sched_fair.c 40.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
/*
 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
 *
 *  Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
 *
 *  Interactivity improvements by Mike Galbraith
 *  (C) 2007 Mike Galbraith <efault@gmx.de>
 *
 *  Various enhancements by Dmitry Adamushko.
 *  (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
 *
 *  Group scheduling enhancements by Srivatsa Vaddagiri
 *  Copyright IBM Corporation, 2007
 *  Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
 *
 *  Scaled math optimizations by Thomas Gleixner
 *  Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
18 19 20
 *
 *  Adaptive scheduling granularity, math enhancements by Peter Zijlstra
 *  Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
21 22
 */

A
Arjan van de Ven 已提交
23 24
#include <linux/latencytop.h>

25
/*
26
 * Targeted preemption latency for CPU-bound tasks:
27
 * (default: 20ms * (1 + ilog(ncpus)), units: nanoseconds)
28
 *
29
 * NOTE: this latency value is not the same as the concept of
I
Ingo Molnar 已提交
30 31 32
 * 'timeslice length' - timeslices in CFS are of variable length
 * and have no persistent notion like in traditional, time-slice
 * based scheduling concepts.
33
 *
I
Ingo Molnar 已提交
34 35
 * (to see the precise effective timeslice length of your workload,
 *  run vmstat and monitor the context-switches (cs) field)
36
 */
I
Ingo Molnar 已提交
37
unsigned int sysctl_sched_latency = 20000000ULL;
38 39

/*
40
 * Minimal preemption granularity for CPU-bound tasks:
41
 * (default: 4 msec * (1 + ilog(ncpus)), units: nanoseconds)
42
 */
43
unsigned int sysctl_sched_min_granularity = 4000000ULL;
44 45

/*
46 47
 * is kept at sysctl_sched_latency / sysctl_sched_min_granularity
 */
48
static unsigned int sched_nr_latency = 5;
49 50 51 52

/*
 * After fork, child runs first. (default) If set to 0 then
 * parent will (try to) run first.
53
 */
54
const_debug unsigned int sysctl_sched_child_runs_first = 1;
55

56 57 58 59 60 61 62 63
/*
 * sys_sched_yield() compat mode
 *
 * This option switches the agressive yield implementation of the
 * old scheduler back on.
 */
unsigned int __read_mostly sysctl_sched_compat_yield;

64 65
/*
 * SCHED_OTHER wake-up granularity.
66
 * (default: 5 msec * (1 + ilog(ncpus)), units: nanoseconds)
67 68 69 70 71
 *
 * This option delays the preemption effects of decoupled workloads
 * and reduces their over-scheduling. Synchronous workloads will still
 * have immediate wakeup/sleep latencies.
 */
72
unsigned int sysctl_sched_wakeup_granularity = 5000000UL;
73

74 75
const_debug unsigned int sysctl_sched_migration_cost = 500000UL;

76 77 78 79
/**************************************************************
 * CFS operations on generic schedulable entities:
 */

P
Peter Zijlstra 已提交
80 81 82 83 84
static inline struct task_struct *task_of(struct sched_entity *se)
{
	return container_of(se, struct task_struct, se);
}

85
#ifdef CONFIG_FAIR_GROUP_SCHED
86

87
/* cpu runqueue to which this cfs_rq is attached */
88 89
static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
{
90
	return cfs_rq->rq;
91 92
}

93 94
/* An entity is a task if it doesn't "own" a runqueue */
#define entity_is_task(se)	(!se->my_q)
95

P
Peter Zijlstra 已提交
96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143
/* Walk up scheduling entities hierarchy */
#define for_each_sched_entity(se) \
		for (; se; se = se->parent)

static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
{
	return p->se.cfs_rq;
}

/* runqueue on which this entity is (to be) queued */
static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
{
	return se->cfs_rq;
}

/* runqueue "owned" by this group */
static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
{
	return grp->my_q;
}

/* Given a group's cfs_rq on one cpu, return its corresponding cfs_rq on
 * another cpu ('this_cpu')
 */
static inline struct cfs_rq *cpu_cfs_rq(struct cfs_rq *cfs_rq, int this_cpu)
{
	return cfs_rq->tg->cfs_rq[this_cpu];
}

/* Iterate thr' all leaf cfs_rq's on a runqueue */
#define for_each_leaf_cfs_rq(rq, cfs_rq) \
	list_for_each_entry_rcu(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list)

/* Do the two (enqueued) entities belong to the same group ? */
static inline int
is_same_group(struct sched_entity *se, struct sched_entity *pse)
{
	if (se->cfs_rq == pse->cfs_rq)
		return 1;

	return 0;
}

static inline struct sched_entity *parent_entity(struct sched_entity *se)
{
	return se->parent;
}

144
#else	/* CONFIG_FAIR_GROUP_SCHED */
145

146 147 148
static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
{
	return container_of(cfs_rq, struct rq, cfs);
149 150 151 152
}

#define entity_is_task(se)	1

P
Peter Zijlstra 已提交
153 154
#define for_each_sched_entity(se) \
		for (; se; se = NULL)
155

P
Peter Zijlstra 已提交
156
static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
157
{
P
Peter Zijlstra 已提交
158
	return &task_rq(p)->cfs;
159 160
}

P
Peter Zijlstra 已提交
161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195
static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
{
	struct task_struct *p = task_of(se);
	struct rq *rq = task_rq(p);

	return &rq->cfs;
}

/* runqueue "owned" by this group */
static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
{
	return NULL;
}

static inline struct cfs_rq *cpu_cfs_rq(struct cfs_rq *cfs_rq, int this_cpu)
{
	return &cpu_rq(this_cpu)->cfs;
}

#define for_each_leaf_cfs_rq(rq, cfs_rq) \
		for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL)

static inline int
is_same_group(struct sched_entity *se, struct sched_entity *pse)
{
	return 1;
}

static inline struct sched_entity *parent_entity(struct sched_entity *se)
{
	return NULL;
}

#endif	/* CONFIG_FAIR_GROUP_SCHED */

196 197 198 199 200

/**************************************************************
 * Scheduling class tree data structure manipulation methods:
 */

201
static inline u64 max_vruntime(u64 min_vruntime, u64 vruntime)
202
{
203 204
	s64 delta = (s64)(vruntime - min_vruntime);
	if (delta > 0)
205 206 207 208 209
		min_vruntime = vruntime;

	return min_vruntime;
}

210
static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
P
Peter Zijlstra 已提交
211 212 213 214 215 216 217 218
{
	s64 delta = (s64)(vruntime - min_vruntime);
	if (delta < 0)
		min_vruntime = vruntime;

	return min_vruntime;
}

219
static inline s64 entity_key(struct cfs_rq *cfs_rq, struct sched_entity *se)
220
{
221
	return se->vruntime - cfs_rq->min_vruntime;
222 223
}

224 225 226
/*
 * Enqueue an entity into the rb-tree:
 */
227
static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
228 229 230 231
{
	struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
	struct rb_node *parent = NULL;
	struct sched_entity *entry;
232
	s64 key = entity_key(cfs_rq, se);
233 234 235 236 237 238 239 240 241 242 243 244
	int leftmost = 1;

	/*
	 * Find the right place in the rbtree:
	 */
	while (*link) {
		parent = *link;
		entry = rb_entry(parent, struct sched_entity, run_node);
		/*
		 * We dont care about collisions. Nodes with
		 * the same key stay together.
		 */
245
		if (key < entity_key(cfs_rq, entry)) {
246 247 248 249 250 251 252 253 254 255 256
			link = &parent->rb_left;
		} else {
			link = &parent->rb_right;
			leftmost = 0;
		}
	}

	/*
	 * Maintain a cache of leftmost tree entries (it is frequently
	 * used):
	 */
P
Peter Zijlstra 已提交
257
	if (leftmost) {
I
Ingo Molnar 已提交
258
		cfs_rq->rb_leftmost = &se->run_node;
P
Peter Zijlstra 已提交
259 260 261 262 263 264 265
		/*
		 * maintain cfs_rq->min_vruntime to be a monotonic increasing
		 * value tracking the leftmost vruntime in the tree.
		 */
		cfs_rq->min_vruntime =
			max_vruntime(cfs_rq->min_vruntime, se->vruntime);
	}
266 267 268 269 270

	rb_link_node(&se->run_node, parent, link);
	rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline);
}

271
static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
272
{
P
Peter Zijlstra 已提交
273 274 275 276 277 278 279 280 281 282 283 284 285 286 287
	if (cfs_rq->rb_leftmost == &se->run_node) {
		struct rb_node *next_node;
		struct sched_entity *next;

		next_node = rb_next(&se->run_node);
		cfs_rq->rb_leftmost = next_node;

		if (next_node) {
			next = rb_entry(next_node,
					struct sched_entity, run_node);
			cfs_rq->min_vruntime =
				max_vruntime(cfs_rq->min_vruntime,
					     next->vruntime);
		}
	}
I
Ingo Molnar 已提交
288

289 290 291
	if (cfs_rq->next == se)
		cfs_rq->next = NULL;

292 293 294 295 296 297 298 299 300 301 302 303 304
	rb_erase(&se->run_node, &cfs_rq->tasks_timeline);
}

static inline struct rb_node *first_fair(struct cfs_rq *cfs_rq)
{
	return cfs_rq->rb_leftmost;
}

static struct sched_entity *__pick_next_entity(struct cfs_rq *cfs_rq)
{
	return rb_entry(first_fair(cfs_rq), struct sched_entity, run_node);
}

305 306
static inline struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
{
307
	struct rb_node *last = rb_last(&cfs_rq->tasks_timeline);
308

309 310
	if (!last)
		return NULL;
311 312

	return rb_entry(last, struct sched_entity, run_node);
313 314
}

315 316 317 318
/**************************************************************
 * Scheduling class statistics methods:
 */

319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334
#ifdef CONFIG_SCHED_DEBUG
int sched_nr_latency_handler(struct ctl_table *table, int write,
		struct file *filp, void __user *buffer, size_t *lenp,
		loff_t *ppos)
{
	int ret = proc_dointvec_minmax(table, write, filp, buffer, lenp, ppos);

	if (ret || !write)
		return ret;

	sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency,
					sysctl_sched_min_granularity);

	return 0;
}
#endif
335

336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363
/*
 * delta *= w / rw
 */
static inline unsigned long
calc_delta_weight(unsigned long delta, struct sched_entity *se)
{
	for_each_sched_entity(se) {
		delta = calc_delta_mine(delta,
				se->load.weight, &cfs_rq_of(se)->load);
	}

	return delta;
}

/*
 * delta *= rw / w
 */
static inline unsigned long
calc_delta_fair(unsigned long delta, struct sched_entity *se)
{
	for_each_sched_entity(se) {
		delta = calc_delta_mine(delta,
				cfs_rq_of(se)->load.weight, &se->load);
	}

	return delta;
}

364 365 366 367 368 369 370 371
/*
 * The idea is to set a period in which each task runs once.
 *
 * When there are too many tasks (sysctl_sched_nr_latency) we have to stretch
 * this period because otherwise the slices get too small.
 *
 * p = (nr <= nl) ? l : l*nr/nl
 */
372 373 374
static u64 __sched_period(unsigned long nr_running)
{
	u64 period = sysctl_sched_latency;
375
	unsigned long nr_latency = sched_nr_latency;
376 377

	if (unlikely(nr_running > nr_latency)) {
378
		period = sysctl_sched_min_granularity;
379 380 381 382 383 384
		period *= nr_running;
	}

	return period;
}

385 386 387 388 389 390
/*
 * We calculate the wall-time slice from the period by taking a part
 * proportional to the weight.
 *
 * s = p*w/rw
 */
P
Peter Zijlstra 已提交
391
static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
392
{
393
	return calc_delta_weight(__sched_period(cfs_rq->nr_running), se);
394 395
}

396
/*
397
 * We calculate the vruntime slice of a to be inserted task
398
 *
399
 * vs = s*rw/w = p
400
 */
401
static u64 sched_vslice_add(struct cfs_rq *cfs_rq, struct sched_entity *se)
P
Peter Zijlstra 已提交
402
{
403
	unsigned long nr_running = cfs_rq->nr_running;
P
Peter Zijlstra 已提交
404

405 406
	if (!se->on_rq)
		nr_running++;
P
Peter Zijlstra 已提交
407

408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428
	return __sched_period(nr_running);
}

/*
 * The goal of calc_delta_asym() is to be asymmetrically around NICE_0_LOAD, in
 * that it favours >=0 over <0.
 *
 *   -20         |
 *               |
 *     0 --------+-------
 *             .'
 *    19     .'
 *
 */
static unsigned long
calc_delta_asym(unsigned long delta, struct sched_entity *se)
{
	struct load_weight lw = {
		.weight = NICE_0_LOAD,
		.inv_weight = 1UL << (WMULT_SHIFT-NICE_0_SHIFT)
	};
429

430
	for_each_sched_entity(se) {
431
		struct load_weight *se_lw = &se->load;
P
Peter Zijlstra 已提交
432
		unsigned long rw = cfs_rq_of(se)->load.weight;
433

P
Peter Zijlstra 已提交
434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453
#ifdef CONFIG_FAIR_SCHED_GROUP
		struct cfs_rq *cfs_rq = se->my_q;
		struct task_group *tg = NULL

		if (cfs_rq)
			tg = cfs_rq->tg;

		if (tg && tg->shares < NICE_0_LOAD) {
			/*
			 * scale shares to what it would have been had
			 * tg->weight been NICE_0_LOAD:
			 *
			 *   weight = 1024 * shares / tg->weight
			 */
			lw.weight *= se->load.weight;
			lw.weight /= tg->shares;

			lw.inv_weight = 0;

			se_lw = &lw;
P
Peter Zijlstra 已提交
454
			rw += lw.weight - se->load.weight;
P
Peter Zijlstra 已提交
455 456 457
		} else
#endif

P
Peter Zijlstra 已提交
458
		if (se->load.weight < NICE_0_LOAD) {
459
			se_lw = &lw;
P
Peter Zijlstra 已提交
460 461
			rw += NICE_0_LOAD - se->load.weight;
		}
462

P
Peter Zijlstra 已提交
463
		delta = calc_delta_mine(delta, rw, se_lw);
464 465
	}

466
	return delta;
P
Peter Zijlstra 已提交
467 468
}

469 470 471 472 473
/*
 * Update the current task's runtime statistics. Skip current tasks that
 * are not in our scheduling class.
 */
static inline void
I
Ingo Molnar 已提交
474 475
__update_curr(struct cfs_rq *cfs_rq, struct sched_entity *curr,
	      unsigned long delta_exec)
476
{
477
	unsigned long delta_exec_weighted;
478

479
	schedstat_set(curr->exec_max, max((u64)delta_exec, curr->exec_max));
480 481

	curr->sum_exec_runtime += delta_exec;
482
	schedstat_add(cfs_rq, exec_clock, delta_exec);
483
	delta_exec_weighted = calc_delta_fair(delta_exec, curr);
I
Ingo Molnar 已提交
484
	curr->vruntime += delta_exec_weighted;
485 486
}

487
static void update_curr(struct cfs_rq *cfs_rq)
488
{
489
	struct sched_entity *curr = cfs_rq->curr;
I
Ingo Molnar 已提交
490
	u64 now = rq_of(cfs_rq)->clock;
491 492 493 494 495 496 497 498 499 500
	unsigned long delta_exec;

	if (unlikely(!curr))
		return;

	/*
	 * Get the amount of time the current task was running
	 * since the last time we changed load (this cannot
	 * overflow on 32 bits):
	 */
I
Ingo Molnar 已提交
501
	delta_exec = (unsigned long)(now - curr->exec_start);
502

I
Ingo Molnar 已提交
503 504
	__update_curr(cfs_rq, curr, delta_exec);
	curr->exec_start = now;
505 506 507 508 509 510

	if (entity_is_task(curr)) {
		struct task_struct *curtask = task_of(curr);

		cpuacct_charge(curtask, delta_exec);
	}
511 512 513
}

static inline void
514
update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
515
{
516
	schedstat_set(se->wait_start, rq_of(cfs_rq)->clock);
517 518 519 520 521
}

/*
 * Task is being enqueued - update stats:
 */
522
static void update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
523 524 525 526 527
{
	/*
	 * Are we enqueueing a waiting task? (for current tasks
	 * a dequeue/enqueue event is a NOP)
	 */
528
	if (se != cfs_rq->curr)
529
		update_stats_wait_start(cfs_rq, se);
530 531 532
}

static void
533
update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
534
{
535 536
	schedstat_set(se->wait_max, max(se->wait_max,
			rq_of(cfs_rq)->clock - se->wait_start));
537 538 539
	schedstat_set(se->wait_count, se->wait_count + 1);
	schedstat_set(se->wait_sum, se->wait_sum +
			rq_of(cfs_rq)->clock - se->wait_start);
I
Ingo Molnar 已提交
540
	schedstat_set(se->wait_start, 0);
541 542 543
}

static inline void
544
update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
545 546 547 548 549
{
	/*
	 * Mark the end of the wait period if dequeueing a
	 * waiting task:
	 */
550
	if (se != cfs_rq->curr)
551
		update_stats_wait_end(cfs_rq, se);
552 553 554 555 556 557
}

/*
 * We are picking a new current task - update its stats:
 */
static inline void
558
update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
559 560 561 562
{
	/*
	 * We are starting a new run period:
	 */
563
	se->exec_start = rq_of(cfs_rq)->clock;
564 565 566 567 568 569
}

/**************************************************
 * Scheduling class queueing methods:
 */

570 571 572 573 574 575 576 577 578 579 580 581 582
#if defined CONFIG_SMP && defined CONFIG_FAIR_GROUP_SCHED
static void
add_cfs_task_weight(struct cfs_rq *cfs_rq, unsigned long weight)
{
	cfs_rq->task_weight += weight;
}
#else
static inline void
add_cfs_task_weight(struct cfs_rq *cfs_rq, unsigned long weight)
{
}
#endif

583 584 585 586
static void
account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
	update_load_add(&cfs_rq->load, se->load.weight);
587 588 589 590
	if (!parent_entity(se))
		inc_cpu_load(rq_of(cfs_rq), se->load.weight);
	if (entity_is_task(se))
		add_cfs_task_weight(cfs_rq, se->load.weight);
591 592
	cfs_rq->nr_running++;
	se->on_rq = 1;
593
	list_add(&se->group_node, &cfs_rq->tasks);
594 595 596 597 598 599
}

static void
account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
	update_load_sub(&cfs_rq->load, se->load.weight);
600 601 602 603
	if (!parent_entity(se))
		dec_cpu_load(rq_of(cfs_rq), se->load.weight);
	if (entity_is_task(se))
		add_cfs_task_weight(cfs_rq, -se->load.weight);
604 605
	cfs_rq->nr_running--;
	se->on_rq = 0;
606
	list_del_init(&se->group_node);
607 608
}

609
static void enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
610 611 612
{
#ifdef CONFIG_SCHEDSTATS
	if (se->sleep_start) {
613
		u64 delta = rq_of(cfs_rq)->clock - se->sleep_start;
A
Arjan van de Ven 已提交
614
		struct task_struct *tsk = task_of(se);
615 616 617 618 619 620 621 622 623

		if ((s64)delta < 0)
			delta = 0;

		if (unlikely(delta > se->sleep_max))
			se->sleep_max = delta;

		se->sleep_start = 0;
		se->sum_sleep_runtime += delta;
A
Arjan van de Ven 已提交
624 625

		account_scheduler_latency(tsk, delta >> 10, 1);
626 627
	}
	if (se->block_start) {
628
		u64 delta = rq_of(cfs_rq)->clock - se->block_start;
A
Arjan van de Ven 已提交
629
		struct task_struct *tsk = task_of(se);
630 631 632 633 634 635 636 637 638

		if ((s64)delta < 0)
			delta = 0;

		if (unlikely(delta > se->block_max))
			se->block_max = delta;

		se->block_start = 0;
		se->sum_sleep_runtime += delta;
I
Ingo Molnar 已提交
639 640 641 642 643 644 645

		/*
		 * Blocking time is in units of nanosecs, so shift by 20 to
		 * get a milliseconds-range estimation of the amount of
		 * time that the task spent sleeping:
		 */
		if (unlikely(prof_on == SLEEP_PROFILING)) {
I
Ingo Molnar 已提交
646

I
Ingo Molnar 已提交
647 648 649
			profile_hits(SLEEP_PROFILING, (void *)get_wchan(tsk),
				     delta >> 20);
		}
A
Arjan van de Ven 已提交
650
		account_scheduler_latency(tsk, delta >> 10, 0);
651 652 653 654
	}
#endif
}

P
Peter Zijlstra 已提交
655 656 657 658 659 660 661 662 663 664 665 666 667
static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
#ifdef CONFIG_SCHED_DEBUG
	s64 d = se->vruntime - cfs_rq->min_vruntime;

	if (d < 0)
		d = -d;

	if (d > 3*sysctl_sched_latency)
		schedstat_inc(cfs_rq, nr_spread_over);
#endif
}

668 669 670
static void
place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
{
P
Peter Zijlstra 已提交
671
	u64 vruntime;
672

P
Peter Zijlstra 已提交
673 674 675 676 677
	if (first_fair(cfs_rq)) {
		vruntime = min_vruntime(cfs_rq->min_vruntime,
				__pick_next_entity(cfs_rq)->vruntime);
	} else
		vruntime = cfs_rq->min_vruntime;
P
Peter Zijlstra 已提交
678

679 680 681 682 683 684
	/*
	 * The 'current' period is already promised to the current tasks,
	 * however the extra weight of the new task will slow them down a
	 * little, place the new task so that it fits in the slot that
	 * stays open at the end.
	 */
P
Peter Zijlstra 已提交
685
	if (initial && sched_feat(START_DEBIT))
686
		vruntime += sched_vslice_add(cfs_rq, se);
687

I
Ingo Molnar 已提交
688
	if (!initial) {
689
		/* sleeps upto a single latency don't count. */
690 691 692 693 694 695 696 697 698 699 700
		if (sched_feat(NEW_FAIR_SLEEPERS)) {
			unsigned long thresh = sysctl_sched_latency;

			/*
			 * convert the sleeper threshold into virtual time
			 */
			if (sched_feat(NORMALIZED_SLEEPER))
				thresh = calc_delta_fair(thresh, se);

			vruntime -= thresh;
		}
701

702 703
		/* ensure we never gain time by being placed backwards. */
		vruntime = max_vruntime(se->vruntime, vruntime);
704 705
	}

P
Peter Zijlstra 已提交
706
	se->vruntime = vruntime;
707 708
}

709
static void
710
enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int wakeup)
711 712
{
	/*
713
	 * Update run-time statistics of the 'current'.
714
	 */
715
	update_curr(cfs_rq);
P
Peter Zijlstra 已提交
716
	account_entity_enqueue(cfs_rq, se);
717

I
Ingo Molnar 已提交
718
	if (wakeup) {
719
		place_entity(cfs_rq, se, 0);
720
		enqueue_sleeper(cfs_rq, se);
I
Ingo Molnar 已提交
721
	}
722

723
	update_stats_enqueue(cfs_rq, se);
P
Peter Zijlstra 已提交
724
	check_spread(cfs_rq, se);
725 726
	if (se != cfs_rq->curr)
		__enqueue_entity(cfs_rq, se);
727 728 729
}

static void
730
dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int sleep)
731
{
732 733 734 735 736
	/*
	 * Update run-time statistics of the 'current'.
	 */
	update_curr(cfs_rq);

737
	update_stats_dequeue(cfs_rq, se);
738
	if (sleep) {
P
Peter Zijlstra 已提交
739
#ifdef CONFIG_SCHEDSTATS
740 741 742 743
		if (entity_is_task(se)) {
			struct task_struct *tsk = task_of(se);

			if (tsk->state & TASK_INTERRUPTIBLE)
744
				se->sleep_start = rq_of(cfs_rq)->clock;
745
			if (tsk->state & TASK_UNINTERRUPTIBLE)
746
				se->block_start = rq_of(cfs_rq)->clock;
747
		}
748
#endif
P
Peter Zijlstra 已提交
749 750
	}

751
	if (se != cfs_rq->curr)
752 753
		__dequeue_entity(cfs_rq, se);
	account_entity_dequeue(cfs_rq, se);
754 755 756 757 758
}

/*
 * Preempt the current task with a newly woken task if needed:
 */
759
static void
I
Ingo Molnar 已提交
760
check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
761
{
762 763
	unsigned long ideal_runtime, delta_exec;

P
Peter Zijlstra 已提交
764
	ideal_runtime = sched_slice(cfs_rq, curr);
765
	delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
I
Ingo Molnar 已提交
766
	if (delta_exec > ideal_runtime)
767 768 769
		resched_task(rq_of(cfs_rq)->curr);
}

770
static void
771
set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
772
{
773 774 775 776 777 778 779 780 781 782 783
	/* 'current' is not kept within the tree. */
	if (se->on_rq) {
		/*
		 * Any task has to be enqueued before it get to execute on
		 * a CPU. So account for the time it spent waiting on the
		 * runqueue.
		 */
		update_stats_wait_end(cfs_rq, se);
		__dequeue_entity(cfs_rq, se);
	}

784
	update_stats_curr_start(cfs_rq, se);
785
	cfs_rq->curr = se;
I
Ingo Molnar 已提交
786 787 788 789 790 791
#ifdef CONFIG_SCHEDSTATS
	/*
	 * Track our maximum slice length, if the CPU's load is at
	 * least twice that of our own weight (i.e. dont track it
	 * when there are only lesser-weight tasks around):
	 */
792
	if (rq_of(cfs_rq)->load.weight >= 2*se->load.weight) {
I
Ingo Molnar 已提交
793 794 795 796
		se->slice_max = max(se->slice_max,
			se->sum_exec_runtime - se->prev_sum_exec_runtime);
	}
#endif
797
	se->prev_sum_exec_runtime = se->sum_exec_runtime;
798 799
}

800 801 802
static struct sched_entity *
pick_next(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
803 804
	struct rq *rq = rq_of(cfs_rq);
	u64 pair_slice = rq->clock - cfs_rq->pair_start;
805

806 807
	if (!cfs_rq->next || pair_slice > sched_slice(cfs_rq, cfs_rq->next)) {
		cfs_rq->pair_start = rq->clock;
808
		return se;
809
	}
810 811 812 813

	return cfs_rq->next;
}

814
static struct sched_entity *pick_next_entity(struct cfs_rq *cfs_rq)
815
{
D
Dmitry Adamushko 已提交
816
	struct sched_entity *se = NULL;
817

D
Dmitry Adamushko 已提交
818 819
	if (first_fair(cfs_rq)) {
		se = __pick_next_entity(cfs_rq);
820
		se = pick_next(cfs_rq, se);
D
Dmitry Adamushko 已提交
821 822
		set_next_entity(cfs_rq, se);
	}
823 824 825 826

	return se;
}

827
static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
828 829 830 831 832 833
{
	/*
	 * If still on the runqueue then deactivate_task()
	 * was not called and update_curr() has to be done:
	 */
	if (prev->on_rq)
834
		update_curr(cfs_rq);
835

P
Peter Zijlstra 已提交
836
	check_spread(cfs_rq, prev);
837
	if (prev->on_rq) {
838
		update_stats_wait_start(cfs_rq, prev);
839 840 841
		/* Put 'current' back into the tree. */
		__enqueue_entity(cfs_rq, prev);
	}
842
	cfs_rq->curr = NULL;
843 844
}

P
Peter Zijlstra 已提交
845 846
static void
entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
847 848
{
	/*
849
	 * Update run-time statistics of the 'current'.
850
	 */
851
	update_curr(cfs_rq);
852

P
Peter Zijlstra 已提交
853 854 855 856 857
#ifdef CONFIG_SCHED_HRTICK
	/*
	 * queued ticks are scheduled to match the slice, so don't bother
	 * validating it and just reschedule.
	 */
858 859 860 861
	if (queued) {
		resched_task(rq_of(cfs_rq)->curr);
		return;
	}
P
Peter Zijlstra 已提交
862 863 864 865 866 867 868 869
	/*
	 * don't let the period tick interfere with the hrtick preemption
	 */
	if (!sched_feat(DOUBLE_TICK) &&
			hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
		return;
#endif

870
	if (cfs_rq->nr_running > 1 || !sched_feat(WAKEUP_PREEMPT))
I
Ingo Molnar 已提交
871
		check_preempt_tick(cfs_rq, curr);
872 873 874 875 876 877
}

/**************************************************
 * CFS operations on tasks:
 */

P
Peter Zijlstra 已提交
878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907
#ifdef CONFIG_SCHED_HRTICK
static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
{
	int requeue = rq->curr == p;
	struct sched_entity *se = &p->se;
	struct cfs_rq *cfs_rq = cfs_rq_of(se);

	WARN_ON(task_rq(p) != rq);

	if (hrtick_enabled(rq) && cfs_rq->nr_running > 1) {
		u64 slice = sched_slice(cfs_rq, se);
		u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
		s64 delta = slice - ran;

		if (delta < 0) {
			if (rq->curr == p)
				resched_task(p);
			return;
		}

		/*
		 * Don't schedule slices shorter than 10000ns, that just
		 * doesn't make sense. Rely on vruntime for fairness.
		 */
		if (!requeue)
			delta = max(10000LL, delta);

		hrtick_start(rq, delta, requeue);
	}
}
908
#else /* !CONFIG_SCHED_HRTICK */
P
Peter Zijlstra 已提交
909 910 911 912 913 914
static inline void
hrtick_start_fair(struct rq *rq, struct task_struct *p)
{
}
#endif

915 916 917 918 919
/*
 * The enqueue_task method is called before nr_running is
 * increased. Here we update the fair scheduling stats and
 * then put the task into the rbtree:
 */
920
static void enqueue_task_fair(struct rq *rq, struct task_struct *p, int wakeup)
921 922
{
	struct cfs_rq *cfs_rq;
923
	struct sched_entity *se = &p->se;
924 925

	for_each_sched_entity(se) {
926
		if (se->on_rq)
927 928
			break;
		cfs_rq = cfs_rq_of(se);
929
		enqueue_entity(cfs_rq, se, wakeup);
930
		wakeup = 1;
931
	}
P
Peter Zijlstra 已提交
932 933

	hrtick_start_fair(rq, rq->curr);
934 935 936 937 938 939 940
}

/*
 * The dequeue_task method is called before nr_running is
 * decreased. We remove the task from the rbtree and
 * update the fair scheduling stats:
 */
941
static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int sleep)
942 943
{
	struct cfs_rq *cfs_rq;
944
	struct sched_entity *se = &p->se;
945 946 947

	for_each_sched_entity(se) {
		cfs_rq = cfs_rq_of(se);
948
		dequeue_entity(cfs_rq, se, sleep);
949
		/* Don't dequeue parent if it has other entities besides us */
950
		if (cfs_rq->load.weight)
951
			break;
952
		sleep = 1;
953
	}
P
Peter Zijlstra 已提交
954 955

	hrtick_start_fair(rq, rq->curr);
956 957 958
}

/*
959 960 961
 * sched_yield() support is very simple - we dequeue and enqueue.
 *
 * If compat_yield is turned on then we requeue to the end of the tree.
962
 */
963
static void yield_task_fair(struct rq *rq)
964
{
965 966 967
	struct task_struct *curr = rq->curr;
	struct cfs_rq *cfs_rq = task_cfs_rq(curr);
	struct sched_entity *rightmost, *se = &curr->se;
968 969

	/*
970 971 972 973 974
	 * Are we the only task in the tree?
	 */
	if (unlikely(cfs_rq->nr_running == 1))
		return;

975
	if (likely(!sysctl_sched_compat_yield) && curr->policy != SCHED_BATCH) {
976
		update_rq_clock(rq);
977
		/*
978
		 * Update run-time statistics of the 'current'.
979
		 */
D
Dmitry Adamushko 已提交
980
		update_curr(cfs_rq);
981 982 983 984 985

		return;
	}
	/*
	 * Find the rightmost entry in the rbtree:
986
	 */
D
Dmitry Adamushko 已提交
987
	rightmost = __pick_last_entity(cfs_rq);
988 989 990
	/*
	 * Already in the rightmost position?
	 */
991
	if (unlikely(!rightmost || rightmost->vruntime < se->vruntime))
992 993 994 995
		return;

	/*
	 * Minimally necessary key value to be last in the tree:
D
Dmitry Adamushko 已提交
996 997
	 * Upon rescheduling, sched_class::put_prev_task() will place
	 * 'current' within the tree based on its new key value.
998
	 */
999
	se->vruntime = rightmost->vruntime + 1;
1000 1001
}

1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025
/*
 * wake_idle() will wake a task on an idle cpu if task->cpu is
 * not idle and an idle cpu is available.  The span of cpus to
 * search starts with cpus closest then further out as needed,
 * so we always favor a closer, idle cpu.
 *
 * Returns the CPU we should wake onto.
 */
#if defined(ARCH_HAS_SCHED_WAKE_IDLE)
static int wake_idle(int cpu, struct task_struct *p)
{
	cpumask_t tmp;
	struct sched_domain *sd;
	int i;

	/*
	 * If it is idle, then it is the best cpu to run this task.
	 *
	 * This cpu is also the best, if it has more than one task already.
	 * Siblings must be also busy(in most cases) as they didn't already
	 * pickup the extra load from this cpu and hence we need not check
	 * sibling runqueue info. This will avoid the checks and cache miss
	 * penalities associated with that.
	 */
1026
	if (idle_cpu(cpu) || cpu_rq(cpu)->cfs.nr_running > 1)
1027 1028 1029
		return cpu;

	for_each_domain(cpu, sd) {
1030 1031 1032
		if ((sd->flags & SD_WAKE_IDLE)
		    || ((sd->flags & SD_WAKE_IDLE_FAR)
			&& !task_hot(p, task_rq(p)->clock, sd))) {
1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048
			cpus_and(tmp, sd->span, p->cpus_allowed);
			for_each_cpu_mask(i, tmp) {
				if (idle_cpu(i)) {
					if (i != task_cpu(p)) {
						schedstat_inc(p,
						       se.nr_wakeups_idle);
					}
					return i;
				}
			}
		} else {
			break;
		}
	}
	return cpu;
}
1049
#else /* !ARCH_HAS_SCHED_WAKE_IDLE*/
1050 1051 1052 1053 1054 1055 1056
static inline int wake_idle(int cpu, struct task_struct *p)
{
	return cpu;
}
#endif

#ifdef CONFIG_SMP
1057

I
Ingo Molnar 已提交
1058 1059
static const struct sched_class fair_sched_class;

1060
#ifdef CONFIG_FAIR_GROUP_SCHED
1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081
/*
 * effective_load() calculates the load change as seen from the root_task_group
 *
 * Adding load to a group doesn't make a group heavier, but can cause movement
 * of group shares between cpus. Assuming the shares were perfectly aligned one
 * can calculate the shift in shares.
 *
 * The problem is that perfectly aligning the shares is rather expensive, hence
 * we try to avoid doing that too often - see update_shares(), which ratelimits
 * this change.
 *
 * We compensate this by not only taking the current delta into account, but
 * also considering the delta between when the shares were last adjusted and
 * now.
 *
 * We still saw a performance dip, some tracing learned us that between
 * cgroup:/ and cgroup:/foo balancing the number of affine wakeups increased
 * significantly. Therefore try to bias the error in direction of failing
 * the affine wakeup.
 *
 */
1082 1083
static long effective_load(struct task_group *tg, int cpu,
		long wl, long wg)
1084
{
P
Peter Zijlstra 已提交
1085
	struct sched_entity *se = tg->se[cpu];
1086 1087 1088 1089 1090
	long more_w;

	if (!tg->parent)
		return wl;

1091 1092 1093 1094 1095 1096 1097
	/*
	 * By not taking the decrease of shares on the other cpu into
	 * account our error leans towards reducing the affine wakeups.
	 */
	if (!wl && sched_feat(ASYM_EFF_LOAD))
		return wl;

1098 1099 1100 1101 1102 1103 1104
	/*
	 * Instead of using this increment, also add the difference
	 * between when the shares were last updated and now.
	 */
	more_w = se->my_q->load.weight - se->my_q->rq_weight;
	wl += more_w;
	wg += more_w;
1105

P
Peter Zijlstra 已提交
1106 1107 1108
	for_each_sched_entity(se) {
#define D(n) (likely(n) ? (n) : 1)

1109
		long S, rw, s, a, b;
P
Peter Zijlstra 已提交
1110 1111 1112

		S = se->my_q->tg->shares;
		s = se->my_q->shares;
1113
		rw = se->my_q->rq_weight;
1114

1115 1116
		a = S*(rw + wl);
		b = S*rw + s*wg;
P
Peter Zijlstra 已提交
1117

1118
		wl = s*(a-b)/D(b);
1119 1120 1121 1122 1123 1124 1125
		/*
		 * Assume the group is already running and will
		 * thus already be accounted for in the weight.
		 *
		 * That is, moving shares between CPUs, does not
		 * alter the group weight.
		 */
P
Peter Zijlstra 已提交
1126 1127 1128
		wg = 0;
#undef D
	}
1129

P
Peter Zijlstra 已提交
1130
	return wl;
1131
}
P
Peter Zijlstra 已提交
1132

1133
#else
P
Peter Zijlstra 已提交
1134

1135 1136
static inline unsigned long effective_load(struct task_group *tg, int cpu,
		unsigned long wl, unsigned long wg)
P
Peter Zijlstra 已提交
1137
{
1138
	return wl;
1139
}
P
Peter Zijlstra 已提交
1140

1141 1142
#endif

1143
static int
I
Ingo Molnar 已提交
1144 1145 1146
wake_affine(struct rq *rq, struct sched_domain *this_sd, struct rq *this_rq,
	    struct task_struct *p, int prev_cpu, int this_cpu, int sync,
	    int idx, unsigned long load, unsigned long this_load,
1147 1148
	    unsigned int imbalance)
{
I
Ingo Molnar 已提交
1149
	struct task_struct *curr = this_rq->curr;
1150
	struct task_group *tg;
1151 1152
	unsigned long tl = this_load;
	unsigned long tl_per_task;
1153
	unsigned long weight;
1154
	int balanced;
1155

1156
	if (!(this_sd->flags & SD_WAKE_AFFINE) || !sched_feat(AFFINE_WAKEUPS))
1157 1158
		return 0;

1159 1160 1161 1162 1163
	/*
	 * If sync wakeup then subtract the (maximum possible)
	 * effect of the currently running task from the load
	 * of the current CPU:
	 */
1164 1165 1166 1167 1168 1169 1170 1171 1172 1173
	if (sync) {
		tg = task_group(current);
		weight = current->se.load.weight;

		tl += effective_load(tg, this_cpu, -weight, -weight);
		load += effective_load(tg, prev_cpu, 0, -weight);
	}

	tg = task_group(p);
	weight = p->se.load.weight;
1174

1175 1176
	balanced = 100*(tl + effective_load(tg, this_cpu, weight, weight)) <=
		imbalance*(load + effective_load(tg, prev_cpu, 0, weight));
1177

1178
	/*
I
Ingo Molnar 已提交
1179 1180 1181
	 * If the currently running task will sleep within
	 * a reasonable amount of time then attract this newly
	 * woken task:
1182
	 */
1183
	if (sync && balanced) {
I
Ingo Molnar 已提交
1184
		if (curr->se.avg_overlap < sysctl_sched_migration_cost &&
1185
		    p->se.avg_overlap < sysctl_sched_migration_cost)
I
Ingo Molnar 已提交
1186 1187
			return 1;
	}
1188 1189 1190 1191

	schedstat_inc(p, se.nr_wakeups_affine_attempts);
	tl_per_task = cpu_avg_load_per_task(this_cpu);

1192
	if ((tl <= load && tl + target_load(prev_cpu, idx) <= tl_per_task) ||
1193
			balanced) {
1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206
		/*
		 * This domain has SD_WAKE_AFFINE and
		 * p is cache cold in this domain, and
		 * there is no bad imbalance.
		 */
		schedstat_inc(this_sd, ttwu_move_affine);
		schedstat_inc(p, se.nr_wakeups_affine);

		return 1;
	}
	return 0;
}

1207 1208 1209
static int select_task_rq_fair(struct task_struct *p, int sync)
{
	struct sched_domain *sd, *this_sd = NULL;
1210
	int prev_cpu, this_cpu, new_cpu;
1211
	unsigned long load, this_load;
I
Ingo Molnar 已提交
1212
	struct rq *rq, *this_rq;
1213 1214
	unsigned int imbalance;
	int idx;
1215

1216 1217 1218
	prev_cpu	= task_cpu(p);
	rq		= task_rq(p);
	this_cpu	= smp_processor_id();
I
Ingo Molnar 已提交
1219
	this_rq		= cpu_rq(this_cpu);
1220
	new_cpu		= prev_cpu;
1221

1222 1223 1224 1225
	/*
	 * 'this_sd' is the first domain that both
	 * this_cpu and prev_cpu are present in:
	 */
1226
	for_each_domain(this_cpu, sd) {
1227
		if (cpu_isset(prev_cpu, sd->span)) {
1228 1229 1230 1231 1232 1233
			this_sd = sd;
			break;
		}
	}

	if (unlikely(!cpu_isset(this_cpu, p->cpus_allowed)))
1234
		goto out;
1235 1236 1237 1238

	/*
	 * Check for affine wakeup and passive balancing possibilities.
	 */
1239
	if (!this_sd)
1240
		goto out;
1241

1242 1243 1244 1245
	idx = this_sd->wake_idx;

	imbalance = 100 + (this_sd->imbalance_pct - 100) / 2;

1246
	load = source_load(prev_cpu, idx);
1247 1248
	this_load = target_load(this_cpu, idx);

I
Ingo Molnar 已提交
1249 1250 1251 1252 1253
	if (wake_affine(rq, this_sd, this_rq, p, prev_cpu, this_cpu, sync, idx,
				     load, this_load, imbalance))
		return this_cpu;

	if (prev_cpu == this_cpu)
1254
		goto out;
1255 1256 1257 1258 1259 1260 1261 1262 1263

	/*
	 * Start passive balancing when half the imbalance_pct
	 * limit is reached.
	 */
	if (this_sd->flags & SD_WAKE_BALANCE) {
		if (imbalance*this_load <= 100*load) {
			schedstat_inc(this_sd, ttwu_move_balance);
			schedstat_inc(p, se.nr_wakeups_passive);
I
Ingo Molnar 已提交
1264
			return this_cpu;
1265 1266 1267
		}
	}

1268
out:
1269 1270 1271 1272
	return wake_idle(new_cpu, p);
}
#endif /* CONFIG_SMP */

1273 1274 1275 1276 1277
static unsigned long wakeup_gran(struct sched_entity *se)
{
	unsigned long gran = sysctl_sched_wakeup_granularity;

	/*
1278 1279
	 * More easily preempt - nice tasks, while not making it harder for
	 * + nice tasks.
1280
	 */
P
Peter Zijlstra 已提交
1281 1282 1283 1284
	if (sched_feat(ASYM_GRAN))
		gran = calc_delta_asym(sysctl_sched_wakeup_granularity, se);
	else
		gran = calc_delta_fair(sysctl_sched_wakeup_granularity, se);
1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316

	return gran;
}

/*
 * Should 'se' preempt 'curr'.
 *
 *             |s1
 *        |s2
 *   |s3
 *         g
 *      |<--->|c
 *
 *  w(c, s1) = -1
 *  w(c, s2) =  0
 *  w(c, s3) =  1
 *
 */
static int
wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se)
{
	s64 gran, vdiff = curr->vruntime - se->vruntime;

	if (vdiff < 0)
		return -1;

	gran = wakeup_gran(curr);
	if (vdiff > gran)
		return 1;

	return 0;
}
1317

D
Dhaval Giani 已提交
1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328
/* return depth at which a sched entity is present in the hierarchy */
static inline int depth_se(struct sched_entity *se)
{
	int depth = 0;

	for_each_sched_entity(se)
		depth++;

	return depth;
}

1329 1330 1331
/*
 * Preempt the current task with a newly woken task if needed:
 */
I
Ingo Molnar 已提交
1332
static void check_preempt_wakeup(struct rq *rq, struct task_struct *p)
1333 1334
{
	struct task_struct *curr = rq->curr;
1335
	struct cfs_rq *cfs_rq = task_cfs_rq(curr);
1336
	struct sched_entity *se = &curr->se, *pse = &p->se;
D
Dhaval Giani 已提交
1337
	int se_depth, pse_depth;
1338 1339

	if (unlikely(rt_prio(p->prio))) {
I
Ingo Molnar 已提交
1340
		update_rq_clock(rq);
1341
		update_curr(cfs_rq);
1342 1343 1344
		resched_task(curr);
		return;
	}
1345

I
Ingo Molnar 已提交
1346 1347 1348
	if (unlikely(se == pse))
		return;

1349 1350
	cfs_rq_of(pse)->next = pse;

1351 1352 1353 1354 1355 1356
	/*
	 * Batch tasks do not preempt (their preemption is driven by
	 * the tick):
	 */
	if (unlikely(p->policy == SCHED_BATCH))
		return;
1357

1358 1359
	if (!sched_feat(WAKEUP_PREEMPT))
		return;
1360

D
Dhaval Giani 已提交
1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381
	/*
	 * preemption test can be made between sibling entities who are in the
	 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
	 * both tasks until we find their ancestors who are siblings of common
	 * parent.
	 */

	/* First walk up until both entities are at same depth */
	se_depth = depth_se(se);
	pse_depth = depth_se(pse);

	while (se_depth > pse_depth) {
		se_depth--;
		se = parent_entity(se);
	}

	while (pse_depth > se_depth) {
		pse_depth--;
		pse = parent_entity(pse);
	}

1382 1383 1384
	while (!is_same_group(se, pse)) {
		se = parent_entity(se);
		pse = parent_entity(pse);
1385
	}
1386

1387
	if (wakeup_preempt_entity(se, pse) == 1)
1388
		resched_task(curr);
1389 1390
}

1391
static struct task_struct *pick_next_task_fair(struct rq *rq)
1392
{
P
Peter Zijlstra 已提交
1393
	struct task_struct *p;
1394 1395 1396 1397 1398 1399 1400
	struct cfs_rq *cfs_rq = &rq->cfs;
	struct sched_entity *se;

	if (unlikely(!cfs_rq->nr_running))
		return NULL;

	do {
1401
		se = pick_next_entity(cfs_rq);
1402 1403 1404
		cfs_rq = group_cfs_rq(se);
	} while (cfs_rq);

P
Peter Zijlstra 已提交
1405 1406 1407 1408
	p = task_of(se);
	hrtick_start_fair(rq, p);

	return p;
1409 1410 1411 1412 1413
}

/*
 * Account for a descheduled task:
 */
1414
static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
1415 1416 1417 1418 1419 1420
{
	struct sched_entity *se = &prev->se;
	struct cfs_rq *cfs_rq;

	for_each_sched_entity(se) {
		cfs_rq = cfs_rq_of(se);
1421
		put_prev_entity(cfs_rq, se);
1422 1423 1424
	}
}

1425
#ifdef CONFIG_SMP
1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436
/**************************************************
 * Fair scheduling class load-balancing methods:
 */

/*
 * Load-balancing iterator. Note: while the runqueue stays locked
 * during the whole iteration, the current task might be
 * dequeued so the iterator has to be dequeue-safe. Here we
 * achieve that by always pre-iterating before returning
 * the current task:
 */
A
Alexey Dobriyan 已提交
1437
static struct task_struct *
1438
__load_balance_iterator(struct cfs_rq *cfs_rq, struct list_head *next)
1439
{
D
Dhaval Giani 已提交
1440 1441
	struct task_struct *p = NULL;
	struct sched_entity *se;
1442

1443
	while (next != &cfs_rq->tasks) {
1444 1445
		se = list_entry(next, struct sched_entity, group_node);
		next = next->next;
D
Dhaval Giani 已提交
1446

1447 1448 1449 1450 1451 1452
		/* Skip over entities that are not tasks */
		if (entity_is_task(se)) {
			p = task_of(se);
			break;
		}
	}
1453 1454

	cfs_rq->balance_iterator = next;
1455 1456 1457 1458 1459 1460 1461
	return p;
}

static struct task_struct *load_balance_start_fair(void *arg)
{
	struct cfs_rq *cfs_rq = arg;

1462
	return __load_balance_iterator(cfs_rq, cfs_rq->tasks.next);
1463 1464 1465 1466 1467 1468
}

static struct task_struct *load_balance_next_fair(void *arg)
{
	struct cfs_rq *cfs_rq = arg;

1469
	return __load_balance_iterator(cfs_rq, cfs_rq->balance_iterator);
1470 1471
}

1472 1473 1474 1475 1476
static unsigned long
__load_balance_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
		unsigned long max_load_move, struct sched_domain *sd,
		enum cpu_idle_type idle, int *all_pinned, int *this_best_prio,
		struct cfs_rq *cfs_rq)
1477
{
1478
	struct rq_iterator cfs_rq_iterator;
1479

1480 1481 1482
	cfs_rq_iterator.start = load_balance_start_fair;
	cfs_rq_iterator.next = load_balance_next_fair;
	cfs_rq_iterator.arg = cfs_rq;
1483

1484 1485 1486
	return balance_tasks(this_rq, this_cpu, busiest,
			max_load_move, sd, idle, all_pinned,
			this_best_prio, &cfs_rq_iterator);
1487 1488
}

1489
#ifdef CONFIG_FAIR_GROUP_SCHED
P
Peter Williams 已提交
1490
static unsigned long
1491
load_balance_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
1492
		  unsigned long max_load_move,
1493 1494
		  struct sched_domain *sd, enum cpu_idle_type idle,
		  int *all_pinned, int *this_best_prio)
1495 1496
{
	long rem_load_move = max_load_move;
1497 1498
	int busiest_cpu = cpu_of(busiest);
	struct task_group *tg;
1499

1500
	rcu_read_lock();
1501 1502
	update_h_load(busiest_cpu);

1503
	list_for_each_entry(tg, &task_groups, list) {
1504
		struct cfs_rq *busiest_cfs_rq = tg->cfs_rq[busiest_cpu];
1505 1506
		unsigned long busiest_h_load = busiest_cfs_rq->h_load;
		unsigned long busiest_weight = busiest_cfs_rq->load.weight;
S
Srivatsa Vaddagiri 已提交
1507
		u64 rem_load, moved_load;
1508 1509 1510 1511

		/*
		 * empty group
		 */
1512
		if (!busiest_cfs_rq->task_weight)
1513
			continue;
1514

S
Srivatsa Vaddagiri 已提交
1515 1516
		rem_load = (u64)rem_load_move * busiest_weight;
		rem_load = div_u64(rem_load, busiest_h_load + 1);
1517

1518
		moved_load = __load_balance_fair(this_rq, this_cpu, busiest,
1519
				rem_load, sd, idle, all_pinned, this_best_prio,
1520 1521 1522
				tg->cfs_rq[busiest_cpu]);

		if (!moved_load)
1523 1524
			continue;

1525
		moved_load *= busiest_h_load;
S
Srivatsa Vaddagiri 已提交
1526
		moved_load = div_u64(moved_load, busiest_weight + 1);
1527

1528 1529
		rem_load_move -= moved_load;
		if (rem_load_move < 0)
1530 1531
			break;
	}
1532
	rcu_read_unlock();
1533

P
Peter Williams 已提交
1534
	return max_load_move - rem_load_move;
1535
}
1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547
#else
static unsigned long
load_balance_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
		  unsigned long max_load_move,
		  struct sched_domain *sd, enum cpu_idle_type idle,
		  int *all_pinned, int *this_best_prio)
{
	return __load_balance_fair(this_rq, this_cpu, busiest,
			max_load_move, sd, idle, all_pinned,
			this_best_prio, &busiest->cfs);
}
#endif
1548

1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571
static int
move_one_task_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
		   struct sched_domain *sd, enum cpu_idle_type idle)
{
	struct cfs_rq *busy_cfs_rq;
	struct rq_iterator cfs_rq_iterator;

	cfs_rq_iterator.start = load_balance_start_fair;
	cfs_rq_iterator.next = load_balance_next_fair;

	for_each_leaf_cfs_rq(busiest, busy_cfs_rq) {
		/*
		 * pass busy_cfs_rq argument into
		 * load_balance_[start|next]_fair iterators
		 */
		cfs_rq_iterator.arg = busy_cfs_rq;
		if (iter_move_one_task(this_rq, this_cpu, busiest, sd, idle,
				       &cfs_rq_iterator))
		    return 1;
	}

	return 0;
}
1572
#endif /* CONFIG_SMP */
1573

1574 1575 1576
/*
 * scheduler tick hitting a task of our scheduling class:
 */
P
Peter Zijlstra 已提交
1577
static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
1578 1579 1580 1581 1582 1583
{
	struct cfs_rq *cfs_rq;
	struct sched_entity *se = &curr->se;

	for_each_sched_entity(se) {
		cfs_rq = cfs_rq_of(se);
P
Peter Zijlstra 已提交
1584
		entity_tick(cfs_rq, se, queued);
1585 1586 1587
	}
}

1588
#define swap(a, b) do { typeof(a) tmp = (a); (a) = (b); (b) = tmp; } while (0)
1589

1590 1591 1592 1593 1594 1595 1596
/*
 * Share the fairness runtime between parent and child, thus the
 * total amount of pressure for CPU stays equal - new tasks
 * get a chance to run but frequent forkers are not allowed to
 * monopolize the CPU. Note: the parent runqueue is locked,
 * the child is not running yet.
 */
1597
static void task_new_fair(struct rq *rq, struct task_struct *p)
1598 1599
{
	struct cfs_rq *cfs_rq = task_cfs_rq(p);
1600
	struct sched_entity *se = &p->se, *curr = cfs_rq->curr;
1601
	int this_cpu = smp_processor_id();
1602 1603 1604

	sched_info_queued(p);

1605
	update_curr(cfs_rq);
1606
	place_entity(cfs_rq, se, 1);
1607

1608
	/* 'curr' will be NULL if the child belongs to a different group */
1609
	if (sysctl_sched_child_runs_first && this_cpu == task_cpu(p) &&
1610
			curr && curr->vruntime < se->vruntime) {
D
Dmitry Adamushko 已提交
1611
		/*
1612 1613 1614
		 * Upon rescheduling, sched_class::put_prev_task() will place
		 * 'current' within the tree based on its new key value.
		 */
1615 1616
		swap(curr->vruntime, se->vruntime);
	}
1617

1618
	enqueue_task_fair(rq, p, 0);
1619
	resched_task(rq->curr);
1620 1621
}

1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657
/*
 * Priority of the task has changed. Check to see if we preempt
 * the current task.
 */
static void prio_changed_fair(struct rq *rq, struct task_struct *p,
			      int oldprio, int running)
{
	/*
	 * Reschedule if we are currently running on this runqueue and
	 * our priority decreased, or if we are not currently running on
	 * this runqueue and our priority is higher than the current's
	 */
	if (running) {
		if (p->prio > oldprio)
			resched_task(rq->curr);
	} else
		check_preempt_curr(rq, p);
}

/*
 * We switched to the sched_fair class.
 */
static void switched_to_fair(struct rq *rq, struct task_struct *p,
			     int running)
{
	/*
	 * We were most likely switched from sched_rt, so
	 * kick off the schedule if running, otherwise just see
	 * if we can still preempt the current task.
	 */
	if (running)
		resched_task(rq->curr);
	else
		check_preempt_curr(rq, p);
}

1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670
/* Account for a task changing its policy or group.
 *
 * This routine is mostly called to set cfs_rq->curr field when a task
 * migrates between groups/classes.
 */
static void set_curr_task_fair(struct rq *rq)
{
	struct sched_entity *se = &rq->curr->se;

	for_each_sched_entity(se)
		set_next_entity(cfs_rq_of(se), se);
}

P
Peter Zijlstra 已提交
1671 1672 1673 1674 1675 1676 1677 1678 1679 1680
#ifdef CONFIG_FAIR_GROUP_SCHED
static void moved_group_fair(struct task_struct *p)
{
	struct cfs_rq *cfs_rq = task_cfs_rq(p);

	update_curr(cfs_rq);
	place_entity(cfs_rq, &p->se, 1);
}
#endif

1681 1682 1683
/*
 * All the scheduling class methods:
 */
1684 1685
static const struct sched_class fair_sched_class = {
	.next			= &idle_sched_class,
1686 1687 1688
	.enqueue_task		= enqueue_task_fair,
	.dequeue_task		= dequeue_task_fair,
	.yield_task		= yield_task_fair,
1689 1690 1691
#ifdef CONFIG_SMP
	.select_task_rq		= select_task_rq_fair,
#endif /* CONFIG_SMP */
1692

I
Ingo Molnar 已提交
1693
	.check_preempt_curr	= check_preempt_wakeup,
1694 1695 1696 1697

	.pick_next_task		= pick_next_task_fair,
	.put_prev_task		= put_prev_task_fair,

1698
#ifdef CONFIG_SMP
1699
	.load_balance		= load_balance_fair,
1700
	.move_one_task		= move_one_task_fair,
1701
#endif
1702

1703
	.set_curr_task          = set_curr_task_fair,
1704 1705
	.task_tick		= task_tick_fair,
	.task_new		= task_new_fair,
1706 1707 1708

	.prio_changed		= prio_changed_fair,
	.switched_to		= switched_to_fair,
P
Peter Zijlstra 已提交
1709 1710 1711 1712

#ifdef CONFIG_FAIR_GROUP_SCHED
	.moved_group		= moved_group_fair,
#endif
1713 1714 1715
};

#ifdef CONFIG_SCHED_DEBUG
1716
static void print_cfs_stats(struct seq_file *m, int cpu)
1717 1718 1719
{
	struct cfs_rq *cfs_rq;

1720
	rcu_read_lock();
1721
	for_each_leaf_cfs_rq(cpu_rq(cpu), cfs_rq)
1722
		print_cfs_rq(m, cpu, cfs_rq);
1723
	rcu_read_unlock();
1724 1725
}
#endif