sched_fair.c 32.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
/*
 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
 *
 *  Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
 *
 *  Interactivity improvements by Mike Galbraith
 *  (C) 2007 Mike Galbraith <efault@gmx.de>
 *
 *  Various enhancements by Dmitry Adamushko.
 *  (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
 *
 *  Group scheduling enhancements by Srivatsa Vaddagiri
 *  Copyright IBM Corporation, 2007
 *  Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
 *
 *  Scaled math optimizations by Thomas Gleixner
 *  Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
18 19 20
 *
 *  Adaptive scheduling granularity, math enhancements by Peter Zijlstra
 *  Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
21 22 23
 */

/*
24
 * Targeted preemption latency for CPU-bound tasks:
25
 * (default: 20ms * (1 + ilog(ncpus)), units: nanoseconds)
26
 *
27
 * NOTE: this latency value is not the same as the concept of
I
Ingo Molnar 已提交
28 29 30
 * 'timeslice length' - timeslices in CFS are of variable length
 * and have no persistent notion like in traditional, time-slice
 * based scheduling concepts.
31
 *
I
Ingo Molnar 已提交
32 33
 * (to see the precise effective timeslice length of your workload,
 *  run vmstat and monitor the context-switches (cs) field)
34
 */
I
Ingo Molnar 已提交
35
unsigned int sysctl_sched_latency = 20000000ULL;
36 37

/*
38
 * Minimal preemption granularity for CPU-bound tasks:
39
 * (default: 4 msec * (1 + ilog(ncpus)), units: nanoseconds)
40
 */
41
unsigned int sysctl_sched_min_granularity = 4000000ULL;
42 43

/*
44 45
 * is kept at sysctl_sched_latency / sysctl_sched_min_granularity
 */
46
static unsigned int sched_nr_latency = 5;
47 48 49 50

/*
 * After fork, child runs first. (default) If set to 0 then
 * parent will (try to) run first.
51
 */
52
const_debug unsigned int sysctl_sched_child_runs_first = 1;
53

54 55 56 57 58 59 60 61
/*
 * sys_sched_yield() compat mode
 *
 * This option switches the agressive yield implementation of the
 * old scheduler back on.
 */
unsigned int __read_mostly sysctl_sched_compat_yield;

62 63
/*
 * SCHED_BATCH wake-up granularity.
64
 * (default: 10 msec * (1 + ilog(ncpus)), units: nanoseconds)
65 66 67 68 69
 *
 * This option delays the preemption effects of decoupled workloads
 * and reduces their over-scheduling. Synchronous workloads will still
 * have immediate wakeup/sleep latencies.
 */
I
Ingo Molnar 已提交
70
unsigned int sysctl_sched_batch_wakeup_granularity = 10000000UL;
71 72 73

/*
 * SCHED_OTHER wake-up granularity.
74
 * (default: 10 msec * (1 + ilog(ncpus)), units: nanoseconds)
75 76 77 78 79
 *
 * This option delays the preemption effects of decoupled workloads
 * and reduces their over-scheduling. Synchronous workloads will still
 * have immediate wakeup/sleep latencies.
 */
I
Ingo Molnar 已提交
80
unsigned int sysctl_sched_wakeup_granularity = 10000000UL;
81

82 83
const_debug unsigned int sysctl_sched_migration_cost = 500000UL;

84 85 86 87
/**************************************************************
 * CFS operations on generic schedulable entities:
 */

88
#ifdef CONFIG_FAIR_GROUP_SCHED
89

90
/* cpu runqueue to which this cfs_rq is attached */
91 92
static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
{
93
	return cfs_rq->rq;
94 95
}

96 97
/* An entity is a task if it doesn't "own" a runqueue */
#define entity_is_task(se)	(!se->my_q)
98

99
#else	/* CONFIG_FAIR_GROUP_SCHED */
100

101 102 103
static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
{
	return container_of(cfs_rq, struct rq, cfs);
104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119
}

#define entity_is_task(se)	1

#endif	/* CONFIG_FAIR_GROUP_SCHED */

static inline struct task_struct *task_of(struct sched_entity *se)
{
	return container_of(se, struct task_struct, se);
}


/**************************************************************
 * Scheduling class tree data structure manipulation methods:
 */

120
static inline u64 max_vruntime(u64 min_vruntime, u64 vruntime)
121
{
122 123
	s64 delta = (s64)(vruntime - min_vruntime);
	if (delta > 0)
124 125 126 127 128
		min_vruntime = vruntime;

	return min_vruntime;
}

129
static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
P
Peter Zijlstra 已提交
130 131 132 133 134 135 136 137
{
	s64 delta = (s64)(vruntime - min_vruntime);
	if (delta < 0)
		min_vruntime = vruntime;

	return min_vruntime;
}

138
static inline s64 entity_key(struct cfs_rq *cfs_rq, struct sched_entity *se)
139
{
140
	return se->vruntime - cfs_rq->min_vruntime;
141 142
}

143 144 145
/*
 * Enqueue an entity into the rb-tree:
 */
146
static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
147 148 149 150
{
	struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
	struct rb_node *parent = NULL;
	struct sched_entity *entry;
151
	s64 key = entity_key(cfs_rq, se);
152 153 154 155 156 157 158 159 160 161 162 163
	int leftmost = 1;

	/*
	 * Find the right place in the rbtree:
	 */
	while (*link) {
		parent = *link;
		entry = rb_entry(parent, struct sched_entity, run_node);
		/*
		 * We dont care about collisions. Nodes with
		 * the same key stay together.
		 */
164
		if (key < entity_key(cfs_rq, entry)) {
165 166 167 168 169 170 171 172 173 174 175 176
			link = &parent->rb_left;
		} else {
			link = &parent->rb_right;
			leftmost = 0;
		}
	}

	/*
	 * Maintain a cache of leftmost tree entries (it is frequently
	 * used):
	 */
	if (leftmost)
I
Ingo Molnar 已提交
177
		cfs_rq->rb_leftmost = &se->run_node;
178 179 180 181 182

	rb_link_node(&se->run_node, parent, link);
	rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline);
}

183
static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
184 185
{
	if (cfs_rq->rb_leftmost == &se->run_node)
I
Ingo Molnar 已提交
186
		cfs_rq->rb_leftmost = rb_next(&se->run_node);
I
Ingo Molnar 已提交
187

188 189 190 191 192 193 194 195 196 197 198 199 200
	rb_erase(&se->run_node, &cfs_rq->tasks_timeline);
}

static inline struct rb_node *first_fair(struct cfs_rq *cfs_rq)
{
	return cfs_rq->rb_leftmost;
}

static struct sched_entity *__pick_next_entity(struct cfs_rq *cfs_rq)
{
	return rb_entry(first_fair(cfs_rq), struct sched_entity, run_node);
}

201 202 203 204 205 206 207 208 209 210 211 212 213 214 215
static inline struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
{
	struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
	struct sched_entity *se = NULL;
	struct rb_node *parent;

	while (*link) {
		parent = *link;
		se = rb_entry(parent, struct sched_entity, run_node);
		link = &parent->rb_right;
	}

	return se;
}

216 217 218 219
/**************************************************************
 * Scheduling class statistics methods:
 */

220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235
#ifdef CONFIG_SCHED_DEBUG
int sched_nr_latency_handler(struct ctl_table *table, int write,
		struct file *filp, void __user *buffer, size_t *lenp,
		loff_t *ppos)
{
	int ret = proc_dointvec_minmax(table, write, filp, buffer, lenp, ppos);

	if (ret || !write)
		return ret;

	sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency,
					sysctl_sched_min_granularity);

	return 0;
}
#endif
236 237 238 239 240 241 242 243 244

/*
 * The idea is to set a period in which each task runs once.
 *
 * When there are too many tasks (sysctl_sched_nr_latency) we have to stretch
 * this period because otherwise the slices get too small.
 *
 * p = (nr <= nl) ? l : l*nr/nl
 */
245 246 247
static u64 __sched_period(unsigned long nr_running)
{
	u64 period = sysctl_sched_latency;
248
	unsigned long nr_latency = sched_nr_latency;
249 250

	if (unlikely(nr_running > nr_latency)) {
251
		period = sysctl_sched_min_granularity;
252 253 254 255 256 257
		period *= nr_running;
	}

	return period;
}

258 259 260 261 262 263
/*
 * We calculate the wall-time slice from the period by taking a part
 * proportional to the weight.
 *
 * s = p*w/rw
 */
P
Peter Zijlstra 已提交
264
static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
265
{
266
	u64 slice = __sched_period(cfs_rq->nr_running);
267

268 269
	slice *= se->load.weight;
	do_div(slice, cfs_rq->load.weight);
270

271
	return slice;
272 273
}

274 275 276 277 278 279
/*
 * We calculate the vruntime slice.
 *
 * vs = s/w = p/rw
 */
static u64 __sched_vslice(unsigned long rq_weight, unsigned long nr_running)
P
Peter Zijlstra 已提交
280
{
281
	u64 vslice = __sched_period(nr_running);
P
Peter Zijlstra 已提交
282

P
Peter Zijlstra 已提交
283
	vslice *= NICE_0_LOAD;
284
	do_div(vslice, rq_weight);
P
Peter Zijlstra 已提交
285

286 287
	return vslice;
}
288

289 290 291 292 293 294 295 296 297
static u64 sched_vslice(struct cfs_rq *cfs_rq)
{
	return __sched_vslice(cfs_rq->load.weight, cfs_rq->nr_running);
}

static u64 sched_vslice_add(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
	return __sched_vslice(cfs_rq->load.weight + se->load.weight,
			cfs_rq->nr_running + 1);
P
Peter Zijlstra 已提交
298 299
}

300 301 302 303 304
/*
 * Update the current task's runtime statistics. Skip current tasks that
 * are not in our scheduling class.
 */
static inline void
I
Ingo Molnar 已提交
305 306
__update_curr(struct cfs_rq *cfs_rq, struct sched_entity *curr,
	      unsigned long delta_exec)
307
{
308
	unsigned long delta_exec_weighted;
P
Peter Zijlstra 已提交
309
	u64 vruntime;
310

311
	schedstat_set(curr->exec_max, max((u64)delta_exec, curr->exec_max));
312 313

	curr->sum_exec_runtime += delta_exec;
314
	schedstat_add(cfs_rq, exec_clock, delta_exec);
I
Ingo Molnar 已提交
315 316 317 318 319 320
	delta_exec_weighted = delta_exec;
	if (unlikely(curr->load.weight != NICE_0_LOAD)) {
		delta_exec_weighted = calc_delta_fair(delta_exec_weighted,
							&curr->load);
	}
	curr->vruntime += delta_exec_weighted;
321 322 323 324 325 326

	/*
	 * maintain cfs_rq->min_vruntime to be a monotonic increasing
	 * value tracking the leftmost vruntime in the tree.
	 */
	if (first_fair(cfs_rq)) {
P
Peter Zijlstra 已提交
327 328
		vruntime = min_vruntime(curr->vruntime,
				__pick_next_entity(cfs_rq)->vruntime);
329
	} else
P
Peter Zijlstra 已提交
330
		vruntime = curr->vruntime;
331 332

	cfs_rq->min_vruntime =
P
Peter Zijlstra 已提交
333
		max_vruntime(cfs_rq->min_vruntime, vruntime);
334 335
}

336
static void update_curr(struct cfs_rq *cfs_rq)
337
{
338
	struct sched_entity *curr = cfs_rq->curr;
I
Ingo Molnar 已提交
339
	u64 now = rq_of(cfs_rq)->clock;
340 341 342 343 344 345 346 347 348 349
	unsigned long delta_exec;

	if (unlikely(!curr))
		return;

	/*
	 * Get the amount of time the current task was running
	 * since the last time we changed load (this cannot
	 * overflow on 32 bits):
	 */
I
Ingo Molnar 已提交
350
	delta_exec = (unsigned long)(now - curr->exec_start);
351

I
Ingo Molnar 已提交
352 353
	__update_curr(cfs_rq, curr, delta_exec);
	curr->exec_start = now;
354 355 356 357 358 359

	if (entity_is_task(curr)) {
		struct task_struct *curtask = task_of(curr);

		cpuacct_charge(curtask, delta_exec);
	}
360 361 362
}

static inline void
363
update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
364
{
365
	schedstat_set(se->wait_start, rq_of(cfs_rq)->clock);
366 367 368 369 370
}

/*
 * Task is being enqueued - update stats:
 */
371
static void update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
372 373 374 375 376
{
	/*
	 * Are we enqueueing a waiting task? (for current tasks
	 * a dequeue/enqueue event is a NOP)
	 */
377
	if (se != cfs_rq->curr)
378
		update_stats_wait_start(cfs_rq, se);
379 380 381
}

static void
382
update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
383
{
384 385
	schedstat_set(se->wait_max, max(se->wait_max,
			rq_of(cfs_rq)->clock - se->wait_start));
I
Ingo Molnar 已提交
386
	schedstat_set(se->wait_start, 0);
387 388 389
}

static inline void
390
update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
391 392 393 394 395
{
	/*
	 * Mark the end of the wait period if dequeueing a
	 * waiting task:
	 */
396
	if (se != cfs_rq->curr)
397
		update_stats_wait_end(cfs_rq, se);
398 399 400 401 402 403
}

/*
 * We are picking a new current task - update its stats:
 */
static inline void
404
update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
405 406 407 408
{
	/*
	 * We are starting a new run period:
	 */
409
	se->exec_start = rq_of(cfs_rq)->clock;
410 411 412 413 414 415
}

/**************************************************
 * Scheduling class queueing methods:
 */

416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431
static void
account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
	update_load_add(&cfs_rq->load, se->load.weight);
	cfs_rq->nr_running++;
	se->on_rq = 1;
}

static void
account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
	update_load_sub(&cfs_rq->load, se->load.weight);
	cfs_rq->nr_running--;
	se->on_rq = 0;
}

432
static void enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
433 434 435
{
#ifdef CONFIG_SCHEDSTATS
	if (se->sleep_start) {
436
		u64 delta = rq_of(cfs_rq)->clock - se->sleep_start;
437 438 439 440 441 442 443 444 445 446 447

		if ((s64)delta < 0)
			delta = 0;

		if (unlikely(delta > se->sleep_max))
			se->sleep_max = delta;

		se->sleep_start = 0;
		se->sum_sleep_runtime += delta;
	}
	if (se->block_start) {
448
		u64 delta = rq_of(cfs_rq)->clock - se->block_start;
449 450 451 452 453 454 455 456 457

		if ((s64)delta < 0)
			delta = 0;

		if (unlikely(delta > se->block_max))
			se->block_max = delta;

		se->block_start = 0;
		se->sum_sleep_runtime += delta;
I
Ingo Molnar 已提交
458 459 460 461 462 463 464

		/*
		 * Blocking time is in units of nanosecs, so shift by 20 to
		 * get a milliseconds-range estimation of the amount of
		 * time that the task spent sleeping:
		 */
		if (unlikely(prof_on == SLEEP_PROFILING)) {
I
Ingo Molnar 已提交
465 466
			struct task_struct *tsk = task_of(se);

I
Ingo Molnar 已提交
467 468 469
			profile_hits(SLEEP_PROFILING, (void *)get_wchan(tsk),
				     delta >> 20);
		}
470 471 472 473
	}
#endif
}

P
Peter Zijlstra 已提交
474 475 476 477 478 479 480 481 482 483 484 485 486
static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
#ifdef CONFIG_SCHED_DEBUG
	s64 d = se->vruntime - cfs_rq->min_vruntime;

	if (d < 0)
		d = -d;

	if (d > 3*sysctl_sched_latency)
		schedstat_inc(cfs_rq, nr_spread_over);
#endif
}

487 488 489
static void
place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
{
P
Peter Zijlstra 已提交
490
	u64 vruntime;
491

P
Peter Zijlstra 已提交
492
	vruntime = cfs_rq->min_vruntime;
P
Peter Zijlstra 已提交
493

494
	if (sched_feat(TREE_AVG)) {
P
Peter Zijlstra 已提交
495 496
		struct sched_entity *last = __pick_last_entity(cfs_rq);
		if (last) {
P
Peter Zijlstra 已提交
497 498
			vruntime += last->vruntime;
			vruntime >>= 1;
P
Peter Zijlstra 已提交
499
		}
P
Peter Zijlstra 已提交
500
	} else if (sched_feat(APPROX_AVG) && cfs_rq->nr_running)
501
		vruntime += sched_vslice(cfs_rq)/2;
P
Peter Zijlstra 已提交
502

503 504 505 506 507 508
	/*
	 * The 'current' period is already promised to the current tasks,
	 * however the extra weight of the new task will slow them down a
	 * little, place the new task so that it fits in the slot that
	 * stays open at the end.
	 */
P
Peter Zijlstra 已提交
509
	if (initial && sched_feat(START_DEBIT))
510
		vruntime += sched_vslice_add(cfs_rq, se);
511

I
Ingo Molnar 已提交
512
	if (!initial) {
513
		/* sleeps upto a single latency don't count. */
514
		if (sched_feat(NEW_FAIR_SLEEPERS) && entity_is_task(se))
515 516
			vruntime -= sysctl_sched_latency;

517 518
		/* ensure we never gain time by being placed backwards. */
		vruntime = max_vruntime(se->vruntime, vruntime);
519 520
	}

P
Peter Zijlstra 已提交
521
	se->vruntime = vruntime;
522 523
}

524
static void
525
enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int wakeup)
526 527
{
	/*
528
	 * Update run-time statistics of the 'current'.
529
	 */
530
	update_curr(cfs_rq);
531

I
Ingo Molnar 已提交
532
	if (wakeup) {
533
		place_entity(cfs_rq, se, 0);
534
		enqueue_sleeper(cfs_rq, se);
I
Ingo Molnar 已提交
535
	}
536

537
	update_stats_enqueue(cfs_rq, se);
P
Peter Zijlstra 已提交
538
	check_spread(cfs_rq, se);
539 540
	if (se != cfs_rq->curr)
		__enqueue_entity(cfs_rq, se);
541
	account_entity_enqueue(cfs_rq, se);
542 543 544
}

static void
545
dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int sleep)
546
{
547 548 549 550 551
	/*
	 * Update run-time statistics of the 'current'.
	 */
	update_curr(cfs_rq);

552
	update_stats_dequeue(cfs_rq, se);
553
	if (sleep) {
P
Peter Zijlstra 已提交
554
#ifdef CONFIG_SCHEDSTATS
555 556 557 558
		if (entity_is_task(se)) {
			struct task_struct *tsk = task_of(se);

			if (tsk->state & TASK_INTERRUPTIBLE)
559
				se->sleep_start = rq_of(cfs_rq)->clock;
560
			if (tsk->state & TASK_UNINTERRUPTIBLE)
561
				se->block_start = rq_of(cfs_rq)->clock;
562
		}
563
#endif
P
Peter Zijlstra 已提交
564 565
	}

566
	if (se != cfs_rq->curr)
567 568
		__dequeue_entity(cfs_rq, se);
	account_entity_dequeue(cfs_rq, se);
569 570 571 572 573
}

/*
 * Preempt the current task with a newly woken task if needed:
 */
574
static void
I
Ingo Molnar 已提交
575
check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
576
{
577 578
	unsigned long ideal_runtime, delta_exec;

P
Peter Zijlstra 已提交
579
	ideal_runtime = sched_slice(cfs_rq, curr);
580
	delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
I
Ingo Molnar 已提交
581
	if (delta_exec > ideal_runtime)
582 583 584
		resched_task(rq_of(cfs_rq)->curr);
}

585
static void
586
set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
587
{
588 589 590 591 592 593 594 595 596 597 598
	/* 'current' is not kept within the tree. */
	if (se->on_rq) {
		/*
		 * Any task has to be enqueued before it get to execute on
		 * a CPU. So account for the time it spent waiting on the
		 * runqueue.
		 */
		update_stats_wait_end(cfs_rq, se);
		__dequeue_entity(cfs_rq, se);
	}

599
	update_stats_curr_start(cfs_rq, se);
600
	cfs_rq->curr = se;
I
Ingo Molnar 已提交
601 602 603 604 605 606
#ifdef CONFIG_SCHEDSTATS
	/*
	 * Track our maximum slice length, if the CPU's load is at
	 * least twice that of our own weight (i.e. dont track it
	 * when there are only lesser-weight tasks around):
	 */
607
	if (rq_of(cfs_rq)->load.weight >= 2*se->load.weight) {
I
Ingo Molnar 已提交
608 609 610 611
		se->slice_max = max(se->slice_max,
			se->sum_exec_runtime - se->prev_sum_exec_runtime);
	}
#endif
612
	se->prev_sum_exec_runtime = se->sum_exec_runtime;
613 614
}

615
static struct sched_entity *pick_next_entity(struct cfs_rq *cfs_rq)
616
{
D
Dmitry Adamushko 已提交
617
	struct sched_entity *se = NULL;
618

D
Dmitry Adamushko 已提交
619 620 621 622
	if (first_fair(cfs_rq)) {
		se = __pick_next_entity(cfs_rq);
		set_next_entity(cfs_rq, se);
	}
623 624 625 626

	return se;
}

627
static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
628 629 630 631 632 633
{
	/*
	 * If still on the runqueue then deactivate_task()
	 * was not called and update_curr() has to be done:
	 */
	if (prev->on_rq)
634
		update_curr(cfs_rq);
635

P
Peter Zijlstra 已提交
636
	check_spread(cfs_rq, prev);
637
	if (prev->on_rq) {
638
		update_stats_wait_start(cfs_rq, prev);
639 640 641
		/* Put 'current' back into the tree. */
		__enqueue_entity(cfs_rq, prev);
	}
642
	cfs_rq->curr = NULL;
643 644 645 646 647
}

static void entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
{
	/*
648
	 * Update run-time statistics of the 'current'.
649
	 */
650
	update_curr(cfs_rq);
651

652
	if (cfs_rq->nr_running > 1 || !sched_feat(WAKEUP_PREEMPT))
I
Ingo Molnar 已提交
653
		check_preempt_tick(cfs_rq, curr);
654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687
}

/**************************************************
 * CFS operations on tasks:
 */

#ifdef CONFIG_FAIR_GROUP_SCHED

/* Walk up scheduling entities hierarchy */
#define for_each_sched_entity(se) \
		for (; se; se = se->parent)

static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
{
	return p->se.cfs_rq;
}

/* runqueue on which this entity is (to be) queued */
static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
{
	return se->cfs_rq;
}

/* runqueue "owned" by this group */
static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
{
	return grp->my_q;
}

/* Given a group's cfs_rq on one cpu, return its corresponding cfs_rq on
 * another cpu ('this_cpu')
 */
static inline struct cfs_rq *cpu_cfs_rq(struct cfs_rq *cfs_rq, int this_cpu)
{
S
Srivatsa Vaddagiri 已提交
688
	return cfs_rq->tg->cfs_rq[this_cpu];
689 690 691 692
}

/* Iterate thr' all leaf cfs_rq's on a runqueue */
#define for_each_leaf_cfs_rq(rq, cfs_rq) \
693
	list_for_each_entry_rcu(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list)
694

695 696 697
/* Do the two (enqueued) entities belong to the same group ? */
static inline int
is_same_group(struct sched_entity *se, struct sched_entity *pse)
698
{
699
	if (se->cfs_rq == pse->cfs_rq)
700 701 702 703 704
		return 1;

	return 0;
}

705 706 707 708 709
static inline struct sched_entity *parent_entity(struct sched_entity *se)
{
	return se->parent;
}

710 711
#define GROUP_IMBALANCE_PCT	20

712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743
#else	/* CONFIG_FAIR_GROUP_SCHED */

#define for_each_sched_entity(se) \
		for (; se; se = NULL)

static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
{
	return &task_rq(p)->cfs;
}

static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
{
	struct task_struct *p = task_of(se);
	struct rq *rq = task_rq(p);

	return &rq->cfs;
}

/* runqueue "owned" by this group */
static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
{
	return NULL;
}

static inline struct cfs_rq *cpu_cfs_rq(struct cfs_rq *cfs_rq, int this_cpu)
{
	return &cpu_rq(this_cpu)->cfs;
}

#define for_each_leaf_cfs_rq(rq, cfs_rq) \
		for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL)

744 745
static inline int
is_same_group(struct sched_entity *se, struct sched_entity *pse)
746 747 748 749
{
	return 1;
}

750 751 752 753 754
static inline struct sched_entity *parent_entity(struct sched_entity *se)
{
	return NULL;
}

755 756 757 758 759 760 761
#endif	/* CONFIG_FAIR_GROUP_SCHED */

/*
 * The enqueue_task method is called before nr_running is
 * increased. Here we update the fair scheduling stats and
 * then put the task into the rbtree:
 */
762
static void enqueue_task_fair(struct rq *rq, struct task_struct *p, int wakeup)
763 764
{
	struct cfs_rq *cfs_rq;
765 766 767
	struct sched_entity *se = &p->se,
			    *topse = NULL;	/* Highest schedulable entity */
	int incload = 1;
768 769

	for_each_sched_entity(se) {
770 771 772
		topse = se;
		if (se->on_rq) {
			incload = 0;
773
			break;
774
		}
775
		cfs_rq = cfs_rq_of(se);
776
		enqueue_entity(cfs_rq, se, wakeup);
777
		wakeup = 1;
778
	}
779 780 781 782 783 784
	/* Increment cpu load if we just enqueued the first task of a group on
	 * 'rq->cpu'. 'topse' represents the group to which task 'p' belongs
	 * at the highest grouping level.
	 */
	if (incload)
		inc_cpu_load(rq, topse->load.weight);
785 786 787 788 789 790 791
}

/*
 * The dequeue_task method is called before nr_running is
 * decreased. We remove the task from the rbtree and
 * update the fair scheduling stats:
 */
792
static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int sleep)
793 794
{
	struct cfs_rq *cfs_rq;
795 796 797
	struct sched_entity *se = &p->se,
			    *topse = NULL; 	/* Highest schedulable entity */
	int decload = 1;
798 799

	for_each_sched_entity(se) {
800
		topse = se;
801
		cfs_rq = cfs_rq_of(se);
802
		dequeue_entity(cfs_rq, se, sleep);
803
		/* Don't dequeue parent if it has other entities besides us */
804 805 806
		if (cfs_rq->load.weight) {
			if (parent_entity(se))
				decload = 0;
807
			break;
808
		}
809
		sleep = 1;
810
	}
811 812 813 814 815 816
	/* Decrement cpu load if we just dequeued the last task of a group on
	 * 'rq->cpu'. 'topse' represents the group to which task 'p' belongs
	 * at the highest grouping level.
	 */
	if (decload)
		dec_cpu_load(rq, topse->load.weight);
817 818 819
}

/*
820 821 822
 * sched_yield() support is very simple - we dequeue and enqueue.
 *
 * If compat_yield is turned on then we requeue to the end of the tree.
823
 */
824
static void yield_task_fair(struct rq *rq)
825
{
826 827 828
	struct task_struct *curr = rq->curr;
	struct cfs_rq *cfs_rq = task_cfs_rq(curr);
	struct sched_entity *rightmost, *se = &curr->se;
829 830

	/*
831 832 833 834 835
	 * Are we the only task in the tree?
	 */
	if (unlikely(cfs_rq->nr_running == 1))
		return;

836
	if (likely(!sysctl_sched_compat_yield) && curr->policy != SCHED_BATCH) {
837 838
		__update_rq_clock(rq);
		/*
839
		 * Update run-time statistics of the 'current'.
840
		 */
D
Dmitry Adamushko 已提交
841
		update_curr(cfs_rq);
842 843 844 845 846

		return;
	}
	/*
	 * Find the rightmost entry in the rbtree:
847
	 */
D
Dmitry Adamushko 已提交
848
	rightmost = __pick_last_entity(cfs_rq);
849 850 851
	/*
	 * Already in the rightmost position?
	 */
D
Dmitry Adamushko 已提交
852
	if (unlikely(rightmost->vruntime < se->vruntime))
853 854 855 856
		return;

	/*
	 * Minimally necessary key value to be last in the tree:
D
Dmitry Adamushko 已提交
857 858
	 * Upon rescheduling, sched_class::put_prev_task() will place
	 * 'current' within the tree based on its new key value.
859
	 */
860
	se->vruntime = rightmost->vruntime + 1;
861 862
}

863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927
/*
 * wake_idle() will wake a task on an idle cpu if task->cpu is
 * not idle and an idle cpu is available.  The span of cpus to
 * search starts with cpus closest then further out as needed,
 * so we always favor a closer, idle cpu.
 *
 * Returns the CPU we should wake onto.
 */
#if defined(ARCH_HAS_SCHED_WAKE_IDLE)
static int wake_idle(int cpu, struct task_struct *p)
{
	cpumask_t tmp;
	struct sched_domain *sd;
	int i;

	/*
	 * If it is idle, then it is the best cpu to run this task.
	 *
	 * This cpu is also the best, if it has more than one task already.
	 * Siblings must be also busy(in most cases) as they didn't already
	 * pickup the extra load from this cpu and hence we need not check
	 * sibling runqueue info. This will avoid the checks and cache miss
	 * penalities associated with that.
	 */
	if (idle_cpu(cpu) || cpu_rq(cpu)->nr_running > 1)
		return cpu;

	for_each_domain(cpu, sd) {
		if (sd->flags & SD_WAKE_IDLE) {
			cpus_and(tmp, sd->span, p->cpus_allowed);
			for_each_cpu_mask(i, tmp) {
				if (idle_cpu(i)) {
					if (i != task_cpu(p)) {
						schedstat_inc(p,
						       se.nr_wakeups_idle);
					}
					return i;
				}
			}
		} else {
			break;
		}
	}
	return cpu;
}
#else
static inline int wake_idle(int cpu, struct task_struct *p)
{
	return cpu;
}
#endif

#ifdef CONFIG_SMP
static int select_task_rq_fair(struct task_struct *p, int sync)
{
	int cpu, this_cpu;
	struct rq *rq;
	struct sched_domain *sd, *this_sd = NULL;
	int new_cpu;

	cpu      = task_cpu(p);
	rq       = task_rq(p);
	this_cpu = smp_processor_id();
	new_cpu  = cpu;

928 929 930
	if (cpu == this_cpu)
		goto out_set_cpu;

931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010
	for_each_domain(this_cpu, sd) {
		if (cpu_isset(cpu, sd->span)) {
			this_sd = sd;
			break;
		}
	}

	if (unlikely(!cpu_isset(this_cpu, p->cpus_allowed)))
		goto out_set_cpu;

	/*
	 * Check for affine wakeup and passive balancing possibilities.
	 */
	if (this_sd) {
		int idx = this_sd->wake_idx;
		unsigned int imbalance;
		unsigned long load, this_load;

		imbalance = 100 + (this_sd->imbalance_pct - 100) / 2;

		load = source_load(cpu, idx);
		this_load = target_load(this_cpu, idx);

		new_cpu = this_cpu; /* Wake to this CPU if we can */

		if (this_sd->flags & SD_WAKE_AFFINE) {
			unsigned long tl = this_load;
			unsigned long tl_per_task;

			/*
			 * Attract cache-cold tasks on sync wakeups:
			 */
			if (sync && !task_hot(p, rq->clock, this_sd))
				goto out_set_cpu;

			schedstat_inc(p, se.nr_wakeups_affine_attempts);
			tl_per_task = cpu_avg_load_per_task(this_cpu);

			/*
			 * If sync wakeup then subtract the (maximum possible)
			 * effect of the currently running task from the load
			 * of the current CPU:
			 */
			if (sync)
				tl -= current->se.load.weight;

			if ((tl <= load &&
				tl + target_load(cpu, idx) <= tl_per_task) ||
			       100*(tl + p->se.load.weight) <= imbalance*load) {
				/*
				 * This domain has SD_WAKE_AFFINE and
				 * p is cache cold in this domain, and
				 * there is no bad imbalance.
				 */
				schedstat_inc(this_sd, ttwu_move_affine);
				schedstat_inc(p, se.nr_wakeups_affine);
				goto out_set_cpu;
			}
		}

		/*
		 * Start passive balancing when half the imbalance_pct
		 * limit is reached.
		 */
		if (this_sd->flags & SD_WAKE_BALANCE) {
			if (imbalance*this_load <= 100*load) {
				schedstat_inc(this_sd, ttwu_move_balance);
				schedstat_inc(p, se.nr_wakeups_passive);
				goto out_set_cpu;
			}
		}
	}

	new_cpu = cpu; /* Could not wake to this_cpu. Wake to cpu instead */
out_set_cpu:
	return wake_idle(new_cpu, p);
}
#endif /* CONFIG_SMP */


1011 1012 1013
/*
 * Preempt the current task with a newly woken task if needed:
 */
I
Ingo Molnar 已提交
1014
static void check_preempt_wakeup(struct rq *rq, struct task_struct *p)
1015 1016
{
	struct task_struct *curr = rq->curr;
1017
	struct cfs_rq *cfs_rq = task_cfs_rq(curr);
1018
	struct sched_entity *se = &curr->se, *pse = &p->se;
1019
	unsigned long gran;
1020 1021

	if (unlikely(rt_prio(p->prio))) {
I
Ingo Molnar 已提交
1022
		update_rq_clock(rq);
1023
		update_curr(cfs_rq);
1024 1025 1026
		resched_task(curr);
		return;
	}
1027 1028 1029 1030 1031 1032
	/*
	 * Batch tasks do not preempt (their preemption is driven by
	 * the tick):
	 */
	if (unlikely(p->policy == SCHED_BATCH))
		return;
1033

1034 1035
	if (!sched_feat(WAKEUP_PREEMPT))
		return;
1036

1037 1038 1039
	while (!is_same_group(se, pse)) {
		se = parent_entity(se);
		pse = parent_entity(pse);
1040
	}
1041 1042 1043 1044 1045

	gran = sysctl_sched_wakeup_granularity;
	if (unlikely(se->load.weight != NICE_0_LOAD))
		gran = calc_delta_fair(gran, &se->load);

1046
	if (pse->vruntime + gran < se->vruntime)
1047
		resched_task(curr);
1048 1049
}

1050
static struct task_struct *pick_next_task_fair(struct rq *rq)
1051 1052 1053 1054 1055 1056 1057 1058
{
	struct cfs_rq *cfs_rq = &rq->cfs;
	struct sched_entity *se;

	if (unlikely(!cfs_rq->nr_running))
		return NULL;

	do {
1059
		se = pick_next_entity(cfs_rq);
1060 1061 1062 1063 1064 1065 1066 1067 1068
		cfs_rq = group_cfs_rq(se);
	} while (cfs_rq);

	return task_of(se);
}

/*
 * Account for a descheduled task:
 */
1069
static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
1070 1071 1072 1073 1074 1075
{
	struct sched_entity *se = &prev->se;
	struct cfs_rq *cfs_rq;

	for_each_sched_entity(se) {
		cfs_rq = cfs_rq_of(se);
1076
		put_prev_entity(cfs_rq, se);
1077 1078 1079
	}
}

1080
#ifdef CONFIG_SMP
1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091
/**************************************************
 * Fair scheduling class load-balancing methods:
 */

/*
 * Load-balancing iterator. Note: while the runqueue stays locked
 * during the whole iteration, the current task might be
 * dequeued so the iterator has to be dequeue-safe. Here we
 * achieve that by always pre-iterating before returning
 * the current task:
 */
A
Alexey Dobriyan 已提交
1092
static struct task_struct *
1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119
__load_balance_iterator(struct cfs_rq *cfs_rq, struct rb_node *curr)
{
	struct task_struct *p;

	if (!curr)
		return NULL;

	p = rb_entry(curr, struct task_struct, se.run_node);
	cfs_rq->rb_load_balance_curr = rb_next(curr);

	return p;
}

static struct task_struct *load_balance_start_fair(void *arg)
{
	struct cfs_rq *cfs_rq = arg;

	return __load_balance_iterator(cfs_rq, first_fair(cfs_rq));
}

static struct task_struct *load_balance_next_fair(void *arg)
{
	struct cfs_rq *cfs_rq = arg;

	return __load_balance_iterator(cfs_rq, cfs_rq->rb_load_balance_curr);
}

P
Peter Williams 已提交
1120
static unsigned long
1121
load_balance_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
1122
		  unsigned long max_load_move,
1123 1124
		  struct sched_domain *sd, enum cpu_idle_type idle,
		  int *all_pinned, int *this_best_prio)
1125 1126 1127 1128
{
	struct cfs_rq *busy_cfs_rq;
	long rem_load_move = max_load_move;
	struct rq_iterator cfs_rq_iterator;
1129
	unsigned long load_moved;
1130 1131 1132 1133 1134

	cfs_rq_iterator.start = load_balance_start_fair;
	cfs_rq_iterator.next = load_balance_next_fair;

	for_each_leaf_cfs_rq(busiest, busy_cfs_rq) {
1135
#ifdef CONFIG_FAIR_GROUP_SCHED
1136 1137 1138 1139
		struct cfs_rq *this_cfs_rq = busy_cfs_rq->tg->cfs_rq[this_cpu];
		unsigned long maxload, task_load, group_weight;
		unsigned long thisload, per_task_load;
		struct sched_entity *se = busy_cfs_rq->tg->se[busiest->cpu];
1140

1141 1142
		task_load = busy_cfs_rq->load.weight;
		group_weight = se->load.weight;
1143

1144 1145 1146 1147 1148 1149 1150 1151 1152 1153
		/*
		 * 'group_weight' is contributed by tasks of total weight
		 * 'task_load'. To move 'rem_load_move' worth of weight only,
		 * we need to move a maximum task load of:
		 *
		 * 	maxload = (remload / group_weight) * task_load;
		 */
		maxload = (rem_load_move * task_load) / group_weight;

		if (!maxload || !task_load)
1154 1155
			continue;

1156 1157 1158 1159 1160 1161 1162 1163
		per_task_load = task_load / busy_cfs_rq->nr_running;
		/*
		 * balance_tasks will try to forcibly move atleast one task if
		 * possible (because of SCHED_LOAD_SCALE_FUZZ). Avoid that if
		 * maxload is less than GROUP_IMBALANCE_FUZZ% the per_task_load.
		 */
		 if (100 * maxload < GROUP_IMBALANCE_PCT * per_task_load)
			continue;
1164

1165 1166 1167
		/* Disable priority-based load balance */
		*this_best_prio = 0;
		thisload = this_cfs_rq->load.weight;
1168
#else
1169
# define maxload rem_load_move
1170
#endif
1171 1172
		/*
		 * pass busy_cfs_rq argument into
1173 1174 1175
		 * load_balance_[start|next]_fair iterators
		 */
		cfs_rq_iterator.arg = busy_cfs_rq;
1176
		load_moved = balance_tasks(this_rq, this_cpu, busiest,
1177 1178 1179
					       maxload, sd, idle, all_pinned,
					       this_best_prio,
					       &cfs_rq_iterator);
1180

1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202
#ifdef CONFIG_FAIR_GROUP_SCHED
		/*
		 * load_moved holds the task load that was moved. The
		 * effective (group) weight moved would be:
		 * 	load_moved_eff = load_moved/task_load * group_weight;
		 */
		load_moved = (group_weight * load_moved) / task_load;

		/* Adjust shares on both cpus to reflect load_moved */
		group_weight -= load_moved;
		set_se_shares(se, group_weight);

		se = busy_cfs_rq->tg->se[this_cpu];
		if (!thisload)
			group_weight = load_moved;
		else
			group_weight = se->load.weight + load_moved;
		set_se_shares(se, group_weight);
#endif

		rem_load_move -= load_moved;

1203
		if (rem_load_move <= 0)
1204 1205 1206
			break;
	}

P
Peter Williams 已提交
1207
	return max_load_move - rem_load_move;
1208 1209
}

1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232
static int
move_one_task_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
		   struct sched_domain *sd, enum cpu_idle_type idle)
{
	struct cfs_rq *busy_cfs_rq;
	struct rq_iterator cfs_rq_iterator;

	cfs_rq_iterator.start = load_balance_start_fair;
	cfs_rq_iterator.next = load_balance_next_fair;

	for_each_leaf_cfs_rq(busiest, busy_cfs_rq) {
		/*
		 * pass busy_cfs_rq argument into
		 * load_balance_[start|next]_fair iterators
		 */
		cfs_rq_iterator.arg = busy_cfs_rq;
		if (iter_move_one_task(this_rq, this_cpu, busiest, sd, idle,
				       &cfs_rq_iterator))
		    return 1;
	}

	return 0;
}
1233
#endif
1234

1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248
/*
 * scheduler tick hitting a task of our scheduling class:
 */
static void task_tick_fair(struct rq *rq, struct task_struct *curr)
{
	struct cfs_rq *cfs_rq;
	struct sched_entity *se = &curr->se;

	for_each_sched_entity(se) {
		cfs_rq = cfs_rq_of(se);
		entity_tick(cfs_rq, se);
	}
}

1249
#define swap(a, b) do { typeof(a) tmp = (a); (a) = (b); (b) = tmp; } while (0)
1250

1251 1252 1253 1254 1255 1256 1257
/*
 * Share the fairness runtime between parent and child, thus the
 * total amount of pressure for CPU stays equal - new tasks
 * get a chance to run but frequent forkers are not allowed to
 * monopolize the CPU. Note: the parent runqueue is locked,
 * the child is not running yet.
 */
1258
static void task_new_fair(struct rq *rq, struct task_struct *p)
1259 1260
{
	struct cfs_rq *cfs_rq = task_cfs_rq(p);
1261
	struct sched_entity *se = &p->se, *curr = cfs_rq->curr;
1262
	int this_cpu = smp_processor_id();
1263 1264 1265

	sched_info_queued(p);

1266
	update_curr(cfs_rq);
1267
	place_entity(cfs_rq, se, 1);
1268

1269
	/* 'curr' will be NULL if the child belongs to a different group */
1270
	if (sysctl_sched_child_runs_first && this_cpu == task_cpu(p) &&
1271
			curr && curr->vruntime < se->vruntime) {
D
Dmitry Adamushko 已提交
1272
		/*
1273 1274 1275
		 * Upon rescheduling, sched_class::put_prev_task() will place
		 * 'current' within the tree based on its new key value.
		 */
1276 1277
		swap(curr->vruntime, se->vruntime);
	}
1278

1279
	enqueue_task_fair(rq, p, 0);
1280
	resched_task(rq->curr);
1281 1282
}

1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295
/* Account for a task changing its policy or group.
 *
 * This routine is mostly called to set cfs_rq->curr field when a task
 * migrates between groups/classes.
 */
static void set_curr_task_fair(struct rq *rq)
{
	struct sched_entity *se = &rq->curr->se;

	for_each_sched_entity(se)
		set_next_entity(cfs_rq_of(se), se);
}

1296 1297 1298
/*
 * All the scheduling class methods:
 */
1299 1300
static const struct sched_class fair_sched_class = {
	.next			= &idle_sched_class,
1301 1302 1303
	.enqueue_task		= enqueue_task_fair,
	.dequeue_task		= dequeue_task_fair,
	.yield_task		= yield_task_fair,
1304 1305 1306
#ifdef CONFIG_SMP
	.select_task_rq		= select_task_rq_fair,
#endif /* CONFIG_SMP */
1307

I
Ingo Molnar 已提交
1308
	.check_preempt_curr	= check_preempt_wakeup,
1309 1310 1311 1312

	.pick_next_task		= pick_next_task_fair,
	.put_prev_task		= put_prev_task_fair,

1313
#ifdef CONFIG_SMP
1314
	.load_balance		= load_balance_fair,
1315
	.move_one_task		= move_one_task_fair,
1316
#endif
1317

1318
	.set_curr_task          = set_curr_task_fair,
1319 1320 1321 1322 1323
	.task_tick		= task_tick_fair,
	.task_new		= task_new_fair,
};

#ifdef CONFIG_SCHED_DEBUG
1324
static void print_cfs_stats(struct seq_file *m, int cpu)
1325 1326 1327
{
	struct cfs_rq *cfs_rq;

S
Srivatsa Vaddagiri 已提交
1328 1329 1330
#ifdef CONFIG_FAIR_GROUP_SCHED
	print_cfs_rq(m, cpu, &cpu_rq(cpu)->cfs);
#endif
1331
	lock_task_group_list();
1332
	for_each_leaf_cfs_rq(cpu_rq(cpu), cfs_rq)
1333
		print_cfs_rq(m, cpu, cfs_rq);
1334
	unlock_task_group_list();
1335 1336
}
#endif