i7core_edac.c 56.0 KB
Newer Older
1 2 3 4 5 6
/* Intel i7 core/Nehalem Memory Controller kernel module
 *
 * This driver supports yhe memory controllers found on the Intel
 * processor families i7core, i7core 7xx/8xx, i5core, Xeon 35xx,
 * Xeon 55xx and Xeon 56xx also known as Nehalem, Nehalem-EP, Lynnfield
 * and Westmere-EP.
7 8 9 10
 *
 * This file may be distributed under the terms of the
 * GNU General Public License version 2 only.
 *
11
 * Copyright (c) 2009-2010 by:
12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32
 *	 Mauro Carvalho Chehab <mchehab@redhat.com>
 *
 * Red Hat Inc. http://www.redhat.com
 *
 * Forked and adapted from the i5400_edac driver
 *
 * Based on the following public Intel datasheets:
 * Intel Core i7 Processor Extreme Edition and Intel Core i7 Processor
 * Datasheet, Volume 2:
 *	http://download.intel.com/design/processor/datashts/320835.pdf
 * Intel Xeon Processor 5500 Series Datasheet Volume 2
 *	http://www.intel.com/Assets/PDF/datasheet/321322.pdf
 * also available at:
 * 	http://www.arrownac.com/manufacturers/intel/s/nehalem/5500-datasheet-v2.pdf
 */

#include <linux/module.h>
#include <linux/init.h>
#include <linux/pci.h>
#include <linux/pci_ids.h>
#include <linux/slab.h>
R
Randy Dunlap 已提交
33
#include <linux/delay.h>
34 35
#include <linux/edac.h>
#include <linux/mmzone.h>
36
#include <linux/edac_mce.h>
37
#include <linux/smp.h>
38
#include <asm/processor.h>
39 40 41

#include "edac_core.h"

42 43 44 45 46
/* Static vars */
static LIST_HEAD(i7core_edac_list);
static DEFINE_MUTEX(i7core_edac_lock);
static int probed;

47 48 49
static int use_pci_fixup;
module_param(use_pci_fixup, int, 0444);
MODULE_PARM_DESC(use_pci_fixup, "Enable PCI fixup to seek for hidden devices");
50 51 52 53 54 55 56 57 58
/*
 * This is used for Nehalem-EP and Nehalem-EX devices, where the non-core
 * registers start at bus 255, and are not reported by BIOS.
 * We currently find devices with only 2 sockets. In order to support more QPI
 * Quick Path Interconnect, just increment this number.
 */
#define MAX_SOCKET_BUSES	2


59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77
/*
 * Alter this version for the module when modifications are made
 */
#define I7CORE_REVISION    " Ver: 1.0.0 " __DATE__
#define EDAC_MOD_STR      "i7core_edac"

/*
 * Debug macros
 */
#define i7core_printk(level, fmt, arg...)			\
	edac_printk(level, "i7core", fmt, ##arg)

#define i7core_mc_printk(mci, level, fmt, arg...)		\
	edac_mc_chipset_printk(mci, level, "i7core", fmt, ##arg)

/*
 * i7core Memory Controller Registers
 */

78 79 80 81
	/* OFFSETS for Device 0 Function 0 */

#define MC_CFG_CONTROL	0x90

82 83 84 85 86 87
	/* OFFSETS for Device 3 Function 0 */

#define MC_CONTROL	0x48
#define MC_STATUS	0x4c
#define MC_MAX_DOD	0x64

88 89 90 91 92 93 94 95 96 97 98 99
/*
 * OFFSETS for Device 3 Function 4, as inicated on Xeon 5500 datasheet:
 * http://www.arrownac.com/manufacturers/intel/s/nehalem/5500-datasheet-v2.pdf
 */

#define MC_TEST_ERR_RCV1	0x60
  #define DIMM2_COR_ERR(r)			((r) & 0x7fff)

#define MC_TEST_ERR_RCV0	0x64
  #define DIMM1_COR_ERR(r)			(((r) >> 16) & 0x7fff)
  #define DIMM0_COR_ERR(r)			((r) & 0x7fff)

100 101 102 103 104 105 106 107 108 109 110 111
/* OFFSETS for Device 3 Function 2, as inicated on Xeon 5500 datasheet */
#define MC_COR_ECC_CNT_0	0x80
#define MC_COR_ECC_CNT_1	0x84
#define MC_COR_ECC_CNT_2	0x88
#define MC_COR_ECC_CNT_3	0x8c
#define MC_COR_ECC_CNT_4	0x90
#define MC_COR_ECC_CNT_5	0x94

#define DIMM_TOP_COR_ERR(r)			(((r) >> 16) & 0x7fff)
#define DIMM_BOT_COR_ERR(r)			((r) & 0x7fff)


112 113
	/* OFFSETS for Devices 4,5 and 6 Function 0 */

114 115 116 117 118 119
#define MC_CHANNEL_DIMM_INIT_PARAMS 0x58
  #define THREE_DIMMS_PRESENT		(1 << 24)
  #define SINGLE_QUAD_RANK_PRESENT	(1 << 23)
  #define QUAD_RANK_PRESENT		(1 << 22)
  #define REGISTERED_DIMM		(1 << 15)

120 121 122 123
#define MC_CHANNEL_MAPPER	0x60
  #define RDLCH(r, ch)		((((r) >> (3 + (ch * 6))) & 0x07) - 1)
  #define WRLCH(r, ch)		((((r) >> (ch * 6)) & 0x07) - 1)

124 125 126
#define MC_CHANNEL_RANK_PRESENT 0x7c
  #define RANK_PRESENT_MASK		0xffff

127
#define MC_CHANNEL_ADDR_MATCH	0xf0
128 129 130 131 132 133 134 135 136 137
#define MC_CHANNEL_ERROR_MASK	0xf8
#define MC_CHANNEL_ERROR_INJECT	0xfc
  #define INJECT_ADDR_PARITY	0x10
  #define INJECT_ECC		0x08
  #define MASK_CACHELINE	0x06
  #define MASK_FULL_CACHELINE	0x06
  #define MASK_MSB32_CACHELINE	0x04
  #define MASK_LSB32_CACHELINE	0x02
  #define NO_MASK_CACHELINE	0x00
  #define REPEAT_EN		0x01
138

139
	/* OFFSETS for Devices 4,5 and 6 Function 1 */
140

141 142 143 144 145 146 147
#define MC_DOD_CH_DIMM0		0x48
#define MC_DOD_CH_DIMM1		0x4c
#define MC_DOD_CH_DIMM2		0x50
  #define RANKOFFSET_MASK	((1 << 12) | (1 << 11) | (1 << 10))
  #define RANKOFFSET(x)		((x & RANKOFFSET_MASK) >> 10)
  #define DIMM_PRESENT_MASK	(1 << 9)
  #define DIMM_PRESENT(x)	(((x) & DIMM_PRESENT_MASK) >> 9)
148 149 150 151
  #define MC_DOD_NUMBANK_MASK		((1 << 8) | (1 << 7))
  #define MC_DOD_NUMBANK(x)		(((x) & MC_DOD_NUMBANK_MASK) >> 7)
  #define MC_DOD_NUMRANK_MASK		((1 << 6) | (1 << 5))
  #define MC_DOD_NUMRANK(x)		(((x) & MC_DOD_NUMRANK_MASK) >> 5)
152
  #define MC_DOD_NUMROW_MASK		((1 << 4) | (1 << 3) | (1 << 2))
153
  #define MC_DOD_NUMROW(x)		(((x) & MC_DOD_NUMROW_MASK) >> 2)
154 155
  #define MC_DOD_NUMCOL_MASK		3
  #define MC_DOD_NUMCOL(x)		((x) & MC_DOD_NUMCOL_MASK)
156

157 158
#define MC_RANK_PRESENT		0x7c

159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181
#define MC_SAG_CH_0	0x80
#define MC_SAG_CH_1	0x84
#define MC_SAG_CH_2	0x88
#define MC_SAG_CH_3	0x8c
#define MC_SAG_CH_4	0x90
#define MC_SAG_CH_5	0x94
#define MC_SAG_CH_6	0x98
#define MC_SAG_CH_7	0x9c

#define MC_RIR_LIMIT_CH_0	0x40
#define MC_RIR_LIMIT_CH_1	0x44
#define MC_RIR_LIMIT_CH_2	0x48
#define MC_RIR_LIMIT_CH_3	0x4C
#define MC_RIR_LIMIT_CH_4	0x50
#define MC_RIR_LIMIT_CH_5	0x54
#define MC_RIR_LIMIT_CH_6	0x58
#define MC_RIR_LIMIT_CH_7	0x5C
#define MC_RIR_LIMIT_MASK	((1 << 10) - 1)

#define MC_RIR_WAY_CH		0x80
  #define MC_RIR_WAY_OFFSET_MASK	(((1 << 14) - 1) & ~0x7)
  #define MC_RIR_WAY_RANK_MASK		0x7

182 183 184 185 186
/*
 * i7core structs
 */

#define NUM_CHANS 3
187 188 189
#define MAX_DIMMS 3		/* Max DIMMS per channel */
#define MAX_MCR_FUNC  4
#define MAX_CHAN_FUNC 3
190 191 192 193 194

struct i7core_info {
	u32	mc_control;
	u32	mc_status;
	u32	max_dod;
195
	u32	ch_map;
196 197
};

198 199 200 201 202 203 204 205 206 207 208 209

struct i7core_inject {
	int	enable;

	u32	section;
	u32	type;
	u32	eccmask;

	/* Error address mask */
	int channel, dimm, rank, bank, page, col;
};

210
struct i7core_channel {
211 212
	u32		ranks;
	u32		dimms;
213 214
};

215
struct pci_id_descr {
216 217 218
	int			dev;
	int			func;
	int 			dev_id;
219
	int			optional;
220 221
};

222
struct pci_id_table {
223 224
	const struct pci_id_descr	*descr;
	int				n_devs;
225 226
};

227 228 229 230
struct i7core_dev {
	struct list_head	list;
	u8			socket;
	struct pci_dev		**pdev;
231
	int			n_devs;
232 233 234
	struct mem_ctl_info	*mci;
};

235
struct i7core_pvt {
236 237 238 239 240
	struct pci_dev	*pci_noncore;
	struct pci_dev	*pci_mcr[MAX_MCR_FUNC + 1];
	struct pci_dev	*pci_ch[NUM_CHANS][MAX_CHAN_FUNC + 1];

	struct i7core_dev *i7core_dev;
241

242
	struct i7core_info	info;
243
	struct i7core_inject	inject;
244
	struct i7core_channel	channel[NUM_CHANS];
245

246 247
	int		ce_count_available;
	int 		csrow_map[NUM_CHANS][MAX_DIMMS];
248 249

			/* ECC corrected errors counts per udimm */
250 251
	unsigned long	udimm_ce_count[MAX_DIMMS];
	int		udimm_last_ce_count[MAX_DIMMS];
252
			/* ECC corrected errors counts per rdimm */
253 254
	unsigned long	rdimm_ce_count[NUM_CHANS][MAX_DIMMS];
	int		rdimm_last_ce_count[NUM_CHANS][MAX_DIMMS];
255

256
	unsigned int	is_registered;
257

258 259
	/* mcelog glue */
	struct edac_mce		edac_mce;
260 261

	/* Fifo double buffers */
262
	struct mce		mce_entry[MCE_LOG_LEN];
263 264 265 266 267 268 269
	struct mce		mce_outentry[MCE_LOG_LEN];

	/* Fifo in/out counters */
	unsigned		mce_in, mce_out;

	/* Count indicator to show errors not got */
	unsigned		mce_overrun;
270 271 272

	/* Struct to control EDAC polling */
	struct edac_pci_ctl_info *i7core_pci;
273 274
};

275 276 277 278 279
#define PCI_DESCR(device, function, device_id)	\
	.dev = (device),			\
	.func = (function),			\
	.dev_id = (device_id)

280
static const struct pci_id_descr pci_dev_descr_i7core_nehalem[] = {
281 282 283
		/* Memory controller */
	{ PCI_DESCR(3, 0, PCI_DEVICE_ID_INTEL_I7_MCR)     },
	{ PCI_DESCR(3, 1, PCI_DEVICE_ID_INTEL_I7_MC_TAD)  },
284 285
			/* Exists only for RDIMM */
	{ PCI_DESCR(3, 2, PCI_DEVICE_ID_INTEL_I7_MC_RAS), .optional = 1  },
286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304
	{ PCI_DESCR(3, 4, PCI_DEVICE_ID_INTEL_I7_MC_TEST) },

		/* Channel 0 */
	{ PCI_DESCR(4, 0, PCI_DEVICE_ID_INTEL_I7_MC_CH0_CTRL) },
	{ PCI_DESCR(4, 1, PCI_DEVICE_ID_INTEL_I7_MC_CH0_ADDR) },
	{ PCI_DESCR(4, 2, PCI_DEVICE_ID_INTEL_I7_MC_CH0_RANK) },
	{ PCI_DESCR(4, 3, PCI_DEVICE_ID_INTEL_I7_MC_CH0_TC)   },

		/* Channel 1 */
	{ PCI_DESCR(5, 0, PCI_DEVICE_ID_INTEL_I7_MC_CH1_CTRL) },
	{ PCI_DESCR(5, 1, PCI_DEVICE_ID_INTEL_I7_MC_CH1_ADDR) },
	{ PCI_DESCR(5, 2, PCI_DEVICE_ID_INTEL_I7_MC_CH1_RANK) },
	{ PCI_DESCR(5, 3, PCI_DEVICE_ID_INTEL_I7_MC_CH1_TC)   },

		/* Channel 2 */
	{ PCI_DESCR(6, 0, PCI_DEVICE_ID_INTEL_I7_MC_CH2_CTRL) },
	{ PCI_DESCR(6, 1, PCI_DEVICE_ID_INTEL_I7_MC_CH2_ADDR) },
	{ PCI_DESCR(6, 2, PCI_DEVICE_ID_INTEL_I7_MC_CH2_RANK) },
	{ PCI_DESCR(6, 3, PCI_DEVICE_ID_INTEL_I7_MC_CH2_TC)   },
305 306 307 308 309 310 311 312

		/* Generic Non-core registers */
	/*
	 * This is the PCI device on i7core and on Xeon 35xx (8086:2c41)
	 * On Xeon 55xx, however, it has a different id (8086:2c40). So,
	 * the probing code needs to test for the other address in case of
	 * failure of this one
	 */
313
	{ PCI_DESCR(0, 0, PCI_DEVICE_ID_INTEL_I7_NONCORE)  },
314

315
};
316

317
static const struct pci_id_descr pci_dev_descr_lynnfield[] = {
318 319 320 321 322 323 324 325 326
	{ PCI_DESCR( 3, 0, PCI_DEVICE_ID_INTEL_LYNNFIELD_MCR)         },
	{ PCI_DESCR( 3, 1, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_TAD)      },
	{ PCI_DESCR( 3, 4, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_TEST)     },

	{ PCI_DESCR( 4, 0, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH0_CTRL) },
	{ PCI_DESCR( 4, 1, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH0_ADDR) },
	{ PCI_DESCR( 4, 2, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH0_RANK) },
	{ PCI_DESCR( 4, 3, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH0_TC)   },

327 328 329 330
	{ PCI_DESCR( 5, 0, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH1_CTRL) },
	{ PCI_DESCR( 5, 1, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH1_ADDR) },
	{ PCI_DESCR( 5, 2, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH1_RANK) },
	{ PCI_DESCR( 5, 3, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH1_TC)   },
331

332 333 334 335
	/*
	 * This is the PCI device has an alternate address on some
	 * processors like Core i7 860
	 */
336 337 338
	{ PCI_DESCR( 0, 0, PCI_DEVICE_ID_INTEL_LYNNFIELD_NONCORE)     },
};

339
static const struct pci_id_descr pci_dev_descr_i7core_westmere[] = {
340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369
		/* Memory controller */
	{ PCI_DESCR(3, 0, PCI_DEVICE_ID_INTEL_LYNNFIELD_MCR_REV2)     },
	{ PCI_DESCR(3, 1, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_TAD_REV2)  },
			/* Exists only for RDIMM */
	{ PCI_DESCR(3, 2, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_RAS_REV2), .optional = 1  },
	{ PCI_DESCR(3, 4, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_TEST_REV2) },

		/* Channel 0 */
	{ PCI_DESCR(4, 0, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH0_CTRL_REV2) },
	{ PCI_DESCR(4, 1, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH0_ADDR_REV2) },
	{ PCI_DESCR(4, 2, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH0_RANK_REV2) },
	{ PCI_DESCR(4, 3, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH0_TC_REV2)   },

		/* Channel 1 */
	{ PCI_DESCR(5, 0, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH1_CTRL_REV2) },
	{ PCI_DESCR(5, 1, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH1_ADDR_REV2) },
	{ PCI_DESCR(5, 2, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH1_RANK_REV2) },
	{ PCI_DESCR(5, 3, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH1_TC_REV2)   },

		/* Channel 2 */
	{ PCI_DESCR(6, 0, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH2_CTRL_REV2) },
	{ PCI_DESCR(6, 1, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH2_ADDR_REV2) },
	{ PCI_DESCR(6, 2, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH2_RANK_REV2) },
	{ PCI_DESCR(6, 3, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH2_TC_REV2)   },

		/* Generic Non-core registers */
	{ PCI_DESCR(0, 0, PCI_DEVICE_ID_INTEL_LYNNFIELD_NONCORE_REV2)  },

};

370 371
#define PCI_ID_TABLE_ENTRY(A) { .descr=A, .n_devs = ARRAY_SIZE(A) }
static const struct pci_id_table pci_dev_table[] = {
372 373 374 375 376
	PCI_ID_TABLE_ENTRY(pci_dev_descr_i7core_nehalem),
	PCI_ID_TABLE_ENTRY(pci_dev_descr_lynnfield),
	PCI_ID_TABLE_ENTRY(pci_dev_descr_i7core_westmere),
};

377 378 379 380
/*
 *	pci_device_id	table for which devices we are looking for
 */
static const struct pci_device_id i7core_pci_tbl[] __devinitdata = {
381
	{PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_X58_HUB_MGMT)},
382
	{PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_LYNNFIELD_QPI_LINK0)},
383 384 385
	{0,}			/* 0 terminated list. */
};

386 387 388 389 390
/****************************************************************************
			Anciliary status routines
 ****************************************************************************/

	/* MC_CONTROL bits */
391 392
#define CH_ACTIVE(pvt, ch)	((pvt)->info.mc_control & (1 << (8 + ch)))
#define ECCx8(pvt)		((pvt)->info.mc_control & (1 << 1))
393 394

	/* MC_STATUS bits */
395
#define ECC_ENABLED(pvt)	((pvt)->info.mc_status & (1 << 4))
396
#define CH_DISABLED(pvt, ch)	((pvt)->info.mc_status & (1 << ch))
397 398

	/* MC_MAX_DOD read functions */
399
static inline int numdimms(u32 dimms)
400
{
401
	return (dimms & 0x3) + 1;
402 403
}

404
static inline int numrank(u32 rank)
405 406 407
{
	static int ranks[4] = { 1, 2, 4, -EINVAL };

408
	return ranks[rank & 0x3];
409 410
}

411
static inline int numbank(u32 bank)
412 413 414
{
	static int banks[4] = { 4, 8, 16, -EINVAL };

415
	return banks[bank & 0x3];
416 417
}

418
static inline int numrow(u32 row)
419 420 421 422 423 424
{
	static int rows[8] = {
		1 << 12, 1 << 13, 1 << 14, 1 << 15,
		1 << 16, -EINVAL, -EINVAL, -EINVAL,
	};

425
	return rows[row & 0x7];
426 427
}

428
static inline int numcol(u32 col)
429 430 431 432
{
	static int cols[8] = {
		1 << 10, 1 << 11, 1 << 12, -EINVAL,
	};
433
	return cols[col & 0x3];
434 435
}

436
static struct i7core_dev *get_i7core_dev(u8 socket)
437 438 439 440 441 442 443 444 445 446 447
{
	struct i7core_dev *i7core_dev;

	list_for_each_entry(i7core_dev, &i7core_edac_list, list) {
		if (i7core_dev->socket == socket)
			return i7core_dev;
	}

	return NULL;
}

448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470
static struct i7core_dev *alloc_i7core_dev(u8 socket,
					   const struct pci_id_table *table)
{
	struct i7core_dev *i7core_dev;

	i7core_dev = kzalloc(sizeof(*i7core_dev), GFP_KERNEL);
	if (!i7core_dev)
		return NULL;

	i7core_dev->pdev = kzalloc(sizeof(*i7core_dev->pdev) * table->n_devs,
				   GFP_KERNEL);
	if (!i7core_dev->pdev) {
		kfree(i7core_dev);
		return NULL;
	}

	i7core_dev->socket = socket;
	i7core_dev->n_devs = table->n_devs;
	list_add_tail(&i7core_dev->list, &i7core_edac_list);

	return i7core_dev;
}

471 472 473 474 475 476 477
static void free_i7core_dev(struct i7core_dev *i7core_dev)
{
	list_del(&i7core_dev->list);
	kfree(i7core_dev->pdev);
	kfree(i7core_dev);
}

478 479 480
/****************************************************************************
			Memory check routines
 ****************************************************************************/
481 482
static struct pci_dev *get_pdev_slot_func(u8 socket, unsigned slot,
					  unsigned func)
483
{
484
	struct i7core_dev *i7core_dev = get_i7core_dev(socket);
485 486
	int i;

487 488 489
	if (!i7core_dev)
		return NULL;

490
	for (i = 0; i < i7core_dev->n_devs; i++) {
491
		if (!i7core_dev->pdev[i])
492 493
			continue;

494 495 496
		if (PCI_SLOT(i7core_dev->pdev[i]->devfn) == slot &&
		    PCI_FUNC(i7core_dev->pdev[i]->devfn) == func) {
			return i7core_dev->pdev[i];
497 498 499
		}
	}

500 501 502
	return NULL;
}

503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519
/**
 * i7core_get_active_channels() - gets the number of channels and csrows
 * @socket:	Quick Path Interconnect socket
 * @channels:	Number of channels that will be returned
 * @csrows:	Number of csrows found
 *
 * Since EDAC core needs to know in advance the number of available channels
 * and csrows, in order to allocate memory for csrows/channels, it is needed
 * to run two similar steps. At the first step, implemented on this function,
 * it checks the number of csrows/channels present at one socket.
 * this is used in order to properly allocate the size of mci components.
 *
 * It should be noticed that none of the current available datasheets explain
 * or even mention how csrows are seen by the memory controller. So, we need
 * to add a fake description for csrows.
 * So, this driver is attributing one DIMM memory for one csrow.
 */
520
static int i7core_get_active_channels(const u8 socket, unsigned *channels,
521
				      unsigned *csrows)
522 523 524 525 526 527 528 529
{
	struct pci_dev *pdev = NULL;
	int i, j;
	u32 status, control;

	*channels = 0;
	*csrows = 0;

530
	pdev = get_pdev_slot_func(socket, 3, 0);
531
	if (!pdev) {
532 533
		i7core_printk(KERN_ERR, "Couldn't find socket %d fn 3.0!!!\n",
			      socket);
534
		return -ENODEV;
535
	}
536 537 538 539 540 541

	/* Device 3 function 0 reads */
	pci_read_config_dword(pdev, MC_STATUS, &status);
	pci_read_config_dword(pdev, MC_CONTROL, &control);

	for (i = 0; i < NUM_CHANS; i++) {
542
		u32 dimm_dod[3];
543 544 545 546 547
		/* Check if the channel is active */
		if (!(control & (1 << (8 + i))))
			continue;

		/* Check if the channel is disabled */
548
		if (status & (1 << i))
549 550
			continue;

551
		pdev = get_pdev_slot_func(socket, i + 4, 1);
552
		if (!pdev) {
553 554 555
			i7core_printk(KERN_ERR, "Couldn't find socket %d "
						"fn %d.%d!!!\n",
						socket, i + 4, 1);
556 557 558 559 560 561 562 563 564 565
			return -ENODEV;
		}
		/* Devices 4-6 function 1 */
		pci_read_config_dword(pdev,
				MC_DOD_CH_DIMM0, &dimm_dod[0]);
		pci_read_config_dword(pdev,
				MC_DOD_CH_DIMM1, &dimm_dod[1]);
		pci_read_config_dword(pdev,
				MC_DOD_CH_DIMM2, &dimm_dod[2]);

566
		(*channels)++;
567 568 569 570 571 572

		for (j = 0; j < 3; j++) {
			if (!DIMM_PRESENT(dimm_dod[j]))
				continue;
			(*csrows)++;
		}
573 574
	}

575
	debugf0("Number of active channels on socket %d: %d\n",
576
		socket, *channels);
577

578 579 580
	return 0;
}

581
static int get_dimm_config(const struct mem_ctl_info *mci)
582 583
{
	struct i7core_pvt *pvt = mci->pvt_info;
584
	struct csrow_info *csr;
585
	struct pci_dev *pdev;
586
	int i, j;
587
	int csrow = 0;
588
	unsigned long last_page = 0;
589
	enum edac_type mode;
590
	enum mem_type mtype;
591

592
	/* Get data from the MC register, function 0 */
593
	pdev = pvt->pci_mcr[0];
594
	if (!pdev)
595 596
		return -ENODEV;

597
	/* Device 3 function 0 reads */
598 599 600 601
	pci_read_config_dword(pdev, MC_CONTROL, &pvt->info.mc_control);
	pci_read_config_dword(pdev, MC_STATUS, &pvt->info.mc_status);
	pci_read_config_dword(pdev, MC_MAX_DOD, &pvt->info.max_dod);
	pci_read_config_dword(pdev, MC_CHANNEL_MAPPER, &pvt->info.ch_map);
602

603
	debugf0("QPI %d control=0x%08x status=0x%08x dod=0x%08x map=0x%08x\n",
604
		pvt->i7core_dev->socket, pvt->info.mc_control, pvt->info.mc_status,
605
		pvt->info.max_dod, pvt->info.ch_map);
606

607
	if (ECC_ENABLED(pvt)) {
608
		debugf0("ECC enabled with x%d SDCC\n", ECCx8(pvt) ? 8 : 4);
609 610 611 612 613
		if (ECCx8(pvt))
			mode = EDAC_S8ECD8ED;
		else
			mode = EDAC_S4ECD4ED;
	} else {
614
		debugf0("ECC disabled\n");
615 616
		mode = EDAC_NONE;
	}
617 618

	/* FIXME: need to handle the error codes */
619 620
	debugf0("DOD Max limits: DIMMS: %d, %d-ranked, %d-banked "
		"x%x x 0x%x\n",
621 622
		numdimms(pvt->info.max_dod),
		numrank(pvt->info.max_dod >> 2),
623
		numbank(pvt->info.max_dod >> 4),
624 625
		numrow(pvt->info.max_dod >> 6),
		numcol(pvt->info.max_dod >> 9));
626

627
	for (i = 0; i < NUM_CHANS; i++) {
628
		u32 data, dimm_dod[3], value[8];
629

630 631 632
		if (!pvt->pci_ch[i][0])
			continue;

633 634 635 636 637 638 639 640 641
		if (!CH_ACTIVE(pvt, i)) {
			debugf0("Channel %i is not active\n", i);
			continue;
		}
		if (CH_DISABLED(pvt, i)) {
			debugf0("Channel %i is disabled\n", i);
			continue;
		}

642
		/* Devices 4-6 function 0 */
643
		pci_read_config_dword(pvt->pci_ch[i][0],
644 645
				MC_CHANNEL_DIMM_INIT_PARAMS, &data);

646
		pvt->channel[i].ranks = (data & QUAD_RANK_PRESENT) ?
647
						4 : 2;
648

649 650
		if (data & REGISTERED_DIMM)
			mtype = MEM_RDDR3;
651
		else
652 653
			mtype = MEM_DDR3;
#if 0
654 655 656 657 658 659
		if (data & THREE_DIMMS_PRESENT)
			pvt->channel[i].dimms = 3;
		else if (data & SINGLE_QUAD_RANK_PRESENT)
			pvt->channel[i].dimms = 1;
		else
			pvt->channel[i].dimms = 2;
660 661 662
#endif

		/* Devices 4-6 function 1 */
663
		pci_read_config_dword(pvt->pci_ch[i][1],
664
				MC_DOD_CH_DIMM0, &dimm_dod[0]);
665
		pci_read_config_dword(pvt->pci_ch[i][1],
666
				MC_DOD_CH_DIMM1, &dimm_dod[1]);
667
		pci_read_config_dword(pvt->pci_ch[i][1],
668
				MC_DOD_CH_DIMM2, &dimm_dod[2]);
669

670
		debugf0("Ch%d phy rd%d, wr%d (0x%08x): "
671
			"%d ranks, %cDIMMs\n",
672 673 674
			i,
			RDLCH(pvt->info.ch_map, i), WRLCH(pvt->info.ch_map, i),
			data,
675
			pvt->channel[i].ranks,
676
			(data & REGISTERED_DIMM) ? 'R' : 'U');
677 678 679

		for (j = 0; j < 3; j++) {
			u32 banks, ranks, rows, cols;
680
			u32 size, npages;
681 682 683 684 685 686 687 688 689

			if (!DIMM_PRESENT(dimm_dod[j]))
				continue;

			banks = numbank(MC_DOD_NUMBANK(dimm_dod[j]));
			ranks = numrank(MC_DOD_NUMRANK(dimm_dod[j]));
			rows = numrow(MC_DOD_NUMROW(dimm_dod[j]));
			cols = numcol(MC_DOD_NUMCOL(dimm_dod[j]));

690 691 692
			/* DDR3 has 8 I/O banks */
			size = (rows * cols * banks * ranks) >> (20 - 3);

693
			pvt->channel[i].dimms++;
694

695 696 697
			debugf0("\tdimm %d %d Mb offset: %x, "
				"bank: %d, rank: %d, row: %#x, col: %#x\n",
				j, size,
698 699 700
				RANKOFFSET(dimm_dod[j]),
				banks, ranks, rows, cols);

701
			npages = MiB_TO_PAGES(size);
702

703
			csr = &mci->csrows[csrow];
704 705 706 707 708
			csr->first_page = last_page + 1;
			last_page += npages;
			csr->last_page = last_page;
			csr->nr_pages = npages;

709
			csr->page_mask = 0;
710
			csr->grain = 8;
711
			csr->csrow_idx = csrow;
712 713 714 715
			csr->nr_channels = 1;

			csr->channels[0].chan_idx = i;
			csr->channels[0].ce_count = 0;
716

717
			pvt->csrow_map[i][j] = csrow;
718

719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735
			switch (banks) {
			case 4:
				csr->dtype = DEV_X4;
				break;
			case 8:
				csr->dtype = DEV_X8;
				break;
			case 16:
				csr->dtype = DEV_X16;
				break;
			default:
				csr->dtype = DEV_UNKNOWN;
			}

			csr->edac_mode = mode;
			csr->mtype = mtype;

736
			csrow++;
737
		}
738

739 740 741 742 743 744 745 746
		pci_read_config_dword(pdev, MC_SAG_CH_0, &value[0]);
		pci_read_config_dword(pdev, MC_SAG_CH_1, &value[1]);
		pci_read_config_dword(pdev, MC_SAG_CH_2, &value[2]);
		pci_read_config_dword(pdev, MC_SAG_CH_3, &value[3]);
		pci_read_config_dword(pdev, MC_SAG_CH_4, &value[4]);
		pci_read_config_dword(pdev, MC_SAG_CH_5, &value[5]);
		pci_read_config_dword(pdev, MC_SAG_CH_6, &value[6]);
		pci_read_config_dword(pdev, MC_SAG_CH_7, &value[7]);
747
		debugf1("\t[%i] DIVBY3\tREMOVED\tOFFSET\n", i);
748
		for (j = 0; j < 8; j++)
749
			debugf1("\t\t%#x\t%#x\t%#x\n",
750 751 752
				(value[j] >> 27) & 0x1,
				(value[j] >> 24) & 0x7,
				(value[j] && ((1 << 24) - 1)));
753 754
	}

755 756 757
	return 0;
}

758 759 760 761 762 763 764 765 766 767 768
/****************************************************************************
			Error insertion routines
 ****************************************************************************/

/* The i7core has independent error injection features per channel.
   However, to have a simpler code, we don't allow enabling error injection
   on more than one channel.
   Also, since a change at an inject parameter will be applied only at enable,
   we're disabling error injection on all write calls to the sysfs nodes that
   controls the error code injection.
 */
769
static int disable_inject(const struct mem_ctl_info *mci)
770 771 772 773 774
{
	struct i7core_pvt *pvt = mci->pvt_info;

	pvt->inject.enable = 0;

775
	if (!pvt->pci_ch[pvt->inject.channel][0])
776 777
		return -ENODEV;

778
	pci_write_config_dword(pvt->pci_ch[pvt->inject.channel][0],
779
				MC_CHANNEL_ERROR_INJECT, 0);
780 781

	return 0;
782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798
}

/*
 * i7core inject inject.section
 *
 *	accept and store error injection inject.section value
 *	bit 0 - refers to the lower 32-byte half cacheline
 *	bit 1 - refers to the upper 32-byte half cacheline
 */
static ssize_t i7core_inject_section_store(struct mem_ctl_info *mci,
					   const char *data, size_t count)
{
	struct i7core_pvt *pvt = mci->pvt_info;
	unsigned long value;
	int rc;

	if (pvt->inject.enable)
799
		disable_inject(mci);
800 801 802

	rc = strict_strtoul(data, 10, &value);
	if ((rc < 0) || (value > 3))
803
		return -EIO;
804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831

	pvt->inject.section = (u32) value;
	return count;
}

static ssize_t i7core_inject_section_show(struct mem_ctl_info *mci,
					      char *data)
{
	struct i7core_pvt *pvt = mci->pvt_info;
	return sprintf(data, "0x%08x\n", pvt->inject.section);
}

/*
 * i7core inject.type
 *
 *	accept and store error injection inject.section value
 *	bit 0 - repeat enable - Enable error repetition
 *	bit 1 - inject ECC error
 *	bit 2 - inject parity error
 */
static ssize_t i7core_inject_type_store(struct mem_ctl_info *mci,
					const char *data, size_t count)
{
	struct i7core_pvt *pvt = mci->pvt_info;
	unsigned long value;
	int rc;

	if (pvt->inject.enable)
832
		disable_inject(mci);
833 834 835

	rc = strict_strtoul(data, 10, &value);
	if ((rc < 0) || (value > 7))
836
		return -EIO;
837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866

	pvt->inject.type = (u32) value;
	return count;
}

static ssize_t i7core_inject_type_show(struct mem_ctl_info *mci,
					      char *data)
{
	struct i7core_pvt *pvt = mci->pvt_info;
	return sprintf(data, "0x%08x\n", pvt->inject.type);
}

/*
 * i7core_inject_inject.eccmask_store
 *
 * The type of error (UE/CE) will depend on the inject.eccmask value:
 *   Any bits set to a 1 will flip the corresponding ECC bit
 *   Correctable errors can be injected by flipping 1 bit or the bits within
 *   a symbol pair (2 consecutive aligned 8-bit pairs - i.e. 7:0 and 15:8 or
 *   23:16 and 31:24). Flipping bits in two symbol pairs will cause an
 *   uncorrectable error to be injected.
 */
static ssize_t i7core_inject_eccmask_store(struct mem_ctl_info *mci,
					const char *data, size_t count)
{
	struct i7core_pvt *pvt = mci->pvt_info;
	unsigned long value;
	int rc;

	if (pvt->inject.enable)
867
		disable_inject(mci);
868 869 870

	rc = strict_strtoul(data, 10, &value);
	if (rc < 0)
871
		return -EIO;
872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894

	pvt->inject.eccmask = (u32) value;
	return count;
}

static ssize_t i7core_inject_eccmask_show(struct mem_ctl_info *mci,
					      char *data)
{
	struct i7core_pvt *pvt = mci->pvt_info;
	return sprintf(data, "0x%08x\n", pvt->inject.eccmask);
}

/*
 * i7core_addrmatch
 *
 * The type of error (UE/CE) will depend on the inject.eccmask value:
 *   Any bits set to a 1 will flip the corresponding ECC bit
 *   Correctable errors can be injected by flipping 1 bit or the bits within
 *   a symbol pair (2 consecutive aligned 8-bit pairs - i.e. 7:0 and 15:8 or
 *   23:16 and 31:24). Flipping bits in two symbol pairs will cause an
 *   uncorrectable error to be injected.
 */

895 896 897 898 899
#define DECLARE_ADDR_MATCH(param, limit)			\
static ssize_t i7core_inject_store_##param(			\
		struct mem_ctl_info *mci,			\
		const char *data, size_t count)			\
{								\
900
	struct i7core_pvt *pvt;					\
901 902 903
	long value;						\
	int rc;							\
								\
904 905 906
	debugf1("%s()\n", __func__);				\
	pvt = mci->pvt_info;					\
								\
907 908 909
	if (pvt->inject.enable)					\
		disable_inject(mci);				\
								\
910
	if (!strcasecmp(data, "any") || !strcasecmp(data, "any\n"))\
911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926
		value = -1;					\
	else {							\
		rc = strict_strtoul(data, 10, &value);		\
		if ((rc < 0) || (value >= limit))		\
			return -EIO;				\
	}							\
								\
	pvt->inject.param = value;				\
								\
	return count;						\
}								\
								\
static ssize_t i7core_inject_show_##param(			\
		struct mem_ctl_info *mci,			\
		char *data)					\
{								\
927 928 929 930
	struct i7core_pvt *pvt;					\
								\
	pvt = mci->pvt_info;					\
	debugf1("%s() pvt=%p\n", __func__, pvt);		\
931 932 933 934
	if (pvt->inject.param < 0)				\
		return sprintf(data, "any\n");			\
	else							\
		return sprintf(data, "%d\n", pvt->inject.param);\
935 936
}

937 938 939 940 941 942 943 944 945
#define ATTR_ADDR_MATCH(param)					\
	{							\
		.attr = {					\
			.name = #param,				\
			.mode = (S_IRUGO | S_IWUSR)		\
		},						\
		.show  = i7core_inject_show_##param,		\
		.store = i7core_inject_store_##param,		\
	}
946

947 948 949 950 951 952
DECLARE_ADDR_MATCH(channel, 3);
DECLARE_ADDR_MATCH(dimm, 3);
DECLARE_ADDR_MATCH(rank, 4);
DECLARE_ADDR_MATCH(bank, 32);
DECLARE_ADDR_MATCH(page, 0x10000);
DECLARE_ADDR_MATCH(col, 0x4000);
953

954
static int write_and_test(struct pci_dev *dev, const int where, const u32 val)
955 956 957 958
{
	u32 read;
	int count;

959 960 961 962
	debugf0("setting pci %02x:%02x.%x reg=%02x value=%08x\n",
		dev->bus->number, PCI_SLOT(dev->devfn), PCI_FUNC(dev->devfn),
		where, val);

963 964
	for (count = 0; count < 10; count++) {
		if (count)
965
			msleep(100);
966 967 968 969 970 971 972
		pci_write_config_dword(dev, where, val);
		pci_read_config_dword(dev, where, &read);

		if (read == val)
			return 0;
	}

973 974 975 976
	i7core_printk(KERN_ERR, "Error during set pci %02x:%02x.%x reg=%02x "
		"write=%08x. Read=%08x\n",
		dev->bus->number, PCI_SLOT(dev->devfn), PCI_FUNC(dev->devfn),
		where, val, read);
977 978 979 980

	return -EINVAL;
}

981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007
/*
 * This routine prepares the Memory Controller for error injection.
 * The error will be injected when some process tries to write to the
 * memory that matches the given criteria.
 * The criteria can be set in terms of a mask where dimm, rank, bank, page
 * and col can be specified.
 * A -1 value for any of the mask items will make the MCU to ignore
 * that matching criteria for error injection.
 *
 * It should be noticed that the error will only happen after a write operation
 * on a memory that matches the condition. if REPEAT_EN is not enabled at
 * inject mask, then it will produce just one error. Otherwise, it will repeat
 * until the injectmask would be cleaned.
 *
 * FIXME: This routine assumes that MAXNUMDIMMS value of MC_MAX_DOD
 *    is reliable enough to check if the MC is using the
 *    three channels. However, this is not clear at the datasheet.
 */
static ssize_t i7core_inject_enable_store(struct mem_ctl_info *mci,
				       const char *data, size_t count)
{
	struct i7core_pvt *pvt = mci->pvt_info;
	u32 injectmask;
	u64 mask = 0;
	int  rc;
	long enable;

1008
	if (!pvt->pci_ch[pvt->inject.channel][0])
1009 1010
		return 0;

1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023
	rc = strict_strtoul(data, 10, &enable);
	if ((rc < 0))
		return 0;

	if (enable) {
		pvt->inject.enable = 1;
	} else {
		disable_inject(mci);
		return count;
	}

	/* Sets pvt->inject.dimm mask */
	if (pvt->inject.dimm < 0)
1024
		mask |= 1LL << 41;
1025
	else {
1026
		if (pvt->channel[pvt->inject.channel].dimms > 2)
1027
			mask |= (pvt->inject.dimm & 0x3LL) << 35;
1028
		else
1029
			mask |= (pvt->inject.dimm & 0x1LL) << 36;
1030 1031 1032 1033
	}

	/* Sets pvt->inject.rank mask */
	if (pvt->inject.rank < 0)
1034
		mask |= 1LL << 40;
1035
	else {
1036
		if (pvt->channel[pvt->inject.channel].dimms > 2)
1037
			mask |= (pvt->inject.rank & 0x1LL) << 34;
1038
		else
1039
			mask |= (pvt->inject.rank & 0x3LL) << 34;
1040 1041 1042 1043
	}

	/* Sets pvt->inject.bank mask */
	if (pvt->inject.bank < 0)
1044
		mask |= 1LL << 39;
1045
	else
1046
		mask |= (pvt->inject.bank & 0x15LL) << 30;
1047 1048 1049

	/* Sets pvt->inject.page mask */
	if (pvt->inject.page < 0)
1050
		mask |= 1LL << 38;
1051
	else
1052
		mask |= (pvt->inject.page & 0xffff) << 14;
1053 1054 1055

	/* Sets pvt->inject.column mask */
	if (pvt->inject.col < 0)
1056
		mask |= 1LL << 37;
1057
	else
1058
		mask |= (pvt->inject.col & 0x3fff);
1059

1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071
	/*
	 * bit    0: REPEAT_EN
	 * bits 1-2: MASK_HALF_CACHELINE
	 * bit    3: INJECT_ECC
	 * bit    4: INJECT_ADDR_PARITY
	 */

	injectmask = (pvt->inject.type & 1) |
		     (pvt->inject.section & 0x3) << 1 |
		     (pvt->inject.type & 0x6) << (3 - 1);

	/* Unlock writes to registers - this register is write only */
1072
	pci_write_config_dword(pvt->pci_noncore,
1073
			       MC_CFG_CONTROL, 0x2);
1074

1075
	write_and_test(pvt->pci_ch[pvt->inject.channel][0],
1076
			       MC_CHANNEL_ADDR_MATCH, mask);
1077
	write_and_test(pvt->pci_ch[pvt->inject.channel][0],
1078 1079
			       MC_CHANNEL_ADDR_MATCH + 4, mask >> 32L);

1080
	write_and_test(pvt->pci_ch[pvt->inject.channel][0],
1081 1082
			       MC_CHANNEL_ERROR_MASK, pvt->inject.eccmask);

1083
	write_and_test(pvt->pci_ch[pvt->inject.channel][0],
1084
			       MC_CHANNEL_ERROR_INJECT, injectmask);
1085

1086
	/*
1087 1088 1089
	 * This is something undocumented, based on my tests
	 * Without writing 8 to this register, errors aren't injected. Not sure
	 * why.
1090
	 */
1091
	pci_write_config_dword(pvt->pci_noncore,
1092
			       MC_CFG_CONTROL, 8);
1093

1094 1095
	debugf0("Error inject addr match 0x%016llx, ecc 0x%08x,"
		" inject 0x%08x\n",
1096 1097
		mask, pvt->inject.eccmask, injectmask);

1098

1099 1100 1101 1102 1103 1104 1105
	return count;
}

static ssize_t i7core_inject_enable_show(struct mem_ctl_info *mci,
					char *data)
{
	struct i7core_pvt *pvt = mci->pvt_info;
1106 1107
	u32 injectmask;

1108 1109 1110
	if (!pvt->pci_ch[pvt->inject.channel][0])
		return 0;

1111
	pci_read_config_dword(pvt->pci_ch[pvt->inject.channel][0],
1112
			       MC_CHANNEL_ERROR_INJECT, &injectmask);
1113 1114 1115 1116 1117 1118

	debugf0("Inject error read: 0x%018x\n", injectmask);

	if (injectmask & 0x0c)
		pvt->inject.enable = 1;

1119 1120 1121
	return sprintf(data, "%d\n", pvt->inject.enable);
}

1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134
#define DECLARE_COUNTER(param)					\
static ssize_t i7core_show_counter_##param(			\
		struct mem_ctl_info *mci,			\
		char *data)					\
{								\
	struct i7core_pvt *pvt = mci->pvt_info;			\
								\
	debugf1("%s() \n", __func__);				\
	if (!pvt->ce_count_available || (pvt->is_registered))	\
		return sprintf(data, "data unavailable\n");	\
	return sprintf(data, "%lu\n",				\
			pvt->udimm_ce_count[param]);		\
}
1135

1136 1137 1138 1139 1140 1141 1142
#define ATTR_COUNTER(param)					\
	{							\
		.attr = {					\
			.name = __stringify(udimm##param),	\
			.mode = (S_IRUGO | S_IWUSR)		\
		},						\
		.show  = i7core_show_counter_##param		\
1143
	}
1144

1145 1146 1147
DECLARE_COUNTER(0);
DECLARE_COUNTER(1);
DECLARE_COUNTER(2);
1148

1149 1150 1151
/*
 * Sysfs struct
 */
1152

1153
static const struct mcidev_sysfs_attribute i7core_addrmatch_attrs[] = {
1154 1155 1156 1157 1158 1159
	ATTR_ADDR_MATCH(channel),
	ATTR_ADDR_MATCH(dimm),
	ATTR_ADDR_MATCH(rank),
	ATTR_ADDR_MATCH(bank),
	ATTR_ADDR_MATCH(page),
	ATTR_ADDR_MATCH(col),
1160
	{ } /* End of list */
1161 1162
};

1163
static const struct mcidev_sysfs_group i7core_inject_addrmatch = {
1164 1165 1166 1167
	.name  = "inject_addrmatch",
	.mcidev_attr = i7core_addrmatch_attrs,
};

1168
static const struct mcidev_sysfs_attribute i7core_udimm_counters_attrs[] = {
1169 1170 1171
	ATTR_COUNTER(0),
	ATTR_COUNTER(1),
	ATTR_COUNTER(2),
1172
	{ .attr = { .name = NULL } }
1173 1174
};

1175
static const struct mcidev_sysfs_group i7core_udimm_counters = {
1176 1177 1178 1179
	.name  = "all_channel_counts",
	.mcidev_attr = i7core_udimm_counters_attrs,
};

1180
static const struct mcidev_sysfs_attribute i7core_sysfs_rdimm_attrs[] = {
1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202
	{
		.attr = {
			.name = "inject_section",
			.mode = (S_IRUGO | S_IWUSR)
		},
		.show  = i7core_inject_section_show,
		.store = i7core_inject_section_store,
	}, {
		.attr = {
			.name = "inject_type",
			.mode = (S_IRUGO | S_IWUSR)
		},
		.show  = i7core_inject_type_show,
		.store = i7core_inject_type_store,
	}, {
		.attr = {
			.name = "inject_eccmask",
			.mode = (S_IRUGO | S_IWUSR)
		},
		.show  = i7core_inject_eccmask_show,
		.store = i7core_inject_eccmask_store,
	}, {
1203
		.grp = &i7core_inject_addrmatch,
1204 1205 1206 1207 1208 1209 1210 1211
	}, {
		.attr = {
			.name = "inject_enable",
			.mode = (S_IRUGO | S_IWUSR)
		},
		.show  = i7core_inject_enable_show,
		.store = i7core_inject_enable_store,
	},
1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249
	{ }	/* End of list */
};

static const struct mcidev_sysfs_attribute i7core_sysfs_udimm_attrs[] = {
	{
		.attr = {
			.name = "inject_section",
			.mode = (S_IRUGO | S_IWUSR)
		},
		.show  = i7core_inject_section_show,
		.store = i7core_inject_section_store,
	}, {
		.attr = {
			.name = "inject_type",
			.mode = (S_IRUGO | S_IWUSR)
		},
		.show  = i7core_inject_type_show,
		.store = i7core_inject_type_store,
	}, {
		.attr = {
			.name = "inject_eccmask",
			.mode = (S_IRUGO | S_IWUSR)
		},
		.show  = i7core_inject_eccmask_show,
		.store = i7core_inject_eccmask_store,
	}, {
		.grp = &i7core_inject_addrmatch,
	}, {
		.attr = {
			.name = "inject_enable",
			.mode = (S_IRUGO | S_IWUSR)
		},
		.show  = i7core_inject_enable_show,
		.store = i7core_inject_enable_store,
	}, {
		.grp = &i7core_udimm_counters,
	},
	{ }	/* End of list */
1250 1251
};

1252 1253 1254 1255 1256
/****************************************************************************
	Device initialization routines: put/get, init/exit
 ****************************************************************************/

/*
1257
 *	i7core_put_all_devices	'put' all the devices that we have
1258 1259
 *				reserved via 'get'
 */
1260
static void i7core_put_devices(struct i7core_dev *i7core_dev)
1261
{
1262
	int i;
1263

1264
	debugf0(__FILE__ ": %s()\n", __func__);
1265
	for (i = 0; i < i7core_dev->n_devs; i++) {
1266 1267 1268 1269 1270 1271 1272 1273
		struct pci_dev *pdev = i7core_dev->pdev[i];
		if (!pdev)
			continue;
		debugf0("Removing dev %02x:%02x.%d\n",
			pdev->bus->number,
			PCI_SLOT(pdev->devfn), PCI_FUNC(pdev->devfn));
		pci_dev_put(pdev);
	}
1274
}
1275

1276 1277
static void i7core_put_all_devices(void)
{
1278
	struct i7core_dev *i7core_dev, *tmp;
1279

1280
	list_for_each_entry_safe(i7core_dev, tmp, &i7core_edac_list, list) {
1281
		i7core_put_devices(i7core_dev);
1282
		free_i7core_dev(i7core_dev);
1283
	}
1284 1285
}

1286
static void __init i7core_xeon_pci_fixup(const struct pci_id_table *table)
1287 1288 1289
{
	struct pci_dev *pdev = NULL;
	int i;
1290

1291 1292 1293 1294 1295
	/*
	 * On Xeon 55xx, the Intel Quckpath Arch Generic Non-core pci buses
	 * aren't announced by acpi. So, we need to use a legacy scan probing
	 * to detect them
	 */
1296 1297 1298 1299 1300 1301
	while (table && table->descr) {
		pdev = pci_get_device(PCI_VENDOR_ID_INTEL, table->descr[0].dev_id, NULL);
		if (unlikely(!pdev)) {
			for (i = 0; i < MAX_SOCKET_BUSES; i++)
				pcibios_scan_specific_bus(255-i);
		}
1302
		pci_dev_put(pdev);
1303
		table++;
1304 1305 1306
	}
}

1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323
static unsigned i7core_pci_lastbus(void)
{
	int last_bus = 0, bus;
	struct pci_bus *b = NULL;

	while ((b = pci_find_next_bus(b)) != NULL) {
		bus = b->number;
		debugf0("Found bus %d\n", bus);
		if (bus > last_bus)
			last_bus = bus;
	}

	debugf0("Last bus %d\n", last_bus);

	return last_bus;
}

1324
/*
1325
 *	i7core_get_all_devices	Find and perform 'get' operation on the MCH's
1326 1327 1328 1329
 *			device/functions we want to reference for this driver
 *
 *			Need to 'get' device 16 func 1 and func 2
 */
1330 1331 1332 1333
static int i7core_get_onedevice(struct pci_dev **prev,
				const struct pci_id_table *table,
				const unsigned devno,
				const unsigned last_bus)
1334
{
1335
	struct i7core_dev *i7core_dev;
1336
	const struct pci_id_descr *dev_descr = &table->descr[devno];
1337

1338
	struct pci_dev *pdev = NULL;
1339 1340
	u8 bus = 0;
	u8 socket = 0;
1341

1342
	pdev = pci_get_device(PCI_VENDOR_ID_INTEL,
1343
			      dev_descr->dev_id, *prev);
1344 1345 1346 1347 1348 1349

	/*
	 * On Xeon 55xx, the Intel Quckpath Arch Generic Non-core regs
	 * is at addr 8086:2c40, instead of 8086:2c41. So, we need
	 * to probe for the alternate address in case of failure
	 */
1350
	if (dev_descr->dev_id == PCI_DEVICE_ID_INTEL_I7_NONCORE && !pdev)
1351
		pdev = pci_get_device(PCI_VENDOR_ID_INTEL,
1352
				      PCI_DEVICE_ID_INTEL_I7_NONCORE_ALT, *prev);
1353

1354
	if (dev_descr->dev_id == PCI_DEVICE_ID_INTEL_LYNNFIELD_NONCORE && !pdev)
1355 1356 1357 1358
		pdev = pci_get_device(PCI_VENDOR_ID_INTEL,
				      PCI_DEVICE_ID_INTEL_LYNNFIELD_NONCORE_ALT,
				      *prev);

1359 1360 1361 1362
	if (!pdev) {
		if (*prev) {
			*prev = pdev;
			return 0;
1363 1364
		}

1365
		if (dev_descr->optional)
1366
			return 0;
1367

1368 1369 1370
		if (devno == 0)
			return -ENODEV;

1371
		i7core_printk(KERN_INFO,
1372
			"Device not found: dev %02x.%d PCI ID %04x:%04x\n",
1373 1374
			dev_descr->dev, dev_descr->func,
			PCI_VENDOR_ID_INTEL, dev_descr->dev_id);
1375

1376 1377 1378 1379
		/* End of list, leave */
		return -ENODEV;
	}
	bus = pdev->bus->number;
1380

1381
	socket = last_bus - bus;
1382

1383 1384
	i7core_dev = get_i7core_dev(socket);
	if (!i7core_dev) {
1385
		i7core_dev = alloc_i7core_dev(socket, table);
1386 1387
		if (!i7core_dev) {
			pci_dev_put(pdev);
1388
			return -ENOMEM;
1389
		}
1390
	}
1391

1392
	if (i7core_dev->pdev[devno]) {
1393 1394 1395
		i7core_printk(KERN_ERR,
			"Duplicated device for "
			"dev %02x:%02x.%d PCI ID %04x:%04x\n",
1396 1397
			bus, dev_descr->dev, dev_descr->func,
			PCI_VENDOR_ID_INTEL, dev_descr->dev_id);
1398 1399 1400
		pci_dev_put(pdev);
		return -ENODEV;
	}
1401

1402
	i7core_dev->pdev[devno] = pdev;
1403 1404

	/* Sanity check */
1405 1406
	if (unlikely(PCI_SLOT(pdev->devfn) != dev_descr->dev ||
			PCI_FUNC(pdev->devfn) != dev_descr->func)) {
1407 1408 1409
		i7core_printk(KERN_ERR,
			"Device PCI ID %04x:%04x "
			"has dev %02x:%02x.%d instead of dev %02x:%02x.%d\n",
1410
			PCI_VENDOR_ID_INTEL, dev_descr->dev_id,
1411
			bus, PCI_SLOT(pdev->devfn), PCI_FUNC(pdev->devfn),
1412
			bus, dev_descr->dev, dev_descr->func);
1413 1414
		return -ENODEV;
	}
1415

1416 1417 1418 1419 1420
	/* Be sure that the device is enabled */
	if (unlikely(pci_enable_device(pdev) < 0)) {
		i7core_printk(KERN_ERR,
			"Couldn't enable "
			"dev %02x:%02x.%d PCI ID %04x:%04x\n",
1421 1422
			bus, dev_descr->dev, dev_descr->func,
			PCI_VENDOR_ID_INTEL, dev_descr->dev_id);
1423 1424
		return -ENODEV;
	}
1425

1426
	debugf0("Detected socket %d dev %02x:%02x.%d PCI ID %04x:%04x\n",
1427 1428 1429
		socket, bus, dev_descr->dev,
		dev_descr->func,
		PCI_VENDOR_ID_INTEL, dev_descr->dev_id);
1430

1431
	*prev = pdev;
1432

1433 1434
	return 0;
}
1435

1436
static int i7core_get_all_devices(void)
1437
{
1438
	int i, j, rc, last_bus;
1439
	struct pci_dev *pdev = NULL;
1440
	const struct pci_id_table *table;
1441

1442 1443
	last_bus = i7core_pci_lastbus();

1444 1445
	for (j = 0; j < ARRAY_SIZE(pci_dev_table); j++) {
		table = &pci_dev_table[j];
1446 1447 1448
		for (i = 0; i < table->n_devs; i++) {
			pdev = NULL;
			do {
1449
				rc = i7core_get_onedevice(&pdev, table, i,
1450
							  last_bus);
1451 1452 1453 1454 1455 1456 1457 1458 1459 1460
				if (rc < 0) {
					if (i == 0) {
						i = table->n_devs;
						break;
					}
					i7core_put_all_devices();
					return -ENODEV;
				}
			} while (pdev);
		}
1461
	}
1462

1463 1464 1465
	return 0;
}

1466 1467
static int mci_bind_devs(struct mem_ctl_info *mci,
			 struct i7core_dev *i7core_dev)
1468 1469 1470
{
	struct i7core_pvt *pvt = mci->pvt_info;
	struct pci_dev *pdev;
1471
	int i, func, slot;
1472

1473
	pvt->is_registered = 0;
1474
	for (i = 0; i < i7core_dev->n_devs; i++) {
1475 1476
		pdev = i7core_dev->pdev[i];
		if (!pdev)
1477 1478
			continue;

1479 1480 1481 1482 1483 1484 1485 1486
		func = PCI_FUNC(pdev->devfn);
		slot = PCI_SLOT(pdev->devfn);
		if (slot == 3) {
			if (unlikely(func > MAX_MCR_FUNC))
				goto error;
			pvt->pci_mcr[func] = pdev;
		} else if (likely(slot >= 4 && slot < 4 + NUM_CHANS)) {
			if (unlikely(func > MAX_CHAN_FUNC))
1487
				goto error;
1488 1489 1490 1491 1492
			pvt->pci_ch[slot - 4][func] = pdev;
		} else if (!slot && !func)
			pvt->pci_noncore = pdev;
		else
			goto error;
1493

1494 1495 1496
		debugf0("Associated fn %d.%d, dev = %p, socket %d\n",
			PCI_SLOT(pdev->devfn), PCI_FUNC(pdev->devfn),
			pdev, i7core_dev->socket);
1497

1498 1499 1500
		if (PCI_SLOT(pdev->devfn) == 3 &&
			PCI_FUNC(pdev->devfn) == 2)
			pvt->is_registered = 1;
1501
	}
1502

1503
	return 0;
1504 1505 1506 1507 1508 1509

error:
	i7core_printk(KERN_ERR, "Device %d, function %d "
		      "is out of the expected range\n",
		      slot, func);
	return -EINVAL;
1510 1511
}

1512 1513 1514
/****************************************************************************
			Error check routines
 ****************************************************************************/
1515
static void i7core_rdimm_update_csrow(struct mem_ctl_info *mci,
1516 1517 1518
				      const int chan,
				      const int dimm,
				      const int add)
1519 1520 1521
{
	char *msg;
	struct i7core_pvt *pvt = mci->pvt_info;
1522
	int row = pvt->csrow_map[chan][dimm], i;
1523 1524 1525

	for (i = 0; i < add; i++) {
		msg = kasprintf(GFP_KERNEL, "Corrected error "
1526 1527
				"(Socket=%d channel=%d dimm=%d)",
				pvt->i7core_dev->socket, chan, dimm);
1528 1529 1530 1531 1532 1533 1534

		edac_mc_handle_fbd_ce(mci, row, 0, msg);
		kfree (msg);
	}
}

static void i7core_rdimm_update_ce_count(struct mem_ctl_info *mci,
1535 1536 1537 1538
					 const int chan,
					 const int new0,
					 const int new1,
					 const int new2)
1539 1540 1541 1542
{
	struct i7core_pvt *pvt = mci->pvt_info;
	int add0 = 0, add1 = 0, add2 = 0;
	/* Updates CE counters if it is not the first time here */
1543
	if (pvt->ce_count_available) {
1544 1545
		/* Updates CE counters */

1546 1547 1548
		add2 = new2 - pvt->rdimm_last_ce_count[chan][2];
		add1 = new1 - pvt->rdimm_last_ce_count[chan][1];
		add0 = new0 - pvt->rdimm_last_ce_count[chan][0];
1549 1550 1551

		if (add2 < 0)
			add2 += 0x7fff;
1552
		pvt->rdimm_ce_count[chan][2] += add2;
1553 1554 1555

		if (add1 < 0)
			add1 += 0x7fff;
1556
		pvt->rdimm_ce_count[chan][1] += add1;
1557 1558 1559

		if (add0 < 0)
			add0 += 0x7fff;
1560
		pvt->rdimm_ce_count[chan][0] += add0;
1561
	} else
1562
		pvt->ce_count_available = 1;
1563 1564

	/* Store the new values */
1565 1566 1567
	pvt->rdimm_last_ce_count[chan][2] = new2;
	pvt->rdimm_last_ce_count[chan][1] = new1;
	pvt->rdimm_last_ce_count[chan][0] = new0;
1568 1569 1570

	/*updated the edac core */
	if (add0 != 0)
1571
		i7core_rdimm_update_csrow(mci, chan, 0, add0);
1572
	if (add1 != 0)
1573
		i7core_rdimm_update_csrow(mci, chan, 1, add1);
1574
	if (add2 != 0)
1575
		i7core_rdimm_update_csrow(mci, chan, 2, add2);
1576 1577 1578

}

1579
static void i7core_rdimm_check_mc_ecc_err(struct mem_ctl_info *mci)
1580 1581 1582 1583 1584 1585
{
	struct i7core_pvt *pvt = mci->pvt_info;
	u32 rcv[3][2];
	int i, new0, new1, new2;

	/*Read DEV 3: FUN 2:  MC_COR_ECC_CNT regs directly*/
1586
	pci_read_config_dword(pvt->pci_mcr[2], MC_COR_ECC_CNT_0,
1587
								&rcv[0][0]);
1588
	pci_read_config_dword(pvt->pci_mcr[2], MC_COR_ECC_CNT_1,
1589
								&rcv[0][1]);
1590
	pci_read_config_dword(pvt->pci_mcr[2], MC_COR_ECC_CNT_2,
1591
								&rcv[1][0]);
1592
	pci_read_config_dword(pvt->pci_mcr[2], MC_COR_ECC_CNT_3,
1593
								&rcv[1][1]);
1594
	pci_read_config_dword(pvt->pci_mcr[2], MC_COR_ECC_CNT_4,
1595
								&rcv[2][0]);
1596
	pci_read_config_dword(pvt->pci_mcr[2], MC_COR_ECC_CNT_5,
1597 1598 1599 1600 1601
								&rcv[2][1]);
	for (i = 0 ; i < 3; i++) {
		debugf3("MC_COR_ECC_CNT%d = 0x%x; MC_COR_ECC_CNT%d = 0x%x\n",
			(i * 2), rcv[i][0], (i * 2) + 1, rcv[i][1]);
		/*if the channel has 3 dimms*/
1602
		if (pvt->channel[i].dimms > 2) {
1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613
			new0 = DIMM_BOT_COR_ERR(rcv[i][0]);
			new1 = DIMM_TOP_COR_ERR(rcv[i][0]);
			new2 = DIMM_BOT_COR_ERR(rcv[i][1]);
		} else {
			new0 = DIMM_TOP_COR_ERR(rcv[i][0]) +
					DIMM_BOT_COR_ERR(rcv[i][0]);
			new1 = DIMM_TOP_COR_ERR(rcv[i][1]) +
					DIMM_BOT_COR_ERR(rcv[i][1]);
			new2 = 0;
		}

1614
		i7core_rdimm_update_ce_count(mci, i, new0, new1, new2);
1615 1616
	}
}
1617 1618 1619 1620 1621 1622 1623

/* This function is based on the device 3 function 4 registers as described on:
 * Intel Xeon Processor 5500 Series Datasheet Volume 2
 *	http://www.intel.com/Assets/PDF/datasheet/321322.pdf
 * also available at:
 * 	http://www.arrownac.com/manufacturers/intel/s/nehalem/5500-datasheet-v2.pdf
 */
1624
static void i7core_udimm_check_mc_ecc_err(struct mem_ctl_info *mci)
1625 1626 1627 1628 1629
{
	struct i7core_pvt *pvt = mci->pvt_info;
	u32 rcv1, rcv0;
	int new0, new1, new2;

1630
	if (!pvt->pci_mcr[4]) {
1631
		debugf0("%s MCR registers not found\n", __func__);
1632 1633 1634
		return;
	}

1635
	/* Corrected test errors */
1636 1637
	pci_read_config_dword(pvt->pci_mcr[4], MC_TEST_ERR_RCV1, &rcv1);
	pci_read_config_dword(pvt->pci_mcr[4], MC_TEST_ERR_RCV0, &rcv0);
1638 1639 1640 1641 1642 1643 1644

	/* Store the new values */
	new2 = DIMM2_COR_ERR(rcv1);
	new1 = DIMM1_COR_ERR(rcv0);
	new0 = DIMM0_COR_ERR(rcv0);

	/* Updates CE counters if it is not the first time here */
1645
	if (pvt->ce_count_available) {
1646 1647 1648
		/* Updates CE counters */
		int add0, add1, add2;

1649 1650 1651
		add2 = new2 - pvt->udimm_last_ce_count[2];
		add1 = new1 - pvt->udimm_last_ce_count[1];
		add0 = new0 - pvt->udimm_last_ce_count[0];
1652 1653 1654

		if (add2 < 0)
			add2 += 0x7fff;
1655
		pvt->udimm_ce_count[2] += add2;
1656 1657 1658

		if (add1 < 0)
			add1 += 0x7fff;
1659
		pvt->udimm_ce_count[1] += add1;
1660 1661 1662

		if (add0 < 0)
			add0 += 0x7fff;
1663
		pvt->udimm_ce_count[0] += add0;
1664 1665 1666 1667 1668

		if (add0 | add1 | add2)
			i7core_printk(KERN_ERR, "New Corrected error(s): "
				      "dimm0: +%d, dimm1: +%d, dimm2 +%d\n",
				      add0, add1, add2);
1669
	} else
1670
		pvt->ce_count_available = 1;
1671 1672

	/* Store the new values */
1673 1674 1675
	pvt->udimm_last_ce_count[2] = new2;
	pvt->udimm_last_ce_count[1] = new1;
	pvt->udimm_last_ce_count[0] = new0;
1676 1677
}

1678 1679 1680
/*
 * According with tables E-11 and E-12 of chapter E.3.3 of Intel 64 and IA-32
 * Architectures Software Developer’s Manual Volume 3B.
1681 1682 1683
 * Nehalem are defined as family 0x06, model 0x1a
 *
 * The MCA registers used here are the following ones:
1684
 *     struct mce field	MCA Register
1685 1686 1687
 *     m->status	MSR_IA32_MC8_STATUS
 *     m->addr		MSR_IA32_MC8_ADDR
 *     m->misc		MSR_IA32_MC8_MISC
1688 1689 1690
 * In the case of Nehalem, the error information is masked at .status and .misc
 * fields
 */
1691
static void i7core_mce_output_error(struct mem_ctl_info *mci,
1692
				    const struct mce *m)
1693
{
1694
	struct i7core_pvt *pvt = mci->pvt_info;
1695
	char *type, *optype, *err, *msg;
1696
	unsigned long error = m->status & 0x1ff0000l;
1697
	u32 optypenum = (m->status >> 4) & 0x07;
1698 1699 1700 1701 1702
	u32 core_err_cnt = (m->status >> 38) && 0x7fff;
	u32 dimm = (m->misc >> 16) & 0x3;
	u32 channel = (m->misc >> 18) & 0x3;
	u32 syndrome = m->misc >> 32;
	u32 errnum = find_first_bit(&error, 32);
1703
	int csrow;
1704

1705 1706 1707 1708 1709
	if (m->mcgstatus & 1)
		type = "FATAL";
	else
		type = "NON_FATAL";

1710
	switch (optypenum) {
1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728
	case 0:
		optype = "generic undef request";
		break;
	case 1:
		optype = "read error";
		break;
	case 2:
		optype = "write error";
		break;
	case 3:
		optype = "addr/cmd error";
		break;
	case 4:
		optype = "scrubbing error";
		break;
	default:
		optype = "reserved";
		break;
1729 1730
	}

1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760
	switch (errnum) {
	case 16:
		err = "read ECC error";
		break;
	case 17:
		err = "RAS ECC error";
		break;
	case 18:
		err = "write parity error";
		break;
	case 19:
		err = "redundacy loss";
		break;
	case 20:
		err = "reserved";
		break;
	case 21:
		err = "memory range error";
		break;
	case 22:
		err = "RTID out of range";
		break;
	case 23:
		err = "address parity error";
		break;
	case 24:
		err = "byte enable parity error";
		break;
	default:
		err = "unknown";
1761 1762
	}

1763
	/* FIXME: should convert addr into bank and rank information */
1764
	msg = kasprintf(GFP_ATOMIC,
1765
		"%s (addr = 0x%08llx, cpu=%d, Dimm=%d, Channel=%d, "
1766
		"syndrome=0x%08x, count=%d, Err=%08llx:%08llx (%s: %s))\n",
1767
		type, (long long) m->addr, m->cpu, dimm, channel,
1768 1769
		syndrome, core_err_cnt, (long long)m->status,
		(long long)m->misc, optype, err);
1770 1771

	debugf0("%s", msg);
1772

1773
	csrow = pvt->csrow_map[channel][dimm];
1774

1775
	/* Call the helper to output message */
1776 1777 1778
	if (m->mcgstatus & 1)
		edac_mc_handle_fbd_ue(mci, csrow, 0,
				0 /* FIXME: should be channel here */, msg);
1779
	else if (!pvt->is_registered)
1780 1781
		edac_mc_handle_fbd_ce(mci, csrow,
				0 /* FIXME: should be channel here */, msg);
1782 1783

	kfree(msg);
1784 1785
}

1786 1787 1788 1789 1790 1791
/*
 *	i7core_check_error	Retrieve and process errors reported by the
 *				hardware. Called by the Core module.
 */
static void i7core_check_error(struct mem_ctl_info *mci)
{
1792 1793 1794
	struct i7core_pvt *pvt = mci->pvt_info;
	int i;
	unsigned count = 0;
1795
	struct mce *m;
1796

1797 1798 1799 1800 1801 1802
	/*
	 * MCE first step: Copy all mce errors into a temporary buffer
	 * We use a double buffering here, to reduce the risk of
	 * loosing an error.
	 */
	smp_rmb();
1803 1804
	count = (pvt->mce_out + MCE_LOG_LEN - pvt->mce_in)
		% MCE_LOG_LEN;
1805
	if (!count)
1806
		goto check_ce_error;
1807

1808
	m = pvt->mce_outentry;
1809 1810
	if (pvt->mce_in + count > MCE_LOG_LEN) {
		unsigned l = MCE_LOG_LEN - pvt->mce_in;
1811

1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828
		memcpy(m, &pvt->mce_entry[pvt->mce_in], sizeof(*m) * l);
		smp_wmb();
		pvt->mce_in = 0;
		count -= l;
		m += l;
	}
	memcpy(m, &pvt->mce_entry[pvt->mce_in], sizeof(*m) * count);
	smp_wmb();
	pvt->mce_in += count;

	smp_rmb();
	if (pvt->mce_overrun) {
		i7core_printk(KERN_ERR, "Lost %d memory errors\n",
			      pvt->mce_overrun);
		smp_wmb();
		pvt->mce_overrun = 0;
	}
1829

1830 1831 1832
	/*
	 * MCE second step: parse errors and display
	 */
1833
	for (i = 0; i < count; i++)
1834
		i7core_mce_output_error(mci, &pvt->mce_outentry[i]);
1835

1836 1837 1838
	/*
	 * Now, let's increment CE error counts
	 */
1839
check_ce_error:
1840 1841 1842 1843
	if (!pvt->is_registered)
		i7core_udimm_check_mc_ecc_err(mci);
	else
		i7core_rdimm_check_mc_ecc_err(mci);
1844 1845
}

1846 1847 1848 1849 1850
/*
 * i7core_mce_check_error	Replicates mcelog routine to get errors
 *				This routine simply queues mcelog errors, and
 *				return. The error itself should be handled later
 *				by i7core_check_error.
1851 1852
 * WARNING: As this routine should be called at NMI time, extra care should
 * be taken to avoid deadlocks, and to be as fast as possible.
1853 1854 1855
 */
static int i7core_mce_check_error(void *priv, struct mce *mce)
{
1856 1857
	struct mem_ctl_info *mci = priv;
	struct i7core_pvt *pvt = mci->pvt_info;
1858

1859 1860 1861 1862 1863 1864 1865
	/*
	 * Just let mcelog handle it if the error is
	 * outside the memory controller
	 */
	if (((mce->status & 0xffff) >> 7) != 1)
		return 0;

1866 1867 1868 1869
	/* Bank 8 registers are the only ones that we know how to handle */
	if (mce->bank != 8)
		return 0;

R
Randy Dunlap 已提交
1870
#ifdef CONFIG_SMP
1871
	/* Only handle if it is the right mc controller */
1872
	if (cpu_data(mce->cpu).phys_proc_id != pvt->i7core_dev->socket)
1873
		return 0;
R
Randy Dunlap 已提交
1874
#endif
1875

1876
	smp_rmb();
1877
	if ((pvt->mce_out + 1) % MCE_LOG_LEN == pvt->mce_in) {
1878 1879 1880
		smp_wmb();
		pvt->mce_overrun++;
		return 0;
1881
	}
1882 1883 1884

	/* Copy memory error at the ringbuffer */
	memcpy(&pvt->mce_entry[pvt->mce_out], mce, sizeof(*mce));
1885
	smp_wmb();
1886
	pvt->mce_out = (pvt->mce_out + 1) % MCE_LOG_LEN;
1887

1888 1889 1890 1891
	/* Handle fatal errors immediately */
	if (mce->mcgstatus & 1)
		i7core_check_error(mci);

1892
	/* Advice mcelog that the error were handled */
1893
	return 1;
1894 1895
}

1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915
static void i7core_pci_ctl_create(struct i7core_pvt *pvt)
{
	pvt->i7core_pci = edac_pci_create_generic_ctl(
						&pvt->i7core_dev->pdev[0]->dev,
						EDAC_MOD_STR);
	if (unlikely(!pvt->i7core_pci))
		pr_warn("Unable to setup PCI error report via EDAC\n");
}

static void i7core_pci_ctl_release(struct i7core_pvt *pvt)
{
	if (likely(pvt->i7core_pci))
		edac_pci_release_generic_ctl(pvt->i7core_pci);
	else
		i7core_printk(KERN_ERR,
				"Couldn't find mem_ctl_info for socket %d\n",
				pvt->i7core_dev->socket);
	pvt->i7core_pci = NULL;
}

1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948
static void i7core_unregister_mci(struct i7core_dev *i7core_dev)
{
	struct mem_ctl_info *mci = i7core_dev->mci;
	struct i7core_pvt *pvt;

	if (unlikely(!mci || !mci->pvt_info)) {
		debugf0("MC: " __FILE__ ": %s(): dev = %p\n",
			__func__, &i7core_dev->pdev[0]->dev);

		i7core_printk(KERN_ERR, "Couldn't find mci handler\n");
		return;
	}

	pvt = mci->pvt_info;

	debugf0("MC: " __FILE__ ": %s(): mci = %p, dev = %p\n",
		__func__, mci, &i7core_dev->pdev[0]->dev);

	/* Disable MCE NMI handler */
	edac_mce_unregister(&pvt->edac_mce);

	/* Disable EDAC polling */
	i7core_pci_ctl_release(pvt);

	/* Remove MC sysfs nodes */
	edac_mc_del_mc(mci->dev);

	debugf1("%s: free mci struct\n", mci->ctl_name);
	kfree(mci->ctl_name);
	edac_mc_free(mci);
	i7core_dev->mci = NULL;
}

1949
static int i7core_register_mci(struct i7core_dev *i7core_dev)
1950 1951 1952
{
	struct mem_ctl_info *mci;
	struct i7core_pvt *pvt;
1953 1954 1955 1956 1957 1958
	int rc, channels, csrows;

	/* Check the number of active and not disabled channels */
	rc = i7core_get_active_channels(i7core_dev->socket, &channels, &csrows);
	if (unlikely(rc < 0))
		return rc;
1959 1960

	/* allocate a new MC control structure */
1961
	mci = edac_mc_alloc(sizeof(*pvt), csrows, channels, i7core_dev->socket);
1962 1963
	if (unlikely(!mci))
		return -ENOMEM;
1964

1965 1966
	debugf0("MC: " __FILE__ ": %s(): mci = %p, dev = %p\n",
		__func__, mci, &i7core_dev->pdev[0]->dev);
1967 1968

	pvt = mci->pvt_info;
1969
	memset(pvt, 0, sizeof(*pvt));
1970

1971 1972 1973 1974
	/* Associates i7core_dev and mci for future usage */
	pvt->i7core_dev = i7core_dev;
	i7core_dev->mci = mci;

1975 1976 1977 1978 1979 1980
	/*
	 * FIXME: how to handle RDDR3 at MCI level? It is possible to have
	 * Mixed RDDR3/UDDR3 with Nehalem, provided that they are on different
	 * memory channels
	 */
	mci->mtype_cap = MEM_FLAG_DDR3;
1981 1982 1983 1984
	mci->edac_ctl_cap = EDAC_FLAG_NONE;
	mci->edac_cap = EDAC_FLAG_NONE;
	mci->mod_name = "i7core_edac.c";
	mci->mod_ver = I7CORE_REVISION;
1985 1986 1987
	mci->ctl_name = kasprintf(GFP_KERNEL, "i7 core #%d",
				  i7core_dev->socket);
	mci->dev_name = pci_name(i7core_dev->pdev[0]);
1988
	mci->ctl_page_to_phys = NULL;
1989

1990
	/* Store pci devices at mci for faster access */
1991
	rc = mci_bind_devs(mci, i7core_dev);
1992
	if (unlikely(rc < 0))
1993
		goto fail0;
1994

1995 1996 1997 1998 1999
	if (pvt->is_registered)
		mci->mc_driver_sysfs_attributes = i7core_sysfs_rdimm_attrs;
	else
		mci->mc_driver_sysfs_attributes = i7core_sysfs_udimm_attrs;

2000
	/* Get dimm basic config */
2001
	get_dimm_config(mci);
2002 2003 2004 2005
	/* record ptr to the generic device */
	mci->dev = &i7core_dev->pdev[0]->dev;
	/* Set the function pointer to an actual operation function */
	mci->edac_check = i7core_check_error;
2006

2007
	/* add this new MC control structure to EDAC's list of MCs */
2008
	if (unlikely(edac_mc_add_mc(mci))) {
2009 2010 2011 2012 2013
		debugf0("MC: " __FILE__
			": %s(): failed edac_mc_add_mc()\n", __func__);
		/* FIXME: perhaps some code should go here that disables error
		 * reporting if we just enabled it
		 */
2014 2015

		rc = -EINVAL;
2016
		goto fail0;
2017 2018
	}

2019
	/* Default error mask is any memory */
2020
	pvt->inject.channel = 0;
2021 2022 2023 2024 2025 2026
	pvt->inject.dimm = -1;
	pvt->inject.rank = -1;
	pvt->inject.bank = -1;
	pvt->inject.page = -1;
	pvt->inject.col = -1;

2027 2028 2029
	/* allocating generic PCI control info */
	i7core_pci_ctl_create(pvt);

2030
	/* Registers on edac_mce in order to receive memory errors */
2031
	pvt->edac_mce.priv = mci;
2032 2033
	pvt->edac_mce.check_error = i7core_mce_check_error;
	rc = edac_mce_register(&pvt->edac_mce);
2034
	if (unlikely(rc < 0)) {
2035 2036
		debugf0("MC: " __FILE__
			": %s(): failed edac_mce_register()\n", __func__);
2037
		goto fail1;
2038 2039
	}

2040 2041 2042 2043 2044 2045 2046 2047
	return 0;

fail1:
	i7core_pci_ctl_release(pvt);
	edac_mc_del_mc(mci->dev);
fail0:
	kfree(mci->ctl_name);
	edac_mc_free(mci);
2048
	i7core_dev->mci = NULL;
2049 2050 2051 2052 2053 2054 2055 2056 2057 2058
	return rc;
}

/*
 *	i7core_probe	Probe for ONE instance of device to see if it is
 *			present.
 *	return:
 *		0 for FOUND a device
 *		< 0 for error code
 */
2059

2060 2061 2062 2063 2064 2065
static int __devinit i7core_probe(struct pci_dev *pdev,
				  const struct pci_device_id *id)
{
	int rc;
	struct i7core_dev *i7core_dev;

2066 2067 2068
	/* get the pci devices we want to reserve for our use */
	mutex_lock(&i7core_edac_lock);

2069
	/*
2070
	 * All memory controllers are allocated at the first pass.
2071
	 */
2072 2073
	if (unlikely(probed >= 1)) {
		mutex_unlock(&i7core_edac_lock);
2074
		return -EINVAL;
2075 2076
	}
	probed++;
2077

2078
	rc = i7core_get_all_devices();
2079 2080 2081 2082
	if (unlikely(rc < 0))
		goto fail0;

	list_for_each_entry(i7core_dev, &i7core_edac_list, list) {
2083
		rc = i7core_register_mci(i7core_dev);
2084 2085
		if (unlikely(rc < 0))
			goto fail1;
2086 2087
	}

2088
	i7core_printk(KERN_INFO, "Driver loaded.\n");
2089

2090
	mutex_unlock(&i7core_edac_lock);
2091 2092
	return 0;

2093
fail1:
2094 2095 2096
	list_for_each_entry(i7core_dev, &i7core_edac_list, list)
		i7core_unregister_mci(i7core_dev);

2097
	i7core_put_all_devices();
2098 2099
fail0:
	mutex_unlock(&i7core_edac_lock);
2100
	return rc;
2101 2102 2103 2104 2105 2106 2107 2108
}

/*
 *	i7core_remove	destructor for one instance of device
 *
 */
static void __devexit i7core_remove(struct pci_dev *pdev)
{
2109
	struct i7core_dev *i7core_dev;
2110 2111 2112

	debugf0(__FILE__ ": %s()\n", __func__);

2113 2114 2115 2116 2117 2118 2119
	/*
	 * we have a trouble here: pdev value for removal will be wrong, since
	 * it will point to the X58 register used to detect that the machine
	 * is a Nehalem or upper design. However, due to the way several PCI
	 * devices are grouped together to provide MC functionality, we need
	 * to use a different method for releasing the devices
	 */
2120

2121
	mutex_lock(&i7core_edac_lock);
2122 2123 2124 2125 2126 2127

	if (unlikely(!probed)) {
		mutex_unlock(&i7core_edac_lock);
		return;
	}

2128 2129
	list_for_each_entry(i7core_dev, &i7core_edac_list, list)
		i7core_unregister_mci(i7core_dev);
2130 2131 2132 2133

	/* Release PCI resources */
	i7core_put_all_devices();

2134 2135
	probed--;

2136
	mutex_unlock(&i7core_edac_lock);
2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164
}

MODULE_DEVICE_TABLE(pci, i7core_pci_tbl);

/*
 *	i7core_driver	pci_driver structure for this module
 *
 */
static struct pci_driver i7core_driver = {
	.name     = "i7core_edac",
	.probe    = i7core_probe,
	.remove   = __devexit_p(i7core_remove),
	.id_table = i7core_pci_tbl,
};

/*
 *	i7core_init		Module entry function
 *			Try to initialize this module for its devices
 */
static int __init i7core_init(void)
{
	int pci_rc;

	debugf2("MC: " __FILE__ ": %s()\n", __func__);

	/* Ensure that the OPSTATE is set correctly for POLL or NMI */
	opstate_init();

2165 2166
	if (use_pci_fixup)
		i7core_xeon_pci_fixup(pci_dev_table);
2167

2168 2169
	pci_rc = pci_register_driver(&i7core_driver);

2170 2171 2172 2173 2174 2175 2176
	if (pci_rc >= 0)
		return 0;

	i7core_printk(KERN_ERR, "Failed to register device with error %d.\n",
		      pci_rc);

	return pci_rc;
2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199
}

/*
 *	i7core_exit()	Module exit function
 *			Unregister the driver
 */
static void __exit i7core_exit(void)
{
	debugf2("MC: " __FILE__ ": %s()\n", __func__);
	pci_unregister_driver(&i7core_driver);
}

module_init(i7core_init);
module_exit(i7core_exit);

MODULE_LICENSE("GPL");
MODULE_AUTHOR("Mauro Carvalho Chehab <mchehab@redhat.com>");
MODULE_AUTHOR("Red Hat Inc. (http://www.redhat.com)");
MODULE_DESCRIPTION("MC Driver for Intel i7 Core memory controllers - "
		   I7CORE_REVISION);

module_param(edac_op_state, int, 0444);
MODULE_PARM_DESC(edac_op_state, "EDAC Error Reporting state: 0=Poll,1=NMI");