sched_fair.c 35.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
/*
 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
 *
 *  Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
 *
 *  Interactivity improvements by Mike Galbraith
 *  (C) 2007 Mike Galbraith <efault@gmx.de>
 *
 *  Various enhancements by Dmitry Adamushko.
 *  (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
 *
 *  Group scheduling enhancements by Srivatsa Vaddagiri
 *  Copyright IBM Corporation, 2007
 *  Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
 *
 *  Scaled math optimizations by Thomas Gleixner
 *  Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
18 19 20
 *
 *  Adaptive scheduling granularity, math enhancements by Peter Zijlstra
 *  Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
21 22
 */

A
Arjan van de Ven 已提交
23 24
#include <linux/latencytop.h>

25
/*
26
 * Targeted preemption latency for CPU-bound tasks:
27
 * (default: 20ms * (1 + ilog(ncpus)), units: nanoseconds)
28
 *
29
 * NOTE: this latency value is not the same as the concept of
I
Ingo Molnar 已提交
30 31 32
 * 'timeslice length' - timeslices in CFS are of variable length
 * and have no persistent notion like in traditional, time-slice
 * based scheduling concepts.
33
 *
I
Ingo Molnar 已提交
34 35
 * (to see the precise effective timeslice length of your workload,
 *  run vmstat and monitor the context-switches (cs) field)
36
 */
I
Ingo Molnar 已提交
37
unsigned int sysctl_sched_latency = 20000000ULL;
38 39

/*
40
 * Minimal preemption granularity for CPU-bound tasks:
41
 * (default: 4 msec * (1 + ilog(ncpus)), units: nanoseconds)
42
 */
43
unsigned int sysctl_sched_min_granularity = 4000000ULL;
44 45

/*
46 47
 * is kept at sysctl_sched_latency / sysctl_sched_min_granularity
 */
48
static unsigned int sched_nr_latency = 5;
49 50 51 52

/*
 * After fork, child runs first. (default) If set to 0 then
 * parent will (try to) run first.
53
 */
54
const_debug unsigned int sysctl_sched_child_runs_first = 1;
55

56 57 58 59 60 61 62 63
/*
 * sys_sched_yield() compat mode
 *
 * This option switches the agressive yield implementation of the
 * old scheduler back on.
 */
unsigned int __read_mostly sysctl_sched_compat_yield;

64 65
/*
 * SCHED_OTHER wake-up granularity.
66
 * (default: 10 msec * (1 + ilog(ncpus)), units: nanoseconds)
67 68 69 70 71
 *
 * This option delays the preemption effects of decoupled workloads
 * and reduces their over-scheduling. Synchronous workloads will still
 * have immediate wakeup/sleep latencies.
 */
72
unsigned int sysctl_sched_wakeup_granularity = 10000000UL;
73

74 75
const_debug unsigned int sysctl_sched_migration_cost = 500000UL;

76 77 78 79
/**************************************************************
 * CFS operations on generic schedulable entities:
 */

P
Peter Zijlstra 已提交
80 81 82 83 84
static inline struct task_struct *task_of(struct sched_entity *se)
{
	return container_of(se, struct task_struct, se);
}

85
#ifdef CONFIG_FAIR_GROUP_SCHED
86

87
/* cpu runqueue to which this cfs_rq is attached */
88 89
static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
{
90
	return cfs_rq->rq;
91 92
}

93 94
/* An entity is a task if it doesn't "own" a runqueue */
#define entity_is_task(se)	(!se->my_q)
95

P
Peter Zijlstra 已提交
96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143
/* Walk up scheduling entities hierarchy */
#define for_each_sched_entity(se) \
		for (; se; se = se->parent)

static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
{
	return p->se.cfs_rq;
}

/* runqueue on which this entity is (to be) queued */
static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
{
	return se->cfs_rq;
}

/* runqueue "owned" by this group */
static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
{
	return grp->my_q;
}

/* Given a group's cfs_rq on one cpu, return its corresponding cfs_rq on
 * another cpu ('this_cpu')
 */
static inline struct cfs_rq *cpu_cfs_rq(struct cfs_rq *cfs_rq, int this_cpu)
{
	return cfs_rq->tg->cfs_rq[this_cpu];
}

/* Iterate thr' all leaf cfs_rq's on a runqueue */
#define for_each_leaf_cfs_rq(rq, cfs_rq) \
	list_for_each_entry_rcu(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list)

/* Do the two (enqueued) entities belong to the same group ? */
static inline int
is_same_group(struct sched_entity *se, struct sched_entity *pse)
{
	if (se->cfs_rq == pse->cfs_rq)
		return 1;

	return 0;
}

static inline struct sched_entity *parent_entity(struct sched_entity *se)
{
	return se->parent;
}

144
#else	/* CONFIG_FAIR_GROUP_SCHED */
145

146 147 148
static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
{
	return container_of(cfs_rq, struct rq, cfs);
149 150 151 152
}

#define entity_is_task(se)	1

P
Peter Zijlstra 已提交
153 154
#define for_each_sched_entity(se) \
		for (; se; se = NULL)
155

P
Peter Zijlstra 已提交
156
static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
157
{
P
Peter Zijlstra 已提交
158
	return &task_rq(p)->cfs;
159 160
}

P
Peter Zijlstra 已提交
161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195
static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
{
	struct task_struct *p = task_of(se);
	struct rq *rq = task_rq(p);

	return &rq->cfs;
}

/* runqueue "owned" by this group */
static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
{
	return NULL;
}

static inline struct cfs_rq *cpu_cfs_rq(struct cfs_rq *cfs_rq, int this_cpu)
{
	return &cpu_rq(this_cpu)->cfs;
}

#define for_each_leaf_cfs_rq(rq, cfs_rq) \
		for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL)

static inline int
is_same_group(struct sched_entity *se, struct sched_entity *pse)
{
	return 1;
}

static inline struct sched_entity *parent_entity(struct sched_entity *se)
{
	return NULL;
}

#endif	/* CONFIG_FAIR_GROUP_SCHED */

196 197 198 199 200

/**************************************************************
 * Scheduling class tree data structure manipulation methods:
 */

201
static inline u64 max_vruntime(u64 min_vruntime, u64 vruntime)
202
{
203 204
	s64 delta = (s64)(vruntime - min_vruntime);
	if (delta > 0)
205 206 207 208 209
		min_vruntime = vruntime;

	return min_vruntime;
}

210
static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
P
Peter Zijlstra 已提交
211 212 213 214 215 216 217 218
{
	s64 delta = (s64)(vruntime - min_vruntime);
	if (delta < 0)
		min_vruntime = vruntime;

	return min_vruntime;
}

219
static inline s64 entity_key(struct cfs_rq *cfs_rq, struct sched_entity *se)
220
{
221
	return se->vruntime - cfs_rq->min_vruntime;
222 223
}

224 225 226
/*
 * Enqueue an entity into the rb-tree:
 */
227
static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
228 229 230 231
{
	struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
	struct rb_node *parent = NULL;
	struct sched_entity *entry;
232
	s64 key = entity_key(cfs_rq, se);
233 234 235 236 237 238 239 240 241 242 243 244
	int leftmost = 1;

	/*
	 * Find the right place in the rbtree:
	 */
	while (*link) {
		parent = *link;
		entry = rb_entry(parent, struct sched_entity, run_node);
		/*
		 * We dont care about collisions. Nodes with
		 * the same key stay together.
		 */
245
		if (key < entity_key(cfs_rq, entry)) {
246 247 248 249 250 251 252 253 254 255 256
			link = &parent->rb_left;
		} else {
			link = &parent->rb_right;
			leftmost = 0;
		}
	}

	/*
	 * Maintain a cache of leftmost tree entries (it is frequently
	 * used):
	 */
P
Peter Zijlstra 已提交
257
	if (leftmost) {
I
Ingo Molnar 已提交
258
		cfs_rq->rb_leftmost = &se->run_node;
P
Peter Zijlstra 已提交
259 260 261 262 263 264 265
		/*
		 * maintain cfs_rq->min_vruntime to be a monotonic increasing
		 * value tracking the leftmost vruntime in the tree.
		 */
		cfs_rq->min_vruntime =
			max_vruntime(cfs_rq->min_vruntime, se->vruntime);
	}
266 267 268 269 270

	rb_link_node(&se->run_node, parent, link);
	rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline);
}

271
static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
272
{
P
Peter Zijlstra 已提交
273 274 275 276 277 278 279 280 281 282 283 284 285 286 287
	if (cfs_rq->rb_leftmost == &se->run_node) {
		struct rb_node *next_node;
		struct sched_entity *next;

		next_node = rb_next(&se->run_node);
		cfs_rq->rb_leftmost = next_node;

		if (next_node) {
			next = rb_entry(next_node,
					struct sched_entity, run_node);
			cfs_rq->min_vruntime =
				max_vruntime(cfs_rq->min_vruntime,
					     next->vruntime);
		}
	}
I
Ingo Molnar 已提交
288

289 290 291
	if (cfs_rq->next == se)
		cfs_rq->next = NULL;

292 293 294 295 296 297 298 299 300 301 302 303 304
	rb_erase(&se->run_node, &cfs_rq->tasks_timeline);
}

static inline struct rb_node *first_fair(struct cfs_rq *cfs_rq)
{
	return cfs_rq->rb_leftmost;
}

static struct sched_entity *__pick_next_entity(struct cfs_rq *cfs_rq)
{
	return rb_entry(first_fair(cfs_rq), struct sched_entity, run_node);
}

305 306
static inline struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
{
307
	struct rb_node *last = rb_last(&cfs_rq->tasks_timeline);
308

309 310
	if (!last)
		return NULL;
311 312

	return rb_entry(last, struct sched_entity, run_node);
313 314
}

315 316 317 318
/**************************************************************
 * Scheduling class statistics methods:
 */

319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334
#ifdef CONFIG_SCHED_DEBUG
int sched_nr_latency_handler(struct ctl_table *table, int write,
		struct file *filp, void __user *buffer, size_t *lenp,
		loff_t *ppos)
{
	int ret = proc_dointvec_minmax(table, write, filp, buffer, lenp, ppos);

	if (ret || !write)
		return ret;

	sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency,
					sysctl_sched_min_granularity);

	return 0;
}
#endif
335 336 337 338 339 340 341 342 343

/*
 * The idea is to set a period in which each task runs once.
 *
 * When there are too many tasks (sysctl_sched_nr_latency) we have to stretch
 * this period because otherwise the slices get too small.
 *
 * p = (nr <= nl) ? l : l*nr/nl
 */
344 345 346
static u64 __sched_period(unsigned long nr_running)
{
	u64 period = sysctl_sched_latency;
347
	unsigned long nr_latency = sched_nr_latency;
348 349

	if (unlikely(nr_running > nr_latency)) {
350
		period = sysctl_sched_min_granularity;
351 352 353 354 355 356
		period *= nr_running;
	}

	return period;
}

357 358 359 360 361 362
/*
 * We calculate the wall-time slice from the period by taking a part
 * proportional to the weight.
 *
 * s = p*w/rw
 */
P
Peter Zijlstra 已提交
363
static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
364
{
I
Ingo Molnar 已提交
365 366
	return calc_delta_mine(__sched_period(cfs_rq->nr_running),
			       se->load.weight, &cfs_rq->load);
367 368
}

369 370 371 372 373 374
/*
 * We calculate the vruntime slice.
 *
 * vs = s/w = p/rw
 */
static u64 __sched_vslice(unsigned long rq_weight, unsigned long nr_running)
P
Peter Zijlstra 已提交
375
{
376
	u64 vslice = __sched_period(nr_running);
P
Peter Zijlstra 已提交
377

P
Peter Zijlstra 已提交
378
	vslice *= NICE_0_LOAD;
379
	do_div(vslice, rq_weight);
P
Peter Zijlstra 已提交
380

381 382
	return vslice;
}
383

384 385 386 387
static u64 sched_vslice_add(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
	return __sched_vslice(cfs_rq->load.weight + se->load.weight,
			cfs_rq->nr_running + 1);
P
Peter Zijlstra 已提交
388 389
}

390 391 392 393 394
/*
 * Update the current task's runtime statistics. Skip current tasks that
 * are not in our scheduling class.
 */
static inline void
I
Ingo Molnar 已提交
395 396
__update_curr(struct cfs_rq *cfs_rq, struct sched_entity *curr,
	      unsigned long delta_exec)
397
{
398
	unsigned long delta_exec_weighted;
399

400
	schedstat_set(curr->exec_max, max((u64)delta_exec, curr->exec_max));
401 402

	curr->sum_exec_runtime += delta_exec;
403
	schedstat_add(cfs_rq, exec_clock, delta_exec);
I
Ingo Molnar 已提交
404 405 406 407 408 409
	delta_exec_weighted = delta_exec;
	if (unlikely(curr->load.weight != NICE_0_LOAD)) {
		delta_exec_weighted = calc_delta_fair(delta_exec_weighted,
							&curr->load);
	}
	curr->vruntime += delta_exec_weighted;
410 411
}

412
static void update_curr(struct cfs_rq *cfs_rq)
413
{
414
	struct sched_entity *curr = cfs_rq->curr;
I
Ingo Molnar 已提交
415
	u64 now = rq_of(cfs_rq)->clock;
416 417 418 419 420 421 422 423 424 425
	unsigned long delta_exec;

	if (unlikely(!curr))
		return;

	/*
	 * Get the amount of time the current task was running
	 * since the last time we changed load (this cannot
	 * overflow on 32 bits):
	 */
I
Ingo Molnar 已提交
426
	delta_exec = (unsigned long)(now - curr->exec_start);
427

I
Ingo Molnar 已提交
428 429
	__update_curr(cfs_rq, curr, delta_exec);
	curr->exec_start = now;
430 431 432 433 434 435

	if (entity_is_task(curr)) {
		struct task_struct *curtask = task_of(curr);

		cpuacct_charge(curtask, delta_exec);
	}
436 437 438
}

static inline void
439
update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
440
{
441
	schedstat_set(se->wait_start, rq_of(cfs_rq)->clock);
442 443 444 445 446
}

/*
 * Task is being enqueued - update stats:
 */
447
static void update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
448 449 450 451 452
{
	/*
	 * Are we enqueueing a waiting task? (for current tasks
	 * a dequeue/enqueue event is a NOP)
	 */
453
	if (se != cfs_rq->curr)
454
		update_stats_wait_start(cfs_rq, se);
455 456 457
}

static void
458
update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
459
{
460 461
	schedstat_set(se->wait_max, max(se->wait_max,
			rq_of(cfs_rq)->clock - se->wait_start));
462 463 464
	schedstat_set(se->wait_count, se->wait_count + 1);
	schedstat_set(se->wait_sum, se->wait_sum +
			rq_of(cfs_rq)->clock - se->wait_start);
I
Ingo Molnar 已提交
465
	schedstat_set(se->wait_start, 0);
466 467 468
}

static inline void
469
update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
470 471 472 473 474
{
	/*
	 * Mark the end of the wait period if dequeueing a
	 * waiting task:
	 */
475
	if (se != cfs_rq->curr)
476
		update_stats_wait_end(cfs_rq, se);
477 478 479 480 481 482
}

/*
 * We are picking a new current task - update its stats:
 */
static inline void
483
update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
484 485 486 487
{
	/*
	 * We are starting a new run period:
	 */
488
	se->exec_start = rq_of(cfs_rq)->clock;
489 490 491 492 493 494
}

/**************************************************
 * Scheduling class queueing methods:
 */

495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510
static void
account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
	update_load_add(&cfs_rq->load, se->load.weight);
	cfs_rq->nr_running++;
	se->on_rq = 1;
}

static void
account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
	update_load_sub(&cfs_rq->load, se->load.weight);
	cfs_rq->nr_running--;
	se->on_rq = 0;
}

511
static void enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
512 513 514
{
#ifdef CONFIG_SCHEDSTATS
	if (se->sleep_start) {
515
		u64 delta = rq_of(cfs_rq)->clock - se->sleep_start;
A
Arjan van de Ven 已提交
516
		struct task_struct *tsk = task_of(se);
517 518 519 520 521 522 523 524 525

		if ((s64)delta < 0)
			delta = 0;

		if (unlikely(delta > se->sleep_max))
			se->sleep_max = delta;

		se->sleep_start = 0;
		se->sum_sleep_runtime += delta;
A
Arjan van de Ven 已提交
526 527

		account_scheduler_latency(tsk, delta >> 10, 1);
528 529
	}
	if (se->block_start) {
530
		u64 delta = rq_of(cfs_rq)->clock - se->block_start;
A
Arjan van de Ven 已提交
531
		struct task_struct *tsk = task_of(se);
532 533 534 535 536 537 538 539 540

		if ((s64)delta < 0)
			delta = 0;

		if (unlikely(delta > se->block_max))
			se->block_max = delta;

		se->block_start = 0;
		se->sum_sleep_runtime += delta;
I
Ingo Molnar 已提交
541 542 543 544 545 546 547

		/*
		 * Blocking time is in units of nanosecs, so shift by 20 to
		 * get a milliseconds-range estimation of the amount of
		 * time that the task spent sleeping:
		 */
		if (unlikely(prof_on == SLEEP_PROFILING)) {
I
Ingo Molnar 已提交
548

I
Ingo Molnar 已提交
549 550 551
			profile_hits(SLEEP_PROFILING, (void *)get_wchan(tsk),
				     delta >> 20);
		}
A
Arjan van de Ven 已提交
552
		account_scheduler_latency(tsk, delta >> 10, 0);
553 554 555 556
	}
#endif
}

P
Peter Zijlstra 已提交
557 558 559 560 561 562 563 564 565 566 567 568 569
static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
#ifdef CONFIG_SCHED_DEBUG
	s64 d = se->vruntime - cfs_rq->min_vruntime;

	if (d < 0)
		d = -d;

	if (d > 3*sysctl_sched_latency)
		schedstat_inc(cfs_rq, nr_spread_over);
#endif
}

570 571 572
static void
place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
{
P
Peter Zijlstra 已提交
573
	u64 vruntime;
574

P
Peter Zijlstra 已提交
575 576 577 578 579
	if (first_fair(cfs_rq)) {
		vruntime = min_vruntime(cfs_rq->min_vruntime,
				__pick_next_entity(cfs_rq)->vruntime);
	} else
		vruntime = cfs_rq->min_vruntime;
P
Peter Zijlstra 已提交
580

581 582 583 584 585 586
	/*
	 * The 'current' period is already promised to the current tasks,
	 * however the extra weight of the new task will slow them down a
	 * little, place the new task so that it fits in the slot that
	 * stays open at the end.
	 */
P
Peter Zijlstra 已提交
587
	if (initial && sched_feat(START_DEBIT))
588
		vruntime += sched_vslice_add(cfs_rq, se);
589

I
Ingo Molnar 已提交
590
	if (!initial) {
591
		/* sleeps upto a single latency don't count. */
592
		if (sched_feat(NEW_FAIR_SLEEPERS)) {
P
Peter Zijlstra 已提交
593 594 595 596 597
			if (sched_feat(NORMALIZED_SLEEPER))
				vruntime -= calc_delta_fair(sysctl_sched_latency,
						&cfs_rq->load);
			else
				vruntime -= sysctl_sched_latency;
598
		}
599

600 601
		/* ensure we never gain time by being placed backwards. */
		vruntime = max_vruntime(se->vruntime, vruntime);
602 603
	}

P
Peter Zijlstra 已提交
604
	se->vruntime = vruntime;
605 606
}

607
static void
608
enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int wakeup)
609 610
{
	/*
611
	 * Update run-time statistics of the 'current'.
612
	 */
613
	update_curr(cfs_rq);
614

I
Ingo Molnar 已提交
615
	if (wakeup) {
616
		place_entity(cfs_rq, se, 0);
617
		enqueue_sleeper(cfs_rq, se);
I
Ingo Molnar 已提交
618
	}
619

620
	update_stats_enqueue(cfs_rq, se);
P
Peter Zijlstra 已提交
621
	check_spread(cfs_rq, se);
622 623
	if (se != cfs_rq->curr)
		__enqueue_entity(cfs_rq, se);
624
	account_entity_enqueue(cfs_rq, se);
625 626
}

I
Ingo Molnar 已提交
627 628 629 630 631 632 633 634 635 636 637 638 639 640 641
static void update_avg(u64 *avg, u64 sample)
{
	s64 diff = sample - *avg;
	*avg += diff >> 3;
}

static void update_avg_stats(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
	if (!se->last_wakeup)
		return;

	update_avg(&se->avg_overlap, se->sum_exec_runtime - se->last_wakeup);
	se->last_wakeup = 0;
}

642
static void
643
dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int sleep)
644
{
645 646 647 648 649
	/*
	 * Update run-time statistics of the 'current'.
	 */
	update_curr(cfs_rq);

650
	update_stats_dequeue(cfs_rq, se);
651
	if (sleep) {
I
Ingo Molnar 已提交
652
		update_avg_stats(cfs_rq, se);
P
Peter Zijlstra 已提交
653
#ifdef CONFIG_SCHEDSTATS
654 655 656 657
		if (entity_is_task(se)) {
			struct task_struct *tsk = task_of(se);

			if (tsk->state & TASK_INTERRUPTIBLE)
658
				se->sleep_start = rq_of(cfs_rq)->clock;
659
			if (tsk->state & TASK_UNINTERRUPTIBLE)
660
				se->block_start = rq_of(cfs_rq)->clock;
661
		}
662
#endif
P
Peter Zijlstra 已提交
663 664
	}

665
	if (se != cfs_rq->curr)
666 667
		__dequeue_entity(cfs_rq, se);
	account_entity_dequeue(cfs_rq, se);
668 669 670 671 672
}

/*
 * Preempt the current task with a newly woken task if needed:
 */
673
static void
I
Ingo Molnar 已提交
674
check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
675
{
676 677
	unsigned long ideal_runtime, delta_exec;

P
Peter Zijlstra 已提交
678
	ideal_runtime = sched_slice(cfs_rq, curr);
679
	delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
I
Ingo Molnar 已提交
680
	if (delta_exec > ideal_runtime)
681 682 683
		resched_task(rq_of(cfs_rq)->curr);
}

684
static void
685
set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
686
{
687 688 689 690 691 692 693 694 695 696 697
	/* 'current' is not kept within the tree. */
	if (se->on_rq) {
		/*
		 * Any task has to be enqueued before it get to execute on
		 * a CPU. So account for the time it spent waiting on the
		 * runqueue.
		 */
		update_stats_wait_end(cfs_rq, se);
		__dequeue_entity(cfs_rq, se);
	}

698
	update_stats_curr_start(cfs_rq, se);
699
	cfs_rq->curr = se;
I
Ingo Molnar 已提交
700 701 702 703 704 705
#ifdef CONFIG_SCHEDSTATS
	/*
	 * Track our maximum slice length, if the CPU's load is at
	 * least twice that of our own weight (i.e. dont track it
	 * when there are only lesser-weight tasks around):
	 */
706
	if (rq_of(cfs_rq)->load.weight >= 2*se->load.weight) {
I
Ingo Molnar 已提交
707 708 709 710
		se->slice_max = max(se->slice_max,
			se->sum_exec_runtime - se->prev_sum_exec_runtime);
	}
#endif
711
	se->prev_sum_exec_runtime = se->sum_exec_runtime;
712 713
}

714 715 716
static int
wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se);

717 718 719 720 721 722
static struct sched_entity *
pick_next(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
	if (!cfs_rq->next)
		return se;

723
	if (wakeup_preempt_entity(cfs_rq->next, se) != 0)
724 725 726 727 728
		return se;

	return cfs_rq->next;
}

729
static struct sched_entity *pick_next_entity(struct cfs_rq *cfs_rq)
730
{
D
Dmitry Adamushko 已提交
731
	struct sched_entity *se = NULL;
732

D
Dmitry Adamushko 已提交
733 734
	if (first_fair(cfs_rq)) {
		se = __pick_next_entity(cfs_rq);
735
		se = pick_next(cfs_rq, se);
D
Dmitry Adamushko 已提交
736 737
		set_next_entity(cfs_rq, se);
	}
738 739 740 741

	return se;
}

742
static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
743 744 745 746 747 748
{
	/*
	 * If still on the runqueue then deactivate_task()
	 * was not called and update_curr() has to be done:
	 */
	if (prev->on_rq)
749
		update_curr(cfs_rq);
750

P
Peter Zijlstra 已提交
751
	check_spread(cfs_rq, prev);
752
	if (prev->on_rq) {
753
		update_stats_wait_start(cfs_rq, prev);
754 755 756
		/* Put 'current' back into the tree. */
		__enqueue_entity(cfs_rq, prev);
	}
757
	cfs_rq->curr = NULL;
758 759
}

P
Peter Zijlstra 已提交
760 761
static void
entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
762 763
{
	/*
764
	 * Update run-time statistics of the 'current'.
765
	 */
766
	update_curr(cfs_rq);
767

P
Peter Zijlstra 已提交
768 769 770 771 772 773 774 775 776 777 778 779 780 781 782
#ifdef CONFIG_SCHED_HRTICK
	/*
	 * queued ticks are scheduled to match the slice, so don't bother
	 * validating it and just reschedule.
	 */
	if (queued)
		return resched_task(rq_of(cfs_rq)->curr);
	/*
	 * don't let the period tick interfere with the hrtick preemption
	 */
	if (!sched_feat(DOUBLE_TICK) &&
			hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
		return;
#endif

783
	if (cfs_rq->nr_running > 1 || !sched_feat(WAKEUP_PREEMPT))
I
Ingo Molnar 已提交
784
		check_preempt_tick(cfs_rq, curr);
785 786 787 788 789 790
}

/**************************************************
 * CFS operations on tasks:
 */

P
Peter Zijlstra 已提交
791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827
#ifdef CONFIG_SCHED_HRTICK
static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
{
	int requeue = rq->curr == p;
	struct sched_entity *se = &p->se;
	struct cfs_rq *cfs_rq = cfs_rq_of(se);

	WARN_ON(task_rq(p) != rq);

	if (hrtick_enabled(rq) && cfs_rq->nr_running > 1) {
		u64 slice = sched_slice(cfs_rq, se);
		u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
		s64 delta = slice - ran;

		if (delta < 0) {
			if (rq->curr == p)
				resched_task(p);
			return;
		}

		/*
		 * Don't schedule slices shorter than 10000ns, that just
		 * doesn't make sense. Rely on vruntime for fairness.
		 */
		if (!requeue)
			delta = max(10000LL, delta);

		hrtick_start(rq, delta, requeue);
	}
}
#else
static inline void
hrtick_start_fair(struct rq *rq, struct task_struct *p)
{
}
#endif

828 829 830 831 832
/*
 * The enqueue_task method is called before nr_running is
 * increased. Here we update the fair scheduling stats and
 * then put the task into the rbtree:
 */
833
static void enqueue_task_fair(struct rq *rq, struct task_struct *p, int wakeup)
834 835
{
	struct cfs_rq *cfs_rq;
836
	struct sched_entity *se = &p->se;
837 838

	for_each_sched_entity(se) {
839
		if (se->on_rq)
840 841
			break;
		cfs_rq = cfs_rq_of(se);
842
		enqueue_entity(cfs_rq, se, wakeup);
843
		wakeup = 1;
844
	}
P
Peter Zijlstra 已提交
845 846

	hrtick_start_fair(rq, rq->curr);
847 848 849 850 851 852 853
}

/*
 * The dequeue_task method is called before nr_running is
 * decreased. We remove the task from the rbtree and
 * update the fair scheduling stats:
 */
854
static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int sleep)
855 856
{
	struct cfs_rq *cfs_rq;
857
	struct sched_entity *se = &p->se;
858 859 860

	for_each_sched_entity(se) {
		cfs_rq = cfs_rq_of(se);
861
		dequeue_entity(cfs_rq, se, sleep);
862
		/* Don't dequeue parent if it has other entities besides us */
863
		if (cfs_rq->load.weight)
864
			break;
865
		sleep = 1;
866
	}
P
Peter Zijlstra 已提交
867 868

	hrtick_start_fair(rq, rq->curr);
869 870 871
}

/*
872 873 874
 * sched_yield() support is very simple - we dequeue and enqueue.
 *
 * If compat_yield is turned on then we requeue to the end of the tree.
875
 */
876
static void yield_task_fair(struct rq *rq)
877
{
878 879 880
	struct task_struct *curr = rq->curr;
	struct cfs_rq *cfs_rq = task_cfs_rq(curr);
	struct sched_entity *rightmost, *se = &curr->se;
881 882

	/*
883 884 885 886 887
	 * Are we the only task in the tree?
	 */
	if (unlikely(cfs_rq->nr_running == 1))
		return;

888
	if (likely(!sysctl_sched_compat_yield) && curr->policy != SCHED_BATCH) {
889 890
		__update_rq_clock(rq);
		/*
891
		 * Update run-time statistics of the 'current'.
892
		 */
D
Dmitry Adamushko 已提交
893
		update_curr(cfs_rq);
894 895 896 897 898

		return;
	}
	/*
	 * Find the rightmost entry in the rbtree:
899
	 */
D
Dmitry Adamushko 已提交
900
	rightmost = __pick_last_entity(cfs_rq);
901 902 903
	/*
	 * Already in the rightmost position?
	 */
904
	if (unlikely(!rightmost || rightmost->vruntime < se->vruntime))
905 906 907 908
		return;

	/*
	 * Minimally necessary key value to be last in the tree:
D
Dmitry Adamushko 已提交
909 910
	 * Upon rescheduling, sched_class::put_prev_task() will place
	 * 'current' within the tree based on its new key value.
911
	 */
912
	se->vruntime = rightmost->vruntime + 1;
913 914
}

915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967
/*
 * wake_idle() will wake a task on an idle cpu if task->cpu is
 * not idle and an idle cpu is available.  The span of cpus to
 * search starts with cpus closest then further out as needed,
 * so we always favor a closer, idle cpu.
 *
 * Returns the CPU we should wake onto.
 */
#if defined(ARCH_HAS_SCHED_WAKE_IDLE)
static int wake_idle(int cpu, struct task_struct *p)
{
	cpumask_t tmp;
	struct sched_domain *sd;
	int i;

	/*
	 * If it is idle, then it is the best cpu to run this task.
	 *
	 * This cpu is also the best, if it has more than one task already.
	 * Siblings must be also busy(in most cases) as they didn't already
	 * pickup the extra load from this cpu and hence we need not check
	 * sibling runqueue info. This will avoid the checks and cache miss
	 * penalities associated with that.
	 */
	if (idle_cpu(cpu) || cpu_rq(cpu)->nr_running > 1)
		return cpu;

	for_each_domain(cpu, sd) {
		if (sd->flags & SD_WAKE_IDLE) {
			cpus_and(tmp, sd->span, p->cpus_allowed);
			for_each_cpu_mask(i, tmp) {
				if (idle_cpu(i)) {
					if (i != task_cpu(p)) {
						schedstat_inc(p,
						       se.nr_wakeups_idle);
					}
					return i;
				}
			}
		} else {
			break;
		}
	}
	return cpu;
}
#else
static inline int wake_idle(int cpu, struct task_struct *p)
{
	return cpu;
}
#endif

#ifdef CONFIG_SMP
968

I
Ingo Molnar 已提交
969 970
static const struct sched_class fair_sched_class;

971
static int
I
Ingo Molnar 已提交
972 973 974
wake_affine(struct rq *rq, struct sched_domain *this_sd, struct rq *this_rq,
	    struct task_struct *p, int prev_cpu, int this_cpu, int sync,
	    int idx, unsigned long load, unsigned long this_load,
975 976
	    unsigned int imbalance)
{
I
Ingo Molnar 已提交
977
	struct task_struct *curr = this_rq->curr;
978 979 980 981 982 983 984
	unsigned long tl = this_load;
	unsigned long tl_per_task;

	if (!(this_sd->flags & SD_WAKE_AFFINE))
		return 0;

	/*
I
Ingo Molnar 已提交
985 986 987
	 * If the currently running task will sleep within
	 * a reasonable amount of time then attract this newly
	 * woken task:
988
	 */
I
Ingo Molnar 已提交
989 990 991 992 993
	if (sync && curr->sched_class == &fair_sched_class) {
		if (curr->se.avg_overlap < sysctl_sched_migration_cost &&
				p->se.avg_overlap < sysctl_sched_migration_cost)
			return 1;
	}
994 995 996 997 998 999 1000 1001 1002 1003 1004 1005

	schedstat_inc(p, se.nr_wakeups_affine_attempts);
	tl_per_task = cpu_avg_load_per_task(this_cpu);

	/*
	 * If sync wakeup then subtract the (maximum possible)
	 * effect of the currently running task from the load
	 * of the current CPU:
	 */
	if (sync)
		tl -= current->se.load.weight;

1006
	if ((tl <= load && tl + target_load(prev_cpu, idx) <= tl_per_task) ||
1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020
			100*(tl + p->se.load.weight) <= imbalance*load) {
		/*
		 * This domain has SD_WAKE_AFFINE and
		 * p is cache cold in this domain, and
		 * there is no bad imbalance.
		 */
		schedstat_inc(this_sd, ttwu_move_affine);
		schedstat_inc(p, se.nr_wakeups_affine);

		return 1;
	}
	return 0;
}

1021 1022 1023
static int select_task_rq_fair(struct task_struct *p, int sync)
{
	struct sched_domain *sd, *this_sd = NULL;
1024
	int prev_cpu, this_cpu, new_cpu;
1025
	unsigned long load, this_load;
I
Ingo Molnar 已提交
1026
	struct rq *rq, *this_rq;
1027 1028
	unsigned int imbalance;
	int idx;
1029

1030 1031 1032
	prev_cpu	= task_cpu(p);
	rq		= task_rq(p);
	this_cpu	= smp_processor_id();
I
Ingo Molnar 已提交
1033
	this_rq		= cpu_rq(this_cpu);
1034
	new_cpu		= prev_cpu;
1035

1036 1037 1038 1039
	/*
	 * 'this_sd' is the first domain that both
	 * this_cpu and prev_cpu are present in:
	 */
1040
	for_each_domain(this_cpu, sd) {
1041
		if (cpu_isset(prev_cpu, sd->span)) {
1042 1043 1044 1045 1046 1047
			this_sd = sd;
			break;
		}
	}

	if (unlikely(!cpu_isset(this_cpu, p->cpus_allowed)))
1048
		goto out;
1049 1050 1051 1052

	/*
	 * Check for affine wakeup and passive balancing possibilities.
	 */
1053
	if (!this_sd)
1054
		goto out;
1055

1056 1057 1058 1059
	idx = this_sd->wake_idx;

	imbalance = 100 + (this_sd->imbalance_pct - 100) / 2;

1060
	load = source_load(prev_cpu, idx);
1061 1062
	this_load = target_load(this_cpu, idx);

I
Ingo Molnar 已提交
1063 1064 1065 1066 1067
	if (wake_affine(rq, this_sd, this_rq, p, prev_cpu, this_cpu, sync, idx,
				     load, this_load, imbalance))
		return this_cpu;

	if (prev_cpu == this_cpu)
1068
		goto out;
1069 1070 1071 1072 1073 1074 1075 1076 1077

	/*
	 * Start passive balancing when half the imbalance_pct
	 * limit is reached.
	 */
	if (this_sd->flags & SD_WAKE_BALANCE) {
		if (imbalance*this_load <= 100*load) {
			schedstat_inc(this_sd, ttwu_move_balance);
			schedstat_inc(p, se.nr_wakeups_passive);
I
Ingo Molnar 已提交
1078
			return this_cpu;
1079 1080 1081
		}
	}

1082
out:
1083 1084 1085 1086
	return wake_idle(new_cpu, p);
}
#endif /* CONFIG_SMP */

1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128
static unsigned long wakeup_gran(struct sched_entity *se)
{
	unsigned long gran = sysctl_sched_wakeup_granularity;

	/*
	 * More easily preempt - nice tasks, while not making
	 * it harder for + nice tasks.
	 */
	if (unlikely(se->load.weight > NICE_0_LOAD))
		gran = calc_delta_fair(gran, &se->load);

	return gran;
}

/*
 * Should 'se' preempt 'curr'.
 *
 *             |s1
 *        |s2
 *   |s3
 *         g
 *      |<--->|c
 *
 *  w(c, s1) = -1
 *  w(c, s2) =  0
 *  w(c, s3) =  1
 *
 */
static int
wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se)
{
	s64 gran, vdiff = curr->vruntime - se->vruntime;

	if (vdiff < 0)
		return -1;

	gran = wakeup_gran(curr);
	if (vdiff > gran)
		return 1;

	return 0;
}
1129

D
Dhaval Giani 已提交
1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140
/* return depth at which a sched entity is present in the hierarchy */
static inline int depth_se(struct sched_entity *se)
{
	int depth = 0;

	for_each_sched_entity(se)
		depth++;

	return depth;
}

1141 1142 1143
/*
 * Preempt the current task with a newly woken task if needed:
 */
I
Ingo Molnar 已提交
1144
static void check_preempt_wakeup(struct rq *rq, struct task_struct *p)
1145 1146
{
	struct task_struct *curr = rq->curr;
1147
	struct cfs_rq *cfs_rq = task_cfs_rq(curr);
1148
	struct sched_entity *se = &curr->se, *pse = &p->se;
D
Dhaval Giani 已提交
1149
	int se_depth, pse_depth;
1150 1151

	if (unlikely(rt_prio(p->prio))) {
I
Ingo Molnar 已提交
1152
		update_rq_clock(rq);
1153
		update_curr(cfs_rq);
1154 1155 1156
		resched_task(curr);
		return;
	}
1157

I
Ingo Molnar 已提交
1158 1159 1160 1161
	se->last_wakeup = se->sum_exec_runtime;
	if (unlikely(se == pse))
		return;

1162 1163
	cfs_rq_of(pse)->next = pse;

1164 1165 1166 1167 1168 1169
	/*
	 * Batch tasks do not preempt (their preemption is driven by
	 * the tick):
	 */
	if (unlikely(p->policy == SCHED_BATCH))
		return;
1170

1171 1172
	if (!sched_feat(WAKEUP_PREEMPT))
		return;
1173

D
Dhaval Giani 已提交
1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194
	/*
	 * preemption test can be made between sibling entities who are in the
	 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
	 * both tasks until we find their ancestors who are siblings of common
	 * parent.
	 */

	/* First walk up until both entities are at same depth */
	se_depth = depth_se(se);
	pse_depth = depth_se(pse);

	while (se_depth > pse_depth) {
		se_depth--;
		se = parent_entity(se);
	}

	while (pse_depth > se_depth) {
		pse_depth--;
		pse = parent_entity(pse);
	}

1195 1196 1197
	while (!is_same_group(se, pse)) {
		se = parent_entity(se);
		pse = parent_entity(pse);
1198
	}
1199

1200
	if (wakeup_preempt_entity(se, pse) == 1)
1201
		resched_task(curr);
1202 1203
}

1204
static struct task_struct *pick_next_task_fair(struct rq *rq)
1205
{
P
Peter Zijlstra 已提交
1206
	struct task_struct *p;
1207 1208 1209 1210 1211 1212 1213
	struct cfs_rq *cfs_rq = &rq->cfs;
	struct sched_entity *se;

	if (unlikely(!cfs_rq->nr_running))
		return NULL;

	do {
1214
		se = pick_next_entity(cfs_rq);
1215 1216 1217
		cfs_rq = group_cfs_rq(se);
	} while (cfs_rq);

P
Peter Zijlstra 已提交
1218 1219 1220 1221
	p = task_of(se);
	hrtick_start_fair(rq, p);

	return p;
1222 1223 1224 1225 1226
}

/*
 * Account for a descheduled task:
 */
1227
static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
1228 1229 1230 1231 1232 1233
{
	struct sched_entity *se = &prev->se;
	struct cfs_rq *cfs_rq;

	for_each_sched_entity(se) {
		cfs_rq = cfs_rq_of(se);
1234
		put_prev_entity(cfs_rq, se);
1235 1236 1237
	}
}

1238
#ifdef CONFIG_SMP
1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249
/**************************************************
 * Fair scheduling class load-balancing methods:
 */

/*
 * Load-balancing iterator. Note: while the runqueue stays locked
 * during the whole iteration, the current task might be
 * dequeued so the iterator has to be dequeue-safe. Here we
 * achieve that by always pre-iterating before returning
 * the current task:
 */
A
Alexey Dobriyan 已提交
1250
static struct task_struct *
1251 1252
__load_balance_iterator(struct cfs_rq *cfs_rq, struct rb_node *curr)
{
D
Dhaval Giani 已提交
1253 1254
	struct task_struct *p = NULL;
	struct sched_entity *se;
1255 1256 1257 1258

	if (!curr)
		return NULL;

D
Dhaval Giani 已提交
1259 1260 1261 1262 1263 1264 1265 1266 1267 1268
	/* Skip over entities that are not tasks */
	do {
		se = rb_entry(curr, struct sched_entity, run_node);
		curr = rb_next(curr);
	} while (curr && !entity_is_task(se));

	cfs_rq->rb_load_balance_curr = curr;

	if (entity_is_task(se))
		p = task_of(se);
1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286

	return p;
}

static struct task_struct *load_balance_start_fair(void *arg)
{
	struct cfs_rq *cfs_rq = arg;

	return __load_balance_iterator(cfs_rq, first_fair(cfs_rq));
}

static struct task_struct *load_balance_next_fair(void *arg)
{
	struct cfs_rq *cfs_rq = arg;

	return __load_balance_iterator(cfs_rq, cfs_rq->rb_load_balance_curr);
}

1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305
#ifdef CONFIG_FAIR_GROUP_SCHED
static int cfs_rq_best_prio(struct cfs_rq *cfs_rq)
{
	struct sched_entity *curr;
	struct task_struct *p;

	if (!cfs_rq->nr_running || !first_fair(cfs_rq))
		return MAX_PRIO;

	curr = cfs_rq->curr;
	if (!curr)
		curr = __pick_next_entity(cfs_rq);

	p = task_of(curr);

	return p->prio;
}
#endif

P
Peter Williams 已提交
1306
static unsigned long
1307
load_balance_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
1308
		  unsigned long max_load_move,
1309 1310
		  struct sched_domain *sd, enum cpu_idle_type idle,
		  int *all_pinned, int *this_best_prio)
1311 1312 1313 1314 1315 1316 1317 1318 1319
{
	struct cfs_rq *busy_cfs_rq;
	long rem_load_move = max_load_move;
	struct rq_iterator cfs_rq_iterator;

	cfs_rq_iterator.start = load_balance_start_fair;
	cfs_rq_iterator.next = load_balance_next_fair;

	for_each_leaf_cfs_rq(busiest, busy_cfs_rq) {
1320
#ifdef CONFIG_FAIR_GROUP_SCHED
1321 1322 1323
		struct cfs_rq *this_cfs_rq;
		long imbalance;
		unsigned long maxload;
1324

1325
		this_cfs_rq = cpu_cfs_rq(busy_cfs_rq, this_cpu);
1326

1327 1328 1329
		imbalance = busy_cfs_rq->load.weight - this_cfs_rq->load.weight;
		/* Don't pull if this_cfs_rq has more load than busy_cfs_rq */
		if (imbalance <= 0)
1330 1331
			continue;

1332 1333 1334
		/* Don't pull more than imbalance/2 */
		imbalance /= 2;
		maxload = min(rem_load_move, imbalance);
1335

1336
		*this_best_prio = cfs_rq_best_prio(this_cfs_rq);
1337
#else
1338
# define maxload rem_load_move
1339
#endif
1340 1341
		/*
		 * pass busy_cfs_rq argument into
1342 1343 1344
		 * load_balance_[start|next]_fair iterators
		 */
		cfs_rq_iterator.arg = busy_cfs_rq;
1345
		rem_load_move -= balance_tasks(this_rq, this_cpu, busiest,
1346 1347 1348
					       maxload, sd, idle, all_pinned,
					       this_best_prio,
					       &cfs_rq_iterator);
1349

1350
		if (rem_load_move <= 0)
1351 1352 1353
			break;
	}

P
Peter Williams 已提交
1354
	return max_load_move - rem_load_move;
1355 1356
}

1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379
static int
move_one_task_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
		   struct sched_domain *sd, enum cpu_idle_type idle)
{
	struct cfs_rq *busy_cfs_rq;
	struct rq_iterator cfs_rq_iterator;

	cfs_rq_iterator.start = load_balance_start_fair;
	cfs_rq_iterator.next = load_balance_next_fair;

	for_each_leaf_cfs_rq(busiest, busy_cfs_rq) {
		/*
		 * pass busy_cfs_rq argument into
		 * load_balance_[start|next]_fair iterators
		 */
		cfs_rq_iterator.arg = busy_cfs_rq;
		if (iter_move_one_task(this_rq, this_cpu, busiest, sd, idle,
				       &cfs_rq_iterator))
		    return 1;
	}

	return 0;
}
1380
#endif
1381

1382 1383 1384
/*
 * scheduler tick hitting a task of our scheduling class:
 */
P
Peter Zijlstra 已提交
1385
static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
1386 1387 1388 1389 1390 1391
{
	struct cfs_rq *cfs_rq;
	struct sched_entity *se = &curr->se;

	for_each_sched_entity(se) {
		cfs_rq = cfs_rq_of(se);
P
Peter Zijlstra 已提交
1392
		entity_tick(cfs_rq, se, queued);
1393 1394 1395
	}
}

1396
#define swap(a, b) do { typeof(a) tmp = (a); (a) = (b); (b) = tmp; } while (0)
1397

1398 1399 1400 1401 1402 1403 1404
/*
 * Share the fairness runtime between parent and child, thus the
 * total amount of pressure for CPU stays equal - new tasks
 * get a chance to run but frequent forkers are not allowed to
 * monopolize the CPU. Note: the parent runqueue is locked,
 * the child is not running yet.
 */
1405
static void task_new_fair(struct rq *rq, struct task_struct *p)
1406 1407
{
	struct cfs_rq *cfs_rq = task_cfs_rq(p);
1408
	struct sched_entity *se = &p->se, *curr = cfs_rq->curr;
1409
	int this_cpu = smp_processor_id();
1410 1411 1412

	sched_info_queued(p);

1413
	update_curr(cfs_rq);
1414
	place_entity(cfs_rq, se, 1);
1415

1416
	/* 'curr' will be NULL if the child belongs to a different group */
1417
	if (sysctl_sched_child_runs_first && this_cpu == task_cpu(p) &&
1418
			curr && curr->vruntime < se->vruntime) {
D
Dmitry Adamushko 已提交
1419
		/*
1420 1421 1422
		 * Upon rescheduling, sched_class::put_prev_task() will place
		 * 'current' within the tree based on its new key value.
		 */
1423 1424
		swap(curr->vruntime, se->vruntime);
	}
1425

1426
	enqueue_task_fair(rq, p, 0);
1427
	resched_task(rq->curr);
1428 1429
}

1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465
/*
 * Priority of the task has changed. Check to see if we preempt
 * the current task.
 */
static void prio_changed_fair(struct rq *rq, struct task_struct *p,
			      int oldprio, int running)
{
	/*
	 * Reschedule if we are currently running on this runqueue and
	 * our priority decreased, or if we are not currently running on
	 * this runqueue and our priority is higher than the current's
	 */
	if (running) {
		if (p->prio > oldprio)
			resched_task(rq->curr);
	} else
		check_preempt_curr(rq, p);
}

/*
 * We switched to the sched_fair class.
 */
static void switched_to_fair(struct rq *rq, struct task_struct *p,
			     int running)
{
	/*
	 * We were most likely switched from sched_rt, so
	 * kick off the schedule if running, otherwise just see
	 * if we can still preempt the current task.
	 */
	if (running)
		resched_task(rq->curr);
	else
		check_preempt_curr(rq, p);
}

1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478
/* Account for a task changing its policy or group.
 *
 * This routine is mostly called to set cfs_rq->curr field when a task
 * migrates between groups/classes.
 */
static void set_curr_task_fair(struct rq *rq)
{
	struct sched_entity *se = &rq->curr->se;

	for_each_sched_entity(se)
		set_next_entity(cfs_rq_of(se), se);
}

P
Peter Zijlstra 已提交
1479 1480 1481 1482 1483 1484 1485 1486 1487 1488
#ifdef CONFIG_FAIR_GROUP_SCHED
static void moved_group_fair(struct task_struct *p)
{
	struct cfs_rq *cfs_rq = task_cfs_rq(p);

	update_curr(cfs_rq);
	place_entity(cfs_rq, &p->se, 1);
}
#endif

1489 1490 1491
/*
 * All the scheduling class methods:
 */
1492 1493
static const struct sched_class fair_sched_class = {
	.next			= &idle_sched_class,
1494 1495 1496
	.enqueue_task		= enqueue_task_fair,
	.dequeue_task		= dequeue_task_fair,
	.yield_task		= yield_task_fair,
1497 1498 1499
#ifdef CONFIG_SMP
	.select_task_rq		= select_task_rq_fair,
#endif /* CONFIG_SMP */
1500

I
Ingo Molnar 已提交
1501
	.check_preempt_curr	= check_preempt_wakeup,
1502 1503 1504 1505

	.pick_next_task		= pick_next_task_fair,
	.put_prev_task		= put_prev_task_fair,

1506
#ifdef CONFIG_SMP
1507
	.load_balance		= load_balance_fair,
1508
	.move_one_task		= move_one_task_fair,
1509
#endif
1510

1511
	.set_curr_task          = set_curr_task_fair,
1512 1513
	.task_tick		= task_tick_fair,
	.task_new		= task_new_fair,
1514 1515 1516

	.prio_changed		= prio_changed_fair,
	.switched_to		= switched_to_fair,
P
Peter Zijlstra 已提交
1517 1518 1519 1520

#ifdef CONFIG_FAIR_GROUP_SCHED
	.moved_group		= moved_group_fair,
#endif
1521 1522 1523
};

#ifdef CONFIG_SCHED_DEBUG
1524
static void print_cfs_stats(struct seq_file *m, int cpu)
1525 1526 1527
{
	struct cfs_rq *cfs_rq;

1528
	rcu_read_lock();
1529
	for_each_leaf_cfs_rq(cpu_rq(cpu), cfs_rq)
1530
		print_cfs_rq(m, cpu, cfs_rq);
1531
	rcu_read_unlock();
1532 1533
}
#endif