sched_fair.c 38.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
/*
 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
 *
 *  Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
 *
 *  Interactivity improvements by Mike Galbraith
 *  (C) 2007 Mike Galbraith <efault@gmx.de>
 *
 *  Various enhancements by Dmitry Adamushko.
 *  (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
 *
 *  Group scheduling enhancements by Srivatsa Vaddagiri
 *  Copyright IBM Corporation, 2007
 *  Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
 *
 *  Scaled math optimizations by Thomas Gleixner
 *  Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
18 19 20
 *
 *  Adaptive scheduling granularity, math enhancements by Peter Zijlstra
 *  Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
21 22
 */

A
Arjan van de Ven 已提交
23 24
#include <linux/latencytop.h>

25
/*
26
 * Targeted preemption latency for CPU-bound tasks:
27
 * (default: 20ms * (1 + ilog(ncpus)), units: nanoseconds)
28
 *
29
 * NOTE: this latency value is not the same as the concept of
I
Ingo Molnar 已提交
30 31 32
 * 'timeslice length' - timeslices in CFS are of variable length
 * and have no persistent notion like in traditional, time-slice
 * based scheduling concepts.
33
 *
I
Ingo Molnar 已提交
34 35
 * (to see the precise effective timeslice length of your workload,
 *  run vmstat and monitor the context-switches (cs) field)
36
 */
I
Ingo Molnar 已提交
37
unsigned int sysctl_sched_latency = 20000000ULL;
38 39

/*
40
 * Minimal preemption granularity for CPU-bound tasks:
41
 * (default: 4 msec * (1 + ilog(ncpus)), units: nanoseconds)
42
 */
43
unsigned int sysctl_sched_min_granularity = 4000000ULL;
44 45

/*
46 47
 * is kept at sysctl_sched_latency / sysctl_sched_min_granularity
 */
48
static unsigned int sched_nr_latency = 5;
49 50 51 52

/*
 * After fork, child runs first. (default) If set to 0 then
 * parent will (try to) run first.
53
 */
54
const_debug unsigned int sysctl_sched_child_runs_first = 1;
55

56 57 58 59 60 61 62 63
/*
 * sys_sched_yield() compat mode
 *
 * This option switches the agressive yield implementation of the
 * old scheduler back on.
 */
unsigned int __read_mostly sysctl_sched_compat_yield;

64 65
/*
 * SCHED_OTHER wake-up granularity.
66
 * (default: 10 msec * (1 + ilog(ncpus)), units: nanoseconds)
67 68 69 70 71
 *
 * This option delays the preemption effects of decoupled workloads
 * and reduces their over-scheduling. Synchronous workloads will still
 * have immediate wakeup/sleep latencies.
 */
72
unsigned int sysctl_sched_wakeup_granularity = 10000000UL;
73

74 75
const_debug unsigned int sysctl_sched_migration_cost = 500000UL;

76 77 78 79
/**************************************************************
 * CFS operations on generic schedulable entities:
 */

P
Peter Zijlstra 已提交
80 81 82 83 84
static inline struct task_struct *task_of(struct sched_entity *se)
{
	return container_of(se, struct task_struct, se);
}

85
#ifdef CONFIG_FAIR_GROUP_SCHED
86

87
/* cpu runqueue to which this cfs_rq is attached */
88 89
static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
{
90
	return cfs_rq->rq;
91 92
}

93 94
/* An entity is a task if it doesn't "own" a runqueue */
#define entity_is_task(se)	(!se->my_q)
95

P
Peter Zijlstra 已提交
96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143
/* Walk up scheduling entities hierarchy */
#define for_each_sched_entity(se) \
		for (; se; se = se->parent)

static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
{
	return p->se.cfs_rq;
}

/* runqueue on which this entity is (to be) queued */
static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
{
	return se->cfs_rq;
}

/* runqueue "owned" by this group */
static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
{
	return grp->my_q;
}

/* Given a group's cfs_rq on one cpu, return its corresponding cfs_rq on
 * another cpu ('this_cpu')
 */
static inline struct cfs_rq *cpu_cfs_rq(struct cfs_rq *cfs_rq, int this_cpu)
{
	return cfs_rq->tg->cfs_rq[this_cpu];
}

/* Iterate thr' all leaf cfs_rq's on a runqueue */
#define for_each_leaf_cfs_rq(rq, cfs_rq) \
	list_for_each_entry_rcu(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list)

/* Do the two (enqueued) entities belong to the same group ? */
static inline int
is_same_group(struct sched_entity *se, struct sched_entity *pse)
{
	if (se->cfs_rq == pse->cfs_rq)
		return 1;

	return 0;
}

static inline struct sched_entity *parent_entity(struct sched_entity *se)
{
	return se->parent;
}

144
#else	/* CONFIG_FAIR_GROUP_SCHED */
145

146 147 148
static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
{
	return container_of(cfs_rq, struct rq, cfs);
149 150 151 152
}

#define entity_is_task(se)	1

P
Peter Zijlstra 已提交
153 154
#define for_each_sched_entity(se) \
		for (; se; se = NULL)
155

P
Peter Zijlstra 已提交
156
static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
157
{
P
Peter Zijlstra 已提交
158
	return &task_rq(p)->cfs;
159 160
}

P
Peter Zijlstra 已提交
161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195
static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
{
	struct task_struct *p = task_of(se);
	struct rq *rq = task_rq(p);

	return &rq->cfs;
}

/* runqueue "owned" by this group */
static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
{
	return NULL;
}

static inline struct cfs_rq *cpu_cfs_rq(struct cfs_rq *cfs_rq, int this_cpu)
{
	return &cpu_rq(this_cpu)->cfs;
}

#define for_each_leaf_cfs_rq(rq, cfs_rq) \
		for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL)

static inline int
is_same_group(struct sched_entity *se, struct sched_entity *pse)
{
	return 1;
}

static inline struct sched_entity *parent_entity(struct sched_entity *se)
{
	return NULL;
}

#endif	/* CONFIG_FAIR_GROUP_SCHED */

196 197 198 199 200

/**************************************************************
 * Scheduling class tree data structure manipulation methods:
 */

201
static inline u64 max_vruntime(u64 min_vruntime, u64 vruntime)
202
{
203 204
	s64 delta = (s64)(vruntime - min_vruntime);
	if (delta > 0)
205 206 207 208 209
		min_vruntime = vruntime;

	return min_vruntime;
}

210
static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
P
Peter Zijlstra 已提交
211 212 213 214 215 216 217 218
{
	s64 delta = (s64)(vruntime - min_vruntime);
	if (delta < 0)
		min_vruntime = vruntime;

	return min_vruntime;
}

219
static inline s64 entity_key(struct cfs_rq *cfs_rq, struct sched_entity *se)
220
{
221
	return se->vruntime - cfs_rq->min_vruntime;
222 223
}

224 225 226
/*
 * Enqueue an entity into the rb-tree:
 */
227
static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
228 229 230 231
{
	struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
	struct rb_node *parent = NULL;
	struct sched_entity *entry;
232
	s64 key = entity_key(cfs_rq, se);
233 234 235 236 237 238 239 240 241 242 243 244
	int leftmost = 1;

	/*
	 * Find the right place in the rbtree:
	 */
	while (*link) {
		parent = *link;
		entry = rb_entry(parent, struct sched_entity, run_node);
		/*
		 * We dont care about collisions. Nodes with
		 * the same key stay together.
		 */
245
		if (key < entity_key(cfs_rq, entry)) {
246 247 248 249 250 251 252 253 254 255 256
			link = &parent->rb_left;
		} else {
			link = &parent->rb_right;
			leftmost = 0;
		}
	}

	/*
	 * Maintain a cache of leftmost tree entries (it is frequently
	 * used):
	 */
P
Peter Zijlstra 已提交
257
	if (leftmost) {
I
Ingo Molnar 已提交
258
		cfs_rq->rb_leftmost = &se->run_node;
P
Peter Zijlstra 已提交
259 260 261 262 263 264 265
		/*
		 * maintain cfs_rq->min_vruntime to be a monotonic increasing
		 * value tracking the leftmost vruntime in the tree.
		 */
		cfs_rq->min_vruntime =
			max_vruntime(cfs_rq->min_vruntime, se->vruntime);
	}
266 267 268 269 270

	rb_link_node(&se->run_node, parent, link);
	rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline);
}

271
static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
272
{
P
Peter Zijlstra 已提交
273 274 275 276 277 278 279 280 281 282 283 284 285 286 287
	if (cfs_rq->rb_leftmost == &se->run_node) {
		struct rb_node *next_node;
		struct sched_entity *next;

		next_node = rb_next(&se->run_node);
		cfs_rq->rb_leftmost = next_node;

		if (next_node) {
			next = rb_entry(next_node,
					struct sched_entity, run_node);
			cfs_rq->min_vruntime =
				max_vruntime(cfs_rq->min_vruntime,
					     next->vruntime);
		}
	}
I
Ingo Molnar 已提交
288

289 290 291
	if (cfs_rq->next == se)
		cfs_rq->next = NULL;

292 293 294 295 296 297 298 299 300 301 302 303 304
	rb_erase(&se->run_node, &cfs_rq->tasks_timeline);
}

static inline struct rb_node *first_fair(struct cfs_rq *cfs_rq)
{
	return cfs_rq->rb_leftmost;
}

static struct sched_entity *__pick_next_entity(struct cfs_rq *cfs_rq)
{
	return rb_entry(first_fair(cfs_rq), struct sched_entity, run_node);
}

305 306
static inline struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
{
307
	struct rb_node *last = rb_last(&cfs_rq->tasks_timeline);
308

309 310
	if (!last)
		return NULL;
311 312

	return rb_entry(last, struct sched_entity, run_node);
313 314
}

315 316 317 318
/**************************************************************
 * Scheduling class statistics methods:
 */

319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334
#ifdef CONFIG_SCHED_DEBUG
int sched_nr_latency_handler(struct ctl_table *table, int write,
		struct file *filp, void __user *buffer, size_t *lenp,
		loff_t *ppos)
{
	int ret = proc_dointvec_minmax(table, write, filp, buffer, lenp, ppos);

	if (ret || !write)
		return ret;

	sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency,
					sysctl_sched_min_granularity);

	return 0;
}
#endif
335

336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363
/*
 * delta *= w / rw
 */
static inline unsigned long
calc_delta_weight(unsigned long delta, struct sched_entity *se)
{
	for_each_sched_entity(se) {
		delta = calc_delta_mine(delta,
				se->load.weight, &cfs_rq_of(se)->load);
	}

	return delta;
}

/*
 * delta *= rw / w
 */
static inline unsigned long
calc_delta_fair(unsigned long delta, struct sched_entity *se)
{
	for_each_sched_entity(se) {
		delta = calc_delta_mine(delta,
				cfs_rq_of(se)->load.weight, &se->load);
	}

	return delta;
}

364 365 366 367 368 369 370 371
/*
 * The idea is to set a period in which each task runs once.
 *
 * When there are too many tasks (sysctl_sched_nr_latency) we have to stretch
 * this period because otherwise the slices get too small.
 *
 * p = (nr <= nl) ? l : l*nr/nl
 */
372 373 374
static u64 __sched_period(unsigned long nr_running)
{
	u64 period = sysctl_sched_latency;
375
	unsigned long nr_latency = sched_nr_latency;
376 377

	if (unlikely(nr_running > nr_latency)) {
378
		period = sysctl_sched_min_granularity;
379 380 381 382 383 384
		period *= nr_running;
	}

	return period;
}

385 386 387 388 389 390
/*
 * We calculate the wall-time slice from the period by taking a part
 * proportional to the weight.
 *
 * s = p*w/rw
 */
P
Peter Zijlstra 已提交
391
static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
392
{
393
	return calc_delta_weight(__sched_period(cfs_rq->nr_running), se);
394 395
}

396
/*
397
 * We calculate the vruntime slice of a to be inserted task
398
 *
399
 * vs = s*rw/w = p
400
 */
401
static u64 sched_vslice_add(struct cfs_rq *cfs_rq, struct sched_entity *se)
P
Peter Zijlstra 已提交
402
{
403
	unsigned long nr_running = cfs_rq->nr_running;
P
Peter Zijlstra 已提交
404

405 406
	if (!se->on_rq)
		nr_running++;
P
Peter Zijlstra 已提交
407

408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428
	return __sched_period(nr_running);
}

/*
 * The goal of calc_delta_asym() is to be asymmetrically around NICE_0_LOAD, in
 * that it favours >=0 over <0.
 *
 *   -20         |
 *               |
 *     0 --------+-------
 *             .'
 *    19     .'
 *
 */
static unsigned long
calc_delta_asym(unsigned long delta, struct sched_entity *se)
{
	struct load_weight lw = {
		.weight = NICE_0_LOAD,
		.inv_weight = 1UL << (WMULT_SHIFT-NICE_0_SHIFT)
	};
429

430
	for_each_sched_entity(se) {
431
		struct load_weight *se_lw = &se->load;
432

433 434
		if (se->load.weight < NICE_0_LOAD)
			se_lw = &lw;
435

436 437
		delta = calc_delta_mine(delta,
				cfs_rq_of(se)->load.weight, se_lw);
438 439
	}

440
	return delta;
P
Peter Zijlstra 已提交
441 442
}

443 444 445 446 447
/*
 * Update the current task's runtime statistics. Skip current tasks that
 * are not in our scheduling class.
 */
static inline void
I
Ingo Molnar 已提交
448 449
__update_curr(struct cfs_rq *cfs_rq, struct sched_entity *curr,
	      unsigned long delta_exec)
450
{
451
	unsigned long delta_exec_weighted;
452

453
	schedstat_set(curr->exec_max, max((u64)delta_exec, curr->exec_max));
454 455

	curr->sum_exec_runtime += delta_exec;
456
	schedstat_add(cfs_rq, exec_clock, delta_exec);
457
	delta_exec_weighted = calc_delta_fair(delta_exec, curr);
I
Ingo Molnar 已提交
458
	curr->vruntime += delta_exec_weighted;
459 460
}

461
static void update_curr(struct cfs_rq *cfs_rq)
462
{
463
	struct sched_entity *curr = cfs_rq->curr;
I
Ingo Molnar 已提交
464
	u64 now = rq_of(cfs_rq)->clock;
465 466 467 468 469 470 471 472 473 474
	unsigned long delta_exec;

	if (unlikely(!curr))
		return;

	/*
	 * Get the amount of time the current task was running
	 * since the last time we changed load (this cannot
	 * overflow on 32 bits):
	 */
I
Ingo Molnar 已提交
475
	delta_exec = (unsigned long)(now - curr->exec_start);
476

I
Ingo Molnar 已提交
477 478
	__update_curr(cfs_rq, curr, delta_exec);
	curr->exec_start = now;
479 480 481 482 483 484

	if (entity_is_task(curr)) {
		struct task_struct *curtask = task_of(curr);

		cpuacct_charge(curtask, delta_exec);
	}
485 486 487
}

static inline void
488
update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
489
{
490
	schedstat_set(se->wait_start, rq_of(cfs_rq)->clock);
491 492 493 494 495
}

/*
 * Task is being enqueued - update stats:
 */
496
static void update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
497 498 499 500 501
{
	/*
	 * Are we enqueueing a waiting task? (for current tasks
	 * a dequeue/enqueue event is a NOP)
	 */
502
	if (se != cfs_rq->curr)
503
		update_stats_wait_start(cfs_rq, se);
504 505 506
}

static void
507
update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
508
{
509 510
	schedstat_set(se->wait_max, max(se->wait_max,
			rq_of(cfs_rq)->clock - se->wait_start));
511 512 513
	schedstat_set(se->wait_count, se->wait_count + 1);
	schedstat_set(se->wait_sum, se->wait_sum +
			rq_of(cfs_rq)->clock - se->wait_start);
I
Ingo Molnar 已提交
514
	schedstat_set(se->wait_start, 0);
515 516 517
}

static inline void
518
update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
519 520 521 522 523
{
	/*
	 * Mark the end of the wait period if dequeueing a
	 * waiting task:
	 */
524
	if (se != cfs_rq->curr)
525
		update_stats_wait_end(cfs_rq, se);
526 527 528 529 530 531
}

/*
 * We are picking a new current task - update its stats:
 */
static inline void
532
update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
533 534 535 536
{
	/*
	 * We are starting a new run period:
	 */
537
	se->exec_start = rq_of(cfs_rq)->clock;
538 539 540 541 542 543
}

/**************************************************
 * Scheduling class queueing methods:
 */

544 545 546 547 548 549 550 551 552 553 554 555 556
#if defined CONFIG_SMP && defined CONFIG_FAIR_GROUP_SCHED
static void
add_cfs_task_weight(struct cfs_rq *cfs_rq, unsigned long weight)
{
	cfs_rq->task_weight += weight;
}
#else
static inline void
add_cfs_task_weight(struct cfs_rq *cfs_rq, unsigned long weight)
{
}
#endif

557 558 559 560
static void
account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
	update_load_add(&cfs_rq->load, se->load.weight);
561 562 563 564
	if (!parent_entity(se))
		inc_cpu_load(rq_of(cfs_rq), se->load.weight);
	if (entity_is_task(se))
		add_cfs_task_weight(cfs_rq, se->load.weight);
565 566
	cfs_rq->nr_running++;
	se->on_rq = 1;
567
	list_add(&se->group_node, &cfs_rq->tasks);
568 569 570 571 572 573
}

static void
account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
	update_load_sub(&cfs_rq->load, se->load.weight);
574 575 576 577
	if (!parent_entity(se))
		dec_cpu_load(rq_of(cfs_rq), se->load.weight);
	if (entity_is_task(se))
		add_cfs_task_weight(cfs_rq, -se->load.weight);
578 579
	cfs_rq->nr_running--;
	se->on_rq = 0;
580
	list_del_init(&se->group_node);
581 582
}

583
static void enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
584 585 586
{
#ifdef CONFIG_SCHEDSTATS
	if (se->sleep_start) {
587
		u64 delta = rq_of(cfs_rq)->clock - se->sleep_start;
A
Arjan van de Ven 已提交
588
		struct task_struct *tsk = task_of(se);
589 590 591 592 593 594 595 596 597

		if ((s64)delta < 0)
			delta = 0;

		if (unlikely(delta > se->sleep_max))
			se->sleep_max = delta;

		se->sleep_start = 0;
		se->sum_sleep_runtime += delta;
A
Arjan van de Ven 已提交
598 599

		account_scheduler_latency(tsk, delta >> 10, 1);
600 601
	}
	if (se->block_start) {
602
		u64 delta = rq_of(cfs_rq)->clock - se->block_start;
A
Arjan van de Ven 已提交
603
		struct task_struct *tsk = task_of(se);
604 605 606 607 608 609 610 611 612

		if ((s64)delta < 0)
			delta = 0;

		if (unlikely(delta > se->block_max))
			se->block_max = delta;

		se->block_start = 0;
		se->sum_sleep_runtime += delta;
I
Ingo Molnar 已提交
613 614 615 616 617 618 619

		/*
		 * Blocking time is in units of nanosecs, so shift by 20 to
		 * get a milliseconds-range estimation of the amount of
		 * time that the task spent sleeping:
		 */
		if (unlikely(prof_on == SLEEP_PROFILING)) {
I
Ingo Molnar 已提交
620

I
Ingo Molnar 已提交
621 622 623
			profile_hits(SLEEP_PROFILING, (void *)get_wchan(tsk),
				     delta >> 20);
		}
A
Arjan van de Ven 已提交
624
		account_scheduler_latency(tsk, delta >> 10, 0);
625 626 627 628
	}
#endif
}

P
Peter Zijlstra 已提交
629 630 631 632 633 634 635 636 637 638 639 640 641
static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
#ifdef CONFIG_SCHED_DEBUG
	s64 d = se->vruntime - cfs_rq->min_vruntime;

	if (d < 0)
		d = -d;

	if (d > 3*sysctl_sched_latency)
		schedstat_inc(cfs_rq, nr_spread_over);
#endif
}

642 643 644
static void
place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
{
P
Peter Zijlstra 已提交
645
	u64 vruntime;
646

P
Peter Zijlstra 已提交
647 648 649 650 651
	if (first_fair(cfs_rq)) {
		vruntime = min_vruntime(cfs_rq->min_vruntime,
				__pick_next_entity(cfs_rq)->vruntime);
	} else
		vruntime = cfs_rq->min_vruntime;
P
Peter Zijlstra 已提交
652

653 654 655 656 657 658
	/*
	 * The 'current' period is already promised to the current tasks,
	 * however the extra weight of the new task will slow them down a
	 * little, place the new task so that it fits in the slot that
	 * stays open at the end.
	 */
P
Peter Zijlstra 已提交
659
	if (initial && sched_feat(START_DEBIT))
660
		vruntime += sched_vslice_add(cfs_rq, se);
661

I
Ingo Molnar 已提交
662
	if (!initial) {
663
		/* sleeps upto a single latency don't count. */
664
		if (sched_feat(NEW_FAIR_SLEEPERS)) {
P
Peter Zijlstra 已提交
665
			if (sched_feat(NORMALIZED_SLEEPER))
666
				vruntime -= calc_delta_weight(sysctl_sched_latency, se);
P
Peter Zijlstra 已提交
667 668
			else
				vruntime -= sysctl_sched_latency;
669
		}
670

671 672
		/* ensure we never gain time by being placed backwards. */
		vruntime = max_vruntime(se->vruntime, vruntime);
673 674
	}

P
Peter Zijlstra 已提交
675
	se->vruntime = vruntime;
676 677
}

678
static void
679
enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int wakeup)
680 681
{
	/*
682
	 * Update run-time statistics of the 'current'.
683
	 */
684
	update_curr(cfs_rq);
P
Peter Zijlstra 已提交
685
	account_entity_enqueue(cfs_rq, se);
686

I
Ingo Molnar 已提交
687
	if (wakeup) {
688
		place_entity(cfs_rq, se, 0);
689
		enqueue_sleeper(cfs_rq, se);
I
Ingo Molnar 已提交
690
	}
691

692
	update_stats_enqueue(cfs_rq, se);
P
Peter Zijlstra 已提交
693
	check_spread(cfs_rq, se);
694 695
	if (se != cfs_rq->curr)
		__enqueue_entity(cfs_rq, se);
696 697
}

I
Ingo Molnar 已提交
698 699 700 701 702 703 704 705 706 707 708 709 710 711 712
static void update_avg(u64 *avg, u64 sample)
{
	s64 diff = sample - *avg;
	*avg += diff >> 3;
}

static void update_avg_stats(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
	if (!se->last_wakeup)
		return;

	update_avg(&se->avg_overlap, se->sum_exec_runtime - se->last_wakeup);
	se->last_wakeup = 0;
}

713
static void
714
dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int sleep)
715
{
716 717 718 719 720
	/*
	 * Update run-time statistics of the 'current'.
	 */
	update_curr(cfs_rq);

721
	update_stats_dequeue(cfs_rq, se);
722
	if (sleep) {
I
Ingo Molnar 已提交
723
		update_avg_stats(cfs_rq, se);
P
Peter Zijlstra 已提交
724
#ifdef CONFIG_SCHEDSTATS
725 726 727 728
		if (entity_is_task(se)) {
			struct task_struct *tsk = task_of(se);

			if (tsk->state & TASK_INTERRUPTIBLE)
729
				se->sleep_start = rq_of(cfs_rq)->clock;
730
			if (tsk->state & TASK_UNINTERRUPTIBLE)
731
				se->block_start = rq_of(cfs_rq)->clock;
732
		}
733
#endif
P
Peter Zijlstra 已提交
734 735
	}

736
	if (se != cfs_rq->curr)
737 738
		__dequeue_entity(cfs_rq, se);
	account_entity_dequeue(cfs_rq, se);
739 740 741 742 743
}

/*
 * Preempt the current task with a newly woken task if needed:
 */
744
static void
I
Ingo Molnar 已提交
745
check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
746
{
747 748
	unsigned long ideal_runtime, delta_exec;

P
Peter Zijlstra 已提交
749
	ideal_runtime = sched_slice(cfs_rq, curr);
750
	delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
I
Ingo Molnar 已提交
751
	if (delta_exec > ideal_runtime)
752 753 754
		resched_task(rq_of(cfs_rq)->curr);
}

755
static void
756
set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
757
{
758 759 760 761 762 763 764 765 766 767 768
	/* 'current' is not kept within the tree. */
	if (se->on_rq) {
		/*
		 * Any task has to be enqueued before it get to execute on
		 * a CPU. So account for the time it spent waiting on the
		 * runqueue.
		 */
		update_stats_wait_end(cfs_rq, se);
		__dequeue_entity(cfs_rq, se);
	}

769
	update_stats_curr_start(cfs_rq, se);
770
	cfs_rq->curr = se;
I
Ingo Molnar 已提交
771 772 773 774 775 776
#ifdef CONFIG_SCHEDSTATS
	/*
	 * Track our maximum slice length, if the CPU's load is at
	 * least twice that of our own weight (i.e. dont track it
	 * when there are only lesser-weight tasks around):
	 */
777
	if (rq_of(cfs_rq)->load.weight >= 2*se->load.weight) {
I
Ingo Molnar 已提交
778 779 780 781
		se->slice_max = max(se->slice_max,
			se->sum_exec_runtime - se->prev_sum_exec_runtime);
	}
#endif
782
	se->prev_sum_exec_runtime = se->sum_exec_runtime;
783 784
}

785 786 787
static int
wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se);

788 789 790 791 792 793
static struct sched_entity *
pick_next(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
	if (!cfs_rq->next)
		return se;

794
	if (wakeup_preempt_entity(cfs_rq->next, se) != 0)
795 796 797 798 799
		return se;

	return cfs_rq->next;
}

800
static struct sched_entity *pick_next_entity(struct cfs_rq *cfs_rq)
801
{
D
Dmitry Adamushko 已提交
802
	struct sched_entity *se = NULL;
803

D
Dmitry Adamushko 已提交
804 805
	if (first_fair(cfs_rq)) {
		se = __pick_next_entity(cfs_rq);
806
		se = pick_next(cfs_rq, se);
D
Dmitry Adamushko 已提交
807 808
		set_next_entity(cfs_rq, se);
	}
809 810 811 812

	return se;
}

813
static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
814 815 816 817 818 819
{
	/*
	 * If still on the runqueue then deactivate_task()
	 * was not called and update_curr() has to be done:
	 */
	if (prev->on_rq)
820
		update_curr(cfs_rq);
821

P
Peter Zijlstra 已提交
822
	check_spread(cfs_rq, prev);
823
	if (prev->on_rq) {
824
		update_stats_wait_start(cfs_rq, prev);
825 826 827
		/* Put 'current' back into the tree. */
		__enqueue_entity(cfs_rq, prev);
	}
828
	cfs_rq->curr = NULL;
829 830
}

P
Peter Zijlstra 已提交
831 832
static void
entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
833 834
{
	/*
835
	 * Update run-time statistics of the 'current'.
836
	 */
837
	update_curr(cfs_rq);
838

P
Peter Zijlstra 已提交
839 840 841 842 843
#ifdef CONFIG_SCHED_HRTICK
	/*
	 * queued ticks are scheduled to match the slice, so don't bother
	 * validating it and just reschedule.
	 */
844 845 846 847
	if (queued) {
		resched_task(rq_of(cfs_rq)->curr);
		return;
	}
P
Peter Zijlstra 已提交
848 849 850 851 852 853 854 855
	/*
	 * don't let the period tick interfere with the hrtick preemption
	 */
	if (!sched_feat(DOUBLE_TICK) &&
			hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
		return;
#endif

856
	if (cfs_rq->nr_running > 1 || !sched_feat(WAKEUP_PREEMPT))
I
Ingo Molnar 已提交
857
		check_preempt_tick(cfs_rq, curr);
858 859 860 861 862 863
}

/**************************************************
 * CFS operations on tasks:
 */

P
Peter Zijlstra 已提交
864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900
#ifdef CONFIG_SCHED_HRTICK
static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
{
	int requeue = rq->curr == p;
	struct sched_entity *se = &p->se;
	struct cfs_rq *cfs_rq = cfs_rq_of(se);

	WARN_ON(task_rq(p) != rq);

	if (hrtick_enabled(rq) && cfs_rq->nr_running > 1) {
		u64 slice = sched_slice(cfs_rq, se);
		u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
		s64 delta = slice - ran;

		if (delta < 0) {
			if (rq->curr == p)
				resched_task(p);
			return;
		}

		/*
		 * Don't schedule slices shorter than 10000ns, that just
		 * doesn't make sense. Rely on vruntime for fairness.
		 */
		if (!requeue)
			delta = max(10000LL, delta);

		hrtick_start(rq, delta, requeue);
	}
}
#else
static inline void
hrtick_start_fair(struct rq *rq, struct task_struct *p)
{
}
#endif

901 902 903 904 905
/*
 * The enqueue_task method is called before nr_running is
 * increased. Here we update the fair scheduling stats and
 * then put the task into the rbtree:
 */
906
static void enqueue_task_fair(struct rq *rq, struct task_struct *p, int wakeup)
907 908
{
	struct cfs_rq *cfs_rq;
909
	struct sched_entity *se = &p->se;
910 911

	for_each_sched_entity(se) {
912
		if (se->on_rq)
913 914
			break;
		cfs_rq = cfs_rq_of(se);
915
		enqueue_entity(cfs_rq, se, wakeup);
916
		wakeup = 1;
917
	}
P
Peter Zijlstra 已提交
918 919

	hrtick_start_fair(rq, rq->curr);
920 921 922 923 924 925 926
}

/*
 * The dequeue_task method is called before nr_running is
 * decreased. We remove the task from the rbtree and
 * update the fair scheduling stats:
 */
927
static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int sleep)
928 929
{
	struct cfs_rq *cfs_rq;
930
	struct sched_entity *se = &p->se;
931 932 933

	for_each_sched_entity(se) {
		cfs_rq = cfs_rq_of(se);
934
		dequeue_entity(cfs_rq, se, sleep);
935
		/* Don't dequeue parent if it has other entities besides us */
936
		if (cfs_rq->load.weight)
937
			break;
938
		sleep = 1;
939
	}
P
Peter Zijlstra 已提交
940 941

	hrtick_start_fair(rq, rq->curr);
942 943 944
}

/*
945 946 947
 * sched_yield() support is very simple - we dequeue and enqueue.
 *
 * If compat_yield is turned on then we requeue to the end of the tree.
948
 */
949
static void yield_task_fair(struct rq *rq)
950
{
951 952 953
	struct task_struct *curr = rq->curr;
	struct cfs_rq *cfs_rq = task_cfs_rq(curr);
	struct sched_entity *rightmost, *se = &curr->se;
954 955

	/*
956 957 958 959 960
	 * Are we the only task in the tree?
	 */
	if (unlikely(cfs_rq->nr_running == 1))
		return;

961
	if (likely(!sysctl_sched_compat_yield) && curr->policy != SCHED_BATCH) {
962 963
		__update_rq_clock(rq);
		/*
964
		 * Update run-time statistics of the 'current'.
965
		 */
D
Dmitry Adamushko 已提交
966
		update_curr(cfs_rq);
967 968 969 970 971

		return;
	}
	/*
	 * Find the rightmost entry in the rbtree:
972
	 */
D
Dmitry Adamushko 已提交
973
	rightmost = __pick_last_entity(cfs_rq);
974 975 976
	/*
	 * Already in the rightmost position?
	 */
977
	if (unlikely(!rightmost || rightmost->vruntime < se->vruntime))
978 979 980 981
		return;

	/*
	 * Minimally necessary key value to be last in the tree:
D
Dmitry Adamushko 已提交
982 983
	 * Upon rescheduling, sched_class::put_prev_task() will place
	 * 'current' within the tree based on its new key value.
984
	 */
985
	se->vruntime = rightmost->vruntime + 1;
986 987
}

988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015
/*
 * wake_idle() will wake a task on an idle cpu if task->cpu is
 * not idle and an idle cpu is available.  The span of cpus to
 * search starts with cpus closest then further out as needed,
 * so we always favor a closer, idle cpu.
 *
 * Returns the CPU we should wake onto.
 */
#if defined(ARCH_HAS_SCHED_WAKE_IDLE)
static int wake_idle(int cpu, struct task_struct *p)
{
	cpumask_t tmp;
	struct sched_domain *sd;
	int i;

	/*
	 * If it is idle, then it is the best cpu to run this task.
	 *
	 * This cpu is also the best, if it has more than one task already.
	 * Siblings must be also busy(in most cases) as they didn't already
	 * pickup the extra load from this cpu and hence we need not check
	 * sibling runqueue info. This will avoid the checks and cache miss
	 * penalities associated with that.
	 */
	if (idle_cpu(cpu) || cpu_rq(cpu)->nr_running > 1)
		return cpu;

	for_each_domain(cpu, sd) {
1016 1017 1018
		if ((sd->flags & SD_WAKE_IDLE)
		    || ((sd->flags & SD_WAKE_IDLE_FAR)
			&& !task_hot(p, task_rq(p)->clock, sd))) {
1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042
			cpus_and(tmp, sd->span, p->cpus_allowed);
			for_each_cpu_mask(i, tmp) {
				if (idle_cpu(i)) {
					if (i != task_cpu(p)) {
						schedstat_inc(p,
						       se.nr_wakeups_idle);
					}
					return i;
				}
			}
		} else {
			break;
		}
	}
	return cpu;
}
#else
static inline int wake_idle(int cpu, struct task_struct *p)
{
	return cpu;
}
#endif

#ifdef CONFIG_SMP
1043

I
Ingo Molnar 已提交
1044 1045
static const struct sched_class fair_sched_class;

1046
static int
I
Ingo Molnar 已提交
1047 1048 1049
wake_affine(struct rq *rq, struct sched_domain *this_sd, struct rq *this_rq,
	    struct task_struct *p, int prev_cpu, int this_cpu, int sync,
	    int idx, unsigned long load, unsigned long this_load,
1050 1051
	    unsigned int imbalance)
{
I
Ingo Molnar 已提交
1052
	struct task_struct *curr = this_rq->curr;
1053 1054 1055 1056 1057 1058 1059
	unsigned long tl = this_load;
	unsigned long tl_per_task;

	if (!(this_sd->flags & SD_WAKE_AFFINE))
		return 0;

	/*
I
Ingo Molnar 已提交
1060 1061 1062
	 * If the currently running task will sleep within
	 * a reasonable amount of time then attract this newly
	 * woken task:
1063
	 */
I
Ingo Molnar 已提交
1064 1065 1066 1067 1068
	if (sync && curr->sched_class == &fair_sched_class) {
		if (curr->se.avg_overlap < sysctl_sched_migration_cost &&
				p->se.avg_overlap < sysctl_sched_migration_cost)
			return 1;
	}
1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080

	schedstat_inc(p, se.nr_wakeups_affine_attempts);
	tl_per_task = cpu_avg_load_per_task(this_cpu);

	/*
	 * If sync wakeup then subtract the (maximum possible)
	 * effect of the currently running task from the load
	 * of the current CPU:
	 */
	if (sync)
		tl -= current->se.load.weight;

1081
	if ((tl <= load && tl + target_load(prev_cpu, idx) <= tl_per_task) ||
1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095
			100*(tl + p->se.load.weight) <= imbalance*load) {
		/*
		 * This domain has SD_WAKE_AFFINE and
		 * p is cache cold in this domain, and
		 * there is no bad imbalance.
		 */
		schedstat_inc(this_sd, ttwu_move_affine);
		schedstat_inc(p, se.nr_wakeups_affine);

		return 1;
	}
	return 0;
}

1096 1097 1098
static int select_task_rq_fair(struct task_struct *p, int sync)
{
	struct sched_domain *sd, *this_sd = NULL;
1099
	int prev_cpu, this_cpu, new_cpu;
1100
	unsigned long load, this_load;
I
Ingo Molnar 已提交
1101
	struct rq *rq, *this_rq;
1102 1103
	unsigned int imbalance;
	int idx;
1104

1105 1106 1107
	prev_cpu	= task_cpu(p);
	rq		= task_rq(p);
	this_cpu	= smp_processor_id();
I
Ingo Molnar 已提交
1108
	this_rq		= cpu_rq(this_cpu);
1109
	new_cpu		= prev_cpu;
1110

1111 1112 1113 1114
	/*
	 * 'this_sd' is the first domain that both
	 * this_cpu and prev_cpu are present in:
	 */
1115
	for_each_domain(this_cpu, sd) {
1116
		if (cpu_isset(prev_cpu, sd->span)) {
1117 1118 1119 1120 1121 1122
			this_sd = sd;
			break;
		}
	}

	if (unlikely(!cpu_isset(this_cpu, p->cpus_allowed)))
1123
		goto out;
1124 1125 1126 1127

	/*
	 * Check for affine wakeup and passive balancing possibilities.
	 */
1128
	if (!this_sd)
1129
		goto out;
1130

1131 1132 1133 1134
	idx = this_sd->wake_idx;

	imbalance = 100 + (this_sd->imbalance_pct - 100) / 2;

1135
	load = source_load(prev_cpu, idx);
1136 1137
	this_load = target_load(this_cpu, idx);

I
Ingo Molnar 已提交
1138 1139 1140 1141 1142
	if (wake_affine(rq, this_sd, this_rq, p, prev_cpu, this_cpu, sync, idx,
				     load, this_load, imbalance))
		return this_cpu;

	if (prev_cpu == this_cpu)
1143
		goto out;
1144 1145 1146 1147 1148 1149 1150 1151 1152

	/*
	 * Start passive balancing when half the imbalance_pct
	 * limit is reached.
	 */
	if (this_sd->flags & SD_WAKE_BALANCE) {
		if (imbalance*this_load <= 100*load) {
			schedstat_inc(this_sd, ttwu_move_balance);
			schedstat_inc(p, se.nr_wakeups_passive);
I
Ingo Molnar 已提交
1153
			return this_cpu;
1154 1155 1156
		}
	}

1157
out:
1158 1159 1160 1161
	return wake_idle(new_cpu, p);
}
#endif /* CONFIG_SMP */

1162 1163 1164 1165 1166
static unsigned long wakeup_gran(struct sched_entity *se)
{
	unsigned long gran = sysctl_sched_wakeup_granularity;

	/*
1167 1168
	 * More easily preempt - nice tasks, while not making it harder for
	 * + nice tasks.
1169
	 */
1170
	gran = calc_delta_asym(sysctl_sched_wakeup_granularity, se);
1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202

	return gran;
}

/*
 * Should 'se' preempt 'curr'.
 *
 *             |s1
 *        |s2
 *   |s3
 *         g
 *      |<--->|c
 *
 *  w(c, s1) = -1
 *  w(c, s2) =  0
 *  w(c, s3) =  1
 *
 */
static int
wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se)
{
	s64 gran, vdiff = curr->vruntime - se->vruntime;

	if (vdiff < 0)
		return -1;

	gran = wakeup_gran(curr);
	if (vdiff > gran)
		return 1;

	return 0;
}
1203

D
Dhaval Giani 已提交
1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214
/* return depth at which a sched entity is present in the hierarchy */
static inline int depth_se(struct sched_entity *se)
{
	int depth = 0;

	for_each_sched_entity(se)
		depth++;

	return depth;
}

1215 1216 1217
/*
 * Preempt the current task with a newly woken task if needed:
 */
I
Ingo Molnar 已提交
1218
static void check_preempt_wakeup(struct rq *rq, struct task_struct *p)
1219 1220
{
	struct task_struct *curr = rq->curr;
1221
	struct cfs_rq *cfs_rq = task_cfs_rq(curr);
1222
	struct sched_entity *se = &curr->se, *pse = &p->se;
D
Dhaval Giani 已提交
1223
	int se_depth, pse_depth;
1224 1225

	if (unlikely(rt_prio(p->prio))) {
I
Ingo Molnar 已提交
1226
		update_rq_clock(rq);
1227
		update_curr(cfs_rq);
1228 1229 1230
		resched_task(curr);
		return;
	}
1231

I
Ingo Molnar 已提交
1232 1233 1234 1235
	se->last_wakeup = se->sum_exec_runtime;
	if (unlikely(se == pse))
		return;

1236 1237
	cfs_rq_of(pse)->next = pse;

1238 1239 1240 1241 1242 1243
	/*
	 * Batch tasks do not preempt (their preemption is driven by
	 * the tick):
	 */
	if (unlikely(p->policy == SCHED_BATCH))
		return;
1244

1245 1246
	if (!sched_feat(WAKEUP_PREEMPT))
		return;
1247

D
Dhaval Giani 已提交
1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268
	/*
	 * preemption test can be made between sibling entities who are in the
	 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
	 * both tasks until we find their ancestors who are siblings of common
	 * parent.
	 */

	/* First walk up until both entities are at same depth */
	se_depth = depth_se(se);
	pse_depth = depth_se(pse);

	while (se_depth > pse_depth) {
		se_depth--;
		se = parent_entity(se);
	}

	while (pse_depth > se_depth) {
		pse_depth--;
		pse = parent_entity(pse);
	}

1269 1270 1271
	while (!is_same_group(se, pse)) {
		se = parent_entity(se);
		pse = parent_entity(pse);
1272
	}
1273

1274
	if (wakeup_preempt_entity(se, pse) == 1)
1275
		resched_task(curr);
1276 1277
}

1278
static struct task_struct *pick_next_task_fair(struct rq *rq)
1279
{
P
Peter Zijlstra 已提交
1280
	struct task_struct *p;
1281 1282 1283 1284 1285 1286 1287
	struct cfs_rq *cfs_rq = &rq->cfs;
	struct sched_entity *se;

	if (unlikely(!cfs_rq->nr_running))
		return NULL;

	do {
1288
		se = pick_next_entity(cfs_rq);
1289 1290 1291
		cfs_rq = group_cfs_rq(se);
	} while (cfs_rq);

P
Peter Zijlstra 已提交
1292 1293 1294 1295
	p = task_of(se);
	hrtick_start_fair(rq, p);

	return p;
1296 1297 1298 1299 1300
}

/*
 * Account for a descheduled task:
 */
1301
static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
1302 1303 1304 1305 1306 1307
{
	struct sched_entity *se = &prev->se;
	struct cfs_rq *cfs_rq;

	for_each_sched_entity(se) {
		cfs_rq = cfs_rq_of(se);
1308
		put_prev_entity(cfs_rq, se);
1309 1310 1311
	}
}

1312
#ifdef CONFIG_SMP
1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323
/**************************************************
 * Fair scheduling class load-balancing methods:
 */

/*
 * Load-balancing iterator. Note: while the runqueue stays locked
 * during the whole iteration, the current task might be
 * dequeued so the iterator has to be dequeue-safe. Here we
 * achieve that by always pre-iterating before returning
 * the current task:
 */
A
Alexey Dobriyan 已提交
1324
static struct task_struct *
1325
__load_balance_iterator(struct cfs_rq *cfs_rq, struct list_head *next)
1326
{
D
Dhaval Giani 已提交
1327 1328
	struct task_struct *p = NULL;
	struct sched_entity *se;
1329

1330
	if (next == &cfs_rq->tasks)
1331 1332
		return NULL;

D
Dhaval Giani 已提交
1333 1334
	/* Skip over entities that are not tasks */
	do {
1335 1336 1337
		se = list_entry(next, struct sched_entity, group_node);
		next = next->next;
	} while (next != &cfs_rq->tasks && !entity_is_task(se));
D
Dhaval Giani 已提交
1338

1339 1340 1341 1342
	if (next == &cfs_rq->tasks)
		return NULL;

	cfs_rq->balance_iterator = next;
D
Dhaval Giani 已提交
1343 1344 1345

	if (entity_is_task(se))
		p = task_of(se);
1346 1347 1348 1349 1350 1351 1352 1353

	return p;
}

static struct task_struct *load_balance_start_fair(void *arg)
{
	struct cfs_rq *cfs_rq = arg;

1354
	return __load_balance_iterator(cfs_rq, cfs_rq->tasks.next);
1355 1356 1357 1358 1359 1360
}

static struct task_struct *load_balance_next_fair(void *arg)
{
	struct cfs_rq *cfs_rq = arg;

1361
	return __load_balance_iterator(cfs_rq, cfs_rq->balance_iterator);
1362 1363
}

1364 1365 1366 1367 1368
static unsigned long
__load_balance_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
		unsigned long max_load_move, struct sched_domain *sd,
		enum cpu_idle_type idle, int *all_pinned, int *this_best_prio,
		struct cfs_rq *cfs_rq)
1369
{
1370
	struct rq_iterator cfs_rq_iterator;
1371

1372 1373 1374
	cfs_rq_iterator.start = load_balance_start_fair;
	cfs_rq_iterator.next = load_balance_next_fair;
	cfs_rq_iterator.arg = cfs_rq;
1375

1376 1377 1378
	return balance_tasks(this_rq, this_cpu, busiest,
			max_load_move, sd, idle, all_pinned,
			this_best_prio, &cfs_rq_iterator);
1379 1380
}

1381
#ifdef CONFIG_FAIR_GROUP_SCHED
P
Peter Williams 已提交
1382
static unsigned long
1383
load_balance_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
1384
		  unsigned long max_load_move,
1385 1386
		  struct sched_domain *sd, enum cpu_idle_type idle,
		  int *all_pinned, int *this_best_prio)
1387 1388
{
	long rem_load_move = max_load_move;
1389 1390
	int busiest_cpu = cpu_of(busiest);
	struct task_group *tg;
1391

1392 1393
	rcu_read_lock();
	list_for_each_entry(tg, &task_groups, list) {
1394
		long imbalance;
1395 1396
		unsigned long this_weight, busiest_weight;
		long rem_load, max_load, moved_load;
1397

1398 1399 1400 1401 1402
		/*
		 * empty group
		 */
		if (!aggregate(tg, sd)->task_weight)
			continue;
1403

1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420
		rem_load = rem_load_move * aggregate(tg, sd)->rq_weight;
		rem_load /= aggregate(tg, sd)->load + 1;

		this_weight = tg->cfs_rq[this_cpu]->task_weight;
		busiest_weight = tg->cfs_rq[busiest_cpu]->task_weight;

		imbalance = (busiest_weight - this_weight) / 2;

		if (imbalance < 0)
			imbalance = busiest_weight;

		max_load = max(rem_load, imbalance);
		moved_load = __load_balance_fair(this_rq, this_cpu, busiest,
				max_load, sd, idle, all_pinned, this_best_prio,
				tg->cfs_rq[busiest_cpu]);

		if (!moved_load)
1421 1422
			continue;

1423
		move_group_shares(tg, sd, busiest_cpu, this_cpu);
1424

1425 1426
		moved_load *= aggregate(tg, sd)->load;
		moved_load /= aggregate(tg, sd)->rq_weight + 1;
1427

1428 1429
		rem_load_move -= moved_load;
		if (rem_load_move < 0)
1430 1431
			break;
	}
1432
	rcu_read_unlock();
1433

P
Peter Williams 已提交
1434
	return max_load_move - rem_load_move;
1435
}
1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447
#else
static unsigned long
load_balance_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
		  unsigned long max_load_move,
		  struct sched_domain *sd, enum cpu_idle_type idle,
		  int *all_pinned, int *this_best_prio)
{
	return __load_balance_fair(this_rq, this_cpu, busiest,
			max_load_move, sd, idle, all_pinned,
			this_best_prio, &busiest->cfs);
}
#endif
1448

1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471
static int
move_one_task_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
		   struct sched_domain *sd, enum cpu_idle_type idle)
{
	struct cfs_rq *busy_cfs_rq;
	struct rq_iterator cfs_rq_iterator;

	cfs_rq_iterator.start = load_balance_start_fair;
	cfs_rq_iterator.next = load_balance_next_fair;

	for_each_leaf_cfs_rq(busiest, busy_cfs_rq) {
		/*
		 * pass busy_cfs_rq argument into
		 * load_balance_[start|next]_fair iterators
		 */
		cfs_rq_iterator.arg = busy_cfs_rq;
		if (iter_move_one_task(this_rq, this_cpu, busiest, sd, idle,
				       &cfs_rq_iterator))
		    return 1;
	}

	return 0;
}
1472
#endif
1473

1474 1475 1476
/*
 * scheduler tick hitting a task of our scheduling class:
 */
P
Peter Zijlstra 已提交
1477
static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
1478 1479 1480 1481 1482 1483
{
	struct cfs_rq *cfs_rq;
	struct sched_entity *se = &curr->se;

	for_each_sched_entity(se) {
		cfs_rq = cfs_rq_of(se);
P
Peter Zijlstra 已提交
1484
		entity_tick(cfs_rq, se, queued);
1485 1486 1487
	}
}

1488
#define swap(a, b) do { typeof(a) tmp = (a); (a) = (b); (b) = tmp; } while (0)
1489

1490 1491 1492 1493 1494 1495 1496
/*
 * Share the fairness runtime between parent and child, thus the
 * total amount of pressure for CPU stays equal - new tasks
 * get a chance to run but frequent forkers are not allowed to
 * monopolize the CPU. Note: the parent runqueue is locked,
 * the child is not running yet.
 */
1497
static void task_new_fair(struct rq *rq, struct task_struct *p)
1498 1499
{
	struct cfs_rq *cfs_rq = task_cfs_rq(p);
1500
	struct sched_entity *se = &p->se, *curr = cfs_rq->curr;
1501
	int this_cpu = smp_processor_id();
1502 1503 1504

	sched_info_queued(p);

1505
	update_curr(cfs_rq);
1506
	place_entity(cfs_rq, se, 1);
1507

1508
	/* 'curr' will be NULL if the child belongs to a different group */
1509
	if (sysctl_sched_child_runs_first && this_cpu == task_cpu(p) &&
1510
			curr && curr->vruntime < se->vruntime) {
D
Dmitry Adamushko 已提交
1511
		/*
1512 1513 1514
		 * Upon rescheduling, sched_class::put_prev_task() will place
		 * 'current' within the tree based on its new key value.
		 */
1515 1516
		swap(curr->vruntime, se->vruntime);
	}
1517

1518
	enqueue_task_fair(rq, p, 0);
1519
	resched_task(rq->curr);
1520 1521
}

1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557
/*
 * Priority of the task has changed. Check to see if we preempt
 * the current task.
 */
static void prio_changed_fair(struct rq *rq, struct task_struct *p,
			      int oldprio, int running)
{
	/*
	 * Reschedule if we are currently running on this runqueue and
	 * our priority decreased, or if we are not currently running on
	 * this runqueue and our priority is higher than the current's
	 */
	if (running) {
		if (p->prio > oldprio)
			resched_task(rq->curr);
	} else
		check_preempt_curr(rq, p);
}

/*
 * We switched to the sched_fair class.
 */
static void switched_to_fair(struct rq *rq, struct task_struct *p,
			     int running)
{
	/*
	 * We were most likely switched from sched_rt, so
	 * kick off the schedule if running, otherwise just see
	 * if we can still preempt the current task.
	 */
	if (running)
		resched_task(rq->curr);
	else
		check_preempt_curr(rq, p);
}

1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570
/* Account for a task changing its policy or group.
 *
 * This routine is mostly called to set cfs_rq->curr field when a task
 * migrates between groups/classes.
 */
static void set_curr_task_fair(struct rq *rq)
{
	struct sched_entity *se = &rq->curr->se;

	for_each_sched_entity(se)
		set_next_entity(cfs_rq_of(se), se);
}

P
Peter Zijlstra 已提交
1571 1572 1573 1574 1575 1576 1577 1578 1579 1580
#ifdef CONFIG_FAIR_GROUP_SCHED
static void moved_group_fair(struct task_struct *p)
{
	struct cfs_rq *cfs_rq = task_cfs_rq(p);

	update_curr(cfs_rq);
	place_entity(cfs_rq, &p->se, 1);
}
#endif

1581 1582 1583
/*
 * All the scheduling class methods:
 */
1584 1585
static const struct sched_class fair_sched_class = {
	.next			= &idle_sched_class,
1586 1587 1588
	.enqueue_task		= enqueue_task_fair,
	.dequeue_task		= dequeue_task_fair,
	.yield_task		= yield_task_fair,
1589 1590 1591
#ifdef CONFIG_SMP
	.select_task_rq		= select_task_rq_fair,
#endif /* CONFIG_SMP */
1592

I
Ingo Molnar 已提交
1593
	.check_preempt_curr	= check_preempt_wakeup,
1594 1595 1596 1597

	.pick_next_task		= pick_next_task_fair,
	.put_prev_task		= put_prev_task_fair,

1598
#ifdef CONFIG_SMP
1599
	.load_balance		= load_balance_fair,
1600
	.move_one_task		= move_one_task_fair,
1601
#endif
1602

1603
	.set_curr_task          = set_curr_task_fair,
1604 1605
	.task_tick		= task_tick_fair,
	.task_new		= task_new_fair,
1606 1607 1608

	.prio_changed		= prio_changed_fair,
	.switched_to		= switched_to_fair,
P
Peter Zijlstra 已提交
1609 1610 1611 1612

#ifdef CONFIG_FAIR_GROUP_SCHED
	.moved_group		= moved_group_fair,
#endif
1613 1614 1615
};

#ifdef CONFIG_SCHED_DEBUG
1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639
static void
print_cfs_rq_tasks(struct seq_file *m, struct cfs_rq *cfs_rq, int depth)
{
	struct sched_entity *se;

	if (!cfs_rq)
		return;

	list_for_each_entry_rcu(se, &cfs_rq->tasks, group_node) {
		int i;

		for (i = depth; i; i--)
			seq_puts(m, "  ");

		seq_printf(m, "%lu %s %lu\n",
				se->load.weight,
				entity_is_task(se) ? "T" : "G",
				calc_delta_weight(SCHED_LOAD_SCALE, se)
				);
		if (!entity_is_task(se))
			print_cfs_rq_tasks(m, group_cfs_rq(se), depth + 1);
	}
}

1640
static void print_cfs_stats(struct seq_file *m, int cpu)
1641 1642 1643
{
	struct cfs_rq *cfs_rq;

1644
	rcu_read_lock();
1645
	for_each_leaf_cfs_rq(cpu_rq(cpu), cfs_rq)
1646
		print_cfs_rq(m, cpu, cfs_rq);
1647 1648 1649

	seq_printf(m, "\nWeight tree:\n");
	print_cfs_rq_tasks(m, &cpu_rq(cpu)->cfs, 1);
1650
	rcu_read_unlock();
1651 1652
}
#endif