sched.c 225.5 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
/*
 *  kernel/sched.c
 *
 *  Kernel scheduler and related syscalls
 *
 *  Copyright (C) 1991-2002  Linus Torvalds
 *
 *  1996-12-23  Modified by Dave Grothe to fix bugs in semaphores and
 *		make semaphores SMP safe
 *  1998-11-19	Implemented schedule_timeout() and related stuff
 *		by Andrea Arcangeli
 *  2002-01-04	New ultra-scalable O(1) scheduler by Ingo Molnar:
 *		hybrid priority-list and round-robin design with
 *		an array-switch method of distributing timeslices
 *		and per-CPU runqueues.  Cleanups and useful suggestions
 *		by Davide Libenzi, preemptible kernel bits by Robert Love.
 *  2003-09-03	Interactivity tuning by Con Kolivas.
 *  2004-04-02	Scheduler domains code by Nick Piggin
I
Ingo Molnar 已提交
19 20 21 22 23 24
 *  2007-04-15  Work begun on replacing all interactivity tuning with a
 *              fair scheduling design by Con Kolivas.
 *  2007-05-05  Load balancing (smp-nice) and other improvements
 *              by Peter Williams
 *  2007-05-06  Interactivity improvements to CFS by Mike Galbraith
 *  2007-07-01  Group scheduling enhancements by Srivatsa Vaddagiri
25 26
 *  2007-11-29  RT balancing improvements by Steven Rostedt, Gregory Haskins,
 *              Thomas Gleixner, Mike Kravetz
L
Linus Torvalds 已提交
27 28 29 30 31 32
 */

#include <linux/mm.h>
#include <linux/module.h>
#include <linux/nmi.h>
#include <linux/init.h>
33
#include <linux/uaccess.h>
L
Linus Torvalds 已提交
34 35 36 37
#include <linux/highmem.h>
#include <linux/smp_lock.h>
#include <asm/mmu_context.h>
#include <linux/interrupt.h>
38
#include <linux/capability.h>
L
Linus Torvalds 已提交
39 40
#include <linux/completion.h>
#include <linux/kernel_stat.h>
41
#include <linux/debug_locks.h>
L
Linus Torvalds 已提交
42 43 44
#include <linux/security.h>
#include <linux/notifier.h>
#include <linux/profile.h>
45
#include <linux/freezer.h>
46
#include <linux/vmalloc.h>
L
Linus Torvalds 已提交
47 48
#include <linux/blkdev.h>
#include <linux/delay.h>
49
#include <linux/pid_namespace.h>
L
Linus Torvalds 已提交
50 51 52 53 54 55 56 57
#include <linux/smp.h>
#include <linux/threads.h>
#include <linux/timer.h>
#include <linux/rcupdate.h>
#include <linux/cpu.h>
#include <linux/cpuset.h>
#include <linux/percpu.h>
#include <linux/kthread.h>
58
#include <linux/proc_fs.h>
L
Linus Torvalds 已提交
59
#include <linux/seq_file.h>
60
#include <linux/sysctl.h>
L
Linus Torvalds 已提交
61 62
#include <linux/syscalls.h>
#include <linux/times.h>
63
#include <linux/tsacct_kern.h>
64
#include <linux/kprobes.h>
65
#include <linux/delayacct.h>
66
#include <linux/reciprocal_div.h>
67
#include <linux/unistd.h>
J
Jens Axboe 已提交
68
#include <linux/pagemap.h>
P
Peter Zijlstra 已提交
69
#include <linux/hrtimer.h>
R
Reynes Philippe 已提交
70
#include <linux/tick.h>
71
#include <linux/bootmem.h>
P
Peter Zijlstra 已提交
72 73
#include <linux/debugfs.h>
#include <linux/ctype.h>
74
#include <linux/ftrace.h>
75
#include <trace/sched.h>
L
Linus Torvalds 已提交
76

77
#include <asm/tlb.h>
78
#include <asm/irq_regs.h>
L
Linus Torvalds 已提交
79

80 81
#include "sched_cpupri.h"

L
Linus Torvalds 已提交
82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100
/*
 * Convert user-nice values [ -20 ... 0 ... 19 ]
 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
 * and back.
 */
#define NICE_TO_PRIO(nice)	(MAX_RT_PRIO + (nice) + 20)
#define PRIO_TO_NICE(prio)	((prio) - MAX_RT_PRIO - 20)
#define TASK_NICE(p)		PRIO_TO_NICE((p)->static_prio)

/*
 * 'User priority' is the nice value converted to something we
 * can work with better when scaling various scheduler parameters,
 * it's a [ 0 ... 39 ] range.
 */
#define USER_PRIO(p)		((p)-MAX_RT_PRIO)
#define TASK_USER_PRIO(p)	USER_PRIO((p)->static_prio)
#define MAX_USER_PRIO		(USER_PRIO(MAX_PRIO))

/*
101
 * Helpers for converting nanosecond timing to jiffy resolution
L
Linus Torvalds 已提交
102
 */
103
#define NS_TO_JIFFIES(TIME)	((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
L
Linus Torvalds 已提交
104

I
Ingo Molnar 已提交
105 106 107
#define NICE_0_LOAD		SCHED_LOAD_SCALE
#define NICE_0_SHIFT		SCHED_LOAD_SHIFT

L
Linus Torvalds 已提交
108 109 110
/*
 * These are the 'tuning knobs' of the scheduler:
 *
D
Dmitry Adamushko 已提交
111
 * default timeslice is 100 msecs (used only for SCHED_RR tasks).
L
Linus Torvalds 已提交
112 113 114
 * Timeslices get refilled after they expire.
 */
#define DEF_TIMESLICE		(100 * HZ / 1000)
115

116 117 118 119 120
/*
 * single value that denotes runtime == period, ie unlimited time.
 */
#define RUNTIME_INF	((u64)~0ULL)

121 122 123 124 125 126
DEFINE_TRACE(sched_wait_task);
DEFINE_TRACE(sched_wakeup);
DEFINE_TRACE(sched_wakeup_new);
DEFINE_TRACE(sched_switch);
DEFINE_TRACE(sched_migrate_task);

127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147
#ifdef CONFIG_SMP
/*
 * Divide a load by a sched group cpu_power : (load / sg->__cpu_power)
 * Since cpu_power is a 'constant', we can use a reciprocal divide.
 */
static inline u32 sg_div_cpu_power(const struct sched_group *sg, u32 load)
{
	return reciprocal_divide(load, sg->reciprocal_cpu_power);
}

/*
 * Each time a sched group cpu_power is changed,
 * we must compute its reciprocal value
 */
static inline void sg_inc_cpu_power(struct sched_group *sg, u32 val)
{
	sg->__cpu_power += val;
	sg->reciprocal_cpu_power = reciprocal_value(sg->__cpu_power);
}
#endif

148 149
static inline int rt_policy(int policy)
{
150
	if (unlikely(policy == SCHED_FIFO || policy == SCHED_RR))
151 152 153 154 155 156 157 158 159
		return 1;
	return 0;
}

static inline int task_has_rt_policy(struct task_struct *p)
{
	return rt_policy(p->policy);
}

L
Linus Torvalds 已提交
160
/*
I
Ingo Molnar 已提交
161
 * This is the priority-queue data structure of the RT scheduling class:
L
Linus Torvalds 已提交
162
 */
I
Ingo Molnar 已提交
163 164 165 166 167
struct rt_prio_array {
	DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
	struct list_head queue[MAX_RT_PRIO];
};

168
struct rt_bandwidth {
I
Ingo Molnar 已提交
169 170 171 172 173
	/* nests inside the rq lock: */
	spinlock_t		rt_runtime_lock;
	ktime_t			rt_period;
	u64			rt_runtime;
	struct hrtimer		rt_period_timer;
174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206
};

static struct rt_bandwidth def_rt_bandwidth;

static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);

static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
{
	struct rt_bandwidth *rt_b =
		container_of(timer, struct rt_bandwidth, rt_period_timer);
	ktime_t now;
	int overrun;
	int idle = 0;

	for (;;) {
		now = hrtimer_cb_get_time(timer);
		overrun = hrtimer_forward(timer, now, rt_b->rt_period);

		if (!overrun)
			break;

		idle = do_sched_rt_period_timer(rt_b, overrun);
	}

	return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
}

static
void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
{
	rt_b->rt_period = ns_to_ktime(period);
	rt_b->rt_runtime = runtime;

P
Peter Zijlstra 已提交
207 208
	spin_lock_init(&rt_b->rt_runtime_lock);

209 210 211
	hrtimer_init(&rt_b->rt_period_timer,
			CLOCK_MONOTONIC, HRTIMER_MODE_REL);
	rt_b->rt_period_timer.function = sched_rt_period_timer;
212
	rt_b->rt_period_timer.cb_mode = HRTIMER_CB_IRQSAFE_UNLOCKED;
213 214
}

215 216 217
static inline int rt_bandwidth_enabled(void)
{
	return sysctl_sched_rt_runtime >= 0;
218 219 220 221 222 223
}

static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
{
	ktime_t now;

224
	if (rt_bandwidth_enabled() && rt_b->rt_runtime == RUNTIME_INF)
225 226 227 228 229 230 231 232 233 234 235 236
		return;

	if (hrtimer_active(&rt_b->rt_period_timer))
		return;

	spin_lock(&rt_b->rt_runtime_lock);
	for (;;) {
		if (hrtimer_active(&rt_b->rt_period_timer))
			break;

		now = hrtimer_cb_get_time(&rt_b->rt_period_timer);
		hrtimer_forward(&rt_b->rt_period_timer, now, rt_b->rt_period);
237 238
		hrtimer_start_expires(&rt_b->rt_period_timer,
				HRTIMER_MODE_ABS);
239 240 241 242 243 244 245 246 247 248 249
	}
	spin_unlock(&rt_b->rt_runtime_lock);
}

#ifdef CONFIG_RT_GROUP_SCHED
static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
{
	hrtimer_cancel(&rt_b->rt_period_timer);
}
#endif

250 251 252 253 254 255
/*
 * sched_domains_mutex serializes calls to arch_init_sched_domains,
 * detach_destroy_domains and partition_sched_domains.
 */
static DEFINE_MUTEX(sched_domains_mutex);

256
#ifdef CONFIG_GROUP_SCHED
S
Srivatsa Vaddagiri 已提交
257

258 259
#include <linux/cgroup.h>

S
Srivatsa Vaddagiri 已提交
260 261
struct cfs_rq;

P
Peter Zijlstra 已提交
262 263
static LIST_HEAD(task_groups);

S
Srivatsa Vaddagiri 已提交
264
/* task group related information */
265
struct task_group {
266
#ifdef CONFIG_CGROUP_SCHED
267 268
	struct cgroup_subsys_state css;
#endif
269 270

#ifdef CONFIG_FAIR_GROUP_SCHED
S
Srivatsa Vaddagiri 已提交
271 272 273 274 275
	/* schedulable entities of this group on each cpu */
	struct sched_entity **se;
	/* runqueue "owned" by this group on each cpu */
	struct cfs_rq **cfs_rq;
	unsigned long shares;
276 277 278 279 280 281
#endif

#ifdef CONFIG_RT_GROUP_SCHED
	struct sched_rt_entity **rt_se;
	struct rt_rq **rt_rq;

282
	struct rt_bandwidth rt_bandwidth;
283
#endif
284

285
	struct rcu_head rcu;
P
Peter Zijlstra 已提交
286
	struct list_head list;
P
Peter Zijlstra 已提交
287 288 289 290

	struct task_group *parent;
	struct list_head siblings;
	struct list_head children;
S
Srivatsa Vaddagiri 已提交
291 292
};

D
Dhaval Giani 已提交
293
#ifdef CONFIG_USER_SCHED
294 295 296 297 298 299 300 301

/*
 * Root task group.
 * 	Every UID task group (including init_task_group aka UID-0) will
 * 	be a child to this group.
 */
struct task_group root_task_group;

302
#ifdef CONFIG_FAIR_GROUP_SCHED
S
Srivatsa Vaddagiri 已提交
303 304 305 306
/* Default task group's sched entity on each cpu */
static DEFINE_PER_CPU(struct sched_entity, init_sched_entity);
/* Default task group's cfs_rq on each cpu */
static DEFINE_PER_CPU(struct cfs_rq, init_cfs_rq) ____cacheline_aligned_in_smp;
307
#endif /* CONFIG_FAIR_GROUP_SCHED */
308 309 310 311

#ifdef CONFIG_RT_GROUP_SCHED
static DEFINE_PER_CPU(struct sched_rt_entity, init_sched_rt_entity);
static DEFINE_PER_CPU(struct rt_rq, init_rt_rq) ____cacheline_aligned_in_smp;
312
#endif /* CONFIG_RT_GROUP_SCHED */
P
Peter Zijlstra 已提交
313
#else /* !CONFIG_USER_SCHED */
314
#define root_task_group init_task_group
P
Peter Zijlstra 已提交
315
#endif /* CONFIG_USER_SCHED */
P
Peter Zijlstra 已提交
316

317
/* task_group_lock serializes add/remove of task groups and also changes to
318 319
 * a task group's cpu shares.
 */
320
static DEFINE_SPINLOCK(task_group_lock);
321

322 323 324
#ifdef CONFIG_FAIR_GROUP_SCHED
#ifdef CONFIG_USER_SCHED
# define INIT_TASK_GROUP_LOAD	(2*NICE_0_LOAD)
325
#else /* !CONFIG_USER_SCHED */
326
# define INIT_TASK_GROUP_LOAD	NICE_0_LOAD
327
#endif /* CONFIG_USER_SCHED */
328

329
/*
330 331 332 333
 * A weight of 0 or 1 can cause arithmetics problems.
 * A weight of a cfs_rq is the sum of weights of which entities
 * are queued on this cfs_rq, so a weight of a entity should not be
 * too large, so as the shares value of a task group.
334 335 336
 * (The default weight is 1024 - so there's no practical
 *  limitation from this.)
 */
337
#define MIN_SHARES	2
338
#define MAX_SHARES	(1UL << 18)
339

340 341 342
static int init_task_group_load = INIT_TASK_GROUP_LOAD;
#endif

S
Srivatsa Vaddagiri 已提交
343
/* Default task group.
I
Ingo Molnar 已提交
344
 *	Every task in system belong to this group at bootup.
S
Srivatsa Vaddagiri 已提交
345
 */
346
struct task_group init_task_group;
S
Srivatsa Vaddagiri 已提交
347 348

/* return group to which a task belongs */
349
static inline struct task_group *task_group(struct task_struct *p)
S
Srivatsa Vaddagiri 已提交
350
{
351
	struct task_group *tg;
352

353
#ifdef CONFIG_USER_SCHED
354
	tg = p->user->tg;
355
#elif defined(CONFIG_CGROUP_SCHED)
356 357
	tg = container_of(task_subsys_state(p, cpu_cgroup_subsys_id),
				struct task_group, css);
358
#else
I
Ingo Molnar 已提交
359
	tg = &init_task_group;
360
#endif
361
	return tg;
S
Srivatsa Vaddagiri 已提交
362 363 364
}

/* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
P
Peter Zijlstra 已提交
365
static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
S
Srivatsa Vaddagiri 已提交
366
{
367
#ifdef CONFIG_FAIR_GROUP_SCHED
368 369
	p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
	p->se.parent = task_group(p)->se[cpu];
370
#endif
P
Peter Zijlstra 已提交
371

372
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
373 374
	p->rt.rt_rq  = task_group(p)->rt_rq[cpu];
	p->rt.parent = task_group(p)->rt_se[cpu];
375
#endif
S
Srivatsa Vaddagiri 已提交
376 377 378 379
}

#else

P
Peter Zijlstra 已提交
380
static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
381 382 383 384
static inline struct task_group *task_group(struct task_struct *p)
{
	return NULL;
}
S
Srivatsa Vaddagiri 已提交
385

386
#endif	/* CONFIG_GROUP_SCHED */
S
Srivatsa Vaddagiri 已提交
387

I
Ingo Molnar 已提交
388 389 390 391 392 393
/* CFS-related fields in a runqueue */
struct cfs_rq {
	struct load_weight load;
	unsigned long nr_running;

	u64 exec_clock;
I
Ingo Molnar 已提交
394
	u64 min_vruntime;
I
Ingo Molnar 已提交
395 396 397

	struct rb_root tasks_timeline;
	struct rb_node *rb_leftmost;
398 399 400 401 402 403

	struct list_head tasks;
	struct list_head *balance_iterator;

	/*
	 * 'curr' points to currently running entity on this cfs_rq.
I
Ingo Molnar 已提交
404 405
	 * It is set to NULL otherwise (i.e when none are currently running).
	 */
P
Peter Zijlstra 已提交
406
	struct sched_entity *curr, *next, *last;
P
Peter Zijlstra 已提交
407

P
Peter Zijlstra 已提交
408
	unsigned int nr_spread_over;
P
Peter Zijlstra 已提交
409

410
#ifdef CONFIG_FAIR_GROUP_SCHED
I
Ingo Molnar 已提交
411 412
	struct rq *rq;	/* cpu runqueue to which this cfs_rq is attached */

I
Ingo Molnar 已提交
413 414
	/*
	 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
I
Ingo Molnar 已提交
415 416 417 418 419 420
	 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
	 * (like users, containers etc.)
	 *
	 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
	 * list is used during load balance.
	 */
I
Ingo Molnar 已提交
421 422
	struct list_head leaf_cfs_rq_list;
	struct task_group *tg;	/* group that "owns" this runqueue */
423 424 425

#ifdef CONFIG_SMP
	/*
426
	 * the part of load.weight contributed by tasks
427
	 */
428
	unsigned long task_weight;
429

430 431 432 433 434 435 436
	/*
	 *   h_load = weight * f(tg)
	 *
	 * Where f(tg) is the recursive weight fraction assigned to
	 * this group.
	 */
	unsigned long h_load;
437

438 439 440 441
	/*
	 * this cpu's part of tg->shares
	 */
	unsigned long shares;
442 443 444 445 446

	/*
	 * load.weight at the time we set shares
	 */
	unsigned long rq_weight;
447
#endif
I
Ingo Molnar 已提交
448 449
#endif
};
L
Linus Torvalds 已提交
450

I
Ingo Molnar 已提交
451 452 453
/* Real-Time classes' related field in a runqueue: */
struct rt_rq {
	struct rt_prio_array active;
454
	unsigned long rt_nr_running;
455
#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
456 457
	int highest_prio; /* highest queued rt task prio */
#endif
P
Peter Zijlstra 已提交
458
#ifdef CONFIG_SMP
459
	unsigned long rt_nr_migratory;
G
Gregory Haskins 已提交
460
	int overloaded;
P
Peter Zijlstra 已提交
461
#endif
P
Peter Zijlstra 已提交
462
	int rt_throttled;
P
Peter Zijlstra 已提交
463
	u64 rt_time;
P
Peter Zijlstra 已提交
464
	u64 rt_runtime;
I
Ingo Molnar 已提交
465
	/* Nests inside the rq lock: */
P
Peter Zijlstra 已提交
466
	spinlock_t rt_runtime_lock;
P
Peter Zijlstra 已提交
467

468
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
469 470
	unsigned long rt_nr_boosted;

P
Peter Zijlstra 已提交
471 472 473 474 475
	struct rq *rq;
	struct list_head leaf_rt_rq_list;
	struct task_group *tg;
	struct sched_rt_entity *rt_se;
#endif
I
Ingo Molnar 已提交
476 477
};

G
Gregory Haskins 已提交
478 479 480 481
#ifdef CONFIG_SMP

/*
 * We add the notion of a root-domain which will be used to define per-domain
I
Ingo Molnar 已提交
482 483
 * variables. Each exclusive cpuset essentially defines an island domain by
 * fully partitioning the member cpus from any other cpuset. Whenever a new
G
Gregory Haskins 已提交
484 485 486 487 488 489 490 491
 * exclusive cpuset is created, we also create and attach a new root-domain
 * object.
 *
 */
struct root_domain {
	atomic_t refcount;
	cpumask_t span;
	cpumask_t online;
492

I
Ingo Molnar 已提交
493
	/*
494 495 496 497
	 * The "RT overload" flag: it gets set if a CPU has more than
	 * one runnable RT task.
	 */
	cpumask_t rto_mask;
I
Ingo Molnar 已提交
498
	atomic_t rto_count;
499 500 501
#ifdef CONFIG_SMP
	struct cpupri cpupri;
#endif
G
Gregory Haskins 已提交
502 503
};

504 505 506 507
/*
 * By default the system creates a single root-domain with all cpus as
 * members (mimicking the global state we have today).
 */
G
Gregory Haskins 已提交
508 509 510 511
static struct root_domain def_root_domain;

#endif

L
Linus Torvalds 已提交
512 513 514 515 516 517 518
/*
 * This is the main, per-CPU runqueue data structure.
 *
 * Locking rule: those places that want to lock multiple runqueues
 * (such as the load balancing or the thread migration code), lock
 * acquire operations must be ordered by ascending &runqueue.
 */
519
struct rq {
520 521
	/* runqueue lock: */
	spinlock_t lock;
L
Linus Torvalds 已提交
522 523 524 525 526 527

	/*
	 * nr_running and cpu_load should be in the same cacheline because
	 * remote CPUs use both these fields when doing load calculation.
	 */
	unsigned long nr_running;
I
Ingo Molnar 已提交
528 529
	#define CPU_LOAD_IDX_MAX 5
	unsigned long cpu_load[CPU_LOAD_IDX_MAX];
530
	unsigned char idle_at_tick;
531
#ifdef CONFIG_NO_HZ
532
	unsigned long last_tick_seen;
533 534
	unsigned char in_nohz_recently;
#endif
535 536
	/* capture load from *all* tasks on this cpu: */
	struct load_weight load;
I
Ingo Molnar 已提交
537 538 539 540
	unsigned long nr_load_updates;
	u64 nr_switches;

	struct cfs_rq cfs;
P
Peter Zijlstra 已提交
541 542
	struct rt_rq rt;

I
Ingo Molnar 已提交
543
#ifdef CONFIG_FAIR_GROUP_SCHED
544 545
	/* list of leaf cfs_rq on this cpu: */
	struct list_head leaf_cfs_rq_list;
546 547
#endif
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
548
	struct list_head leaf_rt_rq_list;
L
Linus Torvalds 已提交
549 550 551 552 553 554 555 556 557 558
#endif

	/*
	 * This is part of a global counter where only the total sum
	 * over all CPUs matters. A task can increase this counter on
	 * one CPU and if it got migrated afterwards it may decrease
	 * it on another CPU. Always updated under the runqueue lock:
	 */
	unsigned long nr_uninterruptible;

559
	struct task_struct *curr, *idle;
560
	unsigned long next_balance;
L
Linus Torvalds 已提交
561
	struct mm_struct *prev_mm;
I
Ingo Molnar 已提交
562

563
	u64 clock;
I
Ingo Molnar 已提交
564

L
Linus Torvalds 已提交
565 566 567
	atomic_t nr_iowait;

#ifdef CONFIG_SMP
I
Ingo Molnar 已提交
568
	struct root_domain *rd;
L
Linus Torvalds 已提交
569 570 571 572 573
	struct sched_domain *sd;

	/* For active balancing */
	int active_balance;
	int push_cpu;
574 575
	/* cpu of this runqueue: */
	int cpu;
576
	int online;
L
Linus Torvalds 已提交
577

578
	unsigned long avg_load_per_task;
L
Linus Torvalds 已提交
579

580
	struct task_struct *migration_thread;
L
Linus Torvalds 已提交
581 582 583
	struct list_head migration_queue;
#endif

P
Peter Zijlstra 已提交
584
#ifdef CONFIG_SCHED_HRTICK
585 586 587 588
#ifdef CONFIG_SMP
	int hrtick_csd_pending;
	struct call_single_data hrtick_csd;
#endif
P
Peter Zijlstra 已提交
589 590 591
	struct hrtimer hrtick_timer;
#endif

L
Linus Torvalds 已提交
592 593 594 595 596
#ifdef CONFIG_SCHEDSTATS
	/* latency stats */
	struct sched_info rq_sched_info;

	/* sys_sched_yield() stats */
597 598 599 600
	unsigned int yld_exp_empty;
	unsigned int yld_act_empty;
	unsigned int yld_both_empty;
	unsigned int yld_count;
L
Linus Torvalds 已提交
601 602

	/* schedule() stats */
603 604 605
	unsigned int sched_switch;
	unsigned int sched_count;
	unsigned int sched_goidle;
L
Linus Torvalds 已提交
606 607

	/* try_to_wake_up() stats */
608 609
	unsigned int ttwu_count;
	unsigned int ttwu_local;
I
Ingo Molnar 已提交
610 611

	/* BKL stats */
612
	unsigned int bkl_count;
L
Linus Torvalds 已提交
613 614 615
#endif
};

616
static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
L
Linus Torvalds 已提交
617

618
static inline void check_preempt_curr(struct rq *rq, struct task_struct *p, int sync)
I
Ingo Molnar 已提交
619
{
620
	rq->curr->sched_class->check_preempt_curr(rq, p, sync);
I
Ingo Molnar 已提交
621 622
}

623 624 625 626 627 628 629 630 631
static inline int cpu_of(struct rq *rq)
{
#ifdef CONFIG_SMP
	return rq->cpu;
#else
	return 0;
#endif
}

N
Nick Piggin 已提交
632 633
/*
 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
634
 * See detach_destroy_domains: synchronize_sched for details.
N
Nick Piggin 已提交
635 636 637 638
 *
 * The domain tree of any CPU may only be accessed from within
 * preempt-disabled sections.
 */
639 640
#define for_each_domain(cpu, __sd) \
	for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
L
Linus Torvalds 已提交
641 642 643 644 645 646

#define cpu_rq(cpu)		(&per_cpu(runqueues, (cpu)))
#define this_rq()		(&__get_cpu_var(runqueues))
#define task_rq(p)		cpu_rq(task_cpu(p))
#define cpu_curr(cpu)		(cpu_rq(cpu)->curr)

647 648 649 650 651
static inline void update_rq_clock(struct rq *rq)
{
	rq->clock = sched_clock_cpu(cpu_of(rq));
}

I
Ingo Molnar 已提交
652 653 654 655 656 657 658 659 660
/*
 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
 */
#ifdef CONFIG_SCHED_DEBUG
# define const_debug __read_mostly
#else
# define const_debug static const
#endif

I
Ingo Molnar 已提交
661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678
/**
 * runqueue_is_locked
 *
 * Returns true if the current cpu runqueue is locked.
 * This interface allows printk to be called with the runqueue lock
 * held and know whether or not it is OK to wake up the klogd.
 */
int runqueue_is_locked(void)
{
	int cpu = get_cpu();
	struct rq *rq = cpu_rq(cpu);
	int ret;

	ret = spin_is_locked(&rq->lock);
	put_cpu();
	return ret;
}

I
Ingo Molnar 已提交
679 680 681
/*
 * Debugging: various feature bits
 */
P
Peter Zijlstra 已提交
682 683 684 685

#define SCHED_FEAT(name, enabled)	\
	__SCHED_FEAT_##name ,

I
Ingo Molnar 已提交
686
enum {
P
Peter Zijlstra 已提交
687
#include "sched_features.h"
I
Ingo Molnar 已提交
688 689
};

P
Peter Zijlstra 已提交
690 691 692 693 694
#undef SCHED_FEAT

#define SCHED_FEAT(name, enabled)	\
	(1UL << __SCHED_FEAT_##name) * enabled |

I
Ingo Molnar 已提交
695
const_debug unsigned int sysctl_sched_features =
P
Peter Zijlstra 已提交
696 697 698 699 700 701 702 703 704
#include "sched_features.h"
	0;

#undef SCHED_FEAT

#ifdef CONFIG_SCHED_DEBUG
#define SCHED_FEAT(name, enabled)	\
	#name ,

705
static __read_mostly char *sched_feat_names[] = {
P
Peter Zijlstra 已提交
706 707 708 709 710 711
#include "sched_features.h"
	NULL
};

#undef SCHED_FEAT

712
static int sched_feat_open(struct inode *inode, struct file *filp)
P
Peter Zijlstra 已提交
713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739
{
	filp->private_data = inode->i_private;
	return 0;
}

static ssize_t
sched_feat_read(struct file *filp, char __user *ubuf,
		size_t cnt, loff_t *ppos)
{
	char *buf;
	int r = 0;
	int len = 0;
	int i;

	for (i = 0; sched_feat_names[i]; i++) {
		len += strlen(sched_feat_names[i]);
		len += 4;
	}

	buf = kmalloc(len + 2, GFP_KERNEL);
	if (!buf)
		return -ENOMEM;

	for (i = 0; sched_feat_names[i]; i++) {
		if (sysctl_sched_features & (1UL << i))
			r += sprintf(buf + r, "%s ", sched_feat_names[i]);
		else
I
Ingo Molnar 已提交
740
			r += sprintf(buf + r, "NO_%s ", sched_feat_names[i]);
P
Peter Zijlstra 已提交
741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769
	}

	r += sprintf(buf + r, "\n");
	WARN_ON(r >= len + 2);

	r = simple_read_from_buffer(ubuf, cnt, ppos, buf, r);

	kfree(buf);

	return r;
}

static ssize_t
sched_feat_write(struct file *filp, const char __user *ubuf,
		size_t cnt, loff_t *ppos)
{
	char buf[64];
	char *cmp = buf;
	int neg = 0;
	int i;

	if (cnt > 63)
		cnt = 63;

	if (copy_from_user(&buf, ubuf, cnt))
		return -EFAULT;

	buf[cnt] = 0;

I
Ingo Molnar 已提交
770
	if (strncmp(buf, "NO_", 3) == 0) {
P
Peter Zijlstra 已提交
771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812
		neg = 1;
		cmp += 3;
	}

	for (i = 0; sched_feat_names[i]; i++) {
		int len = strlen(sched_feat_names[i]);

		if (strncmp(cmp, sched_feat_names[i], len) == 0) {
			if (neg)
				sysctl_sched_features &= ~(1UL << i);
			else
				sysctl_sched_features |= (1UL << i);
			break;
		}
	}

	if (!sched_feat_names[i])
		return -EINVAL;

	filp->f_pos += cnt;

	return cnt;
}

static struct file_operations sched_feat_fops = {
	.open	= sched_feat_open,
	.read	= sched_feat_read,
	.write	= sched_feat_write,
};

static __init int sched_init_debug(void)
{
	debugfs_create_file("sched_features", 0644, NULL, NULL,
			&sched_feat_fops);

	return 0;
}
late_initcall(sched_init_debug);

#endif

#define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
I
Ingo Molnar 已提交
813

814 815 816 817 818 819
/*
 * Number of tasks to iterate in a single balance run.
 * Limited because this is done with IRQs disabled.
 */
const_debug unsigned int sysctl_sched_nr_migrate = 32;

P
Peter Zijlstra 已提交
820 821
/*
 * ratelimit for updating the group shares.
822
 * default: 0.25ms
P
Peter Zijlstra 已提交
823
 */
824
unsigned int sysctl_sched_shares_ratelimit = 250000;
P
Peter Zijlstra 已提交
825

826 827 828 829 830 831 832
/*
 * Inject some fuzzyness into changing the per-cpu group shares
 * this avoids remote rq-locks at the expense of fairness.
 * default: 4
 */
unsigned int sysctl_sched_shares_thresh = 4;

P
Peter Zijlstra 已提交
833
/*
P
Peter Zijlstra 已提交
834
 * period over which we measure -rt task cpu usage in us.
P
Peter Zijlstra 已提交
835 836
 * default: 1s
 */
P
Peter Zijlstra 已提交
837
unsigned int sysctl_sched_rt_period = 1000000;
P
Peter Zijlstra 已提交
838

839 840
static __read_mostly int scheduler_running;

P
Peter Zijlstra 已提交
841 842 843 844 845
/*
 * part of the period that we allow rt tasks to run in us.
 * default: 0.95s
 */
int sysctl_sched_rt_runtime = 950000;
P
Peter Zijlstra 已提交
846

847 848 849 850 851 852 853
static inline u64 global_rt_period(void)
{
	return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
}

static inline u64 global_rt_runtime(void)
{
854
	if (sysctl_sched_rt_runtime < 0)
855 856 857 858
		return RUNTIME_INF;

	return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
}
P
Peter Zijlstra 已提交
859

L
Linus Torvalds 已提交
860
#ifndef prepare_arch_switch
861 862 863 864 865 866
# define prepare_arch_switch(next)	do { } while (0)
#endif
#ifndef finish_arch_switch
# define finish_arch_switch(prev)	do { } while (0)
#endif

867 868 869 870 871
static inline int task_current(struct rq *rq, struct task_struct *p)
{
	return rq->curr == p;
}

872
#ifndef __ARCH_WANT_UNLOCKED_CTXSW
873
static inline int task_running(struct rq *rq, struct task_struct *p)
874
{
875
	return task_current(rq, p);
876 877
}

878
static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
879 880 881
{
}

882
static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
883
{
884 885 886 887
#ifdef CONFIG_DEBUG_SPINLOCK
	/* this is a valid case when another task releases the spinlock */
	rq->lock.owner = current;
#endif
888 889 890 891 892 893 894
	/*
	 * If we are tracking spinlock dependencies then we have to
	 * fix up the runqueue lock - which gets 'carried over' from
	 * prev into current:
	 */
	spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);

895 896 897 898
	spin_unlock_irq(&rq->lock);
}

#else /* __ARCH_WANT_UNLOCKED_CTXSW */
899
static inline int task_running(struct rq *rq, struct task_struct *p)
900 901 902 903
{
#ifdef CONFIG_SMP
	return p->oncpu;
#else
904
	return task_current(rq, p);
905 906 907
#endif
}

908
static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924
{
#ifdef CONFIG_SMP
	/*
	 * We can optimise this out completely for !SMP, because the
	 * SMP rebalancing from interrupt is the only thing that cares
	 * here.
	 */
	next->oncpu = 1;
#endif
#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
	spin_unlock_irq(&rq->lock);
#else
	spin_unlock(&rq->lock);
#endif
}

925
static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
926 927 928 929 930 931 932 933 934 935 936 937
{
#ifdef CONFIG_SMP
	/*
	 * After ->oncpu is cleared, the task can be moved to a different CPU.
	 * We must ensure this doesn't happen until the switch is completely
	 * finished.
	 */
	smp_wmb();
	prev->oncpu = 0;
#endif
#ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
	local_irq_enable();
L
Linus Torvalds 已提交
938
#endif
939 940
}
#endif /* __ARCH_WANT_UNLOCKED_CTXSW */
L
Linus Torvalds 已提交
941

942 943 944 945
/*
 * __task_rq_lock - lock the runqueue a given task resides on.
 * Must be called interrupts disabled.
 */
946
static inline struct rq *__task_rq_lock(struct task_struct *p)
947 948
	__acquires(rq->lock)
{
949 950 951 952 953
	for (;;) {
		struct rq *rq = task_rq(p);
		spin_lock(&rq->lock);
		if (likely(rq == task_rq(p)))
			return rq;
954 955 956 957
		spin_unlock(&rq->lock);
	}
}

L
Linus Torvalds 已提交
958 959
/*
 * task_rq_lock - lock the runqueue a given task resides on and disable
I
Ingo Molnar 已提交
960
 * interrupts. Note the ordering: we can safely lookup the task_rq without
L
Linus Torvalds 已提交
961 962
 * explicitly disabling preemption.
 */
963
static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
L
Linus Torvalds 已提交
964 965
	__acquires(rq->lock)
{
966
	struct rq *rq;
L
Linus Torvalds 已提交
967

968 969 970 971 972 973
	for (;;) {
		local_irq_save(*flags);
		rq = task_rq(p);
		spin_lock(&rq->lock);
		if (likely(rq == task_rq(p)))
			return rq;
L
Linus Torvalds 已提交
974 975 976 977
		spin_unlock_irqrestore(&rq->lock, *flags);
	}
}

978 979 980 981 982 983 984 985
void task_rq_unlock_wait(struct task_struct *p)
{
	struct rq *rq = task_rq(p);

	smp_mb(); /* spin-unlock-wait is not a full memory barrier */
	spin_unlock_wait(&rq->lock);
}

A
Alexey Dobriyan 已提交
986
static void __task_rq_unlock(struct rq *rq)
987 988 989 990 991
	__releases(rq->lock)
{
	spin_unlock(&rq->lock);
}

992
static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
L
Linus Torvalds 已提交
993 994 995 996 997 998
	__releases(rq->lock)
{
	spin_unlock_irqrestore(&rq->lock, *flags);
}

/*
999
 * this_rq_lock - lock this runqueue and disable interrupts.
L
Linus Torvalds 已提交
1000
 */
A
Alexey Dobriyan 已提交
1001
static struct rq *this_rq_lock(void)
L
Linus Torvalds 已提交
1002 1003
	__acquires(rq->lock)
{
1004
	struct rq *rq;
L
Linus Torvalds 已提交
1005 1006 1007 1008 1009 1010 1011 1012

	local_irq_disable();
	rq = this_rq();
	spin_lock(&rq->lock);

	return rq;
}

P
Peter Zijlstra 已提交
1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033
#ifdef CONFIG_SCHED_HRTICK
/*
 * Use HR-timers to deliver accurate preemption points.
 *
 * Its all a bit involved since we cannot program an hrt while holding the
 * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
 * reschedule event.
 *
 * When we get rescheduled we reprogram the hrtick_timer outside of the
 * rq->lock.
 */

/*
 * Use hrtick when:
 *  - enabled by features
 *  - hrtimer is actually high res
 */
static inline int hrtick_enabled(struct rq *rq)
{
	if (!sched_feat(HRTICK))
		return 0;
1034
	if (!cpu_active(cpu_of(rq)))
1035
		return 0;
P
Peter Zijlstra 已提交
1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055
	return hrtimer_is_hres_active(&rq->hrtick_timer);
}

static void hrtick_clear(struct rq *rq)
{
	if (hrtimer_active(&rq->hrtick_timer))
		hrtimer_cancel(&rq->hrtick_timer);
}

/*
 * High-resolution timer tick.
 * Runs from hardirq context with interrupts disabled.
 */
static enum hrtimer_restart hrtick(struct hrtimer *timer)
{
	struct rq *rq = container_of(timer, struct rq, hrtick_timer);

	WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());

	spin_lock(&rq->lock);
1056
	update_rq_clock(rq);
P
Peter Zijlstra 已提交
1057 1058 1059 1060 1061 1062
	rq->curr->sched_class->task_tick(rq, rq->curr, 1);
	spin_unlock(&rq->lock);

	return HRTIMER_NORESTART;
}

1063
#ifdef CONFIG_SMP
1064 1065 1066 1067
/*
 * called from hardirq (IPI) context
 */
static void __hrtick_start(void *arg)
1068
{
1069
	struct rq *rq = arg;
1070

1071 1072 1073 1074
	spin_lock(&rq->lock);
	hrtimer_restart(&rq->hrtick_timer);
	rq->hrtick_csd_pending = 0;
	spin_unlock(&rq->lock);
1075 1076
}

1077 1078 1079 1080 1081 1082
/*
 * Called to set the hrtick timer state.
 *
 * called with rq->lock held and irqs disabled
 */
static void hrtick_start(struct rq *rq, u64 delay)
1083
{
1084 1085
	struct hrtimer *timer = &rq->hrtick_timer;
	ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
1086

1087
	hrtimer_set_expires(timer, time);
1088 1089 1090 1091 1092 1093 1094

	if (rq == this_rq()) {
		hrtimer_restart(timer);
	} else if (!rq->hrtick_csd_pending) {
		__smp_call_function_single(cpu_of(rq), &rq->hrtick_csd);
		rq->hrtick_csd_pending = 1;
	}
1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108
}

static int
hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
{
	int cpu = (int)(long)hcpu;

	switch (action) {
	case CPU_UP_CANCELED:
	case CPU_UP_CANCELED_FROZEN:
	case CPU_DOWN_PREPARE:
	case CPU_DOWN_PREPARE_FROZEN:
	case CPU_DEAD:
	case CPU_DEAD_FROZEN:
1109
		hrtick_clear(cpu_rq(cpu));
1110 1111 1112 1113 1114 1115
		return NOTIFY_OK;
	}

	return NOTIFY_DONE;
}

1116
static __init void init_hrtick(void)
1117 1118 1119
{
	hotcpu_notifier(hotplug_hrtick, 0);
}
1120 1121 1122 1123 1124 1125 1126 1127 1128 1129
#else
/*
 * Called to set the hrtick timer state.
 *
 * called with rq->lock held and irqs disabled
 */
static void hrtick_start(struct rq *rq, u64 delay)
{
	hrtimer_start(&rq->hrtick_timer, ns_to_ktime(delay), HRTIMER_MODE_REL);
}
1130

A
Andrew Morton 已提交
1131
static inline void init_hrtick(void)
P
Peter Zijlstra 已提交
1132 1133
{
}
1134
#endif /* CONFIG_SMP */
P
Peter Zijlstra 已提交
1135

1136
static void init_rq_hrtick(struct rq *rq)
P
Peter Zijlstra 已提交
1137
{
1138 1139
#ifdef CONFIG_SMP
	rq->hrtick_csd_pending = 0;
P
Peter Zijlstra 已提交
1140

1141 1142 1143 1144
	rq->hrtick_csd.flags = 0;
	rq->hrtick_csd.func = __hrtick_start;
	rq->hrtick_csd.info = rq;
#endif
P
Peter Zijlstra 已提交
1145

1146 1147
	hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
	rq->hrtick_timer.function = hrtick;
1148
	rq->hrtick_timer.cb_mode = HRTIMER_CB_IRQSAFE_PERCPU;
P
Peter Zijlstra 已提交
1149
}
A
Andrew Morton 已提交
1150
#else	/* CONFIG_SCHED_HRTICK */
P
Peter Zijlstra 已提交
1151 1152 1153 1154 1155 1156 1157 1158
static inline void hrtick_clear(struct rq *rq)
{
}

static inline void init_rq_hrtick(struct rq *rq)
{
}

1159 1160 1161
static inline void init_hrtick(void)
{
}
A
Andrew Morton 已提交
1162
#endif	/* CONFIG_SCHED_HRTICK */
P
Peter Zijlstra 已提交
1163

I
Ingo Molnar 已提交
1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176
/*
 * resched_task - mark a task 'to be rescheduled now'.
 *
 * On UP this means the setting of the need_resched flag, on SMP it
 * might also involve a cross-CPU call to trigger the scheduler on
 * the target CPU.
 */
#ifdef CONFIG_SMP

#ifndef tsk_is_polling
#define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
#endif

1177
static void resched_task(struct task_struct *p)
I
Ingo Molnar 已提交
1178 1179 1180 1181 1182
{
	int cpu;

	assert_spin_locked(&task_rq(p)->lock);

1183
	if (unlikely(test_tsk_thread_flag(p, TIF_NEED_RESCHED)))
I
Ingo Molnar 已提交
1184 1185
		return;

1186
	set_tsk_thread_flag(p, TIF_NEED_RESCHED);
I
Ingo Molnar 已提交
1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207

	cpu = task_cpu(p);
	if (cpu == smp_processor_id())
		return;

	/* NEED_RESCHED must be visible before we test polling */
	smp_mb();
	if (!tsk_is_polling(p))
		smp_send_reschedule(cpu);
}

static void resched_cpu(int cpu)
{
	struct rq *rq = cpu_rq(cpu);
	unsigned long flags;

	if (!spin_trylock_irqsave(&rq->lock, flags))
		return;
	resched_task(cpu_curr(cpu));
	spin_unlock_irqrestore(&rq->lock, flags);
}
1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248

#ifdef CONFIG_NO_HZ
/*
 * When add_timer_on() enqueues a timer into the timer wheel of an
 * idle CPU then this timer might expire before the next timer event
 * which is scheduled to wake up that CPU. In case of a completely
 * idle system the next event might even be infinite time into the
 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
 * leaves the inner idle loop so the newly added timer is taken into
 * account when the CPU goes back to idle and evaluates the timer
 * wheel for the next timer event.
 */
void wake_up_idle_cpu(int cpu)
{
	struct rq *rq = cpu_rq(cpu);

	if (cpu == smp_processor_id())
		return;

	/*
	 * This is safe, as this function is called with the timer
	 * wheel base lock of (cpu) held. When the CPU is on the way
	 * to idle and has not yet set rq->curr to idle then it will
	 * be serialized on the timer wheel base lock and take the new
	 * timer into account automatically.
	 */
	if (rq->curr != rq->idle)
		return;

	/*
	 * We can set TIF_RESCHED on the idle task of the other CPU
	 * lockless. The worst case is that the other CPU runs the
	 * idle task through an additional NOOP schedule()
	 */
	set_tsk_thread_flag(rq->idle, TIF_NEED_RESCHED);

	/* NEED_RESCHED must be visible before we test polling */
	smp_mb();
	if (!tsk_is_polling(rq->idle))
		smp_send_reschedule(cpu);
}
1249
#endif /* CONFIG_NO_HZ */
1250

1251
#else /* !CONFIG_SMP */
1252
static void resched_task(struct task_struct *p)
I
Ingo Molnar 已提交
1253 1254
{
	assert_spin_locked(&task_rq(p)->lock);
1255
	set_tsk_need_resched(p);
I
Ingo Molnar 已提交
1256
}
1257
#endif /* CONFIG_SMP */
I
Ingo Molnar 已提交
1258

1259 1260 1261 1262 1263 1264 1265 1266
#if BITS_PER_LONG == 32
# define WMULT_CONST	(~0UL)
#else
# define WMULT_CONST	(1UL << 32)
#endif

#define WMULT_SHIFT	32

I
Ingo Molnar 已提交
1267 1268 1269
/*
 * Shift right and round:
 */
I
Ingo Molnar 已提交
1270
#define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
I
Ingo Molnar 已提交
1271

1272 1273 1274
/*
 * delta *= weight / lw
 */
1275
static unsigned long
1276 1277 1278 1279 1280
calc_delta_mine(unsigned long delta_exec, unsigned long weight,
		struct load_weight *lw)
{
	u64 tmp;

1281 1282 1283 1284 1285 1286 1287
	if (!lw->inv_weight) {
		if (BITS_PER_LONG > 32 && unlikely(lw->weight >= WMULT_CONST))
			lw->inv_weight = 1;
		else
			lw->inv_weight = 1 + (WMULT_CONST-lw->weight/2)
				/ (lw->weight+1);
	}
1288 1289 1290 1291 1292

	tmp = (u64)delta_exec * weight;
	/*
	 * Check whether we'd overflow the 64-bit multiplication:
	 */
I
Ingo Molnar 已提交
1293
	if (unlikely(tmp > WMULT_CONST))
I
Ingo Molnar 已提交
1294
		tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
I
Ingo Molnar 已提交
1295 1296
			WMULT_SHIFT/2);
	else
I
Ingo Molnar 已提交
1297
		tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
1298

1299
	return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
1300 1301
}

1302
static inline void update_load_add(struct load_weight *lw, unsigned long inc)
1303 1304
{
	lw->weight += inc;
I
Ingo Molnar 已提交
1305
	lw->inv_weight = 0;
1306 1307
}

1308
static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
1309 1310
{
	lw->weight -= dec;
I
Ingo Molnar 已提交
1311
	lw->inv_weight = 0;
1312 1313
}

1314 1315 1316 1317
/*
 * To aid in avoiding the subversion of "niceness" due to uneven distribution
 * of tasks with abnormal "nice" values across CPUs the contribution that
 * each task makes to its run queue's load is weighted according to its
I
Ingo Molnar 已提交
1318
 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
1319 1320 1321 1322
 * scaled version of the new time slice allocation that they receive on time
 * slice expiry etc.
 */

I
Ingo Molnar 已提交
1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333
#define WEIGHT_IDLEPRIO		2
#define WMULT_IDLEPRIO		(1 << 31)

/*
 * Nice levels are multiplicative, with a gentle 10% change for every
 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
 * nice 1, it will get ~10% less CPU time than another CPU-bound task
 * that remained on nice 0.
 *
 * The "10% effect" is relative and cumulative: from _any_ nice level,
 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
1334 1335 1336
 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
 * If a task goes up by ~10% and another task goes down by ~10% then
 * the relative distance between them is ~25%.)
I
Ingo Molnar 已提交
1337 1338
 */
static const int prio_to_weight[40] = {
1339 1340 1341 1342 1343 1344 1345 1346
 /* -20 */     88761,     71755,     56483,     46273,     36291,
 /* -15 */     29154,     23254,     18705,     14949,     11916,
 /* -10 */      9548,      7620,      6100,      4904,      3906,
 /*  -5 */      3121,      2501,      1991,      1586,      1277,
 /*   0 */      1024,       820,       655,       526,       423,
 /*   5 */       335,       272,       215,       172,       137,
 /*  10 */       110,        87,        70,        56,        45,
 /*  15 */        36,        29,        23,        18,        15,
I
Ingo Molnar 已提交
1347 1348
};

1349 1350 1351 1352 1353 1354 1355
/*
 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
 *
 * In cases where the weight does not change often, we can use the
 * precalculated inverse to speed up arithmetics by turning divisions
 * into multiplications:
 */
I
Ingo Molnar 已提交
1356
static const u32 prio_to_wmult[40] = {
1357 1358 1359 1360 1361 1362 1363 1364
 /* -20 */     48388,     59856,     76040,     92818,    118348,
 /* -15 */    147320,    184698,    229616,    287308,    360437,
 /* -10 */    449829,    563644,    704093,    875809,   1099582,
 /*  -5 */   1376151,   1717300,   2157191,   2708050,   3363326,
 /*   0 */   4194304,   5237765,   6557202,   8165337,  10153587,
 /*   5 */  12820798,  15790321,  19976592,  24970740,  31350126,
 /*  10 */  39045157,  49367440,  61356676,  76695844,  95443717,
 /*  15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
I
Ingo Molnar 已提交
1365
};
1366

I
Ingo Molnar 已提交
1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379
static void activate_task(struct rq *rq, struct task_struct *p, int wakeup);

/*
 * runqueue iterator, to support SMP load-balancing between different
 * scheduling classes, without having to expose their internal data
 * structures to the load-balancing proper:
 */
struct rq_iterator {
	void *arg;
	struct task_struct *(*start)(void *);
	struct task_struct *(*next)(void *);
};

1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391
#ifdef CONFIG_SMP
static unsigned long
balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
	      unsigned long max_load_move, struct sched_domain *sd,
	      enum cpu_idle_type idle, int *all_pinned,
	      int *this_best_prio, struct rq_iterator *iterator);

static int
iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
		   struct sched_domain *sd, enum cpu_idle_type idle,
		   struct rq_iterator *iterator);
#endif
I
Ingo Molnar 已提交
1392

1393 1394 1395 1396 1397 1398
#ifdef CONFIG_CGROUP_CPUACCT
static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
#else
static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
#endif

1399 1400 1401 1402 1403 1404 1405 1406 1407 1408
static inline void inc_cpu_load(struct rq *rq, unsigned long load)
{
	update_load_add(&rq->load, load);
}

static inline void dec_cpu_load(struct rq *rq, unsigned long load)
{
	update_load_sub(&rq->load, load);
}

I
Ingo Molnar 已提交
1409
#if (defined(CONFIG_SMP) && defined(CONFIG_FAIR_GROUP_SCHED)) || defined(CONFIG_RT_GROUP_SCHED)
P
Peter Zijlstra 已提交
1410
typedef int (*tg_visitor)(struct task_group *, void *);
1411 1412 1413 1414 1415

/*
 * Iterate the full tree, calling @down when first entering a node and @up when
 * leaving it for the final time.
 */
P
Peter Zijlstra 已提交
1416
static int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
1417 1418
{
	struct task_group *parent, *child;
P
Peter Zijlstra 已提交
1419
	int ret;
1420 1421 1422 1423

	rcu_read_lock();
	parent = &root_task_group;
down:
P
Peter Zijlstra 已提交
1424 1425 1426
	ret = (*down)(parent, data);
	if (ret)
		goto out_unlock;
1427 1428 1429 1430 1431 1432 1433
	list_for_each_entry_rcu(child, &parent->children, siblings) {
		parent = child;
		goto down;

up:
		continue;
	}
P
Peter Zijlstra 已提交
1434 1435 1436
	ret = (*up)(parent, data);
	if (ret)
		goto out_unlock;
1437 1438 1439 1440 1441

	child = parent;
	parent = parent->parent;
	if (parent)
		goto up;
P
Peter Zijlstra 已提交
1442
out_unlock:
1443
	rcu_read_unlock();
P
Peter Zijlstra 已提交
1444 1445

	return ret;
1446 1447
}

P
Peter Zijlstra 已提交
1448 1449 1450
static int tg_nop(struct task_group *tg, void *data)
{
	return 0;
1451
}
P
Peter Zijlstra 已提交
1452 1453 1454 1455 1456 1457 1458 1459 1460 1461
#endif

#ifdef CONFIG_SMP
static unsigned long source_load(int cpu, int type);
static unsigned long target_load(int cpu, int type);
static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd);

static unsigned long cpu_avg_load_per_task(int cpu)
{
	struct rq *rq = cpu_rq(cpu);
1462
	unsigned long nr_running = ACCESS_ONCE(rq->nr_running);
P
Peter Zijlstra 已提交
1463

1464 1465
	if (nr_running)
		rq->avg_load_per_task = rq->load.weight / nr_running;
1466 1467
	else
		rq->avg_load_per_task = 0;
P
Peter Zijlstra 已提交
1468 1469 1470 1471 1472

	return rq->avg_load_per_task;
}

#ifdef CONFIG_FAIR_GROUP_SCHED
1473 1474 1475 1476 1477 1478 1479

static void __set_se_shares(struct sched_entity *se, unsigned long shares);

/*
 * Calculate and set the cpu's group shares.
 */
static void
1480 1481
update_group_shares_cpu(struct task_group *tg, int cpu,
			unsigned long sd_shares, unsigned long sd_rq_weight)
1482
{
1483 1484 1485 1486
	int boost = 0;
	unsigned long shares;
	unsigned long rq_weight;

1487
	if (!tg->se[cpu])
1488 1489
		return;

1490
	rq_weight = tg->cfs_rq[cpu]->load.weight;
1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501

	/*
	 * If there are currently no tasks on the cpu pretend there is one of
	 * average load so that when a new task gets to run here it will not
	 * get delayed by group starvation.
	 */
	if (!rq_weight) {
		boost = 1;
		rq_weight = NICE_0_LOAD;
	}

1502 1503 1504
	if (unlikely(rq_weight > sd_rq_weight))
		rq_weight = sd_rq_weight;

1505 1506 1507 1508 1509 1510
	/*
	 *           \Sum shares * rq_weight
	 * shares =  -----------------------
	 *               \Sum rq_weight
	 *
	 */
1511
	shares = (sd_shares * rq_weight) / (sd_rq_weight + 1);
1512
	shares = clamp_t(unsigned long, shares, MIN_SHARES, MAX_SHARES);
1513

1514 1515 1516 1517
	if (abs(shares - tg->se[cpu]->load.weight) >
			sysctl_sched_shares_thresh) {
		struct rq *rq = cpu_rq(cpu);
		unsigned long flags;
1518

1519 1520 1521 1522 1523 1524
		spin_lock_irqsave(&rq->lock, flags);
		/*
		 * record the actual number of shares, not the boosted amount.
		 */
		tg->cfs_rq[cpu]->shares = boost ? 0 : shares;
		tg->cfs_rq[cpu]->rq_weight = rq_weight;
1525

1526 1527 1528
		__set_se_shares(tg->se[cpu], shares);
		spin_unlock_irqrestore(&rq->lock, flags);
	}
1529
}
1530 1531

/*
1532 1533 1534
 * Re-compute the task group their per cpu shares over the given domain.
 * This needs to be done in a bottom-up fashion because the rq weight of a
 * parent group depends on the shares of its child groups.
1535
 */
P
Peter Zijlstra 已提交
1536
static int tg_shares_up(struct task_group *tg, void *data)
1537
{
1538 1539
	unsigned long rq_weight = 0;
	unsigned long shares = 0;
P
Peter Zijlstra 已提交
1540
	struct sched_domain *sd = data;
1541
	int i;
1542

1543 1544 1545
	for_each_cpu_mask(i, sd->span) {
		rq_weight += tg->cfs_rq[i]->load.weight;
		shares += tg->cfs_rq[i]->shares;
1546 1547
	}

1548 1549 1550 1551 1552
	if ((!shares && rq_weight) || shares > tg->shares)
		shares = tg->shares;

	if (!sd->parent || !(sd->parent->flags & SD_LOAD_BALANCE))
		shares = tg->shares;
1553

P
Peter Zijlstra 已提交
1554 1555 1556
	if (!rq_weight)
		rq_weight = cpus_weight(sd->span) * NICE_0_LOAD;

1557 1558
	for_each_cpu_mask(i, sd->span)
		update_group_shares_cpu(tg, i, shares, rq_weight);
P
Peter Zijlstra 已提交
1559 1560

	return 0;
1561 1562 1563
}

/*
1564 1565 1566
 * Compute the cpu's hierarchical load factor for each task group.
 * This needs to be done in a top-down fashion because the load of a child
 * group is a fraction of its parents load.
1567
 */
P
Peter Zijlstra 已提交
1568
static int tg_load_down(struct task_group *tg, void *data)
1569
{
1570
	unsigned long load;
P
Peter Zijlstra 已提交
1571
	long cpu = (long)data;
1572

1573 1574 1575 1576 1577 1578 1579
	if (!tg->parent) {
		load = cpu_rq(cpu)->load.weight;
	} else {
		load = tg->parent->cfs_rq[cpu]->h_load;
		load *= tg->cfs_rq[cpu]->shares;
		load /= tg->parent->cfs_rq[cpu]->load.weight + 1;
	}
1580

1581
	tg->cfs_rq[cpu]->h_load = load;
1582

P
Peter Zijlstra 已提交
1583
	return 0;
1584 1585
}

1586
static void update_shares(struct sched_domain *sd)
1587
{
P
Peter Zijlstra 已提交
1588 1589 1590 1591 1592
	u64 now = cpu_clock(raw_smp_processor_id());
	s64 elapsed = now - sd->last_update;

	if (elapsed >= (s64)(u64)sysctl_sched_shares_ratelimit) {
		sd->last_update = now;
P
Peter Zijlstra 已提交
1593
		walk_tg_tree(tg_nop, tg_shares_up, sd);
P
Peter Zijlstra 已提交
1594
	}
1595 1596
}

1597 1598 1599 1600 1601 1602 1603
static void update_shares_locked(struct rq *rq, struct sched_domain *sd)
{
	spin_unlock(&rq->lock);
	update_shares(sd);
	spin_lock(&rq->lock);
}

P
Peter Zijlstra 已提交
1604
static void update_h_load(long cpu)
1605
{
P
Peter Zijlstra 已提交
1606
	walk_tg_tree(tg_load_down, tg_nop, (void *)cpu);
1607 1608 1609 1610
}

#else

1611
static inline void update_shares(struct sched_domain *sd)
1612 1613 1614
{
}

1615 1616 1617 1618
static inline void update_shares_locked(struct rq *rq, struct sched_domain *sd)
{
}

1619 1620 1621 1622
#endif

#endif

V
Vegard Nossum 已提交
1623
#ifdef CONFIG_FAIR_GROUP_SCHED
I
Ingo Molnar 已提交
1624 1625
static void cfs_rq_set_shares(struct cfs_rq *cfs_rq, unsigned long shares)
{
V
Vegard Nossum 已提交
1626
#ifdef CONFIG_SMP
I
Ingo Molnar 已提交
1627 1628 1629
	cfs_rq->shares = shares;
#endif
}
V
Vegard Nossum 已提交
1630
#endif
1631

I
Ingo Molnar 已提交
1632 1633
#include "sched_stats.h"
#include "sched_idletask.c"
1634 1635
#include "sched_fair.c"
#include "sched_rt.c"
I
Ingo Molnar 已提交
1636 1637 1638 1639 1640
#ifdef CONFIG_SCHED_DEBUG
# include "sched_debug.c"
#endif

#define sched_class_highest (&rt_sched_class)
1641 1642
#define for_each_class(class) \
   for (class = sched_class_highest; class; class = class->next)
I
Ingo Molnar 已提交
1643

1644
static void inc_nr_running(struct rq *rq)
1645 1646 1647 1648
{
	rq->nr_running++;
}

1649
static void dec_nr_running(struct rq *rq)
1650 1651 1652 1653
{
	rq->nr_running--;
}

1654 1655 1656
static void set_load_weight(struct task_struct *p)
{
	if (task_has_rt_policy(p)) {
I
Ingo Molnar 已提交
1657 1658 1659 1660
		p->se.load.weight = prio_to_weight[0] * 2;
		p->se.load.inv_weight = prio_to_wmult[0] >> 1;
		return;
	}
1661

I
Ingo Molnar 已提交
1662 1663 1664 1665 1666 1667 1668 1669
	/*
	 * SCHED_IDLE tasks get minimal weight:
	 */
	if (p->policy == SCHED_IDLE) {
		p->se.load.weight = WEIGHT_IDLEPRIO;
		p->se.load.inv_weight = WMULT_IDLEPRIO;
		return;
	}
1670

I
Ingo Molnar 已提交
1671 1672
	p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
	p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
1673 1674
}

1675 1676 1677 1678 1679 1680
static void update_avg(u64 *avg, u64 sample)
{
	s64 diff = sample - *avg;
	*avg += diff >> 3;
}

1681
static void enqueue_task(struct rq *rq, struct task_struct *p, int wakeup)
1682
{
I
Ingo Molnar 已提交
1683
	sched_info_queued(p);
1684
	p->sched_class->enqueue_task(rq, p, wakeup);
I
Ingo Molnar 已提交
1685
	p->se.on_rq = 1;
1686 1687
}

1688
static void dequeue_task(struct rq *rq, struct task_struct *p, int sleep)
1689
{
1690 1691 1692 1693 1694 1695
	if (sleep && p->se.last_wakeup) {
		update_avg(&p->se.avg_overlap,
			   p->se.sum_exec_runtime - p->se.last_wakeup);
		p->se.last_wakeup = 0;
	}

1696
	sched_info_dequeued(p);
1697
	p->sched_class->dequeue_task(rq, p, sleep);
I
Ingo Molnar 已提交
1698
	p->se.on_rq = 0;
1699 1700
}

1701
/*
I
Ingo Molnar 已提交
1702
 * __normal_prio - return the priority that is based on the static prio
1703 1704 1705
 */
static inline int __normal_prio(struct task_struct *p)
{
I
Ingo Molnar 已提交
1706
	return p->static_prio;
1707 1708
}

1709 1710 1711 1712 1713 1714 1715
/*
 * Calculate the expected normal priority: i.e. priority
 * without taking RT-inheritance into account. Might be
 * boosted by interactivity modifiers. Changes upon fork,
 * setprio syscalls, and whenever the interactivity
 * estimator recalculates.
 */
1716
static inline int normal_prio(struct task_struct *p)
1717 1718 1719
{
	int prio;

1720
	if (task_has_rt_policy(p))
1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733
		prio = MAX_RT_PRIO-1 - p->rt_priority;
	else
		prio = __normal_prio(p);
	return prio;
}

/*
 * Calculate the current priority, i.e. the priority
 * taken into account by the scheduler. This value might
 * be boosted by RT tasks, or might be boosted by
 * interactivity modifiers. Will be RT if the task got
 * RT-boosted. If not then it returns p->normal_prio.
 */
1734
static int effective_prio(struct task_struct *p)
1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746
{
	p->normal_prio = normal_prio(p);
	/*
	 * If we are RT tasks or we were boosted to RT priority,
	 * keep the priority unchanged. Otherwise, update priority
	 * to the normal priority:
	 */
	if (!rt_prio(p->prio))
		return p->normal_prio;
	return p->prio;
}

L
Linus Torvalds 已提交
1747
/*
I
Ingo Molnar 已提交
1748
 * activate_task - move a task to the runqueue.
L
Linus Torvalds 已提交
1749
 */
I
Ingo Molnar 已提交
1750
static void activate_task(struct rq *rq, struct task_struct *p, int wakeup)
L
Linus Torvalds 已提交
1751
{
1752
	if (task_contributes_to_load(p))
I
Ingo Molnar 已提交
1753
		rq->nr_uninterruptible--;
L
Linus Torvalds 已提交
1754

1755
	enqueue_task(rq, p, wakeup);
1756
	inc_nr_running(rq);
L
Linus Torvalds 已提交
1757 1758 1759 1760 1761
}

/*
 * deactivate_task - remove a task from the runqueue.
 */
1762
static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep)
L
Linus Torvalds 已提交
1763
{
1764
	if (task_contributes_to_load(p))
I
Ingo Molnar 已提交
1765 1766
		rq->nr_uninterruptible++;

1767
	dequeue_task(rq, p, sleep);
1768
	dec_nr_running(rq);
L
Linus Torvalds 已提交
1769 1770 1771 1772 1773 1774
}

/**
 * task_curr - is this task currently executing on a CPU?
 * @p: the task in question.
 */
1775
inline int task_curr(const struct task_struct *p)
L
Linus Torvalds 已提交
1776 1777 1778 1779
{
	return cpu_curr(task_cpu(p)) == p;
}

I
Ingo Molnar 已提交
1780 1781
static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
{
P
Peter Zijlstra 已提交
1782
	set_task_rq(p, cpu);
I
Ingo Molnar 已提交
1783
#ifdef CONFIG_SMP
1784 1785 1786 1787 1788 1789
	/*
	 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
	 * successfuly executed on another CPU. We must ensure that updates of
	 * per-task data have been completed by this moment.
	 */
	smp_wmb();
I
Ingo Molnar 已提交
1790 1791
	task_thread_info(p)->cpu = cpu;
#endif
1792 1793
}

1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805
static inline void check_class_changed(struct rq *rq, struct task_struct *p,
				       const struct sched_class *prev_class,
				       int oldprio, int running)
{
	if (prev_class != p->sched_class) {
		if (prev_class->switched_from)
			prev_class->switched_from(rq, p, running);
		p->sched_class->switched_to(rq, p, running);
	} else
		p->sched_class->prio_changed(rq, p, oldprio, running);
}

L
Linus Torvalds 已提交
1806
#ifdef CONFIG_SMP
I
Ingo Molnar 已提交
1807

1808 1809 1810 1811 1812 1813
/* Used instead of source_load when we know the type == 0 */
static unsigned long weighted_cpuload(const int cpu)
{
	return cpu_rq(cpu)->load.weight;
}

1814 1815 1816
/*
 * Is this task likely cache-hot:
 */
1817
static int
1818 1819 1820 1821
task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
{
	s64 delta;

1822 1823 1824
	/*
	 * Buddy candidates are cache hot:
	 */
P
Peter Zijlstra 已提交
1825 1826 1827
	if (sched_feat(CACHE_HOT_BUDDY) &&
			(&p->se == cfs_rq_of(&p->se)->next ||
			 &p->se == cfs_rq_of(&p->se)->last))
1828 1829
		return 1;

1830 1831 1832
	if (p->sched_class != &fair_sched_class)
		return 0;

1833 1834 1835 1836 1837
	if (sysctl_sched_migration_cost == -1)
		return 1;
	if (sysctl_sched_migration_cost == 0)
		return 0;

1838 1839 1840 1841 1842 1843
	delta = now - p->se.exec_start;

	return delta < (s64)sysctl_sched_migration_cost;
}


I
Ingo Molnar 已提交
1844
void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
I
Ingo Molnar 已提交
1845
{
I
Ingo Molnar 已提交
1846 1847
	int old_cpu = task_cpu(p);
	struct rq *old_rq = cpu_rq(old_cpu), *new_rq = cpu_rq(new_cpu);
1848 1849
	struct cfs_rq *old_cfsrq = task_cfs_rq(p),
		      *new_cfsrq = cpu_cfs_rq(old_cfsrq, new_cpu);
1850
	u64 clock_offset;
I
Ingo Molnar 已提交
1851 1852

	clock_offset = old_rq->clock - new_rq->clock;
I
Ingo Molnar 已提交
1853

1854 1855
	trace_sched_migrate_task(p, task_cpu(p), new_cpu);

I
Ingo Molnar 已提交
1856 1857 1858
#ifdef CONFIG_SCHEDSTATS
	if (p->se.wait_start)
		p->se.wait_start -= clock_offset;
I
Ingo Molnar 已提交
1859 1860 1861 1862
	if (p->se.sleep_start)
		p->se.sleep_start -= clock_offset;
	if (p->se.block_start)
		p->se.block_start -= clock_offset;
1863 1864 1865 1866 1867
	if (old_cpu != new_cpu) {
		schedstat_inc(p, se.nr_migrations);
		if (task_hot(p, old_rq->clock, NULL))
			schedstat_inc(p, se.nr_forced2_migrations);
	}
I
Ingo Molnar 已提交
1868
#endif
1869 1870
	p->se.vruntime -= old_cfsrq->min_vruntime -
					 new_cfsrq->min_vruntime;
I
Ingo Molnar 已提交
1871 1872

	__set_task_cpu(p, new_cpu);
I
Ingo Molnar 已提交
1873 1874
}

1875
struct migration_req {
L
Linus Torvalds 已提交
1876 1877
	struct list_head list;

1878
	struct task_struct *task;
L
Linus Torvalds 已提交
1879 1880 1881
	int dest_cpu;

	struct completion done;
1882
};
L
Linus Torvalds 已提交
1883 1884 1885 1886 1887

/*
 * The task's runqueue lock must be held.
 * Returns true if you have to wait for migration thread.
 */
1888
static int
1889
migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
L
Linus Torvalds 已提交
1890
{
1891
	struct rq *rq = task_rq(p);
L
Linus Torvalds 已提交
1892 1893 1894 1895 1896

	/*
	 * If the task is not on a runqueue (and not running), then
	 * it is sufficient to simply update the task's cpu field.
	 */
I
Ingo Molnar 已提交
1897
	if (!p->se.on_rq && !task_running(rq, p)) {
L
Linus Torvalds 已提交
1898 1899 1900 1901 1902 1903 1904 1905
		set_task_cpu(p, dest_cpu);
		return 0;
	}

	init_completion(&req->done);
	req->task = p;
	req->dest_cpu = dest_cpu;
	list_add(&req->list, &rq->migration_queue);
1906

L
Linus Torvalds 已提交
1907 1908 1909 1910 1911 1912
	return 1;
}

/*
 * wait_task_inactive - wait for a thread to unschedule.
 *
R
Roland McGrath 已提交
1913 1914 1915 1916 1917 1918 1919
 * If @match_state is nonzero, it's the @p->state value just checked and
 * not expected to change.  If it changes, i.e. @p might have woken up,
 * then return zero.  When we succeed in waiting for @p to be off its CPU,
 * we return a positive number (its total switch count).  If a second call
 * a short while later returns the same number, the caller can be sure that
 * @p has remained unscheduled the whole time.
 *
L
Linus Torvalds 已提交
1920 1921 1922 1923 1924 1925
 * The caller must ensure that the task *will* unschedule sometime soon,
 * else this function might spin for a *long* time. This function can't
 * be called with interrupts off, or it may introduce deadlock with
 * smp_call_function() if an IPI is sent by the same process we are
 * waiting to become inactive.
 */
R
Roland McGrath 已提交
1926
unsigned long wait_task_inactive(struct task_struct *p, long match_state)
L
Linus Torvalds 已提交
1927 1928
{
	unsigned long flags;
I
Ingo Molnar 已提交
1929
	int running, on_rq;
R
Roland McGrath 已提交
1930
	unsigned long ncsw;
1931
	struct rq *rq;
L
Linus Torvalds 已提交
1932

1933 1934 1935 1936 1937 1938 1939 1940
	for (;;) {
		/*
		 * We do the initial early heuristics without holding
		 * any task-queue locks at all. We'll only try to get
		 * the runqueue lock when things look like they will
		 * work out!
		 */
		rq = task_rq(p);
1941

1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952
		/*
		 * If the task is actively running on another CPU
		 * still, just relax and busy-wait without holding
		 * any locks.
		 *
		 * NOTE! Since we don't hold any locks, it's not
		 * even sure that "rq" stays as the right runqueue!
		 * But we don't care, since "task_running()" will
		 * return false if the runqueue has changed and p
		 * is actually now running somewhere else!
		 */
R
Roland McGrath 已提交
1953 1954 1955
		while (task_running(rq, p)) {
			if (match_state && unlikely(p->state != match_state))
				return 0;
1956
			cpu_relax();
R
Roland McGrath 已提交
1957
		}
1958

1959 1960 1961 1962 1963 1964
		/*
		 * Ok, time to look more closely! We need the rq
		 * lock now, to be *sure*. If we're wrong, we'll
		 * just go back and repeat.
		 */
		rq = task_rq_lock(p, &flags);
1965
		trace_sched_wait_task(rq, p);
1966 1967
		running = task_running(rq, p);
		on_rq = p->se.on_rq;
R
Roland McGrath 已提交
1968
		ncsw = 0;
1969
		if (!match_state || p->state == match_state)
1970
			ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
1971
		task_rq_unlock(rq, &flags);
1972

R
Roland McGrath 已提交
1973 1974 1975 1976 1977 1978
		/*
		 * If it changed from the expected state, bail out now.
		 */
		if (unlikely(!ncsw))
			break;

1979 1980 1981 1982 1983 1984 1985 1986 1987 1988
		/*
		 * Was it really running after all now that we
		 * checked with the proper locks actually held?
		 *
		 * Oops. Go back and try again..
		 */
		if (unlikely(running)) {
			cpu_relax();
			continue;
		}
1989

1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002
		/*
		 * It's not enough that it's not actively running,
		 * it must be off the runqueue _entirely_, and not
		 * preempted!
		 *
		 * So if it wa still runnable (but just not actively
		 * running right now), it's preempted, and we should
		 * yield - it could be a while.
		 */
		if (unlikely(on_rq)) {
			schedule_timeout_uninterruptible(1);
			continue;
		}
2003

2004 2005 2006 2007 2008 2009 2010
		/*
		 * Ahh, all good. It wasn't running, and it wasn't
		 * runnable, which means that it will never become
		 * running in the future either. We're all done!
		 */
		break;
	}
R
Roland McGrath 已提交
2011 2012

	return ncsw;
L
Linus Torvalds 已提交
2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027
}

/***
 * kick_process - kick a running thread to enter/exit the kernel
 * @p: the to-be-kicked thread
 *
 * Cause a process which is running on another CPU to enter
 * kernel-mode, without any delay. (to get signals handled.)
 *
 * NOTE: this function doesnt have to take the runqueue lock,
 * because all it wants to ensure is that the remote task enters
 * the kernel. If the IPI races and the task has been migrated
 * to another CPU then no harm is done and the purpose has been
 * achieved as well.
 */
2028
void kick_process(struct task_struct *p)
L
Linus Torvalds 已提交
2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039
{
	int cpu;

	preempt_disable();
	cpu = task_cpu(p);
	if ((cpu != smp_processor_id()) && task_curr(p))
		smp_send_reschedule(cpu);
	preempt_enable();
}

/*
2040 2041
 * Return a low guess at the load of a migration-source cpu weighted
 * according to the scheduling class and "nice" value.
L
Linus Torvalds 已提交
2042 2043 2044 2045
 *
 * We want to under-estimate the load of migration sources, to
 * balance conservatively.
 */
A
Alexey Dobriyan 已提交
2046
static unsigned long source_load(int cpu, int type)
L
Linus Torvalds 已提交
2047
{
2048
	struct rq *rq = cpu_rq(cpu);
I
Ingo Molnar 已提交
2049
	unsigned long total = weighted_cpuload(cpu);
2050

2051
	if (type == 0 || !sched_feat(LB_BIAS))
I
Ingo Molnar 已提交
2052
		return total;
2053

I
Ingo Molnar 已提交
2054
	return min(rq->cpu_load[type-1], total);
L
Linus Torvalds 已提交
2055 2056 2057
}

/*
2058 2059
 * Return a high guess at the load of a migration-target cpu weighted
 * according to the scheduling class and "nice" value.
L
Linus Torvalds 已提交
2060
 */
A
Alexey Dobriyan 已提交
2061
static unsigned long target_load(int cpu, int type)
L
Linus Torvalds 已提交
2062
{
2063
	struct rq *rq = cpu_rq(cpu);
I
Ingo Molnar 已提交
2064
	unsigned long total = weighted_cpuload(cpu);
2065

2066
	if (type == 0 || !sched_feat(LB_BIAS))
I
Ingo Molnar 已提交
2067
		return total;
2068

I
Ingo Molnar 已提交
2069
	return max(rq->cpu_load[type-1], total);
2070 2071
}

N
Nick Piggin 已提交
2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088
/*
 * find_idlest_group finds and returns the least busy CPU group within the
 * domain.
 */
static struct sched_group *
find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
{
	struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups;
	unsigned long min_load = ULONG_MAX, this_load = 0;
	int load_idx = sd->forkexec_idx;
	int imbalance = 100 + (sd->imbalance_pct-100)/2;

	do {
		unsigned long load, avg_load;
		int local_group;
		int i;

2089 2090
		/* Skip over this group if it has no CPUs allowed */
		if (!cpus_intersects(group->cpumask, p->cpus_allowed))
2091
			continue;
2092

N
Nick Piggin 已提交
2093 2094 2095 2096 2097
		local_group = cpu_isset(this_cpu, group->cpumask);

		/* Tally up the load of all CPUs in the group */
		avg_load = 0;

2098
		for_each_cpu_mask_nr(i, group->cpumask) {
N
Nick Piggin 已提交
2099 2100 2101 2102 2103 2104 2105 2106 2107 2108
			/* Bias balancing toward cpus of our domain */
			if (local_group)
				load = source_load(i, load_idx);
			else
				load = target_load(i, load_idx);

			avg_load += load;
		}

		/* Adjust by relative CPU power of the group */
2109 2110
		avg_load = sg_div_cpu_power(group,
				avg_load * SCHED_LOAD_SCALE);
N
Nick Piggin 已提交
2111 2112 2113 2114 2115 2116 2117 2118

		if (local_group) {
			this_load = avg_load;
			this = group;
		} else if (avg_load < min_load) {
			min_load = avg_load;
			idlest = group;
		}
2119
	} while (group = group->next, group != sd->groups);
N
Nick Piggin 已提交
2120 2121 2122 2123 2124 2125 2126

	if (!idlest || 100*this_load < imbalance*min_load)
		return NULL;
	return idlest;
}

/*
2127
 * find_idlest_cpu - find the idlest cpu among the cpus in group.
N
Nick Piggin 已提交
2128
 */
I
Ingo Molnar 已提交
2129
static int
2130 2131
find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu,
		cpumask_t *tmp)
N
Nick Piggin 已提交
2132 2133 2134 2135 2136
{
	unsigned long load, min_load = ULONG_MAX;
	int idlest = -1;
	int i;

2137
	/* Traverse only the allowed CPUs */
2138
	cpus_and(*tmp, group->cpumask, p->cpus_allowed);
2139

2140
	for_each_cpu_mask_nr(i, *tmp) {
2141
		load = weighted_cpuload(i);
N
Nick Piggin 已提交
2142 2143 2144 2145 2146 2147 2148 2149 2150 2151

		if (load < min_load || (load == min_load && i == this_cpu)) {
			min_load = load;
			idlest = i;
		}
	}

	return idlest;
}

N
Nick Piggin 已提交
2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166
/*
 * sched_balance_self: balance the current task (running on cpu) in domains
 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
 * SD_BALANCE_EXEC.
 *
 * Balance, ie. select the least loaded group.
 *
 * Returns the target CPU number, or the same CPU if no balancing is needed.
 *
 * preempt must be disabled.
 */
static int sched_balance_self(int cpu, int flag)
{
	struct task_struct *t = current;
	struct sched_domain *tmp, *sd = NULL;
N
Nick Piggin 已提交
2167

2168
	for_each_domain(cpu, tmp) {
I
Ingo Molnar 已提交
2169 2170 2171
		/*
		 * If power savings logic is enabled for a domain, stop there.
		 */
2172 2173
		if (tmp->flags & SD_POWERSAVINGS_BALANCE)
			break;
N
Nick Piggin 已提交
2174 2175
		if (tmp->flags & flag)
			sd = tmp;
2176
	}
N
Nick Piggin 已提交
2177

2178 2179 2180
	if (sd)
		update_shares(sd);

N
Nick Piggin 已提交
2181
	while (sd) {
2182
		cpumask_t span, tmpmask;
N
Nick Piggin 已提交
2183
		struct sched_group *group;
2184 2185 2186 2187 2188 2189
		int new_cpu, weight;

		if (!(sd->flags & flag)) {
			sd = sd->child;
			continue;
		}
N
Nick Piggin 已提交
2190 2191 2192

		span = sd->span;
		group = find_idlest_group(sd, t, cpu);
2193 2194 2195 2196
		if (!group) {
			sd = sd->child;
			continue;
		}
N
Nick Piggin 已提交
2197

2198
		new_cpu = find_idlest_cpu(group, t, cpu, &tmpmask);
2199 2200 2201 2202 2203
		if (new_cpu == -1 || new_cpu == cpu) {
			/* Now try balancing at a lower domain level of cpu */
			sd = sd->child;
			continue;
		}
N
Nick Piggin 已提交
2204

2205
		/* Now try balancing at a lower domain level of new_cpu */
N
Nick Piggin 已提交
2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221
		cpu = new_cpu;
		sd = NULL;
		weight = cpus_weight(span);
		for_each_domain(cpu, tmp) {
			if (weight <= cpus_weight(tmp->span))
				break;
			if (tmp->flags & flag)
				sd = tmp;
		}
		/* while loop will break here if sd == NULL */
	}

	return cpu;
}

#endif /* CONFIG_SMP */
L
Linus Torvalds 已提交
2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236

/***
 * try_to_wake_up - wake up a thread
 * @p: the to-be-woken-up thread
 * @state: the mask of task states that can be woken
 * @sync: do a synchronous wakeup?
 *
 * Put it on the run-queue if it's not already there. The "current"
 * thread is always on the run-queue (except when the actual
 * re-schedule is in progress), and as such you're allowed to do
 * the simpler "current->state = TASK_RUNNING" to mark yourself
 * runnable without the overhead of this.
 *
 * returns failure only if the task is already active.
 */
2237
static int try_to_wake_up(struct task_struct *p, unsigned int state, int sync)
L
Linus Torvalds 已提交
2238
{
2239
	int cpu, orig_cpu, this_cpu, success = 0;
L
Linus Torvalds 已提交
2240 2241
	unsigned long flags;
	long old_state;
2242
	struct rq *rq;
L
Linus Torvalds 已提交
2243

2244 2245 2246
	if (!sched_feat(SYNC_WAKEUPS))
		sync = 0;

P
Peter Zijlstra 已提交
2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262
#ifdef CONFIG_SMP
	if (sched_feat(LB_WAKEUP_UPDATE)) {
		struct sched_domain *sd;

		this_cpu = raw_smp_processor_id();
		cpu = task_cpu(p);

		for_each_domain(this_cpu, sd) {
			if (cpu_isset(cpu, sd->span)) {
				update_shares(sd);
				break;
			}
		}
	}
#endif

2263
	smp_wmb();
L
Linus Torvalds 已提交
2264 2265 2266 2267 2268
	rq = task_rq_lock(p, &flags);
	old_state = p->state;
	if (!(old_state & state))
		goto out;

I
Ingo Molnar 已提交
2269
	if (p->se.on_rq)
L
Linus Torvalds 已提交
2270 2271 2272
		goto out_running;

	cpu = task_cpu(p);
2273
	orig_cpu = cpu;
L
Linus Torvalds 已提交
2274 2275 2276 2277 2278 2279
	this_cpu = smp_processor_id();

#ifdef CONFIG_SMP
	if (unlikely(task_running(rq, p)))
		goto out_activate;

2280 2281 2282
	cpu = p->sched_class->select_task_rq(p, sync);
	if (cpu != orig_cpu) {
		set_task_cpu(p, cpu);
L
Linus Torvalds 已提交
2283 2284 2285 2286 2287 2288
		task_rq_unlock(rq, &flags);
		/* might preempt at this point */
		rq = task_rq_lock(p, &flags);
		old_state = p->state;
		if (!(old_state & state))
			goto out;
I
Ingo Molnar 已提交
2289
		if (p->se.on_rq)
L
Linus Torvalds 已提交
2290 2291 2292 2293 2294 2295
			goto out_running;

		this_cpu = smp_processor_id();
		cpu = task_cpu(p);
	}

2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308
#ifdef CONFIG_SCHEDSTATS
	schedstat_inc(rq, ttwu_count);
	if (cpu == this_cpu)
		schedstat_inc(rq, ttwu_local);
	else {
		struct sched_domain *sd;
		for_each_domain(this_cpu, sd) {
			if (cpu_isset(cpu, sd->span)) {
				schedstat_inc(sd, ttwu_wake_remote);
				break;
			}
		}
	}
2309
#endif /* CONFIG_SCHEDSTATS */
2310

L
Linus Torvalds 已提交
2311 2312
out_activate:
#endif /* CONFIG_SMP */
2313 2314 2315 2316 2317 2318 2319 2320 2321
	schedstat_inc(p, se.nr_wakeups);
	if (sync)
		schedstat_inc(p, se.nr_wakeups_sync);
	if (orig_cpu != cpu)
		schedstat_inc(p, se.nr_wakeups_migrate);
	if (cpu == this_cpu)
		schedstat_inc(p, se.nr_wakeups_local);
	else
		schedstat_inc(p, se.nr_wakeups_remote);
I
Ingo Molnar 已提交
2322
	update_rq_clock(rq);
I
Ingo Molnar 已提交
2323
	activate_task(rq, p, 1);
L
Linus Torvalds 已提交
2324 2325 2326
	success = 1;

out_running:
2327
	trace_sched_wakeup(rq, p);
2328
	check_preempt_curr(rq, p, sync);
I
Ingo Molnar 已提交
2329

L
Linus Torvalds 已提交
2330
	p->state = TASK_RUNNING;
2331 2332 2333 2334
#ifdef CONFIG_SMP
	if (p->sched_class->task_wake_up)
		p->sched_class->task_wake_up(rq, p);
#endif
L
Linus Torvalds 已提交
2335
out:
2336 2337
	current->se.last_wakeup = current->se.sum_exec_runtime;

L
Linus Torvalds 已提交
2338 2339 2340 2341 2342
	task_rq_unlock(rq, &flags);

	return success;
}

2343
int wake_up_process(struct task_struct *p)
L
Linus Torvalds 已提交
2344
{
2345
	return try_to_wake_up(p, TASK_ALL, 0);
L
Linus Torvalds 已提交
2346 2347 2348
}
EXPORT_SYMBOL(wake_up_process);

2349
int wake_up_state(struct task_struct *p, unsigned int state)
L
Linus Torvalds 已提交
2350 2351 2352 2353 2354 2355 2356
{
	return try_to_wake_up(p, state, 0);
}

/*
 * Perform scheduler related setup for a newly forked process p.
 * p is forked by current.
I
Ingo Molnar 已提交
2357 2358 2359 2360 2361 2362 2363
 *
 * __sched_fork() is basic setup used by init_idle() too:
 */
static void __sched_fork(struct task_struct *p)
{
	p->se.exec_start		= 0;
	p->se.sum_exec_runtime		= 0;
2364
	p->se.prev_sum_exec_runtime	= 0;
I
Ingo Molnar 已提交
2365 2366
	p->se.last_wakeup		= 0;
	p->se.avg_overlap		= 0;
I
Ingo Molnar 已提交
2367 2368 2369

#ifdef CONFIG_SCHEDSTATS
	p->se.wait_start		= 0;
I
Ingo Molnar 已提交
2370 2371 2372 2373 2374 2375
	p->se.sum_sleep_runtime		= 0;
	p->se.sleep_start		= 0;
	p->se.block_start		= 0;
	p->se.sleep_max			= 0;
	p->se.block_max			= 0;
	p->se.exec_max			= 0;
I
Ingo Molnar 已提交
2376
	p->se.slice_max			= 0;
I
Ingo Molnar 已提交
2377
	p->se.wait_max			= 0;
I
Ingo Molnar 已提交
2378
#endif
N
Nick Piggin 已提交
2379

P
Peter Zijlstra 已提交
2380
	INIT_LIST_HEAD(&p->rt.run_list);
I
Ingo Molnar 已提交
2381
	p->se.on_rq = 0;
2382
	INIT_LIST_HEAD(&p->se.group_node);
N
Nick Piggin 已提交
2383

2384 2385 2386 2387
#ifdef CONFIG_PREEMPT_NOTIFIERS
	INIT_HLIST_HEAD(&p->preempt_notifiers);
#endif

L
Linus Torvalds 已提交
2388 2389 2390 2391 2392 2393 2394
	/*
	 * We mark the process as running here, but have not actually
	 * inserted it onto the runqueue yet. This guarantees that
	 * nobody will actually run it, and a signal or other external
	 * event cannot wake it up and insert it on the runqueue either.
	 */
	p->state = TASK_RUNNING;
I
Ingo Molnar 已提交
2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408
}

/*
 * fork()/clone()-time setup:
 */
void sched_fork(struct task_struct *p, int clone_flags)
{
	int cpu = get_cpu();

	__sched_fork(p);

#ifdef CONFIG_SMP
	cpu = sched_balance_self(cpu, SD_BALANCE_FORK);
#endif
I
Ingo Molnar 已提交
2409
	set_task_cpu(p, cpu);
2410 2411 2412 2413 2414

	/*
	 * Make sure we do not leak PI boosting priority to the child:
	 */
	p->prio = current->normal_prio;
H
Hiroshi Shimamoto 已提交
2415 2416
	if (!rt_prio(p->prio))
		p->sched_class = &fair_sched_class;
2417

2418
#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
I
Ingo Molnar 已提交
2419
	if (likely(sched_info_on()))
2420
		memset(&p->sched_info, 0, sizeof(p->sched_info));
L
Linus Torvalds 已提交
2421
#endif
2422
#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
2423 2424
	p->oncpu = 0;
#endif
L
Linus Torvalds 已提交
2425
#ifdef CONFIG_PREEMPT
2426
	/* Want to start with kernel preemption disabled. */
A
Al Viro 已提交
2427
	task_thread_info(p)->preempt_count = 1;
L
Linus Torvalds 已提交
2428
#endif
N
Nick Piggin 已提交
2429
	put_cpu();
L
Linus Torvalds 已提交
2430 2431 2432 2433 2434 2435 2436 2437 2438
}

/*
 * wake_up_new_task - wake up a newly created task for the first time.
 *
 * This function will do some initial scheduler statistics housekeeping
 * that must be done for every newly created context, then puts the task
 * on the runqueue and wakes it.
 */
2439
void wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
L
Linus Torvalds 已提交
2440 2441
{
	unsigned long flags;
I
Ingo Molnar 已提交
2442
	struct rq *rq;
L
Linus Torvalds 已提交
2443 2444

	rq = task_rq_lock(p, &flags);
N
Nick Piggin 已提交
2445
	BUG_ON(p->state != TASK_RUNNING);
I
Ingo Molnar 已提交
2446
	update_rq_clock(rq);
L
Linus Torvalds 已提交
2447 2448 2449

	p->prio = effective_prio(p);

2450
	if (!p->sched_class->task_new || !current->se.on_rq) {
I
Ingo Molnar 已提交
2451
		activate_task(rq, p, 0);
L
Linus Torvalds 已提交
2452 2453
	} else {
		/*
I
Ingo Molnar 已提交
2454 2455
		 * Let the scheduling class do new task startup
		 * management (if any):
L
Linus Torvalds 已提交
2456
		 */
2457
		p->sched_class->task_new(rq, p);
2458
		inc_nr_running(rq);
L
Linus Torvalds 已提交
2459
	}
2460
	trace_sched_wakeup_new(rq, p, 1);
2461
	check_preempt_curr(rq, p, 0);
2462 2463 2464 2465
#ifdef CONFIG_SMP
	if (p->sched_class->task_wake_up)
		p->sched_class->task_wake_up(rq, p);
#endif
I
Ingo Molnar 已提交
2466
	task_rq_unlock(rq, &flags);
L
Linus Torvalds 已提交
2467 2468
}

2469 2470 2471
#ifdef CONFIG_PREEMPT_NOTIFIERS

/**
R
Randy Dunlap 已提交
2472 2473
 * preempt_notifier_register - tell me when current is being being preempted & rescheduled
 * @notifier: notifier struct to register
2474 2475 2476 2477 2478 2479 2480 2481 2482
 */
void preempt_notifier_register(struct preempt_notifier *notifier)
{
	hlist_add_head(&notifier->link, &current->preempt_notifiers);
}
EXPORT_SYMBOL_GPL(preempt_notifier_register);

/**
 * preempt_notifier_unregister - no longer interested in preemption notifications
R
Randy Dunlap 已提交
2483
 * @notifier: notifier struct to unregister
2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512
 *
 * This is safe to call from within a preemption notifier.
 */
void preempt_notifier_unregister(struct preempt_notifier *notifier)
{
	hlist_del(&notifier->link);
}
EXPORT_SYMBOL_GPL(preempt_notifier_unregister);

static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
{
	struct preempt_notifier *notifier;
	struct hlist_node *node;

	hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
		notifier->ops->sched_in(notifier, raw_smp_processor_id());
}

static void
fire_sched_out_preempt_notifiers(struct task_struct *curr,
				 struct task_struct *next)
{
	struct preempt_notifier *notifier;
	struct hlist_node *node;

	hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
		notifier->ops->sched_out(notifier, next);
}

2513
#else /* !CONFIG_PREEMPT_NOTIFIERS */
2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524

static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
{
}

static void
fire_sched_out_preempt_notifiers(struct task_struct *curr,
				 struct task_struct *next)
{
}

2525
#endif /* CONFIG_PREEMPT_NOTIFIERS */
2526

2527 2528 2529
/**
 * prepare_task_switch - prepare to switch tasks
 * @rq: the runqueue preparing to switch
R
Randy Dunlap 已提交
2530
 * @prev: the current task that is being switched out
2531 2532 2533 2534 2535 2536 2537 2538 2539
 * @next: the task we are going to switch to.
 *
 * This is called with the rq lock held and interrupts off. It must
 * be paired with a subsequent finish_task_switch after the context
 * switch.
 *
 * prepare_task_switch sets up locking and calls architecture specific
 * hooks.
 */
2540 2541 2542
static inline void
prepare_task_switch(struct rq *rq, struct task_struct *prev,
		    struct task_struct *next)
2543
{
2544
	fire_sched_out_preempt_notifiers(prev, next);
2545 2546 2547 2548
	prepare_lock_switch(rq, next);
	prepare_arch_switch(next);
}

L
Linus Torvalds 已提交
2549 2550
/**
 * finish_task_switch - clean up after a task-switch
2551
 * @rq: runqueue associated with task-switch
L
Linus Torvalds 已提交
2552 2553
 * @prev: the thread we just switched away from.
 *
2554 2555 2556 2557
 * finish_task_switch must be called after the context switch, paired
 * with a prepare_task_switch call before the context switch.
 * finish_task_switch will reconcile locking set up by prepare_task_switch,
 * and do any other architecture-specific cleanup actions.
L
Linus Torvalds 已提交
2558 2559
 *
 * Note that we may have delayed dropping an mm in context_switch(). If
I
Ingo Molnar 已提交
2560
 * so, we finish that here outside of the runqueue lock. (Doing it
L
Linus Torvalds 已提交
2561 2562 2563
 * with the lock held can cause deadlocks; see schedule() for
 * details.)
 */
A
Alexey Dobriyan 已提交
2564
static void finish_task_switch(struct rq *rq, struct task_struct *prev)
L
Linus Torvalds 已提交
2565 2566 2567
	__releases(rq->lock)
{
	struct mm_struct *mm = rq->prev_mm;
O
Oleg Nesterov 已提交
2568
	long prev_state;
L
Linus Torvalds 已提交
2569 2570 2571 2572 2573

	rq->prev_mm = NULL;

	/*
	 * A task struct has one reference for the use as "current".
2574
	 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
O
Oleg Nesterov 已提交
2575 2576
	 * schedule one last time. The schedule call will never return, and
	 * the scheduled task must drop that reference.
2577
	 * The test for TASK_DEAD must occur while the runqueue locks are
L
Linus Torvalds 已提交
2578 2579 2580 2581 2582
	 * still held, otherwise prev could be scheduled on another cpu, die
	 * there before we look at prev->state, and then the reference would
	 * be dropped twice.
	 *		Manfred Spraul <manfred@colorfullife.com>
	 */
O
Oleg Nesterov 已提交
2583
	prev_state = prev->state;
2584 2585
	finish_arch_switch(prev);
	finish_lock_switch(rq, prev);
2586 2587 2588 2589
#ifdef CONFIG_SMP
	if (current->sched_class->post_schedule)
		current->sched_class->post_schedule(rq);
#endif
S
Steven Rostedt 已提交
2590

2591
	fire_sched_in_preempt_notifiers(current);
L
Linus Torvalds 已提交
2592 2593
	if (mm)
		mmdrop(mm);
2594
	if (unlikely(prev_state == TASK_DEAD)) {
2595 2596 2597
		/*
		 * Remove function-return probe instances associated with this
		 * task and put them back on the free list.
I
Ingo Molnar 已提交
2598
		 */
2599
		kprobe_flush_task(prev);
L
Linus Torvalds 已提交
2600
		put_task_struct(prev);
2601
	}
L
Linus Torvalds 已提交
2602 2603 2604 2605 2606 2607
}

/**
 * schedule_tail - first thing a freshly forked thread must call.
 * @prev: the thread we just switched away from.
 */
2608
asmlinkage void schedule_tail(struct task_struct *prev)
L
Linus Torvalds 已提交
2609 2610
	__releases(rq->lock)
{
2611 2612
	struct rq *rq = this_rq();

2613 2614 2615 2616 2617
	finish_task_switch(rq, prev);
#ifdef __ARCH_WANT_UNLOCKED_CTXSW
	/* In this case, finish_task_switch does not reenable preemption */
	preempt_enable();
#endif
L
Linus Torvalds 已提交
2618
	if (current->set_child_tid)
2619
		put_user(task_pid_vnr(current), current->set_child_tid);
L
Linus Torvalds 已提交
2620 2621 2622 2623 2624 2625
}

/*
 * context_switch - switch to the new MM and the new
 * thread's register state.
 */
I
Ingo Molnar 已提交
2626
static inline void
2627
context_switch(struct rq *rq, struct task_struct *prev,
2628
	       struct task_struct *next)
L
Linus Torvalds 已提交
2629
{
I
Ingo Molnar 已提交
2630
	struct mm_struct *mm, *oldmm;
L
Linus Torvalds 已提交
2631

2632
	prepare_task_switch(rq, prev, next);
2633
	trace_sched_switch(rq, prev, next);
I
Ingo Molnar 已提交
2634 2635
	mm = next->mm;
	oldmm = prev->active_mm;
2636 2637 2638 2639 2640 2641 2642
	/*
	 * For paravirt, this is coupled with an exit in switch_to to
	 * combine the page table reload and the switch backend into
	 * one hypercall.
	 */
	arch_enter_lazy_cpu_mode();

I
Ingo Molnar 已提交
2643
	if (unlikely(!mm)) {
L
Linus Torvalds 已提交
2644 2645 2646 2647 2648 2649
		next->active_mm = oldmm;
		atomic_inc(&oldmm->mm_count);
		enter_lazy_tlb(oldmm, next);
	} else
		switch_mm(oldmm, mm, next);

I
Ingo Molnar 已提交
2650
	if (unlikely(!prev->mm)) {
L
Linus Torvalds 已提交
2651 2652 2653
		prev->active_mm = NULL;
		rq->prev_mm = oldmm;
	}
2654 2655 2656 2657 2658 2659 2660
	/*
	 * Since the runqueue lock will be released by the next
	 * task (which is an invalid locking op but in the case
	 * of the scheduler it's an obvious special-case), so we
	 * do an early lockdep release here:
	 */
#ifndef __ARCH_WANT_UNLOCKED_CTXSW
2661
	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
2662
#endif
L
Linus Torvalds 已提交
2663 2664 2665 2666

	/* Here we just switch the register state and the stack. */
	switch_to(prev, next, prev);

I
Ingo Molnar 已提交
2667 2668 2669 2670 2671 2672 2673
	barrier();
	/*
	 * this_rq must be evaluated again because prev may have moved
	 * CPUs since it called schedule(), thus the 'rq' on its stack
	 * frame will be invalid.
	 */
	finish_task_switch(this_rq(), prev);
L
Linus Torvalds 已提交
2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696
}

/*
 * nr_running, nr_uninterruptible and nr_context_switches:
 *
 * externally visible scheduler statistics: current number of runnable
 * threads, current number of uninterruptible-sleeping threads, total
 * number of context switches performed since bootup.
 */
unsigned long nr_running(void)
{
	unsigned long i, sum = 0;

	for_each_online_cpu(i)
		sum += cpu_rq(i)->nr_running;

	return sum;
}

unsigned long nr_uninterruptible(void)
{
	unsigned long i, sum = 0;

2697
	for_each_possible_cpu(i)
L
Linus Torvalds 已提交
2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711
		sum += cpu_rq(i)->nr_uninterruptible;

	/*
	 * Since we read the counters lockless, it might be slightly
	 * inaccurate. Do not allow it to go below zero though:
	 */
	if (unlikely((long)sum < 0))
		sum = 0;

	return sum;
}

unsigned long long nr_context_switches(void)
{
2712 2713
	int i;
	unsigned long long sum = 0;
L
Linus Torvalds 已提交
2714

2715
	for_each_possible_cpu(i)
L
Linus Torvalds 已提交
2716 2717 2718 2719 2720 2721 2722 2723 2724
		sum += cpu_rq(i)->nr_switches;

	return sum;
}

unsigned long nr_iowait(void)
{
	unsigned long i, sum = 0;

2725
	for_each_possible_cpu(i)
L
Linus Torvalds 已提交
2726 2727 2728 2729 2730
		sum += atomic_read(&cpu_rq(i)->nr_iowait);

	return sum;
}

2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745
unsigned long nr_active(void)
{
	unsigned long i, running = 0, uninterruptible = 0;

	for_each_online_cpu(i) {
		running += cpu_rq(i)->nr_running;
		uninterruptible += cpu_rq(i)->nr_uninterruptible;
	}

	if (unlikely((long)uninterruptible < 0))
		uninterruptible = 0;

	return running + uninterruptible;
}

2746
/*
I
Ingo Molnar 已提交
2747 2748
 * Update rq->cpu_load[] statistics. This function is usually called every
 * scheduler tick (TICK_NSEC).
2749
 */
I
Ingo Molnar 已提交
2750
static void update_cpu_load(struct rq *this_rq)
2751
{
2752
	unsigned long this_load = this_rq->load.weight;
I
Ingo Molnar 已提交
2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764
	int i, scale;

	this_rq->nr_load_updates++;

	/* Update our load: */
	for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
		unsigned long old_load, new_load;

		/* scale is effectively 1 << i now, and >> i divides by scale */

		old_load = this_rq->cpu_load[i];
		new_load = this_load;
I
Ingo Molnar 已提交
2765 2766 2767 2768 2769 2770 2771
		/*
		 * Round up the averaging division if load is increasing. This
		 * prevents us from getting stuck on 9 if the load is 10, for
		 * example.
		 */
		if (new_load > old_load)
			new_load += scale-1;
I
Ingo Molnar 已提交
2772 2773
		this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
	}
2774 2775
}

I
Ingo Molnar 已提交
2776 2777
#ifdef CONFIG_SMP

L
Linus Torvalds 已提交
2778 2779 2780 2781 2782 2783
/*
 * double_rq_lock - safely lock two runqueues
 *
 * Note this does not disable interrupts like task_rq_lock,
 * you need to do so manually before calling.
 */
2784
static void double_rq_lock(struct rq *rq1, struct rq *rq2)
L
Linus Torvalds 已提交
2785 2786 2787
	__acquires(rq1->lock)
	__acquires(rq2->lock)
{
2788
	BUG_ON(!irqs_disabled());
L
Linus Torvalds 已提交
2789 2790 2791 2792
	if (rq1 == rq2) {
		spin_lock(&rq1->lock);
		__acquire(rq2->lock);	/* Fake it out ;) */
	} else {
2793
		if (rq1 < rq2) {
L
Linus Torvalds 已提交
2794
			spin_lock(&rq1->lock);
2795
			spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
L
Linus Torvalds 已提交
2796 2797
		} else {
			spin_lock(&rq2->lock);
2798
			spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
L
Linus Torvalds 已提交
2799 2800
		}
	}
2801 2802
	update_rq_clock(rq1);
	update_rq_clock(rq2);
L
Linus Torvalds 已提交
2803 2804 2805 2806 2807 2808 2809 2810
}

/*
 * double_rq_unlock - safely unlock two runqueues
 *
 * Note this does not restore interrupts like task_rq_unlock,
 * you need to do so manually after calling.
 */
2811
static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
L
Linus Torvalds 已提交
2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824
	__releases(rq1->lock)
	__releases(rq2->lock)
{
	spin_unlock(&rq1->lock);
	if (rq1 != rq2)
		spin_unlock(&rq2->lock);
	else
		__release(rq2->lock);
}

/*
 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
 */
S
Steven Rostedt 已提交
2825
static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
L
Linus Torvalds 已提交
2826 2827 2828 2829
	__releases(this_rq->lock)
	__acquires(busiest->lock)
	__acquires(this_rq->lock)
{
S
Steven Rostedt 已提交
2830 2831
	int ret = 0;

2832 2833 2834 2835 2836
	if (unlikely(!irqs_disabled())) {
		/* printk() doesn't work good under rq->lock */
		spin_unlock(&this_rq->lock);
		BUG_ON(1);
	}
L
Linus Torvalds 已提交
2837
	if (unlikely(!spin_trylock(&busiest->lock))) {
2838
		if (busiest < this_rq) {
L
Linus Torvalds 已提交
2839 2840
			spin_unlock(&this_rq->lock);
			spin_lock(&busiest->lock);
2841
			spin_lock_nested(&this_rq->lock, SINGLE_DEPTH_NESTING);
S
Steven Rostedt 已提交
2842
			ret = 1;
L
Linus Torvalds 已提交
2843
		} else
2844
			spin_lock_nested(&busiest->lock, SINGLE_DEPTH_NESTING);
L
Linus Torvalds 已提交
2845
	}
S
Steven Rostedt 已提交
2846
	return ret;
L
Linus Torvalds 已提交
2847 2848
}

2849 2850 2851 2852 2853 2854 2855
static void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
	__releases(busiest->lock)
{
	spin_unlock(&busiest->lock);
	lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
}

L
Linus Torvalds 已提交
2856 2857 2858
/*
 * If dest_cpu is allowed for this process, migrate the task to it.
 * This is accomplished by forcing the cpu_allowed mask to only
I
Ingo Molnar 已提交
2859
 * allow dest_cpu, which will force the cpu onto dest_cpu. Then
L
Linus Torvalds 已提交
2860 2861
 * the cpu_allowed mask is restored.
 */
2862
static void sched_migrate_task(struct task_struct *p, int dest_cpu)
L
Linus Torvalds 已提交
2863
{
2864
	struct migration_req req;
L
Linus Torvalds 已提交
2865
	unsigned long flags;
2866
	struct rq *rq;
L
Linus Torvalds 已提交
2867 2868 2869

	rq = task_rq_lock(p, &flags);
	if (!cpu_isset(dest_cpu, p->cpus_allowed)
2870
	    || unlikely(!cpu_active(dest_cpu)))
L
Linus Torvalds 已提交
2871 2872 2873 2874 2875 2876
		goto out;

	/* force the process onto the specified CPU */
	if (migrate_task(p, dest_cpu, &req)) {
		/* Need to wait for migration thread (might exit: take ref). */
		struct task_struct *mt = rq->migration_thread;
2877

L
Linus Torvalds 已提交
2878 2879 2880 2881 2882
		get_task_struct(mt);
		task_rq_unlock(rq, &flags);
		wake_up_process(mt);
		put_task_struct(mt);
		wait_for_completion(&req.done);
2883

L
Linus Torvalds 已提交
2884 2885 2886 2887 2888 2889 2890
		return;
	}
out:
	task_rq_unlock(rq, &flags);
}

/*
N
Nick Piggin 已提交
2891 2892
 * sched_exec - execve() is a valuable balancing opportunity, because at
 * this point the task has the smallest effective memory and cache footprint.
L
Linus Torvalds 已提交
2893 2894 2895 2896
 */
void sched_exec(void)
{
	int new_cpu, this_cpu = get_cpu();
N
Nick Piggin 已提交
2897
	new_cpu = sched_balance_self(this_cpu, SD_BALANCE_EXEC);
L
Linus Torvalds 已提交
2898
	put_cpu();
N
Nick Piggin 已提交
2899 2900
	if (new_cpu != this_cpu)
		sched_migrate_task(current, new_cpu);
L
Linus Torvalds 已提交
2901 2902 2903 2904 2905 2906
}

/*
 * pull_task - move a task from a remote runqueue to the local runqueue.
 * Both runqueues must be locked.
 */
I
Ingo Molnar 已提交
2907 2908
static void pull_task(struct rq *src_rq, struct task_struct *p,
		      struct rq *this_rq, int this_cpu)
L
Linus Torvalds 已提交
2909
{
2910
	deactivate_task(src_rq, p, 0);
L
Linus Torvalds 已提交
2911
	set_task_cpu(p, this_cpu);
I
Ingo Molnar 已提交
2912
	activate_task(this_rq, p, 0);
L
Linus Torvalds 已提交
2913 2914 2915 2916
	/*
	 * Note that idle threads have a prio of MAX_PRIO, for this test
	 * to be always true for them.
	 */
2917
	check_preempt_curr(this_rq, p, 0);
L
Linus Torvalds 已提交
2918 2919 2920 2921 2922
}

/*
 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
 */
2923
static
2924
int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
I
Ingo Molnar 已提交
2925
		     struct sched_domain *sd, enum cpu_idle_type idle,
I
Ingo Molnar 已提交
2926
		     int *all_pinned)
L
Linus Torvalds 已提交
2927 2928 2929 2930 2931 2932 2933
{
	/*
	 * We do not migrate tasks that are:
	 * 1) running (obviously), or
	 * 2) cannot be migrated to this CPU due to cpus_allowed, or
	 * 3) are cache-hot on their current CPU.
	 */
2934 2935
	if (!cpu_isset(this_cpu, p->cpus_allowed)) {
		schedstat_inc(p, se.nr_failed_migrations_affine);
L
Linus Torvalds 已提交
2936
		return 0;
2937
	}
2938 2939
	*all_pinned = 0;

2940 2941
	if (task_running(rq, p)) {
		schedstat_inc(p, se.nr_failed_migrations_running);
2942
		return 0;
2943
	}
L
Linus Torvalds 已提交
2944

2945 2946 2947 2948 2949 2950
	/*
	 * Aggressive migration if:
	 * 1) task is cache cold, or
	 * 2) too many balance attempts have failed.
	 */

2951 2952
	if (!task_hot(p, rq->clock, sd) ||
			sd->nr_balance_failed > sd->cache_nice_tries) {
2953
#ifdef CONFIG_SCHEDSTATS
2954
		if (task_hot(p, rq->clock, sd)) {
2955
			schedstat_inc(sd, lb_hot_gained[idle]);
2956 2957
			schedstat_inc(p, se.nr_forced_migrations);
		}
2958 2959 2960 2961
#endif
		return 1;
	}

2962 2963
	if (task_hot(p, rq->clock, sd)) {
		schedstat_inc(p, se.nr_failed_migrations_hot);
2964
		return 0;
2965
	}
L
Linus Torvalds 已提交
2966 2967 2968
	return 1;
}

2969 2970 2971 2972 2973
static unsigned long
balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
	      unsigned long max_load_move, struct sched_domain *sd,
	      enum cpu_idle_type idle, int *all_pinned,
	      int *this_best_prio, struct rq_iterator *iterator)
L
Linus Torvalds 已提交
2974
{
2975
	int loops = 0, pulled = 0, pinned = 0;
I
Ingo Molnar 已提交
2976 2977
	struct task_struct *p;
	long rem_load_move = max_load_move;
L
Linus Torvalds 已提交
2978

2979
	if (max_load_move == 0)
L
Linus Torvalds 已提交
2980 2981
		goto out;

2982 2983
	pinned = 1;

L
Linus Torvalds 已提交
2984
	/*
I
Ingo Molnar 已提交
2985
	 * Start the load-balancing iterator:
L
Linus Torvalds 已提交
2986
	 */
I
Ingo Molnar 已提交
2987 2988
	p = iterator->start(iterator->arg);
next:
2989
	if (!p || loops++ > sysctl_sched_nr_migrate)
L
Linus Torvalds 已提交
2990
		goto out;
2991 2992

	if ((p->se.load.weight >> 1) > rem_load_move ||
I
Ingo Molnar 已提交
2993 2994 2995
	    !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
		p = iterator->next(iterator->arg);
		goto next;
L
Linus Torvalds 已提交
2996 2997
	}

I
Ingo Molnar 已提交
2998
	pull_task(busiest, p, this_rq, this_cpu);
L
Linus Torvalds 已提交
2999
	pulled++;
I
Ingo Molnar 已提交
3000
	rem_load_move -= p->se.load.weight;
L
Linus Torvalds 已提交
3001

3002
	/*
3003
	 * We only want to steal up to the prescribed amount of weighted load.
3004
	 */
3005
	if (rem_load_move > 0) {
3006 3007
		if (p->prio < *this_best_prio)
			*this_best_prio = p->prio;
I
Ingo Molnar 已提交
3008 3009
		p = iterator->next(iterator->arg);
		goto next;
L
Linus Torvalds 已提交
3010 3011 3012
	}
out:
	/*
3013
	 * Right now, this is one of only two places pull_task() is called,
L
Linus Torvalds 已提交
3014 3015 3016 3017
	 * so we can safely collect pull_task() stats here rather than
	 * inside pull_task().
	 */
	schedstat_add(sd, lb_gained[idle], pulled);
3018 3019 3020

	if (all_pinned)
		*all_pinned = pinned;
3021 3022

	return max_load_move - rem_load_move;
L
Linus Torvalds 已提交
3023 3024
}

I
Ingo Molnar 已提交
3025
/*
P
Peter Williams 已提交
3026 3027 3028
 * move_tasks tries to move up to max_load_move weighted load from busiest to
 * this_rq, as part of a balancing operation within domain "sd".
 * Returns 1 if successful and 0 otherwise.
I
Ingo Molnar 已提交
3029 3030 3031 3032
 *
 * Called with both runqueues locked.
 */
static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
P
Peter Williams 已提交
3033
		      unsigned long max_load_move,
I
Ingo Molnar 已提交
3034 3035 3036
		      struct sched_domain *sd, enum cpu_idle_type idle,
		      int *all_pinned)
{
3037
	const struct sched_class *class = sched_class_highest;
P
Peter Williams 已提交
3038
	unsigned long total_load_moved = 0;
3039
	int this_best_prio = this_rq->curr->prio;
I
Ingo Molnar 已提交
3040 3041

	do {
P
Peter Williams 已提交
3042 3043
		total_load_moved +=
			class->load_balance(this_rq, this_cpu, busiest,
3044
				max_load_move - total_load_moved,
3045
				sd, idle, all_pinned, &this_best_prio);
I
Ingo Molnar 已提交
3046
		class = class->next;
3047 3048 3049 3050

		if (idle == CPU_NEWLY_IDLE && this_rq->nr_running)
			break;

P
Peter Williams 已提交
3051
	} while (class && max_load_move > total_load_moved);
I
Ingo Molnar 已提交
3052

P
Peter Williams 已提交
3053 3054 3055
	return total_load_moved > 0;
}

3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081
static int
iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
		   struct sched_domain *sd, enum cpu_idle_type idle,
		   struct rq_iterator *iterator)
{
	struct task_struct *p = iterator->start(iterator->arg);
	int pinned = 0;

	while (p) {
		if (can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
			pull_task(busiest, p, this_rq, this_cpu);
			/*
			 * Right now, this is only the second place pull_task()
			 * is called, so we can safely collect pull_task()
			 * stats here rather than inside pull_task().
			 */
			schedstat_inc(sd, lb_gained[idle]);

			return 1;
		}
		p = iterator->next(iterator->arg);
	}

	return 0;
}

P
Peter Williams 已提交
3082 3083 3084 3085 3086 3087 3088 3089 3090 3091
/*
 * move_one_task tries to move exactly one task from busiest to this_rq, as
 * part of active balancing operations within "domain".
 * Returns 1 if successful and 0 otherwise.
 *
 * Called with both runqueues locked.
 */
static int move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
			 struct sched_domain *sd, enum cpu_idle_type idle)
{
3092
	const struct sched_class *class;
P
Peter Williams 已提交
3093 3094

	for (class = sched_class_highest; class; class = class->next)
3095
		if (class->move_one_task(this_rq, this_cpu, busiest, sd, idle))
P
Peter Williams 已提交
3096 3097 3098
			return 1;

	return 0;
I
Ingo Molnar 已提交
3099 3100
}

L
Linus Torvalds 已提交
3101 3102
/*
 * find_busiest_group finds and returns the busiest CPU group within the
3103 3104
 * domain. It calculates and returns the amount of weighted load which
 * should be moved to restore balance via the imbalance parameter.
L
Linus Torvalds 已提交
3105 3106 3107
 */
static struct sched_group *
find_busiest_group(struct sched_domain *sd, int this_cpu,
I
Ingo Molnar 已提交
3108
		   unsigned long *imbalance, enum cpu_idle_type idle,
3109
		   int *sd_idle, const cpumask_t *cpus, int *balance)
L
Linus Torvalds 已提交
3110 3111 3112
{
	struct sched_group *busiest = NULL, *this = NULL, *group = sd->groups;
	unsigned long max_load, avg_load, total_load, this_load, total_pwr;
3113
	unsigned long max_pull;
3114 3115
	unsigned long busiest_load_per_task, busiest_nr_running;
	unsigned long this_load_per_task, this_nr_running;
3116
	int load_idx, group_imb = 0;
3117 3118 3119 3120 3121 3122
#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
	int power_savings_balance = 1;
	unsigned long leader_nr_running = 0, min_load_per_task = 0;
	unsigned long min_nr_running = ULONG_MAX;
	struct sched_group *group_min = NULL, *group_leader = NULL;
#endif
L
Linus Torvalds 已提交
3123 3124

	max_load = this_load = total_load = total_pwr = 0;
3125 3126
	busiest_load_per_task = busiest_nr_running = 0;
	this_load_per_task = this_nr_running = 0;
3127

I
Ingo Molnar 已提交
3128
	if (idle == CPU_NOT_IDLE)
N
Nick Piggin 已提交
3129
		load_idx = sd->busy_idx;
I
Ingo Molnar 已提交
3130
	else if (idle == CPU_NEWLY_IDLE)
N
Nick Piggin 已提交
3131 3132 3133
		load_idx = sd->newidle_idx;
	else
		load_idx = sd->idle_idx;
L
Linus Torvalds 已提交
3134 3135

	do {
3136
		unsigned long load, group_capacity, max_cpu_load, min_cpu_load;
L
Linus Torvalds 已提交
3137 3138
		int local_group;
		int i;
3139
		int __group_imb = 0;
3140
		unsigned int balance_cpu = -1, first_idle_cpu = 0;
3141
		unsigned long sum_nr_running, sum_weighted_load;
3142 3143
		unsigned long sum_avg_load_per_task;
		unsigned long avg_load_per_task;
L
Linus Torvalds 已提交
3144 3145 3146

		local_group = cpu_isset(this_cpu, group->cpumask);

3147 3148 3149
		if (local_group)
			balance_cpu = first_cpu(group->cpumask);

L
Linus Torvalds 已提交
3150
		/* Tally up the load of all CPUs in the group */
3151
		sum_weighted_load = sum_nr_running = avg_load = 0;
3152 3153
		sum_avg_load_per_task = avg_load_per_task = 0;

3154 3155
		max_cpu_load = 0;
		min_cpu_load = ~0UL;
L
Linus Torvalds 已提交
3156

3157
		for_each_cpu_mask_nr(i, group->cpumask) {
3158 3159 3160 3161 3162 3163
			struct rq *rq;

			if (!cpu_isset(i, *cpus))
				continue;

			rq = cpu_rq(i);
3164

3165
			if (*sd_idle && rq->nr_running)
N
Nick Piggin 已提交
3166 3167
				*sd_idle = 0;

L
Linus Torvalds 已提交
3168
			/* Bias balancing toward cpus of our domain */
3169 3170 3171 3172 3173 3174
			if (local_group) {
				if (idle_cpu(i) && !first_idle_cpu) {
					first_idle_cpu = 1;
					balance_cpu = i;
				}

N
Nick Piggin 已提交
3175
				load = target_load(i, load_idx);
3176
			} else {
N
Nick Piggin 已提交
3177
				load = source_load(i, load_idx);
3178 3179 3180 3181 3182
				if (load > max_cpu_load)
					max_cpu_load = load;
				if (min_cpu_load > load)
					min_cpu_load = load;
			}
L
Linus Torvalds 已提交
3183 3184

			avg_load += load;
3185
			sum_nr_running += rq->nr_running;
I
Ingo Molnar 已提交
3186
			sum_weighted_load += weighted_cpuload(i);
3187 3188

			sum_avg_load_per_task += cpu_avg_load_per_task(i);
L
Linus Torvalds 已提交
3189 3190
		}

3191 3192 3193
		/*
		 * First idle cpu or the first cpu(busiest) in this sched group
		 * is eligible for doing load balancing at this and above
3194 3195
		 * domains. In the newly idle case, we will allow all the cpu's
		 * to do the newly idle load balance.
3196
		 */
3197 3198
		if (idle != CPU_NEWLY_IDLE && local_group &&
		    balance_cpu != this_cpu && balance) {
3199 3200 3201 3202
			*balance = 0;
			goto ret;
		}

L
Linus Torvalds 已提交
3203
		total_load += avg_load;
3204
		total_pwr += group->__cpu_power;
L
Linus Torvalds 已提交
3205 3206

		/* Adjust by relative CPU power of the group */
3207 3208
		avg_load = sg_div_cpu_power(group,
				avg_load * SCHED_LOAD_SCALE);
L
Linus Torvalds 已提交
3209

3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223

		/*
		 * Consider the group unbalanced when the imbalance is larger
		 * than the average weight of two tasks.
		 *
		 * APZ: with cgroup the avg task weight can vary wildly and
		 *      might not be a suitable number - should we keep a
		 *      normalized nr_running number somewhere that negates
		 *      the hierarchy?
		 */
		avg_load_per_task = sg_div_cpu_power(group,
				sum_avg_load_per_task * SCHED_LOAD_SCALE);

		if ((max_cpu_load - min_cpu_load) > 2*avg_load_per_task)
3224 3225
			__group_imb = 1;

3226
		group_capacity = group->__cpu_power / SCHED_LOAD_SCALE;
3227

L
Linus Torvalds 已提交
3228 3229 3230
		if (local_group) {
			this_load = avg_load;
			this = group;
3231 3232 3233
			this_nr_running = sum_nr_running;
			this_load_per_task = sum_weighted_load;
		} else if (avg_load > max_load &&
3234
			   (sum_nr_running > group_capacity || __group_imb)) {
L
Linus Torvalds 已提交
3235 3236
			max_load = avg_load;
			busiest = group;
3237 3238
			busiest_nr_running = sum_nr_running;
			busiest_load_per_task = sum_weighted_load;
3239
			group_imb = __group_imb;
L
Linus Torvalds 已提交
3240
		}
3241 3242 3243 3244 3245 3246

#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
		/*
		 * Busy processors will not participate in power savings
		 * balance.
		 */
I
Ingo Molnar 已提交
3247 3248 3249
		if (idle == CPU_NOT_IDLE ||
				!(sd->flags & SD_POWERSAVINGS_BALANCE))
			goto group_next;
3250 3251 3252 3253 3254 3255 3256 3257 3258

		/*
		 * If the local group is idle or completely loaded
		 * no need to do power savings balance at this domain
		 */
		if (local_group && (this_nr_running >= group_capacity ||
				    !this_nr_running))
			power_savings_balance = 0;

I
Ingo Molnar 已提交
3259
		/*
3260 3261
		 * If a group is already running at full capacity or idle,
		 * don't include that group in power savings calculations
I
Ingo Molnar 已提交
3262 3263
		 */
		if (!power_savings_balance || sum_nr_running >= group_capacity
3264
		    || !sum_nr_running)
I
Ingo Molnar 已提交
3265
			goto group_next;
3266

I
Ingo Molnar 已提交
3267
		/*
3268
		 * Calculate the group which has the least non-idle load.
I
Ingo Molnar 已提交
3269 3270 3271 3272 3273
		 * This is the group from where we need to pick up the load
		 * for saving power
		 */
		if ((sum_nr_running < min_nr_running) ||
		    (sum_nr_running == min_nr_running &&
3274 3275
		     first_cpu(group->cpumask) <
		     first_cpu(group_min->cpumask))) {
I
Ingo Molnar 已提交
3276 3277
			group_min = group;
			min_nr_running = sum_nr_running;
3278 3279
			min_load_per_task = sum_weighted_load /
						sum_nr_running;
I
Ingo Molnar 已提交
3280
		}
3281

I
Ingo Molnar 已提交
3282
		/*
3283
		 * Calculate the group which is almost near its
I
Ingo Molnar 已提交
3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294
		 * capacity but still has some space to pick up some load
		 * from other group and save more power
		 */
		if (sum_nr_running <= group_capacity - 1) {
			if (sum_nr_running > leader_nr_running ||
			    (sum_nr_running == leader_nr_running &&
			     first_cpu(group->cpumask) >
			      first_cpu(group_leader->cpumask))) {
				group_leader = group;
				leader_nr_running = sum_nr_running;
			}
3295
		}
3296 3297
group_next:
#endif
L
Linus Torvalds 已提交
3298 3299 3300
		group = group->next;
	} while (group != sd->groups);

3301
	if (!busiest || this_load >= max_load || busiest_nr_running == 0)
L
Linus Torvalds 已提交
3302 3303 3304 3305 3306 3307 3308 3309
		goto out_balanced;

	avg_load = (SCHED_LOAD_SCALE * total_load) / total_pwr;

	if (this_load >= avg_load ||
			100*max_load <= sd->imbalance_pct*this_load)
		goto out_balanced;

3310
	busiest_load_per_task /= busiest_nr_running;
3311 3312 3313
	if (group_imb)
		busiest_load_per_task = min(busiest_load_per_task, avg_load);

L
Linus Torvalds 已提交
3314 3315 3316 3317 3318 3319 3320 3321
	/*
	 * We're trying to get all the cpus to the average_load, so we don't
	 * want to push ourselves above the average load, nor do we wish to
	 * reduce the max loaded cpu below the average load, as either of these
	 * actions would just result in more rebalancing later, and ping-pong
	 * tasks around. Thus we look for the minimum possible imbalance.
	 * Negative imbalances (*we* are more loaded than anyone else) will
	 * be counted as no imbalance for these purposes -- we can't fix that
I
Ingo Molnar 已提交
3322
	 * by pulling tasks to us. Be careful of negative numbers as they'll
L
Linus Torvalds 已提交
3323 3324
	 * appear as very large values with unsigned longs.
	 */
3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336
	if (max_load <= busiest_load_per_task)
		goto out_balanced;

	/*
	 * In the presence of smp nice balancing, certain scenarios can have
	 * max load less than avg load(as we skip the groups at or below
	 * its cpu_power, while calculating max_load..)
	 */
	if (max_load < avg_load) {
		*imbalance = 0;
		goto small_imbalance;
	}
3337 3338

	/* Don't want to pull so many tasks that a group would go idle */
3339
	max_pull = min(max_load - avg_load, max_load - busiest_load_per_task);
3340

L
Linus Torvalds 已提交
3341
	/* How much load to actually move to equalise the imbalance */
3342 3343
	*imbalance = min(max_pull * busiest->__cpu_power,
				(avg_load - this_load) * this->__cpu_power)
L
Linus Torvalds 已提交
3344 3345
			/ SCHED_LOAD_SCALE;

3346 3347 3348 3349 3350 3351
	/*
	 * if *imbalance is less than the average load per runnable task
	 * there is no gaurantee that any tasks will be moved so we'll have
	 * a think about bumping its value to force at least one task to be
	 * moved
	 */
3352
	if (*imbalance < busiest_load_per_task) {
3353
		unsigned long tmp, pwr_now, pwr_move;
3354 3355 3356 3357 3358 3359 3360 3361 3362 3363
		unsigned int imbn;

small_imbalance:
		pwr_move = pwr_now = 0;
		imbn = 2;
		if (this_nr_running) {
			this_load_per_task /= this_nr_running;
			if (busiest_load_per_task > this_load_per_task)
				imbn = 1;
		} else
3364
			this_load_per_task = cpu_avg_load_per_task(this_cpu);
L
Linus Torvalds 已提交
3365

3366
		if (max_load - this_load + busiest_load_per_task >=
I
Ingo Molnar 已提交
3367
					busiest_load_per_task * imbn) {
3368
			*imbalance = busiest_load_per_task;
L
Linus Torvalds 已提交
3369 3370 3371 3372 3373 3374 3375 3376 3377
			return busiest;
		}

		/*
		 * OK, we don't have enough imbalance to justify moving tasks,
		 * however we may be able to increase total CPU power used by
		 * moving them.
		 */

3378 3379 3380 3381
		pwr_now += busiest->__cpu_power *
				min(busiest_load_per_task, max_load);
		pwr_now += this->__cpu_power *
				min(this_load_per_task, this_load);
L
Linus Torvalds 已提交
3382 3383 3384
		pwr_now /= SCHED_LOAD_SCALE;

		/* Amount of load we'd subtract */
3385 3386
		tmp = sg_div_cpu_power(busiest,
				busiest_load_per_task * SCHED_LOAD_SCALE);
L
Linus Torvalds 已提交
3387
		if (max_load > tmp)
3388
			pwr_move += busiest->__cpu_power *
3389
				min(busiest_load_per_task, max_load - tmp);
L
Linus Torvalds 已提交
3390 3391

		/* Amount of load we'd add */
3392
		if (max_load * busiest->__cpu_power <
3393
				busiest_load_per_task * SCHED_LOAD_SCALE)
3394 3395
			tmp = sg_div_cpu_power(this,
					max_load * busiest->__cpu_power);
L
Linus Torvalds 已提交
3396
		else
3397 3398 3399 3400
			tmp = sg_div_cpu_power(this,
				busiest_load_per_task * SCHED_LOAD_SCALE);
		pwr_move += this->__cpu_power *
				min(this_load_per_task, this_load + tmp);
L
Linus Torvalds 已提交
3401 3402 3403
		pwr_move /= SCHED_LOAD_SCALE;

		/* Move if we gain throughput */
3404 3405
		if (pwr_move > pwr_now)
			*imbalance = busiest_load_per_task;
L
Linus Torvalds 已提交
3406 3407 3408 3409 3410
	}

	return busiest;

out_balanced:
3411
#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
I
Ingo Molnar 已提交
3412
	if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
3413
		goto ret;
L
Linus Torvalds 已提交
3414

3415 3416 3417 3418 3419
	if (this == group_leader && group_leader != group_min) {
		*imbalance = min_load_per_task;
		return group_min;
	}
#endif
3420
ret:
L
Linus Torvalds 已提交
3421 3422 3423 3424 3425 3426 3427
	*imbalance = 0;
	return NULL;
}

/*
 * find_busiest_queue - find the busiest runqueue among the cpus in group.
 */
3428
static struct rq *
I
Ingo Molnar 已提交
3429
find_busiest_queue(struct sched_group *group, enum cpu_idle_type idle,
3430
		   unsigned long imbalance, const cpumask_t *cpus)
L
Linus Torvalds 已提交
3431
{
3432
	struct rq *busiest = NULL, *rq;
3433
	unsigned long max_load = 0;
L
Linus Torvalds 已提交
3434 3435
	int i;

3436
	for_each_cpu_mask_nr(i, group->cpumask) {
I
Ingo Molnar 已提交
3437
		unsigned long wl;
3438 3439 3440 3441

		if (!cpu_isset(i, *cpus))
			continue;

3442
		rq = cpu_rq(i);
I
Ingo Molnar 已提交
3443
		wl = weighted_cpuload(i);
3444

I
Ingo Molnar 已提交
3445
		if (rq->nr_running == 1 && wl > imbalance)
3446
			continue;
L
Linus Torvalds 已提交
3447

I
Ingo Molnar 已提交
3448 3449
		if (wl > max_load) {
			max_load = wl;
3450
			busiest = rq;
L
Linus Torvalds 已提交
3451 3452 3453 3454 3455 3456
		}
	}

	return busiest;
}

3457 3458 3459 3460 3461 3462
/*
 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
 * so long as it is large enough.
 */
#define MAX_PINNED_INTERVAL	512

L
Linus Torvalds 已提交
3463 3464 3465 3466
/*
 * Check this_cpu to ensure it is balanced within domain. Attempt to move
 * tasks if there is an imbalance.
 */
3467
static int load_balance(int this_cpu, struct rq *this_rq,
I
Ingo Molnar 已提交
3468
			struct sched_domain *sd, enum cpu_idle_type idle,
3469
			int *balance, cpumask_t *cpus)
L
Linus Torvalds 已提交
3470
{
P
Peter Williams 已提交
3471
	int ld_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
L
Linus Torvalds 已提交
3472 3473
	struct sched_group *group;
	unsigned long imbalance;
3474
	struct rq *busiest;
3475
	unsigned long flags;
N
Nick Piggin 已提交
3476

3477 3478
	cpus_setall(*cpus);

3479 3480 3481
	/*
	 * When power savings policy is enabled for the parent domain, idle
	 * sibling can pick up load irrespective of busy siblings. In this case,
I
Ingo Molnar 已提交
3482
	 * let the state of idle sibling percolate up as CPU_IDLE, instead of
I
Ingo Molnar 已提交
3483
	 * portraying it as CPU_NOT_IDLE.
3484
	 */
I
Ingo Molnar 已提交
3485
	if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
3486
	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
N
Nick Piggin 已提交
3487
		sd_idle = 1;
L
Linus Torvalds 已提交
3488

3489
	schedstat_inc(sd, lb_count[idle]);
L
Linus Torvalds 已提交
3490

3491
redo:
3492
	update_shares(sd);
3493
	group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
3494
				   cpus, balance);
3495

3496
	if (*balance == 0)
3497 3498
		goto out_balanced;

L
Linus Torvalds 已提交
3499 3500 3501 3502 3503
	if (!group) {
		schedstat_inc(sd, lb_nobusyg[idle]);
		goto out_balanced;
	}

3504
	busiest = find_busiest_queue(group, idle, imbalance, cpus);
L
Linus Torvalds 已提交
3505 3506 3507 3508 3509
	if (!busiest) {
		schedstat_inc(sd, lb_nobusyq[idle]);
		goto out_balanced;
	}

N
Nick Piggin 已提交
3510
	BUG_ON(busiest == this_rq);
L
Linus Torvalds 已提交
3511 3512 3513

	schedstat_add(sd, lb_imbalance[idle], imbalance);

P
Peter Williams 已提交
3514
	ld_moved = 0;
L
Linus Torvalds 已提交
3515 3516 3517 3518
	if (busiest->nr_running > 1) {
		/*
		 * Attempt to move tasks. If find_busiest_group has found
		 * an imbalance but busiest->nr_running <= 1, the group is
P
Peter Williams 已提交
3519
		 * still unbalanced. ld_moved simply stays zero, so it is
L
Linus Torvalds 已提交
3520 3521
		 * correctly treated as an imbalance.
		 */
3522
		local_irq_save(flags);
N
Nick Piggin 已提交
3523
		double_rq_lock(this_rq, busiest);
P
Peter Williams 已提交
3524
		ld_moved = move_tasks(this_rq, this_cpu, busiest,
3525
				      imbalance, sd, idle, &all_pinned);
N
Nick Piggin 已提交
3526
		double_rq_unlock(this_rq, busiest);
3527
		local_irq_restore(flags);
3528

3529 3530 3531
		/*
		 * some other cpu did the load balance for us.
		 */
P
Peter Williams 已提交
3532
		if (ld_moved && this_cpu != smp_processor_id())
3533 3534
			resched_cpu(this_cpu);

3535
		/* All tasks on this runqueue were pinned by CPU affinity */
3536
		if (unlikely(all_pinned)) {
3537 3538
			cpu_clear(cpu_of(busiest), *cpus);
			if (!cpus_empty(*cpus))
3539
				goto redo;
3540
			goto out_balanced;
3541
		}
L
Linus Torvalds 已提交
3542
	}
3543

P
Peter Williams 已提交
3544
	if (!ld_moved) {
L
Linus Torvalds 已提交
3545 3546 3547 3548 3549
		schedstat_inc(sd, lb_failed[idle]);
		sd->nr_balance_failed++;

		if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {

3550
			spin_lock_irqsave(&busiest->lock, flags);
3551 3552 3553 3554 3555

			/* don't kick the migration_thread, if the curr
			 * task on busiest cpu can't be moved to this_cpu
			 */
			if (!cpu_isset(this_cpu, busiest->curr->cpus_allowed)) {
3556
				spin_unlock_irqrestore(&busiest->lock, flags);
3557 3558 3559 3560
				all_pinned = 1;
				goto out_one_pinned;
			}

L
Linus Torvalds 已提交
3561 3562 3563
			if (!busiest->active_balance) {
				busiest->active_balance = 1;
				busiest->push_cpu = this_cpu;
3564
				active_balance = 1;
L
Linus Torvalds 已提交
3565
			}
3566
			spin_unlock_irqrestore(&busiest->lock, flags);
3567
			if (active_balance)
L
Linus Torvalds 已提交
3568 3569 3570 3571 3572 3573
				wake_up_process(busiest->migration_thread);

			/*
			 * We've kicked active balancing, reset the failure
			 * counter.
			 */
3574
			sd->nr_balance_failed = sd->cache_nice_tries+1;
L
Linus Torvalds 已提交
3575
		}
3576
	} else
L
Linus Torvalds 已提交
3577 3578
		sd->nr_balance_failed = 0;

3579
	if (likely(!active_balance)) {
L
Linus Torvalds 已提交
3580 3581
		/* We were unbalanced, so reset the balancing interval */
		sd->balance_interval = sd->min_interval;
3582 3583 3584 3585 3586 3587 3588 3589 3590
	} else {
		/*
		 * If we've begun active balancing, start to back off. This
		 * case may not be covered by the all_pinned logic if there
		 * is only 1 task on the busy runqueue (because we don't call
		 * move_tasks).
		 */
		if (sd->balance_interval < sd->max_interval)
			sd->balance_interval *= 2;
L
Linus Torvalds 已提交
3591 3592
	}

P
Peter Williams 已提交
3593
	if (!ld_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
3594
	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
3595 3596 3597
		ld_moved = -1;

	goto out;
L
Linus Torvalds 已提交
3598 3599 3600 3601

out_balanced:
	schedstat_inc(sd, lb_balanced[idle]);

3602
	sd->nr_balance_failed = 0;
3603 3604

out_one_pinned:
L
Linus Torvalds 已提交
3605
	/* tune up the balancing interval */
3606 3607
	if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
			(sd->balance_interval < sd->max_interval))
L
Linus Torvalds 已提交
3608 3609
		sd->balance_interval *= 2;

3610
	if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
3611
	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
3612 3613 3614 3615
		ld_moved = -1;
	else
		ld_moved = 0;
out:
3616 3617
	if (ld_moved)
		update_shares(sd);
3618
	return ld_moved;
L
Linus Torvalds 已提交
3619 3620 3621 3622 3623 3624
}

/*
 * Check this_cpu to ensure it is balanced within domain. Attempt to move
 * tasks if there is an imbalance.
 *
I
Ingo Molnar 已提交
3625
 * Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE).
L
Linus Torvalds 已提交
3626 3627
 * this_rq is locked.
 */
3628
static int
3629 3630
load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd,
			cpumask_t *cpus)
L
Linus Torvalds 已提交
3631 3632
{
	struct sched_group *group;
3633
	struct rq *busiest = NULL;
L
Linus Torvalds 已提交
3634
	unsigned long imbalance;
P
Peter Williams 已提交
3635
	int ld_moved = 0;
N
Nick Piggin 已提交
3636
	int sd_idle = 0;
3637
	int all_pinned = 0;
3638 3639

	cpus_setall(*cpus);
N
Nick Piggin 已提交
3640

3641 3642 3643 3644
	/*
	 * When power savings policy is enabled for the parent domain, idle
	 * sibling can pick up load irrespective of busy siblings. In this case,
	 * let the state of idle sibling percolate up as IDLE, instead of
I
Ingo Molnar 已提交
3645
	 * portraying it as CPU_NOT_IDLE.
3646 3647 3648
	 */
	if (sd->flags & SD_SHARE_CPUPOWER &&
	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
N
Nick Piggin 已提交
3649
		sd_idle = 1;
L
Linus Torvalds 已提交
3650

3651
	schedstat_inc(sd, lb_count[CPU_NEWLY_IDLE]);
3652
redo:
3653
	update_shares_locked(this_rq, sd);
I
Ingo Molnar 已提交
3654
	group = find_busiest_group(sd, this_cpu, &imbalance, CPU_NEWLY_IDLE,
3655
				   &sd_idle, cpus, NULL);
L
Linus Torvalds 已提交
3656
	if (!group) {
I
Ingo Molnar 已提交
3657
		schedstat_inc(sd, lb_nobusyg[CPU_NEWLY_IDLE]);
3658
		goto out_balanced;
L
Linus Torvalds 已提交
3659 3660
	}

3661
	busiest = find_busiest_queue(group, CPU_NEWLY_IDLE, imbalance, cpus);
N
Nick Piggin 已提交
3662
	if (!busiest) {
I
Ingo Molnar 已提交
3663
		schedstat_inc(sd, lb_nobusyq[CPU_NEWLY_IDLE]);
3664
		goto out_balanced;
L
Linus Torvalds 已提交
3665 3666
	}

N
Nick Piggin 已提交
3667 3668
	BUG_ON(busiest == this_rq);

I
Ingo Molnar 已提交
3669
	schedstat_add(sd, lb_imbalance[CPU_NEWLY_IDLE], imbalance);
3670

P
Peter Williams 已提交
3671
	ld_moved = 0;
3672 3673 3674
	if (busiest->nr_running > 1) {
		/* Attempt to move tasks */
		double_lock_balance(this_rq, busiest);
3675 3676
		/* this_rq->clock is already updated */
		update_rq_clock(busiest);
P
Peter Williams 已提交
3677
		ld_moved = move_tasks(this_rq, this_cpu, busiest,
3678 3679
					imbalance, sd, CPU_NEWLY_IDLE,
					&all_pinned);
3680
		double_unlock_balance(this_rq, busiest);
3681

3682
		if (unlikely(all_pinned)) {
3683 3684
			cpu_clear(cpu_of(busiest), *cpus);
			if (!cpus_empty(*cpus))
3685 3686
				goto redo;
		}
3687 3688
	}

P
Peter Williams 已提交
3689
	if (!ld_moved) {
I
Ingo Molnar 已提交
3690
		schedstat_inc(sd, lb_failed[CPU_NEWLY_IDLE]);
3691 3692
		if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
		    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
N
Nick Piggin 已提交
3693 3694
			return -1;
	} else
3695
		sd->nr_balance_failed = 0;
L
Linus Torvalds 已提交
3696

3697
	update_shares_locked(this_rq, sd);
P
Peter Williams 已提交
3698
	return ld_moved;
3699 3700

out_balanced:
I
Ingo Molnar 已提交
3701
	schedstat_inc(sd, lb_balanced[CPU_NEWLY_IDLE]);
3702
	if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
3703
	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
N
Nick Piggin 已提交
3704
		return -1;
3705
	sd->nr_balance_failed = 0;
3706

3707
	return 0;
L
Linus Torvalds 已提交
3708 3709 3710 3711 3712 3713
}

/*
 * idle_balance is called by schedule() if this_cpu is about to become
 * idle. Attempts to pull tasks from other CPUs.
 */
3714
static void idle_balance(int this_cpu, struct rq *this_rq)
L
Linus Torvalds 已提交
3715 3716
{
	struct sched_domain *sd;
I
Ingo Molnar 已提交
3717 3718
	int pulled_task = -1;
	unsigned long next_balance = jiffies + HZ;
3719
	cpumask_t tmpmask;
L
Linus Torvalds 已提交
3720 3721

	for_each_domain(this_cpu, sd) {
3722 3723 3724 3725 3726 3727
		unsigned long interval;

		if (!(sd->flags & SD_LOAD_BALANCE))
			continue;

		if (sd->flags & SD_BALANCE_NEWIDLE)
3728
			/* If we've pulled tasks over stop searching: */
3729 3730
			pulled_task = load_balance_newidle(this_cpu, this_rq,
							   sd, &tmpmask);
3731 3732 3733 3734 3735 3736

		interval = msecs_to_jiffies(sd->balance_interval);
		if (time_after(next_balance, sd->last_balance + interval))
			next_balance = sd->last_balance + interval;
		if (pulled_task)
			break;
L
Linus Torvalds 已提交
3737
	}
I
Ingo Molnar 已提交
3738
	if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
3739 3740 3741 3742 3743
		/*
		 * We are going idle. next_balance may be set based on
		 * a busy processor. So reset next_balance.
		 */
		this_rq->next_balance = next_balance;
I
Ingo Molnar 已提交
3744
	}
L
Linus Torvalds 已提交
3745 3746 3747 3748 3749 3750 3751 3752 3753 3754
}

/*
 * active_load_balance is run by migration threads. It pushes running tasks
 * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
 * running on each physical CPU where possible, and avoids physical /
 * logical imbalances.
 *
 * Called with busiest_rq locked.
 */
3755
static void active_load_balance(struct rq *busiest_rq, int busiest_cpu)
L
Linus Torvalds 已提交
3756
{
3757
	int target_cpu = busiest_rq->push_cpu;
3758 3759
	struct sched_domain *sd;
	struct rq *target_rq;
3760

3761
	/* Is there any task to move? */
3762 3763 3764 3765
	if (busiest_rq->nr_running <= 1)
		return;

	target_rq = cpu_rq(target_cpu);
L
Linus Torvalds 已提交
3766 3767

	/*
3768
	 * This condition is "impossible", if it occurs
I
Ingo Molnar 已提交
3769
	 * we need to fix it. Originally reported by
3770
	 * Bjorn Helgaas on a 128-cpu setup.
L
Linus Torvalds 已提交
3771
	 */
3772
	BUG_ON(busiest_rq == target_rq);
L
Linus Torvalds 已提交
3773

3774 3775
	/* move a task from busiest_rq to target_rq */
	double_lock_balance(busiest_rq, target_rq);
3776 3777
	update_rq_clock(busiest_rq);
	update_rq_clock(target_rq);
3778 3779

	/* Search for an sd spanning us and the target CPU. */
3780
	for_each_domain(target_cpu, sd) {
3781
		if ((sd->flags & SD_LOAD_BALANCE) &&
3782
		    cpu_isset(busiest_cpu, sd->span))
3783
				break;
3784
	}
3785

3786
	if (likely(sd)) {
3787
		schedstat_inc(sd, alb_count);
3788

P
Peter Williams 已提交
3789 3790
		if (move_one_task(target_rq, target_cpu, busiest_rq,
				  sd, CPU_IDLE))
3791 3792 3793 3794
			schedstat_inc(sd, alb_pushed);
		else
			schedstat_inc(sd, alb_failed);
	}
3795
	double_unlock_balance(busiest_rq, target_rq);
L
Linus Torvalds 已提交
3796 3797
}

3798 3799 3800
#ifdef CONFIG_NO_HZ
static struct {
	atomic_t load_balancer;
I
Ingo Molnar 已提交
3801
	cpumask_t cpu_mask;
3802 3803 3804 3805 3806
} nohz ____cacheline_aligned = {
	.load_balancer = ATOMIC_INIT(-1),
	.cpu_mask = CPU_MASK_NONE,
};

3807
/*
3808 3809 3810 3811 3812 3813 3814 3815 3816 3817
 * This routine will try to nominate the ilb (idle load balancing)
 * owner among the cpus whose ticks are stopped. ilb owner will do the idle
 * load balancing on behalf of all those cpus. If all the cpus in the system
 * go into this tickless mode, then there will be no ilb owner (as there is
 * no need for one) and all the cpus will sleep till the next wakeup event
 * arrives...
 *
 * For the ilb owner, tick is not stopped. And this tick will be used
 * for idle load balancing. ilb owner will still be part of
 * nohz.cpu_mask..
3818
 *
3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837
 * While stopping the tick, this cpu will become the ilb owner if there
 * is no other owner. And will be the owner till that cpu becomes busy
 * or if all cpus in the system stop their ticks at which point
 * there is no need for ilb owner.
 *
 * When the ilb owner becomes busy, it nominates another owner, during the
 * next busy scheduler_tick()
 */
int select_nohz_load_balancer(int stop_tick)
{
	int cpu = smp_processor_id();

	if (stop_tick) {
		cpu_set(cpu, nohz.cpu_mask);
		cpu_rq(cpu)->in_nohz_recently = 1;

		/*
		 * If we are going offline and still the leader, give up!
		 */
3838
		if (!cpu_active(cpu) &&
3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874
		    atomic_read(&nohz.load_balancer) == cpu) {
			if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
				BUG();
			return 0;
		}

		/* time for ilb owner also to sleep */
		if (cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
			if (atomic_read(&nohz.load_balancer) == cpu)
				atomic_set(&nohz.load_balancer, -1);
			return 0;
		}

		if (atomic_read(&nohz.load_balancer) == -1) {
			/* make me the ilb owner */
			if (atomic_cmpxchg(&nohz.load_balancer, -1, cpu) == -1)
				return 1;
		} else if (atomic_read(&nohz.load_balancer) == cpu)
			return 1;
	} else {
		if (!cpu_isset(cpu, nohz.cpu_mask))
			return 0;

		cpu_clear(cpu, nohz.cpu_mask);

		if (atomic_read(&nohz.load_balancer) == cpu)
			if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
				BUG();
	}
	return 0;
}
#endif

static DEFINE_SPINLOCK(balancing);

/*
3875 3876 3877 3878 3879
 * It checks each scheduling domain to see if it is due to be balanced,
 * and initiates a balancing operation if so.
 *
 * Balancing parameters are set up in arch_init_sched_domains.
 */
A
Alexey Dobriyan 已提交
3880
static void rebalance_domains(int cpu, enum cpu_idle_type idle)
3881
{
3882 3883
	int balance = 1;
	struct rq *rq = cpu_rq(cpu);
3884 3885
	unsigned long interval;
	struct sched_domain *sd;
3886
	/* Earliest time when we have to do rebalance again */
3887
	unsigned long next_balance = jiffies + 60*HZ;
3888
	int update_next_balance = 0;
3889
	int need_serialize;
3890
	cpumask_t tmp;
L
Linus Torvalds 已提交
3891

3892
	for_each_domain(cpu, sd) {
L
Linus Torvalds 已提交
3893 3894 3895 3896
		if (!(sd->flags & SD_LOAD_BALANCE))
			continue;

		interval = sd->balance_interval;
I
Ingo Molnar 已提交
3897
		if (idle != CPU_IDLE)
L
Linus Torvalds 已提交
3898 3899 3900 3901 3902 3903
			interval *= sd->busy_factor;

		/* scale ms to jiffies */
		interval = msecs_to_jiffies(interval);
		if (unlikely(!interval))
			interval = 1;
I
Ingo Molnar 已提交
3904 3905 3906
		if (interval > HZ*NR_CPUS/10)
			interval = HZ*NR_CPUS/10;

3907
		need_serialize = sd->flags & SD_SERIALIZE;
L
Linus Torvalds 已提交
3908

3909
		if (need_serialize) {
3910 3911 3912 3913
			if (!spin_trylock(&balancing))
				goto out;
		}

3914
		if (time_after_eq(jiffies, sd->last_balance + interval)) {
3915
			if (load_balance(cpu, rq, sd, idle, &balance, &tmp)) {
3916 3917
				/*
				 * We've pulled tasks over so either we're no
N
Nick Piggin 已提交
3918 3919 3920
				 * longer idle, or one of our SMT siblings is
				 * not idle.
				 */
I
Ingo Molnar 已提交
3921
				idle = CPU_NOT_IDLE;
L
Linus Torvalds 已提交
3922
			}
3923
			sd->last_balance = jiffies;
L
Linus Torvalds 已提交
3924
		}
3925
		if (need_serialize)
3926 3927
			spin_unlock(&balancing);
out:
3928
		if (time_after(next_balance, sd->last_balance + interval)) {
3929
			next_balance = sd->last_balance + interval;
3930 3931
			update_next_balance = 1;
		}
3932 3933 3934 3935 3936 3937 3938 3939

		/*
		 * Stop the load balance at this level. There is another
		 * CPU in our sched group which is doing load balancing more
		 * actively.
		 */
		if (!balance)
			break;
L
Linus Torvalds 已提交
3940
	}
3941 3942 3943 3944 3945 3946 3947 3948

	/*
	 * next_balance will be updated only when there is a need.
	 * When the cpu is attached to null domain for ex, it will not be
	 * updated.
	 */
	if (likely(update_next_balance))
		rq->next_balance = next_balance;
3949 3950 3951 3952 3953 3954 3955 3956 3957
}

/*
 * run_rebalance_domains is triggered when needed from the scheduler tick.
 * In CONFIG_NO_HZ case, the idle load balance owner will do the
 * rebalancing for all the cpus for whom scheduler ticks are stopped.
 */
static void run_rebalance_domains(struct softirq_action *h)
{
I
Ingo Molnar 已提交
3958 3959 3960 3961
	int this_cpu = smp_processor_id();
	struct rq *this_rq = cpu_rq(this_cpu);
	enum cpu_idle_type idle = this_rq->idle_at_tick ?
						CPU_IDLE : CPU_NOT_IDLE;
3962

I
Ingo Molnar 已提交
3963
	rebalance_domains(this_cpu, idle);
3964 3965 3966 3967 3968 3969 3970

#ifdef CONFIG_NO_HZ
	/*
	 * If this cpu is the owner for idle load balancing, then do the
	 * balancing on behalf of the other idle cpus whose ticks are
	 * stopped.
	 */
I
Ingo Molnar 已提交
3971 3972
	if (this_rq->idle_at_tick &&
	    atomic_read(&nohz.load_balancer) == this_cpu) {
3973 3974 3975 3976
		cpumask_t cpus = nohz.cpu_mask;
		struct rq *rq;
		int balance_cpu;

I
Ingo Molnar 已提交
3977
		cpu_clear(this_cpu, cpus);
3978
		for_each_cpu_mask_nr(balance_cpu, cpus) {
3979 3980 3981 3982 3983 3984 3985 3986
			/*
			 * If this cpu gets work to do, stop the load balancing
			 * work being done for other cpus. Next load
			 * balancing owner will pick it up.
			 */
			if (need_resched())
				break;

3987
			rebalance_domains(balance_cpu, CPU_IDLE);
3988 3989

			rq = cpu_rq(balance_cpu);
I
Ingo Molnar 已提交
3990 3991
			if (time_after(this_rq->next_balance, rq->next_balance))
				this_rq->next_balance = rq->next_balance;
3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003
		}
	}
#endif
}

/*
 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
 *
 * In case of CONFIG_NO_HZ, this is the place where we nominate a new
 * idle load balancing owner or decide to stop the periodic load balancing,
 * if the whole system is idle.
 */
I
Ingo Molnar 已提交
4004
static inline void trigger_load_balance(struct rq *rq, int cpu)
4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030
{
#ifdef CONFIG_NO_HZ
	/*
	 * If we were in the nohz mode recently and busy at the current
	 * scheduler tick, then check if we need to nominate new idle
	 * load balancer.
	 */
	if (rq->in_nohz_recently && !rq->idle_at_tick) {
		rq->in_nohz_recently = 0;

		if (atomic_read(&nohz.load_balancer) == cpu) {
			cpu_clear(cpu, nohz.cpu_mask);
			atomic_set(&nohz.load_balancer, -1);
		}

		if (atomic_read(&nohz.load_balancer) == -1) {
			/*
			 * simple selection for now: Nominate the
			 * first cpu in the nohz list to be the next
			 * ilb owner.
			 *
			 * TBD: Traverse the sched domains and nominate
			 * the nearest cpu in the nohz.cpu_mask.
			 */
			int ilb = first_cpu(nohz.cpu_mask);

4031
			if (ilb < nr_cpu_ids)
4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055
				resched_cpu(ilb);
		}
	}

	/*
	 * If this cpu is idle and doing idle load balancing for all the
	 * cpus with ticks stopped, is it time for that to stop?
	 */
	if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) == cpu &&
	    cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
		resched_cpu(cpu);
		return;
	}

	/*
	 * If this cpu is idle and the idle load balancing is done by
	 * someone else, then no need raise the SCHED_SOFTIRQ
	 */
	if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) != cpu &&
	    cpu_isset(cpu, nohz.cpu_mask))
		return;
#endif
	if (time_after_eq(jiffies, rq->next_balance))
		raise_softirq(SCHED_SOFTIRQ);
L
Linus Torvalds 已提交
4056
}
I
Ingo Molnar 已提交
4057 4058 4059

#else	/* CONFIG_SMP */

L
Linus Torvalds 已提交
4060 4061 4062
/*
 * on UP we do not need to balance between CPUs:
 */
4063
static inline void idle_balance(int cpu, struct rq *rq)
L
Linus Torvalds 已提交
4064 4065
{
}
I
Ingo Molnar 已提交
4066

L
Linus Torvalds 已提交
4067 4068 4069 4070 4071 4072 4073
#endif

DEFINE_PER_CPU(struct kernel_stat, kstat);

EXPORT_PER_CPU_SYMBOL(kstat);

/*
4074 4075
 * Return any ns on the sched_clock that have not yet been banked in
 * @p in case that task is currently running.
L
Linus Torvalds 已提交
4076
 */
4077
unsigned long long task_delta_exec(struct task_struct *p)
L
Linus Torvalds 已提交
4078 4079
{
	unsigned long flags;
4080
	struct rq *rq;
4081
	u64 ns = 0;
4082

4083
	rq = task_rq_lock(p, &flags);
4084

4085
	if (task_current(rq, p)) {
4086 4087
		u64 delta_exec;

I
Ingo Molnar 已提交
4088 4089
		update_rq_clock(rq);
		delta_exec = rq->clock - p->se.exec_start;
4090
		if ((s64)delta_exec > 0)
4091
			ns = delta_exec;
4092
	}
4093

4094
	task_rq_unlock(rq, &flags);
4095

L
Linus Torvalds 已提交
4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109
	return ns;
}

/*
 * Account user cpu time to a process.
 * @p: the process that the cpu time gets accounted to
 * @cputime: the cpu time spent in user space since the last update
 */
void account_user_time(struct task_struct *p, cputime_t cputime)
{
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
	cputime64_t tmp;

	p->utime = cputime_add(p->utime, cputime);
4110
	account_group_user_time(p, cputime);
L
Linus Torvalds 已提交
4111 4112 4113 4114 4115 4116 4117

	/* Add user time to cpustat. */
	tmp = cputime_to_cputime64(cputime);
	if (TASK_NICE(p) > 0)
		cpustat->nice = cputime64_add(cpustat->nice, tmp);
	else
		cpustat->user = cputime64_add(cpustat->user, tmp);
4118 4119
	/* Account for user time used */
	acct_update_integrals(p);
L
Linus Torvalds 已提交
4120 4121
}

4122 4123 4124 4125 4126
/*
 * Account guest cpu time to a process.
 * @p: the process that the cpu time gets accounted to
 * @cputime: the cpu time spent in virtual machine since the last update
 */
4127
static void account_guest_time(struct task_struct *p, cputime_t cputime)
4128 4129 4130 4131 4132 4133 4134
{
	cputime64_t tmp;
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;

	tmp = cputime_to_cputime64(cputime);

	p->utime = cputime_add(p->utime, cputime);
4135
	account_group_user_time(p, cputime);
4136 4137 4138 4139 4140 4141
	p->gtime = cputime_add(p->gtime, cputime);

	cpustat->user = cputime64_add(cpustat->user, tmp);
	cpustat->guest = cputime64_add(cpustat->guest, tmp);
}

4142 4143 4144 4145 4146 4147 4148 4149 4150 4151
/*
 * Account scaled user cpu time to a process.
 * @p: the process that the cpu time gets accounted to
 * @cputime: the cpu time spent in user space since the last update
 */
void account_user_time_scaled(struct task_struct *p, cputime_t cputime)
{
	p->utimescaled = cputime_add(p->utimescaled, cputime);
}

L
Linus Torvalds 已提交
4152 4153 4154 4155 4156 4157 4158 4159 4160 4161
/*
 * Account system cpu time to a process.
 * @p: the process that the cpu time gets accounted to
 * @hardirq_offset: the offset to subtract from hardirq_count()
 * @cputime: the cpu time spent in kernel space since the last update
 */
void account_system_time(struct task_struct *p, int hardirq_offset,
			 cputime_t cputime)
{
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
4162
	struct rq *rq = this_rq();
L
Linus Torvalds 已提交
4163 4164
	cputime64_t tmp;

4165 4166 4167 4168
	if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
		account_guest_time(p, cputime);
		return;
	}
4169

L
Linus Torvalds 已提交
4170
	p->stime = cputime_add(p->stime, cputime);
4171
	account_group_system_time(p, cputime);
L
Linus Torvalds 已提交
4172 4173 4174 4175 4176 4177 4178

	/* Add system time to cpustat. */
	tmp = cputime_to_cputime64(cputime);
	if (hardirq_count() - hardirq_offset)
		cpustat->irq = cputime64_add(cpustat->irq, tmp);
	else if (softirq_count())
		cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
4179
	else if (p != rq->idle)
L
Linus Torvalds 已提交
4180
		cpustat->system = cputime64_add(cpustat->system, tmp);
4181
	else if (atomic_read(&rq->nr_iowait) > 0)
L
Linus Torvalds 已提交
4182 4183 4184 4185 4186 4187 4188
		cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
	else
		cpustat->idle = cputime64_add(cpustat->idle, tmp);
	/* Account for system time used */
	acct_update_integrals(p);
}

4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199
/*
 * Account scaled system cpu time to a process.
 * @p: the process that the cpu time gets accounted to
 * @hardirq_offset: the offset to subtract from hardirq_count()
 * @cputime: the cpu time spent in kernel space since the last update
 */
void account_system_time_scaled(struct task_struct *p, cputime_t cputime)
{
	p->stimescaled = cputime_add(p->stimescaled, cputime);
}

L
Linus Torvalds 已提交
4200 4201 4202 4203 4204 4205 4206 4207 4208
/*
 * Account for involuntary wait time.
 * @p: the process from which the cpu time has been stolen
 * @steal: the cpu time spent in involuntary wait
 */
void account_steal_time(struct task_struct *p, cputime_t steal)
{
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
	cputime64_t tmp = cputime_to_cputime64(steal);
4209
	struct rq *rq = this_rq();
L
Linus Torvalds 已提交
4210 4211 4212

	if (p == rq->idle) {
		p->stime = cputime_add(p->stime, steal);
4213
		account_group_system_time(p, steal);
L
Linus Torvalds 已提交
4214 4215 4216 4217
		if (atomic_read(&rq->nr_iowait) > 0)
			cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
		else
			cpustat->idle = cputime64_add(cpustat->idle, tmp);
4218
	} else
L
Linus Torvalds 已提交
4219 4220 4221
		cpustat->steal = cputime64_add(cpustat->steal, tmp);
}

4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280
/*
 * Use precise platform statistics if available:
 */
#ifdef CONFIG_VIRT_CPU_ACCOUNTING
cputime_t task_utime(struct task_struct *p)
{
	return p->utime;
}

cputime_t task_stime(struct task_struct *p)
{
	return p->stime;
}
#else
cputime_t task_utime(struct task_struct *p)
{
	clock_t utime = cputime_to_clock_t(p->utime),
		total = utime + cputime_to_clock_t(p->stime);
	u64 temp;

	/*
	 * Use CFS's precise accounting:
	 */
	temp = (u64)nsec_to_clock_t(p->se.sum_exec_runtime);

	if (total) {
		temp *= utime;
		do_div(temp, total);
	}
	utime = (clock_t)temp;

	p->prev_utime = max(p->prev_utime, clock_t_to_cputime(utime));
	return p->prev_utime;
}

cputime_t task_stime(struct task_struct *p)
{
	clock_t stime;

	/*
	 * Use CFS's precise accounting. (we subtract utime from
	 * the total, to make sure the total observed by userspace
	 * grows monotonically - apps rely on that):
	 */
	stime = nsec_to_clock_t(p->se.sum_exec_runtime) -
			cputime_to_clock_t(task_utime(p));

	if (stime >= 0)
		p->prev_stime = max(p->prev_stime, clock_t_to_cputime(stime));

	return p->prev_stime;
}
#endif

inline cputime_t task_gtime(struct task_struct *p)
{
	return p->gtime;
}

4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291
/*
 * This function gets called by the timer code, with HZ frequency.
 * We call it with interrupts disabled.
 *
 * It also gets called by the fork code, when changing the parent's
 * timeslices.
 */
void scheduler_tick(void)
{
	int cpu = smp_processor_id();
	struct rq *rq = cpu_rq(cpu);
I
Ingo Molnar 已提交
4292
	struct task_struct *curr = rq->curr;
4293 4294

	sched_clock_tick();
I
Ingo Molnar 已提交
4295 4296

	spin_lock(&rq->lock);
4297
	update_rq_clock(rq);
4298
	update_cpu_load(rq);
P
Peter Zijlstra 已提交
4299
	curr->sched_class->task_tick(rq, curr, 0);
I
Ingo Molnar 已提交
4300
	spin_unlock(&rq->lock);
4301

4302
#ifdef CONFIG_SMP
I
Ingo Molnar 已提交
4303 4304
	rq->idle_at_tick = idle_cpu(cpu);
	trigger_load_balance(rq, cpu);
4305
#endif
L
Linus Torvalds 已提交
4306 4307
}

4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319
#if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
				defined(CONFIG_PREEMPT_TRACER))

static inline unsigned long get_parent_ip(unsigned long addr)
{
	if (in_lock_functions(addr)) {
		addr = CALLER_ADDR2;
		if (in_lock_functions(addr))
			addr = CALLER_ADDR3;
	}
	return addr;
}
L
Linus Torvalds 已提交
4320

4321
void __kprobes add_preempt_count(int val)
L
Linus Torvalds 已提交
4322
{
4323
#ifdef CONFIG_DEBUG_PREEMPT
L
Linus Torvalds 已提交
4324 4325 4326
	/*
	 * Underflow?
	 */
4327 4328
	if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
		return;
4329
#endif
L
Linus Torvalds 已提交
4330
	preempt_count() += val;
4331
#ifdef CONFIG_DEBUG_PREEMPT
L
Linus Torvalds 已提交
4332 4333 4334
	/*
	 * Spinlock count overflowing soon?
	 */
4335 4336
	DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
				PREEMPT_MASK - 10);
4337 4338 4339
#endif
	if (preempt_count() == val)
		trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
L
Linus Torvalds 已提交
4340 4341 4342
}
EXPORT_SYMBOL(add_preempt_count);

4343
void __kprobes sub_preempt_count(int val)
L
Linus Torvalds 已提交
4344
{
4345
#ifdef CONFIG_DEBUG_PREEMPT
L
Linus Torvalds 已提交
4346 4347 4348
	/*
	 * Underflow?
	 */
4349 4350
	if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
		return;
L
Linus Torvalds 已提交
4351 4352 4353
	/*
	 * Is the spinlock portion underflowing?
	 */
4354 4355 4356
	if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
			!(preempt_count() & PREEMPT_MASK)))
		return;
4357
#endif
4358

4359 4360
	if (preempt_count() == val)
		trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
L
Linus Torvalds 已提交
4361 4362 4363 4364 4365 4366 4367
	preempt_count() -= val;
}
EXPORT_SYMBOL(sub_preempt_count);

#endif

/*
I
Ingo Molnar 已提交
4368
 * Print scheduling while atomic bug:
L
Linus Torvalds 已提交
4369
 */
I
Ingo Molnar 已提交
4370
static noinline void __schedule_bug(struct task_struct *prev)
L
Linus Torvalds 已提交
4371
{
4372 4373 4374 4375 4376
	struct pt_regs *regs = get_irq_regs();

	printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
		prev->comm, prev->pid, preempt_count());

I
Ingo Molnar 已提交
4377
	debug_show_held_locks(prev);
4378
	print_modules();
I
Ingo Molnar 已提交
4379 4380
	if (irqs_disabled())
		print_irqtrace_events(prev);
4381 4382 4383 4384 4385

	if (regs)
		show_regs(regs);
	else
		dump_stack();
I
Ingo Molnar 已提交
4386
}
L
Linus Torvalds 已提交
4387

I
Ingo Molnar 已提交
4388 4389 4390 4391 4392
/*
 * Various schedule()-time debugging checks and statistics:
 */
static inline void schedule_debug(struct task_struct *prev)
{
L
Linus Torvalds 已提交
4393
	/*
I
Ingo Molnar 已提交
4394
	 * Test if we are atomic. Since do_exit() needs to call into
L
Linus Torvalds 已提交
4395 4396 4397
	 * schedule() atomically, we ignore that path for now.
	 * Otherwise, whine if we are scheduling when we should not be.
	 */
4398
	if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
I
Ingo Molnar 已提交
4399 4400
		__schedule_bug(prev);

L
Linus Torvalds 已提交
4401 4402
	profile_hit(SCHED_PROFILING, __builtin_return_address(0));

4403
	schedstat_inc(this_rq(), sched_count);
I
Ingo Molnar 已提交
4404 4405
#ifdef CONFIG_SCHEDSTATS
	if (unlikely(prev->lock_depth >= 0)) {
4406 4407
		schedstat_inc(this_rq(), bkl_count);
		schedstat_inc(prev, sched_info.bkl_count);
I
Ingo Molnar 已提交
4408 4409
	}
#endif
I
Ingo Molnar 已提交
4410 4411 4412 4413 4414 4415
}

/*
 * Pick up the highest-prio task:
 */
static inline struct task_struct *
4416
pick_next_task(struct rq *rq, struct task_struct *prev)
I
Ingo Molnar 已提交
4417
{
4418
	const struct sched_class *class;
I
Ingo Molnar 已提交
4419
	struct task_struct *p;
L
Linus Torvalds 已提交
4420 4421

	/*
I
Ingo Molnar 已提交
4422 4423
	 * Optimization: we know that if all tasks are in
	 * the fair class we can call that function directly:
L
Linus Torvalds 已提交
4424
	 */
I
Ingo Molnar 已提交
4425
	if (likely(rq->nr_running == rq->cfs.nr_running)) {
4426
		p = fair_sched_class.pick_next_task(rq);
I
Ingo Molnar 已提交
4427 4428
		if (likely(p))
			return p;
L
Linus Torvalds 已提交
4429 4430
	}

I
Ingo Molnar 已提交
4431 4432
	class = sched_class_highest;
	for ( ; ; ) {
4433
		p = class->pick_next_task(rq);
I
Ingo Molnar 已提交
4434 4435 4436 4437 4438 4439 4440 4441 4442
		if (p)
			return p;
		/*
		 * Will never be NULL as the idle class always
		 * returns a non-NULL p:
		 */
		class = class->next;
	}
}
L
Linus Torvalds 已提交
4443

I
Ingo Molnar 已提交
4444 4445 4446 4447 4448 4449
/*
 * schedule() is the main scheduler function.
 */
asmlinkage void __sched schedule(void)
{
	struct task_struct *prev, *next;
4450
	unsigned long *switch_count;
I
Ingo Molnar 已提交
4451
	struct rq *rq;
4452
	int cpu;
I
Ingo Molnar 已提交
4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465

need_resched:
	preempt_disable();
	cpu = smp_processor_id();
	rq = cpu_rq(cpu);
	rcu_qsctr_inc(cpu);
	prev = rq->curr;
	switch_count = &prev->nivcsw;

	release_kernel_lock(prev);
need_resched_nonpreemptible:

	schedule_debug(prev);
L
Linus Torvalds 已提交
4466

4467
	if (sched_feat(HRTICK))
M
Mike Galbraith 已提交
4468
		hrtick_clear(rq);
P
Peter Zijlstra 已提交
4469

4470
	spin_lock_irq(&rq->lock);
4471
	update_rq_clock(rq);
4472
	clear_tsk_need_resched(prev);
L
Linus Torvalds 已提交
4473 4474

	if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
4475
		if (unlikely(signal_pending_state(prev->state, prev)))
L
Linus Torvalds 已提交
4476
			prev->state = TASK_RUNNING;
4477
		else
4478
			deactivate_task(rq, prev, 1);
I
Ingo Molnar 已提交
4479
		switch_count = &prev->nvcsw;
L
Linus Torvalds 已提交
4480 4481
	}

4482 4483 4484 4485
#ifdef CONFIG_SMP
	if (prev->sched_class->pre_schedule)
		prev->sched_class->pre_schedule(rq, prev);
#endif
4486

I
Ingo Molnar 已提交
4487
	if (unlikely(!rq->nr_running))
L
Linus Torvalds 已提交
4488 4489
		idle_balance(cpu, rq);

4490
	prev->sched_class->put_prev_task(rq, prev);
4491
	next = pick_next_task(rq, prev);
L
Linus Torvalds 已提交
4492 4493

	if (likely(prev != next)) {
4494 4495
		sched_info_switch(prev, next);

L
Linus Torvalds 已提交
4496 4497 4498 4499
		rq->nr_switches++;
		rq->curr = next;
		++*switch_count;

I
Ingo Molnar 已提交
4500
		context_switch(rq, prev, next); /* unlocks the rq */
P
Peter Zijlstra 已提交
4501 4502 4503 4504 4505 4506
		/*
		 * the context switch might have flipped the stack from under
		 * us, hence refresh the local variables.
		 */
		cpu = smp_processor_id();
		rq = cpu_rq(cpu);
L
Linus Torvalds 已提交
4507 4508 4509
	} else
		spin_unlock_irq(&rq->lock);

P
Peter Zijlstra 已提交
4510
	if (unlikely(reacquire_kernel_lock(current) < 0))
L
Linus Torvalds 已提交
4511
		goto need_resched_nonpreemptible;
P
Peter Zijlstra 已提交
4512

L
Linus Torvalds 已提交
4513 4514 4515 4516 4517 4518 4519 4520
	preempt_enable_no_resched();
	if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
		goto need_resched;
}
EXPORT_SYMBOL(schedule);

#ifdef CONFIG_PREEMPT
/*
4521
 * this is the entry point to schedule() from in-kernel preemption
I
Ingo Molnar 已提交
4522
 * off of preempt_enable. Kernel preemptions off return from interrupt
L
Linus Torvalds 已提交
4523 4524 4525 4526 4527
 * occur there and call schedule directly.
 */
asmlinkage void __sched preempt_schedule(void)
{
	struct thread_info *ti = current_thread_info();
4528

L
Linus Torvalds 已提交
4529 4530
	/*
	 * If there is a non-zero preempt_count or interrupts are disabled,
I
Ingo Molnar 已提交
4531
	 * we do not want to preempt the current task. Just return..
L
Linus Torvalds 已提交
4532
	 */
N
Nick Piggin 已提交
4533
	if (likely(ti->preempt_count || irqs_disabled()))
L
Linus Torvalds 已提交
4534 4535
		return;

4536 4537 4538 4539
	do {
		add_preempt_count(PREEMPT_ACTIVE);
		schedule();
		sub_preempt_count(PREEMPT_ACTIVE);
L
Linus Torvalds 已提交
4540

4541 4542 4543 4544 4545 4546
		/*
		 * Check again in case we missed a preemption opportunity
		 * between schedule and now.
		 */
		barrier();
	} while (unlikely(test_thread_flag(TIF_NEED_RESCHED)));
L
Linus Torvalds 已提交
4547 4548 4549 4550
}
EXPORT_SYMBOL(preempt_schedule);

/*
4551
 * this is the entry point to schedule() from kernel preemption
L
Linus Torvalds 已提交
4552 4553 4554 4555 4556 4557 4558
 * off of irq context.
 * Note, that this is called and return with irqs disabled. This will
 * protect us against recursive calling from irq.
 */
asmlinkage void __sched preempt_schedule_irq(void)
{
	struct thread_info *ti = current_thread_info();
4559

4560
	/* Catch callers which need to be fixed */
L
Linus Torvalds 已提交
4561 4562
	BUG_ON(ti->preempt_count || !irqs_disabled());

4563 4564 4565 4566 4567 4568
	do {
		add_preempt_count(PREEMPT_ACTIVE);
		local_irq_enable();
		schedule();
		local_irq_disable();
		sub_preempt_count(PREEMPT_ACTIVE);
L
Linus Torvalds 已提交
4569

4570 4571 4572 4573 4574 4575
		/*
		 * Check again in case we missed a preemption opportunity
		 * between schedule and now.
		 */
		barrier();
	} while (unlikely(test_thread_flag(TIF_NEED_RESCHED)));
L
Linus Torvalds 已提交
4576 4577 4578 4579
}

#endif /* CONFIG_PREEMPT */

I
Ingo Molnar 已提交
4580 4581
int default_wake_function(wait_queue_t *curr, unsigned mode, int sync,
			  void *key)
L
Linus Torvalds 已提交
4582
{
4583
	return try_to_wake_up(curr->private, mode, sync);
L
Linus Torvalds 已提交
4584 4585 4586 4587
}
EXPORT_SYMBOL(default_wake_function);

/*
I
Ingo Molnar 已提交
4588 4589
 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
L
Linus Torvalds 已提交
4590 4591 4592
 * number) then we wake all the non-exclusive tasks and one exclusive task.
 *
 * There are circumstances in which we can try to wake a task which has already
I
Ingo Molnar 已提交
4593
 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
L
Linus Torvalds 已提交
4594 4595 4596 4597 4598
 * zero in this (rare) case, and we handle it by continuing to scan the queue.
 */
static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
			     int nr_exclusive, int sync, void *key)
{
4599
	wait_queue_t *curr, *next;
L
Linus Torvalds 已提交
4600

4601
	list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
4602 4603
		unsigned flags = curr->flags;

L
Linus Torvalds 已提交
4604
		if (curr->func(curr, mode, sync, key) &&
4605
				(flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
L
Linus Torvalds 已提交
4606 4607 4608 4609 4610 4611 4612 4613 4614
			break;
	}
}

/**
 * __wake_up - wake up threads blocked on a waitqueue.
 * @q: the waitqueue
 * @mode: which threads
 * @nr_exclusive: how many wake-one or wake-many threads to wake up
4615
 * @key: is directly passed to the wakeup function
L
Linus Torvalds 已提交
4616
 */
4617
void __wake_up(wait_queue_head_t *q, unsigned int mode,
I
Ingo Molnar 已提交
4618
			int nr_exclusive, void *key)
L
Linus Torvalds 已提交
4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629 4630
{
	unsigned long flags;

	spin_lock_irqsave(&q->lock, flags);
	__wake_up_common(q, mode, nr_exclusive, 0, key);
	spin_unlock_irqrestore(&q->lock, flags);
}
EXPORT_SYMBOL(__wake_up);

/*
 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
 */
4631
void __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
L
Linus Torvalds 已提交
4632 4633 4634 4635 4636
{
	__wake_up_common(q, mode, 1, 0, NULL);
}

/**
4637
 * __wake_up_sync - wake up threads blocked on a waitqueue.
L
Linus Torvalds 已提交
4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648
 * @q: the waitqueue
 * @mode: which threads
 * @nr_exclusive: how many wake-one or wake-many threads to wake up
 *
 * The sync wakeup differs that the waker knows that it will schedule
 * away soon, so while the target thread will be woken up, it will not
 * be migrated to another CPU - ie. the two threads are 'synchronized'
 * with each other. This can prevent needless bouncing between CPUs.
 *
 * On UP it can prevent extra preemption.
 */
4649
void
I
Ingo Molnar 已提交
4650
__wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
L
Linus Torvalds 已提交
4651 4652 4653 4654 4655 4656 4657 4658 4659 4660 4661 4662 4663 4664 4665 4666
{
	unsigned long flags;
	int sync = 1;

	if (unlikely(!q))
		return;

	if (unlikely(!nr_exclusive))
		sync = 0;

	spin_lock_irqsave(&q->lock, flags);
	__wake_up_common(q, mode, nr_exclusive, sync, NULL);
	spin_unlock_irqrestore(&q->lock, flags);
}
EXPORT_SYMBOL_GPL(__wake_up_sync);	/* For internal use only */

4667 4668 4669 4670 4671 4672 4673 4674 4675
/**
 * complete: - signals a single thread waiting on this completion
 * @x:  holds the state of this particular completion
 *
 * This will wake up a single thread waiting on this completion. Threads will be
 * awakened in the same order in which they were queued.
 *
 * See also complete_all(), wait_for_completion() and related routines.
 */
4676
void complete(struct completion *x)
L
Linus Torvalds 已提交
4677 4678 4679 4680 4681
{
	unsigned long flags;

	spin_lock_irqsave(&x->wait.lock, flags);
	x->done++;
4682
	__wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
L
Linus Torvalds 已提交
4683 4684 4685 4686
	spin_unlock_irqrestore(&x->wait.lock, flags);
}
EXPORT_SYMBOL(complete);

4687 4688 4689 4690 4691 4692
/**
 * complete_all: - signals all threads waiting on this completion
 * @x:  holds the state of this particular completion
 *
 * This will wake up all threads waiting on this particular completion event.
 */
4693
void complete_all(struct completion *x)
L
Linus Torvalds 已提交
4694 4695 4696 4697 4698
{
	unsigned long flags;

	spin_lock_irqsave(&x->wait.lock, flags);
	x->done += UINT_MAX/2;
4699
	__wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
L
Linus Torvalds 已提交
4700 4701 4702 4703
	spin_unlock_irqrestore(&x->wait.lock, flags);
}
EXPORT_SYMBOL(complete_all);

4704 4705
static inline long __sched
do_wait_for_common(struct completion *x, long timeout, int state)
L
Linus Torvalds 已提交
4706 4707 4708 4709 4710 4711 4712
{
	if (!x->done) {
		DECLARE_WAITQUEUE(wait, current);

		wait.flags |= WQ_FLAG_EXCLUSIVE;
		__add_wait_queue_tail(&x->wait, &wait);
		do {
4713
			if (signal_pending_state(state, current)) {
4714 4715
				timeout = -ERESTARTSYS;
				break;
4716 4717
			}
			__set_current_state(state);
L
Linus Torvalds 已提交
4718 4719 4720
			spin_unlock_irq(&x->wait.lock);
			timeout = schedule_timeout(timeout);
			spin_lock_irq(&x->wait.lock);
4721
		} while (!x->done && timeout);
L
Linus Torvalds 已提交
4722
		__remove_wait_queue(&x->wait, &wait);
4723 4724
		if (!x->done)
			return timeout;
L
Linus Torvalds 已提交
4725 4726
	}
	x->done--;
4727
	return timeout ?: 1;
L
Linus Torvalds 已提交
4728 4729
}

4730 4731
static long __sched
wait_for_common(struct completion *x, long timeout, int state)
L
Linus Torvalds 已提交
4732 4733 4734 4735
{
	might_sleep();

	spin_lock_irq(&x->wait.lock);
4736
	timeout = do_wait_for_common(x, timeout, state);
L
Linus Torvalds 已提交
4737
	spin_unlock_irq(&x->wait.lock);
4738 4739
	return timeout;
}
L
Linus Torvalds 已提交
4740

4741 4742 4743 4744 4745 4746 4747 4748 4749 4750
/**
 * wait_for_completion: - waits for completion of a task
 * @x:  holds the state of this particular completion
 *
 * This waits to be signaled for completion of a specific task. It is NOT
 * interruptible and there is no timeout.
 *
 * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
 * and interrupt capability. Also see complete().
 */
4751
void __sched wait_for_completion(struct completion *x)
4752 4753
{
	wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
L
Linus Torvalds 已提交
4754
}
4755
EXPORT_SYMBOL(wait_for_completion);
L
Linus Torvalds 已提交
4756

4757 4758 4759 4760 4761 4762 4763 4764 4765
/**
 * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
 * @x:  holds the state of this particular completion
 * @timeout:  timeout value in jiffies
 *
 * This waits for either a completion of a specific task to be signaled or for a
 * specified timeout to expire. The timeout is in jiffies. It is not
 * interruptible.
 */
4766
unsigned long __sched
4767
wait_for_completion_timeout(struct completion *x, unsigned long timeout)
L
Linus Torvalds 已提交
4768
{
4769
	return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
L
Linus Torvalds 已提交
4770
}
4771
EXPORT_SYMBOL(wait_for_completion_timeout);
L
Linus Torvalds 已提交
4772

4773 4774 4775 4776 4777 4778 4779
/**
 * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
 * @x:  holds the state of this particular completion
 *
 * This waits for completion of a specific task to be signaled. It is
 * interruptible.
 */
4780
int __sched wait_for_completion_interruptible(struct completion *x)
I
Ingo Molnar 已提交
4781
{
4782 4783 4784 4785
	long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
	if (t == -ERESTARTSYS)
		return t;
	return 0;
I
Ingo Molnar 已提交
4786
}
4787
EXPORT_SYMBOL(wait_for_completion_interruptible);
L
Linus Torvalds 已提交
4788

4789 4790 4791 4792 4793 4794 4795 4796
/**
 * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
 * @x:  holds the state of this particular completion
 * @timeout:  timeout value in jiffies
 *
 * This waits for either a completion of a specific task to be signaled or for a
 * specified timeout to expire. It is interruptible. The timeout is in jiffies.
 */
4797
unsigned long __sched
4798 4799
wait_for_completion_interruptible_timeout(struct completion *x,
					  unsigned long timeout)
I
Ingo Molnar 已提交
4800
{
4801
	return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
I
Ingo Molnar 已提交
4802
}
4803
EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
L
Linus Torvalds 已提交
4804

4805 4806 4807 4808 4809 4810 4811
/**
 * wait_for_completion_killable: - waits for completion of a task (killable)
 * @x:  holds the state of this particular completion
 *
 * This waits to be signaled for completion of a specific task. It can be
 * interrupted by a kill signal.
 */
M
Matthew Wilcox 已提交
4812 4813 4814 4815 4816 4817 4818 4819 4820
int __sched wait_for_completion_killable(struct completion *x)
{
	long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
	if (t == -ERESTARTSYS)
		return t;
	return 0;
}
EXPORT_SYMBOL(wait_for_completion_killable);

4821 4822 4823 4824 4825 4826 4827 4828 4829 4830 4831 4832 4833 4834 4835 4836 4837 4838 4839 4840 4841 4842 4843 4844 4845 4846 4847 4848 4849 4850 4851 4852 4853 4854 4855 4856 4857 4858 4859 4860 4861 4862 4863 4864 4865 4866
/**
 *	try_wait_for_completion - try to decrement a completion without blocking
 *	@x:	completion structure
 *
 *	Returns: 0 if a decrement cannot be done without blocking
 *		 1 if a decrement succeeded.
 *
 *	If a completion is being used as a counting completion,
 *	attempt to decrement the counter without blocking. This
 *	enables us to avoid waiting if the resource the completion
 *	is protecting is not available.
 */
bool try_wait_for_completion(struct completion *x)
{
	int ret = 1;

	spin_lock_irq(&x->wait.lock);
	if (!x->done)
		ret = 0;
	else
		x->done--;
	spin_unlock_irq(&x->wait.lock);
	return ret;
}
EXPORT_SYMBOL(try_wait_for_completion);

/**
 *	completion_done - Test to see if a completion has any waiters
 *	@x:	completion structure
 *
 *	Returns: 0 if there are waiters (wait_for_completion() in progress)
 *		 1 if there are no waiters.
 *
 */
bool completion_done(struct completion *x)
{
	int ret = 1;

	spin_lock_irq(&x->wait.lock);
	if (!x->done)
		ret = 0;
	spin_unlock_irq(&x->wait.lock);
	return ret;
}
EXPORT_SYMBOL(completion_done);

4867 4868
static long __sched
sleep_on_common(wait_queue_head_t *q, int state, long timeout)
L
Linus Torvalds 已提交
4869
{
I
Ingo Molnar 已提交
4870 4871 4872 4873
	unsigned long flags;
	wait_queue_t wait;

	init_waitqueue_entry(&wait, current);
L
Linus Torvalds 已提交
4874

4875
	__set_current_state(state);
L
Linus Torvalds 已提交
4876

4877 4878 4879 4880 4881 4882 4883 4884 4885 4886 4887 4888 4889 4890
	spin_lock_irqsave(&q->lock, flags);
	__add_wait_queue(q, &wait);
	spin_unlock(&q->lock);
	timeout = schedule_timeout(timeout);
	spin_lock_irq(&q->lock);
	__remove_wait_queue(q, &wait);
	spin_unlock_irqrestore(&q->lock, flags);

	return timeout;
}

void __sched interruptible_sleep_on(wait_queue_head_t *q)
{
	sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
L
Linus Torvalds 已提交
4891 4892 4893
}
EXPORT_SYMBOL(interruptible_sleep_on);

I
Ingo Molnar 已提交
4894
long __sched
I
Ingo Molnar 已提交
4895
interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
L
Linus Torvalds 已提交
4896
{
4897
	return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
L
Linus Torvalds 已提交
4898 4899 4900
}
EXPORT_SYMBOL(interruptible_sleep_on_timeout);

I
Ingo Molnar 已提交
4901
void __sched sleep_on(wait_queue_head_t *q)
L
Linus Torvalds 已提交
4902
{
4903
	sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
L
Linus Torvalds 已提交
4904 4905 4906
}
EXPORT_SYMBOL(sleep_on);

I
Ingo Molnar 已提交
4907
long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
L
Linus Torvalds 已提交
4908
{
4909
	return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
L
Linus Torvalds 已提交
4910 4911 4912
}
EXPORT_SYMBOL(sleep_on_timeout);

4913 4914 4915 4916 4917 4918 4919 4920 4921 4922 4923 4924
#ifdef CONFIG_RT_MUTEXES

/*
 * rt_mutex_setprio - set the current priority of a task
 * @p: task
 * @prio: prio value (kernel-internal form)
 *
 * This function changes the 'effective' priority of a task. It does
 * not touch ->normal_prio like __setscheduler().
 *
 * Used by the rt_mutex code to implement priority inheritance logic.
 */
4925
void rt_mutex_setprio(struct task_struct *p, int prio)
4926 4927
{
	unsigned long flags;
4928
	int oldprio, on_rq, running;
4929
	struct rq *rq;
4930
	const struct sched_class *prev_class = p->sched_class;
4931 4932 4933 4934

	BUG_ON(prio < 0 || prio > MAX_PRIO);

	rq = task_rq_lock(p, &flags);
I
Ingo Molnar 已提交
4935
	update_rq_clock(rq);
4936

4937
	oldprio = p->prio;
I
Ingo Molnar 已提交
4938
	on_rq = p->se.on_rq;
4939
	running = task_current(rq, p);
4940
	if (on_rq)
4941
		dequeue_task(rq, p, 0);
4942 4943
	if (running)
		p->sched_class->put_prev_task(rq, p);
I
Ingo Molnar 已提交
4944 4945 4946 4947 4948 4949

	if (rt_prio(prio))
		p->sched_class = &rt_sched_class;
	else
		p->sched_class = &fair_sched_class;

4950 4951
	p->prio = prio;

4952 4953
	if (running)
		p->sched_class->set_curr_task(rq);
I
Ingo Molnar 已提交
4954
	if (on_rq) {
4955
		enqueue_task(rq, p, 0);
4956 4957

		check_class_changed(rq, p, prev_class, oldprio, running);
4958 4959 4960 4961 4962 4963
	}
	task_rq_unlock(rq, &flags);
}

#endif

4964
void set_user_nice(struct task_struct *p, long nice)
L
Linus Torvalds 已提交
4965
{
I
Ingo Molnar 已提交
4966
	int old_prio, delta, on_rq;
L
Linus Torvalds 已提交
4967
	unsigned long flags;
4968
	struct rq *rq;
L
Linus Torvalds 已提交
4969 4970 4971 4972 4973 4974 4975 4976

	if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
		return;
	/*
	 * We have to be careful, if called from sys_setpriority(),
	 * the task might be in the middle of scheduling on another CPU.
	 */
	rq = task_rq_lock(p, &flags);
I
Ingo Molnar 已提交
4977
	update_rq_clock(rq);
L
Linus Torvalds 已提交
4978 4979 4980 4981
	/*
	 * The RT priorities are set via sched_setscheduler(), but we still
	 * allow the 'normal' nice value to be set - but as expected
	 * it wont have any effect on scheduling until the task is
I
Ingo Molnar 已提交
4982
	 * SCHED_FIFO/SCHED_RR:
L
Linus Torvalds 已提交
4983
	 */
4984
	if (task_has_rt_policy(p)) {
L
Linus Torvalds 已提交
4985 4986 4987
		p->static_prio = NICE_TO_PRIO(nice);
		goto out_unlock;
	}
I
Ingo Molnar 已提交
4988
	on_rq = p->se.on_rq;
4989
	if (on_rq)
4990
		dequeue_task(rq, p, 0);
L
Linus Torvalds 已提交
4991 4992

	p->static_prio = NICE_TO_PRIO(nice);
4993
	set_load_weight(p);
4994 4995 4996
	old_prio = p->prio;
	p->prio = effective_prio(p);
	delta = p->prio - old_prio;
L
Linus Torvalds 已提交
4997

I
Ingo Molnar 已提交
4998
	if (on_rq) {
4999
		enqueue_task(rq, p, 0);
L
Linus Torvalds 已提交
5000
		/*
5001 5002
		 * If the task increased its priority or is running and
		 * lowered its priority, then reschedule its CPU:
L
Linus Torvalds 已提交
5003
		 */
5004
		if (delta < 0 || (delta > 0 && task_running(rq, p)))
L
Linus Torvalds 已提交
5005 5006 5007 5008 5009 5010 5011
			resched_task(rq->curr);
	}
out_unlock:
	task_rq_unlock(rq, &flags);
}
EXPORT_SYMBOL(set_user_nice);

M
Matt Mackall 已提交
5012 5013 5014 5015 5016
/*
 * can_nice - check if a task can reduce its nice value
 * @p: task
 * @nice: nice value
 */
5017
int can_nice(const struct task_struct *p, const int nice)
M
Matt Mackall 已提交
5018
{
5019 5020
	/* convert nice value [19,-20] to rlimit style value [1,40] */
	int nice_rlim = 20 - nice;
5021

M
Matt Mackall 已提交
5022 5023 5024 5025
	return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
		capable(CAP_SYS_NICE));
}

L
Linus Torvalds 已提交
5026 5027 5028 5029 5030 5031 5032 5033 5034 5035 5036
#ifdef __ARCH_WANT_SYS_NICE

/*
 * sys_nice - change the priority of the current process.
 * @increment: priority increment
 *
 * sys_setpriority is a more generic, but much slower function that
 * does similar things.
 */
asmlinkage long sys_nice(int increment)
{
5037
	long nice, retval;
L
Linus Torvalds 已提交
5038 5039 5040 5041 5042 5043

	/*
	 * Setpriority might change our priority at the same moment.
	 * We don't have to worry. Conceptually one call occurs first
	 * and we have a single winner.
	 */
M
Matt Mackall 已提交
5044 5045
	if (increment < -40)
		increment = -40;
L
Linus Torvalds 已提交
5046 5047 5048 5049 5050 5051 5052 5053 5054
	if (increment > 40)
		increment = 40;

	nice = PRIO_TO_NICE(current->static_prio) + increment;
	if (nice < -20)
		nice = -20;
	if (nice > 19)
		nice = 19;

M
Matt Mackall 已提交
5055 5056 5057
	if (increment < 0 && !can_nice(current, nice))
		return -EPERM;

L
Linus Torvalds 已提交
5058 5059 5060 5061 5062 5063 5064 5065 5066 5067 5068 5069 5070 5071 5072 5073 5074 5075
	retval = security_task_setnice(current, nice);
	if (retval)
		return retval;

	set_user_nice(current, nice);
	return 0;
}

#endif

/**
 * task_prio - return the priority value of a given task.
 * @p: the task in question.
 *
 * This is the priority value as seen by users in /proc.
 * RT tasks are offset by -200. Normal tasks are centered
 * around 0, value goes from -16 to +15.
 */
5076
int task_prio(const struct task_struct *p)
L
Linus Torvalds 已提交
5077 5078 5079 5080 5081 5082 5083 5084
{
	return p->prio - MAX_RT_PRIO;
}

/**
 * task_nice - return the nice value of a given task.
 * @p: the task in question.
 */
5085
int task_nice(const struct task_struct *p)
L
Linus Torvalds 已提交
5086 5087 5088
{
	return TASK_NICE(p);
}
P
Pavel Roskin 已提交
5089
EXPORT_SYMBOL(task_nice);
L
Linus Torvalds 已提交
5090 5091 5092 5093 5094 5095 5096 5097 5098 5099 5100 5101 5102 5103

/**
 * idle_cpu - is a given cpu idle currently?
 * @cpu: the processor in question.
 */
int idle_cpu(int cpu)
{
	return cpu_curr(cpu) == cpu_rq(cpu)->idle;
}

/**
 * idle_task - return the idle task for a given cpu.
 * @cpu: the processor in question.
 */
5104
struct task_struct *idle_task(int cpu)
L
Linus Torvalds 已提交
5105 5106 5107 5108 5109 5110 5111 5112
{
	return cpu_rq(cpu)->idle;
}

/**
 * find_process_by_pid - find a process with a matching PID value.
 * @pid: the pid in question.
 */
A
Alexey Dobriyan 已提交
5113
static struct task_struct *find_process_by_pid(pid_t pid)
L
Linus Torvalds 已提交
5114
{
5115
	return pid ? find_task_by_vpid(pid) : current;
L
Linus Torvalds 已提交
5116 5117 5118
}

/* Actually do priority change: must hold rq lock. */
I
Ingo Molnar 已提交
5119 5120
static void
__setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
L
Linus Torvalds 已提交
5121
{
I
Ingo Molnar 已提交
5122
	BUG_ON(p->se.on_rq);
5123

L
Linus Torvalds 已提交
5124
	p->policy = policy;
I
Ingo Molnar 已提交
5125 5126 5127 5128 5129 5130 5131 5132 5133 5134 5135 5136
	switch (p->policy) {
	case SCHED_NORMAL:
	case SCHED_BATCH:
	case SCHED_IDLE:
		p->sched_class = &fair_sched_class;
		break;
	case SCHED_FIFO:
	case SCHED_RR:
		p->sched_class = &rt_sched_class;
		break;
	}

L
Linus Torvalds 已提交
5137
	p->rt_priority = prio;
5138 5139 5140
	p->normal_prio = normal_prio(p);
	/* we are holding p->pi_lock already */
	p->prio = rt_mutex_getprio(p);
5141
	set_load_weight(p);
L
Linus Torvalds 已提交
5142 5143
}

5144 5145
static int __sched_setscheduler(struct task_struct *p, int policy,
				struct sched_param *param, bool user)
L
Linus Torvalds 已提交
5146
{
5147
	int retval, oldprio, oldpolicy = -1, on_rq, running;
L
Linus Torvalds 已提交
5148
	unsigned long flags;
5149
	const struct sched_class *prev_class = p->sched_class;
5150
	struct rq *rq;
L
Linus Torvalds 已提交
5151

5152 5153
	/* may grab non-irq protected spin_locks */
	BUG_ON(in_interrupt());
L
Linus Torvalds 已提交
5154 5155 5156 5157 5158
recheck:
	/* double check policy once rq lock held */
	if (policy < 0)
		policy = oldpolicy = p->policy;
	else if (policy != SCHED_FIFO && policy != SCHED_RR &&
I
Ingo Molnar 已提交
5159 5160
			policy != SCHED_NORMAL && policy != SCHED_BATCH &&
			policy != SCHED_IDLE)
5161
		return -EINVAL;
L
Linus Torvalds 已提交
5162 5163
	/*
	 * Valid priorities for SCHED_FIFO and SCHED_RR are
I
Ingo Molnar 已提交
5164 5165
	 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
	 * SCHED_BATCH and SCHED_IDLE is 0.
L
Linus Torvalds 已提交
5166 5167
	 */
	if (param->sched_priority < 0 ||
I
Ingo Molnar 已提交
5168
	    (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
5169
	    (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
L
Linus Torvalds 已提交
5170
		return -EINVAL;
5171
	if (rt_policy(policy) != (param->sched_priority != 0))
L
Linus Torvalds 已提交
5172 5173
		return -EINVAL;

5174 5175 5176
	/*
	 * Allow unprivileged RT tasks to decrease priority:
	 */
5177
	if (user && !capable(CAP_SYS_NICE)) {
5178
		if (rt_policy(policy)) {
5179 5180 5181 5182 5183 5184 5185 5186 5187 5188 5189 5190 5191 5192 5193 5194
			unsigned long rlim_rtprio;

			if (!lock_task_sighand(p, &flags))
				return -ESRCH;
			rlim_rtprio = p->signal->rlim[RLIMIT_RTPRIO].rlim_cur;
			unlock_task_sighand(p, &flags);

			/* can't set/change the rt policy */
			if (policy != p->policy && !rlim_rtprio)
				return -EPERM;

			/* can't increase priority */
			if (param->sched_priority > p->rt_priority &&
			    param->sched_priority > rlim_rtprio)
				return -EPERM;
		}
I
Ingo Molnar 已提交
5195 5196 5197 5198 5199 5200
		/*
		 * Like positive nice levels, dont allow tasks to
		 * move out of SCHED_IDLE either:
		 */
		if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
			return -EPERM;
5201

5202 5203 5204 5205 5206
		/* can't change other user's priorities */
		if ((current->euid != p->euid) &&
		    (current->euid != p->uid))
			return -EPERM;
	}
L
Linus Torvalds 已提交
5207

5208
	if (user) {
5209
#ifdef CONFIG_RT_GROUP_SCHED
5210 5211 5212 5213
		/*
		 * Do not allow realtime tasks into groups that have no runtime
		 * assigned.
		 */
P
Peter Zijlstra 已提交
5214 5215
		if (rt_bandwidth_enabled() && rt_policy(policy) &&
				task_group(p)->rt_bandwidth.rt_runtime == 0)
5216
			return -EPERM;
5217 5218
#endif

5219 5220 5221 5222 5223
		retval = security_task_setscheduler(p, policy, param);
		if (retval)
			return retval;
	}

5224 5225 5226 5227 5228
	/*
	 * make sure no PI-waiters arrive (or leave) while we are
	 * changing the priority of the task:
	 */
	spin_lock_irqsave(&p->pi_lock, flags);
L
Linus Torvalds 已提交
5229 5230 5231 5232
	/*
	 * To be able to change p->policy safely, the apropriate
	 * runqueue lock must be held.
	 */
5233
	rq = __task_rq_lock(p);
L
Linus Torvalds 已提交
5234 5235 5236
	/* recheck policy now with rq lock held */
	if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
		policy = oldpolicy = -1;
5237 5238
		__task_rq_unlock(rq);
		spin_unlock_irqrestore(&p->pi_lock, flags);
L
Linus Torvalds 已提交
5239 5240
		goto recheck;
	}
I
Ingo Molnar 已提交
5241
	update_rq_clock(rq);
I
Ingo Molnar 已提交
5242
	on_rq = p->se.on_rq;
5243
	running = task_current(rq, p);
5244
	if (on_rq)
5245
		deactivate_task(rq, p, 0);
5246 5247
	if (running)
		p->sched_class->put_prev_task(rq, p);
5248

L
Linus Torvalds 已提交
5249
	oldprio = p->prio;
I
Ingo Molnar 已提交
5250
	__setscheduler(rq, p, policy, param->sched_priority);
5251

5252 5253
	if (running)
		p->sched_class->set_curr_task(rq);
I
Ingo Molnar 已提交
5254 5255
	if (on_rq) {
		activate_task(rq, p, 0);
5256 5257

		check_class_changed(rq, p, prev_class, oldprio, running);
L
Linus Torvalds 已提交
5258
	}
5259 5260 5261
	__task_rq_unlock(rq);
	spin_unlock_irqrestore(&p->pi_lock, flags);

5262 5263
	rt_mutex_adjust_pi(p);

L
Linus Torvalds 已提交
5264 5265
	return 0;
}
5266 5267 5268 5269 5270 5271 5272 5273 5274 5275 5276 5277 5278 5279

/**
 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
 * @p: the task in question.
 * @policy: new policy.
 * @param: structure containing the new RT priority.
 *
 * NOTE that the task may be already dead.
 */
int sched_setscheduler(struct task_struct *p, int policy,
		       struct sched_param *param)
{
	return __sched_setscheduler(p, policy, param, true);
}
L
Linus Torvalds 已提交
5280 5281
EXPORT_SYMBOL_GPL(sched_setscheduler);

5282 5283 5284 5285 5286 5287 5288 5289 5290 5291 5292 5293 5294 5295 5296 5297 5298
/**
 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
 * @p: the task in question.
 * @policy: new policy.
 * @param: structure containing the new RT priority.
 *
 * Just like sched_setscheduler, only don't bother checking if the
 * current context has permission.  For example, this is needed in
 * stop_machine(): we create temporary high priority worker threads,
 * but our caller might not have that capability.
 */
int sched_setscheduler_nocheck(struct task_struct *p, int policy,
			       struct sched_param *param)
{
	return __sched_setscheduler(p, policy, param, false);
}

I
Ingo Molnar 已提交
5299 5300
static int
do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
L
Linus Torvalds 已提交
5301 5302 5303
{
	struct sched_param lparam;
	struct task_struct *p;
5304
	int retval;
L
Linus Torvalds 已提交
5305 5306 5307 5308 5309

	if (!param || pid < 0)
		return -EINVAL;
	if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
		return -EFAULT;
5310 5311 5312

	rcu_read_lock();
	retval = -ESRCH;
L
Linus Torvalds 已提交
5313
	p = find_process_by_pid(pid);
5314 5315 5316
	if (p != NULL)
		retval = sched_setscheduler(p, policy, &lparam);
	rcu_read_unlock();
5317

L
Linus Torvalds 已提交
5318 5319 5320 5321 5322 5323 5324 5325 5326
	return retval;
}

/**
 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
 * @pid: the pid in question.
 * @policy: new policy.
 * @param: structure containing the new RT priority.
 */
I
Ingo Molnar 已提交
5327 5328
asmlinkage long
sys_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
L
Linus Torvalds 已提交
5329
{
5330 5331 5332 5333
	/* negative values for policy are not valid */
	if (policy < 0)
		return -EINVAL;

L
Linus Torvalds 已提交
5334 5335 5336 5337 5338 5339 5340 5341 5342 5343 5344 5345 5346 5347 5348 5349 5350 5351 5352
	return do_sched_setscheduler(pid, policy, param);
}

/**
 * sys_sched_setparam - set/change the RT priority of a thread
 * @pid: the pid in question.
 * @param: structure containing the new RT priority.
 */
asmlinkage long sys_sched_setparam(pid_t pid, struct sched_param __user *param)
{
	return do_sched_setscheduler(pid, -1, param);
}

/**
 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
 * @pid: the pid in question.
 */
asmlinkage long sys_sched_getscheduler(pid_t pid)
{
5353
	struct task_struct *p;
5354
	int retval;
L
Linus Torvalds 已提交
5355 5356

	if (pid < 0)
5357
		return -EINVAL;
L
Linus Torvalds 已提交
5358 5359 5360 5361 5362 5363 5364 5365 5366 5367 5368 5369 5370 5371 5372 5373 5374 5375 5376 5377 5378

	retval = -ESRCH;
	read_lock(&tasklist_lock);
	p = find_process_by_pid(pid);
	if (p) {
		retval = security_task_getscheduler(p);
		if (!retval)
			retval = p->policy;
	}
	read_unlock(&tasklist_lock);
	return retval;
}

/**
 * sys_sched_getscheduler - get the RT priority of a thread
 * @pid: the pid in question.
 * @param: structure containing the RT priority.
 */
asmlinkage long sys_sched_getparam(pid_t pid, struct sched_param __user *param)
{
	struct sched_param lp;
5379
	struct task_struct *p;
5380
	int retval;
L
Linus Torvalds 已提交
5381 5382

	if (!param || pid < 0)
5383
		return -EINVAL;
L
Linus Torvalds 已提交
5384 5385 5386 5387 5388 5389 5390 5391 5392 5393 5394 5395 5396 5397 5398 5399 5400 5401 5402 5403 5404 5405 5406 5407 5408 5409

	read_lock(&tasklist_lock);
	p = find_process_by_pid(pid);
	retval = -ESRCH;
	if (!p)
		goto out_unlock;

	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

	lp.sched_priority = p->rt_priority;
	read_unlock(&tasklist_lock);

	/*
	 * This one might sleep, we cannot do it with a spinlock held ...
	 */
	retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;

	return retval;

out_unlock:
	read_unlock(&tasklist_lock);
	return retval;
}

5410
long sched_setaffinity(pid_t pid, const cpumask_t *in_mask)
L
Linus Torvalds 已提交
5411 5412
{
	cpumask_t cpus_allowed;
5413
	cpumask_t new_mask = *in_mask;
5414 5415
	struct task_struct *p;
	int retval;
L
Linus Torvalds 已提交
5416

5417
	get_online_cpus();
L
Linus Torvalds 已提交
5418 5419 5420 5421 5422
	read_lock(&tasklist_lock);

	p = find_process_by_pid(pid);
	if (!p) {
		read_unlock(&tasklist_lock);
5423
		put_online_cpus();
L
Linus Torvalds 已提交
5424 5425 5426 5427 5428
		return -ESRCH;
	}

	/*
	 * It is not safe to call set_cpus_allowed with the
I
Ingo Molnar 已提交
5429
	 * tasklist_lock held. We will bump the task_struct's
L
Linus Torvalds 已提交
5430 5431 5432 5433 5434 5435 5436 5437 5438 5439
	 * usage count and then drop tasklist_lock.
	 */
	get_task_struct(p);
	read_unlock(&tasklist_lock);

	retval = -EPERM;
	if ((current->euid != p->euid) && (current->euid != p->uid) &&
			!capable(CAP_SYS_NICE))
		goto out_unlock;

5440 5441 5442 5443
	retval = security_task_setscheduler(p, 0, NULL);
	if (retval)
		goto out_unlock;

5444
	cpuset_cpus_allowed(p, &cpus_allowed);
L
Linus Torvalds 已提交
5445
	cpus_and(new_mask, new_mask, cpus_allowed);
P
Paul Menage 已提交
5446
 again:
5447
	retval = set_cpus_allowed_ptr(p, &new_mask);
L
Linus Torvalds 已提交
5448

P
Paul Menage 已提交
5449
	if (!retval) {
5450
		cpuset_cpus_allowed(p, &cpus_allowed);
P
Paul Menage 已提交
5451 5452 5453 5454 5455 5456 5457 5458 5459 5460
		if (!cpus_subset(new_mask, cpus_allowed)) {
			/*
			 * We must have raced with a concurrent cpuset
			 * update. Just reset the cpus_allowed to the
			 * cpuset's cpus_allowed
			 */
			new_mask = cpus_allowed;
			goto again;
		}
	}
L
Linus Torvalds 已提交
5461 5462
out_unlock:
	put_task_struct(p);
5463
	put_online_cpus();
L
Linus Torvalds 已提交
5464 5465 5466 5467 5468 5469 5470 5471 5472 5473 5474 5475 5476 5477 5478 5479 5480 5481 5482 5483 5484 5485 5486 5487 5488 5489 5490 5491 5492 5493
	return retval;
}

static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
			     cpumask_t *new_mask)
{
	if (len < sizeof(cpumask_t)) {
		memset(new_mask, 0, sizeof(cpumask_t));
	} else if (len > sizeof(cpumask_t)) {
		len = sizeof(cpumask_t);
	}
	return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
}

/**
 * sys_sched_setaffinity - set the cpu affinity of a process
 * @pid: pid of the process
 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
 * @user_mask_ptr: user-space pointer to the new cpu mask
 */
asmlinkage long sys_sched_setaffinity(pid_t pid, unsigned int len,
				      unsigned long __user *user_mask_ptr)
{
	cpumask_t new_mask;
	int retval;

	retval = get_user_cpu_mask(user_mask_ptr, len, &new_mask);
	if (retval)
		return retval;

5494
	return sched_setaffinity(pid, &new_mask);
L
Linus Torvalds 已提交
5495 5496 5497 5498
}

long sched_getaffinity(pid_t pid, cpumask_t *mask)
{
5499
	struct task_struct *p;
L
Linus Torvalds 已提交
5500 5501
	int retval;

5502
	get_online_cpus();
L
Linus Torvalds 已提交
5503 5504 5505 5506 5507 5508 5509
	read_lock(&tasklist_lock);

	retval = -ESRCH;
	p = find_process_by_pid(pid);
	if (!p)
		goto out_unlock;

5510 5511 5512 5513
	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

5514
	cpus_and(*mask, p->cpus_allowed, cpu_online_map);
L
Linus Torvalds 已提交
5515 5516 5517

out_unlock:
	read_unlock(&tasklist_lock);
5518
	put_online_cpus();
L
Linus Torvalds 已提交
5519

5520
	return retval;
L
Linus Torvalds 已提交
5521 5522 5523 5524 5525 5526 5527 5528 5529 5530 5531 5532 5533 5534 5535 5536 5537 5538 5539 5540 5541 5542 5543 5544 5545 5546 5547 5548 5549 5550
}

/**
 * sys_sched_getaffinity - get the cpu affinity of a process
 * @pid: pid of the process
 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
 * @user_mask_ptr: user-space pointer to hold the current cpu mask
 */
asmlinkage long sys_sched_getaffinity(pid_t pid, unsigned int len,
				      unsigned long __user *user_mask_ptr)
{
	int ret;
	cpumask_t mask;

	if (len < sizeof(cpumask_t))
		return -EINVAL;

	ret = sched_getaffinity(pid, &mask);
	if (ret < 0)
		return ret;

	if (copy_to_user(user_mask_ptr, &mask, sizeof(cpumask_t)))
		return -EFAULT;

	return sizeof(cpumask_t);
}

/**
 * sys_sched_yield - yield the current processor to other threads.
 *
I
Ingo Molnar 已提交
5551 5552
 * This function yields the current CPU to other tasks. If there are no
 * other threads running on this CPU then this function will return.
L
Linus Torvalds 已提交
5553 5554 5555
 */
asmlinkage long sys_sched_yield(void)
{
5556
	struct rq *rq = this_rq_lock();
L
Linus Torvalds 已提交
5557

5558
	schedstat_inc(rq, yld_count);
5559
	current->sched_class->yield_task(rq);
L
Linus Torvalds 已提交
5560 5561 5562 5563 5564 5565

	/*
	 * Since we are going to call schedule() anyway, there's
	 * no need to preempt or enable interrupts:
	 */
	__release(rq->lock);
5566
	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
L
Linus Torvalds 已提交
5567 5568 5569 5570 5571 5572 5573 5574
	_raw_spin_unlock(&rq->lock);
	preempt_enable_no_resched();

	schedule();

	return 0;
}

A
Andrew Morton 已提交
5575
static void __cond_resched(void)
L
Linus Torvalds 已提交
5576
{
5577 5578 5579
#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
	__might_sleep(__FILE__, __LINE__);
#endif
5580 5581 5582 5583 5584
	/*
	 * The BKS might be reacquired before we have dropped
	 * PREEMPT_ACTIVE, which could trigger a second
	 * cond_resched() call.
	 */
L
Linus Torvalds 已提交
5585 5586 5587 5588 5589 5590 5591
	do {
		add_preempt_count(PREEMPT_ACTIVE);
		schedule();
		sub_preempt_count(PREEMPT_ACTIVE);
	} while (need_resched());
}

5592
int __sched _cond_resched(void)
L
Linus Torvalds 已提交
5593
{
5594 5595
	if (need_resched() && !(preempt_count() & PREEMPT_ACTIVE) &&
					system_state == SYSTEM_RUNNING) {
L
Linus Torvalds 已提交
5596 5597 5598 5599 5600
		__cond_resched();
		return 1;
	}
	return 0;
}
5601
EXPORT_SYMBOL(_cond_resched);
L
Linus Torvalds 已提交
5602 5603 5604 5605 5606

/*
 * cond_resched_lock() - if a reschedule is pending, drop the given lock,
 * call schedule, and on return reacquire the lock.
 *
I
Ingo Molnar 已提交
5607
 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
L
Linus Torvalds 已提交
5608 5609 5610
 * operations here to prevent schedule() from being called twice (once via
 * spin_unlock(), once by hand).
 */
I
Ingo Molnar 已提交
5611
int cond_resched_lock(spinlock_t *lock)
L
Linus Torvalds 已提交
5612
{
N
Nick Piggin 已提交
5613
	int resched = need_resched() && system_state == SYSTEM_RUNNING;
J
Jan Kara 已提交
5614 5615
	int ret = 0;

N
Nick Piggin 已提交
5616
	if (spin_needbreak(lock) || resched) {
L
Linus Torvalds 已提交
5617
		spin_unlock(lock);
N
Nick Piggin 已提交
5618 5619 5620 5621
		if (resched && need_resched())
			__cond_resched();
		else
			cpu_relax();
J
Jan Kara 已提交
5622
		ret = 1;
L
Linus Torvalds 已提交
5623 5624
		spin_lock(lock);
	}
J
Jan Kara 已提交
5625
	return ret;
L
Linus Torvalds 已提交
5626 5627 5628 5629 5630 5631 5632
}
EXPORT_SYMBOL(cond_resched_lock);

int __sched cond_resched_softirq(void)
{
	BUG_ON(!in_softirq());

5633
	if (need_resched() && system_state == SYSTEM_RUNNING) {
5634
		local_bh_enable();
L
Linus Torvalds 已提交
5635 5636 5637 5638 5639 5640 5641 5642 5643 5644 5645
		__cond_resched();
		local_bh_disable();
		return 1;
	}
	return 0;
}
EXPORT_SYMBOL(cond_resched_softirq);

/**
 * yield - yield the current processor to other threads.
 *
5646
 * This is a shortcut for kernel-space yielding - it marks the
L
Linus Torvalds 已提交
5647 5648 5649 5650 5651 5652 5653 5654 5655 5656
 * thread runnable and calls sys_sched_yield().
 */
void __sched yield(void)
{
	set_current_state(TASK_RUNNING);
	sys_sched_yield();
}
EXPORT_SYMBOL(yield);

/*
I
Ingo Molnar 已提交
5657
 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
L
Linus Torvalds 已提交
5658 5659 5660 5661 5662 5663 5664
 * that process accounting knows that this is a task in IO wait state.
 *
 * But don't do that if it is a deliberate, throttling IO wait (this task
 * has set its backing_dev_info: the queue against which it should throttle)
 */
void __sched io_schedule(void)
{
5665
	struct rq *rq = &__raw_get_cpu_var(runqueues);
L
Linus Torvalds 已提交
5666

5667
	delayacct_blkio_start();
L
Linus Torvalds 已提交
5668 5669 5670
	atomic_inc(&rq->nr_iowait);
	schedule();
	atomic_dec(&rq->nr_iowait);
5671
	delayacct_blkio_end();
L
Linus Torvalds 已提交
5672 5673 5674 5675 5676
}
EXPORT_SYMBOL(io_schedule);

long __sched io_schedule_timeout(long timeout)
{
5677
	struct rq *rq = &__raw_get_cpu_var(runqueues);
L
Linus Torvalds 已提交
5678 5679
	long ret;

5680
	delayacct_blkio_start();
L
Linus Torvalds 已提交
5681 5682 5683
	atomic_inc(&rq->nr_iowait);
	ret = schedule_timeout(timeout);
	atomic_dec(&rq->nr_iowait);
5684
	delayacct_blkio_end();
L
Linus Torvalds 已提交
5685 5686 5687 5688 5689 5690 5691 5692 5693 5694 5695 5696 5697 5698 5699 5700 5701 5702 5703 5704
	return ret;
}

/**
 * sys_sched_get_priority_max - return maximum RT priority.
 * @policy: scheduling class.
 *
 * this syscall returns the maximum rt_priority that can be used
 * by a given scheduling class.
 */
asmlinkage long sys_sched_get_priority_max(int policy)
{
	int ret = -EINVAL;

	switch (policy) {
	case SCHED_FIFO:
	case SCHED_RR:
		ret = MAX_USER_RT_PRIO-1;
		break;
	case SCHED_NORMAL:
5705
	case SCHED_BATCH:
I
Ingo Molnar 已提交
5706
	case SCHED_IDLE:
L
Linus Torvalds 已提交
5707 5708 5709 5710 5711 5712 5713 5714 5715 5716 5717 5718 5719 5720 5721 5722 5723 5724 5725 5726 5727 5728 5729
		ret = 0;
		break;
	}
	return ret;
}

/**
 * sys_sched_get_priority_min - return minimum RT priority.
 * @policy: scheduling class.
 *
 * this syscall returns the minimum rt_priority that can be used
 * by a given scheduling class.
 */
asmlinkage long sys_sched_get_priority_min(int policy)
{
	int ret = -EINVAL;

	switch (policy) {
	case SCHED_FIFO:
	case SCHED_RR:
		ret = 1;
		break;
	case SCHED_NORMAL:
5730
	case SCHED_BATCH:
I
Ingo Molnar 已提交
5731
	case SCHED_IDLE:
L
Linus Torvalds 已提交
5732 5733 5734 5735 5736 5737 5738 5739 5740 5741 5742 5743 5744 5745 5746 5747
		ret = 0;
	}
	return ret;
}

/**
 * sys_sched_rr_get_interval - return the default timeslice of a process.
 * @pid: pid of the process.
 * @interval: userspace pointer to the timeslice value.
 *
 * this syscall writes the default timeslice value of a given process
 * into the user-space timespec buffer. A value of '0' means infinity.
 */
asmlinkage
long sys_sched_rr_get_interval(pid_t pid, struct timespec __user *interval)
{
5748
	struct task_struct *p;
D
Dmitry Adamushko 已提交
5749
	unsigned int time_slice;
5750
	int retval;
L
Linus Torvalds 已提交
5751 5752 5753
	struct timespec t;

	if (pid < 0)
5754
		return -EINVAL;
L
Linus Torvalds 已提交
5755 5756 5757 5758 5759 5760 5761 5762 5763 5764 5765

	retval = -ESRCH;
	read_lock(&tasklist_lock);
	p = find_process_by_pid(pid);
	if (!p)
		goto out_unlock;

	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

5766 5767 5768 5769 5770 5771
	/*
	 * Time slice is 0 for SCHED_FIFO tasks and for SCHED_OTHER
	 * tasks that are on an otherwise idle runqueue:
	 */
	time_slice = 0;
	if (p->policy == SCHED_RR) {
D
Dmitry Adamushko 已提交
5772
		time_slice = DEF_TIMESLICE;
5773
	} else if (p->policy != SCHED_FIFO) {
D
Dmitry Adamushko 已提交
5774 5775 5776 5777 5778
		struct sched_entity *se = &p->se;
		unsigned long flags;
		struct rq *rq;

		rq = task_rq_lock(p, &flags);
5779 5780
		if (rq->cfs.load.weight)
			time_slice = NS_TO_JIFFIES(sched_slice(&rq->cfs, se));
D
Dmitry Adamushko 已提交
5781 5782
		task_rq_unlock(rq, &flags);
	}
L
Linus Torvalds 已提交
5783
	read_unlock(&tasklist_lock);
D
Dmitry Adamushko 已提交
5784
	jiffies_to_timespec(time_slice, &t);
L
Linus Torvalds 已提交
5785 5786
	retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
	return retval;
5787

L
Linus Torvalds 已提交
5788 5789 5790 5791 5792
out_unlock:
	read_unlock(&tasklist_lock);
	return retval;
}

5793
static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
5794

5795
void sched_show_task(struct task_struct *p)
L
Linus Torvalds 已提交
5796 5797
{
	unsigned long free = 0;
5798
	unsigned state;
L
Linus Torvalds 已提交
5799 5800

	state = p->state ? __ffs(p->state) + 1 : 0;
I
Ingo Molnar 已提交
5801
	printk(KERN_INFO "%-13.13s %c", p->comm,
5802
		state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
5803
#if BITS_PER_LONG == 32
L
Linus Torvalds 已提交
5804
	if (state == TASK_RUNNING)
I
Ingo Molnar 已提交
5805
		printk(KERN_CONT " running  ");
L
Linus Torvalds 已提交
5806
	else
I
Ingo Molnar 已提交
5807
		printk(KERN_CONT " %08lx ", thread_saved_pc(p));
L
Linus Torvalds 已提交
5808 5809
#else
	if (state == TASK_RUNNING)
I
Ingo Molnar 已提交
5810
		printk(KERN_CONT "  running task    ");
L
Linus Torvalds 已提交
5811
	else
I
Ingo Molnar 已提交
5812
		printk(KERN_CONT " %016lx ", thread_saved_pc(p));
L
Linus Torvalds 已提交
5813 5814 5815
#endif
#ifdef CONFIG_DEBUG_STACK_USAGE
	{
5816
		unsigned long *n = end_of_stack(p);
L
Linus Torvalds 已提交
5817 5818
		while (!*n)
			n++;
5819
		free = (unsigned long)n - (unsigned long)end_of_stack(p);
L
Linus Torvalds 已提交
5820 5821
	}
#endif
5822
	printk(KERN_CONT "%5lu %5d %6d\n", free,
R
Roland McGrath 已提交
5823
		task_pid_nr(p), task_pid_nr(p->real_parent));
L
Linus Torvalds 已提交
5824

5825
	show_stack(p, NULL);
L
Linus Torvalds 已提交
5826 5827
}

I
Ingo Molnar 已提交
5828
void show_state_filter(unsigned long state_filter)
L
Linus Torvalds 已提交
5829
{
5830
	struct task_struct *g, *p;
L
Linus Torvalds 已提交
5831

5832 5833 5834
#if BITS_PER_LONG == 32
	printk(KERN_INFO
		"  task                PC stack   pid father\n");
L
Linus Torvalds 已提交
5835
#else
5836 5837
	printk(KERN_INFO
		"  task                        PC stack   pid father\n");
L
Linus Torvalds 已提交
5838 5839 5840 5841 5842 5843 5844 5845
#endif
	read_lock(&tasklist_lock);
	do_each_thread(g, p) {
		/*
		 * reset the NMI-timeout, listing all files on a slow
		 * console might take alot of time:
		 */
		touch_nmi_watchdog();
I
Ingo Molnar 已提交
5846
		if (!state_filter || (p->state & state_filter))
5847
			sched_show_task(p);
L
Linus Torvalds 已提交
5848 5849
	} while_each_thread(g, p);

5850 5851
	touch_all_softlockup_watchdogs();

I
Ingo Molnar 已提交
5852 5853 5854
#ifdef CONFIG_SCHED_DEBUG
	sysrq_sched_debug_show();
#endif
L
Linus Torvalds 已提交
5855
	read_unlock(&tasklist_lock);
I
Ingo Molnar 已提交
5856 5857 5858 5859 5860
	/*
	 * Only show locks if all tasks are dumped:
	 */
	if (state_filter == -1)
		debug_show_all_locks();
L
Linus Torvalds 已提交
5861 5862
}

I
Ingo Molnar 已提交
5863 5864
void __cpuinit init_idle_bootup_task(struct task_struct *idle)
{
I
Ingo Molnar 已提交
5865
	idle->sched_class = &idle_sched_class;
I
Ingo Molnar 已提交
5866 5867
}

5868 5869 5870 5871 5872 5873 5874 5875
/**
 * init_idle - set up an idle thread for a given CPU
 * @idle: task in question
 * @cpu: cpu the idle task belongs to
 *
 * NOTE: this function does not set the idle thread's NEED_RESCHED
 * flag, to make booting more robust.
 */
5876
void __cpuinit init_idle(struct task_struct *idle, int cpu)
L
Linus Torvalds 已提交
5877
{
5878
	struct rq *rq = cpu_rq(cpu);
L
Linus Torvalds 已提交
5879 5880
	unsigned long flags;

5881 5882
	spin_lock_irqsave(&rq->lock, flags);

I
Ingo Molnar 已提交
5883 5884 5885
	__sched_fork(idle);
	idle->se.exec_start = sched_clock();

5886
	idle->prio = idle->normal_prio = MAX_PRIO;
L
Linus Torvalds 已提交
5887
	idle->cpus_allowed = cpumask_of_cpu(cpu);
I
Ingo Molnar 已提交
5888
	__set_task_cpu(idle, cpu);
L
Linus Torvalds 已提交
5889 5890

	rq->curr = rq->idle = idle;
5891 5892 5893
#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
	idle->oncpu = 1;
#endif
L
Linus Torvalds 已提交
5894 5895 5896
	spin_unlock_irqrestore(&rq->lock, flags);

	/* Set the preempt count _outside_ the spinlocks! */
5897 5898 5899
#if defined(CONFIG_PREEMPT)
	task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
#else
A
Al Viro 已提交
5900
	task_thread_info(idle)->preempt_count = 0;
5901
#endif
I
Ingo Molnar 已提交
5902 5903 5904 5905
	/*
	 * The idle tasks have their own, simple scheduling class:
	 */
	idle->sched_class = &idle_sched_class;
5906
	ftrace_graph_init_task(idle);
L
Linus Torvalds 已提交
5907 5908 5909 5910 5911 5912 5913 5914 5915 5916 5917
}

/*
 * In a system that switches off the HZ timer nohz_cpu_mask
 * indicates which cpus entered this state. This is used
 * in the rcu update to wait only for active cpus. For system
 * which do not switch off the HZ timer nohz_cpu_mask should
 * always be CPU_MASK_NONE.
 */
cpumask_t nohz_cpu_mask = CPU_MASK_NONE;

I
Ingo Molnar 已提交
5918 5919 5920 5921 5922 5923 5924 5925 5926 5927 5928 5929 5930 5931 5932 5933 5934 5935 5936 5937 5938 5939 5940
/*
 * Increase the granularity value when there are more CPUs,
 * because with more CPUs the 'effective latency' as visible
 * to users decreases. But the relationship is not linear,
 * so pick a second-best guess by going with the log2 of the
 * number of CPUs.
 *
 * This idea comes from the SD scheduler of Con Kolivas:
 */
static inline void sched_init_granularity(void)
{
	unsigned int factor = 1 + ilog2(num_online_cpus());
	const unsigned long limit = 200000000;

	sysctl_sched_min_granularity *= factor;
	if (sysctl_sched_min_granularity > limit)
		sysctl_sched_min_granularity = limit;

	sysctl_sched_latency *= factor;
	if (sysctl_sched_latency > limit)
		sysctl_sched_latency = limit;

	sysctl_sched_wakeup_granularity *= factor;
5941 5942

	sysctl_sched_shares_ratelimit *= factor;
I
Ingo Molnar 已提交
5943 5944
}

L
Linus Torvalds 已提交
5945 5946 5947 5948
#ifdef CONFIG_SMP
/*
 * This is how migration works:
 *
5949
 * 1) we queue a struct migration_req structure in the source CPU's
L
Linus Torvalds 已提交
5950 5951 5952 5953 5954 5955 5956 5957 5958 5959 5960 5961 5962 5963 5964 5965 5966 5967
 *    runqueue and wake up that CPU's migration thread.
 * 2) we down() the locked semaphore => thread blocks.
 * 3) migration thread wakes up (implicitly it forces the migrated
 *    thread off the CPU)
 * 4) it gets the migration request and checks whether the migrated
 *    task is still in the wrong runqueue.
 * 5) if it's in the wrong runqueue then the migration thread removes
 *    it and puts it into the right queue.
 * 6) migration thread up()s the semaphore.
 * 7) we wake up and the migration is done.
 */

/*
 * Change a given task's CPU affinity. Migrate the thread to a
 * proper CPU and schedule it away if the CPU it's executing on
 * is removed from the allowed bitmask.
 *
 * NOTE: the caller must have a valid reference to the task, the
I
Ingo Molnar 已提交
5968
 * task must not exit() & deallocate itself prematurely. The
L
Linus Torvalds 已提交
5969 5970
 * call is not atomic; no spinlocks may be held.
 */
5971
int set_cpus_allowed_ptr(struct task_struct *p, const cpumask_t *new_mask)
L
Linus Torvalds 已提交
5972
{
5973
	struct migration_req req;
L
Linus Torvalds 已提交
5974
	unsigned long flags;
5975
	struct rq *rq;
5976
	int ret = 0;
L
Linus Torvalds 已提交
5977 5978

	rq = task_rq_lock(p, &flags);
5979
	if (!cpus_intersects(*new_mask, cpu_online_map)) {
L
Linus Torvalds 已提交
5980 5981 5982 5983
		ret = -EINVAL;
		goto out;
	}

5984 5985 5986 5987 5988 5989
	if (unlikely((p->flags & PF_THREAD_BOUND) && p != current &&
		     !cpus_equal(p->cpus_allowed, *new_mask))) {
		ret = -EINVAL;
		goto out;
	}

5990
	if (p->sched_class->set_cpus_allowed)
5991
		p->sched_class->set_cpus_allowed(p, new_mask);
5992
	else {
5993 5994
		p->cpus_allowed = *new_mask;
		p->rt.nr_cpus_allowed = cpus_weight(*new_mask);
5995 5996
	}

L
Linus Torvalds 已提交
5997
	/* Can the task run on the task's current CPU? If so, we're done */
5998
	if (cpu_isset(task_cpu(p), *new_mask))
L
Linus Torvalds 已提交
5999 6000
		goto out;

6001
	if (migrate_task(p, any_online_cpu(*new_mask), &req)) {
L
Linus Torvalds 已提交
6002 6003 6004 6005 6006 6007 6008 6009 6010
		/* Need help from migration thread: drop lock and wait. */
		task_rq_unlock(rq, &flags);
		wake_up_process(rq->migration_thread);
		wait_for_completion(&req.done);
		tlb_migrate_finish(p->mm);
		return 0;
	}
out:
	task_rq_unlock(rq, &flags);
6011

L
Linus Torvalds 已提交
6012 6013
	return ret;
}
6014
EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
L
Linus Torvalds 已提交
6015 6016

/*
I
Ingo Molnar 已提交
6017
 * Move (not current) task off this cpu, onto dest cpu. We're doing
L
Linus Torvalds 已提交
6018 6019 6020 6021 6022 6023
 * this because either it can't run here any more (set_cpus_allowed()
 * away from this CPU, or CPU going down), or because we're
 * attempting to rebalance this task on exec (sched_exec).
 *
 * So we race with normal scheduler movements, but that's OK, as long
 * as the task is no longer on this CPU.
6024 6025
 *
 * Returns non-zero if task was successfully migrated.
L
Linus Torvalds 已提交
6026
 */
6027
static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
L
Linus Torvalds 已提交
6028
{
6029
	struct rq *rq_dest, *rq_src;
I
Ingo Molnar 已提交
6030
	int ret = 0, on_rq;
L
Linus Torvalds 已提交
6031

6032
	if (unlikely(!cpu_active(dest_cpu)))
6033
		return ret;
L
Linus Torvalds 已提交
6034 6035 6036 6037 6038 6039 6040

	rq_src = cpu_rq(src_cpu);
	rq_dest = cpu_rq(dest_cpu);

	double_rq_lock(rq_src, rq_dest);
	/* Already moved. */
	if (task_cpu(p) != src_cpu)
L
Linus Torvalds 已提交
6041
		goto done;
L
Linus Torvalds 已提交
6042 6043
	/* Affinity changed (again). */
	if (!cpu_isset(dest_cpu, p->cpus_allowed))
L
Linus Torvalds 已提交
6044
		goto fail;
L
Linus Torvalds 已提交
6045

I
Ingo Molnar 已提交
6046
	on_rq = p->se.on_rq;
6047
	if (on_rq)
6048
		deactivate_task(rq_src, p, 0);
6049

L
Linus Torvalds 已提交
6050
	set_task_cpu(p, dest_cpu);
I
Ingo Molnar 已提交
6051 6052
	if (on_rq) {
		activate_task(rq_dest, p, 0);
6053
		check_preempt_curr(rq_dest, p, 0);
L
Linus Torvalds 已提交
6054
	}
L
Linus Torvalds 已提交
6055
done:
6056
	ret = 1;
L
Linus Torvalds 已提交
6057
fail:
L
Linus Torvalds 已提交
6058
	double_rq_unlock(rq_src, rq_dest);
6059
	return ret;
L
Linus Torvalds 已提交
6060 6061 6062 6063 6064 6065 6066
}

/*
 * migration_thread - this is a highprio system thread that performs
 * thread migration by bumping thread off CPU then 'pushing' onto
 * another runqueue.
 */
I
Ingo Molnar 已提交
6067
static int migration_thread(void *data)
L
Linus Torvalds 已提交
6068 6069
{
	int cpu = (long)data;
6070
	struct rq *rq;
L
Linus Torvalds 已提交
6071 6072 6073 6074 6075 6076

	rq = cpu_rq(cpu);
	BUG_ON(rq->migration_thread != current);

	set_current_state(TASK_INTERRUPTIBLE);
	while (!kthread_should_stop()) {
6077
		struct migration_req *req;
L
Linus Torvalds 已提交
6078 6079 6080 6081 6082 6083 6084 6085 6086 6087 6088 6089 6090 6091 6092 6093 6094 6095 6096 6097 6098 6099
		struct list_head *head;

		spin_lock_irq(&rq->lock);

		if (cpu_is_offline(cpu)) {
			spin_unlock_irq(&rq->lock);
			goto wait_to_die;
		}

		if (rq->active_balance) {
			active_load_balance(rq, cpu);
			rq->active_balance = 0;
		}

		head = &rq->migration_queue;

		if (list_empty(head)) {
			spin_unlock_irq(&rq->lock);
			schedule();
			set_current_state(TASK_INTERRUPTIBLE);
			continue;
		}
6100
		req = list_entry(head->next, struct migration_req, list);
L
Linus Torvalds 已提交
6101 6102
		list_del_init(head->next);

N
Nick Piggin 已提交
6103 6104 6105
		spin_unlock(&rq->lock);
		__migrate_task(req->task, cpu, req->dest_cpu);
		local_irq_enable();
L
Linus Torvalds 已提交
6106 6107 6108 6109 6110 6111 6112 6113 6114 6115 6116 6117 6118 6119 6120 6121 6122 6123

		complete(&req->done);
	}
	__set_current_state(TASK_RUNNING);
	return 0;

wait_to_die:
	/* Wait for kthread_stop */
	set_current_state(TASK_INTERRUPTIBLE);
	while (!kthread_should_stop()) {
		schedule();
		set_current_state(TASK_INTERRUPTIBLE);
	}
	__set_current_state(TASK_RUNNING);
	return 0;
}

#ifdef CONFIG_HOTPLUG_CPU
6124 6125 6126 6127 6128 6129 6130 6131 6132 6133 6134

static int __migrate_task_irq(struct task_struct *p, int src_cpu, int dest_cpu)
{
	int ret;

	local_irq_disable();
	ret = __migrate_task(p, src_cpu, dest_cpu);
	local_irq_enable();
	return ret;
}

6135
/*
6136
 * Figure out where task on dead CPU should go, use force if necessary.
6137 6138
 * NOTE: interrupts should be disabled by the caller
 */
6139
static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
L
Linus Torvalds 已提交
6140
{
6141
	unsigned long flags;
L
Linus Torvalds 已提交
6142
	cpumask_t mask;
6143 6144
	struct rq *rq;
	int dest_cpu;
L
Linus Torvalds 已提交
6145

6146 6147 6148 6149 6150 6151 6152
	do {
		/* On same node? */
		mask = node_to_cpumask(cpu_to_node(dead_cpu));
		cpus_and(mask, mask, p->cpus_allowed);
		dest_cpu = any_online_cpu(mask);

		/* On any allowed CPU? */
6153
		if (dest_cpu >= nr_cpu_ids)
6154 6155 6156
			dest_cpu = any_online_cpu(p->cpus_allowed);

		/* No more Mr. Nice Guy. */
6157
		if (dest_cpu >= nr_cpu_ids) {
6158 6159 6160
			cpumask_t cpus_allowed;

			cpuset_cpus_allowed_locked(p, &cpus_allowed);
6161 6162 6163 6164
			/*
			 * Try to stay on the same cpuset, where the
			 * current cpuset may be a subset of all cpus.
			 * The cpuset_cpus_allowed_locked() variant of
I
Ingo Molnar 已提交
6165
			 * cpuset_cpus_allowed() will not block. It must be
6166 6167
			 * called within calls to cpuset_lock/cpuset_unlock.
			 */
6168
			rq = task_rq_lock(p, &flags);
6169
			p->cpus_allowed = cpus_allowed;
6170 6171
			dest_cpu = any_online_cpu(p->cpus_allowed);
			task_rq_unlock(rq, &flags);
L
Linus Torvalds 已提交
6172

6173 6174 6175 6176 6177
			/*
			 * Don't tell them about moving exiting tasks or
			 * kernel threads (both mm NULL), since they never
			 * leave kernel.
			 */
I
Ingo Molnar 已提交
6178
			if (p->mm && printk_ratelimit()) {
6179 6180
				printk(KERN_INFO "process %d (%s) no "
				       "longer affine to cpu%d\n",
I
Ingo Molnar 已提交
6181 6182
					task_pid_nr(p), p->comm, dead_cpu);
			}
6183
		}
6184
	} while (!__migrate_task_irq(p, dead_cpu, dest_cpu));
L
Linus Torvalds 已提交
6185 6186 6187 6188 6189 6190 6191 6192 6193
}

/*
 * While a dead CPU has no uninterruptible tasks queued at this point,
 * it might still have a nonzero ->nr_uninterruptible counter, because
 * for performance reasons the counter is not stricly tracking tasks to
 * their home CPUs. So we just add the counter to another CPU's counter,
 * to keep the global sum constant after CPU-down:
 */
6194
static void migrate_nr_uninterruptible(struct rq *rq_src)
L
Linus Torvalds 已提交
6195
{
6196
	struct rq *rq_dest = cpu_rq(any_online_cpu(*CPU_MASK_ALL_PTR));
L
Linus Torvalds 已提交
6197 6198 6199 6200 6201 6202 6203 6204 6205 6206 6207 6208 6209
	unsigned long flags;

	local_irq_save(flags);
	double_rq_lock(rq_src, rq_dest);
	rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
	rq_src->nr_uninterruptible = 0;
	double_rq_unlock(rq_src, rq_dest);
	local_irq_restore(flags);
}

/* Run through task list and migrate tasks from the dead cpu. */
static void migrate_live_tasks(int src_cpu)
{
6210
	struct task_struct *p, *t;
L
Linus Torvalds 已提交
6211

6212
	read_lock(&tasklist_lock);
L
Linus Torvalds 已提交
6213

6214 6215
	do_each_thread(t, p) {
		if (p == current)
L
Linus Torvalds 已提交
6216 6217
			continue;

6218 6219 6220
		if (task_cpu(p) == src_cpu)
			move_task_off_dead_cpu(src_cpu, p);
	} while_each_thread(t, p);
L
Linus Torvalds 已提交
6221

6222
	read_unlock(&tasklist_lock);
L
Linus Torvalds 已提交
6223 6224
}

I
Ingo Molnar 已提交
6225 6226
/*
 * Schedules idle task to be the next runnable task on current CPU.
6227 6228
 * It does so by boosting its priority to highest possible.
 * Used by CPU offline code.
L
Linus Torvalds 已提交
6229 6230 6231
 */
void sched_idle_next(void)
{
6232
	int this_cpu = smp_processor_id();
6233
	struct rq *rq = cpu_rq(this_cpu);
L
Linus Torvalds 已提交
6234 6235 6236 6237
	struct task_struct *p = rq->idle;
	unsigned long flags;

	/* cpu has to be offline */
6238
	BUG_ON(cpu_online(this_cpu));
L
Linus Torvalds 已提交
6239

6240 6241 6242
	/*
	 * Strictly not necessary since rest of the CPUs are stopped by now
	 * and interrupts disabled on the current cpu.
L
Linus Torvalds 已提交
6243 6244 6245
	 */
	spin_lock_irqsave(&rq->lock, flags);

I
Ingo Molnar 已提交
6246
	__setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
6247

6248 6249
	update_rq_clock(rq);
	activate_task(rq, p, 0);
L
Linus Torvalds 已提交
6250 6251 6252 6253

	spin_unlock_irqrestore(&rq->lock, flags);
}

6254 6255
/*
 * Ensures that the idle task is using init_mm right before its cpu goes
L
Linus Torvalds 已提交
6256 6257 6258 6259 6260 6261 6262 6263 6264 6265 6266 6267 6268
 * offline.
 */
void idle_task_exit(void)
{
	struct mm_struct *mm = current->active_mm;

	BUG_ON(cpu_online(smp_processor_id()));

	if (mm != &init_mm)
		switch_mm(mm, &init_mm, current);
	mmdrop(mm);
}

6269
/* called under rq->lock with disabled interrupts */
6270
static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
L
Linus Torvalds 已提交
6271
{
6272
	struct rq *rq = cpu_rq(dead_cpu);
L
Linus Torvalds 已提交
6273 6274

	/* Must be exiting, otherwise would be on tasklist. */
E
Eugene Teo 已提交
6275
	BUG_ON(!p->exit_state);
L
Linus Torvalds 已提交
6276 6277

	/* Cannot have done final schedule yet: would have vanished. */
6278
	BUG_ON(p->state == TASK_DEAD);
L
Linus Torvalds 已提交
6279

6280
	get_task_struct(p);
L
Linus Torvalds 已提交
6281 6282 6283

	/*
	 * Drop lock around migration; if someone else moves it,
I
Ingo Molnar 已提交
6284
	 * that's OK. No task can be added to this CPU, so iteration is
L
Linus Torvalds 已提交
6285 6286
	 * fine.
	 */
6287
	spin_unlock_irq(&rq->lock);
6288
	move_task_off_dead_cpu(dead_cpu, p);
6289
	spin_lock_irq(&rq->lock);
L
Linus Torvalds 已提交
6290

6291
	put_task_struct(p);
L
Linus Torvalds 已提交
6292 6293 6294 6295 6296
}

/* release_task() removes task from tasklist, so we won't find dead tasks. */
static void migrate_dead_tasks(unsigned int dead_cpu)
{
6297
	struct rq *rq = cpu_rq(dead_cpu);
I
Ingo Molnar 已提交
6298
	struct task_struct *next;
6299

I
Ingo Molnar 已提交
6300 6301 6302
	for ( ; ; ) {
		if (!rq->nr_running)
			break;
I
Ingo Molnar 已提交
6303
		update_rq_clock(rq);
6304
		next = pick_next_task(rq, rq->curr);
I
Ingo Molnar 已提交
6305 6306
		if (!next)
			break;
D
Dmitry Adamushko 已提交
6307
		next->sched_class->put_prev_task(rq, next);
I
Ingo Molnar 已提交
6308
		migrate_dead(dead_cpu, next);
6309

L
Linus Torvalds 已提交
6310 6311 6312 6313
	}
}
#endif /* CONFIG_HOTPLUG_CPU */

6314 6315 6316
#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)

static struct ctl_table sd_ctl_dir[] = {
6317 6318
	{
		.procname	= "sched_domain",
6319
		.mode		= 0555,
6320
	},
I
Ingo Molnar 已提交
6321
	{0, },
6322 6323 6324
};

static struct ctl_table sd_ctl_root[] = {
6325
	{
6326
		.ctl_name	= CTL_KERN,
6327
		.procname	= "kernel",
6328
		.mode		= 0555,
6329 6330
		.child		= sd_ctl_dir,
	},
I
Ingo Molnar 已提交
6331
	{0, },
6332 6333 6334 6335 6336
};

static struct ctl_table *sd_alloc_ctl_entry(int n)
{
	struct ctl_table *entry =
6337
		kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
6338 6339 6340 6341

	return entry;
}

6342 6343
static void sd_free_ctl_entry(struct ctl_table **tablep)
{
6344
	struct ctl_table *entry;
6345

6346 6347 6348
	/*
	 * In the intermediate directories, both the child directory and
	 * procname are dynamically allocated and could fail but the mode
I
Ingo Molnar 已提交
6349
	 * will always be set. In the lowest directory the names are
6350 6351 6352
	 * static strings and all have proc handlers.
	 */
	for (entry = *tablep; entry->mode; entry++) {
6353 6354
		if (entry->child)
			sd_free_ctl_entry(&entry->child);
6355 6356 6357
		if (entry->proc_handler == NULL)
			kfree(entry->procname);
	}
6358 6359 6360 6361 6362

	kfree(*tablep);
	*tablep = NULL;
}

6363
static void
6364
set_table_entry(struct ctl_table *entry,
6365 6366 6367 6368 6369 6370 6371 6372 6373 6374 6375 6376 6377
		const char *procname, void *data, int maxlen,
		mode_t mode, proc_handler *proc_handler)
{
	entry->procname = procname;
	entry->data = data;
	entry->maxlen = maxlen;
	entry->mode = mode;
	entry->proc_handler = proc_handler;
}

static struct ctl_table *
sd_alloc_ctl_domain_table(struct sched_domain *sd)
{
6378
	struct ctl_table *table = sd_alloc_ctl_entry(13);
6379

6380 6381 6382
	if (table == NULL)
		return NULL;

6383
	set_table_entry(&table[0], "min_interval", &sd->min_interval,
6384
		sizeof(long), 0644, proc_doulongvec_minmax);
6385
	set_table_entry(&table[1], "max_interval", &sd->max_interval,
6386
		sizeof(long), 0644, proc_doulongvec_minmax);
6387
	set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
6388
		sizeof(int), 0644, proc_dointvec_minmax);
6389
	set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
6390
		sizeof(int), 0644, proc_dointvec_minmax);
6391
	set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
6392
		sizeof(int), 0644, proc_dointvec_minmax);
6393
	set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
6394
		sizeof(int), 0644, proc_dointvec_minmax);
6395
	set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
6396
		sizeof(int), 0644, proc_dointvec_minmax);
6397
	set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
6398
		sizeof(int), 0644, proc_dointvec_minmax);
6399
	set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
6400
		sizeof(int), 0644, proc_dointvec_minmax);
6401
	set_table_entry(&table[9], "cache_nice_tries",
6402 6403
		&sd->cache_nice_tries,
		sizeof(int), 0644, proc_dointvec_minmax);
6404
	set_table_entry(&table[10], "flags", &sd->flags,
6405
		sizeof(int), 0644, proc_dointvec_minmax);
6406 6407 6408
	set_table_entry(&table[11], "name", sd->name,
		CORENAME_MAX_SIZE, 0444, proc_dostring);
	/* &table[12] is terminator */
6409 6410 6411 6412

	return table;
}

6413
static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
6414 6415 6416 6417 6418 6419 6420 6421 6422
{
	struct ctl_table *entry, *table;
	struct sched_domain *sd;
	int domain_num = 0, i;
	char buf[32];

	for_each_domain(cpu, sd)
		domain_num++;
	entry = table = sd_alloc_ctl_entry(domain_num + 1);
6423 6424
	if (table == NULL)
		return NULL;
6425 6426 6427 6428 6429

	i = 0;
	for_each_domain(cpu, sd) {
		snprintf(buf, 32, "domain%d", i);
		entry->procname = kstrdup(buf, GFP_KERNEL);
6430
		entry->mode = 0555;
6431 6432 6433 6434 6435 6436 6437 6438
		entry->child = sd_alloc_ctl_domain_table(sd);
		entry++;
		i++;
	}
	return table;
}

static struct ctl_table_header *sd_sysctl_header;
6439
static void register_sched_domain_sysctl(void)
6440 6441 6442 6443 6444
{
	int i, cpu_num = num_online_cpus();
	struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
	char buf[32];

6445 6446 6447
	WARN_ON(sd_ctl_dir[0].child);
	sd_ctl_dir[0].child = entry;

6448 6449 6450
	if (entry == NULL)
		return;

6451
	for_each_online_cpu(i) {
6452 6453
		snprintf(buf, 32, "cpu%d", i);
		entry->procname = kstrdup(buf, GFP_KERNEL);
6454
		entry->mode = 0555;
6455
		entry->child = sd_alloc_ctl_cpu_table(i);
6456
		entry++;
6457
	}
6458 6459

	WARN_ON(sd_sysctl_header);
6460 6461
	sd_sysctl_header = register_sysctl_table(sd_ctl_root);
}
6462

6463
/* may be called multiple times per register */
6464 6465
static void unregister_sched_domain_sysctl(void)
{
6466 6467
	if (sd_sysctl_header)
		unregister_sysctl_table(sd_sysctl_header);
6468
	sd_sysctl_header = NULL;
6469 6470
	if (sd_ctl_dir[0].child)
		sd_free_ctl_entry(&sd_ctl_dir[0].child);
6471
}
6472
#else
6473 6474 6475 6476
static void register_sched_domain_sysctl(void)
{
}
static void unregister_sched_domain_sysctl(void)
6477 6478 6479 6480
{
}
#endif

6481 6482 6483 6484 6485 6486 6487 6488 6489 6490 6491 6492 6493 6494 6495 6496 6497 6498 6499 6500 6501 6502 6503 6504 6505 6506 6507 6508 6509 6510
static void set_rq_online(struct rq *rq)
{
	if (!rq->online) {
		const struct sched_class *class;

		cpu_set(rq->cpu, rq->rd->online);
		rq->online = 1;

		for_each_class(class) {
			if (class->rq_online)
				class->rq_online(rq);
		}
	}
}

static void set_rq_offline(struct rq *rq)
{
	if (rq->online) {
		const struct sched_class *class;

		for_each_class(class) {
			if (class->rq_offline)
				class->rq_offline(rq);
		}

		cpu_clear(rq->cpu, rq->rd->online);
		rq->online = 0;
	}
}

L
Linus Torvalds 已提交
6511 6512 6513 6514
/*
 * migration_call - callback that gets triggered when a CPU is added.
 * Here we can start up the necessary migration thread for the new CPU.
 */
6515 6516
static int __cpuinit
migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
L
Linus Torvalds 已提交
6517 6518
{
	struct task_struct *p;
6519
	int cpu = (long)hcpu;
L
Linus Torvalds 已提交
6520
	unsigned long flags;
6521
	struct rq *rq;
L
Linus Torvalds 已提交
6522 6523

	switch (action) {
6524

L
Linus Torvalds 已提交
6525
	case CPU_UP_PREPARE:
6526
	case CPU_UP_PREPARE_FROZEN:
I
Ingo Molnar 已提交
6527
		p = kthread_create(migration_thread, hcpu, "migration/%d", cpu);
L
Linus Torvalds 已提交
6528 6529 6530 6531 6532
		if (IS_ERR(p))
			return NOTIFY_BAD;
		kthread_bind(p, cpu);
		/* Must be high prio: stop_machine expects to yield to it. */
		rq = task_rq_lock(p, &flags);
I
Ingo Molnar 已提交
6533
		__setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
L
Linus Torvalds 已提交
6534 6535 6536
		task_rq_unlock(rq, &flags);
		cpu_rq(cpu)->migration_thread = p;
		break;
6537

L
Linus Torvalds 已提交
6538
	case CPU_ONLINE:
6539
	case CPU_ONLINE_FROZEN:
6540
		/* Strictly unnecessary, as first user will wake it. */
L
Linus Torvalds 已提交
6541
		wake_up_process(cpu_rq(cpu)->migration_thread);
6542 6543 6544 6545 6546 6547

		/* Update our root-domain */
		rq = cpu_rq(cpu);
		spin_lock_irqsave(&rq->lock, flags);
		if (rq->rd) {
			BUG_ON(!cpu_isset(cpu, rq->rd->span));
6548 6549

			set_rq_online(rq);
6550 6551
		}
		spin_unlock_irqrestore(&rq->lock, flags);
L
Linus Torvalds 已提交
6552
		break;
6553

L
Linus Torvalds 已提交
6554 6555
#ifdef CONFIG_HOTPLUG_CPU
	case CPU_UP_CANCELED:
6556
	case CPU_UP_CANCELED_FROZEN:
6557 6558
		if (!cpu_rq(cpu)->migration_thread)
			break;
I
Ingo Molnar 已提交
6559
		/* Unbind it from offline cpu so it can run. Fall thru. */
6560 6561
		kthread_bind(cpu_rq(cpu)->migration_thread,
			     any_online_cpu(cpu_online_map));
L
Linus Torvalds 已提交
6562 6563 6564
		kthread_stop(cpu_rq(cpu)->migration_thread);
		cpu_rq(cpu)->migration_thread = NULL;
		break;
6565

L
Linus Torvalds 已提交
6566
	case CPU_DEAD:
6567
	case CPU_DEAD_FROZEN:
6568
		cpuset_lock(); /* around calls to cpuset_cpus_allowed_lock() */
L
Linus Torvalds 已提交
6569 6570 6571 6572 6573
		migrate_live_tasks(cpu);
		rq = cpu_rq(cpu);
		kthread_stop(rq->migration_thread);
		rq->migration_thread = NULL;
		/* Idle task back to normal (off runqueue, low prio) */
6574
		spin_lock_irq(&rq->lock);
I
Ingo Molnar 已提交
6575
		update_rq_clock(rq);
6576
		deactivate_task(rq, rq->idle, 0);
L
Linus Torvalds 已提交
6577
		rq->idle->static_prio = MAX_PRIO;
I
Ingo Molnar 已提交
6578 6579
		__setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
		rq->idle->sched_class = &idle_sched_class;
L
Linus Torvalds 已提交
6580
		migrate_dead_tasks(cpu);
6581
		spin_unlock_irq(&rq->lock);
6582
		cpuset_unlock();
L
Linus Torvalds 已提交
6583 6584 6585
		migrate_nr_uninterruptible(rq);
		BUG_ON(rq->nr_running != 0);

I
Ingo Molnar 已提交
6586 6587 6588 6589 6590
		/*
		 * No need to migrate the tasks: it was best-effort if
		 * they didn't take sched_hotcpu_mutex. Just wake up
		 * the requestors.
		 */
L
Linus Torvalds 已提交
6591 6592
		spin_lock_irq(&rq->lock);
		while (!list_empty(&rq->migration_queue)) {
6593 6594
			struct migration_req *req;

L
Linus Torvalds 已提交
6595
			req = list_entry(rq->migration_queue.next,
6596
					 struct migration_req, list);
L
Linus Torvalds 已提交
6597
			list_del_init(&req->list);
B
Brian King 已提交
6598
			spin_unlock_irq(&rq->lock);
L
Linus Torvalds 已提交
6599
			complete(&req->done);
B
Brian King 已提交
6600
			spin_lock_irq(&rq->lock);
L
Linus Torvalds 已提交
6601 6602 6603
		}
		spin_unlock_irq(&rq->lock);
		break;
G
Gregory Haskins 已提交
6604

6605 6606
	case CPU_DYING:
	case CPU_DYING_FROZEN:
G
Gregory Haskins 已提交
6607 6608 6609 6610 6611
		/* Update our root-domain */
		rq = cpu_rq(cpu);
		spin_lock_irqsave(&rq->lock, flags);
		if (rq->rd) {
			BUG_ON(!cpu_isset(cpu, rq->rd->span));
6612
			set_rq_offline(rq);
G
Gregory Haskins 已提交
6613 6614 6615
		}
		spin_unlock_irqrestore(&rq->lock, flags);
		break;
L
Linus Torvalds 已提交
6616 6617 6618 6619 6620 6621 6622 6623
#endif
	}
	return NOTIFY_OK;
}

/* Register at highest priority so that task migration (migrate_all_tasks)
 * happens before everything else.
 */
6624
static struct notifier_block __cpuinitdata migration_notifier = {
L
Linus Torvalds 已提交
6625 6626 6627 6628
	.notifier_call = migration_call,
	.priority = 10
};

6629
static int __init migration_init(void)
L
Linus Torvalds 已提交
6630 6631
{
	void *cpu = (void *)(long)smp_processor_id();
6632
	int err;
6633 6634

	/* Start one for the boot CPU: */
6635 6636
	err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
	BUG_ON(err == NOTIFY_BAD);
L
Linus Torvalds 已提交
6637 6638
	migration_call(&migration_notifier, CPU_ONLINE, cpu);
	register_cpu_notifier(&migration_notifier);
6639 6640

	return err;
L
Linus Torvalds 已提交
6641
}
6642
early_initcall(migration_init);
L
Linus Torvalds 已提交
6643 6644 6645
#endif

#ifdef CONFIG_SMP
6646

6647
#ifdef CONFIG_SCHED_DEBUG
I
Ingo Molnar 已提交
6648

6649 6650 6651 6652 6653 6654 6655 6656 6657 6658 6659 6660 6661 6662 6663 6664 6665 6666 6667 6668 6669 6670
static inline const char *sd_level_to_string(enum sched_domain_level lvl)
{
	switch (lvl) {
	case SD_LV_NONE:
			return "NONE";
	case SD_LV_SIBLING:
			return "SIBLING";
	case SD_LV_MC:
			return "MC";
	case SD_LV_CPU:
			return "CPU";
	case SD_LV_NODE:
			return "NODE";
	case SD_LV_ALLNODES:
			return "ALLNODES";
	case SD_LV_MAX:
			return "MAX";

	}
	return "MAX";
}

6671 6672
static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
				  cpumask_t *groupmask)
L
Linus Torvalds 已提交
6673
{
I
Ingo Molnar 已提交
6674
	struct sched_group *group = sd->groups;
6675
	char str[256];
L
Linus Torvalds 已提交
6676

6677
	cpulist_scnprintf(str, sizeof(str), sd->span);
6678
	cpus_clear(*groupmask);
I
Ingo Molnar 已提交
6679 6680 6681 6682 6683 6684 6685 6686 6687

	printk(KERN_DEBUG "%*s domain %d: ", level, "", level);

	if (!(sd->flags & SD_LOAD_BALANCE)) {
		printk("does not load-balance\n");
		if (sd->parent)
			printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
					" has parent");
		return -1;
N
Nick Piggin 已提交
6688 6689
	}

6690 6691
	printk(KERN_CONT "span %s level %s\n",
		str, sd_level_to_string(sd->level));
I
Ingo Molnar 已提交
6692 6693 6694 6695 6696 6697 6698 6699 6700

	if (!cpu_isset(cpu, sd->span)) {
		printk(KERN_ERR "ERROR: domain->span does not contain "
				"CPU%d\n", cpu);
	}
	if (!cpu_isset(cpu, group->cpumask)) {
		printk(KERN_ERR "ERROR: domain->groups does not contain"
				" CPU%d\n", cpu);
	}
L
Linus Torvalds 已提交
6701

I
Ingo Molnar 已提交
6702
	printk(KERN_DEBUG "%*s groups:", level + 1, "");
L
Linus Torvalds 已提交
6703
	do {
I
Ingo Molnar 已提交
6704 6705 6706
		if (!group) {
			printk("\n");
			printk(KERN_ERR "ERROR: group is NULL\n");
L
Linus Torvalds 已提交
6707 6708 6709
			break;
		}

I
Ingo Molnar 已提交
6710 6711 6712 6713 6714 6715
		if (!group->__cpu_power) {
			printk(KERN_CONT "\n");
			printk(KERN_ERR "ERROR: domain->cpu_power not "
					"set\n");
			break;
		}
L
Linus Torvalds 已提交
6716

I
Ingo Molnar 已提交
6717 6718 6719 6720 6721
		if (!cpus_weight(group->cpumask)) {
			printk(KERN_CONT "\n");
			printk(KERN_ERR "ERROR: empty group\n");
			break;
		}
L
Linus Torvalds 已提交
6722

6723
		if (cpus_intersects(*groupmask, group->cpumask)) {
I
Ingo Molnar 已提交
6724 6725 6726 6727
			printk(KERN_CONT "\n");
			printk(KERN_ERR "ERROR: repeated CPUs\n");
			break;
		}
L
Linus Torvalds 已提交
6728

6729
		cpus_or(*groupmask, *groupmask, group->cpumask);
L
Linus Torvalds 已提交
6730

6731
		cpulist_scnprintf(str, sizeof(str), group->cpumask);
I
Ingo Molnar 已提交
6732
		printk(KERN_CONT " %s", str);
L
Linus Torvalds 已提交
6733

I
Ingo Molnar 已提交
6734 6735 6736
		group = group->next;
	} while (group != sd->groups);
	printk(KERN_CONT "\n");
L
Linus Torvalds 已提交
6737

6738
	if (!cpus_equal(sd->span, *groupmask))
I
Ingo Molnar 已提交
6739
		printk(KERN_ERR "ERROR: groups don't span domain->span\n");
L
Linus Torvalds 已提交
6740

6741
	if (sd->parent && !cpus_subset(*groupmask, sd->parent->span))
I
Ingo Molnar 已提交
6742 6743 6744 6745
		printk(KERN_ERR "ERROR: parent span is not a superset "
			"of domain->span\n");
	return 0;
}
L
Linus Torvalds 已提交
6746

I
Ingo Molnar 已提交
6747 6748
static void sched_domain_debug(struct sched_domain *sd, int cpu)
{
6749
	cpumask_t *groupmask;
I
Ingo Molnar 已提交
6750
	int level = 0;
L
Linus Torvalds 已提交
6751

I
Ingo Molnar 已提交
6752 6753 6754 6755
	if (!sd) {
		printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
		return;
	}
L
Linus Torvalds 已提交
6756

I
Ingo Molnar 已提交
6757 6758
	printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);

6759 6760 6761 6762 6763 6764
	groupmask = kmalloc(sizeof(cpumask_t), GFP_KERNEL);
	if (!groupmask) {
		printk(KERN_DEBUG "Cannot load-balance (out of memory)\n");
		return;
	}

I
Ingo Molnar 已提交
6765
	for (;;) {
6766
		if (sched_domain_debug_one(sd, cpu, level, groupmask))
I
Ingo Molnar 已提交
6767
			break;
L
Linus Torvalds 已提交
6768 6769
		level++;
		sd = sd->parent;
6770
		if (!sd)
I
Ingo Molnar 已提交
6771 6772
			break;
	}
6773
	kfree(groupmask);
L
Linus Torvalds 已提交
6774
}
6775
#else /* !CONFIG_SCHED_DEBUG */
6776
# define sched_domain_debug(sd, cpu) do { } while (0)
6777
#endif /* CONFIG_SCHED_DEBUG */
L
Linus Torvalds 已提交
6778

6779
static int sd_degenerate(struct sched_domain *sd)
6780 6781 6782 6783 6784 6785 6786 6787
{
	if (cpus_weight(sd->span) == 1)
		return 1;

	/* Following flags need at least 2 groups */
	if (sd->flags & (SD_LOAD_BALANCE |
			 SD_BALANCE_NEWIDLE |
			 SD_BALANCE_FORK |
6788 6789 6790
			 SD_BALANCE_EXEC |
			 SD_SHARE_CPUPOWER |
			 SD_SHARE_PKG_RESOURCES)) {
6791 6792 6793 6794 6795 6796 6797 6798 6799 6800 6801 6802 6803
		if (sd->groups != sd->groups->next)
			return 0;
	}

	/* Following flags don't use groups */
	if (sd->flags & (SD_WAKE_IDLE |
			 SD_WAKE_AFFINE |
			 SD_WAKE_BALANCE))
		return 0;

	return 1;
}

6804 6805
static int
sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
6806 6807 6808 6809 6810 6811 6812 6813 6814 6815 6816 6817 6818 6819 6820 6821 6822 6823
{
	unsigned long cflags = sd->flags, pflags = parent->flags;

	if (sd_degenerate(parent))
		return 1;

	if (!cpus_equal(sd->span, parent->span))
		return 0;

	/* Does parent contain flags not in child? */
	/* WAKE_BALANCE is a subset of WAKE_AFFINE */
	if (cflags & SD_WAKE_AFFINE)
		pflags &= ~SD_WAKE_BALANCE;
	/* Flags needing groups don't count if only 1 group in parent */
	if (parent->groups == parent->groups->next) {
		pflags &= ~(SD_LOAD_BALANCE |
				SD_BALANCE_NEWIDLE |
				SD_BALANCE_FORK |
6824 6825 6826
				SD_BALANCE_EXEC |
				SD_SHARE_CPUPOWER |
				SD_SHARE_PKG_RESOURCES);
6827 6828 6829 6830 6831 6832 6833
	}
	if (~cflags & pflags)
		return 0;

	return 1;
}

G
Gregory Haskins 已提交
6834 6835 6836 6837 6838 6839 6840 6841 6842
static void rq_attach_root(struct rq *rq, struct root_domain *rd)
{
	unsigned long flags;

	spin_lock_irqsave(&rq->lock, flags);

	if (rq->rd) {
		struct root_domain *old_rd = rq->rd;

6843 6844
		if (cpu_isset(rq->cpu, old_rd->online))
			set_rq_offline(rq);
G
Gregory Haskins 已提交
6845

6846 6847
		cpu_clear(rq->cpu, old_rd->span);

G
Gregory Haskins 已提交
6848 6849 6850 6851 6852 6853 6854
		if (atomic_dec_and_test(&old_rd->refcount))
			kfree(old_rd);
	}

	atomic_inc(&rd->refcount);
	rq->rd = rd;

6855
	cpu_set(rq->cpu, rd->span);
6856
	if (cpu_isset(rq->cpu, cpu_online_map))
6857
		set_rq_online(rq);
G
Gregory Haskins 已提交
6858 6859 6860 6861

	spin_unlock_irqrestore(&rq->lock, flags);
}

6862
static void init_rootdomain(struct root_domain *rd)
G
Gregory Haskins 已提交
6863 6864 6865
{
	memset(rd, 0, sizeof(*rd));

6866 6867
	cpus_clear(rd->span);
	cpus_clear(rd->online);
6868 6869

	cpupri_init(&rd->cpupri);
G
Gregory Haskins 已提交
6870 6871 6872 6873
}

static void init_defrootdomain(void)
{
6874
	init_rootdomain(&def_root_domain);
G
Gregory Haskins 已提交
6875 6876 6877
	atomic_set(&def_root_domain.refcount, 1);
}

6878
static struct root_domain *alloc_rootdomain(void)
G
Gregory Haskins 已提交
6879 6880 6881 6882 6883 6884 6885
{
	struct root_domain *rd;

	rd = kmalloc(sizeof(*rd), GFP_KERNEL);
	if (!rd)
		return NULL;

6886
	init_rootdomain(rd);
G
Gregory Haskins 已提交
6887 6888 6889 6890

	return rd;
}

L
Linus Torvalds 已提交
6891
/*
I
Ingo Molnar 已提交
6892
 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
L
Linus Torvalds 已提交
6893 6894
 * hold the hotplug lock.
 */
I
Ingo Molnar 已提交
6895 6896
static void
cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
L
Linus Torvalds 已提交
6897
{
6898
	struct rq *rq = cpu_rq(cpu);
6899 6900 6901
	struct sched_domain *tmp;

	/* Remove the sched domains which do not contribute to scheduling. */
6902
	for (tmp = sd; tmp; ) {
6903 6904 6905
		struct sched_domain *parent = tmp->parent;
		if (!parent)
			break;
6906

6907
		if (sd_parent_degenerate(tmp, parent)) {
6908
			tmp->parent = parent->parent;
6909 6910
			if (parent->parent)
				parent->parent->child = tmp;
6911 6912
		} else
			tmp = tmp->parent;
6913 6914
	}

6915
	if (sd && sd_degenerate(sd)) {
6916
		sd = sd->parent;
6917 6918 6919
		if (sd)
			sd->child = NULL;
	}
L
Linus Torvalds 已提交
6920 6921 6922

	sched_domain_debug(sd, cpu);

G
Gregory Haskins 已提交
6923
	rq_attach_root(rq, rd);
N
Nick Piggin 已提交
6924
	rcu_assign_pointer(rq->sd, sd);
L
Linus Torvalds 已提交
6925 6926 6927
}

/* cpus with isolated domains */
6928
static cpumask_t cpu_isolated_map = CPU_MASK_NONE;
L
Linus Torvalds 已提交
6929 6930 6931 6932

/* Setup the mask of cpus configured for isolated domains */
static int __init isolated_cpu_setup(char *str)
{
6933 6934
	static int __initdata ints[NR_CPUS];
	int i;
L
Linus Torvalds 已提交
6935 6936 6937 6938 6939 6940 6941 6942 6943

	str = get_options(str, ARRAY_SIZE(ints), ints);
	cpus_clear(cpu_isolated_map);
	for (i = 1; i <= ints[0]; i++)
		if (ints[i] < NR_CPUS)
			cpu_set(ints[i], cpu_isolated_map);
	return 1;
}

I
Ingo Molnar 已提交
6944
__setup("isolcpus=", isolated_cpu_setup);
L
Linus Torvalds 已提交
6945 6946

/*
6947 6948 6949 6950
 * init_sched_build_groups takes the cpumask we wish to span, and a pointer
 * to a function which identifies what group(along with sched group) a CPU
 * belongs to. The return value of group_fn must be a >= 0 and < NR_CPUS
 * (due to the fact that we keep track of groups covered with a cpumask_t).
L
Linus Torvalds 已提交
6951 6952 6953 6954 6955
 *
 * init_sched_build_groups will build a circular linked list of the groups
 * covered by the given span, and will set each group's ->cpumask correctly,
 * and ->cpu_power to 0.
 */
6956
static void
6957
init_sched_build_groups(const cpumask_t *span, const cpumask_t *cpu_map,
6958
			int (*group_fn)(int cpu, const cpumask_t *cpu_map,
6959 6960 6961
					struct sched_group **sg,
					cpumask_t *tmpmask),
			cpumask_t *covered, cpumask_t *tmpmask)
L
Linus Torvalds 已提交
6962 6963 6964 6965
{
	struct sched_group *first = NULL, *last = NULL;
	int i;

6966 6967
	cpus_clear(*covered);

6968
	for_each_cpu_mask_nr(i, *span) {
6969
		struct sched_group *sg;
6970
		int group = group_fn(i, cpu_map, &sg, tmpmask);
L
Linus Torvalds 已提交
6971 6972
		int j;

6973
		if (cpu_isset(i, *covered))
L
Linus Torvalds 已提交
6974 6975
			continue;

6976
		cpus_clear(sg->cpumask);
6977
		sg->__cpu_power = 0;
L
Linus Torvalds 已提交
6978

6979
		for_each_cpu_mask_nr(j, *span) {
6980
			if (group_fn(j, cpu_map, NULL, tmpmask) != group)
L
Linus Torvalds 已提交
6981 6982
				continue;

6983
			cpu_set(j, *covered);
L
Linus Torvalds 已提交
6984 6985 6986 6987 6988 6989 6990 6991 6992 6993 6994
			cpu_set(j, sg->cpumask);
		}
		if (!first)
			first = sg;
		if (last)
			last->next = sg;
		last = sg;
	}
	last->next = first;
}

6995
#define SD_NODES_PER_DOMAIN 16
L
Linus Torvalds 已提交
6996

6997
#ifdef CONFIG_NUMA
6998

6999 7000 7001 7002 7003
/**
 * find_next_best_node - find the next node to include in a sched_domain
 * @node: node whose sched_domain we're building
 * @used_nodes: nodes already in the sched_domain
 *
I
Ingo Molnar 已提交
7004
 * Find the next node to include in a given scheduling domain. Simply
7005 7006 7007 7008
 * finds the closest node not already in the @used_nodes map.
 *
 * Should use nodemask_t.
 */
7009
static int find_next_best_node(int node, nodemask_t *used_nodes)
7010 7011 7012 7013 7014
{
	int i, n, val, min_val, best_node = 0;

	min_val = INT_MAX;

7015
	for (i = 0; i < nr_node_ids; i++) {
7016
		/* Start at @node */
7017
		n = (node + i) % nr_node_ids;
7018 7019 7020 7021 7022

		if (!nr_cpus_node(n))
			continue;

		/* Skip already used nodes */
7023
		if (node_isset(n, *used_nodes))
7024 7025 7026 7027 7028 7029 7030 7031 7032 7033 7034
			continue;

		/* Simple min distance search */
		val = node_distance(node, n);

		if (val < min_val) {
			min_val = val;
			best_node = n;
		}
	}

7035
	node_set(best_node, *used_nodes);
7036 7037 7038 7039 7040 7041
	return best_node;
}

/**
 * sched_domain_node_span - get a cpumask for a node's sched_domain
 * @node: node whose cpumask we're constructing
7042
 * @span: resulting cpumask
7043
 *
I
Ingo Molnar 已提交
7044
 * Given a node, construct a good cpumask for its sched_domain to span. It
7045 7046 7047
 * should be one that prevents unnecessary balancing, but also spreads tasks
 * out optimally.
 */
7048
static void sched_domain_node_span(int node, cpumask_t *span)
7049
{
7050 7051
	nodemask_t used_nodes;
	node_to_cpumask_ptr(nodemask, node);
7052
	int i;
7053

7054
	cpus_clear(*span);
7055
	nodes_clear(used_nodes);
7056

7057
	cpus_or(*span, *span, *nodemask);
7058
	node_set(node, used_nodes);
7059 7060

	for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
7061
		int next_node = find_next_best_node(node, &used_nodes);
7062

7063
		node_to_cpumask_ptr_next(nodemask, next_node);
7064
		cpus_or(*span, *span, *nodemask);
7065 7066
	}
}
7067
#endif /* CONFIG_NUMA */
7068

7069
int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
7070

7071
/*
7072
 * SMT sched-domains:
7073
 */
L
Linus Torvalds 已提交
7074 7075
#ifdef CONFIG_SCHED_SMT
static DEFINE_PER_CPU(struct sched_domain, cpu_domains);
7076
static DEFINE_PER_CPU(struct sched_group, sched_group_cpus);
7077

I
Ingo Molnar 已提交
7078
static int
7079 7080
cpu_to_cpu_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg,
		 cpumask_t *unused)
L
Linus Torvalds 已提交
7081
{
7082 7083
	if (sg)
		*sg = &per_cpu(sched_group_cpus, cpu);
L
Linus Torvalds 已提交
7084 7085
	return cpu;
}
7086
#endif /* CONFIG_SCHED_SMT */
L
Linus Torvalds 已提交
7087

7088 7089 7090
/*
 * multi-core sched-domains:
 */
7091 7092
#ifdef CONFIG_SCHED_MC
static DEFINE_PER_CPU(struct sched_domain, core_domains);
7093
static DEFINE_PER_CPU(struct sched_group, sched_group_core);
7094
#endif /* CONFIG_SCHED_MC */
7095 7096

#if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
I
Ingo Molnar 已提交
7097
static int
7098 7099
cpu_to_core_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg,
		  cpumask_t *mask)
7100
{
7101
	int group;
7102 7103 7104 7105

	*mask = per_cpu(cpu_sibling_map, cpu);
	cpus_and(*mask, *mask, *cpu_map);
	group = first_cpu(*mask);
7106 7107 7108
	if (sg)
		*sg = &per_cpu(sched_group_core, group);
	return group;
7109 7110
}
#elif defined(CONFIG_SCHED_MC)
I
Ingo Molnar 已提交
7111
static int
7112 7113
cpu_to_core_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg,
		  cpumask_t *unused)
7114
{
7115 7116
	if (sg)
		*sg = &per_cpu(sched_group_core, cpu);
7117 7118 7119 7120
	return cpu;
}
#endif

L
Linus Torvalds 已提交
7121
static DEFINE_PER_CPU(struct sched_domain, phys_domains);
7122
static DEFINE_PER_CPU(struct sched_group, sched_group_phys);
7123

I
Ingo Molnar 已提交
7124
static int
7125 7126
cpu_to_phys_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg,
		  cpumask_t *mask)
L
Linus Torvalds 已提交
7127
{
7128
	int group;
7129
#ifdef CONFIG_SCHED_MC
7130 7131 7132
	*mask = cpu_coregroup_map(cpu);
	cpus_and(*mask, *mask, *cpu_map);
	group = first_cpu(*mask);
7133
#elif defined(CONFIG_SCHED_SMT)
7134 7135 7136
	*mask = per_cpu(cpu_sibling_map, cpu);
	cpus_and(*mask, *mask, *cpu_map);
	group = first_cpu(*mask);
L
Linus Torvalds 已提交
7137
#else
7138
	group = cpu;
L
Linus Torvalds 已提交
7139
#endif
7140 7141 7142
	if (sg)
		*sg = &per_cpu(sched_group_phys, group);
	return group;
L
Linus Torvalds 已提交
7143 7144 7145 7146
}

#ifdef CONFIG_NUMA
/*
7147 7148 7149
 * The init_sched_build_groups can't handle what we want to do with node
 * groups, so roll our own. Now each node has its own list of groups which
 * gets dynamically allocated.
L
Linus Torvalds 已提交
7150
 */
7151
static DEFINE_PER_CPU(struct sched_domain, node_domains);
7152
static struct sched_group ***sched_group_nodes_bycpu;
L
Linus Torvalds 已提交
7153

7154
static DEFINE_PER_CPU(struct sched_domain, allnodes_domains);
7155
static DEFINE_PER_CPU(struct sched_group, sched_group_allnodes);
7156

7157
static int cpu_to_allnodes_group(int cpu, const cpumask_t *cpu_map,
7158
				 struct sched_group **sg, cpumask_t *nodemask)
7159
{
7160 7161
	int group;

7162 7163 7164
	*nodemask = node_to_cpumask(cpu_to_node(cpu));
	cpus_and(*nodemask, *nodemask, *cpu_map);
	group = first_cpu(*nodemask);
7165 7166 7167 7168

	if (sg)
		*sg = &per_cpu(sched_group_allnodes, group);
	return group;
L
Linus Torvalds 已提交
7169
}
7170

7171 7172 7173 7174 7175 7176 7177
static void init_numa_sched_groups_power(struct sched_group *group_head)
{
	struct sched_group *sg = group_head;
	int j;

	if (!sg)
		return;
7178
	do {
7179
		for_each_cpu_mask_nr(j, sg->cpumask) {
7180
			struct sched_domain *sd;
7181

7182 7183 7184 7185 7186 7187 7188 7189
			sd = &per_cpu(phys_domains, j);
			if (j != first_cpu(sd->groups->cpumask)) {
				/*
				 * Only add "power" once for each
				 * physical package.
				 */
				continue;
			}
7190

7191 7192 7193 7194
			sg_inc_cpu_power(sg, sd->groups->__cpu_power);
		}
		sg = sg->next;
	} while (sg != group_head);
7195
}
7196
#endif /* CONFIG_NUMA */
L
Linus Torvalds 已提交
7197

7198
#ifdef CONFIG_NUMA
7199
/* Free memory allocated for various sched_group structures */
7200
static void free_sched_groups(const cpumask_t *cpu_map, cpumask_t *nodemask)
7201
{
7202
	int cpu, i;
7203

7204
	for_each_cpu_mask_nr(cpu, *cpu_map) {
7205 7206 7207 7208 7209 7210
		struct sched_group **sched_group_nodes
			= sched_group_nodes_bycpu[cpu];

		if (!sched_group_nodes)
			continue;

7211
		for (i = 0; i < nr_node_ids; i++) {
7212 7213
			struct sched_group *oldsg, *sg = sched_group_nodes[i];

7214 7215 7216
			*nodemask = node_to_cpumask(i);
			cpus_and(*nodemask, *nodemask, *cpu_map);
			if (cpus_empty(*nodemask))
7217 7218 7219 7220 7221 7222 7223 7224 7225 7226 7227 7228 7229 7230 7231 7232
				continue;

			if (sg == NULL)
				continue;
			sg = sg->next;
next_sg:
			oldsg = sg;
			sg = sg->next;
			kfree(oldsg);
			if (oldsg != sched_group_nodes[i])
				goto next_sg;
		}
		kfree(sched_group_nodes);
		sched_group_nodes_bycpu[cpu] = NULL;
	}
}
7233
#else /* !CONFIG_NUMA */
7234
static void free_sched_groups(const cpumask_t *cpu_map, cpumask_t *nodemask)
7235 7236
{
}
7237
#endif /* CONFIG_NUMA */
7238

7239 7240 7241 7242 7243 7244 7245 7246 7247 7248 7249 7250 7251 7252 7253 7254 7255 7256 7257 7258 7259 7260 7261 7262 7263 7264
/*
 * Initialize sched groups cpu_power.
 *
 * cpu_power indicates the capacity of sched group, which is used while
 * distributing the load between different sched groups in a sched domain.
 * Typically cpu_power for all the groups in a sched domain will be same unless
 * there are asymmetries in the topology. If there are asymmetries, group
 * having more cpu_power will pickup more load compared to the group having
 * less cpu_power.
 *
 * cpu_power will be a multiple of SCHED_LOAD_SCALE. This multiple represents
 * the maximum number of tasks a group can handle in the presence of other idle
 * or lightly loaded groups in the same sched domain.
 */
static void init_sched_groups_power(int cpu, struct sched_domain *sd)
{
	struct sched_domain *child;
	struct sched_group *group;

	WARN_ON(!sd || !sd->groups);

	if (cpu != first_cpu(sd->groups->cpumask))
		return;

	child = sd->child;

7265 7266
	sd->groups->__cpu_power = 0;

7267 7268 7269 7270 7271 7272 7273 7274 7275 7276
	/*
	 * For perf policy, if the groups in child domain share resources
	 * (for example cores sharing some portions of the cache hierarchy
	 * or SMT), then set this domain groups cpu_power such that each group
	 * can handle only one task, when there are other idle groups in the
	 * same sched domain.
	 */
	if (!child || (!(sd->flags & SD_POWERSAVINGS_BALANCE) &&
		       (child->flags &
			(SD_SHARE_CPUPOWER | SD_SHARE_PKG_RESOURCES)))) {
7277
		sg_inc_cpu_power(sd->groups, SCHED_LOAD_SCALE);
7278 7279 7280 7281 7282 7283 7284 7285
		return;
	}

	/*
	 * add cpu_power of each child group to this groups cpu_power
	 */
	group = child->groups;
	do {
7286
		sg_inc_cpu_power(sd->groups, group->__cpu_power);
7287 7288 7289 7290
		group = group->next;
	} while (group != child->groups);
}

7291 7292 7293 7294 7295
/*
 * Initializers for schedule domains
 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
 */

7296 7297 7298 7299 7300 7301
#ifdef CONFIG_SCHED_DEBUG
# define SD_INIT_NAME(sd, type)		sd->name = #type
#else
# define SD_INIT_NAME(sd, type)		do { } while (0)
#endif

7302
#define	SD_INIT(sd, type)	sd_init_##type(sd)
7303

7304 7305 7306 7307 7308
#define SD_INIT_FUNC(type)	\
static noinline void sd_init_##type(struct sched_domain *sd)	\
{								\
	memset(sd, 0, sizeof(*sd));				\
	*sd = SD_##type##_INIT;					\
7309
	sd->level = SD_LV_##type;				\
7310
	SD_INIT_NAME(sd, type);					\
7311 7312 7313 7314 7315 7316 7317 7318 7319 7320 7321 7322 7323 7324 7325 7326 7327 7328 7329 7330 7331 7332 7333 7334 7335 7336 7337 7338 7339 7340 7341 7342 7343 7344 7345 7346 7347 7348 7349 7350 7351 7352 7353 7354 7355 7356 7357 7358
}

SD_INIT_FUNC(CPU)
#ifdef CONFIG_NUMA
 SD_INIT_FUNC(ALLNODES)
 SD_INIT_FUNC(NODE)
#endif
#ifdef CONFIG_SCHED_SMT
 SD_INIT_FUNC(SIBLING)
#endif
#ifdef CONFIG_SCHED_MC
 SD_INIT_FUNC(MC)
#endif

/*
 * To minimize stack usage kmalloc room for cpumasks and share the
 * space as the usage in build_sched_domains() dictates.  Used only
 * if the amount of space is significant.
 */
struct allmasks {
	cpumask_t tmpmask;			/* make this one first */
	union {
		cpumask_t nodemask;
		cpumask_t this_sibling_map;
		cpumask_t this_core_map;
	};
	cpumask_t send_covered;

#ifdef CONFIG_NUMA
	cpumask_t domainspan;
	cpumask_t covered;
	cpumask_t notcovered;
#endif
};

#if	NR_CPUS > 128
#define	SCHED_CPUMASK_ALLOC		1
#define	SCHED_CPUMASK_FREE(v)		kfree(v)
#define	SCHED_CPUMASK_DECLARE(v)	struct allmasks *v
#else
#define	SCHED_CPUMASK_ALLOC		0
#define	SCHED_CPUMASK_FREE(v)
#define	SCHED_CPUMASK_DECLARE(v)	struct allmasks _v, *v = &_v
#endif

#define	SCHED_CPUMASK_VAR(v, a) 	cpumask_t *v = (cpumask_t *) \
			((unsigned long)(a) + offsetof(struct allmasks, v))

7359 7360 7361 7362
static int default_relax_domain_level = -1;

static int __init setup_relax_domain_level(char *str)
{
7363 7364 7365 7366 7367 7368
	unsigned long val;

	val = simple_strtoul(str, NULL, 0);
	if (val < SD_LV_MAX)
		default_relax_domain_level = val;

7369 7370 7371 7372 7373 7374 7375 7376 7377 7378 7379 7380 7381 7382 7383 7384 7385 7386 7387 7388 7389 7390 7391 7392 7393
	return 1;
}
__setup("relax_domain_level=", setup_relax_domain_level);

static void set_domain_attribute(struct sched_domain *sd,
				 struct sched_domain_attr *attr)
{
	int request;

	if (!attr || attr->relax_domain_level < 0) {
		if (default_relax_domain_level < 0)
			return;
		else
			request = default_relax_domain_level;
	} else
		request = attr->relax_domain_level;
	if (request < sd->level) {
		/* turn off idle balance on this domain */
		sd->flags &= ~(SD_WAKE_IDLE|SD_BALANCE_NEWIDLE);
	} else {
		/* turn on idle balance on this domain */
		sd->flags |= (SD_WAKE_IDLE_FAR|SD_BALANCE_NEWIDLE);
	}
}

L
Linus Torvalds 已提交
7394
/*
7395 7396
 * Build sched domains for a given set of cpus and attach the sched domains
 * to the individual cpus
L
Linus Torvalds 已提交
7397
 */
7398 7399
static int __build_sched_domains(const cpumask_t *cpu_map,
				 struct sched_domain_attr *attr)
L
Linus Torvalds 已提交
7400 7401
{
	int i;
G
Gregory Haskins 已提交
7402
	struct root_domain *rd;
7403 7404
	SCHED_CPUMASK_DECLARE(allmasks);
	cpumask_t *tmpmask;
7405 7406
#ifdef CONFIG_NUMA
	struct sched_group **sched_group_nodes = NULL;
7407
	int sd_allnodes = 0;
7408 7409 7410 7411

	/*
	 * Allocate the per-node list of sched groups
	 */
7412
	sched_group_nodes = kcalloc(nr_node_ids, sizeof(struct sched_group *),
I
Ingo Molnar 已提交
7413
				    GFP_KERNEL);
7414 7415
	if (!sched_group_nodes) {
		printk(KERN_WARNING "Can not alloc sched group node list\n");
7416
		return -ENOMEM;
7417 7418
	}
#endif
L
Linus Torvalds 已提交
7419

7420
	rd = alloc_rootdomain();
G
Gregory Haskins 已提交
7421 7422
	if (!rd) {
		printk(KERN_WARNING "Cannot alloc root domain\n");
7423 7424 7425
#ifdef CONFIG_NUMA
		kfree(sched_group_nodes);
#endif
G
Gregory Haskins 已提交
7426 7427 7428
		return -ENOMEM;
	}

7429 7430 7431 7432 7433 7434 7435 7436 7437 7438 7439 7440 7441 7442 7443 7444 7445 7446 7447
#if SCHED_CPUMASK_ALLOC
	/* get space for all scratch cpumask variables */
	allmasks = kmalloc(sizeof(*allmasks), GFP_KERNEL);
	if (!allmasks) {
		printk(KERN_WARNING "Cannot alloc cpumask array\n");
		kfree(rd);
#ifdef CONFIG_NUMA
		kfree(sched_group_nodes);
#endif
		return -ENOMEM;
	}
#endif
	tmpmask = (cpumask_t *)allmasks;


#ifdef CONFIG_NUMA
	sched_group_nodes_bycpu[first_cpu(*cpu_map)] = sched_group_nodes;
#endif

L
Linus Torvalds 已提交
7448
	/*
7449
	 * Set up domains for cpus specified by the cpu_map.
L
Linus Torvalds 已提交
7450
	 */
7451
	for_each_cpu_mask_nr(i, *cpu_map) {
L
Linus Torvalds 已提交
7452
		struct sched_domain *sd = NULL, *p;
7453
		SCHED_CPUMASK_VAR(nodemask, allmasks);
L
Linus Torvalds 已提交
7454

7455 7456
		*nodemask = node_to_cpumask(cpu_to_node(i));
		cpus_and(*nodemask, *nodemask, *cpu_map);
L
Linus Torvalds 已提交
7457 7458

#ifdef CONFIG_NUMA
I
Ingo Molnar 已提交
7459
		if (cpus_weight(*cpu_map) >
7460
				SD_NODES_PER_DOMAIN*cpus_weight(*nodemask)) {
7461
			sd = &per_cpu(allnodes_domains, i);
7462
			SD_INIT(sd, ALLNODES);
7463
			set_domain_attribute(sd, attr);
7464
			sd->span = *cpu_map;
7465
			cpu_to_allnodes_group(i, cpu_map, &sd->groups, tmpmask);
7466
			p = sd;
7467
			sd_allnodes = 1;
7468 7469 7470
		} else
			p = NULL;

L
Linus Torvalds 已提交
7471
		sd = &per_cpu(node_domains, i);
7472
		SD_INIT(sd, NODE);
7473
		set_domain_attribute(sd, attr);
7474
		sched_domain_node_span(cpu_to_node(i), &sd->span);
7475
		sd->parent = p;
7476 7477
		if (p)
			p->child = sd;
7478
		cpus_and(sd->span, sd->span, *cpu_map);
L
Linus Torvalds 已提交
7479 7480 7481 7482
#endif

		p = sd;
		sd = &per_cpu(phys_domains, i);
7483
		SD_INIT(sd, CPU);
7484
		set_domain_attribute(sd, attr);
7485
		sd->span = *nodemask;
L
Linus Torvalds 已提交
7486
		sd->parent = p;
7487 7488
		if (p)
			p->child = sd;
7489
		cpu_to_phys_group(i, cpu_map, &sd->groups, tmpmask);
L
Linus Torvalds 已提交
7490

7491 7492 7493
#ifdef CONFIG_SCHED_MC
		p = sd;
		sd = &per_cpu(core_domains, i);
7494
		SD_INIT(sd, MC);
7495
		set_domain_attribute(sd, attr);
7496 7497 7498
		sd->span = cpu_coregroup_map(i);
		cpus_and(sd->span, sd->span, *cpu_map);
		sd->parent = p;
7499
		p->child = sd;
7500
		cpu_to_core_group(i, cpu_map, &sd->groups, tmpmask);
7501 7502
#endif

L
Linus Torvalds 已提交
7503 7504 7505
#ifdef CONFIG_SCHED_SMT
		p = sd;
		sd = &per_cpu(cpu_domains, i);
7506
		SD_INIT(sd, SIBLING);
7507
		set_domain_attribute(sd, attr);
7508
		sd->span = per_cpu(cpu_sibling_map, i);
7509
		cpus_and(sd->span, sd->span, *cpu_map);
L
Linus Torvalds 已提交
7510
		sd->parent = p;
7511
		p->child = sd;
7512
		cpu_to_cpu_group(i, cpu_map, &sd->groups, tmpmask);
L
Linus Torvalds 已提交
7513 7514 7515 7516 7517
#endif
	}

#ifdef CONFIG_SCHED_SMT
	/* Set up CPU (sibling) groups */
7518
	for_each_cpu_mask_nr(i, *cpu_map) {
7519 7520 7521 7522 7523 7524
		SCHED_CPUMASK_VAR(this_sibling_map, allmasks);
		SCHED_CPUMASK_VAR(send_covered, allmasks);

		*this_sibling_map = per_cpu(cpu_sibling_map, i);
		cpus_and(*this_sibling_map, *this_sibling_map, *cpu_map);
		if (i != first_cpu(*this_sibling_map))
L
Linus Torvalds 已提交
7525 7526
			continue;

I
Ingo Molnar 已提交
7527
		init_sched_build_groups(this_sibling_map, cpu_map,
7528 7529
					&cpu_to_cpu_group,
					send_covered, tmpmask);
L
Linus Torvalds 已提交
7530 7531 7532
	}
#endif

7533 7534
#ifdef CONFIG_SCHED_MC
	/* Set up multi-core groups */
7535
	for_each_cpu_mask_nr(i, *cpu_map) {
7536 7537 7538 7539 7540 7541
		SCHED_CPUMASK_VAR(this_core_map, allmasks);
		SCHED_CPUMASK_VAR(send_covered, allmasks);

		*this_core_map = cpu_coregroup_map(i);
		cpus_and(*this_core_map, *this_core_map, *cpu_map);
		if (i != first_cpu(*this_core_map))
7542
			continue;
7543

I
Ingo Molnar 已提交
7544
		init_sched_build_groups(this_core_map, cpu_map,
7545 7546
					&cpu_to_core_group,
					send_covered, tmpmask);
7547 7548 7549
	}
#endif

L
Linus Torvalds 已提交
7550
	/* Set up physical groups */
7551
	for (i = 0; i < nr_node_ids; i++) {
7552 7553
		SCHED_CPUMASK_VAR(nodemask, allmasks);
		SCHED_CPUMASK_VAR(send_covered, allmasks);
L
Linus Torvalds 已提交
7554

7555 7556 7557
		*nodemask = node_to_cpumask(i);
		cpus_and(*nodemask, *nodemask, *cpu_map);
		if (cpus_empty(*nodemask))
L
Linus Torvalds 已提交
7558 7559
			continue;

7560 7561 7562
		init_sched_build_groups(nodemask, cpu_map,
					&cpu_to_phys_group,
					send_covered, tmpmask);
L
Linus Torvalds 已提交
7563 7564 7565 7566
	}

#ifdef CONFIG_NUMA
	/* Set up node groups */
7567 7568 7569 7570 7571 7572 7573
	if (sd_allnodes) {
		SCHED_CPUMASK_VAR(send_covered, allmasks);

		init_sched_build_groups(cpu_map, cpu_map,
					&cpu_to_allnodes_group,
					send_covered, tmpmask);
	}
7574

7575
	for (i = 0; i < nr_node_ids; i++) {
7576 7577
		/* Set up node groups */
		struct sched_group *sg, *prev;
7578 7579 7580
		SCHED_CPUMASK_VAR(nodemask, allmasks);
		SCHED_CPUMASK_VAR(domainspan, allmasks);
		SCHED_CPUMASK_VAR(covered, allmasks);
7581 7582
		int j;

7583 7584 7585 7586 7587
		*nodemask = node_to_cpumask(i);
		cpus_clear(*covered);

		cpus_and(*nodemask, *nodemask, *cpu_map);
		if (cpus_empty(*nodemask)) {
7588
			sched_group_nodes[i] = NULL;
7589
			continue;
7590
		}
7591

7592
		sched_domain_node_span(i, domainspan);
7593
		cpus_and(*domainspan, *domainspan, *cpu_map);
7594

7595
		sg = kmalloc_node(sizeof(struct sched_group), GFP_KERNEL, i);
7596 7597 7598 7599 7600
		if (!sg) {
			printk(KERN_WARNING "Can not alloc domain group for "
				"node %d\n", i);
			goto error;
		}
7601
		sched_group_nodes[i] = sg;
7602
		for_each_cpu_mask_nr(j, *nodemask) {
7603
			struct sched_domain *sd;
I
Ingo Molnar 已提交
7604

7605 7606 7607
			sd = &per_cpu(node_domains, j);
			sd->groups = sg;
		}
7608
		sg->__cpu_power = 0;
7609
		sg->cpumask = *nodemask;
7610
		sg->next = sg;
7611
		cpus_or(*covered, *covered, *nodemask);
7612 7613
		prev = sg;

7614
		for (j = 0; j < nr_node_ids; j++) {
7615
			SCHED_CPUMASK_VAR(notcovered, allmasks);
7616
			int n = (i + j) % nr_node_ids;
7617
			node_to_cpumask_ptr(pnodemask, n);
7618

7619 7620 7621 7622
			cpus_complement(*notcovered, *covered);
			cpus_and(*tmpmask, *notcovered, *cpu_map);
			cpus_and(*tmpmask, *tmpmask, *domainspan);
			if (cpus_empty(*tmpmask))
7623 7624
				break;

7625 7626
			cpus_and(*tmpmask, *tmpmask, *pnodemask);
			if (cpus_empty(*tmpmask))
7627 7628
				continue;

7629 7630
			sg = kmalloc_node(sizeof(struct sched_group),
					  GFP_KERNEL, i);
7631 7632 7633
			if (!sg) {
				printk(KERN_WARNING
				"Can not alloc domain group for node %d\n", j);
7634
				goto error;
7635
			}
7636
			sg->__cpu_power = 0;
7637
			sg->cpumask = *tmpmask;
7638
			sg->next = prev->next;
7639
			cpus_or(*covered, *covered, *tmpmask);
7640 7641 7642 7643
			prev->next = sg;
			prev = sg;
		}
	}
L
Linus Torvalds 已提交
7644 7645 7646
#endif

	/* Calculate CPU power for physical packages and nodes */
7647
#ifdef CONFIG_SCHED_SMT
7648
	for_each_cpu_mask_nr(i, *cpu_map) {
I
Ingo Molnar 已提交
7649 7650
		struct sched_domain *sd = &per_cpu(cpu_domains, i);

7651
		init_sched_groups_power(i, sd);
7652
	}
L
Linus Torvalds 已提交
7653
#endif
7654
#ifdef CONFIG_SCHED_MC
7655
	for_each_cpu_mask_nr(i, *cpu_map) {
I
Ingo Molnar 已提交
7656 7657
		struct sched_domain *sd = &per_cpu(core_domains, i);

7658
		init_sched_groups_power(i, sd);
7659 7660
	}
#endif
7661

7662
	for_each_cpu_mask_nr(i, *cpu_map) {
I
Ingo Molnar 已提交
7663 7664
		struct sched_domain *sd = &per_cpu(phys_domains, i);

7665
		init_sched_groups_power(i, sd);
L
Linus Torvalds 已提交
7666 7667
	}

7668
#ifdef CONFIG_NUMA
7669
	for (i = 0; i < nr_node_ids; i++)
7670
		init_numa_sched_groups_power(sched_group_nodes[i]);
7671

7672 7673
	if (sd_allnodes) {
		struct sched_group *sg;
7674

7675 7676
		cpu_to_allnodes_group(first_cpu(*cpu_map), cpu_map, &sg,
								tmpmask);
7677 7678
		init_numa_sched_groups_power(sg);
	}
7679 7680
#endif

L
Linus Torvalds 已提交
7681
	/* Attach the domains */
7682
	for_each_cpu_mask_nr(i, *cpu_map) {
L
Linus Torvalds 已提交
7683 7684 7685
		struct sched_domain *sd;
#ifdef CONFIG_SCHED_SMT
		sd = &per_cpu(cpu_domains, i);
7686 7687
#elif defined(CONFIG_SCHED_MC)
		sd = &per_cpu(core_domains, i);
L
Linus Torvalds 已提交
7688 7689 7690
#else
		sd = &per_cpu(phys_domains, i);
#endif
G
Gregory Haskins 已提交
7691
		cpu_attach_domain(sd, rd, i);
L
Linus Torvalds 已提交
7692
	}
7693

7694
	SCHED_CPUMASK_FREE((void *)allmasks);
7695 7696
	return 0;

7697
#ifdef CONFIG_NUMA
7698
error:
7699 7700
	free_sched_groups(cpu_map, tmpmask);
	SCHED_CPUMASK_FREE((void *)allmasks);
7701
	kfree(rd);
7702
	return -ENOMEM;
7703
#endif
L
Linus Torvalds 已提交
7704
}
P
Paul Jackson 已提交
7705

7706 7707 7708 7709 7710
static int build_sched_domains(const cpumask_t *cpu_map)
{
	return __build_sched_domains(cpu_map, NULL);
}

P
Paul Jackson 已提交
7711 7712
static cpumask_t *doms_cur;	/* current sched domains */
static int ndoms_cur;		/* number of sched domains in 'doms_cur' */
I
Ingo Molnar 已提交
7713 7714
static struct sched_domain_attr *dattr_cur;
				/* attribues of custom domains in 'doms_cur' */
P
Paul Jackson 已提交
7715 7716 7717 7718 7719 7720 7721 7722

/*
 * Special case: If a kmalloc of a doms_cur partition (array of
 * cpumask_t) fails, then fallback to a single sched domain,
 * as determined by the single cpumask_t fallback_doms.
 */
static cpumask_t fallback_doms;

7723 7724 7725 7726
void __attribute__((weak)) arch_update_cpu_topology(void)
{
}

7727
/*
I
Ingo Molnar 已提交
7728
 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
P
Paul Jackson 已提交
7729 7730
 * For now this just excludes isolated cpus, but could be used to
 * exclude other special cases in the future.
7731
 */
7732
static int arch_init_sched_domains(const cpumask_t *cpu_map)
7733
{
7734 7735
	int err;

7736
	arch_update_cpu_topology();
P
Paul Jackson 已提交
7737 7738 7739 7740 7741
	ndoms_cur = 1;
	doms_cur = kmalloc(sizeof(cpumask_t), GFP_KERNEL);
	if (!doms_cur)
		doms_cur = &fallback_doms;
	cpus_andnot(*doms_cur, *cpu_map, cpu_isolated_map);
7742
	dattr_cur = NULL;
7743
	err = build_sched_domains(doms_cur);
7744
	register_sched_domain_sysctl();
7745 7746

	return err;
7747 7748
}

7749 7750
static void arch_destroy_sched_domains(const cpumask_t *cpu_map,
				       cpumask_t *tmpmask)
L
Linus Torvalds 已提交
7751
{
7752
	free_sched_groups(cpu_map, tmpmask);
7753
}
L
Linus Torvalds 已提交
7754

7755 7756 7757 7758
/*
 * Detach sched domains from a group of cpus specified in cpu_map
 * These cpus will now be attached to the NULL domain
 */
7759
static void detach_destroy_domains(const cpumask_t *cpu_map)
7760
{
7761
	cpumask_t tmpmask;
7762 7763
	int i;

7764 7765
	unregister_sched_domain_sysctl();

7766
	for_each_cpu_mask_nr(i, *cpu_map)
G
Gregory Haskins 已提交
7767
		cpu_attach_domain(NULL, &def_root_domain, i);
7768
	synchronize_sched();
7769
	arch_destroy_sched_domains(cpu_map, &tmpmask);
7770 7771
}

7772 7773 7774 7775 7776 7777 7778 7779 7780 7781 7782 7783 7784 7785 7786 7787
/* handle null as "default" */
static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
			struct sched_domain_attr *new, int idx_new)
{
	struct sched_domain_attr tmp;

	/* fast path */
	if (!new && !cur)
		return 1;

	tmp = SD_ATTR_INIT;
	return !memcmp(cur ? (cur + idx_cur) : &tmp,
			new ? (new + idx_new) : &tmp,
			sizeof(struct sched_domain_attr));
}

P
Paul Jackson 已提交
7788 7789
/*
 * Partition sched domains as specified by the 'ndoms_new'
I
Ingo Molnar 已提交
7790
 * cpumasks in the array doms_new[] of cpumasks. This compares
P
Paul Jackson 已提交
7791 7792 7793 7794
 * doms_new[] to the current sched domain partitioning, doms_cur[].
 * It destroys each deleted domain and builds each new domain.
 *
 * 'doms_new' is an array of cpumask_t's of length 'ndoms_new'.
I
Ingo Molnar 已提交
7795 7796 7797
 * The masks don't intersect (don't overlap.) We should setup one
 * sched domain for each mask. CPUs not in any of the cpumasks will
 * not be load balanced. If the same cpumask appears both in the
P
Paul Jackson 已提交
7798 7799 7800
 * current 'doms_cur' domains and in the new 'doms_new', we can leave
 * it as it is.
 *
I
Ingo Molnar 已提交
7801 7802
 * The passed in 'doms_new' should be kmalloc'd. This routine takes
 * ownership of it and will kfree it when done with it. If the caller
7803 7804 7805 7806
 * failed the kmalloc call, then it can pass in doms_new == NULL &&
 * ndoms_new == 1, and partition_sched_domains() will fallback to
 * the single partition 'fallback_doms', it also forces the domains
 * to be rebuilt.
P
Paul Jackson 已提交
7807
 *
7808 7809 7810
 * If doms_new == NULL it will be replaced with cpu_online_map.
 * ndoms_new == 0 is a special case for destroying existing domains,
 * and it will not create the default domain.
7811
 *
P
Paul Jackson 已提交
7812 7813
 * Call with hotplug lock held
 */
7814 7815
void partition_sched_domains(int ndoms_new, cpumask_t *doms_new,
			     struct sched_domain_attr *dattr_new)
P
Paul Jackson 已提交
7816
{
7817
	int i, j, n;
P
Paul Jackson 已提交
7818

7819
	mutex_lock(&sched_domains_mutex);
7820

7821 7822 7823
	/* always unregister in case we don't destroy any domains */
	unregister_sched_domain_sysctl();

7824
	n = doms_new ? ndoms_new : 0;
P
Paul Jackson 已提交
7825 7826 7827

	/* Destroy deleted domains */
	for (i = 0; i < ndoms_cur; i++) {
7828
		for (j = 0; j < n; j++) {
7829 7830
			if (cpus_equal(doms_cur[i], doms_new[j])
			    && dattrs_equal(dattr_cur, i, dattr_new, j))
P
Paul Jackson 已提交
7831 7832 7833 7834 7835 7836 7837 7838
				goto match1;
		}
		/* no match - a current sched domain not in new doms_new[] */
		detach_destroy_domains(doms_cur + i);
match1:
		;
	}

7839 7840 7841 7842 7843 7844 7845
	if (doms_new == NULL) {
		ndoms_cur = 0;
		doms_new = &fallback_doms;
		cpus_andnot(doms_new[0], cpu_online_map, cpu_isolated_map);
		dattr_new = NULL;
	}

P
Paul Jackson 已提交
7846 7847 7848
	/* Build new domains */
	for (i = 0; i < ndoms_new; i++) {
		for (j = 0; j < ndoms_cur; j++) {
7849 7850
			if (cpus_equal(doms_new[i], doms_cur[j])
			    && dattrs_equal(dattr_new, i, dattr_cur, j))
P
Paul Jackson 已提交
7851 7852 7853
				goto match2;
		}
		/* no match - add a new doms_new */
7854 7855
		__build_sched_domains(doms_new + i,
					dattr_new ? dattr_new + i : NULL);
P
Paul Jackson 已提交
7856 7857 7858 7859 7860 7861 7862
match2:
		;
	}

	/* Remember the new sched domains */
	if (doms_cur != &fallback_doms)
		kfree(doms_cur);
7863
	kfree(dattr_cur);	/* kfree(NULL) is safe */
P
Paul Jackson 已提交
7864
	doms_cur = doms_new;
7865
	dattr_cur = dattr_new;
P
Paul Jackson 已提交
7866
	ndoms_cur = ndoms_new;
7867 7868

	register_sched_domain_sysctl();
7869

7870
	mutex_unlock(&sched_domains_mutex);
P
Paul Jackson 已提交
7871 7872
}

7873
#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
7874
int arch_reinit_sched_domains(void)
7875
{
7876
	get_online_cpus();
7877 7878 7879 7880

	/* Destroy domains first to force the rebuild */
	partition_sched_domains(0, NULL, NULL);

7881
	rebuild_sched_domains();
7882
	put_online_cpus();
7883

7884
	return 0;
7885 7886 7887 7888 7889 7890 7891 7892 7893 7894 7895 7896 7897 7898 7899 7900 7901 7902 7903 7904
}

static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
{
	int ret;

	if (buf[0] != '0' && buf[0] != '1')
		return -EINVAL;

	if (smt)
		sched_smt_power_savings = (buf[0] == '1');
	else
		sched_mc_power_savings = (buf[0] == '1');

	ret = arch_reinit_sched_domains();

	return ret ? ret : count;
}

#ifdef CONFIG_SCHED_MC
7905 7906
static ssize_t sched_mc_power_savings_show(struct sysdev_class *class,
					   char *page)
7907 7908 7909
{
	return sprintf(page, "%u\n", sched_mc_power_savings);
}
7910
static ssize_t sched_mc_power_savings_store(struct sysdev_class *class,
7911
					    const char *buf, size_t count)
7912 7913 7914
{
	return sched_power_savings_store(buf, count, 0);
}
7915 7916 7917
static SYSDEV_CLASS_ATTR(sched_mc_power_savings, 0644,
			 sched_mc_power_savings_show,
			 sched_mc_power_savings_store);
7918 7919 7920
#endif

#ifdef CONFIG_SCHED_SMT
7921 7922
static ssize_t sched_smt_power_savings_show(struct sysdev_class *dev,
					    char *page)
7923 7924 7925
{
	return sprintf(page, "%u\n", sched_smt_power_savings);
}
7926
static ssize_t sched_smt_power_savings_store(struct sysdev_class *dev,
7927
					     const char *buf, size_t count)
7928 7929 7930
{
	return sched_power_savings_store(buf, count, 1);
}
7931 7932
static SYSDEV_CLASS_ATTR(sched_smt_power_savings, 0644,
		   sched_smt_power_savings_show,
A
Adrian Bunk 已提交
7933 7934 7935 7936 7937 7938 7939 7940 7941 7942 7943 7944 7945 7946 7947 7948 7949 7950 7951
		   sched_smt_power_savings_store);
#endif

int sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
{
	int err = 0;

#ifdef CONFIG_SCHED_SMT
	if (smt_capable())
		err = sysfs_create_file(&cls->kset.kobj,
					&attr_sched_smt_power_savings.attr);
#endif
#ifdef CONFIG_SCHED_MC
	if (!err && mc_capable())
		err = sysfs_create_file(&cls->kset.kobj,
					&attr_sched_mc_power_savings.attr);
#endif
	return err;
}
7952
#endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
7953

7954
#ifndef CONFIG_CPUSETS
L
Linus Torvalds 已提交
7955
/*
7956 7957
 * Add online and remove offline CPUs from the scheduler domains.
 * When cpusets are enabled they take over this function.
L
Linus Torvalds 已提交
7958 7959 7960
 */
static int update_sched_domains(struct notifier_block *nfb,
				unsigned long action, void *hcpu)
7961 7962 7963 7964 7965 7966
{
	switch (action) {
	case CPU_ONLINE:
	case CPU_ONLINE_FROZEN:
	case CPU_DEAD:
	case CPU_DEAD_FROZEN:
7967
		partition_sched_domains(1, NULL, NULL);
7968 7969 7970 7971 7972 7973 7974 7975 7976 7977
		return NOTIFY_OK;

	default:
		return NOTIFY_DONE;
	}
}
#endif

static int update_runtime(struct notifier_block *nfb,
				unsigned long action, void *hcpu)
L
Linus Torvalds 已提交
7978
{
P
Peter Zijlstra 已提交
7979 7980
	int cpu = (int)(long)hcpu;

L
Linus Torvalds 已提交
7981 7982
	switch (action) {
	case CPU_DOWN_PREPARE:
7983
	case CPU_DOWN_PREPARE_FROZEN:
P
Peter Zijlstra 已提交
7984
		disable_runtime(cpu_rq(cpu));
L
Linus Torvalds 已提交
7985 7986 7987
		return NOTIFY_OK;

	case CPU_DOWN_FAILED:
7988
	case CPU_DOWN_FAILED_FROZEN:
L
Linus Torvalds 已提交
7989
	case CPU_ONLINE:
7990
	case CPU_ONLINE_FROZEN:
P
Peter Zijlstra 已提交
7991
		enable_runtime(cpu_rq(cpu));
7992 7993
		return NOTIFY_OK;

L
Linus Torvalds 已提交
7994 7995 7996 7997 7998 7999 8000
	default:
		return NOTIFY_DONE;
	}
}

void __init sched_init_smp(void)
{
8001 8002
	cpumask_t non_isolated_cpus;

8003 8004 8005 8006 8007
#if defined(CONFIG_NUMA)
	sched_group_nodes_bycpu = kzalloc(nr_cpu_ids * sizeof(void **),
								GFP_KERNEL);
	BUG_ON(sched_group_nodes_bycpu == NULL);
#endif
8008
	get_online_cpus();
8009
	mutex_lock(&sched_domains_mutex);
8010
	arch_init_sched_domains(&cpu_online_map);
8011
	cpus_andnot(non_isolated_cpus, cpu_possible_map, cpu_isolated_map);
8012 8013
	if (cpus_empty(non_isolated_cpus))
		cpu_set(smp_processor_id(), non_isolated_cpus);
8014
	mutex_unlock(&sched_domains_mutex);
8015
	put_online_cpus();
8016 8017

#ifndef CONFIG_CPUSETS
L
Linus Torvalds 已提交
8018 8019
	/* XXX: Theoretical race here - CPU may be hotplugged now */
	hotcpu_notifier(update_sched_domains, 0);
8020 8021 8022 8023 8024
#endif

	/* RT runtime code needs to handle some hotplug events */
	hotcpu_notifier(update_runtime, 0);

8025
	init_hrtick();
8026 8027

	/* Move init over to a non-isolated CPU */
8028
	if (set_cpus_allowed_ptr(current, &non_isolated_cpus) < 0)
8029
		BUG();
I
Ingo Molnar 已提交
8030
	sched_init_granularity();
L
Linus Torvalds 已提交
8031 8032 8033 8034
}
#else
void __init sched_init_smp(void)
{
I
Ingo Molnar 已提交
8035
	sched_init_granularity();
L
Linus Torvalds 已提交
8036 8037 8038 8039 8040 8041 8042 8043 8044 8045
}
#endif /* CONFIG_SMP */

int in_sched_functions(unsigned long addr)
{
	return in_lock_functions(addr) ||
		(addr >= (unsigned long)__sched_text_start
		&& addr < (unsigned long)__sched_text_end);
}

A
Alexey Dobriyan 已提交
8046
static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
I
Ingo Molnar 已提交
8047 8048
{
	cfs_rq->tasks_timeline = RB_ROOT;
8049
	INIT_LIST_HEAD(&cfs_rq->tasks);
I
Ingo Molnar 已提交
8050 8051 8052
#ifdef CONFIG_FAIR_GROUP_SCHED
	cfs_rq->rq = rq;
#endif
P
Peter Zijlstra 已提交
8053
	cfs_rq->min_vruntime = (u64)(-(1LL << 20));
I
Ingo Molnar 已提交
8054 8055
}

P
Peter Zijlstra 已提交
8056 8057 8058 8059 8060 8061 8062 8063 8064 8065 8066 8067 8068
static void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
{
	struct rt_prio_array *array;
	int i;

	array = &rt_rq->active;
	for (i = 0; i < MAX_RT_PRIO; i++) {
		INIT_LIST_HEAD(array->queue + i);
		__clear_bit(i, array->bitmap);
	}
	/* delimiter for bitsearch: */
	__set_bit(MAX_RT_PRIO, array->bitmap);

8069
#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
8070 8071
	rt_rq->highest_prio = MAX_RT_PRIO;
#endif
P
Peter Zijlstra 已提交
8072 8073 8074 8075 8076 8077 8078
#ifdef CONFIG_SMP
	rt_rq->rt_nr_migratory = 0;
	rt_rq->overloaded = 0;
#endif

	rt_rq->rt_time = 0;
	rt_rq->rt_throttled = 0;
P
Peter Zijlstra 已提交
8079 8080
	rt_rq->rt_runtime = 0;
	spin_lock_init(&rt_rq->rt_runtime_lock);
P
Peter Zijlstra 已提交
8081

8082
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
8083
	rt_rq->rt_nr_boosted = 0;
P
Peter Zijlstra 已提交
8084 8085
	rt_rq->rq = rq;
#endif
P
Peter Zijlstra 已提交
8086 8087
}

P
Peter Zijlstra 已提交
8088
#ifdef CONFIG_FAIR_GROUP_SCHED
8089 8090 8091
static void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
				struct sched_entity *se, int cpu, int add,
				struct sched_entity *parent)
P
Peter Zijlstra 已提交
8092
{
8093
	struct rq *rq = cpu_rq(cpu);
P
Peter Zijlstra 已提交
8094 8095 8096 8097 8098 8099 8100
	tg->cfs_rq[cpu] = cfs_rq;
	init_cfs_rq(cfs_rq, rq);
	cfs_rq->tg = tg;
	if (add)
		list_add(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);

	tg->se[cpu] = se;
D
Dhaval Giani 已提交
8101 8102 8103 8104
	/* se could be NULL for init_task_group */
	if (!se)
		return;

8105 8106 8107 8108 8109
	if (!parent)
		se->cfs_rq = &rq->cfs;
	else
		se->cfs_rq = parent->my_q;

P
Peter Zijlstra 已提交
8110 8111
	se->my_q = cfs_rq;
	se->load.weight = tg->shares;
8112
	se->load.inv_weight = 0;
8113
	se->parent = parent;
P
Peter Zijlstra 已提交
8114
}
8115
#endif
P
Peter Zijlstra 已提交
8116

8117
#ifdef CONFIG_RT_GROUP_SCHED
8118 8119 8120
static void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
		struct sched_rt_entity *rt_se, int cpu, int add,
		struct sched_rt_entity *parent)
P
Peter Zijlstra 已提交
8121
{
8122 8123
	struct rq *rq = cpu_rq(cpu);

P
Peter Zijlstra 已提交
8124 8125 8126 8127
	tg->rt_rq[cpu] = rt_rq;
	init_rt_rq(rt_rq, rq);
	rt_rq->tg = tg;
	rt_rq->rt_se = rt_se;
P
Peter Zijlstra 已提交
8128
	rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
P
Peter Zijlstra 已提交
8129 8130 8131 8132
	if (add)
		list_add(&rt_rq->leaf_rt_rq_list, &rq->leaf_rt_rq_list);

	tg->rt_se[cpu] = rt_se;
D
Dhaval Giani 已提交
8133 8134 8135
	if (!rt_se)
		return;

8136 8137 8138 8139 8140
	if (!parent)
		rt_se->rt_rq = &rq->rt;
	else
		rt_se->rt_rq = parent->my_q;

P
Peter Zijlstra 已提交
8141
	rt_se->my_q = rt_rq;
8142
	rt_se->parent = parent;
P
Peter Zijlstra 已提交
8143 8144 8145 8146
	INIT_LIST_HEAD(&rt_se->run_list);
}
#endif

L
Linus Torvalds 已提交
8147 8148
void __init sched_init(void)
{
I
Ingo Molnar 已提交
8149
	int i, j;
8150 8151 8152 8153 8154 8155 8156
	unsigned long alloc_size = 0, ptr;

#ifdef CONFIG_FAIR_GROUP_SCHED
	alloc_size += 2 * nr_cpu_ids * sizeof(void **);
#endif
#ifdef CONFIG_RT_GROUP_SCHED
	alloc_size += 2 * nr_cpu_ids * sizeof(void **);
8157 8158 8159
#endif
#ifdef CONFIG_USER_SCHED
	alloc_size *= 2;
8160 8161 8162 8163 8164 8165
#endif
	/*
	 * As sched_init() is called before page_alloc is setup,
	 * we use alloc_bootmem().
	 */
	if (alloc_size) {
8166
		ptr = (unsigned long)alloc_bootmem(alloc_size);
8167 8168 8169 8170 8171 8172 8173

#ifdef CONFIG_FAIR_GROUP_SCHED
		init_task_group.se = (struct sched_entity **)ptr;
		ptr += nr_cpu_ids * sizeof(void **);

		init_task_group.cfs_rq = (struct cfs_rq **)ptr;
		ptr += nr_cpu_ids * sizeof(void **);
8174 8175 8176 8177 8178 8179 8180

#ifdef CONFIG_USER_SCHED
		root_task_group.se = (struct sched_entity **)ptr;
		ptr += nr_cpu_ids * sizeof(void **);

		root_task_group.cfs_rq = (struct cfs_rq **)ptr;
		ptr += nr_cpu_ids * sizeof(void **);
8181 8182
#endif /* CONFIG_USER_SCHED */
#endif /* CONFIG_FAIR_GROUP_SCHED */
8183 8184 8185 8186 8187
#ifdef CONFIG_RT_GROUP_SCHED
		init_task_group.rt_se = (struct sched_rt_entity **)ptr;
		ptr += nr_cpu_ids * sizeof(void **);

		init_task_group.rt_rq = (struct rt_rq **)ptr;
8188 8189 8190 8191 8192 8193 8194 8195
		ptr += nr_cpu_ids * sizeof(void **);

#ifdef CONFIG_USER_SCHED
		root_task_group.rt_se = (struct sched_rt_entity **)ptr;
		ptr += nr_cpu_ids * sizeof(void **);

		root_task_group.rt_rq = (struct rt_rq **)ptr;
		ptr += nr_cpu_ids * sizeof(void **);
8196 8197
#endif /* CONFIG_USER_SCHED */
#endif /* CONFIG_RT_GROUP_SCHED */
8198
	}
I
Ingo Molnar 已提交
8199

G
Gregory Haskins 已提交
8200 8201 8202 8203
#ifdef CONFIG_SMP
	init_defrootdomain();
#endif

8204 8205 8206 8207 8208 8209
	init_rt_bandwidth(&def_rt_bandwidth,
			global_rt_period(), global_rt_runtime());

#ifdef CONFIG_RT_GROUP_SCHED
	init_rt_bandwidth(&init_task_group.rt_bandwidth,
			global_rt_period(), global_rt_runtime());
8210 8211 8212
#ifdef CONFIG_USER_SCHED
	init_rt_bandwidth(&root_task_group.rt_bandwidth,
			global_rt_period(), RUNTIME_INF);
8213 8214
#endif /* CONFIG_USER_SCHED */
#endif /* CONFIG_RT_GROUP_SCHED */
8215

8216
#ifdef CONFIG_GROUP_SCHED
P
Peter Zijlstra 已提交
8217
	list_add(&init_task_group.list, &task_groups);
P
Peter Zijlstra 已提交
8218 8219 8220 8221 8222 8223
	INIT_LIST_HEAD(&init_task_group.children);

#ifdef CONFIG_USER_SCHED
	INIT_LIST_HEAD(&root_task_group.children);
	init_task_group.parent = &root_task_group;
	list_add(&init_task_group.siblings, &root_task_group.children);
8224 8225
#endif /* CONFIG_USER_SCHED */
#endif /* CONFIG_GROUP_SCHED */
P
Peter Zijlstra 已提交
8226

8227
	for_each_possible_cpu(i) {
8228
		struct rq *rq;
L
Linus Torvalds 已提交
8229 8230 8231

		rq = cpu_rq(i);
		spin_lock_init(&rq->lock);
N
Nick Piggin 已提交
8232
		rq->nr_running = 0;
I
Ingo Molnar 已提交
8233
		init_cfs_rq(&rq->cfs, rq);
P
Peter Zijlstra 已提交
8234
		init_rt_rq(&rq->rt, rq);
I
Ingo Molnar 已提交
8235
#ifdef CONFIG_FAIR_GROUP_SCHED
8236
		init_task_group.shares = init_task_group_load;
P
Peter Zijlstra 已提交
8237
		INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
D
Dhaval Giani 已提交
8238 8239 8240 8241 8242 8243 8244 8245 8246 8247 8248 8249 8250 8251 8252 8253 8254 8255 8256 8257
#ifdef CONFIG_CGROUP_SCHED
		/*
		 * How much cpu bandwidth does init_task_group get?
		 *
		 * In case of task-groups formed thr' the cgroup filesystem, it
		 * gets 100% of the cpu resources in the system. This overall
		 * system cpu resource is divided among the tasks of
		 * init_task_group and its child task-groups in a fair manner,
		 * based on each entity's (task or task-group's) weight
		 * (se->load.weight).
		 *
		 * In other words, if init_task_group has 10 tasks of weight
		 * 1024) and two child groups A0 and A1 (of weight 1024 each),
		 * then A0's share of the cpu resource is:
		 *
		 * 	A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
		 *
		 * We achieve this by letting init_task_group's tasks sit
		 * directly in rq->cfs (i.e init_task_group->se[] = NULL).
		 */
8258
		init_tg_cfs_entry(&init_task_group, &rq->cfs, NULL, i, 1, NULL);
D
Dhaval Giani 已提交
8259
#elif defined CONFIG_USER_SCHED
8260 8261
		root_task_group.shares = NICE_0_LOAD;
		init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, 0, NULL);
D
Dhaval Giani 已提交
8262 8263 8264 8265 8266 8267 8268 8269 8270 8271 8272
		/*
		 * In case of task-groups formed thr' the user id of tasks,
		 * init_task_group represents tasks belonging to root user.
		 * Hence it forms a sibling of all subsequent groups formed.
		 * In this case, init_task_group gets only a fraction of overall
		 * system cpu resource, based on the weight assigned to root
		 * user's cpu share (INIT_TASK_GROUP_LOAD). This is accomplished
		 * by letting tasks of init_task_group sit in a separate cfs_rq
		 * (init_cfs_rq) and having one entity represent this group of
		 * tasks in rq->cfs (i.e init_task_group->se[] != NULL).
		 */
8273
		init_tg_cfs_entry(&init_task_group,
P
Peter Zijlstra 已提交
8274
				&per_cpu(init_cfs_rq, i),
8275 8276
				&per_cpu(init_sched_entity, i), i, 1,
				root_task_group.se[i]);
P
Peter Zijlstra 已提交
8277

8278
#endif
D
Dhaval Giani 已提交
8279 8280 8281
#endif /* CONFIG_FAIR_GROUP_SCHED */

		rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
8282
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
8283
		INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
D
Dhaval Giani 已提交
8284
#ifdef CONFIG_CGROUP_SCHED
8285
		init_tg_rt_entry(&init_task_group, &rq->rt, NULL, i, 1, NULL);
D
Dhaval Giani 已提交
8286
#elif defined CONFIG_USER_SCHED
8287
		init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, 0, NULL);
8288
		init_tg_rt_entry(&init_task_group,
P
Peter Zijlstra 已提交
8289
				&per_cpu(init_rt_rq, i),
8290 8291
				&per_cpu(init_sched_rt_entity, i), i, 1,
				root_task_group.rt_se[i]);
D
Dhaval Giani 已提交
8292
#endif
I
Ingo Molnar 已提交
8293
#endif
L
Linus Torvalds 已提交
8294

I
Ingo Molnar 已提交
8295 8296
		for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
			rq->cpu_load[j] = 0;
L
Linus Torvalds 已提交
8297
#ifdef CONFIG_SMP
N
Nick Piggin 已提交
8298
		rq->sd = NULL;
G
Gregory Haskins 已提交
8299
		rq->rd = NULL;
L
Linus Torvalds 已提交
8300
		rq->active_balance = 0;
I
Ingo Molnar 已提交
8301
		rq->next_balance = jiffies;
L
Linus Torvalds 已提交
8302
		rq->push_cpu = 0;
8303
		rq->cpu = i;
8304
		rq->online = 0;
L
Linus Torvalds 已提交
8305 8306
		rq->migration_thread = NULL;
		INIT_LIST_HEAD(&rq->migration_queue);
8307
		rq_attach_root(rq, &def_root_domain);
L
Linus Torvalds 已提交
8308
#endif
P
Peter Zijlstra 已提交
8309
		init_rq_hrtick(rq);
L
Linus Torvalds 已提交
8310 8311 8312
		atomic_set(&rq->nr_iowait, 0);
	}

8313
	set_load_weight(&init_task);
8314

8315 8316 8317 8318
#ifdef CONFIG_PREEMPT_NOTIFIERS
	INIT_HLIST_HEAD(&init_task.preempt_notifiers);
#endif

8319
#ifdef CONFIG_SMP
8320
	open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
8321 8322
#endif

8323 8324 8325 8326
#ifdef CONFIG_RT_MUTEXES
	plist_head_init(&init_task.pi_waiters, &init_task.pi_lock);
#endif

L
Linus Torvalds 已提交
8327 8328 8329 8330 8331 8332 8333 8334 8335 8336 8337 8338 8339
	/*
	 * The boot idle thread does lazy MMU switching as well:
	 */
	atomic_inc(&init_mm.mm_count);
	enter_lazy_tlb(&init_mm, current);

	/*
	 * Make us the idle thread. Technically, schedule() should not be
	 * called from this thread, however somewhere below it might be,
	 * but because we are the idle thread, we just pick up running again
	 * when this runqueue becomes "idle".
	 */
	init_idle(current, smp_processor_id());
I
Ingo Molnar 已提交
8340 8341 8342 8343
	/*
	 * During early bootup we pretend to be a normal task:
	 */
	current->sched_class = &fair_sched_class;
8344 8345

	scheduler_running = 1;
L
Linus Torvalds 已提交
8346 8347 8348 8349 8350
}

#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
void __might_sleep(char *file, int line)
{
8351
#ifdef in_atomic
L
Linus Torvalds 已提交
8352 8353
	static unsigned long prev_jiffy;	/* ratelimiting */

I
Ingo Molnar 已提交
8354 8355 8356 8357 8358 8359 8360 8361 8362 8363 8364 8365 8366 8367 8368 8369 8370 8371 8372
	if ((!in_atomic() && !irqs_disabled()) ||
		    system_state != SYSTEM_RUNNING || oops_in_progress)
		return;
	if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
		return;
	prev_jiffy = jiffies;

	printk(KERN_ERR
		"BUG: sleeping function called from invalid context at %s:%d\n",
			file, line);
	printk(KERN_ERR
		"in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
			in_atomic(), irqs_disabled(),
			current->pid, current->comm);

	debug_show_held_locks(current);
	if (irqs_disabled())
		print_irqtrace_events(current);
	dump_stack();
L
Linus Torvalds 已提交
8373 8374 8375 8376 8377 8378
#endif
}
EXPORT_SYMBOL(__might_sleep);
#endif

#ifdef CONFIG_MAGIC_SYSRQ
8379 8380 8381
static void normalize_task(struct rq *rq, struct task_struct *p)
{
	int on_rq;
8382

8383 8384 8385 8386 8387 8388 8389 8390 8391 8392 8393
	update_rq_clock(rq);
	on_rq = p->se.on_rq;
	if (on_rq)
		deactivate_task(rq, p, 0);
	__setscheduler(rq, p, SCHED_NORMAL, 0);
	if (on_rq) {
		activate_task(rq, p, 0);
		resched_task(rq->curr);
	}
}

L
Linus Torvalds 已提交
8394 8395
void normalize_rt_tasks(void)
{
8396
	struct task_struct *g, *p;
L
Linus Torvalds 已提交
8397
	unsigned long flags;
8398
	struct rq *rq;
L
Linus Torvalds 已提交
8399

8400
	read_lock_irqsave(&tasklist_lock, flags);
8401
	do_each_thread(g, p) {
8402 8403 8404 8405 8406 8407
		/*
		 * Only normalize user tasks:
		 */
		if (!p->mm)
			continue;

I
Ingo Molnar 已提交
8408 8409
		p->se.exec_start		= 0;
#ifdef CONFIG_SCHEDSTATS
I
Ingo Molnar 已提交
8410 8411 8412
		p->se.wait_start		= 0;
		p->se.sleep_start		= 0;
		p->se.block_start		= 0;
I
Ingo Molnar 已提交
8413
#endif
I
Ingo Molnar 已提交
8414 8415 8416 8417 8418 8419 8420 8421

		if (!rt_task(p)) {
			/*
			 * Renice negative nice level userspace
			 * tasks back to 0:
			 */
			if (TASK_NICE(p) < 0 && p->mm)
				set_user_nice(p, 0);
L
Linus Torvalds 已提交
8422
			continue;
I
Ingo Molnar 已提交
8423
		}
L
Linus Torvalds 已提交
8424

8425
		spin_lock(&p->pi_lock);
8426
		rq = __task_rq_lock(p);
L
Linus Torvalds 已提交
8427

8428
		normalize_task(rq, p);
8429

8430
		__task_rq_unlock(rq);
8431
		spin_unlock(&p->pi_lock);
8432 8433
	} while_each_thread(g, p);

8434
	read_unlock_irqrestore(&tasklist_lock, flags);
L
Linus Torvalds 已提交
8435 8436 8437
}

#endif /* CONFIG_MAGIC_SYSRQ */
8438 8439 8440 8441 8442 8443 8444 8445 8446 8447 8448 8449 8450 8451 8452 8453 8454 8455

#ifdef CONFIG_IA64
/*
 * These functions are only useful for the IA64 MCA handling.
 *
 * They can only be called when the whole system has been
 * stopped - every CPU needs to be quiescent, and no scheduling
 * activity can take place. Using them for anything else would
 * be a serious bug, and as a result, they aren't even visible
 * under any other configuration.
 */

/**
 * curr_task - return the current task for a given cpu.
 * @cpu: the processor in question.
 *
 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
 */
8456
struct task_struct *curr_task(int cpu)
8457 8458 8459 8460 8461 8462 8463 8464 8465 8466
{
	return cpu_curr(cpu);
}

/**
 * set_curr_task - set the current task for a given cpu.
 * @cpu: the processor in question.
 * @p: the task pointer to set.
 *
 * Description: This function must only be used when non-maskable interrupts
I
Ingo Molnar 已提交
8467 8468
 * are serviced on a separate stack. It allows the architecture to switch the
 * notion of the current task on a cpu in a non-blocking manner. This function
8469 8470 8471 8472 8473 8474 8475
 * must be called with all CPU's synchronized, and interrupts disabled, the
 * and caller must save the original value of the current task (see
 * curr_task() above) and restore that value before reenabling interrupts and
 * re-starting the system.
 *
 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
 */
8476
void set_curr_task(int cpu, struct task_struct *p)
8477 8478 8479 8480 8481
{
	cpu_curr(cpu) = p;
}

#endif
S
Srivatsa Vaddagiri 已提交
8482

8483 8484
#ifdef CONFIG_FAIR_GROUP_SCHED
static void free_fair_sched_group(struct task_group *tg)
P
Peter Zijlstra 已提交
8485 8486 8487 8488 8489 8490 8491 8492 8493 8494 8495 8496 8497 8498
{
	int i;

	for_each_possible_cpu(i) {
		if (tg->cfs_rq)
			kfree(tg->cfs_rq[i]);
		if (tg->se)
			kfree(tg->se[i]);
	}

	kfree(tg->cfs_rq);
	kfree(tg->se);
}

8499 8500
static
int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
S
Srivatsa Vaddagiri 已提交
8501 8502
{
	struct cfs_rq *cfs_rq;
8503
	struct sched_entity *se, *parent_se;
8504
	struct rq *rq;
S
Srivatsa Vaddagiri 已提交
8505 8506
	int i;

8507
	tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
S
Srivatsa Vaddagiri 已提交
8508 8509
	if (!tg->cfs_rq)
		goto err;
8510
	tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
S
Srivatsa Vaddagiri 已提交
8511 8512
	if (!tg->se)
		goto err;
8513 8514

	tg->shares = NICE_0_LOAD;
S
Srivatsa Vaddagiri 已提交
8515 8516

	for_each_possible_cpu(i) {
8517
		rq = cpu_rq(i);
S
Srivatsa Vaddagiri 已提交
8518

P
Peter Zijlstra 已提交
8519 8520
		cfs_rq = kmalloc_node(sizeof(struct cfs_rq),
				GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
S
Srivatsa Vaddagiri 已提交
8521 8522 8523
		if (!cfs_rq)
			goto err;

P
Peter Zijlstra 已提交
8524 8525
		se = kmalloc_node(sizeof(struct sched_entity),
				GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
S
Srivatsa Vaddagiri 已提交
8526 8527 8528
		if (!se)
			goto err;

8529 8530
		parent_se = parent ? parent->se[i] : NULL;
		init_tg_cfs_entry(tg, cfs_rq, se, i, 0, parent_se);
8531 8532 8533 8534 8535 8536 8537 8538 8539 8540 8541 8542 8543 8544 8545 8546 8547 8548
	}

	return 1;

 err:
	return 0;
}

static inline void register_fair_sched_group(struct task_group *tg, int cpu)
{
	list_add_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list,
			&cpu_rq(cpu)->leaf_cfs_rq_list);
}

static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
{
	list_del_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list);
}
8549
#else /* !CONFG_FAIR_GROUP_SCHED */
8550 8551 8552 8553
static inline void free_fair_sched_group(struct task_group *tg)
{
}

8554 8555
static inline
int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
8556 8557 8558 8559 8560 8561 8562 8563 8564 8565 8566
{
	return 1;
}

static inline void register_fair_sched_group(struct task_group *tg, int cpu)
{
}

static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
{
}
8567
#endif /* CONFIG_FAIR_GROUP_SCHED */
8568 8569

#ifdef CONFIG_RT_GROUP_SCHED
8570 8571 8572 8573
static void free_rt_sched_group(struct task_group *tg)
{
	int i;

8574 8575
	destroy_rt_bandwidth(&tg->rt_bandwidth);

8576 8577 8578 8579 8580 8581 8582 8583 8584 8585 8586
	for_each_possible_cpu(i) {
		if (tg->rt_rq)
			kfree(tg->rt_rq[i]);
		if (tg->rt_se)
			kfree(tg->rt_se[i]);
	}

	kfree(tg->rt_rq);
	kfree(tg->rt_se);
}

8587 8588
static
int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
8589 8590
{
	struct rt_rq *rt_rq;
8591
	struct sched_rt_entity *rt_se, *parent_se;
8592 8593 8594
	struct rq *rq;
	int i;

8595
	tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
8596 8597
	if (!tg->rt_rq)
		goto err;
8598
	tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
8599 8600 8601
	if (!tg->rt_se)
		goto err;

8602 8603
	init_rt_bandwidth(&tg->rt_bandwidth,
			ktime_to_ns(def_rt_bandwidth.rt_period), 0);
8604 8605 8606 8607

	for_each_possible_cpu(i) {
		rq = cpu_rq(i);

P
Peter Zijlstra 已提交
8608 8609 8610 8611
		rt_rq = kmalloc_node(sizeof(struct rt_rq),
				GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
		if (!rt_rq)
			goto err;
S
Srivatsa Vaddagiri 已提交
8612

P
Peter Zijlstra 已提交
8613 8614 8615 8616
		rt_se = kmalloc_node(sizeof(struct sched_rt_entity),
				GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
		if (!rt_se)
			goto err;
S
Srivatsa Vaddagiri 已提交
8617

8618 8619
		parent_se = parent ? parent->rt_se[i] : NULL;
		init_tg_rt_entry(tg, rt_rq, rt_se, i, 0, parent_se);
S
Srivatsa Vaddagiri 已提交
8620 8621
	}

8622 8623 8624 8625 8626 8627 8628 8629 8630 8631 8632 8633 8634 8635 8636 8637
	return 1;

 err:
	return 0;
}

static inline void register_rt_sched_group(struct task_group *tg, int cpu)
{
	list_add_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list,
			&cpu_rq(cpu)->leaf_rt_rq_list);
}

static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
{
	list_del_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list);
}
8638
#else /* !CONFIG_RT_GROUP_SCHED */
8639 8640 8641 8642
static inline void free_rt_sched_group(struct task_group *tg)
{
}

8643 8644
static inline
int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
8645 8646 8647 8648 8649 8650 8651 8652 8653 8654 8655
{
	return 1;
}

static inline void register_rt_sched_group(struct task_group *tg, int cpu)
{
}

static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
{
}
8656
#endif /* CONFIG_RT_GROUP_SCHED */
8657

8658
#ifdef CONFIG_GROUP_SCHED
8659 8660 8661 8662 8663 8664 8665 8666
static void free_sched_group(struct task_group *tg)
{
	free_fair_sched_group(tg);
	free_rt_sched_group(tg);
	kfree(tg);
}

/* allocate runqueue etc for a new task group */
8667
struct task_group *sched_create_group(struct task_group *parent)
8668 8669 8670 8671 8672 8673 8674 8675 8676
{
	struct task_group *tg;
	unsigned long flags;
	int i;

	tg = kzalloc(sizeof(*tg), GFP_KERNEL);
	if (!tg)
		return ERR_PTR(-ENOMEM);

8677
	if (!alloc_fair_sched_group(tg, parent))
8678 8679
		goto err;

8680
	if (!alloc_rt_sched_group(tg, parent))
8681 8682
		goto err;

8683
	spin_lock_irqsave(&task_group_lock, flags);
8684
	for_each_possible_cpu(i) {
8685 8686
		register_fair_sched_group(tg, i);
		register_rt_sched_group(tg, i);
8687
	}
P
Peter Zijlstra 已提交
8688
	list_add_rcu(&tg->list, &task_groups);
P
Peter Zijlstra 已提交
8689 8690 8691 8692 8693

	WARN_ON(!parent); /* root should already exist */

	tg->parent = parent;
	INIT_LIST_HEAD(&tg->children);
8694
	list_add_rcu(&tg->siblings, &parent->children);
8695
	spin_unlock_irqrestore(&task_group_lock, flags);
S
Srivatsa Vaddagiri 已提交
8696

8697
	return tg;
S
Srivatsa Vaddagiri 已提交
8698 8699

err:
P
Peter Zijlstra 已提交
8700
	free_sched_group(tg);
S
Srivatsa Vaddagiri 已提交
8701 8702 8703
	return ERR_PTR(-ENOMEM);
}

8704
/* rcu callback to free various structures associated with a task group */
P
Peter Zijlstra 已提交
8705
static void free_sched_group_rcu(struct rcu_head *rhp)
S
Srivatsa Vaddagiri 已提交
8706 8707
{
	/* now it should be safe to free those cfs_rqs */
P
Peter Zijlstra 已提交
8708
	free_sched_group(container_of(rhp, struct task_group, rcu));
S
Srivatsa Vaddagiri 已提交
8709 8710
}

8711
/* Destroy runqueue etc associated with a task group */
8712
void sched_destroy_group(struct task_group *tg)
S
Srivatsa Vaddagiri 已提交
8713
{
8714
	unsigned long flags;
8715
	int i;
S
Srivatsa Vaddagiri 已提交
8716

8717
	spin_lock_irqsave(&task_group_lock, flags);
8718
	for_each_possible_cpu(i) {
8719 8720
		unregister_fair_sched_group(tg, i);
		unregister_rt_sched_group(tg, i);
8721
	}
P
Peter Zijlstra 已提交
8722
	list_del_rcu(&tg->list);
P
Peter Zijlstra 已提交
8723
	list_del_rcu(&tg->siblings);
8724
	spin_unlock_irqrestore(&task_group_lock, flags);
8725 8726

	/* wait for possible concurrent references to cfs_rqs complete */
P
Peter Zijlstra 已提交
8727
	call_rcu(&tg->rcu, free_sched_group_rcu);
S
Srivatsa Vaddagiri 已提交
8728 8729
}

8730
/* change task's runqueue when it moves between groups.
I
Ingo Molnar 已提交
8731 8732 8733
 *	The caller of this function should have put the task in its new group
 *	by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
 *	reflect its new group.
8734 8735
 */
void sched_move_task(struct task_struct *tsk)
S
Srivatsa Vaddagiri 已提交
8736 8737 8738 8739 8740 8741 8742 8743 8744
{
	int on_rq, running;
	unsigned long flags;
	struct rq *rq;

	rq = task_rq_lock(tsk, &flags);

	update_rq_clock(rq);

8745
	running = task_current(rq, tsk);
S
Srivatsa Vaddagiri 已提交
8746 8747
	on_rq = tsk->se.on_rq;

8748
	if (on_rq)
S
Srivatsa Vaddagiri 已提交
8749
		dequeue_task(rq, tsk, 0);
8750 8751
	if (unlikely(running))
		tsk->sched_class->put_prev_task(rq, tsk);
S
Srivatsa Vaddagiri 已提交
8752

P
Peter Zijlstra 已提交
8753
	set_task_rq(tsk, task_cpu(tsk));
S
Srivatsa Vaddagiri 已提交
8754

P
Peter Zijlstra 已提交
8755 8756 8757 8758 8759
#ifdef CONFIG_FAIR_GROUP_SCHED
	if (tsk->sched_class->moved_group)
		tsk->sched_class->moved_group(tsk);
#endif

8760 8761 8762
	if (unlikely(running))
		tsk->sched_class->set_curr_task(rq);
	if (on_rq)
8763
		enqueue_task(rq, tsk, 0);
S
Srivatsa Vaddagiri 已提交
8764 8765 8766

	task_rq_unlock(rq, &flags);
}
8767
#endif /* CONFIG_GROUP_SCHED */
S
Srivatsa Vaddagiri 已提交
8768

8769
#ifdef CONFIG_FAIR_GROUP_SCHED
8770
static void __set_se_shares(struct sched_entity *se, unsigned long shares)
S
Srivatsa Vaddagiri 已提交
8771 8772 8773 8774 8775
{
	struct cfs_rq *cfs_rq = se->cfs_rq;
	int on_rq;

	on_rq = se->on_rq;
8776
	if (on_rq)
S
Srivatsa Vaddagiri 已提交
8777 8778 8779
		dequeue_entity(cfs_rq, se, 0);

	se->load.weight = shares;
8780
	se->load.inv_weight = 0;
S
Srivatsa Vaddagiri 已提交
8781

8782
	if (on_rq)
S
Srivatsa Vaddagiri 已提交
8783
		enqueue_entity(cfs_rq, se, 0);
8784
}
8785

8786 8787 8788 8789 8790 8791 8792 8793 8794
static void set_se_shares(struct sched_entity *se, unsigned long shares)
{
	struct cfs_rq *cfs_rq = se->cfs_rq;
	struct rq *rq = cfs_rq->rq;
	unsigned long flags;

	spin_lock_irqsave(&rq->lock, flags);
	__set_se_shares(se, shares);
	spin_unlock_irqrestore(&rq->lock, flags);
S
Srivatsa Vaddagiri 已提交
8795 8796
}

8797 8798
static DEFINE_MUTEX(shares_mutex);

8799
int sched_group_set_shares(struct task_group *tg, unsigned long shares)
S
Srivatsa Vaddagiri 已提交
8800 8801
{
	int i;
8802
	unsigned long flags;
8803

8804 8805 8806 8807 8808 8809
	/*
	 * We can't change the weight of the root cgroup.
	 */
	if (!tg->se[0])
		return -EINVAL;

8810 8811
	if (shares < MIN_SHARES)
		shares = MIN_SHARES;
8812 8813
	else if (shares > MAX_SHARES)
		shares = MAX_SHARES;
8814

8815
	mutex_lock(&shares_mutex);
8816
	if (tg->shares == shares)
8817
		goto done;
S
Srivatsa Vaddagiri 已提交
8818

8819
	spin_lock_irqsave(&task_group_lock, flags);
8820 8821
	for_each_possible_cpu(i)
		unregister_fair_sched_group(tg, i);
P
Peter Zijlstra 已提交
8822
	list_del_rcu(&tg->siblings);
8823
	spin_unlock_irqrestore(&task_group_lock, flags);
8824 8825 8826 8827 8828 8829 8830 8831

	/* wait for any ongoing reference to this group to finish */
	synchronize_sched();

	/*
	 * Now we are free to modify the group's share on each cpu
	 * w/o tripping rebalance_share or load_balance_fair.
	 */
8832
	tg->shares = shares;
8833 8834 8835 8836 8837
	for_each_possible_cpu(i) {
		/*
		 * force a rebalance
		 */
		cfs_rq_set_shares(tg->cfs_rq[i], 0);
8838
		set_se_shares(tg->se[i], shares);
8839
	}
S
Srivatsa Vaddagiri 已提交
8840

8841 8842 8843 8844
	/*
	 * Enable load balance activity on this group, by inserting it back on
	 * each cpu's rq->leaf_cfs_rq_list.
	 */
8845
	spin_lock_irqsave(&task_group_lock, flags);
8846 8847
	for_each_possible_cpu(i)
		register_fair_sched_group(tg, i);
P
Peter Zijlstra 已提交
8848
	list_add_rcu(&tg->siblings, &tg->parent->children);
8849
	spin_unlock_irqrestore(&task_group_lock, flags);
8850
done:
8851
	mutex_unlock(&shares_mutex);
8852
	return 0;
S
Srivatsa Vaddagiri 已提交
8853 8854
}

8855 8856 8857 8858
unsigned long sched_group_shares(struct task_group *tg)
{
	return tg->shares;
}
8859
#endif
8860

8861
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
8862
/*
P
Peter Zijlstra 已提交
8863
 * Ensure that the real time constraints are schedulable.
P
Peter Zijlstra 已提交
8864
 */
P
Peter Zijlstra 已提交
8865 8866 8867 8868 8869
static DEFINE_MUTEX(rt_constraints_mutex);

static unsigned long to_ratio(u64 period, u64 runtime)
{
	if (runtime == RUNTIME_INF)
P
Peter Zijlstra 已提交
8870
		return 1ULL << 20;
P
Peter Zijlstra 已提交
8871

P
Peter Zijlstra 已提交
8872
	return div64_u64(runtime << 20, period);
P
Peter Zijlstra 已提交
8873 8874
}

P
Peter Zijlstra 已提交
8875 8876
/* Must be called with tasklist_lock held */
static inline int tg_has_rt_tasks(struct task_group *tg)
8877
{
P
Peter Zijlstra 已提交
8878
	struct task_struct *g, *p;
8879

P
Peter Zijlstra 已提交
8880 8881 8882 8883
	do_each_thread(g, p) {
		if (rt_task(p) && rt_rq_of_se(&p->rt)->tg == tg)
			return 1;
	} while_each_thread(g, p);
8884

P
Peter Zijlstra 已提交
8885 8886
	return 0;
}
8887

P
Peter Zijlstra 已提交
8888 8889 8890 8891 8892
struct rt_schedulable_data {
	struct task_group *tg;
	u64 rt_period;
	u64 rt_runtime;
};
8893

P
Peter Zijlstra 已提交
8894 8895 8896 8897 8898 8899
static int tg_schedulable(struct task_group *tg, void *data)
{
	struct rt_schedulable_data *d = data;
	struct task_group *child;
	unsigned long total, sum = 0;
	u64 period, runtime;
8900

P
Peter Zijlstra 已提交
8901 8902
	period = ktime_to_ns(tg->rt_bandwidth.rt_period);
	runtime = tg->rt_bandwidth.rt_runtime;
8903

P
Peter Zijlstra 已提交
8904 8905 8906
	if (tg == d->tg) {
		period = d->rt_period;
		runtime = d->rt_runtime;
8907 8908
	}

8909 8910 8911 8912 8913
	/*
	 * Cannot have more runtime than the period.
	 */
	if (runtime > period && runtime != RUNTIME_INF)
		return -EINVAL;
P
Peter Zijlstra 已提交
8914

8915 8916 8917
	/*
	 * Ensure we don't starve existing RT tasks.
	 */
P
Peter Zijlstra 已提交
8918 8919
	if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
		return -EBUSY;
P
Peter Zijlstra 已提交
8920

P
Peter Zijlstra 已提交
8921
	total = to_ratio(period, runtime);
P
Peter Zijlstra 已提交
8922

8923 8924 8925 8926 8927
	/*
	 * Nobody can have more than the global setting allows.
	 */
	if (total > to_ratio(global_rt_period(), global_rt_runtime()))
		return -EINVAL;
P
Peter Zijlstra 已提交
8928

8929 8930 8931
	/*
	 * The sum of our children's runtime should not exceed our own.
	 */
P
Peter Zijlstra 已提交
8932 8933 8934
	list_for_each_entry_rcu(child, &tg->children, siblings) {
		period = ktime_to_ns(child->rt_bandwidth.rt_period);
		runtime = child->rt_bandwidth.rt_runtime;
P
Peter Zijlstra 已提交
8935

P
Peter Zijlstra 已提交
8936 8937 8938 8939
		if (child == d->tg) {
			period = d->rt_period;
			runtime = d->rt_runtime;
		}
P
Peter Zijlstra 已提交
8940

P
Peter Zijlstra 已提交
8941
		sum += to_ratio(period, runtime);
P
Peter Zijlstra 已提交
8942
	}
P
Peter Zijlstra 已提交
8943

P
Peter Zijlstra 已提交
8944 8945 8946 8947
	if (sum > total)
		return -EINVAL;

	return 0;
P
Peter Zijlstra 已提交
8948 8949
}

P
Peter Zijlstra 已提交
8950
static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
8951
{
P
Peter Zijlstra 已提交
8952 8953 8954 8955 8956 8957 8958
	struct rt_schedulable_data data = {
		.tg = tg,
		.rt_period = period,
		.rt_runtime = runtime,
	};

	return walk_tg_tree(tg_schedulable, tg_nop, &data);
8959 8960
}

8961 8962
static int tg_set_bandwidth(struct task_group *tg,
		u64 rt_period, u64 rt_runtime)
P
Peter Zijlstra 已提交
8963
{
P
Peter Zijlstra 已提交
8964
	int i, err = 0;
P
Peter Zijlstra 已提交
8965 8966

	mutex_lock(&rt_constraints_mutex);
8967
	read_lock(&tasklist_lock);
P
Peter Zijlstra 已提交
8968 8969
	err = __rt_schedulable(tg, rt_period, rt_runtime);
	if (err)
P
Peter Zijlstra 已提交
8970
		goto unlock;
P
Peter Zijlstra 已提交
8971 8972

	spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
8973 8974
	tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
	tg->rt_bandwidth.rt_runtime = rt_runtime;
P
Peter Zijlstra 已提交
8975 8976 8977 8978 8979 8980 8981 8982 8983

	for_each_possible_cpu(i) {
		struct rt_rq *rt_rq = tg->rt_rq[i];

		spin_lock(&rt_rq->rt_runtime_lock);
		rt_rq->rt_runtime = rt_runtime;
		spin_unlock(&rt_rq->rt_runtime_lock);
	}
	spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
P
Peter Zijlstra 已提交
8984
 unlock:
8985
	read_unlock(&tasklist_lock);
P
Peter Zijlstra 已提交
8986 8987 8988
	mutex_unlock(&rt_constraints_mutex);

	return err;
P
Peter Zijlstra 已提交
8989 8990
}

8991 8992 8993 8994 8995 8996 8997 8998 8999 9000 9001 9002
int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
{
	u64 rt_runtime, rt_period;

	rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
	rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
	if (rt_runtime_us < 0)
		rt_runtime = RUNTIME_INF;

	return tg_set_bandwidth(tg, rt_period, rt_runtime);
}

P
Peter Zijlstra 已提交
9003 9004 9005 9006
long sched_group_rt_runtime(struct task_group *tg)
{
	u64 rt_runtime_us;

9007
	if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
P
Peter Zijlstra 已提交
9008 9009
		return -1;

9010
	rt_runtime_us = tg->rt_bandwidth.rt_runtime;
P
Peter Zijlstra 已提交
9011 9012 9013
	do_div(rt_runtime_us, NSEC_PER_USEC);
	return rt_runtime_us;
}
9014 9015 9016 9017 9018 9019 9020 9021

int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
{
	u64 rt_runtime, rt_period;

	rt_period = (u64)rt_period_us * NSEC_PER_USEC;
	rt_runtime = tg->rt_bandwidth.rt_runtime;

9022 9023 9024
	if (rt_period == 0)
		return -EINVAL;

9025 9026 9027 9028 9029 9030 9031 9032 9033 9034 9035 9036 9037 9038
	return tg_set_bandwidth(tg, rt_period, rt_runtime);
}

long sched_group_rt_period(struct task_group *tg)
{
	u64 rt_period_us;

	rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
	do_div(rt_period_us, NSEC_PER_USEC);
	return rt_period_us;
}

static int sched_rt_global_constraints(void)
{
9039
	u64 runtime, period;
9040 9041
	int ret = 0;

9042 9043 9044
	if (sysctl_sched_rt_period <= 0)
		return -EINVAL;

9045 9046 9047 9048 9049 9050 9051 9052
	runtime = global_rt_runtime();
	period = global_rt_period();

	/*
	 * Sanity check on the sysctl variables.
	 */
	if (runtime > period && runtime != RUNTIME_INF)
		return -EINVAL;
9053

9054
	mutex_lock(&rt_constraints_mutex);
P
Peter Zijlstra 已提交
9055
	read_lock(&tasklist_lock);
9056
	ret = __rt_schedulable(NULL, 0, 0);
P
Peter Zijlstra 已提交
9057
	read_unlock(&tasklist_lock);
9058 9059 9060 9061
	mutex_unlock(&rt_constraints_mutex);

	return ret;
}
9062
#else /* !CONFIG_RT_GROUP_SCHED */
9063 9064
static int sched_rt_global_constraints(void)
{
P
Peter Zijlstra 已提交
9065 9066 9067
	unsigned long flags;
	int i;

9068 9069 9070
	if (sysctl_sched_rt_period <= 0)
		return -EINVAL;

P
Peter Zijlstra 已提交
9071 9072 9073 9074 9075 9076 9077 9078 9079 9080
	spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
	for_each_possible_cpu(i) {
		struct rt_rq *rt_rq = &cpu_rq(i)->rt;

		spin_lock(&rt_rq->rt_runtime_lock);
		rt_rq->rt_runtime = global_rt_runtime();
		spin_unlock(&rt_rq->rt_runtime_lock);
	}
	spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);

9081 9082
	return 0;
}
9083
#endif /* CONFIG_RT_GROUP_SCHED */
9084 9085 9086 9087 9088 9089 9090 9091 9092 9093 9094 9095 9096 9097 9098 9099 9100 9101 9102 9103 9104 9105 9106 9107 9108 9109 9110 9111 9112 9113

int sched_rt_handler(struct ctl_table *table, int write,
		struct file *filp, void __user *buffer, size_t *lenp,
		loff_t *ppos)
{
	int ret;
	int old_period, old_runtime;
	static DEFINE_MUTEX(mutex);

	mutex_lock(&mutex);
	old_period = sysctl_sched_rt_period;
	old_runtime = sysctl_sched_rt_runtime;

	ret = proc_dointvec(table, write, filp, buffer, lenp, ppos);

	if (!ret && write) {
		ret = sched_rt_global_constraints();
		if (ret) {
			sysctl_sched_rt_period = old_period;
			sysctl_sched_rt_runtime = old_runtime;
		} else {
			def_rt_bandwidth.rt_runtime = global_rt_runtime();
			def_rt_bandwidth.rt_period =
				ns_to_ktime(global_rt_period());
		}
	}
	mutex_unlock(&mutex);

	return ret;
}
9114

9115
#ifdef CONFIG_CGROUP_SCHED
9116 9117

/* return corresponding task_group object of a cgroup */
9118
static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
9119
{
9120 9121
	return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
			    struct task_group, css);
9122 9123 9124
}

static struct cgroup_subsys_state *
9125
cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
9126
{
9127
	struct task_group *tg, *parent;
9128

9129
	if (!cgrp->parent) {
9130 9131 9132 9133
		/* This is early initialization for the top cgroup */
		return &init_task_group.css;
	}

9134 9135
	parent = cgroup_tg(cgrp->parent);
	tg = sched_create_group(parent);
9136 9137 9138 9139 9140 9141
	if (IS_ERR(tg))
		return ERR_PTR(-ENOMEM);

	return &tg->css;
}

I
Ingo Molnar 已提交
9142 9143
static void
cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
9144
{
9145
	struct task_group *tg = cgroup_tg(cgrp);
9146 9147 9148 9149

	sched_destroy_group(tg);
}

I
Ingo Molnar 已提交
9150 9151 9152
static int
cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
		      struct task_struct *tsk)
9153
{
9154 9155
#ifdef CONFIG_RT_GROUP_SCHED
	/* Don't accept realtime tasks when there is no way for them to run */
9156
	if (rt_task(tsk) && cgroup_tg(cgrp)->rt_bandwidth.rt_runtime == 0)
9157 9158
		return -EINVAL;
#else
9159 9160 9161
	/* We don't support RT-tasks being in separate groups */
	if (tsk->sched_class != &fair_sched_class)
		return -EINVAL;
9162
#endif
9163 9164 9165 9166 9167

	return 0;
}

static void
9168
cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
9169 9170 9171 9172 9173
			struct cgroup *old_cont, struct task_struct *tsk)
{
	sched_move_task(tsk);
}

9174
#ifdef CONFIG_FAIR_GROUP_SCHED
9175
static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
9176
				u64 shareval)
9177
{
9178
	return sched_group_set_shares(cgroup_tg(cgrp), shareval);
9179 9180
}

9181
static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
9182
{
9183
	struct task_group *tg = cgroup_tg(cgrp);
9184 9185 9186

	return (u64) tg->shares;
}
9187
#endif /* CONFIG_FAIR_GROUP_SCHED */
9188

9189
#ifdef CONFIG_RT_GROUP_SCHED
M
Mirco Tischler 已提交
9190
static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
9191
				s64 val)
P
Peter Zijlstra 已提交
9192
{
9193
	return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
P
Peter Zijlstra 已提交
9194 9195
}

9196
static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
P
Peter Zijlstra 已提交
9197
{
9198
	return sched_group_rt_runtime(cgroup_tg(cgrp));
P
Peter Zijlstra 已提交
9199
}
9200 9201 9202 9203 9204 9205 9206 9207 9208 9209 9210

static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
		u64 rt_period_us)
{
	return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
}

static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
{
	return sched_group_rt_period(cgroup_tg(cgrp));
}
9211
#endif /* CONFIG_RT_GROUP_SCHED */
P
Peter Zijlstra 已提交
9212

9213
static struct cftype cpu_files[] = {
9214
#ifdef CONFIG_FAIR_GROUP_SCHED
9215 9216
	{
		.name = "shares",
9217 9218
		.read_u64 = cpu_shares_read_u64,
		.write_u64 = cpu_shares_write_u64,
9219
	},
9220 9221
#endif
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
9222
	{
P
Peter Zijlstra 已提交
9223
		.name = "rt_runtime_us",
9224 9225
		.read_s64 = cpu_rt_runtime_read,
		.write_s64 = cpu_rt_runtime_write,
P
Peter Zijlstra 已提交
9226
	},
9227 9228
	{
		.name = "rt_period_us",
9229 9230
		.read_u64 = cpu_rt_period_read_uint,
		.write_u64 = cpu_rt_period_write_uint,
9231
	},
9232
#endif
9233 9234 9235 9236
};

static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
{
9237
	return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
9238 9239 9240
}

struct cgroup_subsys cpu_cgroup_subsys = {
I
Ingo Molnar 已提交
9241 9242 9243 9244 9245 9246 9247
	.name		= "cpu",
	.create		= cpu_cgroup_create,
	.destroy	= cpu_cgroup_destroy,
	.can_attach	= cpu_cgroup_can_attach,
	.attach		= cpu_cgroup_attach,
	.populate	= cpu_cgroup_populate,
	.subsys_id	= cpu_cgroup_subsys_id,
9248 9249 9250
	.early_init	= 1,
};

9251
#endif	/* CONFIG_CGROUP_SCHED */
9252 9253 9254 9255 9256 9257 9258 9259 9260 9261 9262 9263 9264 9265 9266 9267 9268 9269 9270 9271

#ifdef CONFIG_CGROUP_CPUACCT

/*
 * CPU accounting code for task groups.
 *
 * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
 * (balbir@in.ibm.com).
 */

/* track cpu usage of a group of tasks */
struct cpuacct {
	struct cgroup_subsys_state css;
	/* cpuusage holds pointer to a u64-type object on every cpu */
	u64 *cpuusage;
};

struct cgroup_subsys cpuacct_subsys;

/* return cpu accounting group corresponding to this container */
9272
static inline struct cpuacct *cgroup_ca(struct cgroup *cgrp)
9273
{
9274
	return container_of(cgroup_subsys_state(cgrp, cpuacct_subsys_id),
9275 9276 9277 9278 9279 9280 9281 9282 9283 9284 9285 9286
			    struct cpuacct, css);
}

/* return cpu accounting group to which this task belongs */
static inline struct cpuacct *task_ca(struct task_struct *tsk)
{
	return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
			    struct cpuacct, css);
}

/* create a new cpu accounting group */
static struct cgroup_subsys_state *cpuacct_create(
9287
	struct cgroup_subsys *ss, struct cgroup *cgrp)
9288 9289 9290 9291 9292 9293 9294 9295 9296 9297 9298 9299 9300 9301 9302 9303
{
	struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL);

	if (!ca)
		return ERR_PTR(-ENOMEM);

	ca->cpuusage = alloc_percpu(u64);
	if (!ca->cpuusage) {
		kfree(ca);
		return ERR_PTR(-ENOMEM);
	}

	return &ca->css;
}

/* destroy an existing cpu accounting group */
I
Ingo Molnar 已提交
9304
static void
9305
cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
9306
{
9307
	struct cpuacct *ca = cgroup_ca(cgrp);
9308 9309 9310 9311 9312 9313

	free_percpu(ca->cpuusage);
	kfree(ca);
}

/* return total cpu usage (in nanoseconds) of a group */
9314
static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
9315
{
9316
	struct cpuacct *ca = cgroup_ca(cgrp);
9317 9318 9319 9320 9321 9322 9323 9324 9325 9326 9327 9328 9329 9330 9331 9332 9333 9334
	u64 totalcpuusage = 0;
	int i;

	for_each_possible_cpu(i) {
		u64 *cpuusage = percpu_ptr(ca->cpuusage, i);

		/*
		 * Take rq->lock to make 64-bit addition safe on 32-bit
		 * platforms.
		 */
		spin_lock_irq(&cpu_rq(i)->lock);
		totalcpuusage += *cpuusage;
		spin_unlock_irq(&cpu_rq(i)->lock);
	}

	return totalcpuusage;
}

9335 9336 9337 9338 9339 9340 9341 9342 9343 9344 9345 9346 9347 9348 9349 9350 9351 9352 9353 9354 9355 9356 9357
static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
								u64 reset)
{
	struct cpuacct *ca = cgroup_ca(cgrp);
	int err = 0;
	int i;

	if (reset) {
		err = -EINVAL;
		goto out;
	}

	for_each_possible_cpu(i) {
		u64 *cpuusage = percpu_ptr(ca->cpuusage, i);

		spin_lock_irq(&cpu_rq(i)->lock);
		*cpuusage = 0;
		spin_unlock_irq(&cpu_rq(i)->lock);
	}
out:
	return err;
}

9358 9359 9360
static struct cftype files[] = {
	{
		.name = "usage",
9361 9362
		.read_u64 = cpuusage_read,
		.write_u64 = cpuusage_write,
9363 9364 9365
	},
};

9366
static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cgrp)
9367
{
9368
	return cgroup_add_files(cgrp, ss, files, ARRAY_SIZE(files));
9369 9370 9371 9372 9373 9374 9375 9376 9377 9378 9379 9380 9381 9382 9383 9384 9385 9386 9387 9388 9389 9390 9391 9392 9393 9394 9395 9396 9397 9398
}

/*
 * charge this task's execution time to its accounting group.
 *
 * called with rq->lock held.
 */
static void cpuacct_charge(struct task_struct *tsk, u64 cputime)
{
	struct cpuacct *ca;

	if (!cpuacct_subsys.active)
		return;

	ca = task_ca(tsk);
	if (ca) {
		u64 *cpuusage = percpu_ptr(ca->cpuusage, task_cpu(tsk));

		*cpuusage += cputime;
	}
}

struct cgroup_subsys cpuacct_subsys = {
	.name = "cpuacct",
	.create = cpuacct_create,
	.destroy = cpuacct_destroy,
	.populate = cpuacct_populate,
	.subsys_id = cpuacct_subsys_id,
};
#endif	/* CONFIG_CGROUP_CPUACCT */