_each_cpu(i, sched_group_cpus(group)) {
I
Ingo Molnar 已提交
3664
		unsigned long wl;
3665

3666
		if (!cpumask_test_cpu(i, cpus))
3667 3668
			continue;

3669
		rq = cpu_rq(i);
I
Ingo Molnar 已提交
3670
		wl = weighted_cpuload(i);
3671

I
Ingo Molnar 已提交
3672
		if (rq->nr_running == 1 && wl > imbalance)
3673
			continue;
L
Linus Torvalds 已提交
3674

I
Ingo Molnar 已提交
3675 3676
		if (wl > max_load) {
			max_load = wl;
3677
			busiest = rq;
L
Linus Torvalds 已提交
3678 3679 3680 3681 3682 3683
		}
	}

	return busiest;
}

3684 3685 3686 3687 3688 3689
/*
 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
 * so long as it is large enough.
 */
#define MAX_PINNED_INTERVAL	512

L
Linus Torvalds 已提交
3690 3691 3692 3693
/*
 * Check this_cpu to ensure it is balanced within domain. Attempt to move
 * tasks if there is an imbalance.
 */
3694
static int load_balance(int this_cpu, struct rq *this_rq,
I
Ingo Molnar 已提交
3695
			struct sched_domain *sd, enum cpu_idle_type idle,
3696
			int *balance, struct cpumask *cpus)
L
Linus Torvalds 已提交
3697
{
P
Peter Williams 已提交
3698
	int ld_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
L
Linus Torvalds 已提交
3699 3700
	struct sched_group *group;
	unsigned long imbalance;
3701
	struct rq *busiest;
3702
	unsigned long flags;
N
Nick Piggin 已提交
3703

3704
	cpumask_setall(cpus);
3705

3706 3707 3708
	/*
	 * When power savings policy is enabled for the parent domain, idle
	 * sibling can pick up load irrespective of busy siblings. In this case,
I
Ingo Molnar 已提交
3709
	 * let the state of idle sibling percolate up as CPU_IDLE, instead of
I
Ingo Molnar 已提交
3710
	 * portraying it as CPU_NOT_IDLE.
3711
	 */
I
Ingo Molnar 已提交
3712
	if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
3713
	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
N
Nick Piggin 已提交
3714
		sd_idle = 1;
L
Linus Torvalds 已提交
3715

3716
	schedstat_inc(sd, lb_count[idle]);
L
Linus Torvalds 已提交
3717

3718
redo:
3719
	update_shares(sd);
3720
	group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
3721
				   cpus, balance);
3722

3723
	if (*balance == 0)
3724 3725
		goto out_balanced;

L
Linus Torvalds 已提交
3726 3727 3728 3729 3730
	if (!group) {
		schedstat_inc(sd, lb_nobusyg[idle]);
		goto out_balanced;
	}

3731
	busiest = find_busiest_queue(group, idle, imbalance, cpus);
L
Linus Torvalds 已提交
3732 3733 3734 3735 3736
	if (!busiest) {
		schedstat_inc(sd, lb_nobusyq[idle]);
		goto out_balanced;
	}

N
Nick Piggin 已提交
3737
	BUG_ON(busiest == this_rq);
L
Linus Torvalds 已提交
3738 3739 3740

	schedstat_add(sd, lb_imbalance[idle], imbalance);

P
Peter Williams 已提交
3741
	ld_moved = 0;
L
Linus Torvalds 已提交
3742 3743 3744 3745
	if (busiest->nr_running > 1) {
		/*
		 * Attempt to move tasks. If find_busiest_group has found
		 * an imbalance but busiest->nr_running <= 1, the group is
P
Peter Williams 已提交
3746
		 * still unbalanced. ld_moved simply stays zero, so it is
L
Linus Torvalds 已提交
3747 3748
		 * correctly treated as an imbalance.
		 */
3749
		local_irq_save(flags);
N
Nick Piggin 已提交
3750
		double_rq_lock(this_rq, busiest);
P
Peter Williams 已提交
3751
		ld_moved = move_tasks(this_rq, this_cpu, busiest,
3752
				      imbalance, sd, idle, &all_pinned);
N
Nick Piggin 已提交
3753
		double_rq_unlock(this_rq, busiest);
3754
		local_irq_restore(flags);
3755

3756 3757 3758
		/*
		 * some other cpu did the load balance for us.
		 */
P
Peter Williams 已提交
3759
		if (ld_moved && this_cpu != smp_processor_id())
3760 3761
			resched_cpu(this_cpu);

3762
		/* All tasks on this runqueue were pinned by CPU affinity */
3763
		if (unlikely(all_pinned)) {
3764 3765
			cpumask_clear_cpu(cpu_of(busiest), cpus);
			if (!cpumask_empty(cpus))
3766
				goto redo;
3767
			goto out_balanced;
3768
		}
L
Linus Torvalds 已提交
3769
	}
3770

P
Peter Williams 已提交
3771
	if (!ld_moved) {
L
Linus Torvalds 已提交
3772 3773 3774 3775 3776
		schedstat_inc(sd, lb_failed[idle]);
		sd->nr_balance_failed++;

		if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {

3777
			spin_lock_irqsave(&busiest->lock, flags);
3778 3779 3780 3781

			/* don't kick the migration_thread, if the curr
			 * task on busiest cpu can't be moved to this_cpu
			 */
3782 3783
			if (!cpumask_test_cpu(this_cpu,
					      &busiest->curr->cpus_allowed)) {
3784
				spin_unlock_irqrestore(&busiest->lock, flags);
3785 3786 3787 3788
				all_pinned = 1;
				goto out_one_pinned;
			}

L
Linus Torvalds 已提交
3789 3790 3791
			if (!busiest->active_balance) {
				busiest->active_balance = 1;
				busiest->push_cpu = this_cpu;
3792
				active_balance = 1;
L
Linus Torvalds 已提交
3793
			}
3794
			spin_unlock_irqrestore(&busiest->lock, flags);
3795
			if (active_balance)
L
Linus Torvalds 已提交
3796 3797 3798 3799 3800 3801
				wake_up_process(busiest->migration_thread);

			/*
			 * We've kicked active balancing, reset the failure
			 * counter.
			 */
3802
			sd->nr_balance_failed = sd->cache_nice_tries+1;
L
Linus Torvalds 已提交
3803
		}
3804
	} else
L
Linus Torvalds 已提交
3805 3806
		sd->nr_balance_failed = 0;

3807
	if (likely(!active_balance)) {
L
Linus Torvalds 已提交
3808 3809
		/* We were unbalanced, so reset the balancing interval */
		sd->balance_interval = sd->min_interval;
3810 3811 3812 3813 3814 3815 3816 3817 3818
	} else {
		/*
		 * If we've begun active balancing, start to back off. This
		 * case may not be covered by the all_pinned logic if there
		 * is only 1 task on the busy runqueue (because we don't call
		 * move_tasks).
		 */
		if (sd->balance_interval < sd->max_interval)
			sd->balance_interval *= 2;
L
Linus Torvalds 已提交
3819 3820
	}

P
Peter Williams 已提交
3821
	if (!ld_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
3822
	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
3823 3824 3825
		ld_moved = -1;

	goto out;
L
Linus Torvalds 已提交
3826 3827 3828 3829

out_balanced:
	schedstat_inc(sd, lb_balanced[idle]);

3830
	sd->nr_balance_failed = 0;
3831 3832

out_one_pinned:
L
Linus Torvalds 已提交
3833
	/* tune up the balancing interval */
3834 3835
	if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
			(sd->balance_interval < sd->max_interval))
L
Linus Torvalds 已提交
3836 3837
		sd->balance_interval *= 2;

3838
	if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
3839
	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
3840 3841 3842 3843
		ld_moved = -1;
	else
		ld_moved = 0;
out:
3844 3845
	if (ld_moved)
		update_shares(sd);
3846
	return ld_moved;
L
Linus Torvalds 已提交
3847 3848 3849 3850 3851 3852
}

/*
 * Check this_cpu to ensure it is balanced within domain. Attempt to move
 * tasks if there is an imbalance.
 *
I
Ingo Molnar 已提交
3853
 * Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE).
L
Linus Torvalds 已提交
3854 3855
 * this_rq is locked.
 */
3856
static int
3857
load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd,
3858
			struct cpumask *cpus)
L
Linus Torvalds 已提交
3859 3860
{
	struct sched_group *group;
3861
	struct rq *busiest = NULL;
L
Linus Torvalds 已提交
3862
	unsigned long imbalance;
P
Peter Williams 已提交
3863
	int ld_moved = 0;
N
Nick Piggin 已提交
3864
	int sd_idle = 0;
3865
	int all_pinned = 0;
3866

3867
	cpumask_setall(cpus);
N
Nick Piggin 已提交
3868

3869 3870 3871 3872
	/*
	 * When power savings policy is enabled for the parent domain, idle
	 * sibling can pick up load irrespective of busy siblings. In this case,
	 * let the state of idle sibling percolate up as IDLE, instead of
I
Ingo Molnar 已提交
3873
	 * portraying it as CPU_NOT_IDLE.
3874 3875 3876
	 */
	if (sd->flags & SD_SHARE_CPUPOWER &&
	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
N
Nick Piggin 已提交
3877
		sd_idle = 1;
L
Linus Torvalds 已提交
3878

3879
	schedstat_inc(sd, lb_count[CPU_NEWLY_IDLE]);
3880
redo:
3881
	update_shares_locked(this_rq, sd);
I
Ingo Molnar 已提交
3882
	group = find_busiest_group(sd, this_cpu, &imbalance, CPU_NEWLY_IDLE,
3883
				   &sd_idle, cpus, NULL);
L
Linus Torvalds 已提交
3884
	if (!group) {
I
Ingo Molnar 已提交
3885
		schedstat_inc(sd, lb_nobusyg[CPU_NEWLY_IDLE]);
3886
		goto out_balanced;
L
Linus Torvalds 已提交
3887 3888
	}

3889
	busiest = find_busiest_queue(group, CPU_NEWLY_IDLE, imbalance, cpus);
N
Nick Piggin 已提交
3890
	if (!busiest) {
I
Ingo Molnar 已提交
3891
		schedstat_inc(sd, lb_nobusyq[CPU_NEWLY_IDLE]);
3892
		goto out_balanced;
L
Linus Torvalds 已提交
3893 3894
	}

N
Nick Piggin 已提交
3895 3896
	BUG_ON(busiest == this_rq);

I
Ingo Molnar 已提交
3897
	schedstat_add(sd, lb_imbalance[CPU_NEWLY_IDLE], imbalance);
3898

P
Peter Williams 已提交
3899
	ld_moved = 0;
3900 3901 3902
	if (busiest->nr_running > 1) {
		/* Attempt to move tasks */
		double_lock_balance(this_rq, busiest);
3903 3904
		/* this_rq->clock is already updated */
		update_rq_clock(busiest);
P
Peter Williams 已提交
3905
		ld_moved = move_tasks(this_rq, this_cpu, busiest,
3906 3907
					imbalance, sd, CPU_NEWLY_IDLE,
					&all_pinned);
3908
		double_unlock_balance(this_rq, busiest);
3909

3910
		if (unlikely(all_pinned)) {
3911 3912
			cpumask_clear_cpu(cpu_of(busiest), cpus);
			if (!cpumask_empty(cpus))
3913 3914
				goto redo;
		}
3915 3916
	}

P
Peter Williams 已提交
3917
	if (!ld_moved) {
3918
		int active_balance = 0;
3919

I
Ingo Molnar 已提交
3920
		schedstat_inc(sd, lb_failed[CPU_NEWLY_IDLE]);
3921 3922
		if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
		    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
N
Nick Piggin 已提交
3923
			return -1;
3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959

		if (sched_mc_power_savings < POWERSAVINGS_BALANCE_WAKEUP)
			return -1;

		if (sd->nr_balance_failed++ < 2)
			return -1;

		/*
		 * The only task running in a non-idle cpu can be moved to this
		 * cpu in an attempt to completely freeup the other CPU
		 * package. The same method used to move task in load_balance()
		 * have been extended for load_balance_newidle() to speedup
		 * consolidation at sched_mc=POWERSAVINGS_BALANCE_WAKEUP (2)
		 *
		 * The package power saving logic comes from
		 * find_busiest_group().  If there are no imbalance, then
		 * f_b_g() will return NULL.  However when sched_mc={1,2} then
		 * f_b_g() will select a group from which a running task may be
		 * pulled to this cpu in order to make the other package idle.
		 * If there is no opportunity to make a package idle and if
		 * there are no imbalance, then f_b_g() will return NULL and no
		 * action will be taken in load_balance_newidle().
		 *
		 * Under normal task pull operation due to imbalance, there
		 * will be more than one task in the source run queue and
		 * move_tasks() will succeed.  ld_moved will be true and this
		 * active balance code will not be triggered.
		 */

		/* Lock busiest in correct order while this_rq is held */
		double_lock_balance(this_rq, busiest);

		/*
		 * don't kick the migration_thread, if the curr
		 * task on busiest cpu can't be moved to this_cpu
		 */
3960
		if (!cpumask_test_cpu(this_cpu, &busiest->curr->cpus_allowed)) {
3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972
			double_unlock_balance(this_rq, busiest);
			all_pinned = 1;
			return ld_moved;
		}

		if (!busiest->active_balance) {
			busiest->active_balance = 1;
			busiest->push_cpu = this_cpu;
			active_balance = 1;
		}

		double_unlock_balance(this_rq, busiest);
3973 3974 3975 3976
		/*
		 * Should not call ttwu while holding a rq->lock
		 */
		spin_unlock(&this_rq->lock);
3977 3978
		if (active_balance)
			wake_up_process(busiest->migration_thread);
3979
		spin_lock(&this_rq->lock);
3980

N
Nick Piggin 已提交
3981
	} else
3982
		sd->nr_balance_failed = 0;
L
Linus Torvalds 已提交
3983

3984
	update_shares_locked(this_rq, sd);
P
Peter Williams 已提交
3985
	return ld_moved;
3986 3987

out_balanced:
I
Ingo Molnar 已提交
3988
	schedstat_inc(sd, lb_balanced[CPU_NEWLY_IDLE]);
3989
	if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
3990
	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
N
Nick Piggin 已提交
3991
		return -1;
3992
	sd->nr_balance_failed = 0;
3993

3994
	return 0;
L
Linus Torvalds 已提交
3995 3996 3997 3998 3999 4000
}

/*
 * idle_balance is called by schedule() if this_cpu is about to become
 * idle. Attempts to pull tasks from other CPUs.
 */
4001
static void idle_balance(int this_cpu, struct rq *this_rq)
L
Linus Torvalds 已提交
4002 4003
{
	struct sched_domain *sd;
4004
	int pulled_task = 0;
I
Ingo Molnar 已提交
4005
	unsigned long next_balance = jiffies + HZ;
4006 4007 4008 4009
	cpumask_var_t tmpmask;

	if (!alloc_cpumask_var(&tmpmask, GFP_ATOMIC))
		return;
L
Linus Torvalds 已提交
4010 4011

	for_each_domain(this_cpu, sd) {
4012 4013 4014 4015 4016 4017
		unsigned long interval;

		if (!(sd->flags & SD_LOAD_BALANCE))
			continue;

		if (sd->flags & SD_BALANCE_NEWIDLE)
4018
			/* If we've pulled tasks over stop searching: */
4019
			pulled_task = load_balance_newidle(this_cpu, this_rq,
4020
							   sd, tmpmask);
4021 4022 4023 4024 4025 4026

		interval = msecs_to_jiffies(sd->balance_interval);
		if (time_after(next_balance, sd->last_balance + interval))
			next_balance = sd->last_balance + interval;
		if (pulled_task)
			break;
L
Linus Torvalds 已提交
4027
	}
I
Ingo Molnar 已提交
4028
	if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
4029 4030 4031 4032 4033
		/*
		 * We are going idle. next_balance may be set based on
		 * a busy processor. So reset next_balance.
		 */
		this_rq->next_balance = next_balance;
I
Ingo Molnar 已提交
4034
	}
4035
	free_cpumask_var(tmpmask);
L
Linus Torvalds 已提交
4036 4037 4038 4039 4040 4041 4042 4043 4044 4045
}

/*
 * active_load_balance is run by migration threads. It pushes running tasks
 * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
 * running on each physical CPU where possible, and avoids physical /
 * logical imbalances.
 *
 * Called with busiest_rq locked.
 */
4046
static void active_load_balance(struct rq *busiest_rq, int busiest_cpu)
L
Linus Torvalds 已提交
4047
{
4048
	int target_cpu = busiest_rq->push_cpu;
4049 4050
	struct sched_domain *sd;
	struct rq *target_rq;
4051

4052
	/* Is there any task to move? */
4053 4054 4055 4056
	if (busiest_rq->nr_running <= 1)
		return;

	target_rq = cpu_rq(target_cpu);
L
Linus Torvalds 已提交
4057 4058

	/*
4059
	 * This condition is "impossible", if it occurs
I
Ingo Molnar 已提交
4060
	 * we need to fix it. Originally reported by
4061
	 * Bjorn Helgaas on a 128-cpu setup.
L
Linus Torvalds 已提交
4062
	 */
4063
	BUG_ON(busiest_rq == target_rq);
L
Linus Torvalds 已提交
4064

4065 4066
	/* move a task from busiest_rq to target_rq */
	double_lock_balance(busiest_rq, target_rq);
4067 4068
	update_rq_clock(busiest_rq);
	update_rq_clock(target_rq);
4069 4070

	/* Search for an sd spanning us and the target CPU. */
4071
	for_each_domain(target_cpu, sd) {
4072
		if ((sd->flags & SD_LOAD_BALANCE) &&
4073
		    cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
4074
				break;
4075
	}
4076

4077
	if (likely(sd)) {
4078
		schedstat_inc(sd, alb_count);
4079

P
Peter Williams 已提交
4080 4081
		if (move_one_task(target_rq, target_cpu, busiest_rq,
				  sd, CPU_IDLE))
4082 4083 4084 4085
			schedstat_inc(sd, alb_pushed);
		else
			schedstat_inc(sd, alb_failed);
	}
4086
	double_unlock_balance(busiest_rq, target_rq);
L
Linus Torvalds 已提交
4087 4088
}

4089 4090 4091
#ifdef CONFIG_NO_HZ
static struct {
	atomic_t load_balancer;
4092
	cpumask_var_t cpu_mask;
4093 4094 4095 4096
} nohz ____cacheline_aligned = {
	.load_balancer = ATOMIC_INIT(-1),
};

4097
/*
4098 4099 4100 4101 4102 4103 4104 4105 4106 4107
 * This routine will try to nominate the ilb (idle load balancing)
 * owner among the cpus whose ticks are stopped. ilb owner will do the idle
 * load balancing on behalf of all those cpus. If all the cpus in the system
 * go into this tickless mode, then there will be no ilb owner (as there is
 * no need for one) and all the cpus will sleep till the next wakeup event
 * arrives...
 *
 * For the ilb owner, tick is not stopped. And this tick will be used
 * for idle load balancing. ilb owner will still be part of
 * nohz.cpu_mask..
4108
 *
4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123
 * While stopping the tick, this cpu will become the ilb owner if there
 * is no other owner. And will be the owner till that cpu becomes busy
 * or if all cpus in the system stop their ticks at which point
 * there is no need for ilb owner.
 *
 * When the ilb owner becomes busy, it nominates another owner, during the
 * next busy scheduler_tick()
 */
int select_nohz_load_balancer(int stop_tick)
{
	int cpu = smp_processor_id();

	if (stop_tick) {
		cpu_rq(cpu)->in_nohz_recently = 1;

4124 4125 4126 4127 4128 4129 4130 4131
		if (!cpu_active(cpu)) {
			if (atomic_read(&nohz.load_balancer) != cpu)
				return 0;

			/*
			 * If we are going offline and still the leader,
			 * give up!
			 */
4132 4133
			if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
				BUG();
4134

4135 4136 4137
			return 0;
		}

4138 4139
		cpumask_set_cpu(cpu, nohz.cpu_mask);

4140
		/* time for ilb owner also to sleep */
4141
		if (cpumask_weight(nohz.cpu_mask) == num_online_cpus()) {
4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153
			if (atomic_read(&nohz.load_balancer) == cpu)
				atomic_set(&nohz.load_balancer, -1);
			return 0;
		}

		if (atomic_read(&nohz.load_balancer) == -1) {
			/* make me the ilb owner */
			if (atomic_cmpxchg(&nohz.load_balancer, -1, cpu) == -1)
				return 1;
		} else if (atomic_read(&nohz.load_balancer) == cpu)
			return 1;
	} else {
4154
		if (!cpumask_test_cpu(cpu, nohz.cpu_mask))
4155 4156
			return 0;

4157
		cpumask_clear_cpu(cpu, nohz.cpu_mask);
4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169

		if (atomic_read(&nohz.load_balancer) == cpu)
			if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
				BUG();
	}
	return 0;
}
#endif

static DEFINE_SPINLOCK(balancing);

/*
4170 4171 4172 4173 4174
 * It checks each scheduling domain to see if it is due to be balanced,
 * and initiates a balancing operation if so.
 *
 * Balancing parameters are set up in arch_init_sched_domains.
 */
A
Alexey Dobriyan 已提交
4175
static void rebalance_domains(int cpu, enum cpu_idle_type idle)
4176
{
4177 4178
	int balance = 1;
	struct rq *rq = cpu_rq(cpu);
4179 4180
	unsigned long interval;
	struct sched_domain *sd;
4181
	/* Earliest time when we have to do rebalance again */
4182
	unsigned long next_balance = jiffies + 60*HZ;
4183
	int update_next_balance = 0;
4184
	int need_serialize;
4185 4186 4187 4188 4189
	cpumask_var_t tmp;

	/* Fails alloc?  Rebalancing probably not a priority right now. */
	if (!alloc_cpumask_var(&tmp, GFP_ATOMIC))
		return;
L
Linus Torvalds 已提交
4190

4191
	for_each_domain(cpu, sd) {
L
Linus Torvalds 已提交
4192 4193 4194 4195
		if (!(sd->flags & SD_LOAD_BALANCE))
			continue;

		interval = sd->balance_interval;
I
Ingo Molnar 已提交
4196
		if (idle != CPU_IDLE)
L
Linus Torvalds 已提交
4197 4198 4199 4200 4201 4202
			interval *= sd->busy_factor;

		/* scale ms to jiffies */
		interval = msecs_to_jiffies(interval);
		if (unlikely(!interval))
			interval = 1;
I
Ingo Molnar 已提交
4203 4204 4205
		if (interval > HZ*NR_CPUS/10)
			interval = HZ*NR_CPUS/10;

4206
		need_serialize = sd->flags & SD_SERIALIZE;
L
Linus Torvalds 已提交
4207

4208
		if (need_serialize) {
4209 4210 4211 4212
			if (!spin_trylock(&balancing))
				goto out;
		}

4213
		if (time_after_eq(jiffies, sd->last_balance + interval)) {
4214
			if (load_balance(cpu, rq, sd, idle, &balance, tmp)) {
4215 4216
				/*
				 * We've pulled tasks over so either we're no
N
Nick Piggin 已提交
4217 4218 4219
				 * longer idle, or one of our SMT siblings is
				 * not idle.
				 */
I
Ingo Molnar 已提交
4220
				idle = CPU_NOT_IDLE;
L
Linus Torvalds 已提交
4221
			}
4222
			sd->last_balance = jiffies;
L
Linus Torvalds 已提交
4223
		}
4224
		if (need_serialize)
4225 4226
			spin_unlock(&balancing);
out:
4227
		if (time_after(next_balance, sd->last_balance + interval)) {
4228
			next_balance = sd->last_balance + interval;
4229 4230
			update_next_balance = 1;
		}
4231 4232 4233 4234 4235 4236 4237 4238

		/*
		 * Stop the load balance at this level. There is another
		 * CPU in our sched group which is doing load balancing more
		 * actively.
		 */
		if (!balance)
			break;
L
Linus Torvalds 已提交
4239
	}
4240 4241 4242 4243 4244 4245 4246 4247

	/*
	 * next_balance will be updated only when there is a need.
	 * When the cpu is attached to null domain for ex, it will not be
	 * updated.
	 */
	if (likely(update_next_balance))
		rq->next_balance = next_balance;
4248 4249

	free_cpumask_var(tmp);
4250 4251 4252 4253 4254 4255 4256 4257 4258
}

/*
 * run_rebalance_domains is triggered when needed from the scheduler tick.
 * In CONFIG_NO_HZ case, the idle load balance owner will do the
 * rebalancing for all the cpus for whom scheduler ticks are stopped.
 */
static void run_rebalance_domains(struct softirq_action *h)
{
I
Ingo Molnar 已提交
4259 4260 4261 4262
	int this_cpu = smp_processor_id();
	struct rq *this_rq = cpu_rq(this_cpu);
	enum cpu_idle_type idle = this_rq->idle_at_tick ?
						CPU_IDLE : CPU_NOT_IDLE;
4263

I
Ingo Molnar 已提交
4264
	rebalance_domains(this_cpu, idle);
4265 4266 4267 4268 4269 4270 4271

#ifdef CONFIG_NO_HZ
	/*
	 * If this cpu is the owner for idle load balancing, then do the
	 * balancing on behalf of the other idle cpus whose ticks are
	 * stopped.
	 */
I
Ingo Molnar 已提交
4272 4273
	if (this_rq->idle_at_tick &&
	    atomic_read(&nohz.load_balancer) == this_cpu) {
4274 4275 4276
		struct rq *rq;
		int balance_cpu;

4277 4278 4279 4280
		for_each_cpu(balance_cpu, nohz.cpu_mask) {
			if (balance_cpu == this_cpu)
				continue;

4281 4282 4283 4284 4285 4286 4287 4288
			/*
			 * If this cpu gets work to do, stop the load balancing
			 * work being done for other cpus. Next load
			 * balancing owner will pick it up.
			 */
			if (need_resched())
				break;

4289
			rebalance_domains(balance_cpu, CPU_IDLE);
4290 4291

			rq = cpu_rq(balance_cpu);
I
Ingo Molnar 已提交
4292 4293
			if (time_after(this_rq->next_balance, rq->next_balance))
				this_rq->next_balance = rq->next_balance;
4294 4295 4296 4297 4298
		}
	}
#endif
}

4299 4300 4301 4302 4303
static inline int on_null_domain(int cpu)
{
	return !rcu_dereference(cpu_rq(cpu)->sd);
}

4304 4305 4306 4307 4308 4309 4310
/*
 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
 *
 * In case of CONFIG_NO_HZ, this is the place where we nominate a new
 * idle load balancing owner or decide to stop the periodic load balancing,
 * if the whole system is idle.
 */
I
Ingo Molnar 已提交
4311
static inline void trigger_load_balance(struct rq *rq, int cpu)
4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322
{
#ifdef CONFIG_NO_HZ
	/*
	 * If we were in the nohz mode recently and busy at the current
	 * scheduler tick, then check if we need to nominate new idle
	 * load balancer.
	 */
	if (rq->in_nohz_recently && !rq->idle_at_tick) {
		rq->in_nohz_recently = 0;

		if (atomic_read(&nohz.load_balancer) == cpu) {
4323
			cpumask_clear_cpu(cpu, nohz.cpu_mask);
4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335
			atomic_set(&nohz.load_balancer, -1);
		}

		if (atomic_read(&nohz.load_balancer) == -1) {
			/*
			 * simple selection for now: Nominate the
			 * first cpu in the nohz list to be the next
			 * ilb owner.
			 *
			 * TBD: Traverse the sched domains and nominate
			 * the nearest cpu in the nohz.cpu_mask.
			 */
4336
			int ilb = cpumask_first(nohz.cpu_mask);
4337

4338
			if (ilb < nr_cpu_ids)
4339 4340 4341 4342 4343 4344 4345 4346 4347
				resched_cpu(ilb);
		}
	}

	/*
	 * If this cpu is idle and doing idle load balancing for all the
	 * cpus with ticks stopped, is it time for that to stop?
	 */
	if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) == cpu &&
4348
	    cpumask_weight(nohz.cpu_mask) == num_online_cpus()) {
4349 4350 4351 4352 4353 4354 4355 4356 4357
		resched_cpu(cpu);
		return;
	}

	/*
	 * If this cpu is idle and the idle load balancing is done by
	 * someone else, then no need raise the SCHED_SOFTIRQ
	 */
	if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) != cpu &&
4358
	    cpumask_test_cpu(cpu, nohz.cpu_mask))
4359 4360
		return;
#endif
4361 4362 4363
	/* Don't need to rebalance while attached to NULL domain */
	if (time_after_eq(jiffies, rq->next_balance) &&
	    likely(!on_null_domain(cpu)))
4364
		raise_softirq(SCHED_SOFTIRQ);
L
Linus Torvalds 已提交
4365
}
I
Ingo Molnar 已提交
4366 4367 4368

#else	/* CONFIG_SMP */

L
Linus Torvalds 已提交
4369 4370 4371
/*
 * on UP we do not need to balance between CPUs:
 */
4372
static inline void idle_balance(int cpu, struct rq *rq)
L
Linus Torvalds 已提交
4373 4374
{
}
I
Ingo Molnar 已提交
4375

L
Linus Torvalds 已提交
4376 4377 4378 4379 4380 4381 4382
#endif

DEFINE_PER_CPU(struct kernel_stat, kstat);

EXPORT_PER_CPU_SYMBOL(kstat);

/*
4383 4384
 * Return any ns on the sched_clock that have not yet been banked in
 * @p in case that task is currently running.
L
Linus Torvalds 已提交
4385
 */
4386
unsigned long long task_delta_exec(struct task_struct *p)
L
Linus Torvalds 已提交
4387 4388
{
	unsigned long flags;
4389
	struct rq *rq;
4390
	u64 ns = 0;
4391

4392
	rq = task_rq_lock(p, &flags);
4393

4394
	if (task_current(rq, p)) {
4395 4396
		u64 delta_exec;

I
Ingo Molnar 已提交
4397 4398
		update_rq_clock(rq);
		delta_exec = rq->clock - p->se.exec_start;
4399
		if ((s64)delta_exec > 0)
4400
			ns = delta_exec;
4401
	}
4402

4403
	task_rq_unlock(rq, &flags);
4404

L
Linus Torvalds 已提交
4405 4406 4407 4408 4409 4410 4411
	return ns;
}

/*
 * Account user cpu time to a process.
 * @p: the process that the cpu time gets accounted to
 * @cputime: the cpu time spent in user space since the last update
4412
 * @cputime_scaled: cputime scaled by cpu frequency
L
Linus Torvalds 已提交
4413
 */
4414 4415
void account_user_time(struct task_struct *p, cputime_t cputime,
		       cputime_t cputime_scaled)
L
Linus Torvalds 已提交
4416 4417 4418 4419
{
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
	cputime64_t tmp;

4420
	/* Add user time to process. */
L
Linus Torvalds 已提交
4421
	p->utime = cputime_add(p->utime, cputime);
4422
	p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
4423
	account_group_user_time(p, cputime);
L
Linus Torvalds 已提交
4424 4425 4426 4427 4428 4429 4430

	/* Add user time to cpustat. */
	tmp = cputime_to_cputime64(cputime);
	if (TASK_NICE(p) > 0)
		cpustat->nice = cputime64_add(cpustat->nice, tmp);
	else
		cpustat->user = cputime64_add(cpustat->user, tmp);
4431 4432
	/* Account for user time used */
	acct_update_integrals(p);
L
Linus Torvalds 已提交
4433 4434
}

4435 4436 4437 4438
/*
 * Account guest cpu time to a process.
 * @p: the process that the cpu time gets accounted to
 * @cputime: the cpu time spent in virtual machine since the last update
4439
 * @cputime_scaled: cputime scaled by cpu frequency
4440
 */
4441 4442
static void account_guest_time(struct task_struct *p, cputime_t cputime,
			       cputime_t cputime_scaled)
4443 4444 4445 4446 4447 4448
{
	cputime64_t tmp;
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;

	tmp = cputime_to_cputime64(cputime);

4449
	/* Add guest time to process. */
4450
	p->utime = cputime_add(p->utime, cputime);
4451
	p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
4452
	account_group_user_time(p, cputime);
4453 4454
	p->gtime = cputime_add(p->gtime, cputime);

4455
	/* Add guest time to cpustat. */
4456 4457 4458 4459
	cpustat->user = cputime64_add(cpustat->user, tmp);
	cpustat->guest = cputime64_add(cpustat->guest, tmp);
}

L
Linus Torvalds 已提交
4460 4461 4462 4463 4464
/*
 * Account system cpu time to a process.
 * @p: the process that the cpu time gets accounted to
 * @hardirq_offset: the offset to subtract from hardirq_count()
 * @cputime: the cpu time spent in kernel space since the last update
4465
 * @cputime_scaled: cputime scaled by cpu frequency
L
Linus Torvalds 已提交
4466 4467
 */
void account_system_time(struct task_struct *p, int hardirq_offset,
4468
			 cputime_t cputime, cputime_t cputime_scaled)
L
Linus Torvalds 已提交
4469 4470 4471 4472
{
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
	cputime64_t tmp;

4473
	if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
4474
		account_guest_time(p, cputime, cputime_scaled);
4475 4476
		return;
	}
4477

4478
	/* Add system time to process. */
L
Linus Torvalds 已提交
4479
	p->stime = cputime_add(p->stime, cputime);
4480
	p->stimescaled = cputime_add(p->stimescaled, cputime_scaled);
4481
	account_group_system_time(p, cputime);
L
Linus Torvalds 已提交
4482 4483 4484 4485 4486 4487 4488 4489

	/* Add system time to cpustat. */
	tmp = cputime_to_cputime64(cputime);
	if (hardirq_count() - hardirq_offset)
		cpustat->irq = cputime64_add(cpustat->irq, tmp);
	else if (softirq_count())
		cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
	else
4490 4491
		cpustat->system = cputime64_add(cpustat->system, tmp);

L
Linus Torvalds 已提交
4492 4493 4494 4495
	/* Account for system time used */
	acct_update_integrals(p);
}

4496
/*
L
Linus Torvalds 已提交
4497 4498
 * Account for involuntary wait time.
 * @steal: the cpu time spent in involuntary wait
4499
 */
4500
void account_steal_time(cputime_t cputime)
4501
{
4502 4503 4504 4505
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
	cputime64_t cputime64 = cputime_to_cputime64(cputime);

	cpustat->steal = cputime64_add(cpustat->steal, cputime64);
4506 4507
}

L
Linus Torvalds 已提交
4508
/*
4509 4510
 * Account for idle time.
 * @cputime: the cpu time spent in idle wait
L
Linus Torvalds 已提交
4511
 */
4512
void account_idle_time(cputime_t cputime)
L
Linus Torvalds 已提交
4513 4514
{
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
4515
	cputime64_t cputime64 = cputime_to_cputime64(cputime);
4516
	struct rq *rq = this_rq();
L
Linus Torvalds 已提交
4517

4518 4519 4520 4521
	if (atomic_read(&rq->nr_iowait) > 0)
		cpustat->iowait = cputime64_add(cpustat->iowait, cputime64);
	else
		cpustat->idle = cputime64_add(cpustat->idle, cputime64);
L
Linus Torvalds 已提交
4522 4523
}

4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562
#ifndef CONFIG_VIRT_CPU_ACCOUNTING

/*
 * Account a single tick of cpu time.
 * @p: the process that the cpu time gets accounted to
 * @user_tick: indicates if the tick is a user or a system tick
 */
void account_process_tick(struct task_struct *p, int user_tick)
{
	cputime_t one_jiffy = jiffies_to_cputime(1);
	cputime_t one_jiffy_scaled = cputime_to_scaled(one_jiffy);
	struct rq *rq = this_rq();

	if (user_tick)
		account_user_time(p, one_jiffy, one_jiffy_scaled);
	else if (p != rq->idle)
		account_system_time(p, HARDIRQ_OFFSET, one_jiffy,
				    one_jiffy_scaled);
	else
		account_idle_time(one_jiffy);
}

/*
 * Account multiple ticks of steal time.
 * @p: the process from which the cpu time has been stolen
 * @ticks: number of stolen ticks
 */
void account_steal_ticks(unsigned long ticks)
{
	account_steal_time(jiffies_to_cputime(ticks));
}

/*
 * Account multiple ticks of idle time.
 * @ticks: number of stolen ticks
 */
void account_idle_ticks(unsigned long ticks)
{
	account_idle_time(jiffies_to_cputime(ticks));
L
Linus Torvalds 已提交
4563 4564
}

4565 4566
#endif

4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625
/*
 * Use precise platform statistics if available:
 */
#ifdef CONFIG_VIRT_CPU_ACCOUNTING
cputime_t task_utime(struct task_struct *p)
{
	return p->utime;
}

cputime_t task_stime(struct task_struct *p)
{
	return p->stime;
}
#else
cputime_t task_utime(struct task_struct *p)
{
	clock_t utime = cputime_to_clock_t(p->utime),
		total = utime + cputime_to_clock_t(p->stime);
	u64 temp;

	/*
	 * Use CFS's precise accounting:
	 */
	temp = (u64)nsec_to_clock_t(p->se.sum_exec_runtime);

	if (total) {
		temp *= utime;
		do_div(temp, total);
	}
	utime = (clock_t)temp;

	p->prev_utime = max(p->prev_utime, clock_t_to_cputime(utime));
	return p->prev_utime;
}

cputime_t task_stime(struct task_struct *p)
{
	clock_t stime;

	/*
	 * Use CFS's precise accounting. (we subtract utime from
	 * the total, to make sure the total observed by userspace
	 * grows monotonically - apps rely on that):
	 */
	stime = nsec_to_clock_t(p->se.sum_exec_runtime) -
			cputime_to_clock_t(task_utime(p));

	if (stime >= 0)
		p->prev_stime = max(p->prev_stime, clock_t_to_cputime(stime));

	return p->prev_stime;
}
#endif

inline cputime_t task_gtime(struct task_struct *p)
{
	return p->gtime;
}

4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636
/*
 * This function gets called by the timer code, with HZ frequency.
 * We call it with interrupts disabled.
 *
 * It also gets called by the fork code, when changing the parent's
 * timeslices.
 */
void scheduler_tick(void)
{
	int cpu = smp_processor_id();
	struct rq *rq = cpu_rq(cpu);
I
Ingo Molnar 已提交
4637
	struct task_struct *curr = rq->curr;
4638 4639

	sched_clock_tick();
I
Ingo Molnar 已提交
4640 4641

	spin_lock(&rq->lock);
4642
	update_rq_clock(rq);
4643
	update_cpu_load(rq);
P
Peter Zijlstra 已提交
4644
	curr->sched_class->task_tick(rq, curr, 0);
I
Ingo Molnar 已提交
4645
	spin_unlock(&rq->lock);
4646

4647
#ifdef CONFIG_SMP
I
Ingo Molnar 已提交
4648 4649
	rq->idle_at_tick = idle_cpu(cpu);
	trigger_load_balance(rq, cpu);
4650
#endif
L
Linus Torvalds 已提交
4651 4652
}

4653 4654 4655 4656 4657 4658 4659 4660 4661 4662 4663 4664
#if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
				defined(CONFIG_PREEMPT_TRACER))

static inline unsigned long get_parent_ip(unsigned long addr)
{
	if (in_lock_functions(addr)) {
		addr = CALLER_ADDR2;
		if (in_lock_functions(addr))
			addr = CALLER_ADDR3;
	}
	return addr;
}
L
Linus Torvalds 已提交
4665

4666
void __kprobes add_preempt_count(int val)
L
Linus Torvalds 已提交
4667
{
4668
#ifdef CONFIG_DEBUG_PREEMPT
L
Linus Torvalds 已提交
4669 4670 4671
	/*
	 * Underflow?
	 */
4672 4673
	if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
		return;
4674
#endif
L
Linus Torvalds 已提交
4675
	preempt_count() += val;
4676
#ifdef CONFIG_DEBUG_PREEMPT
L
Linus Torvalds 已提交
4677 4678 4679
	/*
	 * Spinlock count overflowing soon?
	 */
4680 4681
	DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
				PREEMPT_MASK - 10);
4682 4683 4684
#endif
	if (preempt_count() == val)
		trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
L
Linus Torvalds 已提交
4685 4686 4687
}
EXPORT_SYMBOL(add_preempt_count);

4688
void __kprobes sub_preempt_count(int val)
L
Linus Torvalds 已提交
4689
{
4690
#ifdef CONFIG_DEBUG_PREEMPT
L
Linus Torvalds 已提交
4691 4692 4693
	/*
	 * Underflow?
	 */
4694
	if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
4695
		return;
L
Linus Torvalds 已提交
4696 4697 4698
	/*
	 * Is the spinlock portion underflowing?
	 */
4699 4700 4701
	if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
			!(preempt_count() & PREEMPT_MASK)))
		return;
4702
#endif
4703

4704 4705
	if (preempt_count() == val)
		trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
L
Linus Torvalds 已提交
4706 4707 4708 4709 4710 4711 4712
	preempt_count() -= val;
}
EXPORT_SYMBOL(sub_preempt_count);

#endif

/*
I
Ingo Molnar 已提交
4713
 * Print scheduling while atomic bug:
L
Linus Torvalds 已提交
4714
 */
I
Ingo Molnar 已提交
4715
static noinline void __schedule_bug(struct task_struct *prev)
L
Linus Torvalds 已提交
4716
{
4717 4718 4719 4720 4721
	struct pt_regs *regs = get_irq_regs();

	printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
		prev->comm, prev->pid, preempt_count());

I
Ingo Molnar 已提交
4722
	debug_show_held_locks(prev);
4723
	print_modules();
I
Ingo Molnar 已提交
4724 4725
	if (irqs_disabled())
		print_irqtrace_events(prev);
4726 4727 4728 4729 4730

	if (regs)
		show_regs(regs);
	else
		dump_stack();
I
Ingo Molnar 已提交
4731
}
L
Linus Torvalds 已提交
4732

I
Ingo Molnar 已提交
4733 4734 4735 4736 4737
/*
 * Various schedule()-time debugging checks and statistics:
 */
static inline void schedule_debug(struct task_struct *prev)
{
L
Linus Torvalds 已提交
4738
	/*
I
Ingo Molnar 已提交
4739
	 * Test if we are atomic. Since do_exit() needs to call into
L
Linus Torvalds 已提交
4740 4741 4742
	 * schedule() atomically, we ignore that path for now.
	 * Otherwise, whine if we are scheduling when we should not be.
	 */
4743
	if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
I
Ingo Molnar 已提交
4744 4745
		__schedule_bug(prev);

L
Linus Torvalds 已提交
4746 4747
	profile_hit(SCHED_PROFILING, __builtin_return_address(0));

4748
	schedstat_inc(this_rq(), sched_count);
I
Ingo Molnar 已提交
4749 4750
#ifdef CONFIG_SCHEDSTATS
	if (unlikely(prev->lock_depth >= 0)) {
4751 4752
		schedstat_inc(this_rq(), bkl_count);
		schedstat_inc(prev, sched_info.bkl_count);
I
Ingo Molnar 已提交
4753 4754
	}
#endif
I
Ingo Molnar 已提交
4755 4756
}

M
Mike Galbraith 已提交
4757 4758 4759 4760 4761 4762 4763 4764 4765 4766 4767 4768 4769 4770 4771 4772 4773 4774 4775 4776 4777 4778
static void put_prev_task(struct rq *rq, struct task_struct *prev)
{
	if (prev->state == TASK_RUNNING) {
		u64 runtime = prev->se.sum_exec_runtime;

		runtime -= prev->se.prev_sum_exec_runtime;
		runtime = min_t(u64, runtime, 2*sysctl_sched_migration_cost);

		/*
		 * In order to avoid avg_overlap growing stale when we are
		 * indeed overlapping and hence not getting put to sleep, grow
		 * the avg_overlap on preemption.
		 *
		 * We use the average preemption runtime because that
		 * correlates to the amount of cache footprint a task can
		 * build up.
		 */
		update_avg(&prev->se.avg_overlap, runtime);
	}
	prev->sched_class->put_prev_task(rq, prev);
}

I
Ingo Molnar 已提交
4779 4780 4781 4782
/*
 * Pick up the highest-prio task:
 */
static inline struct task_struct *
4783
pick_next_task(struct rq *rq)
I
Ingo Molnar 已提交
4784
{
4785
	const struct sched_class *class;
I
Ingo Molnar 已提交
4786
	struct task_struct *p;
L
Linus Torvalds 已提交
4787 4788

	/*
I
Ingo Molnar 已提交
4789 4790
	 * Optimization: we know that if all tasks are in
	 * the fair class we can call that function directly:
L
Linus Torvalds 已提交
4791
	 */
I
Ingo Molnar 已提交
4792
	if (likely(rq->nr_running == rq->cfs.nr_running)) {
4793
		p = fair_sched_class.pick_next_task(rq);
I
Ingo Molnar 已提交
4794 4795
		if (likely(p))
			return p;
L
Linus Torvalds 已提交
4796 4797
	}

I
Ingo Molnar 已提交
4798 4799
	class = sched_class_highest;
	for ( ; ; ) {
4800
		p = class->pick_next_task(rq);
I
Ingo Molnar 已提交
4801 4802 4803 4804 4805 4806 4807 4808 4809
		if (p)
			return p;
		/*
		 * Will never be NULL as the idle class always
		 * returns a non-NULL p:
		 */
		class = class->next;
	}
}
L
Linus Torvalds 已提交
4810

I
Ingo Molnar 已提交
4811 4812 4813 4814 4815 4816
/*
 * schedule() is the main scheduler function.
 */
asmlinkage void __sched schedule(void)
{
	struct task_struct *prev, *next;
4817
	unsigned long *switch_count;
I
Ingo Molnar 已提交
4818
	struct rq *rq;
4819
	int cpu;
I
Ingo Molnar 已提交
4820 4821 4822 4823 4824 4825 4826 4827 4828 4829 4830 4831 4832

need_resched:
	preempt_disable();
	cpu = smp_processor_id();
	rq = cpu_rq(cpu);
	rcu_qsctr_inc(cpu);
	prev = rq->curr;
	switch_count = &prev->nivcsw;

	release_kernel_lock(prev);
need_resched_nonpreemptible:

	schedule_debug(prev);
L
Linus Torvalds 已提交
4833

4834
	if (sched_feat(HRTICK))
M
Mike Galbraith 已提交
4835
		hrtick_clear(rq);
P
Peter Zijlstra 已提交
4836

4837
	spin_lock_irq(&rq->lock);
4838
	update_rq_clock(rq);
4839
	clear_tsk_need_resched(prev);
L
Linus Torvalds 已提交
4840 4841

	if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
4842
		if (unlikely(signal_pending_state(prev->state, prev)))
L
Linus Torvalds 已提交
4843
			prev->state = TASK_RUNNING;
4844
		else
4845
			deactivate_task(rq, prev, 1);
I
Ingo Molnar 已提交
4846
		switch_count = &prev->nvcsw;
L
Linus Torvalds 已提交
4847 4848
	}

4849 4850 4851 4852
#ifdef CONFIG_SMP
	if (prev->sched_class->pre_schedule)
		prev->sched_class->pre_schedule(rq, prev);
#endif
4853

I
Ingo Molnar 已提交
4854
	if (unlikely(!rq->nr_running))
L
Linus Torvalds 已提交
4855 4856
		idle_balance(cpu, rq);

M
Mike Galbraith 已提交
4857
	put_prev_task(rq, prev);
4858
	next = pick_next_task(rq);
L
Linus Torvalds 已提交
4859 4860

	if (likely(prev != next)) {
4861 4862
		sched_info_switch(prev, next);

L
Linus Torvalds 已提交
4863 4864 4865 4866
		rq->nr_switches++;
		rq->curr = next;
		++*switch_count;

I
Ingo Molnar 已提交
4867
		context_switch(rq, prev, next); /* unlocks the rq */
P
Peter Zijlstra 已提交
4868 4869 4870 4871 4872 4873
		/*
		 * the context switch might have flipped the stack from under
		 * us, hence refresh the local variables.
		 */
		cpu = smp_processor_id();
		rq = cpu_rq(cpu);
L
Linus Torvalds 已提交
4874 4875 4876
	} else
		spin_unlock_irq(&rq->lock);

P
Peter Zijlstra 已提交
4877
	if (unlikely(reacquire_kernel_lock(current) < 0))
L
Linus Torvalds 已提交
4878
		goto need_resched_nonpreemptible;
P
Peter Zijlstra 已提交
4879

L
Linus Torvalds 已提交
4880 4881 4882 4883 4884 4885 4886 4887
	preempt_enable_no_resched();
	if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
		goto need_resched;
}
EXPORT_SYMBOL(schedule);

#ifdef CONFIG_PREEMPT
/*
4888
 * this is the entry point to schedule() from in-kernel preemption
I
Ingo Molnar 已提交
4889
 * off of preempt_enable. Kernel preemptions off return from interrupt
L
Linus Torvalds 已提交
4890 4891 4892 4893 4894
 * occur there and call schedule directly.
 */
asmlinkage void __sched preempt_schedule(void)
{
	struct thread_info *ti = current_thread_info();
4895

L
Linus Torvalds 已提交
4896 4897
	/*
	 * If there is a non-zero preempt_count or interrupts are disabled,
I
Ingo Molnar 已提交
4898
	 * we do not want to preempt the current task. Just return..
L
Linus Torvalds 已提交
4899
	 */
N
Nick Piggin 已提交
4900
	if (likely(ti->preempt_count || irqs_disabled()))
L
Linus Torvalds 已提交
4901 4902
		return;

4903 4904 4905 4906
	do {
		add_preempt_count(PREEMPT_ACTIVE);
		schedule();
		sub_preempt_count(PREEMPT_ACTIVE);
L
Linus Torvalds 已提交
4907

4908 4909 4910 4911 4912
		/*
		 * Check again in case we missed a preemption opportunity
		 * between schedule and now.
		 */
		barrier();
4913
	} while (need_resched());
L
Linus Torvalds 已提交
4914 4915 4916 4917
}
EXPORT_SYMBOL(preempt_schedule);

/*
4918
 * this is the entry point to schedule() from kernel preemption
L
Linus Torvalds 已提交
4919 4920 4921 4922 4923 4924 4925
 * off of irq context.
 * Note, that this is called and return with irqs disabled. This will
 * protect us against recursive calling from irq.
 */
asmlinkage void __sched preempt_schedule_irq(void)
{
	struct thread_info *ti = current_thread_info();
4926

4927
	/* Catch callers which need to be fixed */
L
Linus Torvalds 已提交
4928 4929
	BUG_ON(ti->preempt_count || !irqs_disabled());

4930 4931 4932 4933 4934 4935
	do {
		add_preempt_count(PREEMPT_ACTIVE);
		local_irq_enable();
		schedule();
		local_irq_disable();
		sub_preempt_count(PREEMPT_ACTIVE);
L
Linus Torvalds 已提交
4936

4937 4938 4939 4940 4941
		/*
		 * Check again in case we missed a preemption opportunity
		 * between schedule and now.
		 */
		barrier();
4942
	} while (need_resched());
L
Linus Torvalds 已提交
4943 4944 4945 4946
}

#endif /* CONFIG_PREEMPT */

I
Ingo Molnar 已提交
4947 4948
int default_wake_function(wait_queue_t *curr, unsigned mode, int sync,
			  void *key)
L
Linus Torvalds 已提交
4949
{
4950
	return try_to_wake_up(curr->private, mode, sync);
L
Linus Torvalds 已提交
4951 4952 4953 4954
}
EXPORT_SYMBOL(default_wake_function);

/*
I
Ingo Molnar 已提交
4955 4956
 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
L
Linus Torvalds 已提交
4957 4958 4959
 * number) then we wake all the non-exclusive tasks and one exclusive task.
 *
 * There are circumstances in which we can try to wake a task which has already
I
Ingo Molnar 已提交
4960
 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
L
Linus Torvalds 已提交
4961 4962
 * zero in this (rare) case, and we handle it by continuing to scan the queue.
 */
4963 4964
void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
			int nr_exclusive, int sync, void *key)
L
Linus Torvalds 已提交
4965
{
4966
	wait_queue_t *curr, *next;
L
Linus Torvalds 已提交
4967

4968
	list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
4969 4970
		unsigned flags = curr->flags;

L
Linus Torvalds 已提交
4971
		if (curr->func(curr, mode, sync, key) &&
4972
				(flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
L
Linus Torvalds 已提交
4973 4974 4975 4976 4977 4978 4979 4980 4981
			break;
	}
}

/**
 * __wake_up - wake up threads blocked on a waitqueue.
 * @q: the waitqueue
 * @mode: which threads
 * @nr_exclusive: how many wake-one or wake-many threads to wake up
4982
 * @key: is directly passed to the wakeup function
L
Linus Torvalds 已提交
4983
 */
4984
void __wake_up(wait_queue_head_t *q, unsigned int mode,
I
Ingo Molnar 已提交
4985
			int nr_exclusive, void *key)
L
Linus Torvalds 已提交
4986 4987 4988 4989 4990 4991 4992 4993 4994 4995 4996 4997
{
	unsigned long flags;

	spin_lock_irqsave(&q->lock, flags);
	__wake_up_common(q, mode, nr_exclusive, 0, key);
	spin_unlock_irqrestore(&q->lock, flags);
}
EXPORT_SYMBOL(__wake_up);

/*
 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
 */
4998
void __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
L
Linus Torvalds 已提交
4999 5000 5001 5002 5003
{
	__wake_up_common(q, mode, 1, 0, NULL);
}

/**
5004
 * __wake_up_sync - wake up threads blocked on a waitqueue.
L
Linus Torvalds 已提交
5005 5006 5007 5008 5009 5010 5011 5012 5013 5014 5015
 * @q: the waitqueue
 * @mode: which threads
 * @nr_exclusive: how many wake-one or wake-many threads to wake up
 *
 * The sync wakeup differs that the waker knows that it will schedule
 * away soon, so while the target thread will be woken up, it will not
 * be migrated to another CPU - ie. the two threads are 'synchronized'
 * with each other. This can prevent needless bouncing between CPUs.
 *
 * On UP it can prevent extra preemption.
 */
5016
void
I
Ingo Molnar 已提交
5017
__wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
L
Linus Torvalds 已提交
5018 5019 5020 5021 5022 5023 5024 5025 5026 5027 5028 5029 5030 5031 5032 5033
{
	unsigned long flags;
	int sync = 1;

	if (unlikely(!q))
		return;

	if (unlikely(!nr_exclusive))
		sync = 0;

	spin_lock_irqsave(&q->lock, flags);
	__wake_up_common(q, mode, nr_exclusive, sync, NULL);
	spin_unlock_irqrestore(&q->lock, flags);
}
EXPORT_SYMBOL_GPL(__wake_up_sync);	/* For internal use only */

5034 5035 5036 5037 5038 5039 5040 5041 5042
/**
 * complete: - signals a single thread waiting on this completion
 * @x:  holds the state of this particular completion
 *
 * This will wake up a single thread waiting on this completion. Threads will be
 * awakened in the same order in which they were queued.
 *
 * See also complete_all(), wait_for_completion() and related routines.
 */
5043
void complete(struct completion *x)
L
Linus Torvalds 已提交
5044 5045 5046 5047 5048
{
	unsigned long flags;

	spin_lock_irqsave(&x->wait.lock, flags);
	x->done++;
5049
	__wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
L
Linus Torvalds 已提交
5050 5051 5052 5053
	spin_unlock_irqrestore(&x->wait.lock, flags);
}
EXPORT_SYMBOL(complete);

5054 5055 5056 5057 5058 5059
/**
 * complete_all: - signals all threads waiting on this completion
 * @x:  holds the state of this particular completion
 *
 * This will wake up all threads waiting on this particular completion event.
 */
5060
void complete_all(struct completion *x)
L
Linus Torvalds 已提交
5061 5062 5063 5064 5065
{
	unsigned long flags;

	spin_lock_irqsave(&x->wait.lock, flags);
	x->done += UINT_MAX/2;
5066
	__wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
L
Linus Torvalds 已提交
5067 5068 5069 5070
	spin_unlock_irqrestore(&x->wait.lock, flags);
}
EXPORT_SYMBOL(complete_all);

5071 5072
static inline long __sched
do_wait_for_common(struct completion *x, long timeout, int state)
L
Linus Torvalds 已提交
5073 5074 5075 5076 5077 5078 5079
{
	if (!x->done) {
		DECLARE_WAITQUEUE(wait, current);

		wait.flags |= WQ_FLAG_EXCLUSIVE;
		__add_wait_queue_tail(&x->wait, &wait);
		do {
5080
			if (signal_pending_state(state, current)) {
5081 5082
				timeout = -ERESTARTSYS;
				break;
5083 5084
			}
			__set_current_state(state);
L
Linus Torvalds 已提交
5085 5086 5087
			spin_unlock_irq(&x->wait.lock);
			timeout = schedule_timeout(timeout);
			spin_lock_irq(&x->wait.lock);
5088
		} while (!x->done && timeout);
L
Linus Torvalds 已提交
5089
		__remove_wait_queue(&x->wait, &wait);
5090 5091
		if (!x->done)
			return timeout;
L
Linus Torvalds 已提交
5092 5093
	}
	x->done--;
5094
	return timeout ?: 1;
L
Linus Torvalds 已提交
5095 5096
}

5097 5098
static long __sched
wait_for_common(struct completion *x, long timeout, int state)
L
Linus Torvalds 已提交
5099 5100 5101 5102
{
	might_sleep();

	spin_lock_irq(&x->wait.lock);
5103
	timeout = do_wait_for_common(x, timeout, state);
L
Linus Torvalds 已提交
5104
	spin_unlock_irq(&x->wait.lock);
5105 5106
	return timeout;
}
L
Linus Torvalds 已提交
5107

5108 5109 5110 5111 5112 5113 5114 5115 5116 5117
/**
 * wait_for_completion: - waits for completion of a task
 * @x:  holds the state of this particular completion
 *
 * This waits to be signaled for completion of a specific task. It is NOT
 * interruptible and there is no timeout.
 *
 * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
 * and interrupt capability. Also see complete().
 */
5118
void __sched wait_for_completion(struct completion *x)
5119 5120
{
	wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
L
Linus Torvalds 已提交
5121
}
5122
EXPORT_SYMBOL(wait_for_completion);
L
Linus Torvalds 已提交
5123

5124 5125 5126 5127 5128 5129 5130 5131 5132
/**
 * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
 * @x:  holds the state of this particular completion
 * @timeout:  timeout value in jiffies
 *
 * This waits for either a completion of a specific task to be signaled or for a
 * specified timeout to expire. The timeout is in jiffies. It is not
 * interruptible.
 */
5133
unsigned long __sched
5134
wait_for_completion_timeout(struct completion *x, unsigned long timeout)
L
Linus Torvalds 已提交
5135
{
5136
	return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
L
Linus Torvalds 已提交
5137
}
5138
EXPORT_SYMBOL(wait_for_completion_timeout);
L
Linus Torvalds 已提交
5139

5140 5141 5142 5143 5144 5145 5146
/**
 * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
 * @x:  holds the state of this particular completion
 *
 * This waits for completion of a specific task to be signaled. It is
 * interruptible.
 */
5147
int __sched wait_for_completion_interruptible(struct completion *x)
I
Ingo Molnar 已提交
5148
{
5149 5150 5151 5152
	long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
	if (t == -ERESTARTSYS)
		return t;
	return 0;
I
Ingo Molnar 已提交
5153
}
5154
EXPORT_SYMBOL(wait_for_completion_interruptible);
L
Linus Torvalds 已提交
5155

5156 5157 5158 5159 5160 5161 5162 5163
/**
 * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
 * @x:  holds the state of this particular completion
 * @timeout:  timeout value in jiffies
 *
 * This waits for either a completion of a specific task to be signaled or for a
 * specified timeout to expire. It is interruptible. The timeout is in jiffies.
 */
5164
unsigned long __sched
5165 5166
wait_for_completion_interruptible_timeout(struct completion *x,
					  unsigned long timeout)
I
Ingo Molnar 已提交
5167
{
5168
	return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
I
Ingo Molnar 已提交
5169
}
5170
EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
L
Linus Torvalds 已提交
5171

5172 5173 5174 5175 5176 5177 5178
/**
 * wait_for_completion_killable: - waits for completion of a task (killable)
 * @x:  holds the state of this particular completion
 *
 * This waits to be signaled for completion of a specific task. It can be
 * interrupted by a kill signal.
 */
M
Matthew Wilcox 已提交
5179 5180 5181 5182 5183 5184 5185 5186 5187
int __sched wait_for_completion_killable(struct completion *x)
{
	long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
	if (t == -ERESTARTSYS)
		return t;
	return 0;
}
EXPORT_SYMBOL(wait_for_completion_killable);

5188 5189 5190 5191 5192 5193 5194 5195 5196 5197 5198 5199 5200 5201 5202 5203 5204 5205 5206 5207 5208 5209 5210 5211 5212 5213 5214 5215 5216 5217 5218 5219 5220 5221 5222 5223 5224 5225 5226 5227 5228 5229 5230 5231 5232 5233
/**
 *	try_wait_for_completion - try to decrement a completion without blocking
 *	@x:	completion structure
 *
 *	Returns: 0 if a decrement cannot be done without blocking
 *		 1 if a decrement succeeded.
 *
 *	If a completion is being used as a counting completion,
 *	attempt to decrement the counter without blocking. This
 *	enables us to avoid waiting if the resource the completion
 *	is protecting is not available.
 */
bool try_wait_for_completion(struct completion *x)
{
	int ret = 1;

	spin_lock_irq(&x->wait.lock);
	if (!x->done)
		ret = 0;
	else
		x->done--;
	spin_unlock_irq(&x->wait.lock);
	return ret;
}
EXPORT_SYMBOL(try_wait_for_completion);

/**
 *	completion_done - Test to see if a completion has any waiters
 *	@x:	completion structure
 *
 *	Returns: 0 if there are waiters (wait_for_completion() in progress)
 *		 1 if there are no waiters.
 *
 */
bool completion_done(struct completion *x)
{
	int ret = 1;

	spin_lock_irq(&x->wait.lock);
	if (!x->done)
		ret = 0;
	spin_unlock_irq(&x->wait.lock);
	return ret;
}
EXPORT_SYMBOL(completion_done);

5234 5235
static long __sched
sleep_on_common(wait_queue_head_t *q, int state, long timeout)
L
Linus Torvalds 已提交
5236
{
I
Ingo Molnar 已提交
5237 5238 5239 5240
	unsigned long flags;
	wait_queue_t wait;

	init_waitqueue_entry(&wait, current);
L
Linus Torvalds 已提交
5241

5242
	__set_current_state(state);
L
Linus Torvalds 已提交
5243

5244 5245 5246 5247 5248 5249 5250 5251 5252 5253 5254 5255 5256 5257
	spin_lock_irqsave(&q->lock, flags);
	__add_wait_queue(q, &wait);
	spin_unlock(&q->lock);
	timeout = schedule_timeout(timeout);
	spin_lock_irq(&q->lock);
	__remove_wait_queue(q, &wait);
	spin_unlock_irqrestore(&q->lock, flags);

	return timeout;
}

void __sched interruptible_sleep_on(wait_queue_head_t *q)
{
	sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
L
Linus Torvalds 已提交
5258 5259 5260
}
EXPORT_SYMBOL(interruptible_sleep_on);

I
Ingo Molnar 已提交
5261
long __sched
I
Ingo Molnar 已提交
5262
interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
L
Linus Torvalds 已提交
5263
{
5264
	return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
L
Linus Torvalds 已提交
5265 5266 5267
}
EXPORT_SYMBOL(interruptible_sleep_on_timeout);

I
Ingo Molnar 已提交
5268
void __sched sleep_on(wait_queue_head_t *q)
L
Linus Torvalds 已提交
5269
{
5270
	sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
L
Linus Torvalds 已提交
5271 5272 5273
}
EXPORT_SYMBOL(sleep_on);

I
Ingo Molnar 已提交
5274
long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
L
Linus Torvalds 已提交
5275
{
5276
	return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
L
Linus Torvalds 已提交
5277 5278 5279
}
EXPORT_SYMBOL(sleep_on_timeout);

5280 5281 5282 5283 5284 5285 5286 5287 5288 5289 5290 5291
#ifdef CONFIG_RT_MUTEXES

/*
 * rt_mutex_setprio - set the current priority of a task
 * @p: task
 * @prio: prio value (kernel-internal form)
 *
 * This function changes the 'effective' priority of a task. It does
 * not touch ->normal_prio like __setscheduler().
 *
 * Used by the rt_mutex code to implement priority inheritance logic.
 */
5292
void rt_mutex_setprio(struct task_struct *p, int prio)
5293 5294
{
	unsigned long flags;
5295
	int oldprio, on_rq, running;
5296
	struct rq *rq;
5297
	const struct sched_class *prev_class = p->sched_class;
5298 5299 5300 5301

	BUG_ON(prio < 0 || prio > MAX_PRIO);

	rq = task_rq_lock(p, &flags);
I
Ingo Molnar 已提交
5302
	update_rq_clock(rq);
5303

5304
	oldprio = p->prio;
I
Ingo Molnar 已提交
5305
	on_rq = p->se.on_rq;
5306
	running = task_current(rq, p);
5307
	if (on_rq)
5308
		dequeue_task(rq, p, 0);
5309 5310
	if (running)
		p->sched_class->put_prev_task(rq, p);
I
Ingo Molnar 已提交
5311 5312 5313 5314 5315 5316

	if (rt_prio(prio))
		p->sched_class = &rt_sched_class;
	else
		p->sched_class = &fair_sched_class;

5317 5318
	p->prio = prio;

5319 5320
	if (running)
		p->sched_class->set_curr_task(rq);
I
Ingo Molnar 已提交
5321
	if (on_rq) {
5322
		enqueue_task(rq, p, 0);
5323 5324

		check_class_changed(rq, p, prev_class, oldprio, running);
5325 5326 5327 5328 5329 5330
	}
	task_rq_unlock(rq, &flags);
}

#endif

5331
void set_user_nice(struct task_struct *p, long nice)
L
Linus Torvalds 已提交
5332
{
I
Ingo Molnar 已提交
5333
	int old_prio, delta, on_rq;
L
Linus Torvalds 已提交
5334
	unsigned long flags;
5335
	struct rq *rq;
L
Linus Torvalds 已提交
5336 5337 5338 5339 5340 5341 5342 5343

	if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
		return;
	/*
	 * We have to be careful, if called from sys_setpriority(),
	 * the task might be in the middle of scheduling on another CPU.
	 */
	rq = task_rq_lock(p, &flags);
I
Ingo Molnar 已提交
5344
	update_rq_clock(rq);
L
Linus Torvalds 已提交
5345 5346 5347 5348
	/*
	 * The RT priorities are set via sched_setscheduler(), but we still
	 * allow the 'normal' nice value to be set - but as expected
	 * it wont have any effect on scheduling until the task is
I
Ingo Molnar 已提交
5349
	 * SCHED_FIFO/SCHED_RR:
L
Linus Torvalds 已提交
5350
	 */
5351
	if (task_has_rt_policy(p)) {
L
Linus Torvalds 已提交
5352 5353 5354
		p->static_prio = NICE_TO_PRIO(nice);
		goto out_unlock;
	}
I
Ingo Molnar 已提交
5355
	on_rq = p->se.on_rq;
5356
	if (on_rq)
5357
		dequeue_task(rq, p, 0);
L
Linus Torvalds 已提交
5358 5359

	p->static_prio = NICE_TO_PRIO(nice);
5360
	set_load_weight(p);
5361 5362 5363
	old_prio = p->prio;
	p->prio = effective_prio(p);
	delta = p->prio - old_prio;
L
Linus Torvalds 已提交
5364

I
Ingo Molnar 已提交
5365
	if (on_rq) {
5366
		enqueue_task(rq, p, 0);
L
Linus Torvalds 已提交
5367
		/*
5368 5369
		 * If the task increased its priority or is running and
		 * lowered its priority, then reschedule its CPU:
L
Linus Torvalds 已提交
5370
		 */
5371
		if (delta < 0 || (delta > 0 && task_running(rq, p)))
L
Linus Torvalds 已提交
5372 5373 5374 5375 5376 5377 5378
			resched_task(rq->curr);
	}
out_unlock:
	task_rq_unlock(rq, &flags);
}
EXPORT_SYMBOL(set_user_nice);

M
Matt Mackall 已提交
5379 5380 5381 5382 5383
/*
 * can_nice - check if a task can reduce its nice value
 * @p: task
 * @nice: nice value
 */
5384
int can_nice(const struct task_struct *p, const int nice)
M
Matt Mackall 已提交
5385
{
5386 5387
	/* convert nice value [19,-20] to rlimit style value [1,40] */
	int nice_rlim = 20 - nice;
5388

M
Matt Mackall 已提交
5389 5390 5391 5392
	return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
		capable(CAP_SYS_NICE));
}

L
Linus Torvalds 已提交
5393 5394 5395 5396 5397 5398 5399 5400 5401
#ifdef __ARCH_WANT_SYS_NICE

/*
 * sys_nice - change the priority of the current process.
 * @increment: priority increment
 *
 * sys_setpriority is a more generic, but much slower function that
 * does similar things.
 */
5402
SYSCALL_DEFINE1(nice, int, increment)
L
Linus Torvalds 已提交
5403
{
5404
	long nice, retval;
L
Linus Torvalds 已提交
5405 5406 5407 5408 5409 5410

	/*
	 * Setpriority might change our priority at the same moment.
	 * We don't have to worry. Conceptually one call occurs first
	 * and we have a single winner.
	 */
M
Matt Mackall 已提交
5411 5412
	if (increment < -40)
		increment = -40;
L
Linus Torvalds 已提交
5413 5414 5415
	if (increment > 40)
		increment = 40;

5416
	nice = TASK_NICE(current) + increment;
L
Linus Torvalds 已提交
5417 5418 5419 5420 5421
	if (nice < -20)
		nice = -20;
	if (nice > 19)
		nice = 19;

M
Matt Mackall 已提交
5422 5423 5424
	if (increment < 0 && !can_nice(current, nice))
		return -EPERM;

L
Linus Torvalds 已提交
5425 5426 5427 5428 5429 5430 5431 5432 5433 5434 5435 5436 5437 5438 5439 5440 5441 5442
	retval = security_task_setnice(current, nice);
	if (retval)
		return retval;

	set_user_nice(current, nice);
	return 0;
}

#endif

/**
 * task_prio - return the priority value of a given task.
 * @p: the task in question.
 *
 * This is the priority value as seen by users in /proc.
 * RT tasks are offset by -200. Normal tasks are centered
 * around 0, value goes from -16 to +15.
 */
5443
int task_prio(const struct task_struct *p)
L
Linus Torvalds 已提交
5444 5445 5446 5447 5448 5449 5450 5451
{
	return p->prio - MAX_RT_PRIO;
}

/**
 * task_nice - return the nice value of a given task.
 * @p: the task in question.
 */
5452
int task_nice(const struct task_struct *p)
L
Linus Torvalds 已提交
5453 5454 5455
{
	return TASK_NICE(p);
}
P
Pavel Roskin 已提交
5456
EXPORT_SYMBOL(task_nice);
L
Linus Torvalds 已提交
5457 5458 5459 5460 5461 5462 5463 5464 5465 5466 5467 5468 5469 5470

/**
 * idle_cpu - is a given cpu idle currently?
 * @cpu: the processor in question.
 */
int idle_cpu(int cpu)
{
	return cpu_curr(cpu) == cpu_rq(cpu)->idle;
}

/**
 * idle_task - return the idle task for a given cpu.
 * @cpu: the processor in question.
 */
5471
struct task_struct *idle_task(int cpu)
L
Linus Torvalds 已提交
5472 5473 5474 5475 5476 5477 5478 5479
{
	return cpu_rq(cpu)->idle;
}

/**
 * find_process_by_pid - find a process with a matching PID value.
 * @pid: the pid in question.
 */
A
Alexey Dobriyan 已提交
5480
static struct task_struct *find_process_by_pid(pid_t pid)
L
Linus Torvalds 已提交
5481
{
5482
	return pid ? find_task_by_vpid(pid) : current;
L
Linus Torvalds 已提交
5483 5484 5485
}

/* Actually do priority change: must hold rq lock. */
I
Ingo Molnar 已提交
5486 5487
static void
__setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
L
Linus Torvalds 已提交
5488
{
I
Ingo Molnar 已提交
5489
	BUG_ON(p->se.on_rq);
5490

L
Linus Torvalds 已提交
5491
	p->policy = policy;
I
Ingo Molnar 已提交
5492 5493 5494 5495 5496 5497 5498 5499 5500 5501 5502 5503
	switch (p->policy) {
	case SCHED_NORMAL:
	case SCHED_BATCH:
	case SCHED_IDLE:
		p->sched_class = &fair_sched_class;
		break;
	case SCHED_FIFO:
	case SCHED_RR:
		p->sched_class = &rt_sched_class;
		break;
	}

L
Linus Torvalds 已提交
5504
	p->rt_priority = prio;
5505 5506 5507
	p->normal_prio = normal_prio(p);
	/* we are holding p->pi_lock already */
	p->prio = rt_mutex_getprio(p);
5508
	set_load_weight(p);
L
Linus Torvalds 已提交
5509 5510
}

5511 5512 5513 5514 5515 5516 5517 5518 5519 5520 5521 5522 5523 5524 5525 5526
/*
 * check the target process has a UID that matches the current process's
 */
static bool check_same_owner(struct task_struct *p)
{
	const struct cred *cred = current_cred(), *pcred;
	bool match;

	rcu_read_lock();
	pcred = __task_cred(p);
	match = (cred->euid == pcred->euid ||
		 cred->euid == pcred->uid);
	rcu_read_unlock();
	return match;
}

5527 5528
static int __sched_setscheduler(struct task_struct *p, int policy,
				struct sched_param *param, bool user)
L
Linus Torvalds 已提交
5529
{
5530
	int retval, oldprio, oldpolicy = -1, on_rq, running;
L
Linus Torvalds 已提交
5531
	unsigned long flags;
5532
	const struct sched_class *prev_class = p->sched_class;
5533
	struct rq *rq;
L
Linus Torvalds 已提交
5534

5535 5536
	/* may grab non-irq protected spin_locks */
	BUG_ON(in_interrupt());
L
Linus Torvalds 已提交
5537 5538 5539 5540 5541
recheck:
	/* double check policy once rq lock held */
	if (policy < 0)
		policy = oldpolicy = p->policy;
	else if (policy != SCHED_FIFO && policy != SCHED_RR &&
I
Ingo Molnar 已提交
5542 5543
			policy != SCHED_NORMAL && policy != SCHED_BATCH &&
			policy != SCHED_IDLE)
5544
		return -EINVAL;
L
Linus Torvalds 已提交
5545 5546
	/*
	 * Valid priorities for SCHED_FIFO and SCHED_RR are
I
Ingo Molnar 已提交
5547 5548
	 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
	 * SCHED_BATCH and SCHED_IDLE is 0.
L
Linus Torvalds 已提交
5549 5550
	 */
	if (param->sched_priority < 0 ||
I
Ingo Molnar 已提交
5551
	    (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
5552
	    (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
L
Linus Torvalds 已提交
5553
		return -EINVAL;
5554
	if (rt_policy(policy) != (param->sched_priority != 0))
L
Linus Torvalds 已提交
5555 5556
		return -EINVAL;

5557 5558 5559
	/*
	 * Allow unprivileged RT tasks to decrease priority:
	 */
5560
	if (user && !capable(CAP_SYS_NICE)) {
5561
		if (rt_policy(policy)) {
5562 5563 5564 5565 5566 5567 5568 5569 5570 5571 5572 5573 5574 5575 5576 5577
			unsigned long rlim_rtprio;

			if (!lock_task_sighand(p, &flags))
				return -ESRCH;
			rlim_rtprio = p->signal->rlim[RLIMIT_RTPRIO].rlim_cur;
			unlock_task_sighand(p, &flags);

			/* can't set/change the rt policy */
			if (policy != p->policy && !rlim_rtprio)
				return -EPERM;

			/* can't increase priority */
			if (param->sched_priority > p->rt_priority &&
			    param->sched_priority > rlim_rtprio)
				return -EPERM;
		}
I
Ingo Molnar 已提交
5578 5579 5580 5581 5582 5583
		/*
		 * Like positive nice levels, dont allow tasks to
		 * move out of SCHED_IDLE either:
		 */
		if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
			return -EPERM;
5584

5585
		/* can't change other user's priorities */
5586
		if (!check_same_owner(p))
5587 5588
			return -EPERM;
	}
L
Linus Torvalds 已提交
5589

5590
	if (user) {
5591
#ifdef CONFIG_RT_GROUP_SCHED
5592 5593 5594 5595
		/*
		 * Do not allow realtime tasks into groups that have no runtime
		 * assigned.
		 */
P
Peter Zijlstra 已提交
5596 5597
		if (rt_bandwidth_enabled() && rt_policy(policy) &&
				task_group(p)->rt_bandwidth.rt_runtime == 0)
5598
			return -EPERM;
5599 5600
#endif

5601 5602 5603 5604 5605
		retval = security_task_setscheduler(p, policy, param);
		if (retval)
			return retval;
	}

5606 5607 5608 5609 5610
	/*
	 * make sure no PI-waiters arrive (or leave) while we are
	 * changing the priority of the task:
	 */
	spin_lock_irqsave(&p->pi_lock, flags);
L
Linus Torvalds 已提交
5611 5612 5613 5614
	/*
	 * To be able to change p->policy safely, the apropriate
	 * runqueue lock must be held.
	 */
5615
	rq = __task_rq_lock(p);
L
Linus Torvalds 已提交
5616 5617 5618
	/* recheck policy now with rq lock held */
	if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
		policy = oldpolicy = -1;
5619 5620
		__task_rq_unlock(rq);
		spin_unlock_irqrestore(&p->pi_lock, flags);
L
Linus Torvalds 已提交
5621 5622
		goto recheck;
	}
I
Ingo Molnar 已提交
5623
	update_rq_clock(rq);
I
Ingo Molnar 已提交
5624
	on_rq = p->se.on_rq;
5625
	running = task_current(rq, p);
5626
	if (on_rq)
5627
		deactivate_task(rq, p, 0);
5628 5629
	if (running)
		p->sched_class->put_prev_task(rq, p);
5630

L
Linus Torvalds 已提交
5631
	oldprio = p->prio;
I
Ingo Molnar 已提交
5632
	__setscheduler(rq, p, policy, param->sched_priority);
5633

5634 5635
	if (running)
		p->sched_class->set_curr_task(rq);
I
Ingo Molnar 已提交
5636 5637
	if (on_rq) {
		activate_task(rq, p, 0);
5638 5639

		check_class_changed(rq, p, prev_class, oldprio, running);
L
Linus Torvalds 已提交
5640
	}
5641 5642 5643
	__task_rq_unlock(rq);
	spin_unlock_irqrestore(&p->pi_lock, flags);

5644 5645
	rt_mutex_adjust_pi(p);

L
Linus Torvalds 已提交
5646 5647
	return 0;
}
5648 5649 5650 5651 5652 5653 5654 5655 5656 5657 5658 5659 5660 5661

/**
 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
 * @p: the task in question.
 * @policy: new policy.
 * @param: structure containing the new RT priority.
 *
 * NOTE that the task may be already dead.
 */
int sched_setscheduler(struct task_struct *p, int policy,
		       struct sched_param *param)
{
	return __sched_setscheduler(p, policy, param, true);
}
L
Linus Torvalds 已提交
5662 5663
EXPORT_SYMBOL_GPL(sched_setscheduler);

5664 5665 5666 5667 5668 5669 5670 5671 5672 5673 5674 5675 5676 5677 5678 5679 5680
/**
 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
 * @p: the task in question.
 * @policy: new policy.
 * @param: structure containing the new RT priority.
 *
 * Just like sched_setscheduler, only don't bother checking if the
 * current context has permission.  For example, this is needed in
 * stop_machine(): we create temporary high priority worker threads,
 * but our caller might not have that capability.
 */
int sched_setscheduler_nocheck(struct task_struct *p, int policy,
			       struct sched_param *param)
{
	return __sched_setscheduler(p, policy, param, false);
}

I
Ingo Molnar 已提交
5681 5682
static int
do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
L
Linus Torvalds 已提交
5683 5684 5685
{
	struct sched_param lparam;
	struct task_struct *p;
5686
	int retval;
L
Linus Torvalds 已提交
5687 5688 5689 5690 5691

	if (!param || pid < 0)
		return -EINVAL;
	if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
		return -EFAULT;
5692 5693 5694

	rcu_read_lock();
	retval = -ESRCH;
L
Linus Torvalds 已提交
5695
	p = find_process_by_pid(pid);
5696 5697 5698
	if (p != NULL)
		retval = sched_setscheduler(p, policy, &lparam);
	rcu_read_unlock();
5699

L
Linus Torvalds 已提交
5700 5701 5702 5703 5704 5705 5706 5707 5708
	return retval;
}

/**
 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
 * @pid: the pid in question.
 * @policy: new policy.
 * @param: structure containing the new RT priority.
 */
5709 5710
SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
		struct sched_param __user *, param)
L
Linus Torvalds 已提交
5711
{
5712 5713 5714 5715
	/* negative values for policy are not valid */
	if (policy < 0)
		return -EINVAL;

L
Linus Torvalds 已提交
5716 5717 5718 5719 5720 5721 5722 5723
	return do_sched_setscheduler(pid, policy, param);
}

/**
 * sys_sched_setparam - set/change the RT priority of a thread
 * @pid: the pid in question.
 * @param: structure containing the new RT priority.
 */
5724
SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
L
Linus Torvalds 已提交
5725 5726 5727 5728 5729 5730 5731 5732
{
	return do_sched_setscheduler(pid, -1, param);
}

/**
 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
 * @pid: the pid in question.
 */
5733
SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
L
Linus Torvalds 已提交
5734
{
5735
	struct task_struct *p;
5736
	int retval;
L
Linus Torvalds 已提交
5737 5738

	if (pid < 0)
5739
		return -EINVAL;
L
Linus Torvalds 已提交
5740 5741 5742 5743 5744 5745 5746 5747 5748 5749 5750 5751 5752 5753 5754 5755 5756 5757

	retval = -ESRCH;
	read_lock(&tasklist_lock);
	p = find_process_by_pid(pid);
	if (p) {
		retval = security_task_getscheduler(p);
		if (!retval)
			retval = p->policy;
	}
	read_unlock(&tasklist_lock);
	return retval;
}

/**
 * sys_sched_getscheduler - get the RT priority of a thread
 * @pid: the pid in question.
 * @param: structure containing the RT priority.
 */
5758
SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
L
Linus Torvalds 已提交
5759 5760
{
	struct sched_param lp;
5761
	struct task_struct *p;
5762
	int retval;
L
Linus Torvalds 已提交
5763 5764

	if (!param || pid < 0)
5765
		return -EINVAL;
L
Linus Torvalds 已提交
5766 5767 5768 5769 5770 5771 5772 5773 5774 5775 5776 5777 5778 5779 5780 5781 5782 5783 5784 5785 5786 5787 5788 5789 5790 5791

	read_lock(&tasklist_lock);
	p = find_process_by_pid(pid);
	retval = -ESRCH;
	if (!p)
		goto out_unlock;

	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

	lp.sched_priority = p->rt_priority;
	read_unlock(&tasklist_lock);

	/*
	 * This one might sleep, we cannot do it with a spinlock held ...
	 */
	retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;

	return retval;

out_unlock:
	read_unlock(&tasklist_lock);
	return retval;
}

5792
long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
L
Linus Torvalds 已提交
5793
{
5794
	cpumask_var_t cpus_allowed, new_mask;
5795 5796
	struct task_struct *p;
	int retval;
L
Linus Torvalds 已提交
5797

5798
	get_online_cpus();
L
Linus Torvalds 已提交
5799 5800 5801 5802 5803
	read_lock(&tasklist_lock);

	p = find_process_by_pid(pid);
	if (!p) {
		read_unlock(&tasklist_lock);
5804
		put_online_cpus();
L
Linus Torvalds 已提交
5805 5806 5807 5808 5809
		return -ESRCH;
	}

	/*
	 * It is not safe to call set_cpus_allowed with the
I
Ingo Molnar 已提交
5810
	 * tasklist_lock held. We will bump the task_struct's
L
Linus Torvalds 已提交
5811 5812 5813 5814 5815
	 * usage count and then drop tasklist_lock.
	 */
	get_task_struct(p);
	read_unlock(&tasklist_lock);

5816 5817 5818 5819 5820 5821 5822 5823
	if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
		retval = -ENOMEM;
		goto out_put_task;
	}
	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
		retval = -ENOMEM;
		goto out_free_cpus_allowed;
	}
L
Linus Torvalds 已提交
5824
	retval = -EPERM;
5825
	if (!check_same_owner(p) && !capable(CAP_SYS_NICE))
L
Linus Torvalds 已提交
5826 5827
		goto out_unlock;

5828 5829 5830 5831
	retval = security_task_setscheduler(p, 0, NULL);
	if (retval)
		goto out_unlock;

5832 5833
	cpuset_cpus_allowed(p, cpus_allowed);
	cpumask_and(new_mask, in_mask, cpus_allowed);
P
Paul Menage 已提交
5834
 again:
5835
	retval = set_cpus_allowed_ptr(p, new_mask);
L
Linus Torvalds 已提交
5836

P
Paul Menage 已提交
5837
	if (!retval) {
5838 5839
		cpuset_cpus_allowed(p, cpus_allowed);
		if (!cpumask_subset(new_mask, cpus_allowed)) {
P
Paul Menage 已提交
5840 5841 5842 5843 5844
			/*
			 * We must have raced with a concurrent cpuset
			 * update. Just reset the cpus_allowed to the
			 * cpuset's cpus_allowed
			 */
5845
			cpumask_copy(new_mask, cpus_allowed);
P
Paul Menage 已提交
5846 5847 5848
			goto again;
		}
	}
L
Linus Torvalds 已提交
5849
out_unlock:
5850 5851 5852 5853
	free_cpumask_var(new_mask);
out_free_cpus_allowed:
	free_cpumask_var(cpus_allowed);
out_put_task:
L
Linus Torvalds 已提交
5854
	put_task_struct(p);
5855
	put_online_cpus();
L
Linus Torvalds 已提交
5856 5857 5858 5859
	return retval;
}

static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
5860
			     struct cpumask *new_mask)
L
Linus Torvalds 已提交
5861
{
5862 5863 5864 5865 5866
	if (len < cpumask_size())
		cpumask_clear(new_mask);
	else if (len > cpumask_size())
		len = cpumask_size();

L
Linus Torvalds 已提交
5867 5868 5869 5870 5871 5872 5873 5874 5875
	return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
}

/**
 * sys_sched_setaffinity - set the cpu affinity of a process
 * @pid: pid of the process
 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
 * @user_mask_ptr: user-space pointer to the new cpu mask
 */
5876 5877
SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
		unsigned long __user *, user_mask_ptr)
L
Linus Torvalds 已提交
5878
{
5879
	cpumask_var_t new_mask;
L
Linus Torvalds 已提交
5880 5881
	int retval;

5882 5883
	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
		return -ENOMEM;
L
Linus Torvalds 已提交
5884

5885 5886 5887 5888 5889
	retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
	if (retval == 0)
		retval = sched_setaffinity(pid, new_mask);
	free_cpumask_var(new_mask);
	return retval;
L
Linus Torvalds 已提交
5890 5891
}

5892
long sched_getaffinity(pid_t pid, struct cpumask *mask)
L
Linus Torvalds 已提交
5893
{
5894
	struct task_struct *p;
L
Linus Torvalds 已提交
5895 5896
	int retval;

5897
	get_online_cpus();
L
Linus Torvalds 已提交
5898 5899 5900 5901 5902 5903 5904
	read_lock(&tasklist_lock);

	retval = -ESRCH;
	p = find_process_by_pid(pid);
	if (!p)
		goto out_unlock;

5905 5906 5907 5908
	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

5909
	cpumask_and(mask, &p->cpus_allowed, cpu_online_mask);
L
Linus Torvalds 已提交
5910 5911 5912

out_unlock:
	read_unlock(&tasklist_lock);
5913
	put_online_cpus();
L
Linus Torvalds 已提交
5914

5915
	return retval;
L
Linus Torvalds 已提交
5916 5917 5918 5919 5920 5921 5922 5923
}

/**
 * sys_sched_getaffinity - get the cpu affinity of a process
 * @pid: pid of the process
 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
 * @user_mask_ptr: user-space pointer to hold the current cpu mask
 */
5924 5925
SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
		unsigned long __user *, user_mask_ptr)
L
Linus Torvalds 已提交
5926 5927
{
	int ret;
5928
	cpumask_var_t mask;
L
Linus Torvalds 已提交
5929

5930
	if (len < cpumask_size())
L
Linus Torvalds 已提交
5931 5932
		return -EINVAL;

5933 5934
	if (!alloc_cpumask_var(&mask, GFP_KERNEL))
		return -ENOMEM;
L
Linus Torvalds 已提交
5935

5936 5937 5938 5939 5940 5941 5942 5943
	ret = sched_getaffinity(pid, mask);
	if (ret == 0) {
		if (copy_to_user(user_mask_ptr, mask, cpumask_size()))
			ret = -EFAULT;
		else
			ret = cpumask_size();
	}
	free_cpumask_var(mask);
L
Linus Torvalds 已提交
5944

5945
	return ret;
L
Linus Torvalds 已提交
5946 5947 5948 5949 5950
}

/**
 * sys_sched_yield - yield the current processor to other threads.
 *
I
Ingo Molnar 已提交
5951 5952
 * This function yields the current CPU to other tasks. If there are no
 * other threads running on this CPU then this function will return.
L
Linus Torvalds 已提交
5953
 */
5954
SYSCALL_DEFINE0(sched_yield)
L
Linus Torvalds 已提交
5955
{
5956
	struct rq *rq = this_rq_lock();
L
Linus Torvalds 已提交
5957

5958
	schedstat_inc(rq, yld_count);
5959
	current->sched_class->yield_task(rq);
L
Linus Torvalds 已提交
5960 5961 5962 5963 5964 5965

	/*
	 * Since we are going to call schedule() anyway, there's
	 * no need to preempt or enable interrupts:
	 */
	__release(rq->lock);
5966
	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
L
Linus Torvalds 已提交
5967 5968 5969 5970 5971 5972 5973 5974
	_raw_spin_unlock(&rq->lock);
	preempt_enable_no_resched();

	schedule();

	return 0;
}

A
Andrew Morton 已提交
5975
static void __cond_resched(void)
L
Linus Torvalds 已提交
5976
{
5977 5978 5979
#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
	__might_sleep(__FILE__, __LINE__);
#endif
5980 5981 5982 5983 5984
	/*
	 * The BKS might be reacquired before we have dropped
	 * PREEMPT_ACTIVE, which could trigger a second
	 * cond_resched() call.
	 */
L
Linus Torvalds 已提交
5985 5986 5987 5988 5989 5990 5991
	do {
		add_preempt_count(PREEMPT_ACTIVE);
		schedule();
		sub_preempt_count(PREEMPT_ACTIVE);
	} while (need_resched());
}

5992
int __sched _cond_resched(void)
L
Linus Torvalds 已提交
5993
{
5994 5995
	if (need_resched() && !(preempt_count() & PREEMPT_ACTIVE) &&
					system_state == SYSTEM_RUNNING) {
L
Linus Torvalds 已提交
5996 5997 5998 5999 6000
		__cond_resched();
		return 1;
	}
	return 0;
}
6001
EXPORT_SYMBOL(_cond_resched);
L
Linus Torvalds 已提交
6002 6003 6004 6005 6006

/*
 * cond_resched_lock() - if a reschedule is pending, drop the given lock,
 * call schedule, and on return reacquire the lock.
 *
I
Ingo Molnar 已提交
6007
 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
L
Linus Torvalds 已提交
6008 6009 6010
 * operations here to prevent schedule() from being called twice (once via
 * spin_unlock(), once by hand).
 */
I
Ingo Molnar 已提交
6011
int cond_resched_lock(spinlock_t *lock)
L
Linus Torvalds 已提交
6012
{
N
Nick Piggin 已提交
6013
	int resched = need_resched() && system_state == SYSTEM_RUNNING;
J
Jan Kara 已提交
6014 6015
	int ret = 0;

N
Nick Piggin 已提交
6016
	if (spin_needbreak(lock) || resched) {
L
Linus Torvalds 已提交
6017
		spin_unlock(lock);
N
Nick Piggin 已提交
6018 6019 6020 6021
		if (resched && need_resched())
			__cond_resched();
		else
			cpu_relax();
J
Jan Kara 已提交
6022
		ret = 1;
L
Linus Torvalds 已提交
6023 6024
		spin_lock(lock);
	}
J
Jan Kara 已提交
6025
	return ret;
L
Linus Torvalds 已提交
6026 6027 6028 6029 6030 6031 6032
}
EXPORT_SYMBOL(cond_resched_lock);

int __sched cond_resched_softirq(void)
{
	BUG_ON(!in_softirq());

6033
	if (need_resched() && system_state == SYSTEM_RUNNING) {
6034
		local_bh_enable();
L
Linus Torvalds 已提交
6035 6036 6037 6038 6039 6040 6041 6042 6043 6044 6045
		__cond_resched();
		local_bh_disable();
		return 1;
	}
	return 0;
}
EXPORT_SYMBOL(cond_resched_softirq);

/**
 * yield - yield the current processor to other threads.
 *
6046
 * This is a shortcut for kernel-space yielding - it marks the
L
Linus Torvalds 已提交
6047 6048 6049 6050 6051 6052 6053 6054 6055 6056
 * thread runnable and calls sys_sched_yield().
 */
void __sched yield(void)
{
	set_current_state(TASK_RUNNING);
	sys_sched_yield();
}
EXPORT_SYMBOL(yield);

/*
I
Ingo Molnar 已提交
6057
 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
L
Linus Torvalds 已提交
6058 6059 6060 6061 6062 6063 6064
 * that process accounting knows that this is a task in IO wait state.
 *
 * But don't do that if it is a deliberate, throttling IO wait (this task
 * has set its backing_dev_info: the queue against which it should throttle)
 */
void __sched io_schedule(void)
{
6065
	struct rq *rq = &__raw_get_cpu_var(runqueues);
L
Linus Torvalds 已提交
6066

6067
	delayacct_blkio_start();
L
Linus Torvalds 已提交
6068 6069 6070
	atomic_inc(&rq->nr_iowait);
	schedule();
	atomic_dec(&rq->nr_iowait);
6071
	delayacct_blkio_end();
L
Linus Torvalds 已提交
6072 6073 6074 6075 6076
}
EXPORT_SYMBOL(io_schedule);

long __sched io_schedule_timeout(long timeout)
{
6077
	struct rq *rq = &__raw_get_cpu_var(runqueues);
L
Linus Torvalds 已提交
6078 6079
	long ret;

6080
	delayacct_blkio_start();
L
Linus Torvalds 已提交
6081 6082 6083
	atomic_inc(&rq->nr_iowait);
	ret = schedule_timeout(timeout);
	atomic_dec(&rq->nr_iowait);
6084
	delayacct_blkio_end();
L
Linus Torvalds 已提交
6085 6086 6087 6088 6089 6090 6091 6092 6093 6094
	return ret;
}

/**
 * sys_sched_get_priority_max - return maximum RT priority.
 * @policy: scheduling class.
 *
 * this syscall returns the maximum rt_priority that can be used
 * by a given scheduling class.
 */
6095
SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
L
Linus Torvalds 已提交
6096 6097 6098 6099 6100 6101 6102 6103 6104
{
	int ret = -EINVAL;

	switch (policy) {
	case SCHED_FIFO:
	case SCHED_RR:
		ret = MAX_USER_RT_PRIO-1;
		break;
	case SCHED_NORMAL:
6105
	case SCHED_BATCH:
I
Ingo Molnar 已提交
6106
	case SCHED_IDLE:
L
Linus Torvalds 已提交
6107 6108 6109 6110 6111 6112 6113 6114 6115 6116 6117 6118 6119
		ret = 0;
		break;
	}
	return ret;
}

/**
 * sys_sched_get_priority_min - return minimum RT priority.
 * @policy: scheduling class.
 *
 * this syscall returns the minimum rt_priority that can be used
 * by a given scheduling class.
 */
6120
SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
L
Linus Torvalds 已提交
6121 6122 6123 6124 6125 6126 6127 6128 6129
{
	int ret = -EINVAL;

	switch (policy) {
	case SCHED_FIFO:
	case SCHED_RR:
		ret = 1;
		break;
	case SCHED_NORMAL:
6130
	case SCHED_BATCH:
I
Ingo Molnar 已提交
6131
	case SCHED_IDLE:
L
Linus Torvalds 已提交
6132 6133 6134 6135 6136 6137 6138 6139 6140 6141 6142 6143 6144
		ret = 0;
	}
	return ret;
}

/**
 * sys_sched_rr_get_interval - return the default timeslice of a process.
 * @pid: pid of the process.
 * @interval: userspace pointer to the timeslice value.
 *
 * this syscall writes the default timeslice value of a given process
 * into the user-space timespec buffer. A value of '0' means infinity.
 */
6145
SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
6146
		struct timespec __user *, interval)
L
Linus Torvalds 已提交
6147
{
6148
	struct task_struct *p;
D
Dmitry Adamushko 已提交
6149
	unsigned int time_slice;
6150
	int retval;
L
Linus Torvalds 已提交
6151 6152 6153
	struct timespec t;

	if (pid < 0)
6154
		return -EINVAL;
L
Linus Torvalds 已提交
6155 6156 6157 6158 6159 6160 6161 6162 6163 6164 6165

	retval = -ESRCH;
	read_lock(&tasklist_lock);
	p = find_process_by_pid(pid);
	if (!p)
		goto out_unlock;

	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

6166 6167 6168 6169 6170 6171
	/*
	 * Time slice is 0 for SCHED_FIFO tasks and for SCHED_OTHER
	 * tasks that are on an otherwise idle runqueue:
	 */
	time_slice = 0;
	if (p->policy == SCHED_RR) {
D
Dmitry Adamushko 已提交
6172
		time_slice = DEF_TIMESLICE;
6173
	} else if (p->policy != SCHED_FIFO) {
D
Dmitry Adamushko 已提交
6174 6175 6176 6177 6178
		struct sched_entity *se = &p->se;
		unsigned long flags;
		struct rq *rq;

		rq = task_rq_lock(p, &flags);
6179 6180
		if (rq->cfs.load.weight)
			time_slice = NS_TO_JIFFIES(sched_slice(&rq->cfs, se));
D
Dmitry Adamushko 已提交
6181 6182
		task_rq_unlock(rq, &flags);
	}
L
Linus Torvalds 已提交
6183
	read_unlock(&tasklist_lock);
D
Dmitry Adamushko 已提交
6184
	jiffies_to_timespec(time_slice, &t);
L
Linus Torvalds 已提交
6185 6186
	retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
	return retval;
6187

L
Linus Torvalds 已提交
6188 6189 6190 6191 6192
out_unlock:
	read_unlock(&tasklist_lock);
	return retval;
}

6193
static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
6194

6195
void sched_show_task(struct task_struct *p)
L
Linus Torvalds 已提交
6196 6197
{
	unsigned long free = 0;
6198
	unsigned state;
L
Linus Torvalds 已提交
6199 6200

	state = p->state ? __ffs(p->state) + 1 : 0;
I
Ingo Molnar 已提交
6201
	printk(KERN_INFO "%-13.13s %c", p->comm,
6202
		state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
6203
#if BITS_PER_LONG == 32
L
Linus Torvalds 已提交
6204
	if (state == TASK_RUNNING)
I
Ingo Molnar 已提交
6205
		printk(KERN_CONT " running  ");
L
Linus Torvalds 已提交
6206
	else
I
Ingo Molnar 已提交
6207
		printk(KERN_CONT " %08lx ", thread_saved_pc(p));
L
Linus Torvalds 已提交
6208 6209
#else
	if (state == TASK_RUNNING)
I
Ingo Molnar 已提交
6210
		printk(KERN_CONT "  running task    ");
L
Linus Torvalds 已提交
6211
	else
I
Ingo Molnar 已提交
6212
		printk(KERN_CONT " %016lx ", thread_saved_pc(p));
L
Linus Torvalds 已提交
6213 6214 6215
#endif
#ifdef CONFIG_DEBUG_STACK_USAGE
	{
6216
		unsigned long *n = end_of_stack(p);
L
Linus Torvalds 已提交
6217 6218
		while (!*n)
			n++;
6219
		free = (unsigned long)n - (unsigned long)end_of_stack(p);
L
Linus Torvalds 已提交
6220 6221
	}
#endif
6222
	printk(KERN_CONT "%5lu %5d %6d\n", free,
R
Roland McGrath 已提交
6223
		task_pid_nr(p), task_pid_nr(p->real_parent));
L
Linus Torvalds 已提交
6224

6225
	show_stack(p, NULL);
L
Linus Torvalds 已提交
6226 6227
}

I
Ingo Molnar 已提交
6228
void show_state_filter(unsigned long state_filter)
L
Linus Torvalds 已提交
6229
{
6230
	struct task_struct *g, *p;
L
Linus Torvalds 已提交
6231

6232 6233 6234
#if BITS_PER_LONG == 32
	printk(KERN_INFO
		"  task                PC stack   pid father\n");
L
Linus Torvalds 已提交
6235
#else
6236 6237
	printk(KERN_INFO
		"  task                        PC stack   pid father\n");
L
Linus Torvalds 已提交
6238 6239 6240 6241 6242 6243 6244 6245
#endif
	read_lock(&tasklist_lock);
	do_each_thread(g, p) {
		/*
		 * reset the NMI-timeout, listing all files on a slow
		 * console might take alot of time:
		 */
		touch_nmi_watchdog();
I
Ingo Molnar 已提交
6246
		if (!state_filter || (p->state & state_filter))
6247
			sched_show_task(p);
L
Linus Torvalds 已提交
6248 6249
	} while_each_thread(g, p);

6250 6251
	touch_all_softlockup_watchdogs();

I
Ingo Molnar 已提交
6252 6253 6254
#ifdef CONFIG_SCHED_DEBUG
	sysrq_sched_debug_show();
#endif
L
Linus Torvalds 已提交
6255
	read_unlock(&tasklist_lock);
I
Ingo Molnar 已提交
6256 6257 6258 6259 6260
	/*
	 * Only show locks if all tasks are dumped:
	 */
	if (state_filter == -1)
		debug_show_all_locks();
L
Linus Torvalds 已提交
6261 6262
}

I
Ingo Molnar 已提交
6263 6264
void __cpuinit init_idle_bootup_task(struct task_struct *idle)
{
I
Ingo Molnar 已提交
6265
	idle->sched_class = &idle_sched_class;
I
Ingo Molnar 已提交
6266 6267
}

6268 6269 6270 6271 6272 6273 6274 6275
/**
 * init_idle - set up an idle thread for a given CPU
 * @idle: task in question
 * @cpu: cpu the idle task belongs to
 *
 * NOTE: this function does not set the idle thread's NEED_RESCHED
 * flag, to make booting more robust.
 */
6276
void __cpuinit init_idle(struct task_struct *idle, int cpu)
L
Linus Torvalds 已提交
6277
{
6278
	struct rq *rq = cpu_rq(cpu);
L
Linus Torvalds 已提交
6279 6280
	unsigned long flags;

6281 6282
	spin_lock_irqsave(&rq->lock, flags);

I
Ingo Molnar 已提交
6283 6284 6285
	__sched_fork(idle);
	idle->se.exec_start = sched_clock();

6286
	idle->prio = idle->normal_prio = MAX_PRIO;
6287
	cpumask_copy(&idle->cpus_allowed, cpumask_of(cpu));
I
Ingo Molnar 已提交
6288
	__set_task_cpu(idle, cpu);
L
Linus Torvalds 已提交
6289 6290

	rq->curr = rq->idle = idle;
6291 6292 6293
#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
	idle->oncpu = 1;
#endif
L
Linus Torvalds 已提交
6294 6295 6296
	spin_unlock_irqrestore(&rq->lock, flags);

	/* Set the preempt count _outside_ the spinlocks! */
6297 6298 6299
#if defined(CONFIG_PREEMPT)
	task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
#else
A
Al Viro 已提交
6300
	task_thread_info(idle)->preempt_count = 0;
6301
#endif
I
Ingo Molnar 已提交
6302 6303 6304 6305
	/*
	 * The idle tasks have their own, simple scheduling class:
	 */
	idle->sched_class = &idle_sched_class;
6306
	ftrace_graph_init_task(idle);
L
Linus Torvalds 已提交
6307 6308 6309 6310 6311 6312 6313
}

/*
 * In a system that switches off the HZ timer nohz_cpu_mask
 * indicates which cpus entered this state. This is used
 * in the rcu update to wait only for active cpus. For system
 * which do not switch off the HZ timer nohz_cpu_mask should
6314
 * always be CPU_BITS_NONE.
L
Linus Torvalds 已提交
6315
 */
6316
cpumask_var_t nohz_cpu_mask;
L
Linus Torvalds 已提交
6317

I
Ingo Molnar 已提交
6318 6319 6320 6321 6322 6323 6324 6325 6326 6327 6328 6329 6330 6331 6332 6333 6334 6335 6336 6337 6338 6339 6340
/*
 * Increase the granularity value when there are more CPUs,
 * because with more CPUs the 'effective latency' as visible
 * to users decreases. But the relationship is not linear,
 * so pick a second-best guess by going with the log2 of the
 * number of CPUs.
 *
 * This idea comes from the SD scheduler of Con Kolivas:
 */
static inline void sched_init_granularity(void)
{
	unsigned int factor = 1 + ilog2(num_online_cpus());
	const unsigned long limit = 200000000;

	sysctl_sched_min_granularity *= factor;
	if (sysctl_sched_min_granularity > limit)
		sysctl_sched_min_granularity = limit;

	sysctl_sched_latency *= factor;
	if (sysctl_sched_latency > limit)
		sysctl_sched_latency = limit;

	sysctl_sched_wakeup_granularity *= factor;
6341 6342

	sysctl_sched_shares_ratelimit *= factor;
I
Ingo Molnar 已提交
6343 6344
}

L
Linus Torvalds 已提交
6345 6346 6347 6348
#ifdef CONFIG_SMP
/*
 * This is how migration works:
 *
6349
 * 1) we queue a struct migration_req structure in the source CPU's
L
Linus Torvalds 已提交
6350 6351 6352 6353 6354 6355 6356 6357 6358 6359 6360 6361 6362 6363 6364 6365 6366 6367
 *    runqueue and wake up that CPU's migration thread.
 * 2) we down() the locked semaphore => thread blocks.
 * 3) migration thread wakes up (implicitly it forces the migrated
 *    thread off the CPU)
 * 4) it gets the migration request and checks whether the migrated
 *    task is still in the wrong runqueue.
 * 5) if it's in the wrong runqueue then the migration thread removes
 *    it and puts it into the right queue.
 * 6) migration thread up()s the semaphore.
 * 7) we wake up and the migration is done.
 */

/*
 * Change a given task's CPU affinity. Migrate the thread to a
 * proper CPU and schedule it away if the CPU it's executing on
 * is removed from the allowed bitmask.
 *
 * NOTE: the caller must have a valid reference to the task, the
I
Ingo Molnar 已提交
6368
 * task must not exit() & deallocate itself prematurely. The
L
Linus Torvalds 已提交
6369 6370
 * call is not atomic; no spinlocks may be held.
 */
6371
int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
L
Linus Torvalds 已提交
6372
{
6373
	struct migration_req req;
L
Linus Torvalds 已提交
6374
	unsigned long flags;
6375
	struct rq *rq;
6376
	int ret = 0;
L
Linus Torvalds 已提交
6377 6378

	rq = task_rq_lock(p, &flags);
6379
	if (!cpumask_intersects(new_mask, cpu_online_mask)) {
L
Linus Torvalds 已提交
6380 6381 6382 6383
		ret = -EINVAL;
		goto out;
	}

6384
	if (unlikely((p->flags & PF_THREAD_BOUND) && p != current &&
6385
		     !cpumask_equal(&p->cpus_allowed, new_mask))) {
6386 6387 6388 6389
		ret = -EINVAL;
		goto out;
	}

6390
	if (p->sched_class->set_cpus_allowed)
6391
		p->sched_class->set_cpus_allowed(p, new_mask);
6392
	else {
6393 6394
		cpumask_copy(&p->cpus_allowed, new_mask);
		p->rt.nr_cpus_allowed = cpumask_weight(new_mask);
6395 6396
	}

L
Linus Torvalds 已提交
6397
	/* Can the task run on the task's current CPU? If so, we're done */
6398
	if (cpumask_test_cpu(task_cpu(p), new_mask))
L
Linus Torvalds 已提交
6399 6400
		goto out;

R
Rusty Russell 已提交
6401
	if (migrate_task(p, cpumask_any_and(cpu_online_mask, new_mask), &req)) {
L
Linus Torvalds 已提交
6402 6403 6404 6405 6406 6407 6408 6409 6410
		/* Need help from migration thread: drop lock and wait. */
		task_rq_unlock(rq, &flags);
		wake_up_process(rq->migration_thread);
		wait_for_completion(&req.done);
		tlb_migrate_finish(p->mm);
		return 0;
	}
out:
	task_rq_unlock(rq, &flags);
6411

L
Linus Torvalds 已提交
6412 6413
	return ret;
}
6414
EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
L
Linus Torvalds 已提交
6415 6416

/*
I
Ingo Molnar 已提交
6417
 * Move (not current) task off this cpu, onto dest cpu. We're doing
L
Linus Torvalds 已提交
6418 6419 6420 6421 6422 6423
 * this because either it can't run here any more (set_cpus_allowed()
 * away from this CPU, or CPU going down), or because we're
 * attempting to rebalance this task on exec (sched_exec).
 *
 * So we race with normal scheduler movements, but that's OK, as long
 * as the task is no longer on this CPU.
6424 6425
 *
 * Returns non-zero if task was successfully migrated.
L
Linus Torvalds 已提交
6426
 */
6427
static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
L
Linus Torvalds 已提交
6428
{
6429
	struct rq *rq_dest, *rq_src;
I
Ingo Molnar 已提交
6430
	int ret = 0, on_rq;
L
Linus Torvalds 已提交
6431

6432
	if (unlikely(!cpu_active(dest_cpu)))
6433
		return ret;
L
Linus Torvalds 已提交
6434 6435 6436 6437 6438 6439 6440

	rq_src = cpu_rq(src_cpu);
	rq_dest = cpu_rq(dest_cpu);

	double_rq_lock(rq_src, rq_dest);
	/* Already moved. */
	if (task_cpu(p) != src_cpu)
L
Linus Torvalds 已提交
6441
		goto done;
L
Linus Torvalds 已提交
6442
	/* Affinity changed (again). */
6443
	if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
L
Linus Torvalds 已提交
6444
		goto fail;
L
Linus Torvalds 已提交
6445

I
Ingo Molnar 已提交
6446
	on_rq = p->se.on_rq;
6447
	if (on_rq)
6448
		deactivate_task(rq_src, p, 0);
6449

L
Linus Torvalds 已提交
6450
	set_task_cpu(p, dest_cpu);
I
Ingo Molnar 已提交
6451 6452
	if (on_rq) {
		activate_task(rq_dest, p, 0);
6453
		check_preempt_curr(rq_dest, p, 0);
L
Linus Torvalds 已提交
6454
	}
L
Linus Torvalds 已提交
6455
done:
6456
	ret = 1;
L
Linus Torvalds 已提交
6457
fail:
L
Linus Torvalds 已提交
6458
	double_rq_unlock(rq_src, rq_dest);
6459
	return ret;
L
Linus Torvalds 已提交
6460 6461 6462 6463 6464 6465 6466
}

/*
 * migration_thread - this is a highprio system thread that performs
 * thread migration by bumping thread off CPU then 'pushing' onto
 * another runqueue.
 */
I
Ingo Molnar 已提交
6467
static int migration_thread(void *data)
L
Linus Torvalds 已提交
6468 6469
{
	int cpu = (long)data;
6470
	struct rq *rq;
L
Linus Torvalds 已提交
6471 6472 6473 6474 6475 6476

	rq = cpu_rq(cpu);
	BUG_ON(rq->migration_thread != current);

	set_current_state(TASK_INTERRUPTIBLE);
	while (!kthread_should_stop()) {
6477
		struct migration_req *req;
L
Linus Torvalds 已提交
6478 6479 6480 6481 6482 6483 6484 6485 6486 6487 6488 6489 6490 6491 6492 6493 6494 6495 6496 6497 6498 6499
		struct list_head *head;

		spin_lock_irq(&rq->lock);

		if (cpu_is_offline(cpu)) {
			spin_unlock_irq(&rq->lock);
			goto wait_to_die;
		}

		if (rq->active_balance) {
			active_load_balance(rq, cpu);
			rq->active_balance = 0;
		}

		head = &rq->migration_queue;

		if (list_empty(head)) {
			spin_unlock_irq(&rq->lock);
			schedule();
			set_current_state(TASK_INTERRUPTIBLE);
			continue;
		}
6500
		req = list_entry(head->next, struct migration_req, list);
L
Linus Torvalds 已提交
6501 6502
		list_del_init(head->next);

N
Nick Piggin 已提交
6503 6504 6505
		spin_unlock(&rq->lock);
		__migrate_task(req->task, cpu, req->dest_cpu);
		local_irq_enable();
L
Linus Torvalds 已提交
6506 6507 6508 6509 6510 6511 6512 6513 6514 6515 6516 6517 6518 6519 6520 6521 6522 6523

		complete(&req->done);
	}
	__set_current_state(TASK_RUNNING);
	return 0;

wait_to_die:
	/* Wait for kthread_stop */
	set_current_state(TASK_INTERRUPTIBLE);
	while (!kthread_should_stop()) {
		schedule();
		set_current_state(TASK_INTERRUPTIBLE);
	}
	__set_current_state(TASK_RUNNING);
	return 0;
}

#ifdef CONFIG_HOTPLUG_CPU
6524 6525 6526 6527 6528 6529 6530 6531 6532 6533 6534

static int __migrate_task_irq(struct task_struct *p, int src_cpu, int dest_cpu)
{
	int ret;

	local_irq_disable();
	ret = __migrate_task(p, src_cpu, dest_cpu);
	local_irq_enable();
	return ret;
}

6535
/*
6536
 * Figure out where task on dead CPU should go, use force if necessary.
6537
 */
6538
static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
L
Linus Torvalds 已提交
6539
{
6540
	int dest_cpu;
6541
	const struct cpumask *nodemask = cpumask_of_node(cpu_to_node(dead_cpu));
6542 6543 6544 6545 6546 6547 6548 6549 6550 6551 6552 6553 6554 6555 6556 6557

again:
	/* Look for allowed, online CPU in same node. */
	for_each_cpu_and(dest_cpu, nodemask, cpu_online_mask)
		if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
			goto move;

	/* Any allowed, online CPU? */
	dest_cpu = cpumask_any_and(&p->cpus_allowed, cpu_online_mask);
	if (dest_cpu < nr_cpu_ids)
		goto move;

	/* No more Mr. Nice Guy. */
	if (dest_cpu >= nr_cpu_ids) {
		cpuset_cpus_allowed_locked(p, &p->cpus_allowed);
		dest_cpu = cpumask_any_and(cpu_online_mask, &p->cpus_allowed);
L
Linus Torvalds 已提交
6558

6559 6560 6561 6562 6563 6564 6565 6566 6567
		/*
		 * Don't tell them about moving exiting tasks or
		 * kernel threads (both mm NULL), since they never
		 * leave kernel.
		 */
		if (p->mm && printk_ratelimit()) {
			printk(KERN_INFO "process %d (%s) no "
			       "longer affine to cpu%d\n",
			       task_pid_nr(p), p->comm, dead_cpu);
6568
		}
6569 6570 6571 6572 6573 6574
	}

move:
	/* It can have affinity changed while we were choosing. */
	if (unlikely(!__migrate_task_irq(p, dead_cpu, dest_cpu)))
		goto again;
L
Linus Torvalds 已提交
6575 6576 6577 6578 6579 6580 6581 6582 6583
}

/*
 * While a dead CPU has no uninterruptible tasks queued at this point,
 * it might still have a nonzero ->nr_uninterruptible counter, because
 * for performance reasons the counter is not stricly tracking tasks to
 * their home CPUs. So we just add the counter to another CPU's counter,
 * to keep the global sum constant after CPU-down:
 */
6584
static void migrate_nr_uninterruptible(struct rq *rq_src)
L
Linus Torvalds 已提交
6585
{
R
Rusty Russell 已提交
6586
	struct rq *rq_dest = cpu_rq(cpumask_any(cpu_online_mask));
L
Linus Torvalds 已提交
6587 6588 6589 6590 6591 6592 6593 6594 6595 6596 6597 6598 6599
	unsigned long flags;

	local_irq_save(flags);
	double_rq_lock(rq_src, rq_dest);
	rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
	rq_src->nr_uninterruptible = 0;
	double_rq_unlock(rq_src, rq_dest);
	local_irq_restore(flags);
}

/* Run through task list and migrate tasks from the dead cpu. */
static void migrate_live_tasks(int src_cpu)
{
6600
	struct task_struct *p, *t;
L
Linus Torvalds 已提交
6601

6602
	read_lock(&tasklist_lock);
L
Linus Torvalds 已提交
6603

6604 6605
	do_each_thread(t, p) {
		if (p == current)
L
Linus Torvalds 已提交
6606 6607
			continue;

6608 6609 6610
		if (task_cpu(p) == src_cpu)
			move_task_off_dead_cpu(src_cpu, p);
	} while_each_thread(t, p);
L
Linus Torvalds 已提交
6611

6612
	read_unlock(&tasklist_lock);
L
Linus Torvalds 已提交
6613 6614
}

I
Ingo Molnar 已提交
6615 6616
/*
 * Schedules idle task to be the next runnable task on current CPU.
6617 6618
 * It does so by boosting its priority to highest possible.
 * Used by CPU offline code.
L
Linus Torvalds 已提交
6619 6620 6621
 */
void sched_idle_next(void)
{
6622
	int this_cpu = smp_processor_id();
6623
	struct rq *rq = cpu_rq(this_cpu);
L
Linus Torvalds 已提交
6624 6625 6626 6627
	struct task_struct *p = rq->idle;
	unsigned long flags;

	/* cpu has to be offline */
6628
	BUG_ON(cpu_online(this_cpu));
L
Linus Torvalds 已提交
6629

6630 6631 6632
	/*
	 * Strictly not necessary since rest of the CPUs are stopped by now
	 * and interrupts disabled on the current cpu.
L
Linus Torvalds 已提交
6633 6634 6635
	 */
	spin_lock_irqsave(&rq->lock, flags);

I
Ingo Molnar 已提交
6636
	__setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
6637

6638 6639
	update_rq_clock(rq);
	activate_task(rq, p, 0);
L
Linus Torvalds 已提交
6640 6641 6642 6643

	spin_unlock_irqrestore(&rq->lock, flags);
}

6644 6645
/*
 * Ensures that the idle task is using init_mm right before its cpu goes
L
Linus Torvalds 已提交
6646 6647 6648 6649 6650 6651 6652 6653 6654 6655 6656 6657 6658
 * offline.
 */
void idle_task_exit(void)
{
	struct mm_struct *mm = current->active_mm;

	BUG_ON(cpu_online(smp_processor_id()));

	if (mm != &init_mm)
		switch_mm(mm, &init_mm, current);
	mmdrop(mm);
}

6659
/* called under rq->lock with disabled interrupts */
6660
static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
L
Linus Torvalds 已提交
6661
{
6662
	struct rq *rq = cpu_rq(dead_cpu);
L
Linus Torvalds 已提交
6663 6664

	/* Must be exiting, otherwise would be on tasklist. */
E
Eugene Teo 已提交
6665
	BUG_ON(!p->exit_state);
L
Linus Torvalds 已提交
6666 6667

	/* Cannot have done final schedule yet: would have vanished. */
6668
	BUG_ON(p->state == TASK_DEAD);
L
Linus Torvalds 已提交
6669

6670
	get_task_struct(p);
L
Linus Torvalds 已提交
6671 6672 6673

	/*
	 * Drop lock around migration; if someone else moves it,
I
Ingo Molnar 已提交
6674
	 * that's OK. No task can be added to this CPU, so iteration is
L
Linus Torvalds 已提交
6675 6676
	 * fine.
	 */
6677
	spin_unlock_irq(&rq->lock);
6678
	move_task_off_dead_cpu(dead_cpu, p);
6679
	spin_lock_irq(&rq->lock);
L
Linus Torvalds 已提交
6680

6681
	put_task_struct(p);
L
Linus Torvalds 已提交
6682 6683 6684 6685 6686
}

/* release_task() removes task from tasklist, so we won't find dead tasks. */
static void migrate_dead_tasks(unsigned int dead_cpu)
{
6687
	struct rq *rq = cpu_rq(dead_cpu);
I
Ingo Molnar 已提交
6688
	struct task_struct *next;
6689

I
Ingo Molnar 已提交
6690 6691 6692
	for ( ; ; ) {
		if (!rq->nr_running)
			break;
I
Ingo Molnar 已提交
6693
		update_rq_clock(rq);
6694
		next = pick_next_task(rq);
I
Ingo Molnar 已提交
6695 6696
		if (!next)
			break;
D
Dmitry Adamushko 已提交
6697
		next->sched_class->put_prev_task(rq, next);
I
Ingo Molnar 已提交
6698
		migrate_dead(dead_cpu, next);
6699

L
Linus Torvalds 已提交
6700 6701 6702 6703
	}
}
#endif /* CONFIG_HOTPLUG_CPU */

6704 6705 6706
#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)

static struct ctl_table sd_ctl_dir[] = {
6707 6708
	{
		.procname	= "sched_domain",
6709
		.mode		= 0555,
6710
	},
I
Ingo Molnar 已提交
6711
	{0, },
6712 6713 6714
};

static struct ctl_table sd_ctl_root[] = {
6715
	{
6716
		.ctl_name	= CTL_KERN,
6717
		.procname	= "kernel",
6718
		.mode		= 0555,
6719 6720
		.child		= sd_ctl_dir,
	},
I
Ingo Molnar 已提交
6721
	{0, },
6722 6723 6724 6725 6726
};

static struct ctl_table *sd_alloc_ctl_entry(int n)
{
	struct ctl_table *entry =
6727
		kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
6728 6729 6730 6731

	return entry;
}

6732 6733
static void sd_free_ctl_entry(struct ctl_table **tablep)
{
6734
	struct ctl_table *entry;
6735

6736 6737 6738
	/*
	 * In the intermediate directories, both the child directory and
	 * procname are dynamically allocated and could fail but the mode
I
Ingo Molnar 已提交
6739
	 * will always be set. In the lowest directory the names are
6740 6741 6742
	 * static strings and all have proc handlers.
	 */
	for (entry = *tablep; entry->mode; entry++) {
6743 6744
		if (entry->child)
			sd_free_ctl_entry(&entry->child);
6745 6746 6747
		if (entry->proc_handler == NULL)
			kfree(entry->procname);
	}
6748 6749 6750 6751 6752

	kfree(*tablep);
	*tablep = NULL;
}

6753
static void
6754
set_table_entry(struct ctl_table *entry,
6755 6756 6757 6758 6759 6760 6761 6762 6763 6764 6765 6766 6767
		const char *procname, void *data, int maxlen,
		mode_t mode, proc_handler *proc_handler)
{
	entry->procname = procname;
	entry->data = data;
	entry->maxlen = maxlen;
	entry->mode = mode;
	entry->proc_handler = proc_handler;
}

static struct ctl_table *
sd_alloc_ctl_domain_table(struct sched_domain *sd)
{
6768
	struct ctl_table *table = sd_alloc_ctl_entry(13);
6769

6770 6771 6772
	if (table == NULL)
		return NULL;

6773
	set_table_entry(&table[0], "min_interval", &sd->min_interval,
6774
		sizeof(long), 0644, proc_doulongvec_minmax);
6775
	set_table_entry(&table[1], "max_interval", &sd->max_interval,
6776
		sizeof(long), 0644, proc_doulongvec_minmax);
6777
	set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
6778
		sizeof(int), 0644, proc_dointvec_minmax);
6779
	set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
6780
		sizeof(int), 0644, proc_dointvec_minmax);
6781
	set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
6782
		sizeof(int), 0644, proc_dointvec_minmax);
6783
	set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
6784
		sizeof(int), 0644, proc_dointvec_minmax);
6785
	set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
6786
		sizeof(int), 0644, proc_dointvec_minmax);
6787
	set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
6788
		sizeof(int), 0644, proc_dointvec_minmax);
6789
	set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
6790
		sizeof(int), 0644, proc_dointvec_minmax);
6791
	set_table_entry(&table[9], "cache_nice_tries",
6792 6793
		&sd->cache_nice_tries,
		sizeof(int), 0644, proc_dointvec_minmax);
6794
	set_table_entry(&table[10], "flags", &sd->flags,
6795
		sizeof(int), 0644, proc_dointvec_minmax);
6796 6797 6798
	set_table_entry(&table[11], "name", sd->name,
		CORENAME_MAX_SIZE, 0444, proc_dostring);
	/* &table[12] is terminator */
6799 6800 6801 6802

	return table;
}

6803
static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
6804 6805 6806 6807 6808 6809 6810 6811 6812
{
	struct ctl_table *entry, *table;
	struct sched_domain *sd;
	int domain_num = 0, i;
	char buf[32];

	for_each_domain(cpu, sd)
		domain_num++;
	entry = table = sd_alloc_ctl_entry(domain_num + 1);
6813 6814
	if (table == NULL)
		return NULL;
6815 6816 6817 6818 6819

	i = 0;
	for_each_domain(cpu, sd) {
		snprintf(buf, 32, "domain%d", i);
		entry->procname = kstrdup(buf, GFP_KERNEL);
6820
		entry->mode = 0555;
6821 6822 6823 6824 6825 6826 6827 6828
		entry->child = sd_alloc_ctl_domain_table(sd);
		entry++;
		i++;
	}
	return table;
}

static struct ctl_table_header *sd_sysctl_header;
6829
static void register_sched_domain_sysctl(void)
6830 6831 6832 6833 6834
{
	int i, cpu_num = num_online_cpus();
	struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
	char buf[32];

6835 6836 6837
	WARN_ON(sd_ctl_dir[0].child);
	sd_ctl_dir[0].child = entry;

6838 6839 6840
	if (entry == NULL)
		return;

6841
	for_each_online_cpu(i) {
6842 6843
		snprintf(buf, 32, "cpu%d", i);
		entry->procname = kstrdup(buf, GFP_KERNEL);
6844
		entry->mode = 0555;
6845
		entry->child = sd_alloc_ctl_cpu_table(i);
6846
		entry++;
6847
	}
6848 6849

	WARN_ON(sd_sysctl_header);
6850 6851
	sd_sysctl_header = register_sysctl_table(sd_ctl_root);
}
6852

6853
/* may be called multiple times per register */
6854 6855
static void unregister_sched_domain_sysctl(void)
{
6856 6857
	if (sd_sysctl_header)
		unregister_sysctl_table(sd_sysctl_header);
6858
	sd_sysctl_header = NULL;
6859 6860
	if (sd_ctl_dir[0].child)
		sd_free_ctl_entry(&sd_ctl_dir[0].child);
6861
}
6862
#else
6863 6864 6865 6866
static void register_sched_domain_sysctl(void)
{
}
static void unregister_sched_domain_sysctl(void)
6867 6868 6869 6870
{
}
#endif

6871 6872 6873 6874 6875
static void set_rq_online(struct rq *rq)
{
	if (!rq->online) {
		const struct sched_class *class;

6876
		cpumask_set_cpu(rq->cpu, rq->rd->online);
6877 6878 6879 6880 6881 6882 6883 6884 6885 6886 6887 6888 6889 6890 6891 6892 6893 6894 6895
		rq->online = 1;

		for_each_class(class) {
			if (class->rq_online)
				class->rq_online(rq);
		}
	}
}

static void set_rq_offline(struct rq *rq)
{
	if (rq->online) {
		const struct sched_class *class;

		for_each_class(class) {
			if (class->rq_offline)
				class->rq_offline(rq);
		}

6896
		cpumask_clear_cpu(rq->cpu, rq->rd->online);
6897 6898 6899 6900
		rq->online = 0;
	}
}

L
Linus Torvalds 已提交
6901 6902 6903 6904
/*
 * migration_call - callback that gets triggered when a CPU is added.
 * Here we can start up the necessary migration thread for the new CPU.
 */
6905 6906
static int __cpuinit
migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
L
Linus Torvalds 已提交
6907 6908
{
	struct task_struct *p;
6909
	int cpu = (long)hcpu;
L
Linus Torvalds 已提交
6910
	unsigned long flags;
6911
	struct rq *rq;
L
Linus Torvalds 已提交
6912 6913

	switch (action) {
6914

L
Linus Torvalds 已提交
6915
	case CPU_UP_PREPARE:
6916
	case CPU_UP_PREPARE_FROZEN:
I
Ingo Molnar 已提交
6917
		p = kthread_create(migration_thread, hcpu, "migration/%d", cpu);
L
Linus Torvalds 已提交
6918 6919 6920 6921 6922
		if (IS_ERR(p))
			return NOTIFY_BAD;
		kthread_bind(p, cpu);
		/* Must be high prio: stop_machine expects to yield to it. */
		rq = task_rq_lock(p, &flags);
I
Ingo Molnar 已提交
6923
		__setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
L
Linus Torvalds 已提交
6924 6925 6926
		task_rq_unlock(rq, &flags);
		cpu_rq(cpu)->migration_thread = p;
		break;
6927

L
Linus Torvalds 已提交
6928
	case CPU_ONLINE:
6929
	case CPU_ONLINE_FROZEN:
6930
		/* Strictly unnecessary, as first user will wake it. */
L
Linus Torvalds 已提交
6931
		wake_up_process(cpu_rq(cpu)->migration_thread);
6932 6933 6934 6935 6936

		/* Update our root-domain */
		rq = cpu_rq(cpu);
		spin_lock_irqsave(&rq->lock, flags);
		if (rq->rd) {
6937
			BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
6938 6939

			set_rq_online(rq);
6940 6941
		}
		spin_unlock_irqrestore(&rq->lock, flags);
L
Linus Torvalds 已提交
6942
		break;
6943

L
Linus Torvalds 已提交
6944 6945
#ifdef CONFIG_HOTPLUG_CPU
	case CPU_UP_CANCELED:
6946
	case CPU_UP_CANCELED_FROZEN:
6947 6948
		if (!cpu_rq(cpu)->migration_thread)
			break;
I
Ingo Molnar 已提交
6949
		/* Unbind it from offline cpu so it can run. Fall thru. */
6950
		kthread_bind(cpu_rq(cpu)->migration_thread,
R
Rusty Russell 已提交
6951
			     cpumask_any(cpu_online_mask));
L
Linus Torvalds 已提交
6952 6953 6954
		kthread_stop(cpu_rq(cpu)->migration_thread);
		cpu_rq(cpu)->migration_thread = NULL;
		break;
6955

L
Linus Torvalds 已提交
6956
	case CPU_DEAD:
6957
	case CPU_DEAD_FROZEN:
6958
		cpuset_lock(); /* around calls to cpuset_cpus_allowed_lock() */
L
Linus Torvalds 已提交
6959 6960 6961 6962 6963
		migrate_live_tasks(cpu);
		rq = cpu_rq(cpu);
		kthread_stop(rq->migration_thread);
		rq->migration_thread = NULL;
		/* Idle task back to normal (off runqueue, low prio) */
6964
		spin_lock_irq(&rq->lock);
I
Ingo Molnar 已提交
6965
		update_rq_clock(rq);
6966
		deactivate_task(rq, rq->idle, 0);
L
Linus Torvalds 已提交
6967
		rq->idle->static_prio = MAX_PRIO;
I
Ingo Molnar 已提交
6968 6969
		__setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
		rq->idle->sched_class = &idle_sched_class;
L
Linus Torvalds 已提交
6970
		migrate_dead_tasks(cpu);
6971
		spin_unlock_irq(&rq->lock);
6972
		cpuset_unlock();
L
Linus Torvalds 已提交
6973 6974 6975
		migrate_nr_uninterruptible(rq);
		BUG_ON(rq->nr_running != 0);

I
Ingo Molnar 已提交
6976 6977 6978 6979 6980
		/*
		 * No need to migrate the tasks: it was best-effort if
		 * they didn't take sched_hotcpu_mutex. Just wake up
		 * the requestors.
		 */
L
Linus Torvalds 已提交
6981 6982
		spin_lock_irq(&rq->lock);
		while (!list_empty(&rq->migration_queue)) {
6983 6984
			struct migration_req *req;

L
Linus Torvalds 已提交
6985
			req = list_entry(rq->migration_queue.next,
6986
					 struct migration_req, list);
L
Linus Torvalds 已提交
6987
			list_del_init(&req->list);
B
Brian King 已提交
6988
			spin_unlock_irq(&rq->lock);
L
Linus Torvalds 已提交
6989
			complete(&req->done);
B
Brian King 已提交
6990
			spin_lock_irq(&rq->lock);
L
Linus Torvalds 已提交
6991 6992 6993
		}
		spin_unlock_irq(&rq->lock);
		break;
G
Gregory Haskins 已提交
6994

6995 6996
	case CPU_DYING:
	case CPU_DYING_FROZEN:
G
Gregory Haskins 已提交
6997 6998 6999 7000
		/* Update our root-domain */
		rq = cpu_rq(cpu);
		spin_lock_irqsave(&rq->lock, flags);
		if (rq->rd) {
7001
			BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
7002
			set_rq_offline(rq);
G
Gregory Haskins 已提交
7003 7004 7005
		}
		spin_unlock_irqrestore(&rq->lock, flags);
		break;
L
Linus Torvalds 已提交
7006 7007 7008 7009 7010 7011 7012 7013
#endif
	}
	return NOTIFY_OK;
}

/* Register at highest priority so that task migration (migrate_all_tasks)
 * happens before everything else.
 */
7014
static struct notifier_block __cpuinitdata migration_notifier = {
L
Linus Torvalds 已提交
7015 7016 7017 7018
	.notifier_call = migration_call,
	.priority = 10
};

7019
static int __init migration_init(void)
L
Linus Torvalds 已提交
7020 7021
{
	void *cpu = (void *)(long)smp_processor_id();
7022
	int err;
7023 7024

	/* Start one for the boot CPU: */
7025 7026
	err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
	BUG_ON(err == NOTIFY_BAD);
L
Linus Torvalds 已提交
7027 7028
	migration_call(&migration_notifier, CPU_ONLINE, cpu);
	register_cpu_notifier(&migration_notifier);
7029 7030

	return err;
L
Linus Torvalds 已提交
7031
}
7032
early_initcall(migration_init);
L
Linus Torvalds 已提交
7033 7034 7035
#endif

#ifdef CONFIG_SMP
7036

7037
#ifdef CONFIG_SCHED_DEBUG
I
Ingo Molnar 已提交
7038

7039
static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
7040
				  struct cpumask *groupmask)
L
Linus Torvalds 已提交
7041
{
I
Ingo Molnar 已提交
7042
	struct sched_group *group = sd->groups;
7043
	char str[256];
L
Linus Torvalds 已提交
7044

R
Rusty Russell 已提交
7045
	cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
7046
	cpumask_clear(groupmask);
I
Ingo Molnar 已提交
7047 7048 7049 7050 7051 7052 7053 7054 7055

	printk(KERN_DEBUG "%*s domain %d: ", level, "", level);

	if (!(sd->flags & SD_LOAD_BALANCE)) {
		printk("does not load-balance\n");
		if (sd->parent)
			printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
					" has parent");
		return -1;
N
Nick Piggin 已提交
7056 7057
	}

7058
	printk(KERN_CONT "span %s level %s\n", str, sd->name);
I
Ingo Molnar 已提交
7059

7060
	if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
I
Ingo Molnar 已提交
7061 7062 7063
		printk(KERN_ERR "ERROR: domain->span does not contain "
				"CPU%d\n", cpu);
	}
7064
	if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
I
Ingo Molnar 已提交
7065 7066 7067
		printk(KERN_ERR "ERROR: domain->groups does not contain"
				" CPU%d\n", cpu);
	}
L
Linus Torvalds 已提交
7068

I
Ingo Molnar 已提交
7069
	printk(KERN_DEBUG "%*s groups:", level + 1, "");
L
Linus Torvalds 已提交
7070
	do {
I
Ingo Molnar 已提交
7071 7072 7073
		if (!group) {
			printk("\n");
			printk(KERN_ERR "ERROR: group is NULL\n");
L
Linus Torvalds 已提交
7074 7075 7076
			break;
		}

I
Ingo Molnar 已提交
7077 7078 7079 7080 7081 7082
		if (!group->__cpu_power) {
			printk(KERN_CONT "\n");
			printk(KERN_ERR "ERROR: domain->cpu_power not "
					"set\n");
			break;
		}
L
Linus Torvalds 已提交
7083

7084
		if (!cpumask_weight(sched_group_cpus(group))) {
I
Ingo Molnar 已提交
7085 7086 7087 7088
			printk(KERN_CONT "\n");
			printk(KERN_ERR "ERROR: empty group\n");
			break;
		}
L
Linus Torvalds 已提交
7089

7090
		if (cpumask_intersects(groupmask, sched_group_cpus(group))) {
I
Ingo Molnar 已提交
7091 7092 7093 7094
			printk(KERN_CONT "\n");
			printk(KERN_ERR "ERROR: repeated CPUs\n");
			break;
		}
L
Linus Torvalds 已提交
7095

7096
		cpumask_or(groupmask, groupmask, sched_group_cpus(group));
L
Linus Torvalds 已提交
7097

R
Rusty Russell 已提交
7098
		cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
I
Ingo Molnar 已提交
7099
		printk(KERN_CONT " %s", str);
L
Linus Torvalds 已提交
7100

I
Ingo Molnar 已提交
7101 7102 7103
		group = group->next;
	} while (group != sd->groups);
	printk(KERN_CONT "\n");
L
Linus Torvalds 已提交
7104

7105
	if (!cpumask_equal(sched_domain_span(sd), groupmask))
I
Ingo Molnar 已提交
7106
		printk(KERN_ERR "ERROR: groups don't span domain->span\n");
L
Linus Torvalds 已提交
7107

7108 7109
	if (sd->parent &&
	    !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
I
Ingo Molnar 已提交
7110 7111 7112 7113
		printk(KERN_ERR "ERROR: parent span is not a superset "
			"of domain->span\n");
	return 0;
}
L
Linus Torvalds 已提交
7114

I
Ingo Molnar 已提交
7115 7116
static void sched_domain_debug(struct sched_domain *sd, int cpu)
{
7117
	cpumask_var_t groupmask;
I
Ingo Molnar 已提交
7118
	int level = 0;
L
Linus Torvalds 已提交
7119

I
Ingo Molnar 已提交
7120 7121 7122 7123
	if (!sd) {
		printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
		return;
	}
L
Linus Torvalds 已提交
7124

I
Ingo Molnar 已提交
7125 7126
	printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);

7127
	if (!alloc_cpumask_var(&groupmask, GFP_KERNEL)) {
7128 7129 7130 7131
		printk(KERN_DEBUG "Cannot load-balance (out of memory)\n");
		return;
	}

I
Ingo Molnar 已提交
7132
	for (;;) {
7133
		if (sched_domain_debug_one(sd, cpu, level, groupmask))
I
Ingo Molnar 已提交
7134
			break;
L
Linus Torvalds 已提交
7135 7136
		level++;
		sd = sd->parent;
7137
		if (!sd)
I
Ingo Molnar 已提交
7138 7139
			break;
	}
7140
	free_cpumask_var(groupmask);
L
Linus Torvalds 已提交
7141
}
7142
#else /* !CONFIG_SCHED_DEBUG */
7143
# define sched_domain_debug(sd, cpu) do { } while (0)
7144
#endif /* CONFIG_SCHED_DEBUG */
L
Linus Torvalds 已提交
7145

7146
static int sd_degenerate(struct sched_domain *sd)
7147
{
7148
	if (cpumask_weight(sched_domain_span(sd)) == 1)
7149 7150 7151 7152 7153 7154
		return 1;

	/* Following flags need at least 2 groups */
	if (sd->flags & (SD_LOAD_BALANCE |
			 SD_BALANCE_NEWIDLE |
			 SD_BALANCE_FORK |
7155 7156 7157
			 SD_BALANCE_EXEC |
			 SD_SHARE_CPUPOWER |
			 SD_SHARE_PKG_RESOURCES)) {
7158 7159 7160 7161 7162 7163 7164 7165 7166 7167 7168 7169 7170
		if (sd->groups != sd->groups->next)
			return 0;
	}

	/* Following flags don't use groups */
	if (sd->flags & (SD_WAKE_IDLE |
			 SD_WAKE_AFFINE |
			 SD_WAKE_BALANCE))
		return 0;

	return 1;
}

7171 7172
static int
sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
7173 7174 7175 7176 7177 7178
{
	unsigned long cflags = sd->flags, pflags = parent->flags;

	if (sd_degenerate(parent))
		return 1;

7179
	if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
7180 7181 7182 7183 7184 7185 7186 7187 7188 7189 7190
		return 0;

	/* Does parent contain flags not in child? */
	/* WAKE_BALANCE is a subset of WAKE_AFFINE */
	if (cflags & SD_WAKE_AFFINE)
		pflags &= ~SD_WAKE_BALANCE;
	/* Flags needing groups don't count if only 1 group in parent */
	if (parent->groups == parent->groups->next) {
		pflags &= ~(SD_LOAD_BALANCE |
				SD_BALANCE_NEWIDLE |
				SD_BALANCE_FORK |
7191 7192 7193
				SD_BALANCE_EXEC |
				SD_SHARE_CPUPOWER |
				SD_SHARE_PKG_RESOURCES);
7194 7195
		if (nr_node_ids == 1)
			pflags &= ~SD_SERIALIZE;
7196 7197 7198 7199 7200 7201 7202
	}
	if (~cflags & pflags)
		return 0;

	return 1;
}

7203 7204
static void free_rootdomain(struct root_domain *rd)
{
7205 7206
	cpupri_cleanup(&rd->cpupri);

7207 7208 7209 7210 7211 7212
	free_cpumask_var(rd->rto_mask);
	free_cpumask_var(rd->online);
	free_cpumask_var(rd->span);
	kfree(rd);
}

G
Gregory Haskins 已提交
7213 7214
static void rq_attach_root(struct rq *rq, struct root_domain *rd)
{
I
Ingo Molnar 已提交
7215
	struct root_domain *old_rd = NULL;
G
Gregory Haskins 已提交
7216 7217 7218 7219 7220
	unsigned long flags;

	spin_lock_irqsave(&rq->lock, flags);

	if (rq->rd) {
I
Ingo Molnar 已提交
7221
		old_rd = rq->rd;
G
Gregory Haskins 已提交
7222

7223
		if (cpumask_test_cpu(rq->cpu, old_rd->online))
7224
			set_rq_offline(rq);
G
Gregory Haskins 已提交
7225

7226
		cpumask_clear_cpu(rq->cpu, old_rd->span);
7227

I
Ingo Molnar 已提交
7228 7229 7230 7231 7232 7233 7234
		/*
		 * If we dont want to free the old_rt yet then
		 * set old_rd to NULL to skip the freeing later
		 * in this function:
		 */
		if (!atomic_dec_and_test(&old_rd->refcount))
			old_rd = NULL;
G
Gregory Haskins 已提交
7235 7236 7237 7238 7239
	}

	atomic_inc(&rd->refcount);
	rq->rd = rd;

7240 7241
	cpumask_set_cpu(rq->cpu, rd->span);
	if (cpumask_test_cpu(rq->cpu, cpu_online_mask))
7242
		set_rq_online(rq);
G
Gregory Haskins 已提交
7243 7244

	spin_unlock_irqrestore(&rq->lock, flags);
I
Ingo Molnar 已提交
7245 7246 7247

	if (old_rd)
		free_rootdomain(old_rd);
G
Gregory Haskins 已提交
7248 7249
}

L
Li Zefan 已提交
7250
static int __init_refok init_rootdomain(struct root_domain *rd, bool bootmem)
G
Gregory Haskins 已提交
7251 7252 7253
{
	memset(rd, 0, sizeof(*rd));

7254 7255 7256 7257
	if (bootmem) {
		alloc_bootmem_cpumask_var(&def_root_domain.span);
		alloc_bootmem_cpumask_var(&def_root_domain.online);
		alloc_bootmem_cpumask_var(&def_root_domain.rto_mask);
7258
		cpupri_init(&rd->cpupri, true);
7259 7260 7261 7262
		return 0;
	}

	if (!alloc_cpumask_var(&rd->span, GFP_KERNEL))
7263
		goto out;
7264 7265 7266 7267
	if (!alloc_cpumask_var(&rd->online, GFP_KERNEL))
		goto free_span;
	if (!alloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
		goto free_online;
7268

7269 7270
	if (cpupri_init(&rd->cpupri, false) != 0)
		goto free_rto_mask;
7271
	return 0;
7272

7273 7274
free_rto_mask:
	free_cpumask_var(rd->rto_mask);
7275 7276 7277 7278
free_online:
	free_cpumask_var(rd->online);
free_span:
	free_cpumask_var(rd->span);
7279
out:
7280
	return -ENOMEM;
G
Gregory Haskins 已提交
7281 7282 7283 7284
}

static void init_defrootdomain(void)
{
7285 7286
	init_rootdomain(&def_root_domain, true);

G
Gregory Haskins 已提交
7287 7288 7289
	atomic_set(&def_root_domain.refcount, 1);
}

7290
static struct root_domain *alloc_rootdomain(void)
G
Gregory Haskins 已提交
7291 7292 7293 7294 7295 7296 7297
{
	struct root_domain *rd;

	rd = kmalloc(sizeof(*rd), GFP_KERNEL);
	if (!rd)
		return NULL;

7298 7299 7300 7301
	if (init_rootdomain(rd, false) != 0) {
		kfree(rd);
		return NULL;
	}
G
Gregory Haskins 已提交
7302 7303 7304 7305

	return rd;
}

L
Linus Torvalds 已提交
7306
/*
I
Ingo Molnar 已提交
7307
 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
L
Linus Torvalds 已提交
7308 7309
 * hold the hotplug lock.
 */
I
Ingo Molnar 已提交
7310 7311
static void
cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
L
Linus Torvalds 已提交
7312
{
7313
	struct rq *rq = cpu_rq(cpu);
7314 7315 7316
	struct sched_domain *tmp;

	/* Remove the sched domains which do not contribute to scheduling. */
7317
	for (tmp = sd; tmp; ) {
7318 7319 7320
		struct sched_domain *parent = tmp->parent;
		if (!parent)
			break;
7321

7322
		if (sd_parent_degenerate(tmp, parent)) {
7323
			tmp->parent = parent->parent;
7324 7325
			if (parent->parent)
				parent->parent->child = tmp;
7326 7327
		} else
			tmp = tmp->parent;
7328 7329
	}

7330
	if (sd && sd_degenerate(sd)) {
7331
		sd = sd->parent;
7332 7333 7334
		if (sd)
			sd->child = NULL;
	}
L
Linus Torvalds 已提交
7335 7336 7337

	sched_domain_debug(sd, cpu);

G
Gregory Haskins 已提交
7338
	rq_attach_root(rq, rd);
N
Nick Piggin 已提交
7339
	rcu_assign_pointer(rq->sd, sd);
L
Linus Torvalds 已提交
7340 7341 7342
}

/* cpus with isolated domains */
7343
static cpumask_var_t cpu_isolated_map;
L
Linus Torvalds 已提交
7344 7345 7346 7347

/* Setup the mask of cpus configured for isolated domains */
static int __init isolated_cpu_setup(char *str)
{
R
Rusty Russell 已提交
7348
	cpulist_parse(str, cpu_isolated_map);
L
Linus Torvalds 已提交
7349 7350 7351
	return 1;
}

I
Ingo Molnar 已提交
7352
__setup("isolcpus=", isolated_cpu_setup);
L
Linus Torvalds 已提交
7353 7354

/*
7355 7356
 * init_sched_build_groups takes the cpumask we wish to span, and a pointer
 * to a function which identifies what group(along with sched group) a CPU
7357 7358
 * belongs to. The return value of group_fn must be a >= 0 and < nr_cpu_ids
 * (due to the fact that we keep track of groups covered with a struct cpumask).
L
Linus Torvalds 已提交
7359 7360 7361 7362 7363
 *
 * init_sched_build_groups will build a circular linked list of the groups
 * covered by the given span, and will set each group's ->cpumask correctly,
 * and ->cpu_power to 0.
 */
7364
static void
7365 7366 7367
init_sched_build_groups(const struct cpumask *span,
			const struct cpumask *cpu_map,
			int (*group_fn)(int cpu, const struct cpumask *cpu_map,
7368
					struct sched_group **sg,
7369 7370
					struct cpumask *tmpmask),
			struct cpumask *covered, struct cpumask *tmpmask)
L
Linus Torvalds 已提交
7371 7372 7373 7374
{
	struct sched_group *first = NULL, *last = NULL;
	int i;

7375
	cpumask_clear(covered);
7376

7377
	for_each_cpu(i, span) {
7378
		struct sched_group *sg;
7379
		int group = group_fn(i, cpu_map, &sg, tmpmask);
L
Linus Torvalds 已提交
7380 7381
		int j;

7382
		if (cpumask_test_cpu(i, covered))
L
Linus Torvalds 已提交
7383 7384
			continue;

7385
		cpumask_clear(sched_group_cpus(sg));
7386
		sg->__cpu_power = 0;
L
Linus Torvalds 已提交
7387

7388
		for_each_cpu(j, span) {
7389
			if (group_fn(j, cpu_map, NULL, tmpmask) != group)
L
Linus Torvalds 已提交
7390 7391
				continue;

7392
			cpumask_set_cpu(j, covered);
7393
			cpumask_set_cpu(j, sched_group_cpus(sg));
L
Linus Torvalds 已提交
7394 7395 7396 7397 7398 7399 7400 7401 7402 7403
		}
		if (!first)
			first = sg;
		if (last)
			last->next = sg;
		last = sg;
	}
	last->next = first;
}

7404
#define SD_NODES_PER_DOMAIN 16
L
Linus Torvalds 已提交
7405

7406
#ifdef CONFIG_NUMA
7407

7408 7409 7410 7411 7412
/**
 * find_next_best_node - find the next node to include in a sched_domain
 * @node: node whose sched_domain we're building
 * @used_nodes: nodes already in the sched_domain
 *
I
Ingo Molnar 已提交
7413
 * Find the next node to include in a given scheduling domain. Simply
7414 7415 7416 7417
 * finds the closest node not already in the @used_nodes map.
 *
 * Should use nodemask_t.
 */
7418
static int find_next_best_node(int node, nodemask_t *used_nodes)
7419 7420 7421 7422 7423
{
	int i, n, val, min_val, best_node = 0;

	min_val = INT_MAX;

7424
	for (i = 0; i < nr_node_ids; i++) {
7425
		/* Start at @node */
7426
		n = (node + i) % nr_node_ids;
7427 7428 7429 7430 7431

		if (!nr_cpus_node(n))
			continue;

		/* Skip already used nodes */
7432
		if (node_isset(n, *used_nodes))
7433 7434 7435 7436 7437 7438 7439 7440 7441 7442 7443
			continue;

		/* Simple min distance search */
		val = node_distance(node, n);

		if (val < min_val) {
			min_val = val;
			best_node = n;
		}
	}

7444
	node_set(best_node, *used_nodes);
7445 7446 7447 7448 7449 7450
	return best_node;
}

/**
 * sched_domain_node_span - get a cpumask for a node's sched_domain
 * @node: node whose cpumask we're constructing
7451
 * @span: resulting cpumask
7452
 *
I
Ingo Molnar 已提交
7453
 * Given a node, construct a good cpumask for its sched_domain to span. It
7454 7455 7456
 * should be one that prevents unnecessary balancing, but also spreads tasks
 * out optimally.
 */
7457
static void sched_domain_node_span(int node, struct cpumask *span)
7458
{
7459
	nodemask_t used_nodes;
7460
	int i;
7461

7462
	cpumask_clear(span);
7463
	nodes_clear(used_nodes);
7464

7465
	cpumask_or(span, span, cpumask_of_node(node));
7466
	node_set(node, used_nodes);
7467 7468

	for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
7469
		int next_node = find_next_best_node(node, &used_nodes);
7470

7471
		cpumask_or(span, span, cpumask_of_node(next_node));
7472 7473
	}
}
7474
#endif /* CONFIG_NUMA */
7475

7476
int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
7477

7478 7479 7480 7481 7482 7483 7484 7485 7486 7487 7488 7489 7490 7491 7492
/*
 * The cpus mask in sched_group and sched_domain hangs off the end.
 * FIXME: use cpumask_var_t or dynamic percpu alloc to avoid wasting space
 * for nr_cpu_ids < CONFIG_NR_CPUS.
 */
struct static_sched_group {
	struct sched_group sg;
	DECLARE_BITMAP(cpus, CONFIG_NR_CPUS);
};

struct static_sched_domain {
	struct sched_domain sd;
	DECLARE_BITMAP(span, CONFIG_NR_CPUS);
};

7493
/*
7494
 * SMT sched-domains:
7495
 */
L
Linus Torvalds 已提交
7496
#ifdef CONFIG_SCHED_SMT
7497 7498
static DEFINE_PER_CPU(struct static_sched_domain, cpu_domains);
static DEFINE_PER_CPU(struct static_sched_group, sched_group_cpus);
7499

I
Ingo Molnar 已提交
7500
static int
7501 7502
cpu_to_cpu_group(int cpu, const struct cpumask *cpu_map,
		 struct sched_group **sg, struct cpumask *unused)
L
Linus Torvalds 已提交
7503
{
7504
	if (sg)
7505
		*sg = &per_cpu(sched_group_cpus, cpu).sg;
L
Linus Torvalds 已提交
7506 7507
	return cpu;
}
7508
#endif /* CONFIG_SCHED_SMT */
L
Linus Torvalds 已提交
7509

7510 7511 7512
/*
 * multi-core sched-domains:
 */
7513
#ifdef CONFIG_SCHED_MC
7514 7515
static DEFINE_PER_CPU(struct static_sched_domain, core_domains);
static DEFINE_PER_CPU(struct static_sched_group, sched_group_core);
7516
#endif /* CONFIG_SCHED_MC */
7517 7518

#if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
I
Ingo Molnar 已提交
7519
static int
7520 7521
cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
		  struct sched_group **sg, struct cpumask *mask)
7522
{
7523
	int group;
7524

7525 7526
	cpumask_and(mask, &per_cpu(cpu_sibling_map, cpu), cpu_map);
	group = cpumask_first(mask);
7527
	if (sg)
7528
		*sg = &per_cpu(sched_group_core, group).sg;
7529
	return group;
7530 7531
}
#elif defined(CONFIG_SCHED_MC)
I
Ingo Molnar 已提交
7532
static int
7533 7534
cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
		  struct sched_group **sg, struct cpumask *unused)
7535
{
7536
	if (sg)
7537
		*sg = &per_cpu(sched_group_core, cpu).sg;
7538 7539 7540 7541
	return cpu;
}
#endif

7542 7543
static DEFINE_PER_CPU(struct static_sched_domain, phys_domains);
static DEFINE_PER_CPU(struct static_sched_group, sched_group_phys);
7544

I
Ingo Molnar 已提交
7545
static int
7546 7547
cpu_to_phys_group(int cpu, const struct cpumask *cpu_map,
		  struct sched_group **sg, struct cpumask *mask)
L
Linus Torvalds 已提交
7548
{
7549
	int group;
7550
#ifdef CONFIG_SCHED_MC
7551
	cpumask_and(mask, cpu_coregroup_mask(cpu), cpu_map);
7552
	group = cpumask_first(mask);
7553
#elif defined(CONFIG_SCHED_SMT)
7554 7555
	cpumask_and(mask, &per_cpu(cpu_sibling_map, cpu), cpu_map);
	group = cpumask_first(mask);
L
Linus Torvalds 已提交
7556
#else
7557
	group = cpu;
L
Linus Torvalds 已提交
7558
#endif
7559
	if (sg)
7560
		*sg = &per_cpu(sched_group_phys, group).sg;
7561
	return group;
L
Linus Torvalds 已提交
7562 7563 7564 7565
}

#ifdef CONFIG_NUMA
/*
7566 7567 7568
 * The init_sched_build_groups can't handle what we want to do with node
 * groups, so roll our own. Now each node has its own list of groups which
 * gets dynamically allocated.
L
Linus Torvalds 已提交
7569
 */
7570
static DEFINE_PER_CPU(struct static_sched_domain, node_domains);
7571
static struct sched_group ***sched_group_nodes_bycpu;
L
Linus Torvalds 已提交
7572

7573
static DEFINE_PER_CPU(struct static_sched_domain, allnodes_domains);
7574
static DEFINE_PER_CPU(struct static_sched_group, sched_group_allnodes);
7575

7576 7577 7578
static int cpu_to_allnodes_group(int cpu, const struct cpumask *cpu_map,
				 struct sched_group **sg,
				 struct cpumask *nodemask)
7579
{
7580 7581
	int group;

7582
	cpumask_and(nodemask, cpumask_of_node(cpu_to_node(cpu)), cpu_map);
7583
	group = cpumask_first(nodemask);
7584 7585

	if (sg)
7586
		*sg = &per_cpu(sched_group_allnodes, group).sg;
7587
	return group;
L
Linus Torvalds 已提交
7588
}
7589

7590 7591 7592 7593 7594 7595 7596
static void init_numa_sched_groups_power(struct sched_group *group_head)
{
	struct sched_group *sg = group_head;
	int j;

	if (!sg)
		return;
7597
	do {
7598
		for_each_cpu(j, sched_group_cpus(sg)) {
7599
			struct sched_domain *sd;
7600

7601
			sd = &per_cpu(phys_domains, j).sd;
7602
			if (j != cpumask_first(sched_group_cpus(sd->groups))) {
7603 7604 7605 7606 7607 7608
				/*
				 * Only add "power" once for each
				 * physical package.
				 */
				continue;
			}
7609

7610 7611 7612 7613
			sg_inc_cpu_power(sg, sd->groups->__cpu_power);
		}
		sg = sg->next;
	} while (sg != group_head);
7614
}
7615
#endif /* CONFIG_NUMA */
L
Linus Torvalds 已提交
7616

7617
#ifdef CONFIG_NUMA
7618
/* Free memory allocated for various sched_group structures */
7619 7620
static void free_sched_groups(const struct cpumask *cpu_map,
			      struct cpumask *nodemask)
7621
{
7622
	int cpu, i;
7623

7624
	for_each_cpu(cpu, cpu_map) {
7625 7626 7627 7628 7629 7630
		struct sched_group **sched_group_nodes
			= sched_group_nodes_bycpu[cpu];

		if (!sched_group_nodes)
			continue;

7631
		for (i = 0; i < nr_node_ids; i++) {
7632 7633
			struct sched_group *oldsg, *sg = sched_group_nodes[i];

7634
			cpumask_and(nodemask, cpumask_of_node(i), cpu_map);
7635
			if (cpumask_empty(nodemask))
7636 7637 7638 7639 7640 7641 7642 7643 7644 7645 7646 7647 7648 7649 7650 7651
				continue;

			if (sg == NULL)
				continue;
			sg = sg->next;
next_sg:
			oldsg = sg;
			sg = sg->next;
			kfree(oldsg);
			if (oldsg != sched_group_nodes[i])
				goto next_sg;
		}
		kfree(sched_group_nodes);
		sched_group_nodes_bycpu[cpu] = NULL;
	}
}
7652
#else /* !CONFIG_NUMA */
7653 7654
static void free_sched_groups(const struct cpumask *cpu_map,
			      struct cpumask *nodemask)
7655 7656
{
}
7657
#endif /* CONFIG_NUMA */
7658

7659 7660 7661 7662 7663 7664 7665 7666 7667 7668 7669 7670 7671 7672 7673 7674 7675 7676 7677 7678 7679
/*
 * Initialize sched groups cpu_power.
 *
 * cpu_power indicates the capacity of sched group, which is used while
 * distributing the load between different sched groups in a sched domain.
 * Typically cpu_power for all the groups in a sched domain will be same unless
 * there are asymmetries in the topology. If there are asymmetries, group
 * having more cpu_power will pickup more load compared to the group having
 * less cpu_power.
 *
 * cpu_power will be a multiple of SCHED_LOAD_SCALE. This multiple represents
 * the maximum number of tasks a group can handle in the presence of other idle
 * or lightly loaded groups in the same sched domain.
 */
static void init_sched_groups_power(int cpu, struct sched_domain *sd)
{
	struct sched_domain *child;
	struct sched_group *group;

	WARN_ON(!sd || !sd->groups);

7680
	if (cpu != cpumask_first(sched_group_cpus(sd->groups)))
7681 7682 7683 7684
		return;

	child = sd->child;

7685 7686
	sd->groups->__cpu_power = 0;

7687 7688 7689 7690 7691 7692 7693 7694 7695 7696
	/*
	 * For perf policy, if the groups in child domain share resources
	 * (for example cores sharing some portions of the cache hierarchy
	 * or SMT), then set this domain groups cpu_power such that each group
	 * can handle only one task, when there are other idle groups in the
	 * same sched domain.
	 */
	if (!child || (!(sd->flags & SD_POWERSAVINGS_BALANCE) &&
		       (child->flags &
			(SD_SHARE_CPUPOWER | SD_SHARE_PKG_RESOURCES)))) {
7697
		sg_inc_cpu_power(sd->groups, SCHED_LOAD_SCALE);
7698 7699 7700 7701 7702 7703 7704 7705
		return;
	}

	/*
	 * add cpu_power of each child group to this groups cpu_power
	 */
	group = child->groups;
	do {
7706
		sg_inc_cpu_power(sd->groups, group->__cpu_power);
7707 7708 7709 7710
		group = group->next;
	} while (group != child->groups);
}

7711 7712 7713 7714 7715
/*
 * Initializers for schedule domains
 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
 */

7716 7717 7718 7719 7720 7721
#ifdef CONFIG_SCHED_DEBUG
# define SD_INIT_NAME(sd, type)		sd->name = #type
#else
# define SD_INIT_NAME(sd, type)		do { } while (0)
#endif

7722
#define	SD_INIT(sd, type)	sd_init_##type(sd)
7723

7724 7725 7726 7727 7728
#define SD_INIT_FUNC(type)	\
static noinline void sd_init_##type(struct sched_domain *sd)	\
{								\
	memset(sd, 0, sizeof(*sd));				\
	*sd = SD_##type##_INIT;					\
7729
	sd->level = SD_LV_##type;				\
7730
	SD_INIT_NAME(sd, type);					\
7731 7732 7733 7734 7735 7736 7737 7738 7739 7740 7741 7742 7743 7744
}

SD_INIT_FUNC(CPU)
#ifdef CONFIG_NUMA
 SD_INIT_FUNC(ALLNODES)
 SD_INIT_FUNC(NODE)
#endif
#ifdef CONFIG_SCHED_SMT
 SD_INIT_FUNC(SIBLING)
#endif
#ifdef CONFIG_SCHED_MC
 SD_INIT_FUNC(MC)
#endif

7745 7746 7747 7748
static int default_relax_domain_level = -1;

static int __init setup_relax_domain_level(char *str)
{
7749 7750 7751 7752 7753 7754
	unsigned long val;

	val = simple_strtoul(str, NULL, 0);
	if (val < SD_LV_MAX)
		default_relax_domain_level = val;

7755 7756 7757 7758 7759 7760 7761 7762 7763 7764 7765 7766 7767 7768 7769 7770 7771 7772 7773 7774 7775 7776 7777 7778 7779
	return 1;
}
__setup("relax_domain_level=", setup_relax_domain_level);

static void set_domain_attribute(struct sched_domain *sd,
				 struct sched_domain_attr *attr)
{
	int request;

	if (!attr || attr->relax_domain_level < 0) {
		if (default_relax_domain_level < 0)
			return;
		else
			request = default_relax_domain_level;
	} else
		request = attr->relax_domain_level;
	if (request < sd->level) {
		/* turn off idle balance on this domain */
		sd->flags &= ~(SD_WAKE_IDLE|SD_BALANCE_NEWIDLE);
	} else {
		/* turn on idle balance on this domain */
		sd->flags |= (SD_WAKE_IDLE_FAR|SD_BALANCE_NEWIDLE);
	}
}

L
Linus Torvalds 已提交
7780
/*
7781 7782
 * Build sched domains for a given set of cpus and attach the sched domains
 * to the individual cpus
L
Linus Torvalds 已提交
7783
 */
7784
static int __build_sched_domains(const struct cpumask *cpu_map,
7785
				 struct sched_domain_attr *attr)
L
Linus Torvalds 已提交
7786
{
7787
	int i, err = -ENOMEM;
G
Gregory Haskins 已提交
7788
	struct root_domain *rd;
7789 7790
	cpumask_var_t nodemask, this_sibling_map, this_core_map, send_covered,
		tmpmask;
7791
#ifdef CONFIG_NUMA
7792
	cpumask_var_t domainspan, covered, notcovered;
7793
	struct sched_group **sched_group_nodes = NULL;
7794
	int sd_allnodes = 0;
7795

7796 7797 7798 7799 7800 7801 7802 7803 7804 7805 7806 7807 7808 7809 7810 7811 7812 7813 7814 7815
	if (!alloc_cpumask_var(&domainspan, GFP_KERNEL))
		goto out;
	if (!alloc_cpumask_var(&covered, GFP_KERNEL))
		goto free_domainspan;
	if (!alloc_cpumask_var(&notcovered, GFP_KERNEL))
		goto free_covered;
#endif

	if (!alloc_cpumask_var(&nodemask, GFP_KERNEL))
		goto free_notcovered;
	if (!alloc_cpumask_var(&this_sibling_map, GFP_KERNEL))
		goto free_nodemask;
	if (!alloc_cpumask_var(&this_core_map, GFP_KERNEL))
		goto free_this_sibling_map;
	if (!alloc_cpumask_var(&send_covered, GFP_KERNEL))
		goto free_this_core_map;
	if (!alloc_cpumask_var(&tmpmask, GFP_KERNEL))
		goto free_send_covered;

#ifdef CONFIG_NUMA
7816 7817 7818
	/*
	 * Allocate the per-node list of sched groups
	 */
7819
	sched_group_nodes = kcalloc(nr_node_ids, sizeof(struct sched_group *),
I
Ingo Molnar 已提交
7820
				    GFP_KERNEL);
7821 7822
	if (!sched_group_nodes) {
		printk(KERN_WARNING "Can not alloc sched group node list\n");
7823
		goto free_tmpmask;
7824 7825
	}
#endif
L
Linus Torvalds 已提交
7826

7827
	rd = alloc_rootdomain();
G
Gregory Haskins 已提交
7828 7829
	if (!rd) {
		printk(KERN_WARNING "Cannot alloc root domain\n");
7830
		goto free_sched_groups;
G
Gregory Haskins 已提交
7831 7832
	}

7833
#ifdef CONFIG_NUMA
7834
	sched_group_nodes_bycpu[cpumask_first(cpu_map)] = sched_group_nodes;
7835 7836
#endif

L
Linus Torvalds 已提交
7837
	/*
7838
	 * Set up domains for cpus specified by the cpu_map.
L
Linus Torvalds 已提交
7839
	 */
7840
	for_each_cpu(i, cpu_map) {
L
Linus Torvalds 已提交
7841 7842
		struct sched_domain *sd = NULL, *p;

7843
		cpumask_and(nodemask, cpumask_of_node(cpu_to_node(i)), cpu_map);
L
Linus Torvalds 已提交
7844 7845

#ifdef CONFIG_NUMA
7846 7847
		if (cpumask_weight(cpu_map) >
				SD_NODES_PER_DOMAIN*cpumask_weight(nodemask)) {
7848
			sd = &per_cpu(allnodes_domains, i).sd;
7849
			SD_INIT(sd, ALLNODES);
7850
			set_domain_attribute(sd, attr);
7851
			cpumask_copy(sched_domain_span(sd), cpu_map);
7852
			cpu_to_allnodes_group(i, cpu_map, &sd->groups, tmpmask);
7853
			p = sd;
7854
			sd_allnodes = 1;
7855 7856 7857
		} else
			p = NULL;

7858
		sd = &per_cpu(node_domains, i).sd;
7859
		SD_INIT(sd, NODE);
7860
		set_domain_attribute(sd, attr);
7861
		sched_domain_node_span(cpu_to_node(i), sched_domain_span(sd));
7862
		sd->parent = p;
7863 7864
		if (p)
			p->child = sd;
7865 7866
		cpumask_and(sched_domain_span(sd),
			    sched_domain_span(sd), cpu_map);
L
Linus Torvalds 已提交
7867 7868 7869
#endif

		p = sd;
7870
		sd = &per_cpu(phys_domains, i).sd;
7871
		SD_INIT(sd, CPU);
7872
		set_domain_attribute(sd, attr);
7873
		cpumask_copy(sched_domain_span(sd), nodemask);
L
Linus Torvalds 已提交
7874
		sd->parent = p;
7875 7876
		if (p)
			p->child = sd;
7877
		cpu_to_phys_group(i, cpu_map, &sd->groups, tmpmask);
L
Linus Torvalds 已提交
7878

7879 7880
#ifdef CONFIG_SCHED_MC
		p = sd;
7881
		sd = &per_cpu(core_domains, i).sd;
7882
		SD_INIT(sd, MC);
7883
		set_domain_attribute(sd, attr);
7884 7885
		cpumask_and(sched_domain_span(sd), cpu_map,
						   cpu_coregroup_mask(i));
7886
		sd->parent = p;
7887
		p->child = sd;
7888
		cpu_to_core_group(i, cpu_map, &sd->groups, tmpmask);
7889 7890
#endif

L
Linus Torvalds 已提交
7891 7892
#ifdef CONFIG_SCHED_SMT
		p = sd;
7893
		sd = &per_cpu(cpu_domains, i).sd;
7894
		SD_INIT(sd, SIBLING);
7895
		set_domain_attribute(sd, attr);
7896 7897
		cpumask_and(sched_domain_span(sd),
			    &per_cpu(cpu_sibling_map, i), cpu_map);
L
Linus Torvalds 已提交
7898
		sd->parent = p;
7899
		p->child = sd;
7900
		cpu_to_cpu_group(i, cpu_map, &sd->groups, tmpmask);
L
Linus Torvalds 已提交
7901 7902 7903 7904 7905
#endif
	}

#ifdef CONFIG_SCHED_SMT
	/* Set up CPU (sibling) groups */
7906
	for_each_cpu(i, cpu_map) {
7907 7908 7909
		cpumask_and(this_sibling_map,
			    &per_cpu(cpu_sibling_map, i), cpu_map);
		if (i != cpumask_first(this_sibling_map))
L
Linus Torvalds 已提交
7910 7911
			continue;

I
Ingo Molnar 已提交
7912
		init_sched_build_groups(this_sibling_map, cpu_map,
7913 7914
					&cpu_to_cpu_group,
					send_covered, tmpmask);
L
Linus Torvalds 已提交
7915 7916 7917
	}
#endif

7918 7919
#ifdef CONFIG_SCHED_MC
	/* Set up multi-core groups */
7920
	for_each_cpu(i, cpu_map) {
7921
		cpumask_and(this_core_map, cpu_coregroup_mask(i), cpu_map);
7922
		if (i != cpumask_first(this_core_map))
7923
			continue;
7924

I
Ingo Molnar 已提交
7925
		init_sched_build_groups(this_core_map, cpu_map,
7926 7927
					&cpu_to_core_group,
					send_covered, tmpmask);
7928 7929 7930
	}
#endif

L
Linus Torvalds 已提交
7931
	/* Set up physical groups */
7932
	for (i = 0; i < nr_node_ids; i++) {
7933
		cpumask_and(nodemask, cpumask_of_node(i), cpu_map);
7934
		if (cpumask_empty(nodemask))
L
Linus Torvalds 已提交
7935 7936
			continue;

7937 7938 7939
		init_sched_build_groups(nodemask, cpu_map,
					&cpu_to_phys_group,
					send_covered, tmpmask);
L
Linus Torvalds 已提交
7940 7941 7942 7943
	}

#ifdef CONFIG_NUMA
	/* Set up node groups */
7944 7945 7946 7947 7948
	if (sd_allnodes) {
		init_sched_build_groups(cpu_map, cpu_map,
					&cpu_to_allnodes_group,
					send_covered, tmpmask);
	}
7949

7950
	for (i = 0; i < nr_node_ids; i++) {
7951 7952 7953 7954
		/* Set up node groups */
		struct sched_group *sg, *prev;
		int j;

7955
		cpumask_clear(covered);
7956
		cpumask_and(nodemask, cpumask_of_node(i), cpu_map);
7957
		if (cpumask_empty(nodemask)) {
7958
			sched_group_nodes[i] = NULL;
7959
			continue;
7960
		}
7961

7962
		sched_domain_node_span(i, domainspan);
7963
		cpumask_and(domainspan, domainspan, cpu_map);
7964

7965 7966
		sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(),
				  GFP_KERNEL, i);
7967 7968 7969 7970 7971
		if (!sg) {
			printk(KERN_WARNING "Can not alloc domain group for "
				"node %d\n", i);
			goto error;
		}
7972
		sched_group_nodes[i] = sg;
7973
		for_each_cpu(j, nodemask) {
7974
			struct sched_domain *sd;
I
Ingo Molnar 已提交
7975

7976
			sd = &per_cpu(node_domains, j).sd;
7977 7978
			sd->groups = sg;
		}
7979
		sg->__cpu_power = 0;
7980
		cpumask_copy(sched_group_cpus(sg), nodemask);
7981
		sg->next = sg;
7982
		cpumask_or(covered, covered, nodemask);
7983 7984
		prev = sg;

7985 7986
		for (j = 0; j < nr_node_ids; j++) {
			int n = (i + j) % nr_node_ids;
7987

7988 7989 7990 7991
			cpumask_complement(notcovered, covered);
			cpumask_and(tmpmask, notcovered, cpu_map);
			cpumask_and(tmpmask, tmpmask, domainspan);
			if (cpumask_empty(tmpmask))
7992 7993
				break;

7994
			cpumask_and(tmpmask, tmpmask, cpumask_of_node(n));
7995
			if (cpumask_empty(tmpmask))
7996 7997
				continue;

7998 7999
			sg = kmalloc_node(sizeof(struct sched_group) +
					  cpumask_size(),
8000
					  GFP_KERNEL, i);
8001 8002 8003
			if (!sg) {
				printk(KERN_WARNING
				"Can not alloc domain group for node %d\n", j);
8004
				goto error;
8005
			}
8006
			sg->__cpu_power = 0;
8007
			cpumask_copy(sched_group_cpus(sg), tmpmask);
8008
			sg->next = prev->next;
8009
			cpumask_or(covered, covered, tmpmask);
8010 8011 8012 8013
			prev->next = sg;
			prev = sg;
		}
	}
L
Linus Torvalds 已提交
8014 8015 8016
#endif

	/* Calculate CPU power for physical packages and nodes */
8017
#ifdef CONFIG_SCHED_SMT
8018
	for_each_cpu(i, cpu_map) {
8019
		struct sched_domain *sd = &per_cpu(cpu_domains, i).sd;
I
Ingo Molnar 已提交
8020

8021
		init_sched_groups_power(i, sd);
8022
	}
L
Linus Torvalds 已提交
8023
#endif
8024
#ifdef CONFIG_SCHED_MC
8025
	for_each_cpu(i, cpu_map) {
8026
		struct sched_domain *sd = &per_cpu(core_domains, i).sd;
I
Ingo Molnar 已提交
8027

8028
		init_sched_groups_power(i, sd);
8029 8030
	}
#endif
8031

8032
	for_each_cpu(i, cpu_map) {
8033
		struct sched_domain *sd = &per_cpu(phys_domains, i).sd;
I
Ingo Molnar 已提交
8034

8035
		init_sched_groups_power(i, sd);
L
Linus Torvalds 已提交
8036 8037
	}

8038
#ifdef CONFIG_NUMA
8039
	for (i = 0; i < nr_node_ids; i++)
8040
		init_numa_sched_groups_power(sched_group_nodes[i]);
8041

8042 8043
	if (sd_allnodes) {
		struct sched_group *sg;
8044

8045
		cpu_to_allnodes_group(cpumask_first(cpu_map), cpu_map, &sg,
8046
								tmpmask);
8047 8048
		init_numa_sched_groups_power(sg);
	}
8049 8050
#endif

L
Linus Torvalds 已提交
8051
	/* Attach the domains */
8052
	for_each_cpu(i, cpu_map) {
L
Linus Torvalds 已提交
8053 8054
		struct sched_domain *sd;
#ifdef CONFIG_SCHED_SMT
8055
		sd = &per_cpu(cpu_domains, i).sd;
8056
#elif defined(CONFIG_SCHED_MC)
8057
		sd = &per_cpu(core_domains, i).sd;
L
Linus Torvalds 已提交
8058
#else
8059
		sd = &per_cpu(phys_domains, i).sd;
L
Linus Torvalds 已提交
8060
#endif
G
Gregory Haskins 已提交
8061
		cpu_attach_domain(sd, rd, i);
L
Linus Torvalds 已提交
8062
	}
8063

8064 8065 8066 8067 8068 8069 8070 8071 8072 8073 8074 8075 8076 8077 8078 8079 8080 8081 8082 8083 8084 8085 8086 8087 8088 8089 8090 8091
	err = 0;

free_tmpmask:
	free_cpumask_var(tmpmask);
free_send_covered:
	free_cpumask_var(send_covered);
free_this_core_map:
	free_cpumask_var(this_core_map);
free_this_sibling_map:
	free_cpumask_var(this_sibling_map);
free_nodemask:
	free_cpumask_var(nodemask);
free_notcovered:
#ifdef CONFIG_NUMA
	free_cpumask_var(notcovered);
free_covered:
	free_cpumask_var(covered);
free_domainspan:
	free_cpumask_var(domainspan);
out:
#endif
	return err;

free_sched_groups:
#ifdef CONFIG_NUMA
	kfree(sched_group_nodes);
#endif
	goto free_tmpmask;
8092

8093
#ifdef CONFIG_NUMA
8094
error:
8095
	free_sched_groups(cpu_map, tmpmask);
8096
	free_rootdomain(rd);
8097
	goto free_tmpmask;
8098
#endif
L
Linus Torvalds 已提交
8099
}
P
Paul Jackson 已提交
8100

8101
static int build_sched_domains(const struct cpumask *cpu_map)
8102 8103 8104 8105
{
	return __build_sched_domains(cpu_map, NULL);
}

8106
static struct cpumask *doms_cur;	/* current sched domains */
P
Paul Jackson 已提交
8107
static int ndoms_cur;		/* number of sched domains in 'doms_cur' */
I
Ingo Molnar 已提交
8108 8109
static struct sched_domain_attr *dattr_cur;
				/* attribues of custom domains in 'doms_cur' */
P
Paul Jackson 已提交
8110 8111 8112

/*
 * Special case: If a kmalloc of a doms_cur partition (array of
8113 8114
 * cpumask) fails, then fallback to a single sched domain,
 * as determined by the single cpumask fallback_doms.
P
Paul Jackson 已提交
8115
 */
8116
static cpumask_var_t fallback_doms;
P
Paul Jackson 已提交
8117

8118 8119 8120 8121 8122 8123
/*
 * arch_update_cpu_topology lets virtualized architectures update the
 * cpu core maps. It is supposed to return 1 if the topology changed
 * or 0 if it stayed the same.
 */
int __attribute__((weak)) arch_update_cpu_topology(void)
8124
{
8125
	return 0;
8126 8127
}

8128
/*
I
Ingo Molnar 已提交
8129
 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
P
Paul Jackson 已提交
8130 8131
 * For now this just excludes isolated cpus, but could be used to
 * exclude other special cases in the future.
8132
 */
8133
static int arch_init_sched_domains(const struct cpumask *cpu_map)
8134
{
8135 8136
	int err;

8137
	arch_update_cpu_topology();
P
Paul Jackson 已提交
8138
	ndoms_cur = 1;
8139
	doms_cur = kmalloc(cpumask_size(), GFP_KERNEL);
P
Paul Jackson 已提交
8140
	if (!doms_cur)
8141
		doms_cur = fallback_doms;
8142
	cpumask_andnot(doms_cur, cpu_map, cpu_isolated_map);
8143
	dattr_cur = NULL;
8144
	err = build_sched_domains(doms_cur);
8145
	register_sched_domain_sysctl();
8146 8147

	return err;
8148 8149
}

8150 8151
static void arch_destroy_sched_domains(const struct cpumask *cpu_map,
				       struct cpumask *tmpmask)
L
Linus Torvalds 已提交
8152
{
8153
	free_sched_groups(cpu_map, tmpmask);
8154
}
L
Linus Torvalds 已提交
8155

8156 8157 8158 8159
/*
 * Detach sched domains from a group of cpus specified in cpu_map
 * These cpus will now be attached to the NULL domain
 */
8160
static void detach_destroy_domains(const struct cpumask *cpu_map)
8161
{
8162 8163
	/* Save because hotplug lock held. */
	static DECLARE_BITMAP(tmpmask, CONFIG_NR_CPUS);
8164 8165
	int i;

8166
	for_each_cpu(i, cpu_map)
G
Gregory Haskins 已提交
8167
		cpu_attach_domain(NULL, &def_root_domain, i);
8168
	synchronize_sched();
8169
	arch_destroy_sched_domains(cpu_map, to_cpumask(tmpmask));
8170 8171
}

8172 8173 8174 8175 8176 8177 8178 8179 8180 8181 8182 8183 8184 8185 8186 8187
/* handle null as "default" */
static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
			struct sched_domain_attr *new, int idx_new)
{
	struct sched_domain_attr tmp;

	/* fast path */
	if (!new && !cur)
		return 1;

	tmp = SD_ATTR_INIT;
	return !memcmp(cur ? (cur + idx_cur) : &tmp,
			new ? (new + idx_new) : &tmp,
			sizeof(struct sched_domain_attr));
}

P
Paul Jackson 已提交
8188 8189
/*
 * Partition sched domains as specified by the 'ndoms_new'
I
Ingo Molnar 已提交
8190
 * cpumasks in the array doms_new[] of cpumasks. This compares
P
Paul Jackson 已提交
8191 8192 8193
 * doms_new[] to the current sched domain partitioning, doms_cur[].
 * It destroys each deleted domain and builds each new domain.
 *
8194
 * 'doms_new' is an array of cpumask's of length 'ndoms_new'.
I
Ingo Molnar 已提交
8195 8196 8197
 * The masks don't intersect (don't overlap.) We should setup one
 * sched domain for each mask. CPUs not in any of the cpumasks will
 * not be load balanced. If the same cpumask appears both in the
P
Paul Jackson 已提交
8198 8199 8200
 * current 'doms_cur' domains and in the new 'doms_new', we can leave
 * it as it is.
 *
I
Ingo Molnar 已提交
8201 8202
 * The passed in 'doms_new' should be kmalloc'd. This routine takes
 * ownership of it and will kfree it when done with it. If the caller
8203 8204 8205 8206
 * failed the kmalloc call, then it can pass in doms_new == NULL &&
 * ndoms_new == 1, and partition_sched_domains() will fallback to
 * the single partition 'fallback_doms', it also forces the domains
 * to be rebuilt.
P
Paul Jackson 已提交
8207
 *
8208
 * If doms_new == NULL it will be replaced with cpu_online_mask.
8209 8210
 * ndoms_new == 0 is a special case for destroying existing domains,
 * and it will not create the default domain.
8211
 *
P
Paul Jackson 已提交
8212 8213
 * Call with hotplug lock held
 */
8214 8215
/* FIXME: Change to struct cpumask *doms_new[] */
void partition_sched_domains(int ndoms_new, struct cpumask *doms_new,
8216
			     struct sched_domain_attr *dattr_new)
P
Paul Jackson 已提交
8217
{
8218
	int i, j, n;
8219
	int new_topology;
P
Paul Jackson 已提交
8220

8221
	mutex_lock(&sched_domains_mutex);
8222

8223 8224 8225
	/* always unregister in case we don't destroy any domains */
	unregister_sched_domain_sysctl();

8226 8227 8228
	/* Let architecture update cpu core mappings. */
	new_topology = arch_update_cpu_topology();

8229
	n = doms_new ? ndoms_new : 0;
P
Paul Jackson 已提交
8230 8231 8232

	/* Destroy deleted domains */
	for (i = 0; i < ndoms_cur; i++) {
8233
		for (j = 0; j < n && !new_topology; j++) {
8234
			if (cpumask_equal(&doms_cur[i], &doms_new[j])
8235
			    && dattrs_equal(dattr_cur, i, dattr_new, j))
P
Paul Jackson 已提交
8236 8237 8238 8239 8240 8241 8242 8243
				goto match1;
		}
		/* no match - a current sched domain not in new doms_new[] */
		detach_destroy_domains(doms_cur + i);
match1:
		;
	}

8244 8245
	if (doms_new == NULL) {
		ndoms_cur = 0;
8246
		doms_new = fallback_doms;
8247
		cpumask_andnot(&doms_new[0], cpu_online_mask, cpu_isolated_map);
8248
		WARN_ON_ONCE(dattr_new);
8249 8250
	}

P
Paul Jackson 已提交
8251 8252
	/* Build new domains */
	for (i = 0; i < ndoms_new; i++) {
8253
		for (j = 0; j < ndoms_cur && !new_topology; j++) {
8254
			if (cpumask_equal(&doms_new[i], &doms_cur[j])
8255
			    && dattrs_equal(dattr_new, i, dattr_cur, j))
P
Paul Jackson 已提交
8256 8257 8258
				goto match2;
		}
		/* no match - add a new doms_new */
8259 8260
		__build_sched_domains(doms_new + i,
					dattr_new ? dattr_new + i : NULL);
P
Paul Jackson 已提交
8261 8262 8263 8264 8265
match2:
		;
	}

	/* Remember the new sched domains */
8266
	if (doms_cur != fallback_doms)
P
Paul Jackson 已提交
8267
		kfree(doms_cur);
8268
	kfree(dattr_cur);	/* kfree(NULL) is safe */
P
Paul Jackson 已提交
8269
	doms_cur = doms_new;
8270
	dattr_cur = dattr_new;
P
Paul Jackson 已提交
8271
	ndoms_cur = ndoms_new;
8272 8273

	register_sched_domain_sysctl();
8274

8275
	mutex_unlock(&sched_domains_mutex);
P
Paul Jackson 已提交
8276 8277
}

8278
#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
8279
static void arch_reinit_sched_domains(void)
8280
{
8281
	get_online_cpus();
8282 8283 8284 8285

	/* Destroy domains first to force the rebuild */
	partition_sched_domains(0, NULL, NULL);

8286
	rebuild_sched_domains();
8287
	put_online_cpus();
8288 8289 8290 8291
}

static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
{
8292
	unsigned int level = 0;
8293

8294 8295 8296 8297 8298 8299 8300 8301 8302 8303 8304
	if (sscanf(buf, "%u", &level) != 1)
		return -EINVAL;

	/*
	 * level is always be positive so don't check for
	 * level < POWERSAVINGS_BALANCE_NONE which is 0
	 * What happens on 0 or 1 byte write,
	 * need to check for count as well?
	 */

	if (level >= MAX_POWERSAVINGS_BALANCE_LEVELS)
8305 8306 8307
		return -EINVAL;

	if (smt)
8308
		sched_smt_power_savings = level;
8309
	else
8310
		sched_mc_power_savings = level;
8311

8312
	arch_reinit_sched_domains();
8313

8314
	return count;
8315 8316 8317
}

#ifdef CONFIG_SCHED_MC
8318 8319
static ssize_t sched_mc_power_savings_show(struct sysdev_class *class,
					   char *page)
8320 8321 8322
{
	return sprintf(page, "%u\n", sched_mc_power_savings);
}
8323
static ssize_t sched_mc_power_savings_store(struct sysdev_class *class,
8324
					    const char *buf, size_t count)
8325 8326 8327
{
	return sched_power_savings_store(buf, count, 0);
}
8328 8329 8330
static SYSDEV_CLASS_ATTR(sched_mc_power_savings, 0644,
			 sched_mc_power_savings_show,
			 sched_mc_power_savings_store);
8331 8332 8333
#endif

#ifdef CONFIG_SCHED_SMT
8334 8335
static ssize_t sched_smt_power_savings_show(struct sysdev_class *dev,
					    char *page)
8336 8337 8338
{
	return sprintf(page, "%u\n", sched_smt_power_savings);
}
8339
static ssize_t sched_smt_power_savings_store(struct sysdev_class *dev,
8340
					     const char *buf, size_t count)
8341 8342 8343
{
	return sched_power_savings_store(buf, count, 1);
}
8344 8345
static SYSDEV_CLASS_ATTR(sched_smt_power_savings, 0644,
		   sched_smt_power_savings_show,
A
Adrian Bunk 已提交
8346 8347 8348
		   sched_smt_power_savings_store);
#endif

8349
int __init sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
A
Adrian Bunk 已提交
8350 8351 8352 8353 8354 8355 8356 8357 8358 8359 8360 8361 8362 8363 8364
{
	int err = 0;

#ifdef CONFIG_SCHED_SMT
	if (smt_capable())
		err = sysfs_create_file(&cls->kset.kobj,
					&attr_sched_smt_power_savings.attr);
#endif
#ifdef CONFIG_SCHED_MC
	if (!err && mc_capable())
		err = sysfs_create_file(&cls->kset.kobj,
					&attr_sched_mc_power_savings.attr);
#endif
	return err;
}
8365
#endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
8366

8367
#ifndef CONFIG_CPUSETS
L
Linus Torvalds 已提交
8368
/*
8369 8370
 * Add online and remove offline CPUs from the scheduler domains.
 * When cpusets are enabled they take over this function.
L
Linus Torvalds 已提交
8371 8372 8373
 */
static int update_sched_domains(struct notifier_block *nfb,
				unsigned long action, void *hcpu)
8374 8375 8376 8377 8378 8379
{
	switch (action) {
	case CPU_ONLINE:
	case CPU_ONLINE_FROZEN:
	case CPU_DEAD:
	case CPU_DEAD_FROZEN:
8380
		partition_sched_domains(1, NULL, NULL);
8381 8382 8383 8384 8385 8386 8387 8388 8389 8390
		return NOTIFY_OK;

	default:
		return NOTIFY_DONE;
	}
}
#endif

static int update_runtime(struct notifier_block *nfb,
				unsigned long action, void *hcpu)
L
Linus Torvalds 已提交
8391
{
P
Peter Zijlstra 已提交
8392 8393
	int cpu = (int)(long)hcpu;

L
Linus Torvalds 已提交
8394 8395
	switch (action) {
	case CPU_DOWN_PREPARE:
8396
	case CPU_DOWN_PREPARE_FROZEN:
P
Peter Zijlstra 已提交
8397
		disable_runtime(cpu_rq(cpu));
L
Linus Torvalds 已提交
8398 8399 8400
		return NOTIFY_OK;

	case CPU_DOWN_FAILED:
8401
	case CPU_DOWN_FAILED_FROZEN:
L
Linus Torvalds 已提交
8402
	case CPU_ONLINE:
8403
	case CPU_ONLINE_FROZEN:
P
Peter Zijlstra 已提交
8404
		enable_runtime(cpu_rq(cpu));
8405 8406
		return NOTIFY_OK;

L
Linus Torvalds 已提交
8407 8408 8409 8410 8411 8412 8413
	default:
		return NOTIFY_DONE;
	}
}

void __init sched_init_smp(void)
{
8414 8415 8416
	cpumask_var_t non_isolated_cpus;

	alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
8417

8418 8419 8420 8421 8422
#if defined(CONFIG_NUMA)
	sched_group_nodes_bycpu = kzalloc(nr_cpu_ids * sizeof(void **),
								GFP_KERNEL);
	BUG_ON(sched_group_nodes_bycpu == NULL);
#endif
8423
	get_online_cpus();
8424
	mutex_lock(&sched_domains_mutex);
8425 8426 8427 8428
	arch_init_sched_domains(cpu_online_mask);
	cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
	if (cpumask_empty(non_isolated_cpus))
		cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
8429
	mutex_unlock(&sched_domains_mutex);
8430
	put_online_cpus();
8431 8432

#ifndef CONFIG_CPUSETS
L
Linus Torvalds 已提交
8433 8434
	/* XXX: Theoretical race here - CPU may be hotplugged now */
	hotcpu_notifier(update_sched_domains, 0);
8435 8436 8437 8438 8439
#endif

	/* RT runtime code needs to handle some hotplug events */
	hotcpu_notifier(update_runtime, 0);

8440
	init_hrtick();
8441 8442

	/* Move init over to a non-isolated CPU */
8443
	if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
8444
		BUG();
I
Ingo Molnar 已提交
8445
	sched_init_granularity();
8446
	free_cpumask_var(non_isolated_cpus);
8447 8448

	alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
8449
	init_sched_rt_class();
L
Linus Torvalds 已提交
8450 8451 8452 8453
}
#else
void __init sched_init_smp(void)
{
I
Ingo Molnar 已提交
8454
	sched_init_granularity();
L
Linus Torvalds 已提交
8455 8456 8457 8458 8459 8460 8461 8462 8463 8464
}
#endif /* CONFIG_SMP */

int in_sched_functions(unsigned long addr)
{
	return in_lock_functions(addr) ||
		(addr >= (unsigned long)__sched_text_start
		&& addr < (unsigned long)__sched_text_end);
}

A
Alexey Dobriyan 已提交
8465
static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
I
Ingo Molnar 已提交
8466 8467
{
	cfs_rq->tasks_timeline = RB_ROOT;
8468
	INIT_LIST_HEAD(&cfs_rq->tasks);
I
Ingo Molnar 已提交
8469 8470 8471
#ifdef CONFIG_FAIR_GROUP_SCHED
	cfs_rq->rq = rq;
#endif
P
Peter Zijlstra 已提交
8472
	cfs_rq->min_vruntime = (u64)(-(1LL << 20));
I
Ingo Molnar 已提交
8473 8474
}

P
Peter Zijlstra 已提交
8475 8476 8477 8478 8479 8480 8481 8482 8483 8484 8485 8486 8487
static void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
{
	struct rt_prio_array *array;
	int i;

	array = &rt_rq->active;
	for (i = 0; i < MAX_RT_PRIO; i++) {
		INIT_LIST_HEAD(array->queue + i);
		__clear_bit(i, array->bitmap);
	}
	/* delimiter for bitsearch: */
	__set_bit(MAX_RT_PRIO, array->bitmap);

8488
#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
8489
	rt_rq->highest_prio.curr = MAX_RT_PRIO;
8490
#ifdef CONFIG_SMP
8491
	rt_rq->highest_prio.next = MAX_RT_PRIO;
P
Peter Zijlstra 已提交
8492 8493
#endif
#endif
P
Peter Zijlstra 已提交
8494 8495 8496
#ifdef CONFIG_SMP
	rt_rq->rt_nr_migratory = 0;
	rt_rq->overloaded = 0;
8497
	plist_head_init(&rq->rt.pushable_tasks, &rq->lock);
P
Peter Zijlstra 已提交
8498 8499 8500 8501
#endif

	rt_rq->rt_time = 0;
	rt_rq->rt_throttled = 0;
P
Peter Zijlstra 已提交
8502 8503
	rt_rq->rt_runtime = 0;
	spin_lock_init(&rt_rq->rt_runtime_lock);
P
Peter Zijlstra 已提交
8504

8505
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
8506
	rt_rq->rt_nr_boosted = 0;
P
Peter Zijlstra 已提交
8507 8508
	rt_rq->rq = rq;
#endif
P
Peter Zijlstra 已提交
8509 8510
}

P
Peter Zijlstra 已提交
8511
#ifdef CONFIG_FAIR_GROUP_SCHED
8512 8513 8514
static void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
				struct sched_entity *se, int cpu, int add,
				struct sched_entity *parent)
P
Peter Zijlstra 已提交
8515
{
8516
	struct rq *rq = cpu_rq(cpu);
P
Peter Zijlstra 已提交
8517 8518 8519 8520 8521 8522 8523
	tg->cfs_rq[cpu] = cfs_rq;
	init_cfs_rq(cfs_rq, rq);
	cfs_rq->tg = tg;
	if (add)
		list_add(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);

	tg->se[cpu] = se;
D
Dhaval Giani 已提交
8524 8525 8526 8527
	/* se could be NULL for init_task_group */
	if (!se)
		return;

8528 8529 8530 8531 8532
	if (!parent)
		se->cfs_rq = &rq->cfs;
	else
		se->cfs_rq = parent->my_q;

P
Peter Zijlstra 已提交
8533 8534
	se->my_q = cfs_rq;
	se->load.weight = tg->shares;
8535
	se->load.inv_weight = 0;
8536
	se->parent = parent;
P
Peter Zijlstra 已提交
8537
}
8538
#endif
P
Peter Zijlstra 已提交
8539

8540
#ifdef CONFIG_RT_GROUP_SCHED
8541 8542 8543
static void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
		struct sched_rt_entity *rt_se, int cpu, int add,
		struct sched_rt_entity *parent)
P
Peter Zijlstra 已提交
8544
{
8545 8546
	struct rq *rq = cpu_rq(cpu);

P
Peter Zijlstra 已提交
8547 8548 8549 8550
	tg->rt_rq[cpu] = rt_rq;
	init_rt_rq(rt_rq, rq);
	rt_rq->tg = tg;
	rt_rq->rt_se = rt_se;
P
Peter Zijlstra 已提交
8551
	rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
P
Peter Zijlstra 已提交
8552 8553 8554 8555
	if (add)
		list_add(&rt_rq->leaf_rt_rq_list, &rq->leaf_rt_rq_list);

	tg->rt_se[cpu] = rt_se;
D
Dhaval Giani 已提交
8556 8557 8558
	if (!rt_se)
		return;

8559 8560 8561 8562 8563
	if (!parent)
		rt_se->rt_rq = &rq->rt;
	else
		rt_se->rt_rq = parent->my_q;

P
Peter Zijlstra 已提交
8564
	rt_se->my_q = rt_rq;
8565
	rt_se->parent = parent;
P
Peter Zijlstra 已提交
8566 8567 8568 8569
	INIT_LIST_HEAD(&rt_se->run_list);
}
#endif

L
Linus Torvalds 已提交
8570 8571
void __init sched_init(void)
{
I
Ingo Molnar 已提交
8572
	int i, j;
8573 8574 8575 8576 8577 8578 8579
	unsigned long alloc_size = 0, ptr;

#ifdef CONFIG_FAIR_GROUP_SCHED
	alloc_size += 2 * nr_cpu_ids * sizeof(void **);
#endif
#ifdef CONFIG_RT_GROUP_SCHED
	alloc_size += 2 * nr_cpu_ids * sizeof(void **);
8580 8581 8582
#endif
#ifdef CONFIG_USER_SCHED
	alloc_size *= 2;
8583 8584 8585 8586 8587 8588
#endif
	/*
	 * As sched_init() is called before page_alloc is setup,
	 * we use alloc_bootmem().
	 */
	if (alloc_size) {
8589
		ptr = (unsigned long)alloc_bootmem(alloc_size);
8590 8591 8592 8593 8594 8595 8596

#ifdef CONFIG_FAIR_GROUP_SCHED
		init_task_group.se = (struct sched_entity **)ptr;
		ptr += nr_cpu_ids * sizeof(void **);

		init_task_group.cfs_rq = (struct cfs_rq **)ptr;
		ptr += nr_cpu_ids * sizeof(void **);
8597 8598 8599 8600 8601 8602 8603

#ifdef CONFIG_USER_SCHED
		root_task_group.se = (struct sched_entity **)ptr;
		ptr += nr_cpu_ids * sizeof(void **);

		root_task_group.cfs_rq = (struct cfs_rq **)ptr;
		ptr += nr_cpu_ids * sizeof(void **);
8604 8605
#endif /* CONFIG_USER_SCHED */
#endif /* CONFIG_FAIR_GROUP_SCHED */
8606 8607 8608 8609 8610
#ifdef CONFIG_RT_GROUP_SCHED
		init_task_group.rt_se = (struct sched_rt_entity **)ptr;
		ptr += nr_cpu_ids * sizeof(void **);

		init_task_group.rt_rq = (struct rt_rq **)ptr;
8611 8612 8613 8614 8615 8616 8617 8618
		ptr += nr_cpu_ids * sizeof(void **);

#ifdef CONFIG_USER_SCHED
		root_task_group.rt_se = (struct sched_rt_entity **)ptr;
		ptr += nr_cpu_ids * sizeof(void **);

		root_task_group.rt_rq = (struct rt_rq **)ptr;
		ptr += nr_cpu_ids * sizeof(void **);
8619 8620
#endif /* CONFIG_USER_SCHED */
#endif /* CONFIG_RT_GROUP_SCHED */
8621
	}
I
Ingo Molnar 已提交
8622

G
Gregory Haskins 已提交
8623 8624 8625 8626
#ifdef CONFIG_SMP
	init_defrootdomain();
#endif

8627 8628 8629 8630 8631 8632
	init_rt_bandwidth(&def_rt_bandwidth,
			global_rt_period(), global_rt_runtime());

#ifdef CONFIG_RT_GROUP_SCHED
	init_rt_bandwidth(&init_task_group.rt_bandwidth,
			global_rt_period(), global_rt_runtime());
8633 8634 8635
#ifdef CONFIG_USER_SCHED
	init_rt_bandwidth(&root_task_group.rt_bandwidth,
			global_rt_period(), RUNTIME_INF);
8636 8637
#endif /* CONFIG_USER_SCHED */
#endif /* CONFIG_RT_GROUP_SCHED */
8638

8639
#ifdef CONFIG_GROUP_SCHED
P
Peter Zijlstra 已提交
8640
	list_add(&init_task_group.list, &task_groups);
P
Peter Zijlstra 已提交
8641 8642 8643 8644 8645 8646
	INIT_LIST_HEAD(&init_task_group.children);

#ifdef CONFIG_USER_SCHED
	INIT_LIST_HEAD(&root_task_group.children);
	init_task_group.parent = &root_task_group;
	list_add(&init_task_group.siblings, &root_task_group.children);
8647 8648
#endif /* CONFIG_USER_SCHED */
#endif /* CONFIG_GROUP_SCHED */
P
Peter Zijlstra 已提交
8649

8650
	for_each_possible_cpu(i) {
8651
		struct rq *rq;
L
Linus Torvalds 已提交
8652 8653 8654

		rq = cpu_rq(i);
		spin_lock_init(&rq->lock);
N
Nick Piggin 已提交
8655
		rq->nr_running = 0;
I
Ingo Molnar 已提交
8656
		init_cfs_rq(&rq->cfs, rq);
P
Peter Zijlstra 已提交
8657
		init_rt_rq(&rq->rt, rq);
I
Ingo Molnar 已提交
8658
#ifdef CONFIG_FAIR_GROUP_SCHED
8659
		init_task_group.shares = init_task_group_load;
P
Peter Zijlstra 已提交
8660
		INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
D
Dhaval Giani 已提交
8661 8662 8663 8664 8665 8666 8667 8668 8669 8670 8671 8672 8673 8674 8675 8676 8677 8678 8679 8680
#ifdef CONFIG_CGROUP_SCHED
		/*
		 * How much cpu bandwidth does init_task_group get?
		 *
		 * In case of task-groups formed thr' the cgroup filesystem, it
		 * gets 100% of the cpu resources in the system. This overall
		 * system cpu resource is divided among the tasks of
		 * init_task_group and its child task-groups in a fair manner,
		 * based on each entity's (task or task-group's) weight
		 * (se->load.weight).
		 *
		 * In other words, if init_task_group has 10 tasks of weight
		 * 1024) and two child groups A0 and A1 (of weight 1024 each),
		 * then A0's share of the cpu resource is:
		 *
		 * 	A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
		 *
		 * We achieve this by letting init_task_group's tasks sit
		 * directly in rq->cfs (i.e init_task_group->se[] = NULL).
		 */
8681
		init_tg_cfs_entry(&init_task_group, &rq->cfs, NULL, i, 1, NULL);
D
Dhaval Giani 已提交
8682
#elif defined CONFIG_USER_SCHED
8683 8684
		root_task_group.shares = NICE_0_LOAD;
		init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, 0, NULL);
D
Dhaval Giani 已提交
8685 8686 8687 8688 8689 8690 8691 8692 8693 8694 8695
		/*
		 * In case of task-groups formed thr' the user id of tasks,
		 * init_task_group represents tasks belonging to root user.
		 * Hence it forms a sibling of all subsequent groups formed.
		 * In this case, init_task_group gets only a fraction of overall
		 * system cpu resource, based on the weight assigned to root
		 * user's cpu share (INIT_TASK_GROUP_LOAD). This is accomplished
		 * by letting tasks of init_task_group sit in a separate cfs_rq
		 * (init_cfs_rq) and having one entity represent this group of
		 * tasks in rq->cfs (i.e init_task_group->se[] != NULL).
		 */
8696
		init_tg_cfs_entry(&init_task_group,
P
Peter Zijlstra 已提交
8697
				&per_cpu(init_cfs_rq, i),
8698 8699
				&per_cpu(init_sched_entity, i), i, 1,
				root_task_group.se[i]);
P
Peter Zijlstra 已提交
8700

8701
#endif
D
Dhaval Giani 已提交
8702 8703 8704
#endif /* CONFIG_FAIR_GROUP_SCHED */

		rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
8705
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
8706
		INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
D
Dhaval Giani 已提交
8707
#ifdef CONFIG_CGROUP_SCHED
8708
		init_tg_rt_entry(&init_task_group, &rq->rt, NULL, i, 1, NULL);
D
Dhaval Giani 已提交
8709
#elif defined CONFIG_USER_SCHED
8710
		init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, 0, NULL);
8711
		init_tg_rt_entry(&init_task_group,
P
Peter Zijlstra 已提交
8712
				&per_cpu(init_rt_rq, i),
8713 8714
				&per_cpu(init_sched_rt_entity, i), i, 1,
				root_task_group.rt_se[i]);
D
Dhaval Giani 已提交
8715
#endif
I
Ingo Molnar 已提交
8716
#endif
L
Linus Torvalds 已提交
8717

I
Ingo Molnar 已提交
8718 8719
		for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
			rq->cpu_load[j] = 0;
L
Linus Torvalds 已提交
8720
#ifdef CONFIG_SMP
N
Nick Piggin 已提交
8721
		rq->sd = NULL;
G
Gregory Haskins 已提交
8722
		rq->rd = NULL;
L
Linus Torvalds 已提交
8723
		rq->active_balance = 0;
I
Ingo Molnar 已提交
8724
		rq->next_balance = jiffies;
L
Linus Torvalds 已提交
8725
		rq->push_cpu = 0;
8726
		rq->cpu = i;
8727
		rq->online = 0;
L
Linus Torvalds 已提交
8728 8729
		rq->migration_thread = NULL;
		INIT_LIST_HEAD(&rq->migration_queue);
8730
		rq_attach_root(rq, &def_root_domain);
L
Linus Torvalds 已提交
8731
#endif
P
Peter Zijlstra 已提交
8732
		init_rq_hrtick(rq);
L
Linus Torvalds 已提交
8733 8734 8735
		atomic_set(&rq->nr_iowait, 0);
	}

8736
	set_load_weight(&init_task);
8737

8738 8739 8740 8741
#ifdef CONFIG_PREEMPT_NOTIFIERS
	INIT_HLIST_HEAD(&init_task.preempt_notifiers);
#endif

8742
#ifdef CONFIG_SMP
8743
	open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
8744 8745
#endif

8746 8747 8748 8749
#ifdef CONFIG_RT_MUTEXES
	plist_head_init(&init_task.pi_waiters, &init_task.pi_lock);
#endif

L
Linus Torvalds 已提交
8750 8751 8752 8753 8754 8755 8756 8757 8758 8759 8760 8761 8762
	/*
	 * The boot idle thread does lazy MMU switching as well:
	 */
	atomic_inc(&init_mm.mm_count);
	enter_lazy_tlb(&init_mm, current);

	/*
	 * Make us the idle thread. Technically, schedule() should not be
	 * called from this thread, however somewhere below it might be,
	 * but because we are the idle thread, we just pick up running again
	 * when this runqueue becomes "idle".
	 */
	init_idle(current, smp_processor_id());
I
Ingo Molnar 已提交
8763 8764 8765 8766
	/*
	 * During early bootup we pretend to be a normal task:
	 */
	current->sched_class = &fair_sched_class;
8767

8768 8769
	/* Allocate the nohz_cpu_mask if CONFIG_CPUMASK_OFFSTACK */
	alloc_bootmem_cpumask_var(&nohz_cpu_mask);
8770
#ifdef CONFIG_SMP
8771 8772 8773
#ifdef CONFIG_NO_HZ
	alloc_bootmem_cpumask_var(&nohz.cpu_mask);
#endif
8774
	alloc_bootmem_cpumask_var(&cpu_isolated_map);
8775
#endif /* SMP */
8776

8777
	scheduler_running = 1;
L
Linus Torvalds 已提交
8778 8779 8780 8781 8782
}

#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
void __might_sleep(char *file, int line)
{
8783
#ifdef in_atomic
L
Linus Torvalds 已提交
8784 8785
	static unsigned long prev_jiffy;	/* ratelimiting */

I
Ingo Molnar 已提交
8786 8787 8788 8789 8790 8791 8792 8793 8794 8795 8796 8797 8798 8799 8800 8801 8802 8803 8804
	if ((!in_atomic() && !irqs_disabled()) ||
		    system_state != SYSTEM_RUNNING || oops_in_progress)
		return;
	if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
		return;
	prev_jiffy = jiffies;

	printk(KERN_ERR
		"BUG: sleeping function called from invalid context at %s:%d\n",
			file, line);
	printk(KERN_ERR
		"in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
			in_atomic(), irqs_disabled(),
			current->pid, current->comm);

	debug_show_held_locks(current);
	if (irqs_disabled())
		print_irqtrace_events(current);
	dump_stack();
L
Linus Torvalds 已提交
8805 8806 8807 8808 8809 8810
#endif
}
EXPORT_SYMBOL(__might_sleep);
#endif

#ifdef CONFIG_MAGIC_SYSRQ
8811 8812 8813
static void normalize_task(struct rq *rq, struct task_struct *p)
{
	int on_rq;
8814

8815 8816 8817 8818 8819 8820 8821 8822 8823 8824 8825
	update_rq_clock(rq);
	on_rq = p->se.on_rq;
	if (on_rq)
		deactivate_task(rq, p, 0);
	__setscheduler(rq, p, SCHED_NORMAL, 0);
	if (on_rq) {
		activate_task(rq, p, 0);
		resched_task(rq->curr);
	}
}

L
Linus Torvalds 已提交
8826 8827
void normalize_rt_tasks(void)
{
8828
	struct task_struct *g, *p;
L
Linus Torvalds 已提交
8829
	unsigned long flags;
8830
	struct rq *rq;
L
Linus Torvalds 已提交
8831

8832
	read_lock_irqsave(&tasklist_lock, flags);
8833
	do_each_thread(g, p) {
8834 8835 8836 8837 8838 8839
		/*
		 * Only normalize user tasks:
		 */
		if (!p->mm)
			continue;

I
Ingo Molnar 已提交
8840 8841
		p->se.exec_start		= 0;
#ifdef CONFIG_SCHEDSTATS
I
Ingo Molnar 已提交
8842 8843 8844
		p->se.wait_start		= 0;
		p->se.sleep_start		= 0;
		p->se.block_start		= 0;
I
Ingo Molnar 已提交
8845
#endif
I
Ingo Molnar 已提交
8846 8847 8848 8849 8850 8851 8852 8853

		if (!rt_task(p)) {
			/*
			 * Renice negative nice level userspace
			 * tasks back to 0:
			 */
			if (TASK_NICE(p) < 0 && p->mm)
				set_user_nice(p, 0);
L
Linus Torvalds 已提交
8854
			continue;
I
Ingo Molnar 已提交
8855
		}
L
Linus Torvalds 已提交
8856

8857
		spin_lock(&p->pi_lock);
8858
		rq = __task_rq_lock(p);
L
Linus Torvalds 已提交
8859

8860
		normalize_task(rq, p);
8861

8862
		__task_rq_unlock(rq);
8863
		spin_unlock(&p->pi_lock);
8864 8865
	} while_each_thread(g, p);

8866
	read_unlock_irqrestore(&tasklist_lock, flags);
L
Linus Torvalds 已提交
8867 8868 8869
}

#endif /* CONFIG_MAGIC_SYSRQ */
8870 8871 8872 8873 8874 8875 8876 8877 8878 8879 8880 8881 8882 8883 8884 8885 8886 8887

#ifdef CONFIG_IA64
/*
 * These functions are only useful for the IA64 MCA handling.
 *
 * They can only be called when the whole system has been
 * stopped - every CPU needs to be quiescent, and no scheduling
 * activity can take place. Using them for anything else would
 * be a serious bug, and as a result, they aren't even visible
 * under any other configuration.
 */

/**
 * curr_task - return the current task for a given cpu.
 * @cpu: the processor in question.
 *
 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
 */
8888
struct task_struct *curr_task(int cpu)
8889 8890 8891 8892 8893 8894 8895 8896 8897 8898
{
	return cpu_curr(cpu);
}

/**
 * set_curr_task - set the current task for a given cpu.
 * @cpu: the processor in question.
 * @p: the task pointer to set.
 *
 * Description: This function must only be used when non-maskable interrupts
I
Ingo Molnar 已提交
8899 8900
 * are serviced on a separate stack. It allows the architecture to switch the
 * notion of the current task on a cpu in a non-blocking manner. This function
8901 8902 8903 8904 8905 8906 8907
 * must be called with all CPU's synchronized, and interrupts disabled, the
 * and caller must save the original value of the current task (see
 * curr_task() above) and restore that value before reenabling interrupts and
 * re-starting the system.
 *
 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
 */
8908
void set_curr_task(int cpu, struct task_struct *p)
8909 8910 8911 8912 8913
{
	cpu_curr(cpu) = p;
}

#endif
S
Srivatsa Vaddagiri 已提交
8914

8915 8916
#ifdef CONFIG_FAIR_GROUP_SCHED
static void free_fair_sched_group(struct task_group *tg)
P
Peter Zijlstra 已提交
8917 8918 8919 8920 8921 8922 8923 8924 8925 8926 8927 8928 8929 8930
{
	int i;

	for_each_possible_cpu(i) {
		if (tg->cfs_rq)
			kfree(tg->cfs_rq[i]);
		if (tg->se)
			kfree(tg->se[i]);
	}

	kfree(tg->cfs_rq);
	kfree(tg->se);
}

8931 8932
static
int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
S
Srivatsa Vaddagiri 已提交
8933 8934
{
	struct cfs_rq *cfs_rq;
8935
	struct sched_entity *se;
8936
	struct rq *rq;
S
Srivatsa Vaddagiri 已提交
8937 8938
	int i;

8939
	tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
S
Srivatsa Vaddagiri 已提交
8940 8941
	if (!tg->cfs_rq)
		goto err;
8942
	tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
S
Srivatsa Vaddagiri 已提交
8943 8944
	if (!tg->se)
		goto err;
8945 8946

	tg->shares = NICE_0_LOAD;
S
Srivatsa Vaddagiri 已提交
8947 8948

	for_each_possible_cpu(i) {
8949
		rq = cpu_rq(i);
S
Srivatsa Vaddagiri 已提交
8950

8951 8952
		cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
				      GFP_KERNEL, cpu_to_node(i));
S
Srivatsa Vaddagiri 已提交
8953 8954 8955
		if (!cfs_rq)
			goto err;

8956 8957
		se = kzalloc_node(sizeof(struct sched_entity),
				  GFP_KERNEL, cpu_to_node(i));
S
Srivatsa Vaddagiri 已提交
8958 8959 8960
		if (!se)
			goto err;

8961
		init_tg_cfs_entry(tg, cfs_rq, se, i, 0, parent->se[i]);
8962 8963 8964 8965 8966 8967 8968 8969 8970 8971 8972 8973 8974 8975 8976 8977 8978 8979
	}

	return 1;

 err:
	return 0;
}

static inline void register_fair_sched_group(struct task_group *tg, int cpu)
{
	list_add_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list,
			&cpu_rq(cpu)->leaf_cfs_rq_list);
}

static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
{
	list_del_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list);
}
8980
#else /* !CONFG_FAIR_GROUP_SCHED */
8981 8982 8983 8984
static inline void free_fair_sched_group(struct task_group *tg)
{
}

8985 8986
static inline
int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
8987 8988 8989 8990 8991 8992 8993 8994 8995 8996 8997
{
	return 1;
}

static inline void register_fair_sched_group(struct task_group *tg, int cpu)
{
}

static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
{
}
8998
#endif /* CONFIG_FAIR_GROUP_SCHED */
8999 9000

#ifdef CONFIG_RT_GROUP_SCHED
9001 9002 9003 9004
static void free_rt_sched_group(struct task_group *tg)
{
	int i;

9005 9006
	destroy_rt_bandwidth(&tg->rt_bandwidth);

9007 9008 9009 9010 9011 9012 9013 9014 9015 9016 9017
	for_each_possible_cpu(i) {
		if (tg->rt_rq)
			kfree(tg->rt_rq[i]);
		if (tg->rt_se)
			kfree(tg->rt_se[i]);
	}

	kfree(tg->rt_rq);
	kfree(tg->rt_se);
}

9018 9019
static
int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
9020 9021
{
	struct rt_rq *rt_rq;
9022
	struct sched_rt_entity *rt_se;
9023 9024 9025
	struct rq *rq;
	int i;

9026
	tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
9027 9028
	if (!tg->rt_rq)
		goto err;
9029
	tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
9030 9031 9032
	if (!tg->rt_se)
		goto err;

9033 9034
	init_rt_bandwidth(&tg->rt_bandwidth,
			ktime_to_ns(def_rt_bandwidth.rt_period), 0);
9035 9036 9037 9038

	for_each_possible_cpu(i) {
		rq = cpu_rq(i);

9039 9040
		rt_rq = kzalloc_node(sizeof(struct rt_rq),
				     GFP_KERNEL, cpu_to_node(i));
P
Peter Zijlstra 已提交
9041 9042
		if (!rt_rq)
			goto err;
S
Srivatsa Vaddagiri 已提交
9043

9044 9045
		rt_se = kzalloc_node(sizeof(struct sched_rt_entity),
				     GFP_KERNEL, cpu_to_node(i));
P
Peter Zijlstra 已提交
9046 9047
		if (!rt_se)
			goto err;
S
Srivatsa Vaddagiri 已提交
9048

9049
		init_tg_rt_entry(tg, rt_rq, rt_se, i, 0, parent->rt_se[i]);
S
Srivatsa Vaddagiri 已提交
9050 9051
	}

9052 9053 9054 9055 9056 9057 9058 9059 9060 9061 9062 9063 9064 9065 9066 9067
	return 1;

 err:
	return 0;
}

static inline void register_rt_sched_group(struct task_group *tg, int cpu)
{
	list_add_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list,
			&cpu_rq(cpu)->leaf_rt_rq_list);
}

static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
{
	list_del_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list);
}
9068
#else /* !CONFIG_RT_GROUP_SCHED */
9069 9070 9071 9072
static inline void free_rt_sched_group(struct task_group *tg)
{
}

9073 9074
static inline
int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
9075 9076 9077 9078 9079 9080 9081 9082 9083 9084 9085
{
	return 1;
}

static inline void register_rt_sched_group(struct task_group *tg, int cpu)
{
}

static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
{
}
9086
#endif /* CONFIG_RT_GROUP_SCHED */
9087

9088
#ifdef CONFIG_GROUP_SCHED
9089 9090 9091 9092 9093 9094 9095 9096
static void free_sched_group(struct task_group *tg)
{
	free_fair_sched_group(tg);
	free_rt_sched_group(tg);
	kfree(tg);
}

/* allocate runqueue etc for a new task group */
9097
struct task_group *sched_create_group(struct task_group *parent)
9098 9099 9100 9101 9102 9103 9104 9105 9106
{
	struct task_group *tg;
	unsigned long flags;
	int i;

	tg = kzalloc(sizeof(*tg), GFP_KERNEL);
	if (!tg)
		return ERR_PTR(-ENOMEM);

9107
	if (!alloc_fair_sched_group(tg, parent))
9108 9109
		goto err;

9110
	if (!alloc_rt_sched_group(tg, parent))
9111 9112
		goto err;

9113
	spin_lock_irqsave(&task_group_lock, flags);
9114
	for_each_possible_cpu(i) {
9115 9116
		register_fair_sched_group(tg, i);
		register_rt_sched_group(tg, i);
9117
	}
P
Peter Zijlstra 已提交
9118
	list_add_rcu(&tg->list, &task_groups);
P
Peter Zijlstra 已提交
9119 9120 9121 9122 9123

	WARN_ON(!parent); /* root should already exist */

	tg->parent = parent;
	INIT_LIST_HEAD(&tg->children);
9124
	list_add_rcu(&tg->siblings, &parent->children);
9125
	spin_unlock_irqrestore(&task_group_lock, flags);
S
Srivatsa Vaddagiri 已提交
9126

9127
	return tg;
S
Srivatsa Vaddagiri 已提交
9128 9129

err:
P
Peter Zijlstra 已提交
9130
	free_sched_group(tg);
S
Srivatsa Vaddagiri 已提交
9131 9132 9133
	return ERR_PTR(-ENOMEM);
}

9134
/* rcu callback to free various structures associated with a task group */
P
Peter Zijlstra 已提交
9135
static void free_sched_group_rcu(struct rcu_head *rhp)
S
Srivatsa Vaddagiri 已提交
9136 9137
{
	/* now it should be safe to free those cfs_rqs */
P
Peter Zijlstra 已提交
9138
	free_sched_group(container_of(rhp, struct task_group, rcu));
S
Srivatsa Vaddagiri 已提交
9139 9140
}

9141
/* Destroy runqueue etc associated with a task group */
9142
void sched_destroy_group(struct task_group *tg)
S
Srivatsa Vaddagiri 已提交
9143
{
9144
	unsigned long flags;
9145
	int i;
S
Srivatsa Vaddagiri 已提交
9146

9147
	spin_lock_irqsave(&task_group_lock, flags);
9148
	for_each_possible_cpu(i) {
9149 9150
		unregister_fair_sched_group(tg, i);
		unregister_rt_sched_group(tg, i);
9151
	}
P
Peter Zijlstra 已提交
9152
	list_del_rcu(&tg->list);
P
Peter Zijlstra 已提交
9153
	list_del_rcu(&tg->siblings);
9154
	spin_unlock_irqrestore(&task_group_lock, flags);
9155 9156

	/* wait for possible concurrent references to cfs_rqs complete */
P
Peter Zijlstra 已提交
9157
	call_rcu(&tg->rcu, free_sched_group_rcu);
S
Srivatsa Vaddagiri 已提交
9158 9159
}

9160
/* change task's runqueue when it moves between groups.
I
Ingo Molnar 已提交
9161 9162 9163
 *	The caller of this function should have put the task in its new group
 *	by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
 *	reflect its new group.
9164 9165
 */
void sched_move_task(struct task_struct *tsk)
S
Srivatsa Vaddagiri 已提交
9166 9167 9168 9169 9170 9171 9172 9173 9174
{
	int on_rq, running;
	unsigned long flags;
	struct rq *rq;

	rq = task_rq_lock(tsk, &flags);

	update_rq_clock(rq);

9175
	running = task_current(rq, tsk);
S
Srivatsa Vaddagiri 已提交
9176 9177
	on_rq = tsk->se.on_rq;

9178
	if (on_rq)
S
Srivatsa Vaddagiri 已提交
9179
		dequeue_task(rq, tsk, 0);
9180 9181
	if (unlikely(running))
		tsk->sched_class->put_prev_task(rq, tsk);
S
Srivatsa Vaddagiri 已提交
9182

P
Peter Zijlstra 已提交
9183
	set_task_rq(tsk, task_cpu(tsk));
S
Srivatsa Vaddagiri 已提交
9184

P
Peter Zijlstra 已提交
9185 9186 9187 9188 9189
#ifdef CONFIG_FAIR_GROUP_SCHED
	if (tsk->sched_class->moved_group)
		tsk->sched_class->moved_group(tsk);
#endif

9190 9191 9192
	if (unlikely(running))
		tsk->sched_class->set_curr_task(rq);
	if (on_rq)
9193
		enqueue_task(rq, tsk, 0);
S
Srivatsa Vaddagiri 已提交
9194 9195 9196

	task_rq_unlock(rq, &flags);
}
9197
#endif /* CONFIG_GROUP_SCHED */
S
Srivatsa Vaddagiri 已提交
9198

9199
#ifdef CONFIG_FAIR_GROUP_SCHED
9200
static void __set_se_shares(struct sched_entity *se, unsigned long shares)
S
Srivatsa Vaddagiri 已提交
9201 9202 9203 9204 9205
{
	struct cfs_rq *cfs_rq = se->cfs_rq;
	int on_rq;

	on_rq = se->on_rq;
9206
	if (on_rq)
S
Srivatsa Vaddagiri 已提交
9207 9208 9209
		dequeue_entity(cfs_rq, se, 0);

	se->load.weight = shares;
9210
	se->load.inv_weight = 0;
S
Srivatsa Vaddagiri 已提交
9211

9212
	if (on_rq)
S
Srivatsa Vaddagiri 已提交
9213
		enqueue_entity(cfs_rq, se, 0);
9214
}
9215

9216 9217 9218 9219 9220 9221 9222 9223 9224
static void set_se_shares(struct sched_entity *se, unsigned long shares)
{
	struct cfs_rq *cfs_rq = se->cfs_rq;
	struct rq *rq = cfs_rq->rq;
	unsigned long flags;

	spin_lock_irqsave(&rq->lock, flags);
	__set_se_shares(se, shares);
	spin_unlock_irqrestore(&rq->lock, flags);
S
Srivatsa Vaddagiri 已提交
9225 9226
}

9227 9228
static DEFINE_MUTEX(shares_mutex);

9229
int sched_group_set_shares(struct task_group *tg, unsigned long shares)
S
Srivatsa Vaddagiri 已提交
9230 9231
{
	int i;
9232
	unsigned long flags;
9233

9234 9235 9236 9237 9238 9239
	/*
	 * We can't change the weight of the root cgroup.
	 */
	if (!tg->se[0])
		return -EINVAL;

9240 9241
	if (shares < MIN_SHARES)
		shares = MIN_SHARES;
9242 9243
	else if (shares > MAX_SHARES)
		shares = MAX_SHARES;
9244

9245
	mutex_lock(&shares_mutex);
9246
	if (tg->shares == shares)
9247
		goto done;
S
Srivatsa Vaddagiri 已提交
9248

9249
	spin_lock_irqsave(&task_group_lock, flags);
9250 9251
	for_each_possible_cpu(i)
		unregister_fair_sched_group(tg, i);
P
Peter Zijlstra 已提交
9252
	list_del_rcu(&tg->siblings);
9253
	spin_unlock_irqrestore(&task_group_lock, flags);
9254 9255 9256 9257 9258 9259 9260 9261

	/* wait for any ongoing reference to this group to finish */
	synchronize_sched();

	/*
	 * Now we are free to modify the group's share on each cpu
	 * w/o tripping rebalance_share or load_balance_fair.
	 */
9262
	tg->shares = shares;
9263 9264 9265 9266 9267
	for_each_possible_cpu(i) {
		/*
		 * force a rebalance
		 */
		cfs_rq_set_shares(tg->cfs_rq[i], 0);
9268
		set_se_shares(tg->se[i], shares);
9269
	}
S
Srivatsa Vaddagiri 已提交
9270

9271 9272 9273 9274
	/*
	 * Enable load balance activity on this group, by inserting it back on
	 * each cpu's rq->leaf_cfs_rq_list.
	 */
9275
	spin_lock_irqsave(&task_group_lock, flags);
9276 9277
	for_each_possible_cpu(i)
		register_fair_sched_group(tg, i);
P
Peter Zijlstra 已提交
9278
	list_add_rcu(&tg->siblings, &tg->parent->children);
9279
	spin_unlock_irqrestore(&task_group_lock, flags);
9280
done:
9281
	mutex_unlock(&shares_mutex);
9282
	return 0;
S
Srivatsa Vaddagiri 已提交
9283 9284
}

9285 9286 9287 9288
unsigned long sched_group_shares(struct task_group *tg)
{
	return tg->shares;
}
9289
#endif
9290

9291
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
9292
/*
P
Peter Zijlstra 已提交
9293
 * Ensure that the real time constraints are schedulable.
P
Peter Zijlstra 已提交
9294
 */
P
Peter Zijlstra 已提交
9295 9296 9297 9298 9299
static DEFINE_MUTEX(rt_constraints_mutex);

static unsigned long to_ratio(u64 period, u64 runtime)
{
	if (runtime == RUNTIME_INF)
P
Peter Zijlstra 已提交
9300
		return 1ULL << 20;
P
Peter Zijlstra 已提交
9301

P
Peter Zijlstra 已提交
9302
	return div64_u64(runtime << 20, period);
P
Peter Zijlstra 已提交
9303 9304
}

P
Peter Zijlstra 已提交
9305 9306
/* Must be called with tasklist_lock held */
static inline int tg_has_rt_tasks(struct task_group *tg)
9307
{
P
Peter Zijlstra 已提交
9308
	struct task_struct *g, *p;
9309

P
Peter Zijlstra 已提交
9310 9311 9312 9313
	do_each_thread(g, p) {
		if (rt_task(p) && rt_rq_of_se(&p->rt)->tg == tg)
			return 1;
	} while_each_thread(g, p);
9314

P
Peter Zijlstra 已提交
9315 9316
	return 0;
}
9317

P
Peter Zijlstra 已提交
9318 9319 9320 9321 9322
struct rt_schedulable_data {
	struct task_group *tg;
	u64 rt_period;
	u64 rt_runtime;
};
9323

P
Peter Zijlstra 已提交
9324 9325 9326 9327 9328 9329
static int tg_schedulable(struct task_group *tg, void *data)
{
	struct rt_schedulable_data *d = data;
	struct task_group *child;
	unsigned long total, sum = 0;
	u64 period, runtime;
9330

P
Peter Zijlstra 已提交
9331 9332
	period = ktime_to_ns(tg->rt_bandwidth.rt_period);
	runtime = tg->rt_bandwidth.rt_runtime;
9333

P
Peter Zijlstra 已提交
9334 9335 9336
	if (tg == d->tg) {
		period = d->rt_period;
		runtime = d->rt_runtime;
9337 9338
	}

9339 9340 9341 9342 9343 9344 9345
#ifdef CONFIG_USER_SCHED
	if (tg == &root_task_group) {
		period = global_rt_period();
		runtime = global_rt_runtime();
	}
#endif

9346 9347 9348 9349 9350
	/*
	 * Cannot have more runtime than the period.
	 */
	if (runtime > period && runtime != RUNTIME_INF)
		return -EINVAL;
P
Peter Zijlstra 已提交
9351

9352 9353 9354
	/*
	 * Ensure we don't starve existing RT tasks.
	 */
P
Peter Zijlstra 已提交
9355 9356
	if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
		return -EBUSY;
P
Peter Zijlstra 已提交
9357

P
Peter Zijlstra 已提交
9358
	total = to_ratio(period, runtime);
P
Peter Zijlstra 已提交
9359

9360 9361 9362 9363 9364
	/*
	 * Nobody can have more than the global setting allows.
	 */
	if (total > to_ratio(global_rt_period(), global_rt_runtime()))
		return -EINVAL;
P
Peter Zijlstra 已提交
9365

9366 9367 9368
	/*
	 * The sum of our children's runtime should not exceed our own.
	 */
P
Peter Zijlstra 已提交
9369 9370 9371
	list_for_each_entry_rcu(child, &tg->children, siblings) {
		period = ktime_to_ns(child->rt_bandwidth.rt_period);
		runtime = child->rt_bandwidth.rt_runtime;
P
Peter Zijlstra 已提交
9372

P
Peter Zijlstra 已提交
9373 9374 9375 9376
		if (child == d->tg) {
			period = d->rt_period;
			runtime = d->rt_runtime;
		}
P
Peter Zijlstra 已提交
9377

P
Peter Zijlstra 已提交
9378
		sum += to_ratio(period, runtime);
P
Peter Zijlstra 已提交
9379
	}
P
Peter Zijlstra 已提交
9380

P
Peter Zijlstra 已提交
9381 9382 9383 9384
	if (sum > total)
		return -EINVAL;

	return 0;
P
Peter Zijlstra 已提交
9385 9386
}

P
Peter Zijlstra 已提交
9387
static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
9388
{
P
Peter Zijlstra 已提交
9389 9390 9391 9392 9393 9394 9395
	struct rt_schedulable_data data = {
		.tg = tg,
		.rt_period = period,
		.rt_runtime = runtime,
	};

	return walk_tg_tree(tg_schedulable, tg_nop, &data);
9396 9397
}

9398 9399
static int tg_set_bandwidth(struct task_group *tg,
		u64 rt_period, u64 rt_runtime)
P
Peter Zijlstra 已提交
9400
{
P
Peter Zijlstra 已提交
9401
	int i, err = 0;
P
Peter Zijlstra 已提交
9402 9403

	mutex_lock(&rt_constraints_mutex);
9404
	read_lock(&tasklist_lock);
P
Peter Zijlstra 已提交
9405 9406
	err = __rt_schedulable(tg, rt_period, rt_runtime);
	if (err)
P
Peter Zijlstra 已提交
9407
		goto unlock;
P
Peter Zijlstra 已提交
9408 9409

	spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
9410 9411
	tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
	tg->rt_bandwidth.rt_runtime = rt_runtime;
P
Peter Zijlstra 已提交
9412 9413 9414 9415 9416 9417 9418 9419 9420

	for_each_possible_cpu(i) {
		struct rt_rq *rt_rq = tg->rt_rq[i];

		spin_lock(&rt_rq->rt_runtime_lock);
		rt_rq->rt_runtime = rt_runtime;
		spin_unlock(&rt_rq->rt_runtime_lock);
	}
	spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
P
Peter Zijlstra 已提交
9421
 unlock:
9422
	read_unlock(&tasklist_lock);
P
Peter Zijlstra 已提交
9423 9424 9425
	mutex_unlock(&rt_constraints_mutex);

	return err;
P
Peter Zijlstra 已提交
9426 9427
}

9428 9429 9430 9431 9432 9433 9434 9435 9436 9437 9438 9439
int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
{
	u64 rt_runtime, rt_period;

	rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
	rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
	if (rt_runtime_us < 0)
		rt_runtime = RUNTIME_INF;

	return tg_set_bandwidth(tg, rt_period, rt_runtime);
}

P
Peter Zijlstra 已提交
9440 9441 9442 9443
long sched_group_rt_runtime(struct task_group *tg)
{
	u64 rt_runtime_us;

9444
	if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
P
Peter Zijlstra 已提交
9445 9446
		return -1;

9447
	rt_runtime_us = tg->rt_bandwidth.rt_runtime;
P
Peter Zijlstra 已提交
9448 9449 9450
	do_div(rt_runtime_us, NSEC_PER_USEC);
	return rt_runtime_us;
}
9451 9452 9453 9454 9455 9456 9457 9458

int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
{
	u64 rt_runtime, rt_period;

	rt_period = (u64)rt_period_us * NSEC_PER_USEC;
	rt_runtime = tg->rt_bandwidth.rt_runtime;

9459 9460 9461
	if (rt_period == 0)
		return -EINVAL;

9462 9463 9464 9465 9466 9467 9468 9469 9470 9471 9472 9473 9474 9475
	return tg_set_bandwidth(tg, rt_period, rt_runtime);
}

long sched_group_rt_period(struct task_group *tg)
{
	u64 rt_period_us;

	rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
	do_div(rt_period_us, NSEC_PER_USEC);
	return rt_period_us;
}

static int sched_rt_global_constraints(void)
{
9476
	u64 runtime, period;
9477 9478
	int ret = 0;

9479 9480 9481
	if (sysctl_sched_rt_period <= 0)
		return -EINVAL;

9482 9483 9484 9485 9486 9487 9488 9489
	runtime = global_rt_runtime();
	period = global_rt_period();

	/*
	 * Sanity check on the sysctl variables.
	 */
	if (runtime > period && runtime != RUNTIME_INF)
		return -EINVAL;
9490

9491
	mutex_lock(&rt_constraints_mutex);
P
Peter Zijlstra 已提交
9492
	read_lock(&tasklist_lock);
9493
	ret = __rt_schedulable(NULL, 0, 0);
P
Peter Zijlstra 已提交
9494
	read_unlock(&tasklist_lock);
9495 9496 9497 9498
	mutex_unlock(&rt_constraints_mutex);

	return ret;
}
9499 9500 9501 9502 9503 9504 9505 9506 9507 9508

int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
{
	/* Don't accept realtime tasks when there is no way for them to run */
	if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
		return 0;

	return 1;
}

9509
#else /* !CONFIG_RT_GROUP_SCHED */
9510 9511
static int sched_rt_global_constraints(void)
{
P
Peter Zijlstra 已提交
9512 9513 9514
	unsigned long flags;
	int i;

9515 9516 9517
	if (sysctl_sched_rt_period <= 0)
		return -EINVAL;

P
Peter Zijlstra 已提交
9518 9519 9520 9521 9522 9523 9524 9525 9526 9527
	spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
	for_each_possible_cpu(i) {
		struct rt_rq *rt_rq = &cpu_rq(i)->rt;

		spin_lock(&rt_rq->rt_runtime_lock);
		rt_rq->rt_runtime = global_rt_runtime();
		spin_unlock(&rt_rq->rt_runtime_lock);
	}
	spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);

9528 9529
	return 0;
}
9530
#endif /* CONFIG_RT_GROUP_SCHED */
9531 9532 9533 9534 9535 9536 9537 9538 9539 9540 9541 9542 9543 9544 9545 9546 9547 9548 9549 9550 9551 9552 9553 9554 9555 9556 9557 9558 9559 9560

int sched_rt_handler(struct ctl_table *table, int write,
		struct file *filp, void __user *buffer, size_t *lenp,
		loff_t *ppos)
{
	int ret;
	int old_period, old_runtime;
	static DEFINE_MUTEX(mutex);

	mutex_lock(&mutex);
	old_period = sysctl_sched_rt_period;
	old_runtime = sysctl_sched_rt_runtime;

	ret = proc_dointvec(table, write, filp, buffer, lenp, ppos);

	if (!ret && write) {
		ret = sched_rt_global_constraints();
		if (ret) {
			sysctl_sched_rt_period = old_period;
			sysctl_sched_rt_runtime = old_runtime;
		} else {
			def_rt_bandwidth.rt_runtime = global_rt_runtime();
			def_rt_bandwidth.rt_period =
				ns_to_ktime(global_rt_period());
		}
	}
	mutex_unlock(&mutex);

	return ret;
}
9561

9562
#ifdef CONFIG_CGROUP_SCHED
9563 9564

/* return corresponding task_group object of a cgroup */
9565
static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
9566
{
9567 9568
	return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
			    struct task_group, css);
9569 9570 9571
}

static struct cgroup_subsys_state *
9572
cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
9573
{
9574
	struct task_group *tg, *parent;
9575

9576
	if (!cgrp->parent) {
9577 9578 9579 9580
		/* This is early initialization for the top cgroup */
		return &init_task_group.css;
	}

9581 9582
	parent = cgroup_tg(cgrp->parent);
	tg = sched_create_group(parent);
9583 9584 9585 9586 9587 9588
	if (IS_ERR(tg))
		return ERR_PTR(-ENOMEM);

	return &tg->css;
}

I
Ingo Molnar 已提交
9589 9590
static void
cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
9591
{
9592
	struct task_group *tg = cgroup_tg(cgrp);
9593 9594 9595 9596

	sched_destroy_group(tg);
}

I
Ingo Molnar 已提交
9597 9598 9599
static int
cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
		      struct task_struct *tsk)
9600
{
9601
#ifdef CONFIG_RT_GROUP_SCHED
9602
	if (!sched_rt_can_attach(cgroup_tg(cgrp), tsk))
9603 9604
		return -EINVAL;
#else
9605 9606 9607
	/* We don't support RT-tasks being in separate groups */
	if (tsk->sched_class != &fair_sched_class)
		return -EINVAL;
9608
#endif
9609 9610 9611 9612 9613

	return 0;
}

static void
9614
cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
9615 9616 9617 9618 9619
			struct cgroup *old_cont, struct task_struct *tsk)
{
	sched_move_task(tsk);
}

9620
#ifdef CONFIG_FAIR_GROUP_SCHED
9621
static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
9622
				u64 shareval)
9623
{
9624
	return sched_group_set_shares(cgroup_tg(cgrp), shareval);
9625 9626
}

9627
static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
9628
{
9629
	struct task_group *tg = cgroup_tg(cgrp);
9630 9631 9632

	return (u64) tg->shares;
}
9633
#endif /* CONFIG_FAIR_GROUP_SCHED */
9634

9635
#ifdef CONFIG_RT_GROUP_SCHED
M
Mirco Tischler 已提交
9636
static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
9637
				s64 val)
P
Peter Zijlstra 已提交
9638
{
9639
	return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
P
Peter Zijlstra 已提交
9640 9641
}

9642
static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
P
Peter Zijlstra 已提交
9643
{
9644
	return sched_group_rt_runtime(cgroup_tg(cgrp));
P
Peter Zijlstra 已提交
9645
}
9646 9647 9648 9649 9650 9651 9652 9653 9654 9655 9656

static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
		u64 rt_period_us)
{
	return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
}

static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
{
	return sched_group_rt_period(cgroup_tg(cgrp));
}
9657
#endif /* CONFIG_RT_GROUP_SCHED */
P
Peter Zijlstra 已提交
9658

9659
static struct cftype cpu_files[] = {
9660
#ifdef CONFIG_FAIR_GROUP_SCHED
9661 9662
	{
		.name = "shares",
9663 9664
		.read_u64 = cpu_shares_read_u64,
		.write_u64 = cpu_shares_write_u64,
9665
	},
9666 9667
#endif
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
9668
	{
P
Peter Zijlstra 已提交
9669
		.name = "rt_runtime_us",
9670 9671
		.read_s64 = cpu_rt_runtime_read,
		.write_s64 = cpu_rt_runtime_write,
P
Peter Zijlstra 已提交
9672
	},
9673 9674
	{
		.name = "rt_period_us",
9675 9676
		.read_u64 = cpu_rt_period_read_uint,
		.write_u64 = cpu_rt_period_write_uint,
9677
	},
9678
#endif
9679 9680 9681 9682
};

static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
{
9683
	return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
9684 9685 9686
}

struct cgroup_subsys cpu_cgroup_subsys = {
I
Ingo Molnar 已提交
9687 9688 9689 9690 9691 9692 9693
	.name		= "cpu",
	.create		= cpu_cgroup_create,
	.destroy	= cpu_cgroup_destroy,
	.can_attach	= cpu_cgroup_can_attach,
	.attach		= cpu_cgroup_attach,
	.populate	= cpu_cgroup_populate,
	.subsys_id	= cpu_cgroup_subsys_id,
9694 9695 9696
	.early_init	= 1,
};

9697
#endif	/* CONFIG_CGROUP_SCHED */
9698 9699 9700 9701 9702 9703 9704 9705 9706 9707

#ifdef CONFIG_CGROUP_CPUACCT

/*
 * CPU accounting code for task groups.
 *
 * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
 * (balbir@in.ibm.com).
 */

9708
/* track cpu usage of a group of tasks and its child groups */
9709 9710 9711 9712
struct cpuacct {
	struct cgroup_subsys_state css;
	/* cpuusage holds pointer to a u64-type object on every cpu */
	u64 *cpuusage;
9713
	struct cpuacct *parent;
9714 9715 9716 9717 9718
};

struct cgroup_subsys cpuacct_subsys;

/* return cpu accounting group corresponding to this container */
9719
static inline struct cpuacct *cgroup_ca(struct cgroup *cgrp)
9720
{
9721
	return container_of(cgroup_subsys_state(cgrp, cpuacct_subsys_id),
9722 9723 9724 9725 9726 9727 9728 9729 9730 9731 9732 9733
			    struct cpuacct, css);
}

/* return cpu accounting group to which this task belongs */
static inline struct cpuacct *task_ca(struct task_struct *tsk)
{
	return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
			    struct cpuacct, css);
}

/* create a new cpu accounting group */
static struct cgroup_subsys_state *cpuacct_create(
9734
	struct cgroup_subsys *ss, struct cgroup *cgrp)
9735 9736 9737 9738 9739 9740 9741 9742 9743 9744 9745 9746
{
	struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL);

	if (!ca)
		return ERR_PTR(-ENOMEM);

	ca->cpuusage = alloc_percpu(u64);
	if (!ca->cpuusage) {
		kfree(ca);
		return ERR_PTR(-ENOMEM);
	}

9747 9748 9749
	if (cgrp->parent)
		ca->parent = cgroup_ca(cgrp->parent);

9750 9751 9752 9753
	return &ca->css;
}

/* destroy an existing cpu accounting group */
I
Ingo Molnar 已提交
9754
static void
9755
cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
9756
{
9757
	struct cpuacct *ca = cgroup_ca(cgrp);
9758 9759 9760 9761 9762

	free_percpu(ca->cpuusage);
	kfree(ca);
}

9763 9764 9765 9766 9767 9768 9769 9770 9771 9772 9773 9774 9775 9776 9777 9778 9779 9780 9781 9782 9783 9784 9785 9786 9787 9788 9789 9790 9791 9792 9793 9794 9795 9796 9797
static u64 cpuacct_cpuusage_read(struct cpuacct *ca, int cpu)
{
	u64 *cpuusage = percpu_ptr(ca->cpuusage, cpu);
	u64 data;

#ifndef CONFIG_64BIT
	/*
	 * Take rq->lock to make 64-bit read safe on 32-bit platforms.
	 */
	spin_lock_irq(&cpu_rq(cpu)->lock);
	data = *cpuusage;
	spin_unlock_irq(&cpu_rq(cpu)->lock);
#else
	data = *cpuusage;
#endif

	return data;
}

static void cpuacct_cpuusage_write(struct cpuacct *ca, int cpu, u64 val)
{
	u64 *cpuusage = percpu_ptr(ca->cpuusage, cpu);

#ifndef CONFIG_64BIT
	/*
	 * Take rq->lock to make 64-bit write safe on 32-bit platforms.
	 */
	spin_lock_irq(&cpu_rq(cpu)->lock);
	*cpuusage = val;
	spin_unlock_irq(&cpu_rq(cpu)->lock);
#else
	*cpuusage = val;
#endif
}

9798
/* return total cpu usage (in nanoseconds) of a group */
9799
static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
9800
{
9801
	struct cpuacct *ca = cgroup_ca(cgrp);
9802 9803 9804
	u64 totalcpuusage = 0;
	int i;

9805 9806
	for_each_present_cpu(i)
		totalcpuusage += cpuacct_cpuusage_read(ca, i);
9807 9808 9809 9810

	return totalcpuusage;
}

9811 9812 9813 9814 9815 9816 9817 9818 9819 9820 9821 9822
static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
								u64 reset)
{
	struct cpuacct *ca = cgroup_ca(cgrp);
	int err = 0;
	int i;

	if (reset) {
		err = -EINVAL;
		goto out;
	}

9823 9824
	for_each_present_cpu(i)
		cpuacct_cpuusage_write(ca, i, 0);
9825 9826 9827 9828 9829

out:
	return err;
}

9830 9831 9832 9833 9834 9835 9836 9837 9838 9839 9840 9841 9842 9843 9844
static int cpuacct_percpu_seq_read(struct cgroup *cgroup, struct cftype *cft,
				   struct seq_file *m)
{
	struct cpuacct *ca = cgroup_ca(cgroup);
	u64 percpu;
	int i;

	for_each_present_cpu(i) {
		percpu = cpuacct_cpuusage_read(ca, i);
		seq_printf(m, "%llu ", (unsigned long long) percpu);
	}
	seq_printf(m, "\n");
	return 0;
}

9845 9846 9847
static struct cftype files[] = {
	{
		.name = "usage",
9848 9849
		.read_u64 = cpuusage_read,
		.write_u64 = cpuusage_write,
9850
	},
9851 9852 9853 9854 9855
	{
		.name = "usage_percpu",
		.read_seq_string = cpuacct_percpu_seq_read,
	},

9856 9857
};

9858
static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cgrp)
9859
{
9860
	return cgroup_add_files(cgrp, ss, files, ARRAY_SIZE(files));
9861 9862 9863 9864 9865 9866 9867 9868 9869 9870
}

/*
 * charge this task's execution time to its accounting group.
 *
 * called with rq->lock held.
 */
static void cpuacct_charge(struct task_struct *tsk, u64 cputime)
{
	struct cpuacct *ca;
9871
	int cpu;
9872

L
Li Zefan 已提交
9873
	if (unlikely(!cpuacct_subsys.active))
9874 9875
		return;

9876
	cpu = task_cpu(tsk);
9877 9878
	ca = task_ca(tsk);

9879 9880
	for (; ca; ca = ca->parent) {
		u64 *cpuusage = percpu_ptr(ca->cpuusage, cpu);
9881 9882 9883 9884 9885 9886 9887 9888 9889 9890 9891 9892
		*cpuusage += cputime;
	}
}

struct cgroup_subsys cpuacct_subsys = {
	.name = "cpuacct",
	.create = cpuacct_create,
	.destroy = cpuacct_destroy,
	.populate = cpuacct_populate,
	.subsys_id = cpuacct_subsys_id,
};
#endif	/* CONFIG_CGROUP_CPUACCT */