sched_fair.c 38.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
/*
 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
 *
 *  Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
 *
 *  Interactivity improvements by Mike Galbraith
 *  (C) 2007 Mike Galbraith <efault@gmx.de>
 *
 *  Various enhancements by Dmitry Adamushko.
 *  (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
 *
 *  Group scheduling enhancements by Srivatsa Vaddagiri
 *  Copyright IBM Corporation, 2007
 *  Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
 *
 *  Scaled math optimizations by Thomas Gleixner
 *  Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
18 19 20
 *
 *  Adaptive scheduling granularity, math enhancements by Peter Zijlstra
 *  Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
21 22
 */

A
Arjan van de Ven 已提交
23 24
#include <linux/latencytop.h>

25
/*
26
 * Targeted preemption latency for CPU-bound tasks:
27
 * (default: 20ms * (1 + ilog(ncpus)), units: nanoseconds)
28
 *
29
 * NOTE: this latency value is not the same as the concept of
I
Ingo Molnar 已提交
30 31 32
 * 'timeslice length' - timeslices in CFS are of variable length
 * and have no persistent notion like in traditional, time-slice
 * based scheduling concepts.
33
 *
I
Ingo Molnar 已提交
34 35
 * (to see the precise effective timeslice length of your workload,
 *  run vmstat and monitor the context-switches (cs) field)
36
 */
I
Ingo Molnar 已提交
37
unsigned int sysctl_sched_latency = 20000000ULL;
38 39

/*
40
 * Minimal preemption granularity for CPU-bound tasks:
41
 * (default: 4 msec * (1 + ilog(ncpus)), units: nanoseconds)
42
 */
43
unsigned int sysctl_sched_min_granularity = 4000000ULL;
44 45

/*
46 47
 * is kept at sysctl_sched_latency / sysctl_sched_min_granularity
 */
48
static unsigned int sched_nr_latency = 5;
49 50 51 52

/*
 * After fork, child runs first. (default) If set to 0 then
 * parent will (try to) run first.
53
 */
54
const_debug unsigned int sysctl_sched_child_runs_first = 1;
55

56 57 58 59 60 61 62 63
/*
 * sys_sched_yield() compat mode
 *
 * This option switches the agressive yield implementation of the
 * old scheduler back on.
 */
unsigned int __read_mostly sysctl_sched_compat_yield;

64 65
/*
 * SCHED_OTHER wake-up granularity.
66
 * (default: 5 msec * (1 + ilog(ncpus)), units: nanoseconds)
67 68 69 70 71
 *
 * This option delays the preemption effects of decoupled workloads
 * and reduces their over-scheduling. Synchronous workloads will still
 * have immediate wakeup/sleep latencies.
 */
72
unsigned int sysctl_sched_wakeup_granularity = 5000000UL;
73

74 75
const_debug unsigned int sysctl_sched_migration_cost = 500000UL;

76 77
static const struct sched_class fair_sched_class;

78 79 80 81
/**************************************************************
 * CFS operations on generic schedulable entities:
 */

P
Peter Zijlstra 已提交
82 83 84 85 86
static inline struct task_struct *task_of(struct sched_entity *se)
{
	return container_of(se, struct task_struct, se);
}

87
#ifdef CONFIG_FAIR_GROUP_SCHED
88

89
/* cpu runqueue to which this cfs_rq is attached */
90 91
static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
{
92
	return cfs_rq->rq;
93 94
}

95 96
/* An entity is a task if it doesn't "own" a runqueue */
#define entity_is_task(se)	(!se->my_q)
97

P
Peter Zijlstra 已提交
98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145
/* Walk up scheduling entities hierarchy */
#define for_each_sched_entity(se) \
		for (; se; se = se->parent)

static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
{
	return p->se.cfs_rq;
}

/* runqueue on which this entity is (to be) queued */
static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
{
	return se->cfs_rq;
}

/* runqueue "owned" by this group */
static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
{
	return grp->my_q;
}

/* Given a group's cfs_rq on one cpu, return its corresponding cfs_rq on
 * another cpu ('this_cpu')
 */
static inline struct cfs_rq *cpu_cfs_rq(struct cfs_rq *cfs_rq, int this_cpu)
{
	return cfs_rq->tg->cfs_rq[this_cpu];
}

/* Iterate thr' all leaf cfs_rq's on a runqueue */
#define for_each_leaf_cfs_rq(rq, cfs_rq) \
	list_for_each_entry_rcu(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list)

/* Do the two (enqueued) entities belong to the same group ? */
static inline int
is_same_group(struct sched_entity *se, struct sched_entity *pse)
{
	if (se->cfs_rq == pse->cfs_rq)
		return 1;

	return 0;
}

static inline struct sched_entity *parent_entity(struct sched_entity *se)
{
	return se->parent;
}

146
#else	/* CONFIG_FAIR_GROUP_SCHED */
147

148 149 150
static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
{
	return container_of(cfs_rq, struct rq, cfs);
151 152 153 154
}

#define entity_is_task(se)	1

P
Peter Zijlstra 已提交
155 156
#define for_each_sched_entity(se) \
		for (; se; se = NULL)
157

P
Peter Zijlstra 已提交
158
static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
159
{
P
Peter Zijlstra 已提交
160
	return &task_rq(p)->cfs;
161 162
}

P
Peter Zijlstra 已提交
163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197
static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
{
	struct task_struct *p = task_of(se);
	struct rq *rq = task_rq(p);

	return &rq->cfs;
}

/* runqueue "owned" by this group */
static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
{
	return NULL;
}

static inline struct cfs_rq *cpu_cfs_rq(struct cfs_rq *cfs_rq, int this_cpu)
{
	return &cpu_rq(this_cpu)->cfs;
}

#define for_each_leaf_cfs_rq(rq, cfs_rq) \
		for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL)

static inline int
is_same_group(struct sched_entity *se, struct sched_entity *pse)
{
	return 1;
}

static inline struct sched_entity *parent_entity(struct sched_entity *se)
{
	return NULL;
}

#endif	/* CONFIG_FAIR_GROUP_SCHED */

198 199 200 201 202

/**************************************************************
 * Scheduling class tree data structure manipulation methods:
 */

203
static inline u64 max_vruntime(u64 min_vruntime, u64 vruntime)
204
{
205 206
	s64 delta = (s64)(vruntime - min_vruntime);
	if (delta > 0)
207 208 209 210 211
		min_vruntime = vruntime;

	return min_vruntime;
}

212
static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
P
Peter Zijlstra 已提交
213 214 215 216 217 218 219 220
{
	s64 delta = (s64)(vruntime - min_vruntime);
	if (delta < 0)
		min_vruntime = vruntime;

	return min_vruntime;
}

221
static inline s64 entity_key(struct cfs_rq *cfs_rq, struct sched_entity *se)
222
{
223
	return se->vruntime - cfs_rq->min_vruntime;
224 225
}

226 227 228
/*
 * Enqueue an entity into the rb-tree:
 */
229
static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
230 231 232 233
{
	struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
	struct rb_node *parent = NULL;
	struct sched_entity *entry;
234
	s64 key = entity_key(cfs_rq, se);
235 236 237 238 239 240 241 242 243 244 245 246
	int leftmost = 1;

	/*
	 * Find the right place in the rbtree:
	 */
	while (*link) {
		parent = *link;
		entry = rb_entry(parent, struct sched_entity, run_node);
		/*
		 * We dont care about collisions. Nodes with
		 * the same key stay together.
		 */
247
		if (key < entity_key(cfs_rq, entry)) {
248 249 250 251 252 253 254 255 256 257 258
			link = &parent->rb_left;
		} else {
			link = &parent->rb_right;
			leftmost = 0;
		}
	}

	/*
	 * Maintain a cache of leftmost tree entries (it is frequently
	 * used):
	 */
P
Peter Zijlstra 已提交
259
	if (leftmost) {
I
Ingo Molnar 已提交
260
		cfs_rq->rb_leftmost = &se->run_node;
P
Peter Zijlstra 已提交
261 262 263 264 265 266 267
		/*
		 * maintain cfs_rq->min_vruntime to be a monotonic increasing
		 * value tracking the leftmost vruntime in the tree.
		 */
		cfs_rq->min_vruntime =
			max_vruntime(cfs_rq->min_vruntime, se->vruntime);
	}
268 269 270 271 272

	rb_link_node(&se->run_node, parent, link);
	rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline);
}

273
static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
274
{
P
Peter Zijlstra 已提交
275 276 277 278 279 280 281 282 283 284 285 286 287 288 289
	if (cfs_rq->rb_leftmost == &se->run_node) {
		struct rb_node *next_node;
		struct sched_entity *next;

		next_node = rb_next(&se->run_node);
		cfs_rq->rb_leftmost = next_node;

		if (next_node) {
			next = rb_entry(next_node,
					struct sched_entity, run_node);
			cfs_rq->min_vruntime =
				max_vruntime(cfs_rq->min_vruntime,
					     next->vruntime);
		}
	}
I
Ingo Molnar 已提交
290

291 292 293
	if (cfs_rq->next == se)
		cfs_rq->next = NULL;

294 295 296 297 298 299 300 301 302 303 304 305 306
	rb_erase(&se->run_node, &cfs_rq->tasks_timeline);
}

static inline struct rb_node *first_fair(struct cfs_rq *cfs_rq)
{
	return cfs_rq->rb_leftmost;
}

static struct sched_entity *__pick_next_entity(struct cfs_rq *cfs_rq)
{
	return rb_entry(first_fair(cfs_rq), struct sched_entity, run_node);
}

307 308
static inline struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
{
309
	struct rb_node *last = rb_last(&cfs_rq->tasks_timeline);
310

311 312
	if (!last)
		return NULL;
313 314

	return rb_entry(last, struct sched_entity, run_node);
315 316
}

317 318 319 320
/**************************************************************
 * Scheduling class statistics methods:
 */

321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336
#ifdef CONFIG_SCHED_DEBUG
int sched_nr_latency_handler(struct ctl_table *table, int write,
		struct file *filp, void __user *buffer, size_t *lenp,
		loff_t *ppos)
{
	int ret = proc_dointvec_minmax(table, write, filp, buffer, lenp, ppos);

	if (ret || !write)
		return ret;

	sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency,
					sysctl_sched_min_granularity);

	return 0;
}
#endif
337

338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365
/*
 * delta *= w / rw
 */
static inline unsigned long
calc_delta_weight(unsigned long delta, struct sched_entity *se)
{
	for_each_sched_entity(se) {
		delta = calc_delta_mine(delta,
				se->load.weight, &cfs_rq_of(se)->load);
	}

	return delta;
}

/*
 * delta *= rw / w
 */
static inline unsigned long
calc_delta_fair(unsigned long delta, struct sched_entity *se)
{
	for_each_sched_entity(se) {
		delta = calc_delta_mine(delta,
				cfs_rq_of(se)->load.weight, &se->load);
	}

	return delta;
}

366 367 368 369 370 371 372 373
/*
 * The idea is to set a period in which each task runs once.
 *
 * When there are too many tasks (sysctl_sched_nr_latency) we have to stretch
 * this period because otherwise the slices get too small.
 *
 * p = (nr <= nl) ? l : l*nr/nl
 */
374 375 376
static u64 __sched_period(unsigned long nr_running)
{
	u64 period = sysctl_sched_latency;
377
	unsigned long nr_latency = sched_nr_latency;
378 379

	if (unlikely(nr_running > nr_latency)) {
380
		period = sysctl_sched_min_granularity;
381 382 383 384 385 386
		period *= nr_running;
	}

	return period;
}

387 388 389 390 391 392
/*
 * We calculate the wall-time slice from the period by taking a part
 * proportional to the weight.
 *
 * s = p*w/rw
 */
P
Peter Zijlstra 已提交
393
static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
394
{
395
	return calc_delta_weight(__sched_period(cfs_rq->nr_running), se);
396 397
}

398
/*
399
 * We calculate the vruntime slice of a to be inserted task
400
 *
401
 * vs = s*rw/w = p
402
 */
403
static u64 sched_vslice_add(struct cfs_rq *cfs_rq, struct sched_entity *se)
P
Peter Zijlstra 已提交
404
{
405
	unsigned long nr_running = cfs_rq->nr_running;
P
Peter Zijlstra 已提交
406

407 408
	if (!se->on_rq)
		nr_running++;
P
Peter Zijlstra 已提交
409

410 411 412
	return __sched_period(nr_running);
}

413 414 415 416 417
/*
 * Update the current task's runtime statistics. Skip current tasks that
 * are not in our scheduling class.
 */
static inline void
I
Ingo Molnar 已提交
418 419
__update_curr(struct cfs_rq *cfs_rq, struct sched_entity *curr,
	      unsigned long delta_exec)
420
{
421
	unsigned long delta_exec_weighted;
422

423
	schedstat_set(curr->exec_max, max((u64)delta_exec, curr->exec_max));
424 425

	curr->sum_exec_runtime += delta_exec;
426
	schedstat_add(cfs_rq, exec_clock, delta_exec);
427
	delta_exec_weighted = calc_delta_fair(delta_exec, curr);
I
Ingo Molnar 已提交
428
	curr->vruntime += delta_exec_weighted;
429 430
}

431
static void update_curr(struct cfs_rq *cfs_rq)
432
{
433
	struct sched_entity *curr = cfs_rq->curr;
I
Ingo Molnar 已提交
434
	u64 now = rq_of(cfs_rq)->clock;
435 436 437 438 439 440 441 442 443 444
	unsigned long delta_exec;

	if (unlikely(!curr))
		return;

	/*
	 * Get the amount of time the current task was running
	 * since the last time we changed load (this cannot
	 * overflow on 32 bits):
	 */
I
Ingo Molnar 已提交
445
	delta_exec = (unsigned long)(now - curr->exec_start);
446

I
Ingo Molnar 已提交
447 448
	__update_curr(cfs_rq, curr, delta_exec);
	curr->exec_start = now;
449 450 451 452 453 454

	if (entity_is_task(curr)) {
		struct task_struct *curtask = task_of(curr);

		cpuacct_charge(curtask, delta_exec);
	}
455 456 457
}

static inline void
458
update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
459
{
460
	schedstat_set(se->wait_start, rq_of(cfs_rq)->clock);
461 462 463 464 465
}

/*
 * Task is being enqueued - update stats:
 */
466
static void update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
467 468 469 470 471
{
	/*
	 * Are we enqueueing a waiting task? (for current tasks
	 * a dequeue/enqueue event is a NOP)
	 */
472
	if (se != cfs_rq->curr)
473
		update_stats_wait_start(cfs_rq, se);
474 475 476
}

static void
477
update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
478
{
479 480
	schedstat_set(se->wait_max, max(se->wait_max,
			rq_of(cfs_rq)->clock - se->wait_start));
481 482 483
	schedstat_set(se->wait_count, se->wait_count + 1);
	schedstat_set(se->wait_sum, se->wait_sum +
			rq_of(cfs_rq)->clock - se->wait_start);
I
Ingo Molnar 已提交
484
	schedstat_set(se->wait_start, 0);
485 486 487
}

static inline void
488
update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
489 490 491 492 493
{
	/*
	 * Mark the end of the wait period if dequeueing a
	 * waiting task:
	 */
494
	if (se != cfs_rq->curr)
495
		update_stats_wait_end(cfs_rq, se);
496 497 498 499 500 501
}

/*
 * We are picking a new current task - update its stats:
 */
static inline void
502
update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
503 504 505 506
{
	/*
	 * We are starting a new run period:
	 */
507
	se->exec_start = rq_of(cfs_rq)->clock;
508 509 510 511 512 513
}

/**************************************************
 * Scheduling class queueing methods:
 */

514 515 516 517 518 519 520 521 522 523 524 525 526
#if defined CONFIG_SMP && defined CONFIG_FAIR_GROUP_SCHED
static void
add_cfs_task_weight(struct cfs_rq *cfs_rq, unsigned long weight)
{
	cfs_rq->task_weight += weight;
}
#else
static inline void
add_cfs_task_weight(struct cfs_rq *cfs_rq, unsigned long weight)
{
}
#endif

527 528 529 530
static void
account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
	update_load_add(&cfs_rq->load, se->load.weight);
531 532
	if (!parent_entity(se))
		inc_cpu_load(rq_of(cfs_rq), se->load.weight);
533
	if (entity_is_task(se)) {
534
		add_cfs_task_weight(cfs_rq, se->load.weight);
535 536
		list_add(&se->group_node, &cfs_rq->tasks);
	}
537 538 539 540 541 542 543 544
	cfs_rq->nr_running++;
	se->on_rq = 1;
}

static void
account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
	update_load_sub(&cfs_rq->load, se->load.weight);
545 546
	if (!parent_entity(se))
		dec_cpu_load(rq_of(cfs_rq), se->load.weight);
547
	if (entity_is_task(se)) {
548
		add_cfs_task_weight(cfs_rq, -se->load.weight);
549 550
		list_del_init(&se->group_node);
	}
551 552 553 554
	cfs_rq->nr_running--;
	se->on_rq = 0;
}

555
static void enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
556 557 558
{
#ifdef CONFIG_SCHEDSTATS
	if (se->sleep_start) {
559
		u64 delta = rq_of(cfs_rq)->clock - se->sleep_start;
A
Arjan van de Ven 已提交
560
		struct task_struct *tsk = task_of(se);
561 562 563 564 565 566 567 568 569

		if ((s64)delta < 0)
			delta = 0;

		if (unlikely(delta > se->sleep_max))
			se->sleep_max = delta;

		se->sleep_start = 0;
		se->sum_sleep_runtime += delta;
A
Arjan van de Ven 已提交
570 571

		account_scheduler_latency(tsk, delta >> 10, 1);
572 573
	}
	if (se->block_start) {
574
		u64 delta = rq_of(cfs_rq)->clock - se->block_start;
A
Arjan van de Ven 已提交
575
		struct task_struct *tsk = task_of(se);
576 577 578 579 580 581 582 583 584

		if ((s64)delta < 0)
			delta = 0;

		if (unlikely(delta > se->block_max))
			se->block_max = delta;

		se->block_start = 0;
		se->sum_sleep_runtime += delta;
I
Ingo Molnar 已提交
585 586 587 588 589 590 591

		/*
		 * Blocking time is in units of nanosecs, so shift by 20 to
		 * get a milliseconds-range estimation of the amount of
		 * time that the task spent sleeping:
		 */
		if (unlikely(prof_on == SLEEP_PROFILING)) {
I
Ingo Molnar 已提交
592

I
Ingo Molnar 已提交
593 594 595
			profile_hits(SLEEP_PROFILING, (void *)get_wchan(tsk),
				     delta >> 20);
		}
A
Arjan van de Ven 已提交
596
		account_scheduler_latency(tsk, delta >> 10, 0);
597 598 599 600
	}
#endif
}

P
Peter Zijlstra 已提交
601 602 603 604 605 606 607 608 609 610 611 612 613
static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
#ifdef CONFIG_SCHED_DEBUG
	s64 d = se->vruntime - cfs_rq->min_vruntime;

	if (d < 0)
		d = -d;

	if (d > 3*sysctl_sched_latency)
		schedstat_inc(cfs_rq, nr_spread_over);
#endif
}

614 615 616
static void
place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
{
P
Peter Zijlstra 已提交
617
	u64 vruntime;
618

P
Peter Zijlstra 已提交
619 620 621 622 623
	if (first_fair(cfs_rq)) {
		vruntime = min_vruntime(cfs_rq->min_vruntime,
				__pick_next_entity(cfs_rq)->vruntime);
	} else
		vruntime = cfs_rq->min_vruntime;
P
Peter Zijlstra 已提交
624

625 626 627 628 629 630
	/*
	 * The 'current' period is already promised to the current tasks,
	 * however the extra weight of the new task will slow them down a
	 * little, place the new task so that it fits in the slot that
	 * stays open at the end.
	 */
P
Peter Zijlstra 已提交
631
	if (initial && sched_feat(START_DEBIT))
632
		vruntime += sched_vslice_add(cfs_rq, se);
633

I
Ingo Molnar 已提交
634
	if (!initial) {
635
		/* sleeps upto a single latency don't count. */
636 637 638 639 640 641 642 643 644 645 646
		if (sched_feat(NEW_FAIR_SLEEPERS)) {
			unsigned long thresh = sysctl_sched_latency;

			/*
			 * convert the sleeper threshold into virtual time
			 */
			if (sched_feat(NORMALIZED_SLEEPER))
				thresh = calc_delta_fair(thresh, se);

			vruntime -= thresh;
		}
647

648 649
		/* ensure we never gain time by being placed backwards. */
		vruntime = max_vruntime(se->vruntime, vruntime);
650 651
	}

P
Peter Zijlstra 已提交
652
	se->vruntime = vruntime;
653 654
}

655
static void
656
enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int wakeup)
657 658
{
	/*
659
	 * Update run-time statistics of the 'current'.
660
	 */
661
	update_curr(cfs_rq);
P
Peter Zijlstra 已提交
662
	account_entity_enqueue(cfs_rq, se);
663

I
Ingo Molnar 已提交
664
	if (wakeup) {
665
		place_entity(cfs_rq, se, 0);
666
		enqueue_sleeper(cfs_rq, se);
I
Ingo Molnar 已提交
667
	}
668

669
	update_stats_enqueue(cfs_rq, se);
P
Peter Zijlstra 已提交
670
	check_spread(cfs_rq, se);
671 672
	if (se != cfs_rq->curr)
		__enqueue_entity(cfs_rq, se);
673 674 675
}

static void
676
dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int sleep)
677
{
678 679 680 681 682
	/*
	 * Update run-time statistics of the 'current'.
	 */
	update_curr(cfs_rq);

683
	update_stats_dequeue(cfs_rq, se);
684
	if (sleep) {
P
Peter Zijlstra 已提交
685
#ifdef CONFIG_SCHEDSTATS
686 687 688 689
		if (entity_is_task(se)) {
			struct task_struct *tsk = task_of(se);

			if (tsk->state & TASK_INTERRUPTIBLE)
690
				se->sleep_start = rq_of(cfs_rq)->clock;
691
			if (tsk->state & TASK_UNINTERRUPTIBLE)
692
				se->block_start = rq_of(cfs_rq)->clock;
693
		}
694
#endif
P
Peter Zijlstra 已提交
695 696
	}

697
	if (se != cfs_rq->curr)
698 699
		__dequeue_entity(cfs_rq, se);
	account_entity_dequeue(cfs_rq, se);
700 701 702 703 704
}

/*
 * Preempt the current task with a newly woken task if needed:
 */
705
static void
I
Ingo Molnar 已提交
706
check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
707
{
708 709
	unsigned long ideal_runtime, delta_exec;

P
Peter Zijlstra 已提交
710
	ideal_runtime = sched_slice(cfs_rq, curr);
711
	delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
I
Ingo Molnar 已提交
712
	if (delta_exec > ideal_runtime)
713 714 715
		resched_task(rq_of(cfs_rq)->curr);
}

716
static void
717
set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
718
{
719 720 721 722 723 724 725 726 727 728 729
	/* 'current' is not kept within the tree. */
	if (se->on_rq) {
		/*
		 * Any task has to be enqueued before it get to execute on
		 * a CPU. So account for the time it spent waiting on the
		 * runqueue.
		 */
		update_stats_wait_end(cfs_rq, se);
		__dequeue_entity(cfs_rq, se);
	}

730
	update_stats_curr_start(cfs_rq, se);
731
	cfs_rq->curr = se;
I
Ingo Molnar 已提交
732 733 734 735 736 737
#ifdef CONFIG_SCHEDSTATS
	/*
	 * Track our maximum slice length, if the CPU's load is at
	 * least twice that of our own weight (i.e. dont track it
	 * when there are only lesser-weight tasks around):
	 */
738
	if (rq_of(cfs_rq)->load.weight >= 2*se->load.weight) {
I
Ingo Molnar 已提交
739 740 741 742
		se->slice_max = max(se->slice_max,
			se->sum_exec_runtime - se->prev_sum_exec_runtime);
	}
#endif
743
	se->prev_sum_exec_runtime = se->sum_exec_runtime;
744 745
}

746 747 748
static struct sched_entity *
pick_next(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
749 750
	struct rq *rq = rq_of(cfs_rq);
	u64 pair_slice = rq->clock - cfs_rq->pair_start;
751

752
	if (!cfs_rq->next || pair_slice > sysctl_sched_min_granularity) {
753
		cfs_rq->pair_start = rq->clock;
754
		return se;
755
	}
756 757 758 759

	return cfs_rq->next;
}

760
static struct sched_entity *pick_next_entity(struct cfs_rq *cfs_rq)
761
{
D
Dmitry Adamushko 已提交
762
	struct sched_entity *se = NULL;
763

D
Dmitry Adamushko 已提交
764 765
	if (first_fair(cfs_rq)) {
		se = __pick_next_entity(cfs_rq);
766
		se = pick_next(cfs_rq, se);
D
Dmitry Adamushko 已提交
767 768
		set_next_entity(cfs_rq, se);
	}
769 770 771 772

	return se;
}

773
static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
774 775 776 777 778 779
{
	/*
	 * If still on the runqueue then deactivate_task()
	 * was not called and update_curr() has to be done:
	 */
	if (prev->on_rq)
780
		update_curr(cfs_rq);
781

P
Peter Zijlstra 已提交
782
	check_spread(cfs_rq, prev);
783
	if (prev->on_rq) {
784
		update_stats_wait_start(cfs_rq, prev);
785 786 787
		/* Put 'current' back into the tree. */
		__enqueue_entity(cfs_rq, prev);
	}
788
	cfs_rq->curr = NULL;
789 790
}

P
Peter Zijlstra 已提交
791 792
static void
entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
793 794
{
	/*
795
	 * Update run-time statistics of the 'current'.
796
	 */
797
	update_curr(cfs_rq);
798

P
Peter Zijlstra 已提交
799 800 801 802 803
#ifdef CONFIG_SCHED_HRTICK
	/*
	 * queued ticks are scheduled to match the slice, so don't bother
	 * validating it and just reschedule.
	 */
804 805 806 807
	if (queued) {
		resched_task(rq_of(cfs_rq)->curr);
		return;
	}
P
Peter Zijlstra 已提交
808 809 810 811 812 813 814 815
	/*
	 * don't let the period tick interfere with the hrtick preemption
	 */
	if (!sched_feat(DOUBLE_TICK) &&
			hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
		return;
#endif

816
	if (cfs_rq->nr_running > 1 || !sched_feat(WAKEUP_PREEMPT))
I
Ingo Molnar 已提交
817
		check_preempt_tick(cfs_rq, curr);
818 819 820 821 822 823
}

/**************************************************
 * CFS operations on tasks:
 */

P
Peter Zijlstra 已提交
824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846
#ifdef CONFIG_SCHED_HRTICK
static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
{
	struct sched_entity *se = &p->se;
	struct cfs_rq *cfs_rq = cfs_rq_of(se);

	WARN_ON(task_rq(p) != rq);

	if (hrtick_enabled(rq) && cfs_rq->nr_running > 1) {
		u64 slice = sched_slice(cfs_rq, se);
		u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
		s64 delta = slice - ran;

		if (delta < 0) {
			if (rq->curr == p)
				resched_task(p);
			return;
		}

		/*
		 * Don't schedule slices shorter than 10000ns, that just
		 * doesn't make sense. Rely on vruntime for fairness.
		 */
847
		if (rq->curr != p)
848
			delta = max_t(s64, 10000LL, delta);
P
Peter Zijlstra 已提交
849

850
		hrtick_start(rq, delta);
P
Peter Zijlstra 已提交
851 852
	}
}
853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868

/*
 * called from enqueue/dequeue and updates the hrtick when the
 * current task is from our class and nr_running is low enough
 * to matter.
 */
static void hrtick_update(struct rq *rq)
{
	struct task_struct *curr = rq->curr;

	if (curr->sched_class != &fair_sched_class)
		return;

	if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency)
		hrtick_start_fair(rq, curr);
}
869
#else /* !CONFIG_SCHED_HRTICK */
P
Peter Zijlstra 已提交
870 871 872 873
static inline void
hrtick_start_fair(struct rq *rq, struct task_struct *p)
{
}
874 875 876 877

static inline void hrtick_update(struct rq *rq)
{
}
P
Peter Zijlstra 已提交
878 879
#endif

880 881 882 883 884
/*
 * The enqueue_task method is called before nr_running is
 * increased. Here we update the fair scheduling stats and
 * then put the task into the rbtree:
 */
885
static void enqueue_task_fair(struct rq *rq, struct task_struct *p, int wakeup)
886 887
{
	struct cfs_rq *cfs_rq;
888
	struct sched_entity *se = &p->se;
889 890

	for_each_sched_entity(se) {
891
		if (se->on_rq)
892 893
			break;
		cfs_rq = cfs_rq_of(se);
894
		enqueue_entity(cfs_rq, se, wakeup);
895
		wakeup = 1;
896
	}
P
Peter Zijlstra 已提交
897

898
	hrtick_update(rq);
899 900 901 902 903 904 905
}

/*
 * The dequeue_task method is called before nr_running is
 * decreased. We remove the task from the rbtree and
 * update the fair scheduling stats:
 */
906
static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int sleep)
907 908
{
	struct cfs_rq *cfs_rq;
909
	struct sched_entity *se = &p->se;
910 911 912

	for_each_sched_entity(se) {
		cfs_rq = cfs_rq_of(se);
913
		dequeue_entity(cfs_rq, se, sleep);
914
		/* Don't dequeue parent if it has other entities besides us */
915
		if (cfs_rq->load.weight)
916
			break;
917
		sleep = 1;
918
	}
P
Peter Zijlstra 已提交
919

920
	hrtick_update(rq);
921 922 923
}

/*
924 925 926
 * sched_yield() support is very simple - we dequeue and enqueue.
 *
 * If compat_yield is turned on then we requeue to the end of the tree.
927
 */
928
static void yield_task_fair(struct rq *rq)
929
{
930 931 932
	struct task_struct *curr = rq->curr;
	struct cfs_rq *cfs_rq = task_cfs_rq(curr);
	struct sched_entity *rightmost, *se = &curr->se;
933 934

	/*
935 936 937 938 939
	 * Are we the only task in the tree?
	 */
	if (unlikely(cfs_rq->nr_running == 1))
		return;

940
	if (likely(!sysctl_sched_compat_yield) && curr->policy != SCHED_BATCH) {
941
		update_rq_clock(rq);
942
		/*
943
		 * Update run-time statistics of the 'current'.
944
		 */
D
Dmitry Adamushko 已提交
945
		update_curr(cfs_rq);
946 947 948 949 950

		return;
	}
	/*
	 * Find the rightmost entry in the rbtree:
951
	 */
D
Dmitry Adamushko 已提交
952
	rightmost = __pick_last_entity(cfs_rq);
953 954 955
	/*
	 * Already in the rightmost position?
	 */
956
	if (unlikely(!rightmost || rightmost->vruntime < se->vruntime))
957 958 959 960
		return;

	/*
	 * Minimally necessary key value to be last in the tree:
D
Dmitry Adamushko 已提交
961 962
	 * Upon rescheduling, sched_class::put_prev_task() will place
	 * 'current' within the tree based on its new key value.
963
	 */
964
	se->vruntime = rightmost->vruntime + 1;
965 966
}

967 968 969 970 971
/*
 * wake_idle() will wake a task on an idle cpu if task->cpu is
 * not idle and an idle cpu is available.  The span of cpus to
 * search starts with cpus closest then further out as needed,
 * so we always favor a closer, idle cpu.
972 973
 * Domains may include CPUs that are not usable for migration,
 * hence we need to mask them out (cpu_active_map)
974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992
 *
 * Returns the CPU we should wake onto.
 */
#if defined(ARCH_HAS_SCHED_WAKE_IDLE)
static int wake_idle(int cpu, struct task_struct *p)
{
	cpumask_t tmp;
	struct sched_domain *sd;
	int i;

	/*
	 * If it is idle, then it is the best cpu to run this task.
	 *
	 * This cpu is also the best, if it has more than one task already.
	 * Siblings must be also busy(in most cases) as they didn't already
	 * pickup the extra load from this cpu and hence we need not check
	 * sibling runqueue info. This will avoid the checks and cache miss
	 * penalities associated with that.
	 */
993
	if (idle_cpu(cpu) || cpu_rq(cpu)->cfs.nr_running > 1)
994 995 996
		return cpu;

	for_each_domain(cpu, sd) {
997 998 999
		if ((sd->flags & SD_WAKE_IDLE)
		    || ((sd->flags & SD_WAKE_IDLE_FAR)
			&& !task_hot(p, task_rq(p)->clock, sd))) {
1000
			cpus_and(tmp, sd->span, p->cpus_allowed);
1001
			cpus_and(tmp, tmp, cpu_active_map);
1002
			for_each_cpu_mask_nr(i, tmp) {
1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016
				if (idle_cpu(i)) {
					if (i != task_cpu(p)) {
						schedstat_inc(p,
						       se.nr_wakeups_idle);
					}
					return i;
				}
			}
		} else {
			break;
		}
	}
	return cpu;
}
1017
#else /* !ARCH_HAS_SCHED_WAKE_IDLE*/
1018 1019 1020 1021 1022 1023 1024
static inline int wake_idle(int cpu, struct task_struct *p)
{
	return cpu;
}
#endif

#ifdef CONFIG_SMP
1025

1026
#ifdef CONFIG_FAIR_GROUP_SCHED
1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047
/*
 * effective_load() calculates the load change as seen from the root_task_group
 *
 * Adding load to a group doesn't make a group heavier, but can cause movement
 * of group shares between cpus. Assuming the shares were perfectly aligned one
 * can calculate the shift in shares.
 *
 * The problem is that perfectly aligning the shares is rather expensive, hence
 * we try to avoid doing that too often - see update_shares(), which ratelimits
 * this change.
 *
 * We compensate this by not only taking the current delta into account, but
 * also considering the delta between when the shares were last adjusted and
 * now.
 *
 * We still saw a performance dip, some tracing learned us that between
 * cgroup:/ and cgroup:/foo balancing the number of affine wakeups increased
 * significantly. Therefore try to bias the error in direction of failing
 * the affine wakeup.
 *
 */
1048 1049
static long effective_load(struct task_group *tg, int cpu,
		long wl, long wg)
1050
{
P
Peter Zijlstra 已提交
1051
	struct sched_entity *se = tg->se[cpu];
1052 1053 1054 1055

	if (!tg->parent)
		return wl;

1056 1057 1058 1059 1060 1061 1062
	/*
	 * By not taking the decrease of shares on the other cpu into
	 * account our error leans towards reducing the affine wakeups.
	 */
	if (!wl && sched_feat(ASYM_EFF_LOAD))
		return wl;

P
Peter Zijlstra 已提交
1063
	for_each_sched_entity(se) {
1064
		long S, rw, s, a, b;
1065 1066 1067 1068 1069 1070 1071 1072 1073
		long more_w;

		/*
		 * Instead of using this increment, also add the difference
		 * between when the shares were last updated and now.
		 */
		more_w = se->my_q->load.weight - se->my_q->rq_weight;
		wl += more_w;
		wg += more_w;
P
Peter Zijlstra 已提交
1074 1075 1076

		S = se->my_q->tg->shares;
		s = se->my_q->shares;
1077
		rw = se->my_q->rq_weight;
1078

1079 1080
		a = S*(rw + wl);
		b = S*rw + s*wg;
P
Peter Zijlstra 已提交
1081

1082 1083 1084 1085 1086
		wl = s*(a-b);

		if (likely(b))
			wl /= b;

1087 1088 1089 1090 1091 1092 1093
		/*
		 * Assume the group is already running and will
		 * thus already be accounted for in the weight.
		 *
		 * That is, moving shares between CPUs, does not
		 * alter the group weight.
		 */
P
Peter Zijlstra 已提交
1094 1095
		wg = 0;
	}
1096

P
Peter Zijlstra 已提交
1097
	return wl;
1098
}
P
Peter Zijlstra 已提交
1099

1100
#else
P
Peter Zijlstra 已提交
1101

1102 1103
static inline unsigned long effective_load(struct task_group *tg, int cpu,
		unsigned long wl, unsigned long wg)
P
Peter Zijlstra 已提交
1104
{
1105
	return wl;
1106
}
P
Peter Zijlstra 已提交
1107

1108 1109
#endif

1110
static int
1111
wake_affine(struct sched_domain *this_sd, struct rq *this_rq,
I
Ingo Molnar 已提交
1112 1113
	    struct task_struct *p, int prev_cpu, int this_cpu, int sync,
	    int idx, unsigned long load, unsigned long this_load,
1114 1115
	    unsigned int imbalance)
{
I
Ingo Molnar 已提交
1116
	struct task_struct *curr = this_rq->curr;
1117
	struct task_group *tg;
1118 1119
	unsigned long tl = this_load;
	unsigned long tl_per_task;
1120
	unsigned long weight;
1121
	int balanced;
1122

1123
	if (!(this_sd->flags & SD_WAKE_AFFINE) || !sched_feat(AFFINE_WAKEUPS))
1124 1125
		return 0;

1126 1127 1128 1129 1130
	if (!sync && sched_feat(SYNC_WAKEUPS) &&
	    curr->se.avg_overlap < sysctl_sched_migration_cost &&
	    p->se.avg_overlap < sysctl_sched_migration_cost)
		sync = 1;

1131 1132 1133 1134 1135
	/*
	 * If sync wakeup then subtract the (maximum possible)
	 * effect of the currently running task from the load
	 * of the current CPU:
	 */
1136 1137 1138 1139 1140 1141 1142
	if (sync) {
		tg = task_group(current);
		weight = current->se.load.weight;

		tl += effective_load(tg, this_cpu, -weight, -weight);
		load += effective_load(tg, prev_cpu, 0, -weight);
	}
1143

1144 1145
	tg = task_group(p);
	weight = p->se.load.weight;
1146

1147 1148
	balanced = 100*(tl + effective_load(tg, this_cpu, weight, weight)) <=
		imbalance*(load + effective_load(tg, prev_cpu, 0, weight));
1149

1150
	/*
I
Ingo Molnar 已提交
1151 1152 1153
	 * If the currently running task will sleep within
	 * a reasonable amount of time then attract this newly
	 * woken task:
1154
	 */
1155 1156
	if (sync && balanced)
		return 1;
1157 1158 1159 1160

	schedstat_inc(p, se.nr_wakeups_affine_attempts);
	tl_per_task = cpu_avg_load_per_task(this_cpu);

1161 1162
	if (balanced || (tl <= load && tl + target_load(prev_cpu, idx) <=
			tl_per_task)) {
1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175
		/*
		 * This domain has SD_WAKE_AFFINE and
		 * p is cache cold in this domain, and
		 * there is no bad imbalance.
		 */
		schedstat_inc(this_sd, ttwu_move_affine);
		schedstat_inc(p, se.nr_wakeups_affine);

		return 1;
	}
	return 0;
}

1176 1177 1178
static int select_task_rq_fair(struct task_struct *p, int sync)
{
	struct sched_domain *sd, *this_sd = NULL;
1179
	int prev_cpu, this_cpu, new_cpu;
1180
	unsigned long load, this_load;
1181
	struct rq *this_rq;
1182 1183
	unsigned int imbalance;
	int idx;
1184

1185 1186
	prev_cpu	= task_cpu(p);
	this_cpu	= smp_processor_id();
I
Ingo Molnar 已提交
1187
	this_rq		= cpu_rq(this_cpu);
1188
	new_cpu		= prev_cpu;
1189

1190 1191
	if (prev_cpu == this_cpu)
		goto out;
1192 1193 1194 1195
	/*
	 * 'this_sd' is the first domain that both
	 * this_cpu and prev_cpu are present in:
	 */
1196
	for_each_domain(this_cpu, sd) {
1197
		if (cpu_isset(prev_cpu, sd->span)) {
1198 1199 1200 1201 1202 1203
			this_sd = sd;
			break;
		}
	}

	if (unlikely(!cpu_isset(this_cpu, p->cpus_allowed)))
1204
		goto out;
1205 1206 1207 1208

	/*
	 * Check for affine wakeup and passive balancing possibilities.
	 */
1209
	if (!this_sd)
1210
		goto out;
1211

1212 1213 1214 1215
	idx = this_sd->wake_idx;

	imbalance = 100 + (this_sd->imbalance_pct - 100) / 2;

1216
	load = source_load(prev_cpu, idx);
1217 1218
	this_load = target_load(this_cpu, idx);

1219
	if (wake_affine(this_sd, this_rq, p, prev_cpu, this_cpu, sync, idx,
I
Ingo Molnar 已提交
1220 1221 1222
				     load, this_load, imbalance))
		return this_cpu;

1223 1224 1225 1226 1227 1228 1229 1230
	/*
	 * Start passive balancing when half the imbalance_pct
	 * limit is reached.
	 */
	if (this_sd->flags & SD_WAKE_BALANCE) {
		if (imbalance*this_load <= 100*load) {
			schedstat_inc(this_sd, ttwu_move_balance);
			schedstat_inc(p, se.nr_wakeups_passive);
I
Ingo Molnar 已提交
1231
			return this_cpu;
1232 1233 1234
		}
	}

1235
out:
1236 1237 1238 1239
	return wake_idle(new_cpu, p);
}
#endif /* CONFIG_SMP */

1240 1241 1242 1243 1244
static unsigned long wakeup_gran(struct sched_entity *se)
{
	unsigned long gran = sysctl_sched_wakeup_granularity;

	/*
1245 1246
	 * More easily preempt - nice tasks, while not making it harder for
	 * + nice tasks.
1247
	 */
P
Peter Zijlstra 已提交
1248
	if (sched_feat(ASYM_GRAN))
P
Peter Zijlstra 已提交
1249
		gran = calc_delta_mine(gran, NICE_0_LOAD, &se->load);
1250 1251 1252 1253

	return gran;
}

1254 1255 1256
/*
 * Preempt the current task with a newly woken task if needed:
 */
1257
static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int sync)
1258 1259
{
	struct task_struct *curr = rq->curr;
1260
	struct cfs_rq *cfs_rq = task_cfs_rq(curr);
1261
	struct sched_entity *se = &curr->se, *pse = &p->se;
P
Peter Zijlstra 已提交
1262
	s64 delta_exec;
1263 1264

	if (unlikely(rt_prio(p->prio))) {
I
Ingo Molnar 已提交
1265
		update_rq_clock(rq);
1266
		update_curr(cfs_rq);
1267 1268 1269
		resched_task(curr);
		return;
	}
1270

I
Ingo Molnar 已提交
1271 1272 1273
	if (unlikely(se == pse))
		return;

P
Peter Zijlstra 已提交
1274 1275
	cfs_rq_of(pse)->next = pse;

1276 1277 1278 1279 1280 1281 1282
	/*
	 * We can come here with TIF_NEED_RESCHED already set from new task
	 * wake up path.
	 */
	if (test_tsk_need_resched(curr))
		return;

1283 1284 1285 1286 1287 1288
	/*
	 * Batch tasks do not preempt (their preemption is driven by
	 * the tick):
	 */
	if (unlikely(p->policy == SCHED_BATCH))
		return;
1289

1290 1291
	if (!sched_feat(WAKEUP_PREEMPT))
		return;
1292

1293 1294 1295
	if (sched_feat(WAKEUP_OVERLAP) && (sync ||
			(se->avg_overlap < sysctl_sched_migration_cost &&
			 pse->avg_overlap < sysctl_sched_migration_cost))) {
1296 1297 1298 1299
		resched_task(curr);
		return;
	}

P
Peter Zijlstra 已提交
1300 1301
	delta_exec = se->sum_exec_runtime - se->prev_sum_exec_runtime;
	if (delta_exec > wakeup_gran(pse))
1302
		resched_task(curr);
1303 1304
}

1305
static struct task_struct *pick_next_task_fair(struct rq *rq)
1306
{
P
Peter Zijlstra 已提交
1307
	struct task_struct *p;
1308 1309 1310 1311 1312 1313 1314
	struct cfs_rq *cfs_rq = &rq->cfs;
	struct sched_entity *se;

	if (unlikely(!cfs_rq->nr_running))
		return NULL;

	do {
1315
		se = pick_next_entity(cfs_rq);
1316 1317 1318
		cfs_rq = group_cfs_rq(se);
	} while (cfs_rq);

P
Peter Zijlstra 已提交
1319 1320 1321 1322
	p = task_of(se);
	hrtick_start_fair(rq, p);

	return p;
1323 1324 1325 1326 1327
}

/*
 * Account for a descheduled task:
 */
1328
static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
1329 1330 1331 1332 1333 1334
{
	struct sched_entity *se = &prev->se;
	struct cfs_rq *cfs_rq;

	for_each_sched_entity(se) {
		cfs_rq = cfs_rq_of(se);
1335
		put_prev_entity(cfs_rq, se);
1336 1337 1338
	}
}

1339
#ifdef CONFIG_SMP
1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350
/**************************************************
 * Fair scheduling class load-balancing methods:
 */

/*
 * Load-balancing iterator. Note: while the runqueue stays locked
 * during the whole iteration, the current task might be
 * dequeued so the iterator has to be dequeue-safe. Here we
 * achieve that by always pre-iterating before returning
 * the current task:
 */
A
Alexey Dobriyan 已提交
1351
static struct task_struct *
1352
__load_balance_iterator(struct cfs_rq *cfs_rq, struct list_head *next)
1353
{
D
Dhaval Giani 已提交
1354 1355
	struct task_struct *p = NULL;
	struct sched_entity *se;
1356

1357 1358 1359
	if (next == &cfs_rq->tasks)
		return NULL;

1360 1361 1362
	se = list_entry(next, struct sched_entity, group_node);
	p = task_of(se);
	cfs_rq->balance_iterator = next->next;
1363

1364 1365 1366 1367 1368 1369 1370
	return p;
}

static struct task_struct *load_balance_start_fair(void *arg)
{
	struct cfs_rq *cfs_rq = arg;

1371
	return __load_balance_iterator(cfs_rq, cfs_rq->tasks.next);
1372 1373 1374 1375 1376 1377
}

static struct task_struct *load_balance_next_fair(void *arg)
{
	struct cfs_rq *cfs_rq = arg;

1378
	return __load_balance_iterator(cfs_rq, cfs_rq->balance_iterator);
1379 1380
}

1381 1382 1383 1384 1385
static unsigned long
__load_balance_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
		unsigned long max_load_move, struct sched_domain *sd,
		enum cpu_idle_type idle, int *all_pinned, int *this_best_prio,
		struct cfs_rq *cfs_rq)
1386
{
1387
	struct rq_iterator cfs_rq_iterator;
1388

1389 1390 1391
	cfs_rq_iterator.start = load_balance_start_fair;
	cfs_rq_iterator.next = load_balance_next_fair;
	cfs_rq_iterator.arg = cfs_rq;
1392

1393 1394 1395
	return balance_tasks(this_rq, this_cpu, busiest,
			max_load_move, sd, idle, all_pinned,
			this_best_prio, &cfs_rq_iterator);
1396 1397
}

1398
#ifdef CONFIG_FAIR_GROUP_SCHED
P
Peter Williams 已提交
1399
static unsigned long
1400
load_balance_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
1401
		  unsigned long max_load_move,
1402 1403
		  struct sched_domain *sd, enum cpu_idle_type idle,
		  int *all_pinned, int *this_best_prio)
1404 1405
{
	long rem_load_move = max_load_move;
1406 1407
	int busiest_cpu = cpu_of(busiest);
	struct task_group *tg;
1408

1409
	rcu_read_lock();
1410
	update_h_load(busiest_cpu);
1411

1412
	list_for_each_entry_rcu(tg, &task_groups, list) {
1413
		struct cfs_rq *busiest_cfs_rq = tg->cfs_rq[busiest_cpu];
1414 1415
		unsigned long busiest_h_load = busiest_cfs_rq->h_load;
		unsigned long busiest_weight = busiest_cfs_rq->load.weight;
S
Srivatsa Vaddagiri 已提交
1416
		u64 rem_load, moved_load;
1417

1418 1419 1420
		/*
		 * empty group
		 */
1421
		if (!busiest_cfs_rq->task_weight)
1422 1423
			continue;

S
Srivatsa Vaddagiri 已提交
1424 1425
		rem_load = (u64)rem_load_move * busiest_weight;
		rem_load = div_u64(rem_load, busiest_h_load + 1);
1426

1427
		moved_load = __load_balance_fair(this_rq, this_cpu, busiest,
1428
				rem_load, sd, idle, all_pinned, this_best_prio,
1429
				tg->cfs_rq[busiest_cpu]);
1430

1431
		if (!moved_load)
1432 1433
			continue;

1434
		moved_load *= busiest_h_load;
S
Srivatsa Vaddagiri 已提交
1435
		moved_load = div_u64(moved_load, busiest_weight + 1);
1436

1437 1438
		rem_load_move -= moved_load;
		if (rem_load_move < 0)
1439 1440
			break;
	}
1441
	rcu_read_unlock();
1442

P
Peter Williams 已提交
1443
	return max_load_move - rem_load_move;
1444
}
1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456
#else
static unsigned long
load_balance_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
		  unsigned long max_load_move,
		  struct sched_domain *sd, enum cpu_idle_type idle,
		  int *all_pinned, int *this_best_prio)
{
	return __load_balance_fair(this_rq, this_cpu, busiest,
			max_load_move, sd, idle, all_pinned,
			this_best_prio, &busiest->cfs);
}
#endif
1457

1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480
static int
move_one_task_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
		   struct sched_domain *sd, enum cpu_idle_type idle)
{
	struct cfs_rq *busy_cfs_rq;
	struct rq_iterator cfs_rq_iterator;

	cfs_rq_iterator.start = load_balance_start_fair;
	cfs_rq_iterator.next = load_balance_next_fair;

	for_each_leaf_cfs_rq(busiest, busy_cfs_rq) {
		/*
		 * pass busy_cfs_rq argument into
		 * load_balance_[start|next]_fair iterators
		 */
		cfs_rq_iterator.arg = busy_cfs_rq;
		if (iter_move_one_task(this_rq, this_cpu, busiest, sd, idle,
				       &cfs_rq_iterator))
		    return 1;
	}

	return 0;
}
1481
#endif /* CONFIG_SMP */
1482

1483 1484 1485
/*
 * scheduler tick hitting a task of our scheduling class:
 */
P
Peter Zijlstra 已提交
1486
static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
1487 1488 1489 1490 1491 1492
{
	struct cfs_rq *cfs_rq;
	struct sched_entity *se = &curr->se;

	for_each_sched_entity(se) {
		cfs_rq = cfs_rq_of(se);
P
Peter Zijlstra 已提交
1493
		entity_tick(cfs_rq, se, queued);
1494 1495 1496
	}
}

1497
#define swap(a, b) do { typeof(a) tmp = (a); (a) = (b); (b) = tmp; } while (0)
1498

1499 1500 1501 1502 1503 1504 1505
/*
 * Share the fairness runtime between parent and child, thus the
 * total amount of pressure for CPU stays equal - new tasks
 * get a chance to run but frequent forkers are not allowed to
 * monopolize the CPU. Note: the parent runqueue is locked,
 * the child is not running yet.
 */
1506
static void task_new_fair(struct rq *rq, struct task_struct *p)
1507 1508
{
	struct cfs_rq *cfs_rq = task_cfs_rq(p);
1509
	struct sched_entity *se = &p->se, *curr = cfs_rq->curr;
1510
	int this_cpu = smp_processor_id();
1511 1512 1513

	sched_info_queued(p);

1514
	update_curr(cfs_rq);
1515
	place_entity(cfs_rq, se, 1);
1516

1517
	/* 'curr' will be NULL if the child belongs to a different group */
1518
	if (sysctl_sched_child_runs_first && this_cpu == task_cpu(p) &&
1519
			curr && curr->vruntime < se->vruntime) {
D
Dmitry Adamushko 已提交
1520
		/*
1521 1522 1523
		 * Upon rescheduling, sched_class::put_prev_task() will place
		 * 'current' within the tree based on its new key value.
		 */
1524
		swap(curr->vruntime, se->vruntime);
1525
		resched_task(rq->curr);
1526
	}
1527

1528
	enqueue_task_fair(rq, p, 0);
1529 1530
}

1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546
/*
 * Priority of the task has changed. Check to see if we preempt
 * the current task.
 */
static void prio_changed_fair(struct rq *rq, struct task_struct *p,
			      int oldprio, int running)
{
	/*
	 * Reschedule if we are currently running on this runqueue and
	 * our priority decreased, or if we are not currently running on
	 * this runqueue and our priority is higher than the current's
	 */
	if (running) {
		if (p->prio > oldprio)
			resched_task(rq->curr);
	} else
1547
		check_preempt_curr(rq, p, 0);
1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563
}

/*
 * We switched to the sched_fair class.
 */
static void switched_to_fair(struct rq *rq, struct task_struct *p,
			     int running)
{
	/*
	 * We were most likely switched from sched_rt, so
	 * kick off the schedule if running, otherwise just see
	 * if we can still preempt the current task.
	 */
	if (running)
		resched_task(rq->curr);
	else
1564
		check_preempt_curr(rq, p, 0);
1565 1566
}

1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579
/* Account for a task changing its policy or group.
 *
 * This routine is mostly called to set cfs_rq->curr field when a task
 * migrates between groups/classes.
 */
static void set_curr_task_fair(struct rq *rq)
{
	struct sched_entity *se = &rq->curr->se;

	for_each_sched_entity(se)
		set_next_entity(cfs_rq_of(se), se);
}

P
Peter Zijlstra 已提交
1580 1581 1582 1583 1584 1585 1586 1587 1588 1589
#ifdef CONFIG_FAIR_GROUP_SCHED
static void moved_group_fair(struct task_struct *p)
{
	struct cfs_rq *cfs_rq = task_cfs_rq(p);

	update_curr(cfs_rq);
	place_entity(cfs_rq, &p->se, 1);
}
#endif

1590 1591 1592
/*
 * All the scheduling class methods:
 */
1593 1594
static const struct sched_class fair_sched_class = {
	.next			= &idle_sched_class,
1595 1596 1597
	.enqueue_task		= enqueue_task_fair,
	.dequeue_task		= dequeue_task_fair,
	.yield_task		= yield_task_fair,
1598 1599 1600
#ifdef CONFIG_SMP
	.select_task_rq		= select_task_rq_fair,
#endif /* CONFIG_SMP */
1601

I
Ingo Molnar 已提交
1602
	.check_preempt_curr	= check_preempt_wakeup,
1603 1604 1605 1606

	.pick_next_task		= pick_next_task_fair,
	.put_prev_task		= put_prev_task_fair,

1607
#ifdef CONFIG_SMP
1608
	.load_balance		= load_balance_fair,
1609
	.move_one_task		= move_one_task_fair,
1610
#endif
1611

1612
	.set_curr_task          = set_curr_task_fair,
1613 1614
	.task_tick		= task_tick_fair,
	.task_new		= task_new_fair,
1615 1616 1617

	.prio_changed		= prio_changed_fair,
	.switched_to		= switched_to_fair,
P
Peter Zijlstra 已提交
1618 1619 1620 1621

#ifdef CONFIG_FAIR_GROUP_SCHED
	.moved_group		= moved_group_fair,
#endif
1622 1623 1624
};

#ifdef CONFIG_SCHED_DEBUG
1625
static void print_cfs_stats(struct seq_file *m, int cpu)
1626 1627 1628
{
	struct cfs_rq *cfs_rq;

1629
	rcu_read_lock();
1630
	for_each_leaf_cfs_rq(cpu_rq(cpu), cfs_rq)
1631
		print_cfs_rq(m, cpu, cfs_rq);
1632
	rcu_read_unlock();
1633 1634
}
#endif