sched_fair.c 36.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
/*
 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
 *
 *  Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
 *
 *  Interactivity improvements by Mike Galbraith
 *  (C) 2007 Mike Galbraith <efault@gmx.de>
 *
 *  Various enhancements by Dmitry Adamushko.
 *  (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
 *
 *  Group scheduling enhancements by Srivatsa Vaddagiri
 *  Copyright IBM Corporation, 2007
 *  Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
 *
 *  Scaled math optimizations by Thomas Gleixner
 *  Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
18 19 20
 *
 *  Adaptive scheduling granularity, math enhancements by Peter Zijlstra
 *  Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
21 22
 */

A
Arjan van de Ven 已提交
23 24
#include <linux/latencytop.h>

25
/*
26
 * Targeted preemption latency for CPU-bound tasks:
27
 * (default: 20ms * (1 + ilog(ncpus)), units: nanoseconds)
28
 *
29
 * NOTE: this latency value is not the same as the concept of
I
Ingo Molnar 已提交
30 31 32
 * 'timeslice length' - timeslices in CFS are of variable length
 * and have no persistent notion like in traditional, time-slice
 * based scheduling concepts.
33
 *
I
Ingo Molnar 已提交
34 35
 * (to see the precise effective timeslice length of your workload,
 *  run vmstat and monitor the context-switches (cs) field)
36
 */
I
Ingo Molnar 已提交
37
unsigned int sysctl_sched_latency = 20000000ULL;
38 39

/*
40
 * Minimal preemption granularity for CPU-bound tasks:
41
 * (default: 4 msec * (1 + ilog(ncpus)), units: nanoseconds)
42
 */
43
unsigned int sysctl_sched_min_granularity = 4000000ULL;
44 45

/*
46 47
 * is kept at sysctl_sched_latency / sysctl_sched_min_granularity
 */
48
static unsigned int sched_nr_latency = 5;
49 50 51 52

/*
 * After fork, child runs first. (default) If set to 0 then
 * parent will (try to) run first.
53
 */
54
const_debug unsigned int sysctl_sched_child_runs_first = 1;
55

56 57 58 59 60 61 62 63
/*
 * sys_sched_yield() compat mode
 *
 * This option switches the agressive yield implementation of the
 * old scheduler back on.
 */
unsigned int __read_mostly sysctl_sched_compat_yield;

64 65
/*
 * SCHED_OTHER wake-up granularity.
66
 * (default: 10 msec * (1 + ilog(ncpus)), units: nanoseconds)
67 68 69 70 71
 *
 * This option delays the preemption effects of decoupled workloads
 * and reduces their over-scheduling. Synchronous workloads will still
 * have immediate wakeup/sleep latencies.
 */
72
unsigned int sysctl_sched_wakeup_granularity = 10000000UL;
73

74 75
const_debug unsigned int sysctl_sched_migration_cost = 500000UL;

76 77 78 79
/**************************************************************
 * CFS operations on generic schedulable entities:
 */

P
Peter Zijlstra 已提交
80 81 82 83 84
static inline struct task_struct *task_of(struct sched_entity *se)
{
	return container_of(se, struct task_struct, se);
}

85
#ifdef CONFIG_FAIR_GROUP_SCHED
86

87
/* cpu runqueue to which this cfs_rq is attached */
88 89
static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
{
90
	return cfs_rq->rq;
91 92
}

93 94
/* An entity is a task if it doesn't "own" a runqueue */
#define entity_is_task(se)	(!se->my_q)
95

P
Peter Zijlstra 已提交
96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143
/* Walk up scheduling entities hierarchy */
#define for_each_sched_entity(se) \
		for (; se; se = se->parent)

static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
{
	return p->se.cfs_rq;
}

/* runqueue on which this entity is (to be) queued */
static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
{
	return se->cfs_rq;
}

/* runqueue "owned" by this group */
static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
{
	return grp->my_q;
}

/* Given a group's cfs_rq on one cpu, return its corresponding cfs_rq on
 * another cpu ('this_cpu')
 */
static inline struct cfs_rq *cpu_cfs_rq(struct cfs_rq *cfs_rq, int this_cpu)
{
	return cfs_rq->tg->cfs_rq[this_cpu];
}

/* Iterate thr' all leaf cfs_rq's on a runqueue */
#define for_each_leaf_cfs_rq(rq, cfs_rq) \
	list_for_each_entry_rcu(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list)

/* Do the two (enqueued) entities belong to the same group ? */
static inline int
is_same_group(struct sched_entity *se, struct sched_entity *pse)
{
	if (se->cfs_rq == pse->cfs_rq)
		return 1;

	return 0;
}

static inline struct sched_entity *parent_entity(struct sched_entity *se)
{
	return se->parent;
}

144
#else	/* CONFIG_FAIR_GROUP_SCHED */
145

146 147 148
static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
{
	return container_of(cfs_rq, struct rq, cfs);
149 150 151 152
}

#define entity_is_task(se)	1

P
Peter Zijlstra 已提交
153 154
#define for_each_sched_entity(se) \
		for (; se; se = NULL)
155

P
Peter Zijlstra 已提交
156
static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
157
{
P
Peter Zijlstra 已提交
158
	return &task_rq(p)->cfs;
159 160
}

P
Peter Zijlstra 已提交
161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195
static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
{
	struct task_struct *p = task_of(se);
	struct rq *rq = task_rq(p);

	return &rq->cfs;
}

/* runqueue "owned" by this group */
static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
{
	return NULL;
}

static inline struct cfs_rq *cpu_cfs_rq(struct cfs_rq *cfs_rq, int this_cpu)
{
	return &cpu_rq(this_cpu)->cfs;
}

#define for_each_leaf_cfs_rq(rq, cfs_rq) \
		for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL)

static inline int
is_same_group(struct sched_entity *se, struct sched_entity *pse)
{
	return 1;
}

static inline struct sched_entity *parent_entity(struct sched_entity *se)
{
	return NULL;
}

#endif	/* CONFIG_FAIR_GROUP_SCHED */

196 197 198 199 200

/**************************************************************
 * Scheduling class tree data structure manipulation methods:
 */

201
static inline u64 max_vruntime(u64 min_vruntime, u64 vruntime)
202
{
203 204
	s64 delta = (s64)(vruntime - min_vruntime);
	if (delta > 0)
205 206 207 208 209
		min_vruntime = vruntime;

	return min_vruntime;
}

210
static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
P
Peter Zijlstra 已提交
211 212 213 214 215 216 217 218
{
	s64 delta = (s64)(vruntime - min_vruntime);
	if (delta < 0)
		min_vruntime = vruntime;

	return min_vruntime;
}

219
static inline s64 entity_key(struct cfs_rq *cfs_rq, struct sched_entity *se)
220
{
221
	return se->vruntime - cfs_rq->min_vruntime;
222 223
}

224 225 226
/*
 * Enqueue an entity into the rb-tree:
 */
227
static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
228 229 230 231
{
	struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
	struct rb_node *parent = NULL;
	struct sched_entity *entry;
232
	s64 key = entity_key(cfs_rq, se);
233 234 235 236 237 238 239 240 241 242 243 244
	int leftmost = 1;

	/*
	 * Find the right place in the rbtree:
	 */
	while (*link) {
		parent = *link;
		entry = rb_entry(parent, struct sched_entity, run_node);
		/*
		 * We dont care about collisions. Nodes with
		 * the same key stay together.
		 */
245
		if (key < entity_key(cfs_rq, entry)) {
246 247 248 249 250 251 252 253 254 255 256
			link = &parent->rb_left;
		} else {
			link = &parent->rb_right;
			leftmost = 0;
		}
	}

	/*
	 * Maintain a cache of leftmost tree entries (it is frequently
	 * used):
	 */
P
Peter Zijlstra 已提交
257
	if (leftmost) {
I
Ingo Molnar 已提交
258
		cfs_rq->rb_leftmost = &se->run_node;
P
Peter Zijlstra 已提交
259 260 261 262 263 264 265
		/*
		 * maintain cfs_rq->min_vruntime to be a monotonic increasing
		 * value tracking the leftmost vruntime in the tree.
		 */
		cfs_rq->min_vruntime =
			max_vruntime(cfs_rq->min_vruntime, se->vruntime);
	}
266 267 268 269 270

	rb_link_node(&se->run_node, parent, link);
	rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline);
}

271
static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
272
{
P
Peter Zijlstra 已提交
273 274 275 276 277 278 279 280 281 282 283 284 285 286 287
	if (cfs_rq->rb_leftmost == &se->run_node) {
		struct rb_node *next_node;
		struct sched_entity *next;

		next_node = rb_next(&se->run_node);
		cfs_rq->rb_leftmost = next_node;

		if (next_node) {
			next = rb_entry(next_node,
					struct sched_entity, run_node);
			cfs_rq->min_vruntime =
				max_vruntime(cfs_rq->min_vruntime,
					     next->vruntime);
		}
	}
I
Ingo Molnar 已提交
288

289 290 291
	if (cfs_rq->next == se)
		cfs_rq->next = NULL;

292 293 294 295 296 297 298 299 300 301 302 303 304
	rb_erase(&se->run_node, &cfs_rq->tasks_timeline);
}

static inline struct rb_node *first_fair(struct cfs_rq *cfs_rq)
{
	return cfs_rq->rb_leftmost;
}

static struct sched_entity *__pick_next_entity(struct cfs_rq *cfs_rq)
{
	return rb_entry(first_fair(cfs_rq), struct sched_entity, run_node);
}

305 306
static inline struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
{
307
	struct rb_node *last = rb_last(&cfs_rq->tasks_timeline);
308

309 310
	if (!last)
		return NULL;
311 312

	return rb_entry(last, struct sched_entity, run_node);
313 314
}

315 316 317 318
/**************************************************************
 * Scheduling class statistics methods:
 */

319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334
#ifdef CONFIG_SCHED_DEBUG
int sched_nr_latency_handler(struct ctl_table *table, int write,
		struct file *filp, void __user *buffer, size_t *lenp,
		loff_t *ppos)
{
	int ret = proc_dointvec_minmax(table, write, filp, buffer, lenp, ppos);

	if (ret || !write)
		return ret;

	sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency,
					sysctl_sched_min_granularity);

	return 0;
}
#endif
335

336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363
/*
 * delta *= w / rw
 */
static inline unsigned long
calc_delta_weight(unsigned long delta, struct sched_entity *se)
{
	for_each_sched_entity(se) {
		delta = calc_delta_mine(delta,
				se->load.weight, &cfs_rq_of(se)->load);
	}

	return delta;
}

/*
 * delta *= rw / w
 */
static inline unsigned long
calc_delta_fair(unsigned long delta, struct sched_entity *se)
{
	for_each_sched_entity(se) {
		delta = calc_delta_mine(delta,
				cfs_rq_of(se)->load.weight, &se->load);
	}

	return delta;
}

364 365 366 367 368 369 370 371
/*
 * The idea is to set a period in which each task runs once.
 *
 * When there are too many tasks (sysctl_sched_nr_latency) we have to stretch
 * this period because otherwise the slices get too small.
 *
 * p = (nr <= nl) ? l : l*nr/nl
 */
372 373 374
static u64 __sched_period(unsigned long nr_running)
{
	u64 period = sysctl_sched_latency;
375
	unsigned long nr_latency = sched_nr_latency;
376 377

	if (unlikely(nr_running > nr_latency)) {
378
		period = sysctl_sched_min_granularity;
379 380 381 382 383 384
		period *= nr_running;
	}

	return period;
}

385 386 387 388 389 390
/*
 * We calculate the wall-time slice from the period by taking a part
 * proportional to the weight.
 *
 * s = p*w/rw
 */
P
Peter Zijlstra 已提交
391
static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
392
{
393
	return calc_delta_weight(__sched_period(cfs_rq->nr_running), se);
394 395
}

396
/*
397
 * We calculate the vruntime slice of a to be inserted task
398
 *
399
 * vs = s*rw/w = p
400
 */
401
static u64 sched_vslice_add(struct cfs_rq *cfs_rq, struct sched_entity *se)
P
Peter Zijlstra 已提交
402
{
403
	unsigned long nr_running = cfs_rq->nr_running;
P
Peter Zijlstra 已提交
404

405 406
	if (!se->on_rq)
		nr_running++;
P
Peter Zijlstra 已提交
407

408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428
	return __sched_period(nr_running);
}

/*
 * The goal of calc_delta_asym() is to be asymmetrically around NICE_0_LOAD, in
 * that it favours >=0 over <0.
 *
 *   -20         |
 *               |
 *     0 --------+-------
 *             .'
 *    19     .'
 *
 */
static unsigned long
calc_delta_asym(unsigned long delta, struct sched_entity *se)
{
	struct load_weight lw = {
		.weight = NICE_0_LOAD,
		.inv_weight = 1UL << (WMULT_SHIFT-NICE_0_SHIFT)
	};
429

430
	for_each_sched_entity(se) {
431
		struct load_weight *se_lw = &se->load;
432

433 434
		if (se->load.weight < NICE_0_LOAD)
			se_lw = &lw;
435

436 437
		delta = calc_delta_mine(delta,
				cfs_rq_of(se)->load.weight, se_lw);
438 439
	}

440
	return delta;
P
Peter Zijlstra 已提交
441 442
}

443 444 445 446 447
/*
 * Update the current task's runtime statistics. Skip current tasks that
 * are not in our scheduling class.
 */
static inline void
I
Ingo Molnar 已提交
448 449
__update_curr(struct cfs_rq *cfs_rq, struct sched_entity *curr,
	      unsigned long delta_exec)
450
{
451
	unsigned long delta_exec_weighted;
452

453
	schedstat_set(curr->exec_max, max((u64)delta_exec, curr->exec_max));
454 455

	curr->sum_exec_runtime += delta_exec;
456
	schedstat_add(cfs_rq, exec_clock, delta_exec);
457
	delta_exec_weighted = calc_delta_fair(delta_exec, curr);
I
Ingo Molnar 已提交
458
	curr->vruntime += delta_exec_weighted;
459 460
}

461
static void update_curr(struct cfs_rq *cfs_rq)
462
{
463
	struct sched_entity *curr = cfs_rq->curr;
I
Ingo Molnar 已提交
464
	u64 now = rq_of(cfs_rq)->clock;
465 466 467 468 469 470 471 472 473 474
	unsigned long delta_exec;

	if (unlikely(!curr))
		return;

	/*
	 * Get the amount of time the current task was running
	 * since the last time we changed load (this cannot
	 * overflow on 32 bits):
	 */
I
Ingo Molnar 已提交
475
	delta_exec = (unsigned long)(now - curr->exec_start);
476

I
Ingo Molnar 已提交
477 478
	__update_curr(cfs_rq, curr, delta_exec);
	curr->exec_start = now;
479 480 481 482 483 484

	if (entity_is_task(curr)) {
		struct task_struct *curtask = task_of(curr);

		cpuacct_charge(curtask, delta_exec);
	}
485 486 487
}

static inline void
488
update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
489
{
490
	schedstat_set(se->wait_start, rq_of(cfs_rq)->clock);
491 492 493 494 495
}

/*
 * Task is being enqueued - update stats:
 */
496
static void update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
497 498 499 500 501
{
	/*
	 * Are we enqueueing a waiting task? (for current tasks
	 * a dequeue/enqueue event is a NOP)
	 */
502
	if (se != cfs_rq->curr)
503
		update_stats_wait_start(cfs_rq, se);
504 505 506
}

static void
507
update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
508
{
509 510
	schedstat_set(se->wait_max, max(se->wait_max,
			rq_of(cfs_rq)->clock - se->wait_start));
511 512 513
	schedstat_set(se->wait_count, se->wait_count + 1);
	schedstat_set(se->wait_sum, se->wait_sum +
			rq_of(cfs_rq)->clock - se->wait_start);
I
Ingo Molnar 已提交
514
	schedstat_set(se->wait_start, 0);
515 516 517
}

static inline void
518
update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
519 520 521 522 523
{
	/*
	 * Mark the end of the wait period if dequeueing a
	 * waiting task:
	 */
524
	if (se != cfs_rq->curr)
525
		update_stats_wait_end(cfs_rq, se);
526 527 528 529 530 531
}

/*
 * We are picking a new current task - update its stats:
 */
static inline void
532
update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
533 534 535 536
{
	/*
	 * We are starting a new run period:
	 */
537
	se->exec_start = rq_of(cfs_rq)->clock;
538 539 540 541 542 543
}

/**************************************************
 * Scheduling class queueing methods:
 */

544 545 546 547 548 549
static void
account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
	update_load_add(&cfs_rq->load, se->load.weight);
	cfs_rq->nr_running++;
	se->on_rq = 1;
550
	list_add(&se->group_node, &cfs_rq->tasks);
551 552 553 554 555 556 557 558
}

static void
account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
	update_load_sub(&cfs_rq->load, se->load.weight);
	cfs_rq->nr_running--;
	se->on_rq = 0;
559
	list_del_init(&se->group_node);
560 561
}

562
static void enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
563 564 565
{
#ifdef CONFIG_SCHEDSTATS
	if (se->sleep_start) {
566
		u64 delta = rq_of(cfs_rq)->clock - se->sleep_start;
A
Arjan van de Ven 已提交
567
		struct task_struct *tsk = task_of(se);
568 569 570 571 572 573 574 575 576

		if ((s64)delta < 0)
			delta = 0;

		if (unlikely(delta > se->sleep_max))
			se->sleep_max = delta;

		se->sleep_start = 0;
		se->sum_sleep_runtime += delta;
A
Arjan van de Ven 已提交
577 578

		account_scheduler_latency(tsk, delta >> 10, 1);
579 580
	}
	if (se->block_start) {
581
		u64 delta = rq_of(cfs_rq)->clock - se->block_start;
A
Arjan van de Ven 已提交
582
		struct task_struct *tsk = task_of(se);
583 584 585 586 587 588 589 590 591

		if ((s64)delta < 0)
			delta = 0;

		if (unlikely(delta > se->block_max))
			se->block_max = delta;

		se->block_start = 0;
		se->sum_sleep_runtime += delta;
I
Ingo Molnar 已提交
592 593 594 595 596 597 598

		/*
		 * Blocking time is in units of nanosecs, so shift by 20 to
		 * get a milliseconds-range estimation of the amount of
		 * time that the task spent sleeping:
		 */
		if (unlikely(prof_on == SLEEP_PROFILING)) {
I
Ingo Molnar 已提交
599

I
Ingo Molnar 已提交
600 601 602
			profile_hits(SLEEP_PROFILING, (void *)get_wchan(tsk),
				     delta >> 20);
		}
A
Arjan van de Ven 已提交
603
		account_scheduler_latency(tsk, delta >> 10, 0);
604 605 606 607
	}
#endif
}

P
Peter Zijlstra 已提交
608 609 610 611 612 613 614 615 616 617 618 619 620
static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
#ifdef CONFIG_SCHED_DEBUG
	s64 d = se->vruntime - cfs_rq->min_vruntime;

	if (d < 0)
		d = -d;

	if (d > 3*sysctl_sched_latency)
		schedstat_inc(cfs_rq, nr_spread_over);
#endif
}

621 622 623
static void
place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
{
P
Peter Zijlstra 已提交
624
	u64 vruntime;
625

P
Peter Zijlstra 已提交
626 627 628 629 630
	if (first_fair(cfs_rq)) {
		vruntime = min_vruntime(cfs_rq->min_vruntime,
				__pick_next_entity(cfs_rq)->vruntime);
	} else
		vruntime = cfs_rq->min_vruntime;
P
Peter Zijlstra 已提交
631

632 633 634 635 636 637
	/*
	 * The 'current' period is already promised to the current tasks,
	 * however the extra weight of the new task will slow them down a
	 * little, place the new task so that it fits in the slot that
	 * stays open at the end.
	 */
P
Peter Zijlstra 已提交
638
	if (initial && sched_feat(START_DEBIT))
639
		vruntime += sched_vslice_add(cfs_rq, se);
640

I
Ingo Molnar 已提交
641
	if (!initial) {
642
		/* sleeps upto a single latency don't count. */
643 644 645 646 647 648 649 650 651 652 653
		if (sched_feat(NEW_FAIR_SLEEPERS)) {
			unsigned long thresh = sysctl_sched_latency;

			/*
			 * convert the sleeper threshold into virtual time
			 */
			if (sched_feat(NORMALIZED_SLEEPER))
				thresh = calc_delta_fair(thresh, se);

			vruntime -= thresh;
		}
654

655 656
		/* ensure we never gain time by being placed backwards. */
		vruntime = max_vruntime(se->vruntime, vruntime);
657 658
	}

P
Peter Zijlstra 已提交
659
	se->vruntime = vruntime;
660 661
}

662
static void
663
enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int wakeup)
664 665
{
	/*
666
	 * Update run-time statistics of the 'current'.
667
	 */
668
	update_curr(cfs_rq);
P
Peter Zijlstra 已提交
669
	account_entity_enqueue(cfs_rq, se);
670

I
Ingo Molnar 已提交
671
	if (wakeup) {
672
		place_entity(cfs_rq, se, 0);
673
		enqueue_sleeper(cfs_rq, se);
I
Ingo Molnar 已提交
674
	}
675

676
	update_stats_enqueue(cfs_rq, se);
P
Peter Zijlstra 已提交
677
	check_spread(cfs_rq, se);
678 679
	if (se != cfs_rq->curr)
		__enqueue_entity(cfs_rq, se);
680 681
}

I
Ingo Molnar 已提交
682 683 684 685 686 687 688 689 690 691 692 693 694 695 696
static void update_avg(u64 *avg, u64 sample)
{
	s64 diff = sample - *avg;
	*avg += diff >> 3;
}

static void update_avg_stats(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
	if (!se->last_wakeup)
		return;

	update_avg(&se->avg_overlap, se->sum_exec_runtime - se->last_wakeup);
	se->last_wakeup = 0;
}

697
static void
698
dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int sleep)
699
{
700 701 702 703 704
	/*
	 * Update run-time statistics of the 'current'.
	 */
	update_curr(cfs_rq);

705
	update_stats_dequeue(cfs_rq, se);
706
	if (sleep) {
I
Ingo Molnar 已提交
707
		update_avg_stats(cfs_rq, se);
P
Peter Zijlstra 已提交
708
#ifdef CONFIG_SCHEDSTATS
709 710 711 712
		if (entity_is_task(se)) {
			struct task_struct *tsk = task_of(se);

			if (tsk->state & TASK_INTERRUPTIBLE)
713
				se->sleep_start = rq_of(cfs_rq)->clock;
714
			if (tsk->state & TASK_UNINTERRUPTIBLE)
715
				se->block_start = rq_of(cfs_rq)->clock;
716
		}
717
#endif
P
Peter Zijlstra 已提交
718 719
	}

720
	if (se != cfs_rq->curr)
721 722
		__dequeue_entity(cfs_rq, se);
	account_entity_dequeue(cfs_rq, se);
723 724 725 726 727
}

/*
 * Preempt the current task with a newly woken task if needed:
 */
728
static void
I
Ingo Molnar 已提交
729
check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
730
{
731 732
	unsigned long ideal_runtime, delta_exec;

P
Peter Zijlstra 已提交
733
	ideal_runtime = sched_slice(cfs_rq, curr);
734
	delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
I
Ingo Molnar 已提交
735
	if (delta_exec > ideal_runtime)
736 737 738
		resched_task(rq_of(cfs_rq)->curr);
}

739
static void
740
set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
741
{
742 743 744 745 746 747 748 749 750 751 752
	/* 'current' is not kept within the tree. */
	if (se->on_rq) {
		/*
		 * Any task has to be enqueued before it get to execute on
		 * a CPU. So account for the time it spent waiting on the
		 * runqueue.
		 */
		update_stats_wait_end(cfs_rq, se);
		__dequeue_entity(cfs_rq, se);
	}

753
	update_stats_curr_start(cfs_rq, se);
754
	cfs_rq->curr = se;
I
Ingo Molnar 已提交
755 756 757 758 759 760
#ifdef CONFIG_SCHEDSTATS
	/*
	 * Track our maximum slice length, if the CPU's load is at
	 * least twice that of our own weight (i.e. dont track it
	 * when there are only lesser-weight tasks around):
	 */
761
	if (rq_of(cfs_rq)->load.weight >= 2*se->load.weight) {
I
Ingo Molnar 已提交
762 763 764 765
		se->slice_max = max(se->slice_max,
			se->sum_exec_runtime - se->prev_sum_exec_runtime);
	}
#endif
766
	se->prev_sum_exec_runtime = se->sum_exec_runtime;
767 768
}

769 770 771
static int
wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se);

772 773 774 775 776 777
static struct sched_entity *
pick_next(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
	if (!cfs_rq->next)
		return se;

778
	if (wakeup_preempt_entity(cfs_rq->next, se) != 0)
779 780 781 782 783
		return se;

	return cfs_rq->next;
}

784
static struct sched_entity *pick_next_entity(struct cfs_rq *cfs_rq)
785
{
D
Dmitry Adamushko 已提交
786
	struct sched_entity *se = NULL;
787

D
Dmitry Adamushko 已提交
788 789
	if (first_fair(cfs_rq)) {
		se = __pick_next_entity(cfs_rq);
790
		se = pick_next(cfs_rq, se);
D
Dmitry Adamushko 已提交
791 792
		set_next_entity(cfs_rq, se);
	}
793 794 795 796

	return se;
}

797
static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
798 799 800 801 802 803
{
	/*
	 * If still on the runqueue then deactivate_task()
	 * was not called and update_curr() has to be done:
	 */
	if (prev->on_rq)
804
		update_curr(cfs_rq);
805

P
Peter Zijlstra 已提交
806
	check_spread(cfs_rq, prev);
807
	if (prev->on_rq) {
808
		update_stats_wait_start(cfs_rq, prev);
809 810 811
		/* Put 'current' back into the tree. */
		__enqueue_entity(cfs_rq, prev);
	}
812
	cfs_rq->curr = NULL;
813 814
}

P
Peter Zijlstra 已提交
815 816
static void
entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
817 818
{
	/*
819
	 * Update run-time statistics of the 'current'.
820
	 */
821
	update_curr(cfs_rq);
822

P
Peter Zijlstra 已提交
823 824 825 826 827
#ifdef CONFIG_SCHED_HRTICK
	/*
	 * queued ticks are scheduled to match the slice, so don't bother
	 * validating it and just reschedule.
	 */
828 829 830 831
	if (queued) {
		resched_task(rq_of(cfs_rq)->curr);
		return;
	}
P
Peter Zijlstra 已提交
832 833 834 835 836 837 838 839
	/*
	 * don't let the period tick interfere with the hrtick preemption
	 */
	if (!sched_feat(DOUBLE_TICK) &&
			hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
		return;
#endif

840
	if (cfs_rq->nr_running > 1 || !sched_feat(WAKEUP_PREEMPT))
I
Ingo Molnar 已提交
841
		check_preempt_tick(cfs_rq, curr);
842 843 844 845 846 847
}

/**************************************************
 * CFS operations on tasks:
 */

P
Peter Zijlstra 已提交
848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884
#ifdef CONFIG_SCHED_HRTICK
static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
{
	int requeue = rq->curr == p;
	struct sched_entity *se = &p->se;
	struct cfs_rq *cfs_rq = cfs_rq_of(se);

	WARN_ON(task_rq(p) != rq);

	if (hrtick_enabled(rq) && cfs_rq->nr_running > 1) {
		u64 slice = sched_slice(cfs_rq, se);
		u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
		s64 delta = slice - ran;

		if (delta < 0) {
			if (rq->curr == p)
				resched_task(p);
			return;
		}

		/*
		 * Don't schedule slices shorter than 10000ns, that just
		 * doesn't make sense. Rely on vruntime for fairness.
		 */
		if (!requeue)
			delta = max(10000LL, delta);

		hrtick_start(rq, delta, requeue);
	}
}
#else
static inline void
hrtick_start_fair(struct rq *rq, struct task_struct *p)
{
}
#endif

885 886 887 888 889
/*
 * The enqueue_task method is called before nr_running is
 * increased. Here we update the fair scheduling stats and
 * then put the task into the rbtree:
 */
890
static void enqueue_task_fair(struct rq *rq, struct task_struct *p, int wakeup)
891 892
{
	struct cfs_rq *cfs_rq;
893
	struct sched_entity *se = &p->se;
894 895

	for_each_sched_entity(se) {
896
		if (se->on_rq)
897 898
			break;
		cfs_rq = cfs_rq_of(se);
899
		enqueue_entity(cfs_rq, se, wakeup);
900
		wakeup = 1;
901
	}
P
Peter Zijlstra 已提交
902 903

	hrtick_start_fair(rq, rq->curr);
904 905 906 907 908 909 910
}

/*
 * The dequeue_task method is called before nr_running is
 * decreased. We remove the task from the rbtree and
 * update the fair scheduling stats:
 */
911
static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int sleep)
912 913
{
	struct cfs_rq *cfs_rq;
914
	struct sched_entity *se = &p->se;
915 916 917

	for_each_sched_entity(se) {
		cfs_rq = cfs_rq_of(se);
918
		dequeue_entity(cfs_rq, se, sleep);
919
		/* Don't dequeue parent if it has other entities besides us */
920
		if (cfs_rq->load.weight)
921
			break;
922
		sleep = 1;
923
	}
P
Peter Zijlstra 已提交
924 925

	hrtick_start_fair(rq, rq->curr);
926 927 928
}

/*
929 930 931
 * sched_yield() support is very simple - we dequeue and enqueue.
 *
 * If compat_yield is turned on then we requeue to the end of the tree.
932
 */
933
static void yield_task_fair(struct rq *rq)
934
{
935 936 937
	struct task_struct *curr = rq->curr;
	struct cfs_rq *cfs_rq = task_cfs_rq(curr);
	struct sched_entity *rightmost, *se = &curr->se;
938 939

	/*
940 941 942 943 944
	 * Are we the only task in the tree?
	 */
	if (unlikely(cfs_rq->nr_running == 1))
		return;

945
	if (likely(!sysctl_sched_compat_yield) && curr->policy != SCHED_BATCH) {
946
		update_rq_clock(rq);
947
		/*
948
		 * Update run-time statistics of the 'current'.
949
		 */
D
Dmitry Adamushko 已提交
950
		update_curr(cfs_rq);
951 952 953 954 955

		return;
	}
	/*
	 * Find the rightmost entry in the rbtree:
956
	 */
D
Dmitry Adamushko 已提交
957
	rightmost = __pick_last_entity(cfs_rq);
958 959 960
	/*
	 * Already in the rightmost position?
	 */
961
	if (unlikely(!rightmost || rightmost->vruntime < se->vruntime))
962 963 964 965
		return;

	/*
	 * Minimally necessary key value to be last in the tree:
D
Dmitry Adamushko 已提交
966 967
	 * Upon rescheduling, sched_class::put_prev_task() will place
	 * 'current' within the tree based on its new key value.
968
	 */
969
	se->vruntime = rightmost->vruntime + 1;
970 971
}

972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995
/*
 * wake_idle() will wake a task on an idle cpu if task->cpu is
 * not idle and an idle cpu is available.  The span of cpus to
 * search starts with cpus closest then further out as needed,
 * so we always favor a closer, idle cpu.
 *
 * Returns the CPU we should wake onto.
 */
#if defined(ARCH_HAS_SCHED_WAKE_IDLE)
static int wake_idle(int cpu, struct task_struct *p)
{
	cpumask_t tmp;
	struct sched_domain *sd;
	int i;

	/*
	 * If it is idle, then it is the best cpu to run this task.
	 *
	 * This cpu is also the best, if it has more than one task already.
	 * Siblings must be also busy(in most cases) as they didn't already
	 * pickup the extra load from this cpu and hence we need not check
	 * sibling runqueue info. This will avoid the checks and cache miss
	 * penalities associated with that.
	 */
996
	if (idle_cpu(cpu) || cpu_rq(cpu)->cfs.nr_running > 1)
997 998 999
		return cpu;

	for_each_domain(cpu, sd) {
1000 1001 1002
		if ((sd->flags & SD_WAKE_IDLE)
		    || ((sd->flags & SD_WAKE_IDLE_FAR)
			&& !task_hot(p, task_rq(p)->clock, sd))) {
1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026
			cpus_and(tmp, sd->span, p->cpus_allowed);
			for_each_cpu_mask(i, tmp) {
				if (idle_cpu(i)) {
					if (i != task_cpu(p)) {
						schedstat_inc(p,
						       se.nr_wakeups_idle);
					}
					return i;
				}
			}
		} else {
			break;
		}
	}
	return cpu;
}
#else
static inline int wake_idle(int cpu, struct task_struct *p)
{
	return cpu;
}
#endif

#ifdef CONFIG_SMP
1027

I
Ingo Molnar 已提交
1028 1029
static const struct sched_class fair_sched_class;

1030
static int
I
Ingo Molnar 已提交
1031 1032 1033
wake_affine(struct rq *rq, struct sched_domain *this_sd, struct rq *this_rq,
	    struct task_struct *p, int prev_cpu, int this_cpu, int sync,
	    int idx, unsigned long load, unsigned long this_load,
1034 1035
	    unsigned int imbalance)
{
I
Ingo Molnar 已提交
1036
	struct task_struct *curr = this_rq->curr;
1037 1038
	unsigned long tl = this_load;
	unsigned long tl_per_task;
1039
	int balanced;
1040

1041
	if (!(this_sd->flags & SD_WAKE_AFFINE) || !sched_feat(AFFINE_WAKEUPS))
1042 1043
		return 0;

1044 1045 1046 1047 1048 1049 1050 1051 1052 1053
	/*
	 * If sync wakeup then subtract the (maximum possible)
	 * effect of the currently running task from the load
	 * of the current CPU:
	 */
	if (sync)
		tl -= current->se.load.weight;

	balanced = 100*(tl + p->se.load.weight) <= imbalance*load;

1054
	/*
I
Ingo Molnar 已提交
1055 1056 1057
	 * If the currently running task will sleep within
	 * a reasonable amount of time then attract this newly
	 * woken task:
1058
	 */
1059
	if (sync && balanced && curr->sched_class == &fair_sched_class) {
I
Ingo Molnar 已提交
1060 1061 1062 1063
		if (curr->se.avg_overlap < sysctl_sched_migration_cost &&
				p->se.avg_overlap < sysctl_sched_migration_cost)
			return 1;
	}
1064 1065 1066 1067

	schedstat_inc(p, se.nr_wakeups_affine_attempts);
	tl_per_task = cpu_avg_load_per_task(this_cpu);

1068
	if ((tl <= load && tl + target_load(prev_cpu, idx) <= tl_per_task) ||
1069
			balanced) {
1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082
		/*
		 * This domain has SD_WAKE_AFFINE and
		 * p is cache cold in this domain, and
		 * there is no bad imbalance.
		 */
		schedstat_inc(this_sd, ttwu_move_affine);
		schedstat_inc(p, se.nr_wakeups_affine);

		return 1;
	}
	return 0;
}

1083 1084 1085
static int select_task_rq_fair(struct task_struct *p, int sync)
{
	struct sched_domain *sd, *this_sd = NULL;
1086
	int prev_cpu, this_cpu, new_cpu;
1087
	unsigned long load, this_load;
I
Ingo Molnar 已提交
1088
	struct rq *rq, *this_rq;
1089 1090
	unsigned int imbalance;
	int idx;
1091

1092 1093 1094
	prev_cpu	= task_cpu(p);
	rq		= task_rq(p);
	this_cpu	= smp_processor_id();
I
Ingo Molnar 已提交
1095
	this_rq		= cpu_rq(this_cpu);
1096
	new_cpu		= prev_cpu;
1097

1098 1099 1100 1101
	/*
	 * 'this_sd' is the first domain that both
	 * this_cpu and prev_cpu are present in:
	 */
1102
	for_each_domain(this_cpu, sd) {
1103
		if (cpu_isset(prev_cpu, sd->span)) {
1104 1105 1106 1107 1108 1109
			this_sd = sd;
			break;
		}
	}

	if (unlikely(!cpu_isset(this_cpu, p->cpus_allowed)))
1110
		goto out;
1111 1112 1113 1114

	/*
	 * Check for affine wakeup and passive balancing possibilities.
	 */
1115
	if (!this_sd)
1116
		goto out;
1117

1118 1119 1120 1121
	idx = this_sd->wake_idx;

	imbalance = 100 + (this_sd->imbalance_pct - 100) / 2;

1122
	load = source_load(prev_cpu, idx);
1123 1124
	this_load = target_load(this_cpu, idx);

I
Ingo Molnar 已提交
1125 1126 1127 1128 1129
	if (wake_affine(rq, this_sd, this_rq, p, prev_cpu, this_cpu, sync, idx,
				     load, this_load, imbalance))
		return this_cpu;

	if (prev_cpu == this_cpu)
1130
		goto out;
1131 1132 1133 1134 1135 1136 1137 1138 1139

	/*
	 * Start passive balancing when half the imbalance_pct
	 * limit is reached.
	 */
	if (this_sd->flags & SD_WAKE_BALANCE) {
		if (imbalance*this_load <= 100*load) {
			schedstat_inc(this_sd, ttwu_move_balance);
			schedstat_inc(p, se.nr_wakeups_passive);
I
Ingo Molnar 已提交
1140
			return this_cpu;
1141 1142 1143
		}
	}

1144
out:
1145 1146 1147 1148
	return wake_idle(new_cpu, p);
}
#endif /* CONFIG_SMP */

1149 1150 1151 1152 1153
static unsigned long wakeup_gran(struct sched_entity *se)
{
	unsigned long gran = sysctl_sched_wakeup_granularity;

	/*
1154 1155
	 * More easily preempt - nice tasks, while not making it harder for
	 * + nice tasks.
1156
	 */
1157
	gran = calc_delta_asym(sysctl_sched_wakeup_granularity, se);
1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189

	return gran;
}

/*
 * Should 'se' preempt 'curr'.
 *
 *             |s1
 *        |s2
 *   |s3
 *         g
 *      |<--->|c
 *
 *  w(c, s1) = -1
 *  w(c, s2) =  0
 *  w(c, s3) =  1
 *
 */
static int
wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se)
{
	s64 gran, vdiff = curr->vruntime - se->vruntime;

	if (vdiff < 0)
		return -1;

	gran = wakeup_gran(curr);
	if (vdiff > gran)
		return 1;

	return 0;
}
1190

D
Dhaval Giani 已提交
1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201
/* return depth at which a sched entity is present in the hierarchy */
static inline int depth_se(struct sched_entity *se)
{
	int depth = 0;

	for_each_sched_entity(se)
		depth++;

	return depth;
}

1202 1203 1204
/*
 * Preempt the current task with a newly woken task if needed:
 */
I
Ingo Molnar 已提交
1205
static void check_preempt_wakeup(struct rq *rq, struct task_struct *p)
1206 1207
{
	struct task_struct *curr = rq->curr;
1208
	struct cfs_rq *cfs_rq = task_cfs_rq(curr);
1209
	struct sched_entity *se = &curr->se, *pse = &p->se;
D
Dhaval Giani 已提交
1210
	int se_depth, pse_depth;
1211 1212

	if (unlikely(rt_prio(p->prio))) {
I
Ingo Molnar 已提交
1213
		update_rq_clock(rq);
1214
		update_curr(cfs_rq);
1215 1216 1217
		resched_task(curr);
		return;
	}
1218

I
Ingo Molnar 已提交
1219 1220 1221 1222
	se->last_wakeup = se->sum_exec_runtime;
	if (unlikely(se == pse))
		return;

1223 1224
	cfs_rq_of(pse)->next = pse;

1225 1226 1227 1228 1229 1230
	/*
	 * Batch tasks do not preempt (their preemption is driven by
	 * the tick):
	 */
	if (unlikely(p->policy == SCHED_BATCH))
		return;
1231

1232 1233
	if (!sched_feat(WAKEUP_PREEMPT))
		return;
1234

D
Dhaval Giani 已提交
1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255
	/*
	 * preemption test can be made between sibling entities who are in the
	 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
	 * both tasks until we find their ancestors who are siblings of common
	 * parent.
	 */

	/* First walk up until both entities are at same depth */
	se_depth = depth_se(se);
	pse_depth = depth_se(pse);

	while (se_depth > pse_depth) {
		se_depth--;
		se = parent_entity(se);
	}

	while (pse_depth > se_depth) {
		pse_depth--;
		pse = parent_entity(pse);
	}

1256 1257 1258
	while (!is_same_group(se, pse)) {
		se = parent_entity(se);
		pse = parent_entity(pse);
1259
	}
1260

1261
	if (wakeup_preempt_entity(se, pse) == 1)
1262
		resched_task(curr);
1263 1264
}

1265
static struct task_struct *pick_next_task_fair(struct rq *rq)
1266
{
P
Peter Zijlstra 已提交
1267
	struct task_struct *p;
1268 1269 1270 1271 1272 1273 1274
	struct cfs_rq *cfs_rq = &rq->cfs;
	struct sched_entity *se;

	if (unlikely(!cfs_rq->nr_running))
		return NULL;

	do {
1275
		se = pick_next_entity(cfs_rq);
1276 1277 1278
		cfs_rq = group_cfs_rq(se);
	} while (cfs_rq);

P
Peter Zijlstra 已提交
1279 1280 1281 1282
	p = task_of(se);
	hrtick_start_fair(rq, p);

	return p;
1283 1284 1285 1286 1287
}

/*
 * Account for a descheduled task:
 */
1288
static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
1289 1290 1291 1292 1293 1294
{
	struct sched_entity *se = &prev->se;
	struct cfs_rq *cfs_rq;

	for_each_sched_entity(se) {
		cfs_rq = cfs_rq_of(se);
1295
		put_prev_entity(cfs_rq, se);
1296 1297 1298
	}
}

1299
#ifdef CONFIG_SMP
1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310
/**************************************************
 * Fair scheduling class load-balancing methods:
 */

/*
 * Load-balancing iterator. Note: while the runqueue stays locked
 * during the whole iteration, the current task might be
 * dequeued so the iterator has to be dequeue-safe. Here we
 * achieve that by always pre-iterating before returning
 * the current task:
 */
A
Alexey Dobriyan 已提交
1311
static struct task_struct *
1312
__load_balance_iterator(struct cfs_rq *cfs_rq, struct list_head *next)
1313
{
D
Dhaval Giani 已提交
1314 1315
	struct task_struct *p = NULL;
	struct sched_entity *se;
1316

1317
	while (next != &cfs_rq->tasks) {
1318 1319
		se = list_entry(next, struct sched_entity, group_node);
		next = next->next;
D
Dhaval Giani 已提交
1320

1321 1322 1323 1324 1325 1326
		/* Skip over entities that are not tasks */
		if (entity_is_task(se)) {
			p = task_of(se);
			break;
		}
	}
1327 1328

	cfs_rq->balance_iterator = next;
1329 1330 1331 1332 1333 1334 1335
	return p;
}

static struct task_struct *load_balance_start_fair(void *arg)
{
	struct cfs_rq *cfs_rq = arg;

1336
	return __load_balance_iterator(cfs_rq, cfs_rq->tasks.next);
1337 1338 1339 1340 1341 1342
}

static struct task_struct *load_balance_next_fair(void *arg)
{
	struct cfs_rq *cfs_rq = arg;

1343
	return __load_balance_iterator(cfs_rq, cfs_rq->balance_iterator);
1344 1345
}

1346 1347
#ifdef CONFIG_FAIR_GROUP_SCHED
static int cfs_rq_best_prio(struct cfs_rq *cfs_rq)
1348
{
1349 1350
	struct sched_entity *curr;
	struct task_struct *p;
1351

1352 1353 1354 1355 1356 1357 1358 1359
	if (!cfs_rq->nr_running || !first_fair(cfs_rq))
		return MAX_PRIO;

	curr = cfs_rq->curr;
	if (!curr)
		curr = __pick_next_entity(cfs_rq);

	p = task_of(curr);
1360

1361
	return p->prio;
1362
}
1363
#endif
1364

P
Peter Williams 已提交
1365
static unsigned long
1366
load_balance_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
1367
		  unsigned long max_load_move,
1368 1369
		  struct sched_domain *sd, enum cpu_idle_type idle,
		  int *all_pinned, int *this_best_prio)
1370
{
1371
	struct cfs_rq *busy_cfs_rq;
1372
	long rem_load_move = max_load_move;
1373
	struct rq_iterator cfs_rq_iterator;
1374

1375 1376
	cfs_rq_iterator.start = load_balance_start_fair;
	cfs_rq_iterator.next = load_balance_next_fair;
1377

1378 1379 1380 1381 1382
	for_each_leaf_cfs_rq(busiest, busy_cfs_rq) {
#ifdef CONFIG_FAIR_GROUP_SCHED
		struct cfs_rq *this_cfs_rq;
		long imbalance;
		unsigned long maxload;
1383

1384
		this_cfs_rq = cpu_cfs_rq(busy_cfs_rq, this_cpu);
1385

1386 1387 1388
		imbalance = busy_cfs_rq->load.weight - this_cfs_rq->load.weight;
		/* Don't pull if this_cfs_rq has more load than busy_cfs_rq */
		if (imbalance <= 0)
1389 1390
			continue;

1391 1392 1393
		/* Don't pull more than imbalance/2 */
		imbalance /= 2;
		maxload = min(rem_load_move, imbalance);
1394

1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407
		*this_best_prio = cfs_rq_best_prio(this_cfs_rq);
#else
# define maxload rem_load_move
#endif
		/*
		 * pass busy_cfs_rq argument into
		 * load_balance_[start|next]_fair iterators
		 */
		cfs_rq_iterator.arg = busy_cfs_rq;
		rem_load_move -= balance_tasks(this_rq, this_cpu, busiest,
					       maxload, sd, idle, all_pinned,
					       this_best_prio,
					       &cfs_rq_iterator);
1408

1409
		if (rem_load_move <= 0)
1410 1411 1412
			break;
	}

P
Peter Williams 已提交
1413
	return max_load_move - rem_load_move;
1414 1415
}

1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438
static int
move_one_task_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
		   struct sched_domain *sd, enum cpu_idle_type idle)
{
	struct cfs_rq *busy_cfs_rq;
	struct rq_iterator cfs_rq_iterator;

	cfs_rq_iterator.start = load_balance_start_fair;
	cfs_rq_iterator.next = load_balance_next_fair;

	for_each_leaf_cfs_rq(busiest, busy_cfs_rq) {
		/*
		 * pass busy_cfs_rq argument into
		 * load_balance_[start|next]_fair iterators
		 */
		cfs_rq_iterator.arg = busy_cfs_rq;
		if (iter_move_one_task(this_rq, this_cpu, busiest, sd, idle,
				       &cfs_rq_iterator))
		    return 1;
	}

	return 0;
}
1439
#endif
1440

1441 1442 1443
/*
 * scheduler tick hitting a task of our scheduling class:
 */
P
Peter Zijlstra 已提交
1444
static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
1445 1446 1447 1448 1449 1450
{
	struct cfs_rq *cfs_rq;
	struct sched_entity *se = &curr->se;

	for_each_sched_entity(se) {
		cfs_rq = cfs_rq_of(se);
P
Peter Zijlstra 已提交
1451
		entity_tick(cfs_rq, se, queued);
1452 1453 1454
	}
}

1455
#define swap(a, b) do { typeof(a) tmp = (a); (a) = (b); (b) = tmp; } while (0)
1456

1457 1458 1459 1460 1461 1462 1463
/*
 * Share the fairness runtime between parent and child, thus the
 * total amount of pressure for CPU stays equal - new tasks
 * get a chance to run but frequent forkers are not allowed to
 * monopolize the CPU. Note: the parent runqueue is locked,
 * the child is not running yet.
 */
1464
static void task_new_fair(struct rq *rq, struct task_struct *p)
1465 1466
{
	struct cfs_rq *cfs_rq = task_cfs_rq(p);
1467
	struct sched_entity *se = &p->se, *curr = cfs_rq->curr;
1468
	int this_cpu = smp_processor_id();
1469 1470 1471

	sched_info_queued(p);

1472
	update_curr(cfs_rq);
1473
	place_entity(cfs_rq, se, 1);
1474

1475
	/* 'curr' will be NULL if the child belongs to a different group */
1476
	if (sysctl_sched_child_runs_first && this_cpu == task_cpu(p) &&
1477
			curr && curr->vruntime < se->vruntime) {
D
Dmitry Adamushko 已提交
1478
		/*
1479 1480 1481
		 * Upon rescheduling, sched_class::put_prev_task() will place
		 * 'current' within the tree based on its new key value.
		 */
1482 1483
		swap(curr->vruntime, se->vruntime);
	}
1484

1485
	enqueue_task_fair(rq, p, 0);
1486
	resched_task(rq->curr);
1487 1488
}

1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524
/*
 * Priority of the task has changed. Check to see if we preempt
 * the current task.
 */
static void prio_changed_fair(struct rq *rq, struct task_struct *p,
			      int oldprio, int running)
{
	/*
	 * Reschedule if we are currently running on this runqueue and
	 * our priority decreased, or if we are not currently running on
	 * this runqueue and our priority is higher than the current's
	 */
	if (running) {
		if (p->prio > oldprio)
			resched_task(rq->curr);
	} else
		check_preempt_curr(rq, p);
}

/*
 * We switched to the sched_fair class.
 */
static void switched_to_fair(struct rq *rq, struct task_struct *p,
			     int running)
{
	/*
	 * We were most likely switched from sched_rt, so
	 * kick off the schedule if running, otherwise just see
	 * if we can still preempt the current task.
	 */
	if (running)
		resched_task(rq->curr);
	else
		check_preempt_curr(rq, p);
}

1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537
/* Account for a task changing its policy or group.
 *
 * This routine is mostly called to set cfs_rq->curr field when a task
 * migrates between groups/classes.
 */
static void set_curr_task_fair(struct rq *rq)
{
	struct sched_entity *se = &rq->curr->se;

	for_each_sched_entity(se)
		set_next_entity(cfs_rq_of(se), se);
}

P
Peter Zijlstra 已提交
1538 1539 1540 1541 1542 1543 1544 1545 1546 1547
#ifdef CONFIG_FAIR_GROUP_SCHED
static void moved_group_fair(struct task_struct *p)
{
	struct cfs_rq *cfs_rq = task_cfs_rq(p);

	update_curr(cfs_rq);
	place_entity(cfs_rq, &p->se, 1);
}
#endif

1548 1549 1550
/*
 * All the scheduling class methods:
 */
1551 1552
static const struct sched_class fair_sched_class = {
	.next			= &idle_sched_class,
1553 1554 1555
	.enqueue_task		= enqueue_task_fair,
	.dequeue_task		= dequeue_task_fair,
	.yield_task		= yield_task_fair,
1556 1557 1558
#ifdef CONFIG_SMP
	.select_task_rq		= select_task_rq_fair,
#endif /* CONFIG_SMP */
1559

I
Ingo Molnar 已提交
1560
	.check_preempt_curr	= check_preempt_wakeup,
1561 1562 1563 1564

	.pick_next_task		= pick_next_task_fair,
	.put_prev_task		= put_prev_task_fair,

1565
#ifdef CONFIG_SMP
1566
	.load_balance		= load_balance_fair,
1567
	.move_one_task		= move_one_task_fair,
1568
#endif
1569

1570
	.set_curr_task          = set_curr_task_fair,
1571 1572
	.task_tick		= task_tick_fair,
	.task_new		= task_new_fair,
1573 1574 1575

	.prio_changed		= prio_changed_fair,
	.switched_to		= switched_to_fair,
P
Peter Zijlstra 已提交
1576 1577 1578 1579

#ifdef CONFIG_FAIR_GROUP_SCHED
	.moved_group		= moved_group_fair,
#endif
1580 1581 1582
};

#ifdef CONFIG_SCHED_DEBUG
1583
static void print_cfs_stats(struct seq_file *m, int cpu)
1584 1585 1586
{
	struct cfs_rq *cfs_rq;

1587
	rcu_read_lock();
1588
	for_each_leaf_cfs_rq(cpu_rq(cpu), cfs_rq)
1589
		print_cfs_rq(m, cpu, cfs_rq);
1590
	rcu_read_unlock();
1591 1592
}
#endif