sched_fair.c 38.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
/*
 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
 *
 *  Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
 *
 *  Interactivity improvements by Mike Galbraith
 *  (C) 2007 Mike Galbraith <efault@gmx.de>
 *
 *  Various enhancements by Dmitry Adamushko.
 *  (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
 *
 *  Group scheduling enhancements by Srivatsa Vaddagiri
 *  Copyright IBM Corporation, 2007
 *  Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
 *
 *  Scaled math optimizations by Thomas Gleixner
 *  Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
18 19 20
 *
 *  Adaptive scheduling granularity, math enhancements by Peter Zijlstra
 *  Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
21 22
 */

A
Arjan van de Ven 已提交
23 24
#include <linux/latencytop.h>

25
/*
26
 * Targeted preemption latency for CPU-bound tasks:
27
 * (default: 20ms * (1 + ilog(ncpus)), units: nanoseconds)
28
 *
29
 * NOTE: this latency value is not the same as the concept of
I
Ingo Molnar 已提交
30 31 32
 * 'timeslice length' - timeslices in CFS are of variable length
 * and have no persistent notion like in traditional, time-slice
 * based scheduling concepts.
33
 *
I
Ingo Molnar 已提交
34 35
 * (to see the precise effective timeslice length of your workload,
 *  run vmstat and monitor the context-switches (cs) field)
36
 */
I
Ingo Molnar 已提交
37
unsigned int sysctl_sched_latency = 20000000ULL;
38 39

/*
40
 * Minimal preemption granularity for CPU-bound tasks:
41
 * (default: 4 msec * (1 + ilog(ncpus)), units: nanoseconds)
42
 */
43
unsigned int sysctl_sched_min_granularity = 4000000ULL;
44 45

/*
46 47
 * is kept at sysctl_sched_latency / sysctl_sched_min_granularity
 */
48
static unsigned int sched_nr_latency = 5;
49 50 51 52

/*
 * After fork, child runs first. (default) If set to 0 then
 * parent will (try to) run first.
53
 */
54
const_debug unsigned int sysctl_sched_child_runs_first = 1;
55

56 57 58 59 60 61 62 63
/*
 * sys_sched_yield() compat mode
 *
 * This option switches the agressive yield implementation of the
 * old scheduler back on.
 */
unsigned int __read_mostly sysctl_sched_compat_yield;

64 65
/*
 * SCHED_OTHER wake-up granularity.
66
 * (default: 10 msec * (1 + ilog(ncpus)), units: nanoseconds)
67 68 69 70 71
 *
 * This option delays the preemption effects of decoupled workloads
 * and reduces their over-scheduling. Synchronous workloads will still
 * have immediate wakeup/sleep latencies.
 */
72
unsigned int sysctl_sched_wakeup_granularity = 10000000UL;
73

74 75
const_debug unsigned int sysctl_sched_migration_cost = 500000UL;

76 77 78 79
/**************************************************************
 * CFS operations on generic schedulable entities:
 */

P
Peter Zijlstra 已提交
80 81 82 83 84
static inline struct task_struct *task_of(struct sched_entity *se)
{
	return container_of(se, struct task_struct, se);
}

85
#ifdef CONFIG_FAIR_GROUP_SCHED
86

87
/* cpu runqueue to which this cfs_rq is attached */
88 89
static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
{
90
	return cfs_rq->rq;
91 92
}

93 94
/* An entity is a task if it doesn't "own" a runqueue */
#define entity_is_task(se)	(!se->my_q)
95

P
Peter Zijlstra 已提交
96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143
/* Walk up scheduling entities hierarchy */
#define for_each_sched_entity(se) \
		for (; se; se = se->parent)

static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
{
	return p->se.cfs_rq;
}

/* runqueue on which this entity is (to be) queued */
static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
{
	return se->cfs_rq;
}

/* runqueue "owned" by this group */
static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
{
	return grp->my_q;
}

/* Given a group's cfs_rq on one cpu, return its corresponding cfs_rq on
 * another cpu ('this_cpu')
 */
static inline struct cfs_rq *cpu_cfs_rq(struct cfs_rq *cfs_rq, int this_cpu)
{
	return cfs_rq->tg->cfs_rq[this_cpu];
}

/* Iterate thr' all leaf cfs_rq's on a runqueue */
#define for_each_leaf_cfs_rq(rq, cfs_rq) \
	list_for_each_entry_rcu(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list)

/* Do the two (enqueued) entities belong to the same group ? */
static inline int
is_same_group(struct sched_entity *se, struct sched_entity *pse)
{
	if (se->cfs_rq == pse->cfs_rq)
		return 1;

	return 0;
}

static inline struct sched_entity *parent_entity(struct sched_entity *se)
{
	return se->parent;
}

144
#else	/* CONFIG_FAIR_GROUP_SCHED */
145

146 147 148
static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
{
	return container_of(cfs_rq, struct rq, cfs);
149 150 151 152
}

#define entity_is_task(se)	1

P
Peter Zijlstra 已提交
153 154
#define for_each_sched_entity(se) \
		for (; se; se = NULL)
155

P
Peter Zijlstra 已提交
156
static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
157
{
P
Peter Zijlstra 已提交
158
	return &task_rq(p)->cfs;
159 160
}

P
Peter Zijlstra 已提交
161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195
static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
{
	struct task_struct *p = task_of(se);
	struct rq *rq = task_rq(p);

	return &rq->cfs;
}

/* runqueue "owned" by this group */
static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
{
	return NULL;
}

static inline struct cfs_rq *cpu_cfs_rq(struct cfs_rq *cfs_rq, int this_cpu)
{
	return &cpu_rq(this_cpu)->cfs;
}

#define for_each_leaf_cfs_rq(rq, cfs_rq) \
		for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL)

static inline int
is_same_group(struct sched_entity *se, struct sched_entity *pse)
{
	return 1;
}

static inline struct sched_entity *parent_entity(struct sched_entity *se)
{
	return NULL;
}

#endif	/* CONFIG_FAIR_GROUP_SCHED */

196 197 198 199 200

/**************************************************************
 * Scheduling class tree data structure manipulation methods:
 */

201
static inline u64 max_vruntime(u64 min_vruntime, u64 vruntime)
202
{
203 204
	s64 delta = (s64)(vruntime - min_vruntime);
	if (delta > 0)
205 206 207 208 209
		min_vruntime = vruntime;

	return min_vruntime;
}

210
static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
P
Peter Zijlstra 已提交
211 212 213 214 215 216 217 218
{
	s64 delta = (s64)(vruntime - min_vruntime);
	if (delta < 0)
		min_vruntime = vruntime;

	return min_vruntime;
}

219
static inline s64 entity_key(struct cfs_rq *cfs_rq, struct sched_entity *se)
220
{
221
	return se->vruntime - cfs_rq->min_vruntime;
222 223
}

224 225 226
/*
 * Enqueue an entity into the rb-tree:
 */
227
static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
228 229 230 231
{
	struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
	struct rb_node *parent = NULL;
	struct sched_entity *entry;
232
	s64 key = entity_key(cfs_rq, se);
233 234 235 236 237 238 239 240 241 242 243 244
	int leftmost = 1;

	/*
	 * Find the right place in the rbtree:
	 */
	while (*link) {
		parent = *link;
		entry = rb_entry(parent, struct sched_entity, run_node);
		/*
		 * We dont care about collisions. Nodes with
		 * the same key stay together.
		 */
245
		if (key < entity_key(cfs_rq, entry)) {
246 247 248 249 250 251 252 253 254 255 256
			link = &parent->rb_left;
		} else {
			link = &parent->rb_right;
			leftmost = 0;
		}
	}

	/*
	 * Maintain a cache of leftmost tree entries (it is frequently
	 * used):
	 */
P
Peter Zijlstra 已提交
257
	if (leftmost) {
I
Ingo Molnar 已提交
258
		cfs_rq->rb_leftmost = &se->run_node;
P
Peter Zijlstra 已提交
259 260 261 262 263 264 265
		/*
		 * maintain cfs_rq->min_vruntime to be a monotonic increasing
		 * value tracking the leftmost vruntime in the tree.
		 */
		cfs_rq->min_vruntime =
			max_vruntime(cfs_rq->min_vruntime, se->vruntime);
	}
266 267 268 269 270

	rb_link_node(&se->run_node, parent, link);
	rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline);
}

271
static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
272
{
P
Peter Zijlstra 已提交
273 274 275 276 277 278 279 280 281 282 283 284 285 286 287
	if (cfs_rq->rb_leftmost == &se->run_node) {
		struct rb_node *next_node;
		struct sched_entity *next;

		next_node = rb_next(&se->run_node);
		cfs_rq->rb_leftmost = next_node;

		if (next_node) {
			next = rb_entry(next_node,
					struct sched_entity, run_node);
			cfs_rq->min_vruntime =
				max_vruntime(cfs_rq->min_vruntime,
					     next->vruntime);
		}
	}
I
Ingo Molnar 已提交
288

289 290 291
	if (cfs_rq->next == se)
		cfs_rq->next = NULL;

292 293 294 295 296 297 298 299 300 301 302 303 304
	rb_erase(&se->run_node, &cfs_rq->tasks_timeline);
}

static inline struct rb_node *first_fair(struct cfs_rq *cfs_rq)
{
	return cfs_rq->rb_leftmost;
}

static struct sched_entity *__pick_next_entity(struct cfs_rq *cfs_rq)
{
	return rb_entry(first_fair(cfs_rq), struct sched_entity, run_node);
}

305 306
static inline struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
{
307
	struct rb_node *last = rb_last(&cfs_rq->tasks_timeline);
308

309 310
	if (!last)
		return NULL;
311 312

	return rb_entry(last, struct sched_entity, run_node);
313 314
}

315 316 317 318
/**************************************************************
 * Scheduling class statistics methods:
 */

319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334
#ifdef CONFIG_SCHED_DEBUG
int sched_nr_latency_handler(struct ctl_table *table, int write,
		struct file *filp, void __user *buffer, size_t *lenp,
		loff_t *ppos)
{
	int ret = proc_dointvec_minmax(table, write, filp, buffer, lenp, ppos);

	if (ret || !write)
		return ret;

	sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency,
					sysctl_sched_min_granularity);

	return 0;
}
#endif
335

336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363
/*
 * delta *= w / rw
 */
static inline unsigned long
calc_delta_weight(unsigned long delta, struct sched_entity *se)
{
	for_each_sched_entity(se) {
		delta = calc_delta_mine(delta,
				se->load.weight, &cfs_rq_of(se)->load);
	}

	return delta;
}

/*
 * delta *= rw / w
 */
static inline unsigned long
calc_delta_fair(unsigned long delta, struct sched_entity *se)
{
	for_each_sched_entity(se) {
		delta = calc_delta_mine(delta,
				cfs_rq_of(se)->load.weight, &se->load);
	}

	return delta;
}

364 365 366 367 368 369 370 371
/*
 * The idea is to set a period in which each task runs once.
 *
 * When there are too many tasks (sysctl_sched_nr_latency) we have to stretch
 * this period because otherwise the slices get too small.
 *
 * p = (nr <= nl) ? l : l*nr/nl
 */
372 373 374
static u64 __sched_period(unsigned long nr_running)
{
	u64 period = sysctl_sched_latency;
375
	unsigned long nr_latency = sched_nr_latency;
376 377

	if (unlikely(nr_running > nr_latency)) {
378
		period = sysctl_sched_min_granularity;
379 380 381 382 383 384
		period *= nr_running;
	}

	return period;
}

385 386 387 388 389 390
/*
 * We calculate the wall-time slice from the period by taking a part
 * proportional to the weight.
 *
 * s = p*w/rw
 */
P
Peter Zijlstra 已提交
391
static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
392
{
393
	return calc_delta_weight(__sched_period(cfs_rq->nr_running), se);
394 395
}

396
/*
397
 * We calculate the vruntime slice of a to be inserted task
398
 *
399
 * vs = s*rw/w = p
400
 */
401
static u64 sched_vslice_add(struct cfs_rq *cfs_rq, struct sched_entity *se)
P
Peter Zijlstra 已提交
402
{
403
	unsigned long nr_running = cfs_rq->nr_running;
P
Peter Zijlstra 已提交
404

405 406
	if (!se->on_rq)
		nr_running++;
P
Peter Zijlstra 已提交
407

408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428
	return __sched_period(nr_running);
}

/*
 * The goal of calc_delta_asym() is to be asymmetrically around NICE_0_LOAD, in
 * that it favours >=0 over <0.
 *
 *   -20         |
 *               |
 *     0 --------+-------
 *             .'
 *    19     .'
 *
 */
static unsigned long
calc_delta_asym(unsigned long delta, struct sched_entity *se)
{
	struct load_weight lw = {
		.weight = NICE_0_LOAD,
		.inv_weight = 1UL << (WMULT_SHIFT-NICE_0_SHIFT)
	};
429

430
	for_each_sched_entity(se) {
431
		struct load_weight *se_lw = &se->load;
432

433 434
		if (se->load.weight < NICE_0_LOAD)
			se_lw = &lw;
435

436 437
		delta = calc_delta_mine(delta,
				cfs_rq_of(se)->load.weight, se_lw);
438 439
	}

440
	return delta;
P
Peter Zijlstra 已提交
441 442
}

443 444 445 446 447
/*
 * Update the current task's runtime statistics. Skip current tasks that
 * are not in our scheduling class.
 */
static inline void
I
Ingo Molnar 已提交
448 449
__update_curr(struct cfs_rq *cfs_rq, struct sched_entity *curr,
	      unsigned long delta_exec)
450
{
451
	unsigned long delta_exec_weighted;
452

453
	schedstat_set(curr->exec_max, max((u64)delta_exec, curr->exec_max));
454 455

	curr->sum_exec_runtime += delta_exec;
456
	schedstat_add(cfs_rq, exec_clock, delta_exec);
457
	delta_exec_weighted = calc_delta_fair(delta_exec, curr);
I
Ingo Molnar 已提交
458
	curr->vruntime += delta_exec_weighted;
459 460
}

461
static void update_curr(struct cfs_rq *cfs_rq)
462
{
463
	struct sched_entity *curr = cfs_rq->curr;
I
Ingo Molnar 已提交
464
	u64 now = rq_of(cfs_rq)->clock;
465 466 467 468 469 470 471 472 473 474
	unsigned long delta_exec;

	if (unlikely(!curr))
		return;

	/*
	 * Get the amount of time the current task was running
	 * since the last time we changed load (this cannot
	 * overflow on 32 bits):
	 */
I
Ingo Molnar 已提交
475
	delta_exec = (unsigned long)(now - curr->exec_start);
476

I
Ingo Molnar 已提交
477 478
	__update_curr(cfs_rq, curr, delta_exec);
	curr->exec_start = now;
479 480 481 482 483 484

	if (entity_is_task(curr)) {
		struct task_struct *curtask = task_of(curr);

		cpuacct_charge(curtask, delta_exec);
	}
485 486 487
}

static inline void
488
update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
489
{
490
	schedstat_set(se->wait_start, rq_of(cfs_rq)->clock);
491 492 493 494 495
}

/*
 * Task is being enqueued - update stats:
 */
496
static void update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
497 498 499 500 501
{
	/*
	 * Are we enqueueing a waiting task? (for current tasks
	 * a dequeue/enqueue event is a NOP)
	 */
502
	if (se != cfs_rq->curr)
503
		update_stats_wait_start(cfs_rq, se);
504 505 506
}

static void
507
update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
508
{
509 510
	schedstat_set(se->wait_max, max(se->wait_max,
			rq_of(cfs_rq)->clock - se->wait_start));
511 512 513
	schedstat_set(se->wait_count, se->wait_count + 1);
	schedstat_set(se->wait_sum, se->wait_sum +
			rq_of(cfs_rq)->clock - se->wait_start);
I
Ingo Molnar 已提交
514
	schedstat_set(se->wait_start, 0);
515 516 517
}

static inline void
518
update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
519 520 521 522 523
{
	/*
	 * Mark the end of the wait period if dequeueing a
	 * waiting task:
	 */
524
	if (se != cfs_rq->curr)
525
		update_stats_wait_end(cfs_rq, se);
526 527 528 529 530 531
}

/*
 * We are picking a new current task - update its stats:
 */
static inline void
532
update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
533 534 535 536
{
	/*
	 * We are starting a new run period:
	 */
537
	se->exec_start = rq_of(cfs_rq)->clock;
538 539 540 541 542 543
}

/**************************************************
 * Scheduling class queueing methods:
 */

544 545 546 547 548 549 550 551 552 553 554 555 556
#if defined CONFIG_SMP && defined CONFIG_FAIR_GROUP_SCHED
static void
add_cfs_task_weight(struct cfs_rq *cfs_rq, unsigned long weight)
{
	cfs_rq->task_weight += weight;
}
#else
static inline void
add_cfs_task_weight(struct cfs_rq *cfs_rq, unsigned long weight)
{
}
#endif

557 558 559 560
static void
account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
	update_load_add(&cfs_rq->load, se->load.weight);
561 562 563 564
	if (!parent_entity(se))
		inc_cpu_load(rq_of(cfs_rq), se->load.weight);
	if (entity_is_task(se))
		add_cfs_task_weight(cfs_rq, se->load.weight);
565 566
	cfs_rq->nr_running++;
	se->on_rq = 1;
567
	list_add(&se->group_node, &cfs_rq->tasks);
568 569 570 571 572 573
}

static void
account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
	update_load_sub(&cfs_rq->load, se->load.weight);
574 575 576 577
	if (!parent_entity(se))
		dec_cpu_load(rq_of(cfs_rq), se->load.weight);
	if (entity_is_task(se))
		add_cfs_task_weight(cfs_rq, -se->load.weight);
578 579
	cfs_rq->nr_running--;
	se->on_rq = 0;
580
	list_del_init(&se->group_node);
581 582
}

583
static void enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
584 585 586
{
#ifdef CONFIG_SCHEDSTATS
	if (se->sleep_start) {
587
		u64 delta = rq_of(cfs_rq)->clock - se->sleep_start;
A
Arjan van de Ven 已提交
588
		struct task_struct *tsk = task_of(se);
589 590 591 592 593 594 595 596 597

		if ((s64)delta < 0)
			delta = 0;

		if (unlikely(delta > se->sleep_max))
			se->sleep_max = delta;

		se->sleep_start = 0;
		se->sum_sleep_runtime += delta;
A
Arjan van de Ven 已提交
598 599

		account_scheduler_latency(tsk, delta >> 10, 1);
600 601
	}
	if (se->block_start) {
602
		u64 delta = rq_of(cfs_rq)->clock - se->block_start;
A
Arjan van de Ven 已提交
603
		struct task_struct *tsk = task_of(se);
604 605 606 607 608 609 610 611 612

		if ((s64)delta < 0)
			delta = 0;

		if (unlikely(delta > se->block_max))
			se->block_max = delta;

		se->block_start = 0;
		se->sum_sleep_runtime += delta;
I
Ingo Molnar 已提交
613 614 615 616 617 618 619

		/*
		 * Blocking time is in units of nanosecs, so shift by 20 to
		 * get a milliseconds-range estimation of the amount of
		 * time that the task spent sleeping:
		 */
		if (unlikely(prof_on == SLEEP_PROFILING)) {
I
Ingo Molnar 已提交
620

I
Ingo Molnar 已提交
621 622 623
			profile_hits(SLEEP_PROFILING, (void *)get_wchan(tsk),
				     delta >> 20);
		}
A
Arjan van de Ven 已提交
624
		account_scheduler_latency(tsk, delta >> 10, 0);
625 626 627 628
	}
#endif
}

P
Peter Zijlstra 已提交
629 630 631 632 633 634 635 636 637 638 639 640 641
static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
#ifdef CONFIG_SCHED_DEBUG
	s64 d = se->vruntime - cfs_rq->min_vruntime;

	if (d < 0)
		d = -d;

	if (d > 3*sysctl_sched_latency)
		schedstat_inc(cfs_rq, nr_spread_over);
#endif
}

642 643 644
static void
place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
{
P
Peter Zijlstra 已提交
645
	u64 vruntime;
646

P
Peter Zijlstra 已提交
647 648 649 650 651
	if (first_fair(cfs_rq)) {
		vruntime = min_vruntime(cfs_rq->min_vruntime,
				__pick_next_entity(cfs_rq)->vruntime);
	} else
		vruntime = cfs_rq->min_vruntime;
P
Peter Zijlstra 已提交
652

653 654 655 656 657 658
	/*
	 * The 'current' period is already promised to the current tasks,
	 * however the extra weight of the new task will slow them down a
	 * little, place the new task so that it fits in the slot that
	 * stays open at the end.
	 */
P
Peter Zijlstra 已提交
659
	if (initial && sched_feat(START_DEBIT))
660
		vruntime += sched_vslice_add(cfs_rq, se);
661

I
Ingo Molnar 已提交
662
	if (!initial) {
663
		/* sleeps upto a single latency don't count. */
664
		if (sched_feat(NEW_FAIR_SLEEPERS)) {
P
Peter Zijlstra 已提交
665
			if (sched_feat(NORMALIZED_SLEEPER))
666
				vruntime -= calc_delta_weight(sysctl_sched_latency, se);
P
Peter Zijlstra 已提交
667 668
			else
				vruntime -= sysctl_sched_latency;
669
		}
670

671 672
		/* ensure we never gain time by being placed backwards. */
		vruntime = max_vruntime(se->vruntime, vruntime);
673 674
	}

P
Peter Zijlstra 已提交
675
	se->vruntime = vruntime;
676 677
}

678
static void
679
enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int wakeup)
680 681
{
	/*
682
	 * Update run-time statistics of the 'current'.
683
	 */
684
	update_curr(cfs_rq);
685

I
Ingo Molnar 已提交
686
	if (wakeup) {
687
		place_entity(cfs_rq, se, 0);
688
		enqueue_sleeper(cfs_rq, se);
I
Ingo Molnar 已提交
689
	}
690

691
	update_stats_enqueue(cfs_rq, se);
P
Peter Zijlstra 已提交
692
	check_spread(cfs_rq, se);
693 694
	if (se != cfs_rq->curr)
		__enqueue_entity(cfs_rq, se);
695
	account_entity_enqueue(cfs_rq, se);
696 697
}

I
Ingo Molnar 已提交
698 699 700 701 702 703 704 705 706 707 708 709 710 711 712
static void update_avg(u64 *avg, u64 sample)
{
	s64 diff = sample - *avg;
	*avg += diff >> 3;
}

static void update_avg_stats(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
	if (!se->last_wakeup)
		return;

	update_avg(&se->avg_overlap, se->sum_exec_runtime - se->last_wakeup);
	se->last_wakeup = 0;
}

713
static void
714
dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int sleep)
715
{
716 717 718 719 720
	/*
	 * Update run-time statistics of the 'current'.
	 */
	update_curr(cfs_rq);

721
	update_stats_dequeue(cfs_rq, se);
722
	if (sleep) {
I
Ingo Molnar 已提交
723
		update_avg_stats(cfs_rq, se);
P
Peter Zijlstra 已提交
724
#ifdef CONFIG_SCHEDSTATS
725 726 727 728
		if (entity_is_task(se)) {
			struct task_struct *tsk = task_of(se);

			if (tsk->state & TASK_INTERRUPTIBLE)
729
				se->sleep_start = rq_of(cfs_rq)->clock;
730
			if (tsk->state & TASK_UNINTERRUPTIBLE)
731
				se->block_start = rq_of(cfs_rq)->clock;
732
		}
733
#endif
P
Peter Zijlstra 已提交
734 735
	}

736
	if (se != cfs_rq->curr)
737 738
		__dequeue_entity(cfs_rq, se);
	account_entity_dequeue(cfs_rq, se);
739 740 741 742 743
}

/*
 * Preempt the current task with a newly woken task if needed:
 */
744
static void
I
Ingo Molnar 已提交
745
check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
746
{
747 748
	unsigned long ideal_runtime, delta_exec;

P
Peter Zijlstra 已提交
749
	ideal_runtime = sched_slice(cfs_rq, curr);
750
	delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
I
Ingo Molnar 已提交
751
	if (delta_exec > ideal_runtime)
752 753 754
		resched_task(rq_of(cfs_rq)->curr);
}

755
static void
756
set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
757
{
758 759 760 761 762 763 764 765 766 767 768
	/* 'current' is not kept within the tree. */
	if (se->on_rq) {
		/*
		 * Any task has to be enqueued before it get to execute on
		 * a CPU. So account for the time it spent waiting on the
		 * runqueue.
		 */
		update_stats_wait_end(cfs_rq, se);
		__dequeue_entity(cfs_rq, se);
	}

769
	update_stats_curr_start(cfs_rq, se);
770
	cfs_rq->curr = se;
I
Ingo Molnar 已提交
771 772 773 774 775 776
#ifdef CONFIG_SCHEDSTATS
	/*
	 * Track our maximum slice length, if the CPU's load is at
	 * least twice that of our own weight (i.e. dont track it
	 * when there are only lesser-weight tasks around):
	 */
777
	if (rq_of(cfs_rq)->load.weight >= 2*se->load.weight) {
I
Ingo Molnar 已提交
778 779 780 781
		se->slice_max = max(se->slice_max,
			se->sum_exec_runtime - se->prev_sum_exec_runtime);
	}
#endif
782
	se->prev_sum_exec_runtime = se->sum_exec_runtime;
783 784
}

785 786 787
static int
wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se);

788 789 790 791 792 793
static struct sched_entity *
pick_next(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
	if (!cfs_rq->next)
		return se;

794
	if (wakeup_preempt_entity(cfs_rq->next, se) != 0)
795 796 797 798 799
		return se;

	return cfs_rq->next;
}

800
static struct sched_entity *pick_next_entity(struct cfs_rq *cfs_rq)
801
{
D
Dmitry Adamushko 已提交
802
	struct sched_entity *se = NULL;
803

D
Dmitry Adamushko 已提交
804 805
	if (first_fair(cfs_rq)) {
		se = __pick_next_entity(cfs_rq);
806
		se = pick_next(cfs_rq, se);
D
Dmitry Adamushko 已提交
807 808
		set_next_entity(cfs_rq, se);
	}
809 810 811 812

	return se;
}

813
static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
814 815 816 817 818 819
{
	/*
	 * If still on the runqueue then deactivate_task()
	 * was not called and update_curr() has to be done:
	 */
	if (prev->on_rq)
820
		update_curr(cfs_rq);
821

P
Peter Zijlstra 已提交
822
	check_spread(cfs_rq, prev);
823
	if (prev->on_rq) {
824
		update_stats_wait_start(cfs_rq, prev);
825 826 827
		/* Put 'current' back into the tree. */
		__enqueue_entity(cfs_rq, prev);
	}
828
	cfs_rq->curr = NULL;
829 830
}

P
Peter Zijlstra 已提交
831 832
static void
entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
833 834
{
	/*
835
	 * Update run-time statistics of the 'current'.
836
	 */
837
	update_curr(cfs_rq);
838

P
Peter Zijlstra 已提交
839 840 841 842 843 844 845 846 847 848 849 850 851 852 853
#ifdef CONFIG_SCHED_HRTICK
	/*
	 * queued ticks are scheduled to match the slice, so don't bother
	 * validating it and just reschedule.
	 */
	if (queued)
		return resched_task(rq_of(cfs_rq)->curr);
	/*
	 * don't let the period tick interfere with the hrtick preemption
	 */
	if (!sched_feat(DOUBLE_TICK) &&
			hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
		return;
#endif

854
	if (cfs_rq->nr_running > 1 || !sched_feat(WAKEUP_PREEMPT))
I
Ingo Molnar 已提交
855
		check_preempt_tick(cfs_rq, curr);
856 857 858 859 860 861
}

/**************************************************
 * CFS operations on tasks:
 */

P
Peter Zijlstra 已提交
862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898
#ifdef CONFIG_SCHED_HRTICK
static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
{
	int requeue = rq->curr == p;
	struct sched_entity *se = &p->se;
	struct cfs_rq *cfs_rq = cfs_rq_of(se);

	WARN_ON(task_rq(p) != rq);

	if (hrtick_enabled(rq) && cfs_rq->nr_running > 1) {
		u64 slice = sched_slice(cfs_rq, se);
		u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
		s64 delta = slice - ran;

		if (delta < 0) {
			if (rq->curr == p)
				resched_task(p);
			return;
		}

		/*
		 * Don't schedule slices shorter than 10000ns, that just
		 * doesn't make sense. Rely on vruntime for fairness.
		 */
		if (!requeue)
			delta = max(10000LL, delta);

		hrtick_start(rq, delta, requeue);
	}
}
#else
static inline void
hrtick_start_fair(struct rq *rq, struct task_struct *p)
{
}
#endif

899 900 901 902 903
/*
 * The enqueue_task method is called before nr_running is
 * increased. Here we update the fair scheduling stats and
 * then put the task into the rbtree:
 */
904
static void enqueue_task_fair(struct rq *rq, struct task_struct *p, int wakeup)
905 906
{
	struct cfs_rq *cfs_rq;
907
	struct sched_entity *se = &p->se;
908 909

	for_each_sched_entity(se) {
910
		if (se->on_rq)
911 912
			break;
		cfs_rq = cfs_rq_of(se);
913
		enqueue_entity(cfs_rq, se, wakeup);
914
		wakeup = 1;
915
	}
P
Peter Zijlstra 已提交
916 917

	hrtick_start_fair(rq, rq->curr);
918 919 920 921 922 923 924
}

/*
 * The dequeue_task method is called before nr_running is
 * decreased. We remove the task from the rbtree and
 * update the fair scheduling stats:
 */
925
static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int sleep)
926 927
{
	struct cfs_rq *cfs_rq;
928
	struct sched_entity *se = &p->se;
929 930 931

	for_each_sched_entity(se) {
		cfs_rq = cfs_rq_of(se);
932
		dequeue_entity(cfs_rq, se, sleep);
933
		/* Don't dequeue parent if it has other entities besides us */
934
		if (cfs_rq->load.weight)
935
			break;
936
		sleep = 1;
937
	}
P
Peter Zijlstra 已提交
938 939

	hrtick_start_fair(rq, rq->curr);
940 941 942
}

/*
943 944 945
 * sched_yield() support is very simple - we dequeue and enqueue.
 *
 * If compat_yield is turned on then we requeue to the end of the tree.
946
 */
947
static void yield_task_fair(struct rq *rq)
948
{
949 950 951
	struct task_struct *curr = rq->curr;
	struct cfs_rq *cfs_rq = task_cfs_rq(curr);
	struct sched_entity *rightmost, *se = &curr->se;
952 953

	/*
954 955 956 957 958
	 * Are we the only task in the tree?
	 */
	if (unlikely(cfs_rq->nr_running == 1))
		return;

959
	if (likely(!sysctl_sched_compat_yield) && curr->policy != SCHED_BATCH) {
960 961
		__update_rq_clock(rq);
		/*
962
		 * Update run-time statistics of the 'current'.
963
		 */
D
Dmitry Adamushko 已提交
964
		update_curr(cfs_rq);
965 966 967 968 969

		return;
	}
	/*
	 * Find the rightmost entry in the rbtree:
970
	 */
D
Dmitry Adamushko 已提交
971
	rightmost = __pick_last_entity(cfs_rq);
972 973 974
	/*
	 * Already in the rightmost position?
	 */
975
	if (unlikely(!rightmost || rightmost->vruntime < se->vruntime))
976 977 978 979
		return;

	/*
	 * Minimally necessary key value to be last in the tree:
D
Dmitry Adamushko 已提交
980 981
	 * Upon rescheduling, sched_class::put_prev_task() will place
	 * 'current' within the tree based on its new key value.
982
	 */
983
	se->vruntime = rightmost->vruntime + 1;
984 985
}

986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013
/*
 * wake_idle() will wake a task on an idle cpu if task->cpu is
 * not idle and an idle cpu is available.  The span of cpus to
 * search starts with cpus closest then further out as needed,
 * so we always favor a closer, idle cpu.
 *
 * Returns the CPU we should wake onto.
 */
#if defined(ARCH_HAS_SCHED_WAKE_IDLE)
static int wake_idle(int cpu, struct task_struct *p)
{
	cpumask_t tmp;
	struct sched_domain *sd;
	int i;

	/*
	 * If it is idle, then it is the best cpu to run this task.
	 *
	 * This cpu is also the best, if it has more than one task already.
	 * Siblings must be also busy(in most cases) as they didn't already
	 * pickup the extra load from this cpu and hence we need not check
	 * sibling runqueue info. This will avoid the checks and cache miss
	 * penalities associated with that.
	 */
	if (idle_cpu(cpu) || cpu_rq(cpu)->nr_running > 1)
		return cpu;

	for_each_domain(cpu, sd) {
1014 1015 1016
		if ((sd->flags & SD_WAKE_IDLE)
		    || ((sd->flags & SD_WAKE_IDLE_FAR)
			&& !task_hot(p, task_rq(p)->clock, sd))) {
1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040
			cpus_and(tmp, sd->span, p->cpus_allowed);
			for_each_cpu_mask(i, tmp) {
				if (idle_cpu(i)) {
					if (i != task_cpu(p)) {
						schedstat_inc(p,
						       se.nr_wakeups_idle);
					}
					return i;
				}
			}
		} else {
			break;
		}
	}
	return cpu;
}
#else
static inline int wake_idle(int cpu, struct task_struct *p)
{
	return cpu;
}
#endif

#ifdef CONFIG_SMP
1041

I
Ingo Molnar 已提交
1042 1043
static const struct sched_class fair_sched_class;

1044
static int
I
Ingo Molnar 已提交
1045 1046 1047
wake_affine(struct rq *rq, struct sched_domain *this_sd, struct rq *this_rq,
	    struct task_struct *p, int prev_cpu, int this_cpu, int sync,
	    int idx, unsigned long load, unsigned long this_load,
1048 1049
	    unsigned int imbalance)
{
I
Ingo Molnar 已提交
1050
	struct task_struct *curr = this_rq->curr;
1051 1052 1053 1054 1055 1056 1057
	unsigned long tl = this_load;
	unsigned long tl_per_task;

	if (!(this_sd->flags & SD_WAKE_AFFINE))
		return 0;

	/*
I
Ingo Molnar 已提交
1058 1059 1060
	 * If the currently running task will sleep within
	 * a reasonable amount of time then attract this newly
	 * woken task:
1061
	 */
I
Ingo Molnar 已提交
1062 1063 1064 1065 1066
	if (sync && curr->sched_class == &fair_sched_class) {
		if (curr->se.avg_overlap < sysctl_sched_migration_cost &&
				p->se.avg_overlap < sysctl_sched_migration_cost)
			return 1;
	}
1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078

	schedstat_inc(p, se.nr_wakeups_affine_attempts);
	tl_per_task = cpu_avg_load_per_task(this_cpu);

	/*
	 * If sync wakeup then subtract the (maximum possible)
	 * effect of the currently running task from the load
	 * of the current CPU:
	 */
	if (sync)
		tl -= current->se.load.weight;

1079
	if ((tl <= load && tl + target_load(prev_cpu, idx) <= tl_per_task) ||
1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093
			100*(tl + p->se.load.weight) <= imbalance*load) {
		/*
		 * This domain has SD_WAKE_AFFINE and
		 * p is cache cold in this domain, and
		 * there is no bad imbalance.
		 */
		schedstat_inc(this_sd, ttwu_move_affine);
		schedstat_inc(p, se.nr_wakeups_affine);

		return 1;
	}
	return 0;
}

1094 1095 1096
static int select_task_rq_fair(struct task_struct *p, int sync)
{
	struct sched_domain *sd, *this_sd = NULL;
1097
	int prev_cpu, this_cpu, new_cpu;
1098
	unsigned long load, this_load;
I
Ingo Molnar 已提交
1099
	struct rq *rq, *this_rq;
1100 1101
	unsigned int imbalance;
	int idx;
1102

1103 1104 1105
	prev_cpu	= task_cpu(p);
	rq		= task_rq(p);
	this_cpu	= smp_processor_id();
I
Ingo Molnar 已提交
1106
	this_rq		= cpu_rq(this_cpu);
1107
	new_cpu		= prev_cpu;
1108

1109 1110 1111 1112
	/*
	 * 'this_sd' is the first domain that both
	 * this_cpu and prev_cpu are present in:
	 */
1113
	for_each_domain(this_cpu, sd) {
1114
		if (cpu_isset(prev_cpu, sd->span)) {
1115 1116 1117 1118 1119 1120
			this_sd = sd;
			break;
		}
	}

	if (unlikely(!cpu_isset(this_cpu, p->cpus_allowed)))
1121
		goto out;
1122 1123 1124 1125

	/*
	 * Check for affine wakeup and passive balancing possibilities.
	 */
1126
	if (!this_sd)
1127
		goto out;
1128

1129 1130 1131 1132
	idx = this_sd->wake_idx;

	imbalance = 100 + (this_sd->imbalance_pct - 100) / 2;

1133
	load = source_load(prev_cpu, idx);
1134 1135
	this_load = target_load(this_cpu, idx);

I
Ingo Molnar 已提交
1136 1137 1138 1139 1140
	if (wake_affine(rq, this_sd, this_rq, p, prev_cpu, this_cpu, sync, idx,
				     load, this_load, imbalance))
		return this_cpu;

	if (prev_cpu == this_cpu)
1141
		goto out;
1142 1143 1144 1145 1146 1147 1148 1149 1150

	/*
	 * Start passive balancing when half the imbalance_pct
	 * limit is reached.
	 */
	if (this_sd->flags & SD_WAKE_BALANCE) {
		if (imbalance*this_load <= 100*load) {
			schedstat_inc(this_sd, ttwu_move_balance);
			schedstat_inc(p, se.nr_wakeups_passive);
I
Ingo Molnar 已提交
1151
			return this_cpu;
1152 1153 1154
		}
	}

1155
out:
1156 1157 1158 1159
	return wake_idle(new_cpu, p);
}
#endif /* CONFIG_SMP */

1160 1161 1162 1163 1164
static unsigned long wakeup_gran(struct sched_entity *se)
{
	unsigned long gran = sysctl_sched_wakeup_granularity;

	/*
1165 1166
	 * More easily preempt - nice tasks, while not making it harder for
	 * + nice tasks.
1167
	 */
1168
	gran = calc_delta_asym(sysctl_sched_wakeup_granularity, se);
1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200

	return gran;
}

/*
 * Should 'se' preempt 'curr'.
 *
 *             |s1
 *        |s2
 *   |s3
 *         g
 *      |<--->|c
 *
 *  w(c, s1) = -1
 *  w(c, s2) =  0
 *  w(c, s3) =  1
 *
 */
static int
wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se)
{
	s64 gran, vdiff = curr->vruntime - se->vruntime;

	if (vdiff < 0)
		return -1;

	gran = wakeup_gran(curr);
	if (vdiff > gran)
		return 1;

	return 0;
}
1201

D
Dhaval Giani 已提交
1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212
/* return depth at which a sched entity is present in the hierarchy */
static inline int depth_se(struct sched_entity *se)
{
	int depth = 0;

	for_each_sched_entity(se)
		depth++;

	return depth;
}

1213 1214 1215
/*
 * Preempt the current task with a newly woken task if needed:
 */
I
Ingo Molnar 已提交
1216
static void check_preempt_wakeup(struct rq *rq, struct task_struct *p)
1217 1218
{
	struct task_struct *curr = rq->curr;
1219
	struct cfs_rq *cfs_rq = task_cfs_rq(curr);
1220
	struct sched_entity *se = &curr->se, *pse = &p->se;
D
Dhaval Giani 已提交
1221
	int se_depth, pse_depth;
1222 1223

	if (unlikely(rt_prio(p->prio))) {
I
Ingo Molnar 已提交
1224
		update_rq_clock(rq);
1225
		update_curr(cfs_rq);
1226 1227 1228
		resched_task(curr);
		return;
	}
1229

I
Ingo Molnar 已提交
1230 1231 1232 1233
	se->last_wakeup = se->sum_exec_runtime;
	if (unlikely(se == pse))
		return;

1234 1235
	cfs_rq_of(pse)->next = pse;

1236 1237 1238 1239 1240 1241
	/*
	 * Batch tasks do not preempt (their preemption is driven by
	 * the tick):
	 */
	if (unlikely(p->policy == SCHED_BATCH))
		return;
1242

1243 1244
	if (!sched_feat(WAKEUP_PREEMPT))
		return;
1245

D
Dhaval Giani 已提交
1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266
	/*
	 * preemption test can be made between sibling entities who are in the
	 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
	 * both tasks until we find their ancestors who are siblings of common
	 * parent.
	 */

	/* First walk up until both entities are at same depth */
	se_depth = depth_se(se);
	pse_depth = depth_se(pse);

	while (se_depth > pse_depth) {
		se_depth--;
		se = parent_entity(se);
	}

	while (pse_depth > se_depth) {
		pse_depth--;
		pse = parent_entity(pse);
	}

1267 1268 1269
	while (!is_same_group(se, pse)) {
		se = parent_entity(se);
		pse = parent_entity(pse);
1270
	}
1271

1272
	if (wakeup_preempt_entity(se, pse) == 1)
1273
		resched_task(curr);
1274 1275
}

1276
static struct task_struct *pick_next_task_fair(struct rq *rq)
1277
{
P
Peter Zijlstra 已提交
1278
	struct task_struct *p;
1279 1280 1281 1282 1283 1284 1285
	struct cfs_rq *cfs_rq = &rq->cfs;
	struct sched_entity *se;

	if (unlikely(!cfs_rq->nr_running))
		return NULL;

	do {
1286
		se = pick_next_entity(cfs_rq);
1287 1288 1289
		cfs_rq = group_cfs_rq(se);
	} while (cfs_rq);

P
Peter Zijlstra 已提交
1290 1291 1292 1293
	p = task_of(se);
	hrtick_start_fair(rq, p);

	return p;
1294 1295 1296 1297 1298
}

/*
 * Account for a descheduled task:
 */
1299
static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
1300 1301 1302 1303 1304 1305
{
	struct sched_entity *se = &prev->se;
	struct cfs_rq *cfs_rq;

	for_each_sched_entity(se) {
		cfs_rq = cfs_rq_of(se);
1306
		put_prev_entity(cfs_rq, se);
1307 1308 1309
	}
}

1310
#ifdef CONFIG_SMP
1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321
/**************************************************
 * Fair scheduling class load-balancing methods:
 */

/*
 * Load-balancing iterator. Note: while the runqueue stays locked
 * during the whole iteration, the current task might be
 * dequeued so the iterator has to be dequeue-safe. Here we
 * achieve that by always pre-iterating before returning
 * the current task:
 */
A
Alexey Dobriyan 已提交
1322
static struct task_struct *
1323
__load_balance_iterator(struct cfs_rq *cfs_rq, struct list_head *next)
1324
{
D
Dhaval Giani 已提交
1325 1326
	struct task_struct *p = NULL;
	struct sched_entity *se;
1327

1328
	if (next == &cfs_rq->tasks)
1329 1330
		return NULL;

D
Dhaval Giani 已提交
1331 1332
	/* Skip over entities that are not tasks */
	do {
1333 1334 1335
		se = list_entry(next, struct sched_entity, group_node);
		next = next->next;
	} while (next != &cfs_rq->tasks && !entity_is_task(se));
D
Dhaval Giani 已提交
1336

1337 1338 1339 1340
	if (next == &cfs_rq->tasks)
		return NULL;

	cfs_rq->balance_iterator = next;
D
Dhaval Giani 已提交
1341 1342 1343

	if (entity_is_task(se))
		p = task_of(se);
1344 1345 1346 1347 1348 1349 1350 1351

	return p;
}

static struct task_struct *load_balance_start_fair(void *arg)
{
	struct cfs_rq *cfs_rq = arg;

1352
	return __load_balance_iterator(cfs_rq, cfs_rq->tasks.next);
1353 1354 1355 1356 1357 1358
}

static struct task_struct *load_balance_next_fair(void *arg)
{
	struct cfs_rq *cfs_rq = arg;

1359
	return __load_balance_iterator(cfs_rq, cfs_rq->balance_iterator);
1360 1361
}

1362 1363 1364 1365 1366
static unsigned long
__load_balance_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
		unsigned long max_load_move, struct sched_domain *sd,
		enum cpu_idle_type idle, int *all_pinned, int *this_best_prio,
		struct cfs_rq *cfs_rq)
1367
{
1368
	struct rq_iterator cfs_rq_iterator;
1369

1370 1371 1372
	cfs_rq_iterator.start = load_balance_start_fair;
	cfs_rq_iterator.next = load_balance_next_fair;
	cfs_rq_iterator.arg = cfs_rq;
1373

1374 1375 1376
	return balance_tasks(this_rq, this_cpu, busiest,
			max_load_move, sd, idle, all_pinned,
			this_best_prio, &cfs_rq_iterator);
1377 1378
}

1379
#ifdef CONFIG_FAIR_GROUP_SCHED
P
Peter Williams 已提交
1380
static unsigned long
1381
load_balance_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
1382
		  unsigned long max_load_move,
1383 1384
		  struct sched_domain *sd, enum cpu_idle_type idle,
		  int *all_pinned, int *this_best_prio)
1385 1386
{
	long rem_load_move = max_load_move;
1387 1388
	int busiest_cpu = cpu_of(busiest);
	struct task_group *tg;
1389

1390 1391
	rcu_read_lock();
	list_for_each_entry(tg, &task_groups, list) {
1392
		long imbalance;
1393 1394
		unsigned long this_weight, busiest_weight;
		long rem_load, max_load, moved_load;
1395

1396 1397 1398 1399 1400
		/*
		 * empty group
		 */
		if (!aggregate(tg, sd)->task_weight)
			continue;
1401

1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418
		rem_load = rem_load_move * aggregate(tg, sd)->rq_weight;
		rem_load /= aggregate(tg, sd)->load + 1;

		this_weight = tg->cfs_rq[this_cpu]->task_weight;
		busiest_weight = tg->cfs_rq[busiest_cpu]->task_weight;

		imbalance = (busiest_weight - this_weight) / 2;

		if (imbalance < 0)
			imbalance = busiest_weight;

		max_load = max(rem_load, imbalance);
		moved_load = __load_balance_fair(this_rq, this_cpu, busiest,
				max_load, sd, idle, all_pinned, this_best_prio,
				tg->cfs_rq[busiest_cpu]);

		if (!moved_load)
1419 1420
			continue;

1421
		move_group_shares(tg, sd, busiest_cpu, this_cpu);
1422

1423 1424
		moved_load *= aggregate(tg, sd)->load;
		moved_load /= aggregate(tg, sd)->rq_weight + 1;
1425

1426 1427
		rem_load_move -= moved_load;
		if (rem_load_move < 0)
1428 1429
			break;
	}
1430
	rcu_read_unlock();
1431

P
Peter Williams 已提交
1432
	return max_load_move - rem_load_move;
1433
}
1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445
#else
static unsigned long
load_balance_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
		  unsigned long max_load_move,
		  struct sched_domain *sd, enum cpu_idle_type idle,
		  int *all_pinned, int *this_best_prio)
{
	return __load_balance_fair(this_rq, this_cpu, busiest,
			max_load_move, sd, idle, all_pinned,
			this_best_prio, &busiest->cfs);
}
#endif
1446

1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469
static int
move_one_task_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
		   struct sched_domain *sd, enum cpu_idle_type idle)
{
	struct cfs_rq *busy_cfs_rq;
	struct rq_iterator cfs_rq_iterator;

	cfs_rq_iterator.start = load_balance_start_fair;
	cfs_rq_iterator.next = load_balance_next_fair;

	for_each_leaf_cfs_rq(busiest, busy_cfs_rq) {
		/*
		 * pass busy_cfs_rq argument into
		 * load_balance_[start|next]_fair iterators
		 */
		cfs_rq_iterator.arg = busy_cfs_rq;
		if (iter_move_one_task(this_rq, this_cpu, busiest, sd, idle,
				       &cfs_rq_iterator))
		    return 1;
	}

	return 0;
}
1470
#endif
1471

1472 1473 1474
/*
 * scheduler tick hitting a task of our scheduling class:
 */
P
Peter Zijlstra 已提交
1475
static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
1476 1477 1478 1479 1480 1481
{
	struct cfs_rq *cfs_rq;
	struct sched_entity *se = &curr->se;

	for_each_sched_entity(se) {
		cfs_rq = cfs_rq_of(se);
P
Peter Zijlstra 已提交
1482
		entity_tick(cfs_rq, se, queued);
1483 1484 1485
	}
}

1486
#define swap(a, b) do { typeof(a) tmp = (a); (a) = (b); (b) = tmp; } while (0)
1487

1488 1489 1490 1491 1492 1493 1494
/*
 * Share the fairness runtime between parent and child, thus the
 * total amount of pressure for CPU stays equal - new tasks
 * get a chance to run but frequent forkers are not allowed to
 * monopolize the CPU. Note: the parent runqueue is locked,
 * the child is not running yet.
 */
1495
static void task_new_fair(struct rq *rq, struct task_struct *p)
1496 1497
{
	struct cfs_rq *cfs_rq = task_cfs_rq(p);
1498
	struct sched_entity *se = &p->se, *curr = cfs_rq->curr;
1499
	int this_cpu = smp_processor_id();
1500 1501 1502

	sched_info_queued(p);

1503
	update_curr(cfs_rq);
1504
	place_entity(cfs_rq, se, 1);
1505

1506
	/* 'curr' will be NULL if the child belongs to a different group */
1507
	if (sysctl_sched_child_runs_first && this_cpu == task_cpu(p) &&
1508
			curr && curr->vruntime < se->vruntime) {
D
Dmitry Adamushko 已提交
1509
		/*
1510 1511 1512
		 * Upon rescheduling, sched_class::put_prev_task() will place
		 * 'current' within the tree based on its new key value.
		 */
1513 1514
		swap(curr->vruntime, se->vruntime);
	}
1515

1516
	enqueue_task_fair(rq, p, 0);
1517
	resched_task(rq->curr);
1518 1519
}

1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555
/*
 * Priority of the task has changed. Check to see if we preempt
 * the current task.
 */
static void prio_changed_fair(struct rq *rq, struct task_struct *p,
			      int oldprio, int running)
{
	/*
	 * Reschedule if we are currently running on this runqueue and
	 * our priority decreased, or if we are not currently running on
	 * this runqueue and our priority is higher than the current's
	 */
	if (running) {
		if (p->prio > oldprio)
			resched_task(rq->curr);
	} else
		check_preempt_curr(rq, p);
}

/*
 * We switched to the sched_fair class.
 */
static void switched_to_fair(struct rq *rq, struct task_struct *p,
			     int running)
{
	/*
	 * We were most likely switched from sched_rt, so
	 * kick off the schedule if running, otherwise just see
	 * if we can still preempt the current task.
	 */
	if (running)
		resched_task(rq->curr);
	else
		check_preempt_curr(rq, p);
}

1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568
/* Account for a task changing its policy or group.
 *
 * This routine is mostly called to set cfs_rq->curr field when a task
 * migrates between groups/classes.
 */
static void set_curr_task_fair(struct rq *rq)
{
	struct sched_entity *se = &rq->curr->se;

	for_each_sched_entity(se)
		set_next_entity(cfs_rq_of(se), se);
}

P
Peter Zijlstra 已提交
1569 1570 1571 1572 1573 1574 1575 1576 1577 1578
#ifdef CONFIG_FAIR_GROUP_SCHED
static void moved_group_fair(struct task_struct *p)
{
	struct cfs_rq *cfs_rq = task_cfs_rq(p);

	update_curr(cfs_rq);
	place_entity(cfs_rq, &p->se, 1);
}
#endif

1579 1580 1581
/*
 * All the scheduling class methods:
 */
1582 1583
static const struct sched_class fair_sched_class = {
	.next			= &idle_sched_class,
1584 1585 1586
	.enqueue_task		= enqueue_task_fair,
	.dequeue_task		= dequeue_task_fair,
	.yield_task		= yield_task_fair,
1587 1588 1589
#ifdef CONFIG_SMP
	.select_task_rq		= select_task_rq_fair,
#endif /* CONFIG_SMP */
1590

I
Ingo Molnar 已提交
1591
	.check_preempt_curr	= check_preempt_wakeup,
1592 1593 1594 1595

	.pick_next_task		= pick_next_task_fair,
	.put_prev_task		= put_prev_task_fair,

1596
#ifdef CONFIG_SMP
1597
	.load_balance		= load_balance_fair,
1598
	.move_one_task		= move_one_task_fair,
1599
#endif
1600

1601
	.set_curr_task          = set_curr_task_fair,
1602 1603
	.task_tick		= task_tick_fair,
	.task_new		= task_new_fair,
1604 1605 1606

	.prio_changed		= prio_changed_fair,
	.switched_to		= switched_to_fair,
P
Peter Zijlstra 已提交
1607 1608 1609 1610

#ifdef CONFIG_FAIR_GROUP_SCHED
	.moved_group		= moved_group_fair,
#endif
1611 1612 1613
};

#ifdef CONFIG_SCHED_DEBUG
1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637
static void
print_cfs_rq_tasks(struct seq_file *m, struct cfs_rq *cfs_rq, int depth)
{
	struct sched_entity *se;

	if (!cfs_rq)
		return;

	list_for_each_entry_rcu(se, &cfs_rq->tasks, group_node) {
		int i;

		for (i = depth; i; i--)
			seq_puts(m, "  ");

		seq_printf(m, "%lu %s %lu\n",
				se->load.weight,
				entity_is_task(se) ? "T" : "G",
				calc_delta_weight(SCHED_LOAD_SCALE, se)
				);
		if (!entity_is_task(se))
			print_cfs_rq_tasks(m, group_cfs_rq(se), depth + 1);
	}
}

1638
static void print_cfs_stats(struct seq_file *m, int cpu)
1639 1640 1641
{
	struct cfs_rq *cfs_rq;

1642
	rcu_read_lock();
1643
	for_each_leaf_cfs_rq(cpu_rq(cpu), cfs_rq)
1644
		print_cfs_rq(m, cpu, cfs_rq);
1645 1646 1647

	seq_printf(m, "\nWeight tree:\n");
	print_cfs_rq_tasks(m, &cpu_rq(cpu)->cfs, 1);
1648
	rcu_read_unlock();
1649 1650
}
#endif