core.c 186.9 KB
Newer Older
T
Thomas Gleixner 已提交
1
/*
I
Ingo Molnar 已提交
2
 * Performance events core code:
T
Thomas Gleixner 已提交
3
 *
4
 *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5 6
 *  Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
 *  Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
A
Al Viro 已提交
7
 *  Copyright  ©  2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
8
 *
I
Ingo Molnar 已提交
9
 * For licensing details see kernel-base/COPYING
T
Thomas Gleixner 已提交
10 11 12
 */

#include <linux/fs.h>
13
#include <linux/mm.h>
T
Thomas Gleixner 已提交
14 15
#include <linux/cpu.h>
#include <linux/smp.h>
P
Peter Zijlstra 已提交
16
#include <linux/idr.h>
17
#include <linux/file.h>
T
Thomas Gleixner 已提交
18
#include <linux/poll.h>
19
#include <linux/slab.h>
20
#include <linux/hash.h>
21
#include <linux/tick.h>
T
Thomas Gleixner 已提交
22
#include <linux/sysfs.h>
23
#include <linux/dcache.h>
T
Thomas Gleixner 已提交
24
#include <linux/percpu.h>
25
#include <linux/ptrace.h>
P
Peter Zijlstra 已提交
26
#include <linux/reboot.h>
27
#include <linux/vmstat.h>
P
Peter Zijlstra 已提交
28
#include <linux/device.h>
29
#include <linux/export.h>
30
#include <linux/vmalloc.h>
31 32
#include <linux/hardirq.h>
#include <linux/rculist.h>
T
Thomas Gleixner 已提交
33 34 35
#include <linux/uaccess.h>
#include <linux/syscalls.h>
#include <linux/anon_inodes.h>
I
Ingo Molnar 已提交
36
#include <linux/kernel_stat.h>
37
#include <linux/perf_event.h>
L
Li Zefan 已提交
38
#include <linux/ftrace_event.h>
39
#include <linux/hw_breakpoint.h>
40
#include <linux/mm_types.h>
41
#include <linux/cgroup.h>
T
Thomas Gleixner 已提交
42

43 44
#include "internal.h"

45 46
#include <asm/irq_regs.h>

47
struct remote_function_call {
48 49 50 51
	struct task_struct	*p;
	int			(*func)(void *info);
	void			*info;
	int			ret;
52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84
};

static void remote_function(void *data)
{
	struct remote_function_call *tfc = data;
	struct task_struct *p = tfc->p;

	if (p) {
		tfc->ret = -EAGAIN;
		if (task_cpu(p) != smp_processor_id() || !task_curr(p))
			return;
	}

	tfc->ret = tfc->func(tfc->info);
}

/**
 * task_function_call - call a function on the cpu on which a task runs
 * @p:		the task to evaluate
 * @func:	the function to be called
 * @info:	the function call argument
 *
 * Calls the function @func when the task is currently running. This might
 * be on the current CPU, which just calls the function directly
 *
 * returns: @func return value, or
 *	    -ESRCH  - when the process isn't running
 *	    -EAGAIN - when the process moved away
 */
static int
task_function_call(struct task_struct *p, int (*func) (void *info), void *info)
{
	struct remote_function_call data = {
85 86 87 88
		.p	= p,
		.func	= func,
		.info	= info,
		.ret	= -ESRCH, /* No such (running) process */
89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108
	};

	if (task_curr(p))
		smp_call_function_single(task_cpu(p), remote_function, &data, 1);

	return data.ret;
}

/**
 * cpu_function_call - call a function on the cpu
 * @func:	the function to be called
 * @info:	the function call argument
 *
 * Calls the function @func on the remote cpu.
 *
 * returns: @func return value or -ENXIO when the cpu is offline
 */
static int cpu_function_call(int cpu, int (*func) (void *info), void *info)
{
	struct remote_function_call data = {
109 110 111 112
		.p	= NULL,
		.func	= func,
		.info	= info,
		.ret	= -ENXIO, /* No such CPU */
113 114 115 116 117 118 119
	};

	smp_call_function_single(cpu, remote_function, &data, 1);

	return data.ret;
}

S
Stephane Eranian 已提交
120 121
#define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\
		       PERF_FLAG_FD_OUTPUT  |\
122 123
		       PERF_FLAG_PID_CGROUP |\
		       PERF_FLAG_FD_CLOEXEC)
S
Stephane Eranian 已提交
124

125 126 127 128 129 130 131
/*
 * branch priv levels that need permission checks
 */
#define PERF_SAMPLE_BRANCH_PERM_PLM \
	(PERF_SAMPLE_BRANCH_KERNEL |\
	 PERF_SAMPLE_BRANCH_HV)

132 133 134 135 136 137
enum event_type_t {
	EVENT_FLEXIBLE = 0x1,
	EVENT_PINNED = 0x2,
	EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
};

S
Stephane Eranian 已提交
138 139 140 141
/*
 * perf_sched_events : >0 events exist
 * perf_cgroup_events: >0 per-cpu cgroup events exist on this cpu
 */
142
struct static_key_deferred perf_sched_events __read_mostly;
S
Stephane Eranian 已提交
143
static DEFINE_PER_CPU(atomic_t, perf_cgroup_events);
144
static DEFINE_PER_CPU(atomic_t, perf_branch_stack_events);
S
Stephane Eranian 已提交
145

146 147 148
static atomic_t nr_mmap_events __read_mostly;
static atomic_t nr_comm_events __read_mostly;
static atomic_t nr_task_events __read_mostly;
149
static atomic_t nr_freq_events __read_mostly;
150

P
Peter Zijlstra 已提交
151 152 153 154
static LIST_HEAD(pmus);
static DEFINE_MUTEX(pmus_lock);
static struct srcu_struct pmus_srcu;

155
/*
156
 * perf event paranoia level:
157 158
 *  -1 - not paranoid at all
 *   0 - disallow raw tracepoint access for unpriv
159
 *   1 - disallow cpu events for unpriv
160
 *   2 - disallow kernel profiling for unpriv
161
 */
162
int sysctl_perf_event_paranoid __read_mostly = 1;
163

164 165
/* Minimum for 512 kiB + 1 user control page */
int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */
166 167

/*
168
 * max perf event sample rate
169
 */
170 171 172 173 174 175 176 177 178
#define DEFAULT_MAX_SAMPLE_RATE		100000
#define DEFAULT_SAMPLE_PERIOD_NS	(NSEC_PER_SEC / DEFAULT_MAX_SAMPLE_RATE)
#define DEFAULT_CPU_TIME_MAX_PERCENT	25

int sysctl_perf_event_sample_rate __read_mostly	= DEFAULT_MAX_SAMPLE_RATE;

static int max_samples_per_tick __read_mostly	= DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ);
static int perf_sample_period_ns __read_mostly	= DEFAULT_SAMPLE_PERIOD_NS;

P
Peter Zijlstra 已提交
179 180
static int perf_sample_allowed_ns __read_mostly =
	DEFAULT_SAMPLE_PERIOD_NS * DEFAULT_CPU_TIME_MAX_PERCENT / 100;
181 182 183 184 185 186

void update_perf_cpu_limits(void)
{
	u64 tmp = perf_sample_period_ns;

	tmp *= sysctl_perf_cpu_time_max_percent;
187
	do_div(tmp, 100);
P
Peter Zijlstra 已提交
188
	ACCESS_ONCE(perf_sample_allowed_ns) = tmp;
189
}
P
Peter Zijlstra 已提交
190

191 192
static int perf_rotate_context(struct perf_cpu_context *cpuctx);

P
Peter Zijlstra 已提交
193 194 195 196
int perf_proc_update_handler(struct ctl_table *table, int write,
		void __user *buffer, size_t *lenp,
		loff_t *ppos)
{
197
	int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
P
Peter Zijlstra 已提交
198 199 200 201 202

	if (ret || !write)
		return ret;

	max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ);
203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220
	perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
	update_perf_cpu_limits();

	return 0;
}

int sysctl_perf_cpu_time_max_percent __read_mostly = DEFAULT_CPU_TIME_MAX_PERCENT;

int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write,
				void __user *buffer, size_t *lenp,
				loff_t *ppos)
{
	int ret = proc_dointvec(table, write, buffer, lenp, ppos);

	if (ret || !write)
		return ret;

	update_perf_cpu_limits();
P
Peter Zijlstra 已提交
221 222 223

	return 0;
}
224

225 226 227 228 229 230 231
/*
 * perf samples are done in some very critical code paths (NMIs).
 * If they take too much CPU time, the system can lock up and not
 * get any real work done.  This will drop the sample rate when
 * we detect that events are taking too long.
 */
#define NR_ACCUMULATED_SAMPLES 128
P
Peter Zijlstra 已提交
232
static DEFINE_PER_CPU(u64, running_sample_length);
233

234
static void perf_duration_warn(struct irq_work *w)
235
{
236
	u64 allowed_ns = ACCESS_ONCE(perf_sample_allowed_ns);
237
	u64 avg_local_sample_len;
238
	u64 local_samples_len;
239 240 241 242 243 244 245

	local_samples_len = __get_cpu_var(running_sample_length);
	avg_local_sample_len = local_samples_len/NR_ACCUMULATED_SAMPLES;

	printk_ratelimited(KERN_WARNING
			"perf interrupt took too long (%lld > %lld), lowering "
			"kernel.perf_event_max_sample_rate to %d\n",
246
			avg_local_sample_len, allowed_ns >> 1,
247 248 249 250 251 252 253
			sysctl_perf_event_sample_rate);
}

static DEFINE_IRQ_WORK(perf_duration_work, perf_duration_warn);

void perf_sample_event_took(u64 sample_len_ns)
{
P
Peter Zijlstra 已提交
254
	u64 allowed_ns = ACCESS_ONCE(perf_sample_allowed_ns);
255 256
	u64 avg_local_sample_len;
	u64 local_samples_len;
257

P
Peter Zijlstra 已提交
258
	if (allowed_ns == 0)
259 260 261 262 263 264 265 266 267 268 269 270 271 272 273
		return;

	/* decay the counter by 1 average sample */
	local_samples_len = __get_cpu_var(running_sample_length);
	local_samples_len -= local_samples_len/NR_ACCUMULATED_SAMPLES;
	local_samples_len += sample_len_ns;
	__get_cpu_var(running_sample_length) = local_samples_len;

	/*
	 * note: this will be biased artifically low until we have
	 * seen NR_ACCUMULATED_SAMPLES.  Doing it this way keeps us
	 * from having to maintain a count.
	 */
	avg_local_sample_len = local_samples_len/NR_ACCUMULATED_SAMPLES;

P
Peter Zijlstra 已提交
274
	if (avg_local_sample_len <= allowed_ns)
275 276 277 278 279 280 281 282 283 284
		return;

	if (max_samples_per_tick <= 1)
		return;

	max_samples_per_tick = DIV_ROUND_UP(max_samples_per_tick, 2);
	sysctl_perf_event_sample_rate = max_samples_per_tick * HZ;
	perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;

	update_perf_cpu_limits();
285

286 287 288 289 290 291
	if (!irq_work_queue(&perf_duration_work)) {
		early_printk("perf interrupt took too long (%lld > %lld), lowering "
			     "kernel.perf_event_max_sample_rate to %d\n",
			     avg_local_sample_len, allowed_ns >> 1,
			     sysctl_perf_event_sample_rate);
	}
292 293
}

294
static atomic64_t perf_event_id;
295

296 297 298 299
static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
			      enum event_type_t event_type);

static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
S
Stephane Eranian 已提交
300 301 302 303 304
			     enum event_type_t event_type,
			     struct task_struct *task);

static void update_context_time(struct perf_event_context *ctx);
static u64 perf_event_time(struct perf_event *event);
305

306
void __weak perf_event_print_debug(void)	{ }
T
Thomas Gleixner 已提交
307

308
extern __weak const char *perf_pmu_name(void)
T
Thomas Gleixner 已提交
309
{
310
	return "pmu";
T
Thomas Gleixner 已提交
311 312
}

313 314 315 316 317
static inline u64 perf_clock(void)
{
	return local_clock();
}

S
Stephane Eranian 已提交
318 319 320 321 322 323
static inline struct perf_cpu_context *
__get_cpu_context(struct perf_event_context *ctx)
{
	return this_cpu_ptr(ctx->pmu->pmu_cpu_context);
}

324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339
static void perf_ctx_lock(struct perf_cpu_context *cpuctx,
			  struct perf_event_context *ctx)
{
	raw_spin_lock(&cpuctx->ctx.lock);
	if (ctx)
		raw_spin_lock(&ctx->lock);
}

static void perf_ctx_unlock(struct perf_cpu_context *cpuctx,
			    struct perf_event_context *ctx)
{
	if (ctx)
		raw_spin_unlock(&ctx->lock);
	raw_spin_unlock(&cpuctx->ctx.lock);
}

S
Stephane Eranian 已提交
340 341
#ifdef CONFIG_CGROUP_PERF

342 343 344 345 346 347 348 349 350 351 352
/*
 * perf_cgroup_info keeps track of time_enabled for a cgroup.
 * This is a per-cpu dynamically allocated data structure.
 */
struct perf_cgroup_info {
	u64				time;
	u64				timestamp;
};

struct perf_cgroup {
	struct cgroup_subsys_state	css;
353
	struct perf_cgroup_info	__percpu *info;
354 355
};

356 357 358 359 360
/*
 * Must ensure cgroup is pinned (css_get) before calling
 * this function. In other words, we cannot call this function
 * if there is no cgroup event for the current CPU context.
 */
S
Stephane Eranian 已提交
361 362 363
static inline struct perf_cgroup *
perf_cgroup_from_task(struct task_struct *task)
{
364 365
	return container_of(task_css(task, perf_subsys_id),
			    struct perf_cgroup, css);
S
Stephane Eranian 已提交
366 367 368 369 370 371 372 373
}

static inline bool
perf_cgroup_match(struct perf_event *event)
{
	struct perf_event_context *ctx = event->ctx;
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);

374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389
	/* @event doesn't care about cgroup */
	if (!event->cgrp)
		return true;

	/* wants specific cgroup scope but @cpuctx isn't associated with any */
	if (!cpuctx->cgrp)
		return false;

	/*
	 * Cgroup scoping is recursive.  An event enabled for a cgroup is
	 * also enabled for all its descendant cgroups.  If @cpuctx's
	 * cgroup is a descendant of @event's (the test covers identity
	 * case), it's a match.
	 */
	return cgroup_is_descendant(cpuctx->cgrp->css.cgroup,
				    event->cgrp->css.cgroup);
S
Stephane Eranian 已提交
390 391
}

392
static inline bool perf_tryget_cgroup(struct perf_event *event)
S
Stephane Eranian 已提交
393
{
394
	return css_tryget(&event->cgrp->css);
S
Stephane Eranian 已提交
395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442
}

static inline void perf_put_cgroup(struct perf_event *event)
{
	css_put(&event->cgrp->css);
}

static inline void perf_detach_cgroup(struct perf_event *event)
{
	perf_put_cgroup(event);
	event->cgrp = NULL;
}

static inline int is_cgroup_event(struct perf_event *event)
{
	return event->cgrp != NULL;
}

static inline u64 perf_cgroup_event_time(struct perf_event *event)
{
	struct perf_cgroup_info *t;

	t = per_cpu_ptr(event->cgrp->info, event->cpu);
	return t->time;
}

static inline void __update_cgrp_time(struct perf_cgroup *cgrp)
{
	struct perf_cgroup_info *info;
	u64 now;

	now = perf_clock();

	info = this_cpu_ptr(cgrp->info);

	info->time += now - info->timestamp;
	info->timestamp = now;
}

static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
{
	struct perf_cgroup *cgrp_out = cpuctx->cgrp;
	if (cgrp_out)
		__update_cgrp_time(cgrp_out);
}

static inline void update_cgrp_time_from_event(struct perf_event *event)
{
443 444
	struct perf_cgroup *cgrp;

S
Stephane Eranian 已提交
445
	/*
446 447
	 * ensure we access cgroup data only when needed and
	 * when we know the cgroup is pinned (css_get)
S
Stephane Eranian 已提交
448
	 */
449
	if (!is_cgroup_event(event))
S
Stephane Eranian 已提交
450 451
		return;

452 453 454 455 456 457
	cgrp = perf_cgroup_from_task(current);
	/*
	 * Do not update time when cgroup is not active
	 */
	if (cgrp == event->cgrp)
		__update_cgrp_time(event->cgrp);
S
Stephane Eranian 已提交
458 459 460
}

static inline void
461 462
perf_cgroup_set_timestamp(struct task_struct *task,
			  struct perf_event_context *ctx)
S
Stephane Eranian 已提交
463 464 465 466
{
	struct perf_cgroup *cgrp;
	struct perf_cgroup_info *info;

467 468 469 470 471 472
	/*
	 * ctx->lock held by caller
	 * ensure we do not access cgroup data
	 * unless we have the cgroup pinned (css_get)
	 */
	if (!task || !ctx->nr_cgroups)
S
Stephane Eranian 已提交
473 474 475 476
		return;

	cgrp = perf_cgroup_from_task(task);
	info = this_cpu_ptr(cgrp->info);
477
	info->timestamp = ctx->timestamp;
S
Stephane Eranian 已提交
478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509
}

#define PERF_CGROUP_SWOUT	0x1 /* cgroup switch out every event */
#define PERF_CGROUP_SWIN	0x2 /* cgroup switch in events based on task */

/*
 * reschedule events based on the cgroup constraint of task.
 *
 * mode SWOUT : schedule out everything
 * mode SWIN : schedule in based on cgroup for next
 */
void perf_cgroup_switch(struct task_struct *task, int mode)
{
	struct perf_cpu_context *cpuctx;
	struct pmu *pmu;
	unsigned long flags;

	/*
	 * disable interrupts to avoid geting nr_cgroup
	 * changes via __perf_event_disable(). Also
	 * avoids preemption.
	 */
	local_irq_save(flags);

	/*
	 * we reschedule only in the presence of cgroup
	 * constrained events.
	 */
	rcu_read_lock();

	list_for_each_entry_rcu(pmu, &pmus, entry) {
		cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
510 511
		if (cpuctx->unique_pmu != pmu)
			continue; /* ensure we process each cpuctx once */
S
Stephane Eranian 已提交
512 513 514 515 516 517 518 519 520

		/*
		 * perf_cgroup_events says at least one
		 * context on this CPU has cgroup events.
		 *
		 * ctx->nr_cgroups reports the number of cgroup
		 * events for a context.
		 */
		if (cpuctx->ctx.nr_cgroups > 0) {
521 522
			perf_ctx_lock(cpuctx, cpuctx->task_ctx);
			perf_pmu_disable(cpuctx->ctx.pmu);
S
Stephane Eranian 已提交
523 524 525 526 527 528 529 530 531 532 533

			if (mode & PERF_CGROUP_SWOUT) {
				cpu_ctx_sched_out(cpuctx, EVENT_ALL);
				/*
				 * must not be done before ctxswout due
				 * to event_filter_match() in event_sched_out()
				 */
				cpuctx->cgrp = NULL;
			}

			if (mode & PERF_CGROUP_SWIN) {
534
				WARN_ON_ONCE(cpuctx->cgrp);
535 536 537 538
				/*
				 * set cgrp before ctxsw in to allow
				 * event_filter_match() to not have to pass
				 * task around
S
Stephane Eranian 已提交
539 540 541 542
				 */
				cpuctx->cgrp = perf_cgroup_from_task(task);
				cpu_ctx_sched_in(cpuctx, EVENT_ALL, task);
			}
543 544
			perf_pmu_enable(cpuctx->ctx.pmu);
			perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
S
Stephane Eranian 已提交
545 546 547 548 549 550 551 552
		}
	}

	rcu_read_unlock();

	local_irq_restore(flags);
}

553 554
static inline void perf_cgroup_sched_out(struct task_struct *task,
					 struct task_struct *next)
S
Stephane Eranian 已提交
555
{
556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577
	struct perf_cgroup *cgrp1;
	struct perf_cgroup *cgrp2 = NULL;

	/*
	 * we come here when we know perf_cgroup_events > 0
	 */
	cgrp1 = perf_cgroup_from_task(task);

	/*
	 * next is NULL when called from perf_event_enable_on_exec()
	 * that will systematically cause a cgroup_switch()
	 */
	if (next)
		cgrp2 = perf_cgroup_from_task(next);

	/*
	 * only schedule out current cgroup events if we know
	 * that we are switching to a different cgroup. Otherwise,
	 * do no touch the cgroup events.
	 */
	if (cgrp1 != cgrp2)
		perf_cgroup_switch(task, PERF_CGROUP_SWOUT);
S
Stephane Eranian 已提交
578 579
}

580 581
static inline void perf_cgroup_sched_in(struct task_struct *prev,
					struct task_struct *task)
S
Stephane Eranian 已提交
582
{
583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600
	struct perf_cgroup *cgrp1;
	struct perf_cgroup *cgrp2 = NULL;

	/*
	 * we come here when we know perf_cgroup_events > 0
	 */
	cgrp1 = perf_cgroup_from_task(task);

	/* prev can never be NULL */
	cgrp2 = perf_cgroup_from_task(prev);

	/*
	 * only need to schedule in cgroup events if we are changing
	 * cgroup during ctxsw. Cgroup events were not scheduled
	 * out of ctxsw out if that was not the case.
	 */
	if (cgrp1 != cgrp2)
		perf_cgroup_switch(task, PERF_CGROUP_SWIN);
S
Stephane Eranian 已提交
601 602 603 604 605 606 607 608
}

static inline int perf_cgroup_connect(int fd, struct perf_event *event,
				      struct perf_event_attr *attr,
				      struct perf_event *group_leader)
{
	struct perf_cgroup *cgrp;
	struct cgroup_subsys_state *css;
609 610
	struct fd f = fdget(fd);
	int ret = 0;
S
Stephane Eranian 已提交
611

612
	if (!f.file)
S
Stephane Eranian 已提交
613 614
		return -EBADF;

615 616
	rcu_read_lock();

617
	css = css_from_dir(f.file->f_dentry, &perf_subsys);
618 619 620 621
	if (IS_ERR(css)) {
		ret = PTR_ERR(css);
		goto out;
	}
S
Stephane Eranian 已提交
622 623 624 625

	cgrp = container_of(css, struct perf_cgroup, css);
	event->cgrp = cgrp;

626
	/* must be done before we fput() the file */
627 628 629 630 631
	if (!perf_tryget_cgroup(event)) {
		event->cgrp = NULL;
		ret = -ENOENT;
		goto out;
	}
632

S
Stephane Eranian 已提交
633 634 635 636 637 638 639 640 641
	/*
	 * all events in a group must monitor
	 * the same cgroup because a task belongs
	 * to only one perf cgroup at a time
	 */
	if (group_leader && group_leader->cgrp != cgrp) {
		perf_detach_cgroup(event);
		ret = -EINVAL;
	}
642
out:
643
	rcu_read_unlock();
644
	fdput(f);
S
Stephane Eranian 已提交
645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717
	return ret;
}

static inline void
perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
{
	struct perf_cgroup_info *t;
	t = per_cpu_ptr(event->cgrp->info, event->cpu);
	event->shadow_ctx_time = now - t->timestamp;
}

static inline void
perf_cgroup_defer_enabled(struct perf_event *event)
{
	/*
	 * when the current task's perf cgroup does not match
	 * the event's, we need to remember to call the
	 * perf_mark_enable() function the first time a task with
	 * a matching perf cgroup is scheduled in.
	 */
	if (is_cgroup_event(event) && !perf_cgroup_match(event))
		event->cgrp_defer_enabled = 1;
}

static inline void
perf_cgroup_mark_enabled(struct perf_event *event,
			 struct perf_event_context *ctx)
{
	struct perf_event *sub;
	u64 tstamp = perf_event_time(event);

	if (!event->cgrp_defer_enabled)
		return;

	event->cgrp_defer_enabled = 0;

	event->tstamp_enabled = tstamp - event->total_time_enabled;
	list_for_each_entry(sub, &event->sibling_list, group_entry) {
		if (sub->state >= PERF_EVENT_STATE_INACTIVE) {
			sub->tstamp_enabled = tstamp - sub->total_time_enabled;
			sub->cgrp_defer_enabled = 0;
		}
	}
}
#else /* !CONFIG_CGROUP_PERF */

static inline bool
perf_cgroup_match(struct perf_event *event)
{
	return true;
}

static inline void perf_detach_cgroup(struct perf_event *event)
{}

static inline int is_cgroup_event(struct perf_event *event)
{
	return 0;
}

static inline u64 perf_cgroup_event_cgrp_time(struct perf_event *event)
{
	return 0;
}

static inline void update_cgrp_time_from_event(struct perf_event *event)
{
}

static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
{
}

718 719
static inline void perf_cgroup_sched_out(struct task_struct *task,
					 struct task_struct *next)
S
Stephane Eranian 已提交
720 721 722
{
}

723 724
static inline void perf_cgroup_sched_in(struct task_struct *prev,
					struct task_struct *task)
S
Stephane Eranian 已提交
725 726 727 728 729 730 731 732 733 734 735
{
}

static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event,
				      struct perf_event_attr *attr,
				      struct perf_event *group_leader)
{
	return -EINVAL;
}

static inline void
736 737
perf_cgroup_set_timestamp(struct task_struct *task,
			  struct perf_event_context *ctx)
S
Stephane Eranian 已提交
738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767
{
}

void
perf_cgroup_switch(struct task_struct *task, struct task_struct *next)
{
}

static inline void
perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
{
}

static inline u64 perf_cgroup_event_time(struct perf_event *event)
{
	return 0;
}

static inline void
perf_cgroup_defer_enabled(struct perf_event *event)
{
}

static inline void
perf_cgroup_mark_enabled(struct perf_event *event,
			 struct perf_event_context *ctx)
{
}
#endif

768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830
/*
 * set default to be dependent on timer tick just
 * like original code
 */
#define PERF_CPU_HRTIMER (1000 / HZ)
/*
 * function must be called with interrupts disbled
 */
static enum hrtimer_restart perf_cpu_hrtimer_handler(struct hrtimer *hr)
{
	struct perf_cpu_context *cpuctx;
	enum hrtimer_restart ret = HRTIMER_NORESTART;
	int rotations = 0;

	WARN_ON(!irqs_disabled());

	cpuctx = container_of(hr, struct perf_cpu_context, hrtimer);

	rotations = perf_rotate_context(cpuctx);

	/*
	 * arm timer if needed
	 */
	if (rotations) {
		hrtimer_forward_now(hr, cpuctx->hrtimer_interval);
		ret = HRTIMER_RESTART;
	}

	return ret;
}

/* CPU is going down */
void perf_cpu_hrtimer_cancel(int cpu)
{
	struct perf_cpu_context *cpuctx;
	struct pmu *pmu;
	unsigned long flags;

	if (WARN_ON(cpu != smp_processor_id()))
		return;

	local_irq_save(flags);

	rcu_read_lock();

	list_for_each_entry_rcu(pmu, &pmus, entry) {
		cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);

		if (pmu->task_ctx_nr == perf_sw_context)
			continue;

		hrtimer_cancel(&cpuctx->hrtimer);
	}

	rcu_read_unlock();

	local_irq_restore(flags);
}

static void __perf_cpu_hrtimer_init(struct perf_cpu_context *cpuctx, int cpu)
{
	struct hrtimer *hr = &cpuctx->hrtimer;
	struct pmu *pmu = cpuctx->ctx.pmu;
831
	int timer;
832 833 834 835 836

	/* no multiplexing needed for SW PMU */
	if (pmu->task_ctx_nr == perf_sw_context)
		return;

837 838 839 840 841 842 843 844 845
	/*
	 * check default is sane, if not set then force to
	 * default interval (1/tick)
	 */
	timer = pmu->hrtimer_interval_ms;
	if (timer < 1)
		timer = pmu->hrtimer_interval_ms = PERF_CPU_HRTIMER;

	cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer);
846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867

	hrtimer_init(hr, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED);
	hr->function = perf_cpu_hrtimer_handler;
}

static void perf_cpu_hrtimer_restart(struct perf_cpu_context *cpuctx)
{
	struct hrtimer *hr = &cpuctx->hrtimer;
	struct pmu *pmu = cpuctx->ctx.pmu;

	/* not for SW PMU */
	if (pmu->task_ctx_nr == perf_sw_context)
		return;

	if (hrtimer_active(hr))
		return;

	if (!hrtimer_callback_running(hr))
		__hrtimer_start_range_ns(hr, cpuctx->hrtimer_interval,
					 0, HRTIMER_MODE_REL_PINNED, 0);
}

P
Peter Zijlstra 已提交
868
void perf_pmu_disable(struct pmu *pmu)
869
{
P
Peter Zijlstra 已提交
870 871 872
	int *count = this_cpu_ptr(pmu->pmu_disable_count);
	if (!(*count)++)
		pmu->pmu_disable(pmu);
873 874
}

P
Peter Zijlstra 已提交
875
void perf_pmu_enable(struct pmu *pmu)
876
{
P
Peter Zijlstra 已提交
877 878 879
	int *count = this_cpu_ptr(pmu->pmu_disable_count);
	if (!--(*count))
		pmu->pmu_enable(pmu);
880 881
}

882 883 884 885 886 887 888
static DEFINE_PER_CPU(struct list_head, rotation_list);

/*
 * perf_pmu_rotate_start() and perf_rotate_context() are fully serialized
 * because they're strictly cpu affine and rotate_start is called with IRQs
 * disabled, while rotate_context is called from IRQ context.
 */
P
Peter Zijlstra 已提交
889
static void perf_pmu_rotate_start(struct pmu *pmu)
890
{
P
Peter Zijlstra 已提交
891
	struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
892
	struct list_head *head = &__get_cpu_var(rotation_list);
893

894
	WARN_ON(!irqs_disabled());
895

896
	if (list_empty(&cpuctx->rotation_list))
897
		list_add(&cpuctx->rotation_list, head);
898 899
}

900
static void get_ctx(struct perf_event_context *ctx)
901
{
902
	WARN_ON(!atomic_inc_not_zero(&ctx->refcount));
903 904
}

905
static void put_ctx(struct perf_event_context *ctx)
906
{
907 908 909
	if (atomic_dec_and_test(&ctx->refcount)) {
		if (ctx->parent_ctx)
			put_ctx(ctx->parent_ctx);
910 911
		if (ctx->task)
			put_task_struct(ctx->task);
912
		kfree_rcu(ctx, rcu_head);
913
	}
914 915
}

916
static void unclone_ctx(struct perf_event_context *ctx)
917 918 919 920 921
{
	if (ctx->parent_ctx) {
		put_ctx(ctx->parent_ctx);
		ctx->parent_ctx = NULL;
	}
922
	ctx->generation++;
923 924
}

925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946
static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
{
	/*
	 * only top level events have the pid namespace they were created in
	 */
	if (event->parent)
		event = event->parent;

	return task_tgid_nr_ns(p, event->ns);
}

static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
{
	/*
	 * only top level events have the pid namespace they were created in
	 */
	if (event->parent)
		event = event->parent;

	return task_pid_nr_ns(p, event->ns);
}

947
/*
948
 * If we inherit events we want to return the parent event id
949 950
 * to userspace.
 */
951
static u64 primary_event_id(struct perf_event *event)
952
{
953
	u64 id = event->id;
954

955 956
	if (event->parent)
		id = event->parent->id;
957 958 959 960

	return id;
}

961
/*
962
 * Get the perf_event_context for a task and lock it.
963 964 965
 * This has to cope with with the fact that until it is locked,
 * the context could get moved to another task.
 */
966
static struct perf_event_context *
P
Peter Zijlstra 已提交
967
perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags)
968
{
969
	struct perf_event_context *ctx;
970

P
Peter Zijlstra 已提交
971
retry:
972 973 974 975 976 977 978 979 980 981 982
	/*
	 * One of the few rules of preemptible RCU is that one cannot do
	 * rcu_read_unlock() while holding a scheduler (or nested) lock when
	 * part of the read side critical section was preemptible -- see
	 * rcu_read_unlock_special().
	 *
	 * Since ctx->lock nests under rq->lock we must ensure the entire read
	 * side critical section is non-preemptible.
	 */
	preempt_disable();
	rcu_read_lock();
P
Peter Zijlstra 已提交
983
	ctx = rcu_dereference(task->perf_event_ctxp[ctxn]);
984 985 986 987
	if (ctx) {
		/*
		 * If this context is a clone of another, it might
		 * get swapped for another underneath us by
988
		 * perf_event_task_sched_out, though the
989 990 991 992 993 994
		 * rcu_read_lock() protects us from any context
		 * getting freed.  Lock the context and check if it
		 * got swapped before we could get the lock, and retry
		 * if so.  If we locked the right context, then it
		 * can't get swapped on us any more.
		 */
995
		raw_spin_lock_irqsave(&ctx->lock, *flags);
P
Peter Zijlstra 已提交
996
		if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) {
997
			raw_spin_unlock_irqrestore(&ctx->lock, *flags);
998 999
			rcu_read_unlock();
			preempt_enable();
1000 1001
			goto retry;
		}
1002 1003

		if (!atomic_inc_not_zero(&ctx->refcount)) {
1004
			raw_spin_unlock_irqrestore(&ctx->lock, *flags);
1005 1006
			ctx = NULL;
		}
1007 1008
	}
	rcu_read_unlock();
1009
	preempt_enable();
1010 1011 1012 1013 1014 1015 1016 1017
	return ctx;
}

/*
 * Get the context for a task and increment its pin_count so it
 * can't get swapped to another task.  This also increments its
 * reference count so that the context can't get freed.
 */
P
Peter Zijlstra 已提交
1018 1019
static struct perf_event_context *
perf_pin_task_context(struct task_struct *task, int ctxn)
1020
{
1021
	struct perf_event_context *ctx;
1022 1023
	unsigned long flags;

P
Peter Zijlstra 已提交
1024
	ctx = perf_lock_task_context(task, ctxn, &flags);
1025 1026
	if (ctx) {
		++ctx->pin_count;
1027
		raw_spin_unlock_irqrestore(&ctx->lock, flags);
1028 1029 1030 1031
	}
	return ctx;
}

1032
static void perf_unpin_context(struct perf_event_context *ctx)
1033 1034 1035
{
	unsigned long flags;

1036
	raw_spin_lock_irqsave(&ctx->lock, flags);
1037
	--ctx->pin_count;
1038
	raw_spin_unlock_irqrestore(&ctx->lock, flags);
1039 1040
}

1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051
/*
 * Update the record of the current time in a context.
 */
static void update_context_time(struct perf_event_context *ctx)
{
	u64 now = perf_clock();

	ctx->time += now - ctx->timestamp;
	ctx->timestamp = now;
}

1052 1053 1054
static u64 perf_event_time(struct perf_event *event)
{
	struct perf_event_context *ctx = event->ctx;
S
Stephane Eranian 已提交
1055 1056 1057 1058

	if (is_cgroup_event(event))
		return perf_cgroup_event_time(event);

1059 1060 1061
	return ctx ? ctx->time : 0;
}

1062 1063
/*
 * Update the total_time_enabled and total_time_running fields for a event.
1064
 * The caller of this function needs to hold the ctx->lock.
1065 1066 1067 1068 1069 1070 1071 1072 1073
 */
static void update_event_times(struct perf_event *event)
{
	struct perf_event_context *ctx = event->ctx;
	u64 run_end;

	if (event->state < PERF_EVENT_STATE_INACTIVE ||
	    event->group_leader->state < PERF_EVENT_STATE_INACTIVE)
		return;
S
Stephane Eranian 已提交
1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084
	/*
	 * in cgroup mode, time_enabled represents
	 * the time the event was enabled AND active
	 * tasks were in the monitored cgroup. This is
	 * independent of the activity of the context as
	 * there may be a mix of cgroup and non-cgroup events.
	 *
	 * That is why we treat cgroup events differently
	 * here.
	 */
	if (is_cgroup_event(event))
1085
		run_end = perf_cgroup_event_time(event);
S
Stephane Eranian 已提交
1086 1087
	else if (ctx->is_active)
		run_end = ctx->time;
1088 1089 1090 1091
	else
		run_end = event->tstamp_stopped;

	event->total_time_enabled = run_end - event->tstamp_enabled;
1092 1093 1094 1095

	if (event->state == PERF_EVENT_STATE_INACTIVE)
		run_end = event->tstamp_stopped;
	else
1096
		run_end = perf_event_time(event);
1097 1098

	event->total_time_running = run_end - event->tstamp_running;
S
Stephane Eranian 已提交
1099

1100 1101
}

1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113
/*
 * Update total_time_enabled and total_time_running for all events in a group.
 */
static void update_group_times(struct perf_event *leader)
{
	struct perf_event *event;

	update_event_times(leader);
	list_for_each_entry(event, &leader->sibling_list, group_entry)
		update_event_times(event);
}

1114 1115 1116 1117 1118 1119 1120 1121 1122
static struct list_head *
ctx_group_list(struct perf_event *event, struct perf_event_context *ctx)
{
	if (event->attr.pinned)
		return &ctx->pinned_groups;
	else
		return &ctx->flexible_groups;
}

1123
/*
1124
 * Add a event from the lists for its context.
1125 1126
 * Must be called with ctx->mutex and ctx->lock held.
 */
1127
static void
1128
list_add_event(struct perf_event *event, struct perf_event_context *ctx)
1129
{
1130 1131
	WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
	event->attach_state |= PERF_ATTACH_CONTEXT;
1132 1133

	/*
1134 1135 1136
	 * If we're a stand alone event or group leader, we go to the context
	 * list, group events are kept attached to the group so that
	 * perf_group_detach can, at all times, locate all siblings.
1137
	 */
1138
	if (event->group_leader == event) {
1139 1140
		struct list_head *list;

1141 1142 1143
		if (is_software_event(event))
			event->group_flags |= PERF_GROUP_SOFTWARE;

1144 1145
		list = ctx_group_list(event, ctx);
		list_add_tail(&event->group_entry, list);
P
Peter Zijlstra 已提交
1146
	}
P
Peter Zijlstra 已提交
1147

1148
	if (is_cgroup_event(event))
S
Stephane Eranian 已提交
1149 1150
		ctx->nr_cgroups++;

1151 1152 1153
	if (has_branch_stack(event))
		ctx->nr_branch_stack++;

1154
	list_add_rcu(&event->event_entry, &ctx->event_list);
1155
	if (!ctx->nr_events)
P
Peter Zijlstra 已提交
1156
		perf_pmu_rotate_start(ctx->pmu);
1157 1158
	ctx->nr_events++;
	if (event->attr.inherit_stat)
1159
		ctx->nr_stat++;
1160 1161

	ctx->generation++;
1162 1163
}

J
Jiri Olsa 已提交
1164 1165 1166 1167 1168 1169 1170 1171 1172
/*
 * Initialize event state based on the perf_event_attr::disabled.
 */
static inline void perf_event__state_init(struct perf_event *event)
{
	event->state = event->attr.disabled ? PERF_EVENT_STATE_OFF :
					      PERF_EVENT_STATE_INACTIVE;
}

1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211
/*
 * Called at perf_event creation and when events are attached/detached from a
 * group.
 */
static void perf_event__read_size(struct perf_event *event)
{
	int entry = sizeof(u64); /* value */
	int size = 0;
	int nr = 1;

	if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
		size += sizeof(u64);

	if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
		size += sizeof(u64);

	if (event->attr.read_format & PERF_FORMAT_ID)
		entry += sizeof(u64);

	if (event->attr.read_format & PERF_FORMAT_GROUP) {
		nr += event->group_leader->nr_siblings;
		size += sizeof(u64);
	}

	size += entry * nr;
	event->read_size = size;
}

static void perf_event__header_size(struct perf_event *event)
{
	struct perf_sample_data *data;
	u64 sample_type = event->attr.sample_type;
	u16 size = 0;

	perf_event__read_size(event);

	if (sample_type & PERF_SAMPLE_IP)
		size += sizeof(data->ip);

1212 1213 1214 1215 1216 1217
	if (sample_type & PERF_SAMPLE_ADDR)
		size += sizeof(data->addr);

	if (sample_type & PERF_SAMPLE_PERIOD)
		size += sizeof(data->period);

A
Andi Kleen 已提交
1218 1219 1220
	if (sample_type & PERF_SAMPLE_WEIGHT)
		size += sizeof(data->weight);

1221 1222 1223
	if (sample_type & PERF_SAMPLE_READ)
		size += event->read_size;

1224 1225 1226
	if (sample_type & PERF_SAMPLE_DATA_SRC)
		size += sizeof(data->data_src.val);

A
Andi Kleen 已提交
1227 1228 1229
	if (sample_type & PERF_SAMPLE_TRANSACTION)
		size += sizeof(data->txn);

1230 1231 1232 1233 1234 1235 1236 1237 1238
	event->header_size = size;
}

static void perf_event__id_header_size(struct perf_event *event)
{
	struct perf_sample_data *data;
	u64 sample_type = event->attr.sample_type;
	u16 size = 0;

1239 1240 1241 1242 1243 1244
	if (sample_type & PERF_SAMPLE_TID)
		size += sizeof(data->tid_entry);

	if (sample_type & PERF_SAMPLE_TIME)
		size += sizeof(data->time);

1245 1246 1247
	if (sample_type & PERF_SAMPLE_IDENTIFIER)
		size += sizeof(data->id);

1248 1249 1250 1251 1252 1253 1254 1255 1256
	if (sample_type & PERF_SAMPLE_ID)
		size += sizeof(data->id);

	if (sample_type & PERF_SAMPLE_STREAM_ID)
		size += sizeof(data->stream_id);

	if (sample_type & PERF_SAMPLE_CPU)
		size += sizeof(data->cpu_entry);

1257
	event->id_header_size = size;
1258 1259
}

1260 1261
static void perf_group_attach(struct perf_event *event)
{
1262
	struct perf_event *group_leader = event->group_leader, *pos;
1263

P
Peter Zijlstra 已提交
1264 1265 1266 1267 1268 1269
	/*
	 * We can have double attach due to group movement in perf_event_open.
	 */
	if (event->attach_state & PERF_ATTACH_GROUP)
		return;

1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280
	event->attach_state |= PERF_ATTACH_GROUP;

	if (group_leader == event)
		return;

	if (group_leader->group_flags & PERF_GROUP_SOFTWARE &&
			!is_software_event(event))
		group_leader->group_flags &= ~PERF_GROUP_SOFTWARE;

	list_add_tail(&event->group_entry, &group_leader->sibling_list);
	group_leader->nr_siblings++;
1281 1282 1283 1284 1285

	perf_event__header_size(group_leader);

	list_for_each_entry(pos, &group_leader->sibling_list, group_entry)
		perf_event__header_size(pos);
1286 1287
}

1288
/*
1289
 * Remove a event from the lists for its context.
1290
 * Must be called with ctx->mutex and ctx->lock held.
1291
 */
1292
static void
1293
list_del_event(struct perf_event *event, struct perf_event_context *ctx)
1294
{
1295
	struct perf_cpu_context *cpuctx;
1296 1297 1298 1299
	/*
	 * We can have double detach due to exit/hot-unplug + close.
	 */
	if (!(event->attach_state & PERF_ATTACH_CONTEXT))
1300
		return;
1301 1302 1303

	event->attach_state &= ~PERF_ATTACH_CONTEXT;

1304
	if (is_cgroup_event(event)) {
S
Stephane Eranian 已提交
1305
		ctx->nr_cgroups--;
1306 1307 1308 1309 1310 1311 1312 1313 1314
		cpuctx = __get_cpu_context(ctx);
		/*
		 * if there are no more cgroup events
		 * then cler cgrp to avoid stale pointer
		 * in update_cgrp_time_from_cpuctx()
		 */
		if (!ctx->nr_cgroups)
			cpuctx->cgrp = NULL;
	}
S
Stephane Eranian 已提交
1315

1316 1317 1318
	if (has_branch_stack(event))
		ctx->nr_branch_stack--;

1319 1320
	ctx->nr_events--;
	if (event->attr.inherit_stat)
1321
		ctx->nr_stat--;
1322

1323
	list_del_rcu(&event->event_entry);
1324

1325 1326
	if (event->group_leader == event)
		list_del_init(&event->group_entry);
P
Peter Zijlstra 已提交
1327

1328
	update_group_times(event);
1329 1330 1331 1332 1333 1334 1335 1336 1337 1338

	/*
	 * If event was in error state, then keep it
	 * that way, otherwise bogus counts will be
	 * returned on read(). The only way to get out
	 * of error state is by explicit re-enabling
	 * of the event
	 */
	if (event->state > PERF_EVENT_STATE_OFF)
		event->state = PERF_EVENT_STATE_OFF;
1339 1340

	ctx->generation++;
1341 1342
}

1343
static void perf_group_detach(struct perf_event *event)
1344 1345
{
	struct perf_event *sibling, *tmp;
1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361
	struct list_head *list = NULL;

	/*
	 * We can have double detach due to exit/hot-unplug + close.
	 */
	if (!(event->attach_state & PERF_ATTACH_GROUP))
		return;

	event->attach_state &= ~PERF_ATTACH_GROUP;

	/*
	 * If this is a sibling, remove it from its group.
	 */
	if (event->group_leader != event) {
		list_del_init(&event->group_entry);
		event->group_leader->nr_siblings--;
1362
		goto out;
1363 1364 1365 1366
	}

	if (!list_empty(&event->group_entry))
		list = &event->group_entry;
1367

1368
	/*
1369 1370
	 * If this was a group event with sibling events then
	 * upgrade the siblings to singleton events by adding them
1371
	 * to whatever list we are on.
1372
	 */
1373
	list_for_each_entry_safe(sibling, tmp, &event->sibling_list, group_entry) {
1374 1375
		if (list)
			list_move_tail(&sibling->group_entry, list);
1376
		sibling->group_leader = sibling;
1377 1378 1379

		/* Inherit group flags from the previous leader */
		sibling->group_flags = event->group_flags;
1380
	}
1381 1382 1383 1384 1385 1386

out:
	perf_event__header_size(event->group_leader);

	list_for_each_entry(tmp, &event->group_leader->sibling_list, group_entry)
		perf_event__header_size(tmp);
1387 1388
}

1389 1390 1391
static inline int
event_filter_match(struct perf_event *event)
{
S
Stephane Eranian 已提交
1392 1393
	return (event->cpu == -1 || event->cpu == smp_processor_id())
	    && perf_cgroup_match(event);
1394 1395
}

1396 1397
static void
event_sched_out(struct perf_event *event,
1398
		  struct perf_cpu_context *cpuctx,
1399
		  struct perf_event_context *ctx)
1400
{
1401
	u64 tstamp = perf_event_time(event);
1402 1403 1404 1405 1406 1407 1408 1409 1410
	u64 delta;
	/*
	 * An event which could not be activated because of
	 * filter mismatch still needs to have its timings
	 * maintained, otherwise bogus information is return
	 * via read() for time_enabled, time_running:
	 */
	if (event->state == PERF_EVENT_STATE_INACTIVE
	    && !event_filter_match(event)) {
S
Stephane Eranian 已提交
1411
		delta = tstamp - event->tstamp_stopped;
1412
		event->tstamp_running += delta;
1413
		event->tstamp_stopped = tstamp;
1414 1415
	}

1416
	if (event->state != PERF_EVENT_STATE_ACTIVE)
1417
		return;
1418

1419 1420
	perf_pmu_disable(event->pmu);

1421 1422 1423 1424
	event->state = PERF_EVENT_STATE_INACTIVE;
	if (event->pending_disable) {
		event->pending_disable = 0;
		event->state = PERF_EVENT_STATE_OFF;
1425
	}
1426
	event->tstamp_stopped = tstamp;
P
Peter Zijlstra 已提交
1427
	event->pmu->del(event, 0);
1428
	event->oncpu = -1;
1429

1430
	if (!is_software_event(event))
1431 1432
		cpuctx->active_oncpu--;
	ctx->nr_active--;
1433 1434
	if (event->attr.freq && event->attr.sample_freq)
		ctx->nr_freq--;
1435
	if (event->attr.exclusive || !cpuctx->active_oncpu)
1436
		cpuctx->exclusive = 0;
1437 1438

	perf_pmu_enable(event->pmu);
1439 1440
}

1441
static void
1442
group_sched_out(struct perf_event *group_event,
1443
		struct perf_cpu_context *cpuctx,
1444
		struct perf_event_context *ctx)
1445
{
1446
	struct perf_event *event;
1447
	int state = group_event->state;
1448

1449
	event_sched_out(group_event, cpuctx, ctx);
1450 1451 1452 1453

	/*
	 * Schedule out siblings (if any):
	 */
1454 1455
	list_for_each_entry(event, &group_event->sibling_list, group_entry)
		event_sched_out(event, cpuctx, ctx);
1456

1457
	if (state == PERF_EVENT_STATE_ACTIVE && group_event->attr.exclusive)
1458 1459 1460
		cpuctx->exclusive = 0;
}

T
Thomas Gleixner 已提交
1461
/*
1462
 * Cross CPU call to remove a performance event
T
Thomas Gleixner 已提交
1463
 *
1464
 * We disable the event on the hardware level first. After that we
T
Thomas Gleixner 已提交
1465 1466
 * remove it from the context list.
 */
1467
static int __perf_remove_from_context(void *info)
T
Thomas Gleixner 已提交
1468
{
1469 1470
	struct perf_event *event = info;
	struct perf_event_context *ctx = event->ctx;
P
Peter Zijlstra 已提交
1471
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
T
Thomas Gleixner 已提交
1472

1473
	raw_spin_lock(&ctx->lock);
1474 1475
	event_sched_out(event, cpuctx, ctx);
	list_del_event(event, ctx);
1476 1477 1478 1479
	if (!ctx->nr_events && cpuctx->task_ctx == ctx) {
		ctx->is_active = 0;
		cpuctx->task_ctx = NULL;
	}
1480
	raw_spin_unlock(&ctx->lock);
1481 1482

	return 0;
T
Thomas Gleixner 已提交
1483 1484 1485 1486
}


/*
1487
 * Remove the event from a task's (or a CPU's) list of events.
T
Thomas Gleixner 已提交
1488
 *
1489
 * CPU events are removed with a smp call. For task events we only
T
Thomas Gleixner 已提交
1490
 * call when the task is on a CPU.
1491
 *
1492 1493
 * If event->ctx is a cloned context, callers must make sure that
 * every task struct that event->ctx->task could possibly point to
1494 1495
 * remains valid.  This is OK when called from perf_release since
 * that only calls us on the top-level context, which can't be a clone.
1496
 * When called from perf_event_exit_task, it's OK because the
1497
 * context has been detached from its task.
T
Thomas Gleixner 已提交
1498
 */
1499
static void perf_remove_from_context(struct perf_event *event)
T
Thomas Gleixner 已提交
1500
{
1501
	struct perf_event_context *ctx = event->ctx;
T
Thomas Gleixner 已提交
1502 1503
	struct task_struct *task = ctx->task;

1504 1505
	lockdep_assert_held(&ctx->mutex);

T
Thomas Gleixner 已提交
1506 1507
	if (!task) {
		/*
1508
		 * Per cpu events are removed via an smp call and
1509
		 * the removal is always successful.
T
Thomas Gleixner 已提交
1510
		 */
1511
		cpu_function_call(event->cpu, __perf_remove_from_context, event);
T
Thomas Gleixner 已提交
1512 1513 1514 1515
		return;
	}

retry:
1516 1517
	if (!task_function_call(task, __perf_remove_from_context, event))
		return;
T
Thomas Gleixner 已提交
1518

1519
	raw_spin_lock_irq(&ctx->lock);
T
Thomas Gleixner 已提交
1520
	/*
1521 1522
	 * If we failed to find a running task, but find the context active now
	 * that we've acquired the ctx->lock, retry.
T
Thomas Gleixner 已提交
1523
	 */
1524
	if (ctx->is_active) {
1525
		raw_spin_unlock_irq(&ctx->lock);
T
Thomas Gleixner 已提交
1526 1527 1528 1529
		goto retry;
	}

	/*
1530 1531
	 * Since the task isn't running, its safe to remove the event, us
	 * holding the ctx->lock ensures the task won't get scheduled in.
T
Thomas Gleixner 已提交
1532
	 */
1533
	list_del_event(event, ctx);
1534
	raw_spin_unlock_irq(&ctx->lock);
T
Thomas Gleixner 已提交
1535 1536
}

1537
/*
1538
 * Cross CPU call to disable a performance event
1539
 */
1540
int __perf_event_disable(void *info)
1541
{
1542 1543
	struct perf_event *event = info;
	struct perf_event_context *ctx = event->ctx;
P
Peter Zijlstra 已提交
1544
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1545 1546

	/*
1547 1548
	 * If this is a per-task event, need to check whether this
	 * event's task is the current task on this cpu.
1549 1550 1551
	 *
	 * Can trigger due to concurrent perf_event_context_sched_out()
	 * flipping contexts around.
1552
	 */
1553
	if (ctx->task && cpuctx->task_ctx != ctx)
1554
		return -EINVAL;
1555

1556
	raw_spin_lock(&ctx->lock);
1557 1558

	/*
1559
	 * If the event is on, turn it off.
1560 1561
	 * If it is in error state, leave it in error state.
	 */
1562
	if (event->state >= PERF_EVENT_STATE_INACTIVE) {
1563
		update_context_time(ctx);
S
Stephane Eranian 已提交
1564
		update_cgrp_time_from_event(event);
1565 1566 1567
		update_group_times(event);
		if (event == event->group_leader)
			group_sched_out(event, cpuctx, ctx);
1568
		else
1569 1570
			event_sched_out(event, cpuctx, ctx);
		event->state = PERF_EVENT_STATE_OFF;
1571 1572
	}

1573
	raw_spin_unlock(&ctx->lock);
1574 1575

	return 0;
1576 1577 1578
}

/*
1579
 * Disable a event.
1580
 *
1581 1582
 * If event->ctx is a cloned context, callers must make sure that
 * every task struct that event->ctx->task could possibly point to
1583
 * remains valid.  This condition is satisifed when called through
1584 1585 1586 1587
 * perf_event_for_each_child or perf_event_for_each because they
 * hold the top-level event's child_mutex, so any descendant that
 * goes to exit will block in sync_child_event.
 * When called from perf_pending_event it's OK because event->ctx
1588
 * is the current context on this CPU and preemption is disabled,
1589
 * hence we can't get into perf_event_task_sched_out for this context.
1590
 */
1591
void perf_event_disable(struct perf_event *event)
1592
{
1593
	struct perf_event_context *ctx = event->ctx;
1594 1595 1596 1597
	struct task_struct *task = ctx->task;

	if (!task) {
		/*
1598
		 * Disable the event on the cpu that it's on
1599
		 */
1600
		cpu_function_call(event->cpu, __perf_event_disable, event);
1601 1602 1603
		return;
	}

P
Peter Zijlstra 已提交
1604
retry:
1605 1606
	if (!task_function_call(task, __perf_event_disable, event))
		return;
1607

1608
	raw_spin_lock_irq(&ctx->lock);
1609
	/*
1610
	 * If the event is still active, we need to retry the cross-call.
1611
	 */
1612
	if (event->state == PERF_EVENT_STATE_ACTIVE) {
1613
		raw_spin_unlock_irq(&ctx->lock);
1614 1615 1616 1617 1618
		/*
		 * Reload the task pointer, it might have been changed by
		 * a concurrent perf_event_context_sched_out().
		 */
		task = ctx->task;
1619 1620 1621 1622 1623 1624 1625
		goto retry;
	}

	/*
	 * Since we have the lock this context can't be scheduled
	 * in, so we can change the state safely.
	 */
1626 1627 1628
	if (event->state == PERF_EVENT_STATE_INACTIVE) {
		update_group_times(event);
		event->state = PERF_EVENT_STATE_OFF;
1629
	}
1630
	raw_spin_unlock_irq(&ctx->lock);
1631
}
1632
EXPORT_SYMBOL_GPL(perf_event_disable);
1633

S
Stephane Eranian 已提交
1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668
static void perf_set_shadow_time(struct perf_event *event,
				 struct perf_event_context *ctx,
				 u64 tstamp)
{
	/*
	 * use the correct time source for the time snapshot
	 *
	 * We could get by without this by leveraging the
	 * fact that to get to this function, the caller
	 * has most likely already called update_context_time()
	 * and update_cgrp_time_xx() and thus both timestamp
	 * are identical (or very close). Given that tstamp is,
	 * already adjusted for cgroup, we could say that:
	 *    tstamp - ctx->timestamp
	 * is equivalent to
	 *    tstamp - cgrp->timestamp.
	 *
	 * Then, in perf_output_read(), the calculation would
	 * work with no changes because:
	 * - event is guaranteed scheduled in
	 * - no scheduled out in between
	 * - thus the timestamp would be the same
	 *
	 * But this is a bit hairy.
	 *
	 * So instead, we have an explicit cgroup call to remain
	 * within the time time source all along. We believe it
	 * is cleaner and simpler to understand.
	 */
	if (is_cgroup_event(event))
		perf_cgroup_set_shadow_time(event, tstamp);
	else
		event->shadow_ctx_time = tstamp - ctx->timestamp;
}

P
Peter Zijlstra 已提交
1669 1670 1671 1672
#define MAX_INTERRUPTS (~0ULL)

static void perf_log_throttle(struct perf_event *event, int enable);

1673
static int
1674
event_sched_in(struct perf_event *event,
1675
		 struct perf_cpu_context *cpuctx,
1676
		 struct perf_event_context *ctx)
1677
{
1678
	u64 tstamp = perf_event_time(event);
1679
	int ret = 0;
1680

1681
	if (event->state <= PERF_EVENT_STATE_OFF)
1682 1683
		return 0;

1684
	event->state = PERF_EVENT_STATE_ACTIVE;
1685
	event->oncpu = smp_processor_id();
P
Peter Zijlstra 已提交
1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696

	/*
	 * Unthrottle events, since we scheduled we might have missed several
	 * ticks already, also for a heavily scheduling task there is little
	 * guarantee it'll get a tick in a timely manner.
	 */
	if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) {
		perf_log_throttle(event, 1);
		event->hw.interrupts = 0;
	}

1697 1698 1699 1700 1701
	/*
	 * The new state must be visible before we turn it on in the hardware:
	 */
	smp_wmb();

1702 1703
	perf_pmu_disable(event->pmu);

P
Peter Zijlstra 已提交
1704
	if (event->pmu->add(event, PERF_EF_START)) {
1705 1706
		event->state = PERF_EVENT_STATE_INACTIVE;
		event->oncpu = -1;
1707 1708
		ret = -EAGAIN;
		goto out;
1709 1710
	}

1711
	event->tstamp_running += tstamp - event->tstamp_stopped;
1712

S
Stephane Eranian 已提交
1713
	perf_set_shadow_time(event, ctx, tstamp);
1714

1715
	if (!is_software_event(event))
1716
		cpuctx->active_oncpu++;
1717
	ctx->nr_active++;
1718 1719
	if (event->attr.freq && event->attr.sample_freq)
		ctx->nr_freq++;
1720

1721
	if (event->attr.exclusive)
1722 1723
		cpuctx->exclusive = 1;

1724 1725 1726 1727
out:
	perf_pmu_enable(event->pmu);

	return ret;
1728 1729
}

1730
static int
1731
group_sched_in(struct perf_event *group_event,
1732
	       struct perf_cpu_context *cpuctx,
1733
	       struct perf_event_context *ctx)
1734
{
1735
	struct perf_event *event, *partial_group = NULL;
P
Peter Zijlstra 已提交
1736
	struct pmu *pmu = group_event->pmu;
1737 1738
	u64 now = ctx->time;
	bool simulate = false;
1739

1740
	if (group_event->state == PERF_EVENT_STATE_OFF)
1741 1742
		return 0;

P
Peter Zijlstra 已提交
1743
	pmu->start_txn(pmu);
1744

1745
	if (event_sched_in(group_event, cpuctx, ctx)) {
P
Peter Zijlstra 已提交
1746
		pmu->cancel_txn(pmu);
1747
		perf_cpu_hrtimer_restart(cpuctx);
1748
		return -EAGAIN;
1749
	}
1750 1751 1752 1753

	/*
	 * Schedule in siblings as one group (if any):
	 */
1754
	list_for_each_entry(event, &group_event->sibling_list, group_entry) {
1755
		if (event_sched_in(event, cpuctx, ctx)) {
1756
			partial_group = event;
1757 1758 1759 1760
			goto group_error;
		}
	}

1761
	if (!pmu->commit_txn(pmu))
1762
		return 0;
1763

1764 1765 1766 1767
group_error:
	/*
	 * Groups can be scheduled in as one unit only, so undo any
	 * partial group before returning:
1768 1769 1770 1771 1772 1773 1774 1775 1776 1777
	 * The events up to the failed event are scheduled out normally,
	 * tstamp_stopped will be updated.
	 *
	 * The failed events and the remaining siblings need to have
	 * their timings updated as if they had gone thru event_sched_in()
	 * and event_sched_out(). This is required to get consistent timings
	 * across the group. This also takes care of the case where the group
	 * could never be scheduled by ensuring tstamp_stopped is set to mark
	 * the time the event was actually stopped, such that time delta
	 * calculation in update_event_times() is correct.
1778
	 */
1779 1780
	list_for_each_entry(event, &group_event->sibling_list, group_entry) {
		if (event == partial_group)
1781 1782 1783 1784 1785 1786 1787 1788
			simulate = true;

		if (simulate) {
			event->tstamp_running += now - event->tstamp_stopped;
			event->tstamp_stopped = now;
		} else {
			event_sched_out(event, cpuctx, ctx);
		}
1789
	}
1790
	event_sched_out(group_event, cpuctx, ctx);
1791

P
Peter Zijlstra 已提交
1792
	pmu->cancel_txn(pmu);
1793

1794 1795
	perf_cpu_hrtimer_restart(cpuctx);

1796 1797 1798
	return -EAGAIN;
}

1799
/*
1800
 * Work out whether we can put this event group on the CPU now.
1801
 */
1802
static int group_can_go_on(struct perf_event *event,
1803 1804 1805 1806
			   struct perf_cpu_context *cpuctx,
			   int can_add_hw)
{
	/*
1807
	 * Groups consisting entirely of software events can always go on.
1808
	 */
1809
	if (event->group_flags & PERF_GROUP_SOFTWARE)
1810 1811 1812
		return 1;
	/*
	 * If an exclusive group is already on, no other hardware
1813
	 * events can go on.
1814 1815 1816 1817 1818
	 */
	if (cpuctx->exclusive)
		return 0;
	/*
	 * If this group is exclusive and there are already
1819
	 * events on the CPU, it can't go on.
1820
	 */
1821
	if (event->attr.exclusive && cpuctx->active_oncpu)
1822 1823 1824 1825 1826 1827 1828 1829
		return 0;
	/*
	 * Otherwise, try to add it if all previous groups were able
	 * to go on.
	 */
	return can_add_hw;
}

1830 1831
static void add_event_to_ctx(struct perf_event *event,
			       struct perf_event_context *ctx)
1832
{
1833 1834
	u64 tstamp = perf_event_time(event);

1835
	list_add_event(event, ctx);
1836
	perf_group_attach(event);
1837 1838 1839
	event->tstamp_enabled = tstamp;
	event->tstamp_running = tstamp;
	event->tstamp_stopped = tstamp;
1840 1841
}

1842 1843 1844 1845 1846 1847
static void task_ctx_sched_out(struct perf_event_context *ctx);
static void
ctx_sched_in(struct perf_event_context *ctx,
	     struct perf_cpu_context *cpuctx,
	     enum event_type_t event_type,
	     struct task_struct *task);
1848

1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860
static void perf_event_sched_in(struct perf_cpu_context *cpuctx,
				struct perf_event_context *ctx,
				struct task_struct *task)
{
	cpu_ctx_sched_in(cpuctx, EVENT_PINNED, task);
	if (ctx)
		ctx_sched_in(ctx, cpuctx, EVENT_PINNED, task);
	cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE, task);
	if (ctx)
		ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE, task);
}

T
Thomas Gleixner 已提交
1861
/*
1862
 * Cross CPU call to install and enable a performance event
1863 1864
 *
 * Must be called with ctx->mutex held
T
Thomas Gleixner 已提交
1865
 */
1866
static int  __perf_install_in_context(void *info)
T
Thomas Gleixner 已提交
1867
{
1868 1869
	struct perf_event *event = info;
	struct perf_event_context *ctx = event->ctx;
P
Peter Zijlstra 已提交
1870
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1871 1872 1873
	struct perf_event_context *task_ctx = cpuctx->task_ctx;
	struct task_struct *task = current;

1874
	perf_ctx_lock(cpuctx, task_ctx);
1875
	perf_pmu_disable(cpuctx->ctx.pmu);
T
Thomas Gleixner 已提交
1876 1877

	/*
1878
	 * If there was an active task_ctx schedule it out.
T
Thomas Gleixner 已提交
1879
	 */
1880
	if (task_ctx)
1881
		task_ctx_sched_out(task_ctx);
1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895

	/*
	 * If the context we're installing events in is not the
	 * active task_ctx, flip them.
	 */
	if (ctx->task && task_ctx != ctx) {
		if (task_ctx)
			raw_spin_unlock(&task_ctx->lock);
		raw_spin_lock(&ctx->lock);
		task_ctx = ctx;
	}

	if (task_ctx) {
		cpuctx->task_ctx = task_ctx;
1896 1897
		task = task_ctx->task;
	}
1898

1899
	cpu_ctx_sched_out(cpuctx, EVENT_ALL);
T
Thomas Gleixner 已提交
1900

1901
	update_context_time(ctx);
S
Stephane Eranian 已提交
1902 1903 1904 1905 1906 1907
	/*
	 * update cgrp time only if current cgrp
	 * matches event->cgrp. Must be done before
	 * calling add_event_to_ctx()
	 */
	update_cgrp_time_from_event(event);
T
Thomas Gleixner 已提交
1908

1909
	add_event_to_ctx(event, ctx);
T
Thomas Gleixner 已提交
1910

1911
	/*
1912
	 * Schedule everything back in
1913
	 */
1914
	perf_event_sched_in(cpuctx, task_ctx, task);
1915 1916 1917

	perf_pmu_enable(cpuctx->ctx.pmu);
	perf_ctx_unlock(cpuctx, task_ctx);
1918 1919

	return 0;
T
Thomas Gleixner 已提交
1920 1921 1922
}

/*
1923
 * Attach a performance event to a context
T
Thomas Gleixner 已提交
1924
 *
1925 1926
 * First we add the event to the list with the hardware enable bit
 * in event->hw_config cleared.
T
Thomas Gleixner 已提交
1927
 *
1928
 * If the event is attached to a task which is on a CPU we use a smp
T
Thomas Gleixner 已提交
1929 1930 1931 1932
 * call to enable it in the task context. The task might have been
 * scheduled away, but we check this in the smp call again.
 */
static void
1933 1934
perf_install_in_context(struct perf_event_context *ctx,
			struct perf_event *event,
T
Thomas Gleixner 已提交
1935 1936 1937 1938
			int cpu)
{
	struct task_struct *task = ctx->task;

1939 1940
	lockdep_assert_held(&ctx->mutex);

1941
	event->ctx = ctx;
1942 1943
	if (event->cpu != -1)
		event->cpu = cpu;
1944

T
Thomas Gleixner 已提交
1945 1946
	if (!task) {
		/*
1947
		 * Per cpu events are installed via an smp call and
1948
		 * the install is always successful.
T
Thomas Gleixner 已提交
1949
		 */
1950
		cpu_function_call(cpu, __perf_install_in_context, event);
T
Thomas Gleixner 已提交
1951 1952 1953 1954
		return;
	}

retry:
1955 1956
	if (!task_function_call(task, __perf_install_in_context, event))
		return;
T
Thomas Gleixner 已提交
1957

1958
	raw_spin_lock_irq(&ctx->lock);
T
Thomas Gleixner 已提交
1959
	/*
1960 1961
	 * If we failed to find a running task, but find the context active now
	 * that we've acquired the ctx->lock, retry.
T
Thomas Gleixner 已提交
1962
	 */
1963
	if (ctx->is_active) {
1964
		raw_spin_unlock_irq(&ctx->lock);
T
Thomas Gleixner 已提交
1965 1966 1967 1968
		goto retry;
	}

	/*
1969 1970
	 * Since the task isn't running, its safe to add the event, us holding
	 * the ctx->lock ensures the task won't get scheduled in.
T
Thomas Gleixner 已提交
1971
	 */
1972
	add_event_to_ctx(event, ctx);
1973
	raw_spin_unlock_irq(&ctx->lock);
T
Thomas Gleixner 已提交
1974 1975
}

1976
/*
1977
 * Put a event into inactive state and update time fields.
1978 1979 1980 1981 1982 1983
 * Enabling the leader of a group effectively enables all
 * the group members that aren't explicitly disabled, so we
 * have to update their ->tstamp_enabled also.
 * Note: this works for group members as well as group leaders
 * since the non-leader members' sibling_lists will be empty.
 */
1984
static void __perf_event_mark_enabled(struct perf_event *event)
1985
{
1986
	struct perf_event *sub;
1987
	u64 tstamp = perf_event_time(event);
1988

1989
	event->state = PERF_EVENT_STATE_INACTIVE;
1990
	event->tstamp_enabled = tstamp - event->total_time_enabled;
P
Peter Zijlstra 已提交
1991
	list_for_each_entry(sub, &event->sibling_list, group_entry) {
1992 1993
		if (sub->state >= PERF_EVENT_STATE_INACTIVE)
			sub->tstamp_enabled = tstamp - sub->total_time_enabled;
P
Peter Zijlstra 已提交
1994
	}
1995 1996
}

1997
/*
1998
 * Cross CPU call to enable a performance event
1999
 */
2000
static int __perf_event_enable(void *info)
2001
{
2002 2003 2004
	struct perf_event *event = info;
	struct perf_event_context *ctx = event->ctx;
	struct perf_event *leader = event->group_leader;
P
Peter Zijlstra 已提交
2005
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2006
	int err;
2007

2008 2009 2010 2011 2012 2013 2014 2015 2016 2017
	/*
	 * There's a time window between 'ctx->is_active' check
	 * in perf_event_enable function and this place having:
	 *   - IRQs on
	 *   - ctx->lock unlocked
	 *
	 * where the task could be killed and 'ctx' deactivated
	 * by perf_event_exit_task.
	 */
	if (!ctx->is_active)
2018
		return -EINVAL;
2019

2020
	raw_spin_lock(&ctx->lock);
2021
	update_context_time(ctx);
2022

2023
	if (event->state >= PERF_EVENT_STATE_INACTIVE)
2024
		goto unlock;
S
Stephane Eranian 已提交
2025 2026 2027 2028

	/*
	 * set current task's cgroup time reference point
	 */
2029
	perf_cgroup_set_timestamp(current, ctx);
S
Stephane Eranian 已提交
2030

2031
	__perf_event_mark_enabled(event);
2032

S
Stephane Eranian 已提交
2033 2034 2035
	if (!event_filter_match(event)) {
		if (is_cgroup_event(event))
			perf_cgroup_defer_enabled(event);
2036
		goto unlock;
S
Stephane Eranian 已提交
2037
	}
2038

2039
	/*
2040
	 * If the event is in a group and isn't the group leader,
2041
	 * then don't put it on unless the group is on.
2042
	 */
2043
	if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE)
2044
		goto unlock;
2045

2046
	if (!group_can_go_on(event, cpuctx, 1)) {
2047
		err = -EEXIST;
2048
	} else {
2049
		if (event == leader)
2050
			err = group_sched_in(event, cpuctx, ctx);
2051
		else
2052
			err = event_sched_in(event, cpuctx, ctx);
2053
	}
2054 2055 2056

	if (err) {
		/*
2057
		 * If this event can't go on and it's part of a
2058 2059
		 * group, then the whole group has to come off.
		 */
2060
		if (leader != event) {
2061
			group_sched_out(leader, cpuctx, ctx);
2062 2063
			perf_cpu_hrtimer_restart(cpuctx);
		}
2064
		if (leader->attr.pinned) {
2065
			update_group_times(leader);
2066
			leader->state = PERF_EVENT_STATE_ERROR;
2067
		}
2068 2069
	}

P
Peter Zijlstra 已提交
2070
unlock:
2071
	raw_spin_unlock(&ctx->lock);
2072 2073

	return 0;
2074 2075 2076
}

/*
2077
 * Enable a event.
2078
 *
2079 2080
 * If event->ctx is a cloned context, callers must make sure that
 * every task struct that event->ctx->task could possibly point to
2081
 * remains valid.  This condition is satisfied when called through
2082 2083
 * perf_event_for_each_child or perf_event_for_each as described
 * for perf_event_disable.
2084
 */
2085
void perf_event_enable(struct perf_event *event)
2086
{
2087
	struct perf_event_context *ctx = event->ctx;
2088 2089 2090 2091
	struct task_struct *task = ctx->task;

	if (!task) {
		/*
2092
		 * Enable the event on the cpu that it's on
2093
		 */
2094
		cpu_function_call(event->cpu, __perf_event_enable, event);
2095 2096 2097
		return;
	}

2098
	raw_spin_lock_irq(&ctx->lock);
2099
	if (event->state >= PERF_EVENT_STATE_INACTIVE)
2100 2101 2102
		goto out;

	/*
2103 2104
	 * If the event is in error state, clear that first.
	 * That way, if we see the event in error state below, we
2105 2106 2107 2108
	 * know that it has gone back into error state, as distinct
	 * from the task having been scheduled away before the
	 * cross-call arrived.
	 */
2109 2110
	if (event->state == PERF_EVENT_STATE_ERROR)
		event->state = PERF_EVENT_STATE_OFF;
2111

P
Peter Zijlstra 已提交
2112
retry:
2113
	if (!ctx->is_active) {
2114
		__perf_event_mark_enabled(event);
2115 2116 2117
		goto out;
	}

2118
	raw_spin_unlock_irq(&ctx->lock);
2119 2120 2121

	if (!task_function_call(task, __perf_event_enable, event))
		return;
2122

2123
	raw_spin_lock_irq(&ctx->lock);
2124 2125

	/*
2126
	 * If the context is active and the event is still off,
2127 2128
	 * we need to retry the cross-call.
	 */
2129 2130 2131 2132 2133 2134
	if (ctx->is_active && event->state == PERF_EVENT_STATE_OFF) {
		/*
		 * task could have been flipped by a concurrent
		 * perf_event_context_sched_out()
		 */
		task = ctx->task;
2135
		goto retry;
2136
	}
2137

P
Peter Zijlstra 已提交
2138
out:
2139
	raw_spin_unlock_irq(&ctx->lock);
2140
}
2141
EXPORT_SYMBOL_GPL(perf_event_enable);
2142

2143
int perf_event_refresh(struct perf_event *event, int refresh)
2144
{
2145
	/*
2146
	 * not supported on inherited events
2147
	 */
2148
	if (event->attr.inherit || !is_sampling_event(event))
2149 2150
		return -EINVAL;

2151 2152
	atomic_add(refresh, &event->event_limit);
	perf_event_enable(event);
2153 2154

	return 0;
2155
}
2156
EXPORT_SYMBOL_GPL(perf_event_refresh);
2157

2158 2159 2160
static void ctx_sched_out(struct perf_event_context *ctx,
			  struct perf_cpu_context *cpuctx,
			  enum event_type_t event_type)
2161
{
2162
	struct perf_event *event;
2163
	int is_active = ctx->is_active;
2164

2165
	ctx->is_active &= ~event_type;
2166
	if (likely(!ctx->nr_events))
2167 2168
		return;

2169
	update_context_time(ctx);
S
Stephane Eranian 已提交
2170
	update_cgrp_time_from_cpuctx(cpuctx);
2171
	if (!ctx->nr_active)
2172
		return;
2173

P
Peter Zijlstra 已提交
2174
	perf_pmu_disable(ctx->pmu);
2175
	if ((is_active & EVENT_PINNED) && (event_type & EVENT_PINNED)) {
2176 2177
		list_for_each_entry(event, &ctx->pinned_groups, group_entry)
			group_sched_out(event, cpuctx, ctx);
P
Peter Zijlstra 已提交
2178
	}
2179

2180
	if ((is_active & EVENT_FLEXIBLE) && (event_type & EVENT_FLEXIBLE)) {
2181
		list_for_each_entry(event, &ctx->flexible_groups, group_entry)
2182
			group_sched_out(event, cpuctx, ctx);
P
Peter Zijlstra 已提交
2183
	}
P
Peter Zijlstra 已提交
2184
	perf_pmu_enable(ctx->pmu);
2185 2186
}

2187
/*
2188 2189 2190 2191 2192 2193
 * Test whether two contexts are equivalent, i.e. whether they have both been
 * cloned from the same version of the same context.
 *
 * Equivalence is measured using a generation number in the context that is
 * incremented on each modification to it; see unclone_ctx(), list_add_event()
 * and list_del_event().
2194
 */
2195 2196
static int context_equiv(struct perf_event_context *ctx1,
			 struct perf_event_context *ctx2)
2197
{
2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219
	/* Pinning disables the swap optimization */
	if (ctx1->pin_count || ctx2->pin_count)
		return 0;

	/* If ctx1 is the parent of ctx2 */
	if (ctx1 == ctx2->parent_ctx && ctx1->generation == ctx2->parent_gen)
		return 1;

	/* If ctx2 is the parent of ctx1 */
	if (ctx1->parent_ctx == ctx2 && ctx1->parent_gen == ctx2->generation)
		return 1;

	/*
	 * If ctx1 and ctx2 have the same parent; we flatten the parent
	 * hierarchy, see perf_event_init_context().
	 */
	if (ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx &&
			ctx1->parent_gen == ctx2->parent_gen)
		return 1;

	/* Unmatched */
	return 0;
2220 2221
}

2222 2223
static void __perf_event_sync_stat(struct perf_event *event,
				     struct perf_event *next_event)
2224 2225 2226
{
	u64 value;

2227
	if (!event->attr.inherit_stat)
2228 2229 2230
		return;

	/*
2231
	 * Update the event value, we cannot use perf_event_read()
2232 2233
	 * because we're in the middle of a context switch and have IRQs
	 * disabled, which upsets smp_call_function_single(), however
2234
	 * we know the event must be on the current CPU, therefore we
2235 2236
	 * don't need to use it.
	 */
2237 2238
	switch (event->state) {
	case PERF_EVENT_STATE_ACTIVE:
2239 2240
		event->pmu->read(event);
		/* fall-through */
2241

2242 2243
	case PERF_EVENT_STATE_INACTIVE:
		update_event_times(event);
2244 2245 2246 2247 2248 2249 2250
		break;

	default:
		break;
	}

	/*
2251
	 * In order to keep per-task stats reliable we need to flip the event
2252 2253
	 * values when we flip the contexts.
	 */
2254 2255 2256
	value = local64_read(&next_event->count);
	value = local64_xchg(&event->count, value);
	local64_set(&next_event->count, value);
2257

2258 2259
	swap(event->total_time_enabled, next_event->total_time_enabled);
	swap(event->total_time_running, next_event->total_time_running);
2260

2261
	/*
2262
	 * Since we swizzled the values, update the user visible data too.
2263
	 */
2264 2265
	perf_event_update_userpage(event);
	perf_event_update_userpage(next_event);
2266 2267
}

2268 2269
static void perf_event_sync_stat(struct perf_event_context *ctx,
				   struct perf_event_context *next_ctx)
2270
{
2271
	struct perf_event *event, *next_event;
2272 2273 2274 2275

	if (!ctx->nr_stat)
		return;

2276 2277
	update_context_time(ctx);

2278 2279
	event = list_first_entry(&ctx->event_list,
				   struct perf_event, event_entry);
2280

2281 2282
	next_event = list_first_entry(&next_ctx->event_list,
					struct perf_event, event_entry);
2283

2284 2285
	while (&event->event_entry != &ctx->event_list &&
	       &next_event->event_entry != &next_ctx->event_list) {
2286

2287
		__perf_event_sync_stat(event, next_event);
2288

2289 2290
		event = list_next_entry(event, event_entry);
		next_event = list_next_entry(next_event, event_entry);
2291 2292 2293
	}
}

2294 2295
static void perf_event_context_sched_out(struct task_struct *task, int ctxn,
					 struct task_struct *next)
T
Thomas Gleixner 已提交
2296
{
P
Peter Zijlstra 已提交
2297
	struct perf_event_context *ctx = task->perf_event_ctxp[ctxn];
2298
	struct perf_event_context *next_ctx;
2299
	struct perf_event_context *parent, *next_parent;
P
Peter Zijlstra 已提交
2300
	struct perf_cpu_context *cpuctx;
2301
	int do_switch = 1;
T
Thomas Gleixner 已提交
2302

P
Peter Zijlstra 已提交
2303 2304
	if (likely(!ctx))
		return;
2305

P
Peter Zijlstra 已提交
2306 2307
	cpuctx = __get_cpu_context(ctx);
	if (!cpuctx->task_ctx)
T
Thomas Gleixner 已提交
2308 2309
		return;

2310
	rcu_read_lock();
P
Peter Zijlstra 已提交
2311
	next_ctx = next->perf_event_ctxp[ctxn];
2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322
	if (!next_ctx)
		goto unlock;

	parent = rcu_dereference(ctx->parent_ctx);
	next_parent = rcu_dereference(next_ctx->parent_ctx);

	/* If neither context have a parent context; they cannot be clones. */
	if (!parent && !next_parent)
		goto unlock;

	if (next_parent == ctx || next_ctx == parent || next_parent == parent) {
2323 2324 2325 2326 2327 2328 2329 2330 2331
		/*
		 * Looks like the two contexts are clones, so we might be
		 * able to optimize the context switch.  We lock both
		 * contexts and check that they are clones under the
		 * lock (including re-checking that neither has been
		 * uncloned in the meantime).  It doesn't matter which
		 * order we take the locks because no other cpu could
		 * be trying to lock both of these tasks.
		 */
2332 2333
		raw_spin_lock(&ctx->lock);
		raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
2334
		if (context_equiv(ctx, next_ctx)) {
2335 2336
			/*
			 * XXX do we need a memory barrier of sorts
2337
			 * wrt to rcu_dereference() of perf_event_ctxp
2338
			 */
P
Peter Zijlstra 已提交
2339 2340
			task->perf_event_ctxp[ctxn] = next_ctx;
			next->perf_event_ctxp[ctxn] = ctx;
2341 2342 2343
			ctx->task = next;
			next_ctx->task = task;
			do_switch = 0;
2344

2345
			perf_event_sync_stat(ctx, next_ctx);
2346
		}
2347 2348
		raw_spin_unlock(&next_ctx->lock);
		raw_spin_unlock(&ctx->lock);
2349
	}
2350
unlock:
2351
	rcu_read_unlock();
2352

2353
	if (do_switch) {
2354
		raw_spin_lock(&ctx->lock);
2355
		ctx_sched_out(ctx, cpuctx, EVENT_ALL);
2356
		cpuctx->task_ctx = NULL;
2357
		raw_spin_unlock(&ctx->lock);
2358
	}
T
Thomas Gleixner 已提交
2359 2360
}

P
Peter Zijlstra 已提交
2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374
#define for_each_task_context_nr(ctxn)					\
	for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++)

/*
 * Called from scheduler to remove the events of the current task,
 * with interrupts disabled.
 *
 * We stop each event and update the event value in event->count.
 *
 * This does not protect us against NMI, but disable()
 * sets the disabled bit in the control field of event _before_
 * accessing the event control register. If a NMI hits, then it will
 * not restart the event.
 */
2375 2376
void __perf_event_task_sched_out(struct task_struct *task,
				 struct task_struct *next)
P
Peter Zijlstra 已提交
2377 2378 2379 2380 2381
{
	int ctxn;

	for_each_task_context_nr(ctxn)
		perf_event_context_sched_out(task, ctxn, next);
S
Stephane Eranian 已提交
2382 2383 2384 2385 2386 2387 2388

	/*
	 * if cgroup events exist on this CPU, then we need
	 * to check if we have to switch out PMU state.
	 * cgroup event are system-wide mode only
	 */
	if (atomic_read(&__get_cpu_var(perf_cgroup_events)))
2389
		perf_cgroup_sched_out(task, next);
P
Peter Zijlstra 已提交
2390 2391
}

2392
static void task_ctx_sched_out(struct perf_event_context *ctx)
2393
{
P
Peter Zijlstra 已提交
2394
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2395

2396 2397
	if (!cpuctx->task_ctx)
		return;
2398 2399 2400 2401

	if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
		return;

2402
	ctx_sched_out(ctx, cpuctx, EVENT_ALL);
2403 2404 2405
	cpuctx->task_ctx = NULL;
}

2406 2407 2408 2409 2410 2411 2412
/*
 * Called with IRQs disabled
 */
static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
			      enum event_type_t event_type)
{
	ctx_sched_out(&cpuctx->ctx, cpuctx, event_type);
2413 2414
}

2415
static void
2416
ctx_pinned_sched_in(struct perf_event_context *ctx,
2417
		    struct perf_cpu_context *cpuctx)
T
Thomas Gleixner 已提交
2418
{
2419
	struct perf_event *event;
T
Thomas Gleixner 已提交
2420

2421 2422
	list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
		if (event->state <= PERF_EVENT_STATE_OFF)
2423
			continue;
2424
		if (!event_filter_match(event))
2425 2426
			continue;

S
Stephane Eranian 已提交
2427 2428 2429 2430
		/* may need to reset tstamp_enabled */
		if (is_cgroup_event(event))
			perf_cgroup_mark_enabled(event, ctx);

2431
		if (group_can_go_on(event, cpuctx, 1))
2432
			group_sched_in(event, cpuctx, ctx);
2433 2434 2435 2436 2437

		/*
		 * If this pinned group hasn't been scheduled,
		 * put it in error state.
		 */
2438 2439 2440
		if (event->state == PERF_EVENT_STATE_INACTIVE) {
			update_group_times(event);
			event->state = PERF_EVENT_STATE_ERROR;
2441
		}
2442
	}
2443 2444 2445 2446
}

static void
ctx_flexible_sched_in(struct perf_event_context *ctx,
2447
		      struct perf_cpu_context *cpuctx)
2448 2449 2450
{
	struct perf_event *event;
	int can_add_hw = 1;
2451

2452 2453 2454
	list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
		/* Ignore events in OFF or ERROR state */
		if (event->state <= PERF_EVENT_STATE_OFF)
2455
			continue;
2456 2457
		/*
		 * Listen to the 'cpu' scheduling filter constraint
2458
		 * of events:
2459
		 */
2460
		if (!event_filter_match(event))
T
Thomas Gleixner 已提交
2461 2462
			continue;

S
Stephane Eranian 已提交
2463 2464 2465 2466
		/* may need to reset tstamp_enabled */
		if (is_cgroup_event(event))
			perf_cgroup_mark_enabled(event, ctx);

P
Peter Zijlstra 已提交
2467
		if (group_can_go_on(event, cpuctx, can_add_hw)) {
2468
			if (group_sched_in(event, cpuctx, ctx))
2469
				can_add_hw = 0;
P
Peter Zijlstra 已提交
2470
		}
T
Thomas Gleixner 已提交
2471
	}
2472 2473 2474 2475 2476
}

static void
ctx_sched_in(struct perf_event_context *ctx,
	     struct perf_cpu_context *cpuctx,
S
Stephane Eranian 已提交
2477 2478
	     enum event_type_t event_type,
	     struct task_struct *task)
2479
{
S
Stephane Eranian 已提交
2480
	u64 now;
2481
	int is_active = ctx->is_active;
S
Stephane Eranian 已提交
2482

2483
	ctx->is_active |= event_type;
2484
	if (likely(!ctx->nr_events))
2485
		return;
2486

S
Stephane Eranian 已提交
2487 2488
	now = perf_clock();
	ctx->timestamp = now;
2489
	perf_cgroup_set_timestamp(task, ctx);
2490 2491 2492 2493
	/*
	 * First go through the list and put on any pinned groups
	 * in order to give them the best chance of going on.
	 */
2494
	if (!(is_active & EVENT_PINNED) && (event_type & EVENT_PINNED))
2495
		ctx_pinned_sched_in(ctx, cpuctx);
2496 2497

	/* Then walk through the lower prio flexible groups */
2498
	if (!(is_active & EVENT_FLEXIBLE) && (event_type & EVENT_FLEXIBLE))
2499
		ctx_flexible_sched_in(ctx, cpuctx);
2500 2501
}

2502
static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
S
Stephane Eranian 已提交
2503 2504
			     enum event_type_t event_type,
			     struct task_struct *task)
2505 2506 2507
{
	struct perf_event_context *ctx = &cpuctx->ctx;

S
Stephane Eranian 已提交
2508
	ctx_sched_in(ctx, cpuctx, event_type, task);
2509 2510
}

S
Stephane Eranian 已提交
2511 2512
static void perf_event_context_sched_in(struct perf_event_context *ctx,
					struct task_struct *task)
2513
{
P
Peter Zijlstra 已提交
2514
	struct perf_cpu_context *cpuctx;
2515

P
Peter Zijlstra 已提交
2516
	cpuctx = __get_cpu_context(ctx);
2517 2518 2519
	if (cpuctx->task_ctx == ctx)
		return;

2520
	perf_ctx_lock(cpuctx, ctx);
P
Peter Zijlstra 已提交
2521
	perf_pmu_disable(ctx->pmu);
2522 2523 2524 2525 2526 2527 2528
	/*
	 * We want to keep the following priority order:
	 * cpu pinned (that don't need to move), task pinned,
	 * cpu flexible, task flexible.
	 */
	cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);

2529 2530
	if (ctx->nr_events)
		cpuctx->task_ctx = ctx;
2531

2532 2533
	perf_event_sched_in(cpuctx, cpuctx->task_ctx, task);

2534 2535 2536
	perf_pmu_enable(ctx->pmu);
	perf_ctx_unlock(cpuctx, ctx);

2537 2538 2539 2540
	/*
	 * Since these rotations are per-cpu, we need to ensure the
	 * cpu-context we got scheduled on is actually rotating.
	 */
P
Peter Zijlstra 已提交
2541
	perf_pmu_rotate_start(ctx->pmu);
2542 2543
}

2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603
/*
 * When sampling the branck stack in system-wide, it may be necessary
 * to flush the stack on context switch. This happens when the branch
 * stack does not tag its entries with the pid of the current task.
 * Otherwise it becomes impossible to associate a branch entry with a
 * task. This ambiguity is more likely to appear when the branch stack
 * supports priv level filtering and the user sets it to monitor only
 * at the user level (which could be a useful measurement in system-wide
 * mode). In that case, the risk is high of having a branch stack with
 * branch from multiple tasks. Flushing may mean dropping the existing
 * entries or stashing them somewhere in the PMU specific code layer.
 *
 * This function provides the context switch callback to the lower code
 * layer. It is invoked ONLY when there is at least one system-wide context
 * with at least one active event using taken branch sampling.
 */
static void perf_branch_stack_sched_in(struct task_struct *prev,
				       struct task_struct *task)
{
	struct perf_cpu_context *cpuctx;
	struct pmu *pmu;
	unsigned long flags;

	/* no need to flush branch stack if not changing task */
	if (prev == task)
		return;

	local_irq_save(flags);

	rcu_read_lock();

	list_for_each_entry_rcu(pmu, &pmus, entry) {
		cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);

		/*
		 * check if the context has at least one
		 * event using PERF_SAMPLE_BRANCH_STACK
		 */
		if (cpuctx->ctx.nr_branch_stack > 0
		    && pmu->flush_branch_stack) {

			pmu = cpuctx->ctx.pmu;

			perf_ctx_lock(cpuctx, cpuctx->task_ctx);

			perf_pmu_disable(pmu);

			pmu->flush_branch_stack();

			perf_pmu_enable(pmu);

			perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
		}
	}

	rcu_read_unlock();

	local_irq_restore(flags);
}

P
Peter Zijlstra 已提交
2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614
/*
 * Called from scheduler to add the events of the current task
 * with interrupts disabled.
 *
 * We restore the event value and then enable it.
 *
 * This does not protect us against NMI, but enable()
 * sets the enabled bit in the control field of event _before_
 * accessing the event control register. If a NMI hits, then it will
 * keep the event running.
 */
2615 2616
void __perf_event_task_sched_in(struct task_struct *prev,
				struct task_struct *task)
P
Peter Zijlstra 已提交
2617 2618 2619 2620 2621 2622 2623 2624 2625
{
	struct perf_event_context *ctx;
	int ctxn;

	for_each_task_context_nr(ctxn) {
		ctx = task->perf_event_ctxp[ctxn];
		if (likely(!ctx))
			continue;

S
Stephane Eranian 已提交
2626
		perf_event_context_sched_in(ctx, task);
P
Peter Zijlstra 已提交
2627
	}
S
Stephane Eranian 已提交
2628 2629 2630 2631 2632 2633
	/*
	 * if cgroup events exist on this CPU, then we need
	 * to check if we have to switch in PMU state.
	 * cgroup event are system-wide mode only
	 */
	if (atomic_read(&__get_cpu_var(perf_cgroup_events)))
2634
		perf_cgroup_sched_in(prev, task);
2635 2636 2637 2638

	/* check for system-wide branch_stack events */
	if (atomic_read(&__get_cpu_var(perf_branch_stack_events)))
		perf_branch_stack_sched_in(prev, task);
2639 2640
}

2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667
static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
{
	u64 frequency = event->attr.sample_freq;
	u64 sec = NSEC_PER_SEC;
	u64 divisor, dividend;

	int count_fls, nsec_fls, frequency_fls, sec_fls;

	count_fls = fls64(count);
	nsec_fls = fls64(nsec);
	frequency_fls = fls64(frequency);
	sec_fls = 30;

	/*
	 * We got @count in @nsec, with a target of sample_freq HZ
	 * the target period becomes:
	 *
	 *             @count * 10^9
	 * period = -------------------
	 *          @nsec * sample_freq
	 *
	 */

	/*
	 * Reduce accuracy by one bit such that @a and @b converge
	 * to a similar magnitude.
	 */
2668
#define REDUCE_FLS(a, b)		\
2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707
do {					\
	if (a##_fls > b##_fls) {	\
		a >>= 1;		\
		a##_fls--;		\
	} else {			\
		b >>= 1;		\
		b##_fls--;		\
	}				\
} while (0)

	/*
	 * Reduce accuracy until either term fits in a u64, then proceed with
	 * the other, so that finally we can do a u64/u64 division.
	 */
	while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
		REDUCE_FLS(nsec, frequency);
		REDUCE_FLS(sec, count);
	}

	if (count_fls + sec_fls > 64) {
		divisor = nsec * frequency;

		while (count_fls + sec_fls > 64) {
			REDUCE_FLS(count, sec);
			divisor >>= 1;
		}

		dividend = count * sec;
	} else {
		dividend = count * sec;

		while (nsec_fls + frequency_fls > 64) {
			REDUCE_FLS(nsec, frequency);
			dividend >>= 1;
		}

		divisor = nsec * frequency;
	}

2708 2709 2710
	if (!divisor)
		return dividend;

2711 2712 2713
	return div64_u64(dividend, divisor);
}

2714 2715 2716
static DEFINE_PER_CPU(int, perf_throttled_count);
static DEFINE_PER_CPU(u64, perf_throttled_seq);

2717
static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable)
2718
{
2719
	struct hw_perf_event *hwc = &event->hw;
2720
	s64 period, sample_period;
2721 2722
	s64 delta;

2723
	period = perf_calculate_period(event, nsec, count);
2724 2725 2726 2727 2728 2729 2730 2731 2732 2733

	delta = (s64)(period - hwc->sample_period);
	delta = (delta + 7) / 8; /* low pass filter */

	sample_period = hwc->sample_period + delta;

	if (!sample_period)
		sample_period = 1;

	hwc->sample_period = sample_period;
2734

2735
	if (local64_read(&hwc->period_left) > 8*sample_period) {
2736 2737 2738
		if (disable)
			event->pmu->stop(event, PERF_EF_UPDATE);

2739
		local64_set(&hwc->period_left, 0);
2740 2741 2742

		if (disable)
			event->pmu->start(event, PERF_EF_RELOAD);
2743
	}
2744 2745
}

2746 2747 2748 2749 2750 2751 2752
/*
 * combine freq adjustment with unthrottling to avoid two passes over the
 * events. At the same time, make sure, having freq events does not change
 * the rate of unthrottling as that would introduce bias.
 */
static void perf_adjust_freq_unthr_context(struct perf_event_context *ctx,
					   int needs_unthr)
2753
{
2754 2755
	struct perf_event *event;
	struct hw_perf_event *hwc;
2756
	u64 now, period = TICK_NSEC;
2757
	s64 delta;
2758

2759 2760 2761 2762 2763 2764
	/*
	 * only need to iterate over all events iff:
	 * - context have events in frequency mode (needs freq adjust)
	 * - there are events to unthrottle on this cpu
	 */
	if (!(ctx->nr_freq || needs_unthr))
2765 2766
		return;

2767
	raw_spin_lock(&ctx->lock);
2768
	perf_pmu_disable(ctx->pmu);
2769

2770
	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
2771
		if (event->state != PERF_EVENT_STATE_ACTIVE)
2772 2773
			continue;

2774
		if (!event_filter_match(event))
2775 2776
			continue;

2777 2778
		perf_pmu_disable(event->pmu);

2779
		hwc = &event->hw;
2780

2781
		if (hwc->interrupts == MAX_INTERRUPTS) {
2782
			hwc->interrupts = 0;
2783
			perf_log_throttle(event, 1);
P
Peter Zijlstra 已提交
2784
			event->pmu->start(event, 0);
2785 2786
		}

2787
		if (!event->attr.freq || !event->attr.sample_freq)
2788
			goto next;
2789

2790 2791 2792 2793 2794
		/*
		 * stop the event and update event->count
		 */
		event->pmu->stop(event, PERF_EF_UPDATE);

2795
		now = local64_read(&event->count);
2796 2797
		delta = now - hwc->freq_count_stamp;
		hwc->freq_count_stamp = now;
2798

2799 2800 2801
		/*
		 * restart the event
		 * reload only if value has changed
2802 2803 2804
		 * we have stopped the event so tell that
		 * to perf_adjust_period() to avoid stopping it
		 * twice.
2805
		 */
2806
		if (delta > 0)
2807
			perf_adjust_period(event, period, delta, false);
2808 2809

		event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0);
2810 2811
	next:
		perf_pmu_enable(event->pmu);
2812
	}
2813

2814
	perf_pmu_enable(ctx->pmu);
2815
	raw_spin_unlock(&ctx->lock);
2816 2817
}

2818
/*
2819
 * Round-robin a context's events:
2820
 */
2821
static void rotate_ctx(struct perf_event_context *ctx)
T
Thomas Gleixner 已提交
2822
{
2823 2824 2825 2826 2827 2828
	/*
	 * Rotate the first entry last of non-pinned groups. Rotation might be
	 * disabled by the inheritance code.
	 */
	if (!ctx->rotate_disable)
		list_rotate_left(&ctx->flexible_groups);
2829 2830
}

2831
/*
2832 2833 2834
 * perf_pmu_rotate_start() and perf_rotate_context() are fully serialized
 * because they're strictly cpu affine and rotate_start is called with IRQs
 * disabled, while rotate_context is called from IRQ context.
2835
 */
2836
static int perf_rotate_context(struct perf_cpu_context *cpuctx)
2837
{
P
Peter Zijlstra 已提交
2838
	struct perf_event_context *ctx = NULL;
2839
	int rotate = 0, remove = 1;
2840

2841
	if (cpuctx->ctx.nr_events) {
2842
		remove = 0;
2843 2844 2845
		if (cpuctx->ctx.nr_events != cpuctx->ctx.nr_active)
			rotate = 1;
	}
2846

P
Peter Zijlstra 已提交
2847
	ctx = cpuctx->task_ctx;
2848
	if (ctx && ctx->nr_events) {
2849
		remove = 0;
2850 2851 2852
		if (ctx->nr_events != ctx->nr_active)
			rotate = 1;
	}
2853

2854
	if (!rotate)
2855 2856
		goto done;

2857
	perf_ctx_lock(cpuctx, cpuctx->task_ctx);
P
Peter Zijlstra 已提交
2858
	perf_pmu_disable(cpuctx->ctx.pmu);
2859

2860 2861 2862
	cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
	if (ctx)
		ctx_sched_out(ctx, cpuctx, EVENT_FLEXIBLE);
T
Thomas Gleixner 已提交
2863

2864 2865 2866
	rotate_ctx(&cpuctx->ctx);
	if (ctx)
		rotate_ctx(ctx);
2867

2868
	perf_event_sched_in(cpuctx, ctx, current);
2869

2870 2871
	perf_pmu_enable(cpuctx->ctx.pmu);
	perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
2872
done:
2873 2874
	if (remove)
		list_del_init(&cpuctx->rotation_list);
2875 2876

	return rotate;
2877 2878
}

2879 2880 2881
#ifdef CONFIG_NO_HZ_FULL
bool perf_event_can_stop_tick(void)
{
2882
	if (atomic_read(&nr_freq_events) ||
2883
	    __this_cpu_read(perf_throttled_count))
2884
		return false;
2885 2886
	else
		return true;
2887 2888 2889
}
#endif

2890 2891 2892 2893
void perf_event_task_tick(void)
{
	struct list_head *head = &__get_cpu_var(rotation_list);
	struct perf_cpu_context *cpuctx, *tmp;
2894 2895
	struct perf_event_context *ctx;
	int throttled;
2896

2897 2898
	WARN_ON(!irqs_disabled());

2899 2900 2901
	__this_cpu_inc(perf_throttled_seq);
	throttled = __this_cpu_xchg(perf_throttled_count, 0);

2902
	list_for_each_entry_safe(cpuctx, tmp, head, rotation_list) {
2903 2904 2905 2906 2907 2908
		ctx = &cpuctx->ctx;
		perf_adjust_freq_unthr_context(ctx, throttled);

		ctx = cpuctx->task_ctx;
		if (ctx)
			perf_adjust_freq_unthr_context(ctx, throttled);
2909
	}
T
Thomas Gleixner 已提交
2910 2911
}

2912 2913 2914 2915 2916 2917 2918 2919 2920 2921
static int event_enable_on_exec(struct perf_event *event,
				struct perf_event_context *ctx)
{
	if (!event->attr.enable_on_exec)
		return 0;

	event->attr.enable_on_exec = 0;
	if (event->state >= PERF_EVENT_STATE_INACTIVE)
		return 0;

2922
	__perf_event_mark_enabled(event);
2923 2924 2925 2926

	return 1;
}

2927
/*
2928
 * Enable all of a task's events that have been marked enable-on-exec.
2929 2930
 * This expects task == current.
 */
P
Peter Zijlstra 已提交
2931
static void perf_event_enable_on_exec(struct perf_event_context *ctx)
2932
{
2933
	struct perf_event *event;
2934 2935
	unsigned long flags;
	int enabled = 0;
2936
	int ret;
2937 2938

	local_irq_save(flags);
2939
	if (!ctx || !ctx->nr_events)
2940 2941
		goto out;

2942 2943 2944 2945 2946 2947 2948
	/*
	 * We must ctxsw out cgroup events to avoid conflict
	 * when invoking perf_task_event_sched_in() later on
	 * in this function. Otherwise we end up trying to
	 * ctxswin cgroup events which are already scheduled
	 * in.
	 */
2949
	perf_cgroup_sched_out(current, NULL);
2950

2951
	raw_spin_lock(&ctx->lock);
2952
	task_ctx_sched_out(ctx);
2953

2954
	list_for_each_entry(event, &ctx->event_list, event_entry) {
2955 2956 2957
		ret = event_enable_on_exec(event, ctx);
		if (ret)
			enabled = 1;
2958 2959 2960
	}

	/*
2961
	 * Unclone this context if we enabled any event.
2962
	 */
2963 2964
	if (enabled)
		unclone_ctx(ctx);
2965

2966
	raw_spin_unlock(&ctx->lock);
2967

2968 2969 2970
	/*
	 * Also calls ctxswin for cgroup events, if any:
	 */
S
Stephane Eranian 已提交
2971
	perf_event_context_sched_in(ctx, ctx->task);
P
Peter Zijlstra 已提交
2972
out:
2973 2974 2975
	local_irq_restore(flags);
}

T
Thomas Gleixner 已提交
2976
/*
2977
 * Cross CPU call to read the hardware event
T
Thomas Gleixner 已提交
2978
 */
2979
static void __perf_event_read(void *info)
T
Thomas Gleixner 已提交
2980
{
2981 2982
	struct perf_event *event = info;
	struct perf_event_context *ctx = event->ctx;
P
Peter Zijlstra 已提交
2983
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
I
Ingo Molnar 已提交
2984

2985 2986 2987 2988
	/*
	 * If this is a task context, we need to check whether it is
	 * the current task context of this cpu.  If not it has been
	 * scheduled out before the smp call arrived.  In that case
2989 2990
	 * event->count would have been updated to a recent sample
	 * when the event was scheduled out.
2991 2992 2993 2994
	 */
	if (ctx->task && cpuctx->task_ctx != ctx)
		return;

2995
	raw_spin_lock(&ctx->lock);
S
Stephane Eranian 已提交
2996
	if (ctx->is_active) {
2997
		update_context_time(ctx);
S
Stephane Eranian 已提交
2998 2999
		update_cgrp_time_from_event(event);
	}
3000
	update_event_times(event);
3001 3002
	if (event->state == PERF_EVENT_STATE_ACTIVE)
		event->pmu->read(event);
3003
	raw_spin_unlock(&ctx->lock);
T
Thomas Gleixner 已提交
3004 3005
}

P
Peter Zijlstra 已提交
3006 3007
static inline u64 perf_event_count(struct perf_event *event)
{
3008
	return local64_read(&event->count) + atomic64_read(&event->child_count);
P
Peter Zijlstra 已提交
3009 3010
}

3011
static u64 perf_event_read(struct perf_event *event)
T
Thomas Gleixner 已提交
3012 3013
{
	/*
3014 3015
	 * If event is enabled and currently active on a CPU, update the
	 * value in the event structure:
T
Thomas Gleixner 已提交
3016
	 */
3017 3018 3019 3020
	if (event->state == PERF_EVENT_STATE_ACTIVE) {
		smp_call_function_single(event->oncpu,
					 __perf_event_read, event, 1);
	} else if (event->state == PERF_EVENT_STATE_INACTIVE) {
P
Peter Zijlstra 已提交
3021 3022 3023
		struct perf_event_context *ctx = event->ctx;
		unsigned long flags;

3024
		raw_spin_lock_irqsave(&ctx->lock, flags);
3025 3026 3027 3028 3029
		/*
		 * may read while context is not active
		 * (e.g., thread is blocked), in that case
		 * we cannot update context time
		 */
S
Stephane Eranian 已提交
3030
		if (ctx->is_active) {
3031
			update_context_time(ctx);
S
Stephane Eranian 已提交
3032 3033
			update_cgrp_time_from_event(event);
		}
3034
		update_event_times(event);
3035
		raw_spin_unlock_irqrestore(&ctx->lock, flags);
T
Thomas Gleixner 已提交
3036 3037
	}

P
Peter Zijlstra 已提交
3038
	return perf_event_count(event);
T
Thomas Gleixner 已提交
3039 3040
}

3041
/*
3042
 * Initialize the perf_event context in a task_struct:
3043
 */
3044
static void __perf_event_init_context(struct perf_event_context *ctx)
3045
{
3046
	raw_spin_lock_init(&ctx->lock);
3047
	mutex_init(&ctx->mutex);
3048 3049
	INIT_LIST_HEAD(&ctx->pinned_groups);
	INIT_LIST_HEAD(&ctx->flexible_groups);
3050 3051
	INIT_LIST_HEAD(&ctx->event_list);
	atomic_set(&ctx->refcount, 1);
3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066
}

static struct perf_event_context *
alloc_perf_context(struct pmu *pmu, struct task_struct *task)
{
	struct perf_event_context *ctx;

	ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
	if (!ctx)
		return NULL;

	__perf_event_init_context(ctx);
	if (task) {
		ctx->task = task;
		get_task_struct(task);
T
Thomas Gleixner 已提交
3067
	}
3068 3069 3070
	ctx->pmu = pmu;

	return ctx;
3071 3072
}

3073 3074 3075 3076 3077
static struct task_struct *
find_lively_task_by_vpid(pid_t vpid)
{
	struct task_struct *task;
	int err;
T
Thomas Gleixner 已提交
3078 3079

	rcu_read_lock();
3080
	if (!vpid)
T
Thomas Gleixner 已提交
3081 3082
		task = current;
	else
3083
		task = find_task_by_vpid(vpid);
T
Thomas Gleixner 已提交
3084 3085 3086 3087 3088 3089 3090 3091
	if (task)
		get_task_struct(task);
	rcu_read_unlock();

	if (!task)
		return ERR_PTR(-ESRCH);

	/* Reuse ptrace permission checks for now. */
3092 3093 3094 3095
	err = -EACCES;
	if (!ptrace_may_access(task, PTRACE_MODE_READ))
		goto errout;

3096 3097 3098 3099 3100 3101 3102
	return task;
errout:
	put_task_struct(task);
	return ERR_PTR(err);

}

3103 3104 3105
/*
 * Returns a matching context with refcount and pincount.
 */
P
Peter Zijlstra 已提交
3106
static struct perf_event_context *
M
Matt Helsley 已提交
3107
find_get_context(struct pmu *pmu, struct task_struct *task, int cpu)
T
Thomas Gleixner 已提交
3108
{
3109
	struct perf_event_context *ctx;
3110
	struct perf_cpu_context *cpuctx;
3111
	unsigned long flags;
P
Peter Zijlstra 已提交
3112
	int ctxn, err;
T
Thomas Gleixner 已提交
3113

3114
	if (!task) {
3115
		/* Must be root to operate on a CPU event: */
3116
		if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
T
Thomas Gleixner 已提交
3117 3118 3119
			return ERR_PTR(-EACCES);

		/*
3120
		 * We could be clever and allow to attach a event to an
T
Thomas Gleixner 已提交
3121 3122 3123
		 * offline CPU and activate it when the CPU comes up, but
		 * that's for later.
		 */
3124
		if (!cpu_online(cpu))
T
Thomas Gleixner 已提交
3125 3126
			return ERR_PTR(-ENODEV);

P
Peter Zijlstra 已提交
3127
		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
T
Thomas Gleixner 已提交
3128
		ctx = &cpuctx->ctx;
3129
		get_ctx(ctx);
3130
		++ctx->pin_count;
T
Thomas Gleixner 已提交
3131 3132 3133 3134

		return ctx;
	}

P
Peter Zijlstra 已提交
3135 3136 3137 3138 3139
	err = -EINVAL;
	ctxn = pmu->task_ctx_nr;
	if (ctxn < 0)
		goto errout;

P
Peter Zijlstra 已提交
3140
retry:
P
Peter Zijlstra 已提交
3141
	ctx = perf_lock_task_context(task, ctxn, &flags);
3142
	if (ctx) {
3143
		unclone_ctx(ctx);
3144
		++ctx->pin_count;
3145
		raw_spin_unlock_irqrestore(&ctx->lock, flags);
3146
	} else {
3147
		ctx = alloc_perf_context(pmu, task);
3148 3149 3150
		err = -ENOMEM;
		if (!ctx)
			goto errout;
3151

3152 3153 3154 3155 3156 3157 3158 3159 3160 3161
		err = 0;
		mutex_lock(&task->perf_event_mutex);
		/*
		 * If it has already passed perf_event_exit_task().
		 * we must see PF_EXITING, it takes this mutex too.
		 */
		if (task->flags & PF_EXITING)
			err = -ESRCH;
		else if (task->perf_event_ctxp[ctxn])
			err = -EAGAIN;
3162
		else {
3163
			get_ctx(ctx);
3164
			++ctx->pin_count;
3165
			rcu_assign_pointer(task->perf_event_ctxp[ctxn], ctx);
3166
		}
3167 3168 3169
		mutex_unlock(&task->perf_event_mutex);

		if (unlikely(err)) {
3170
			put_ctx(ctx);
3171 3172 3173 3174

			if (err == -EAGAIN)
				goto retry;
			goto errout;
3175 3176 3177
		}
	}

T
Thomas Gleixner 已提交
3178
	return ctx;
3179

P
Peter Zijlstra 已提交
3180
errout:
3181
	return ERR_PTR(err);
T
Thomas Gleixner 已提交
3182 3183
}

L
Li Zefan 已提交
3184 3185
static void perf_event_free_filter(struct perf_event *event);

3186
static void free_event_rcu(struct rcu_head *head)
P
Peter Zijlstra 已提交
3187
{
3188
	struct perf_event *event;
P
Peter Zijlstra 已提交
3189

3190 3191 3192
	event = container_of(head, struct perf_event, rcu_head);
	if (event->ns)
		put_pid_ns(event->ns);
L
Li Zefan 已提交
3193
	perf_event_free_filter(event);
3194
	kfree(event);
P
Peter Zijlstra 已提交
3195 3196
}

3197
static void ring_buffer_put(struct ring_buffer *rb);
3198
static void ring_buffer_detach(struct perf_event *event, struct ring_buffer *rb);
3199

3200
static void unaccount_event_cpu(struct perf_event *event, int cpu)
3201
{
3202 3203 3204 3205 3206 3207 3208 3209 3210 3211
	if (event->parent)
		return;

	if (has_branch_stack(event)) {
		if (!(event->attach_state & PERF_ATTACH_TASK))
			atomic_dec(&per_cpu(perf_branch_stack_events, cpu));
	}
	if (is_cgroup_event(event))
		atomic_dec(&per_cpu(perf_cgroup_events, cpu));
}
3212

3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225
static void unaccount_event(struct perf_event *event)
{
	if (event->parent)
		return;

	if (event->attach_state & PERF_ATTACH_TASK)
		static_key_slow_dec_deferred(&perf_sched_events);
	if (event->attr.mmap || event->attr.mmap_data)
		atomic_dec(&nr_mmap_events);
	if (event->attr.comm)
		atomic_dec(&nr_comm_events);
	if (event->attr.task)
		atomic_dec(&nr_task_events);
3226 3227
	if (event->attr.freq)
		atomic_dec(&nr_freq_events);
3228 3229 3230 3231 3232 3233 3234
	if (is_cgroup_event(event))
		static_key_slow_dec_deferred(&perf_sched_events);
	if (has_branch_stack(event))
		static_key_slow_dec_deferred(&perf_sched_events);

	unaccount_event_cpu(event, event->cpu);
}
3235

3236 3237
static void __free_event(struct perf_event *event)
{
3238
	if (!event->parent) {
3239 3240
		if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
			put_callchain_buffers();
3241
	}
3242

3243 3244 3245 3246 3247 3248 3249 3250
	if (event->destroy)
		event->destroy(event);

	if (event->ctx)
		put_ctx(event->ctx);

	call_rcu(&event->rcu_head, free_event_rcu);
}
3251
static void free_event(struct perf_event *event)
3252
{
3253
	irq_work_sync(&event->pending);
3254

3255
	unaccount_event(event);
3256

3257
	if (event->rb) {
3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273
		struct ring_buffer *rb;

		/*
		 * Can happen when we close an event with re-directed output.
		 *
		 * Since we have a 0 refcount, perf_mmap_close() will skip
		 * over us; possibly making our ring_buffer_put() the last.
		 */
		mutex_lock(&event->mmap_mutex);
		rb = event->rb;
		if (rb) {
			rcu_assign_pointer(event->rb, NULL);
			ring_buffer_detach(event, rb);
			ring_buffer_put(rb); /* could be last */
		}
		mutex_unlock(&event->mmap_mutex);
3274 3275
	}

S
Stephane Eranian 已提交
3276 3277 3278
	if (is_cgroup_event(event))
		perf_detach_cgroup(event);

P
Peter Zijlstra 已提交
3279

3280
	__free_event(event);
3281 3282
}

3283
int perf_event_release_kernel(struct perf_event *event)
T
Thomas Gleixner 已提交
3284
{
3285
	struct perf_event_context *ctx = event->ctx;
T
Thomas Gleixner 已提交
3286

3287
	WARN_ON_ONCE(ctx->parent_ctx);
3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300
	/*
	 * There are two ways this annotation is useful:
	 *
	 *  1) there is a lock recursion from perf_event_exit_task
	 *     see the comment there.
	 *
	 *  2) there is a lock-inversion with mmap_sem through
	 *     perf_event_read_group(), which takes faults while
	 *     holding ctx->mutex, however this is called after
	 *     the last filedesc died, so there is no possibility
	 *     to trigger the AB-BA case.
	 */
	mutex_lock_nested(&ctx->mutex, SINGLE_DEPTH_NESTING);
3301
	raw_spin_lock_irq(&ctx->lock);
3302
	perf_group_detach(event);
3303
	raw_spin_unlock_irq(&ctx->lock);
3304
	perf_remove_from_context(event);
3305
	mutex_unlock(&ctx->mutex);
T
Thomas Gleixner 已提交
3306

3307
	free_event(event);
T
Thomas Gleixner 已提交
3308 3309 3310

	return 0;
}
3311
EXPORT_SYMBOL_GPL(perf_event_release_kernel);
T
Thomas Gleixner 已提交
3312

3313 3314 3315
/*
 * Called when the last reference to the file is gone.
 */
3316
static void put_event(struct perf_event *event)
3317
{
P
Peter Zijlstra 已提交
3318
	struct task_struct *owner;
3319

3320 3321
	if (!atomic_long_dec_and_test(&event->refcount))
		return;
3322

P
Peter Zijlstra 已提交
3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355
	rcu_read_lock();
	owner = ACCESS_ONCE(event->owner);
	/*
	 * Matches the smp_wmb() in perf_event_exit_task(). If we observe
	 * !owner it means the list deletion is complete and we can indeed
	 * free this event, otherwise we need to serialize on
	 * owner->perf_event_mutex.
	 */
	smp_read_barrier_depends();
	if (owner) {
		/*
		 * Since delayed_put_task_struct() also drops the last
		 * task reference we can safely take a new reference
		 * while holding the rcu_read_lock().
		 */
		get_task_struct(owner);
	}
	rcu_read_unlock();

	if (owner) {
		mutex_lock(&owner->perf_event_mutex);
		/*
		 * We have to re-check the event->owner field, if it is cleared
		 * we raced with perf_event_exit_task(), acquiring the mutex
		 * ensured they're done, and we can proceed with freeing the
		 * event.
		 */
		if (event->owner)
			list_del_init(&event->owner_entry);
		mutex_unlock(&owner->perf_event_mutex);
		put_task_struct(owner);
	}

3356 3357 3358 3359 3360 3361 3362
	perf_event_release_kernel(event);
}

static int perf_release(struct inode *inode, struct file *file)
{
	put_event(file->private_data);
	return 0;
3363 3364
}

3365
u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
3366
{
3367
	struct perf_event *child;
3368 3369
	u64 total = 0;

3370 3371 3372
	*enabled = 0;
	*running = 0;

3373
	mutex_lock(&event->child_mutex);
3374
	total += perf_event_read(event);
3375 3376 3377 3378 3379 3380
	*enabled += event->total_time_enabled +
			atomic64_read(&event->child_total_time_enabled);
	*running += event->total_time_running +
			atomic64_read(&event->child_total_time_running);

	list_for_each_entry(child, &event->child_list, child_list) {
3381
		total += perf_event_read(child);
3382 3383 3384
		*enabled += child->total_time_enabled;
		*running += child->total_time_running;
	}
3385
	mutex_unlock(&event->child_mutex);
3386 3387 3388

	return total;
}
3389
EXPORT_SYMBOL_GPL(perf_event_read_value);
3390

3391
static int perf_event_read_group(struct perf_event *event,
3392 3393
				   u64 read_format, char __user *buf)
{
3394
	struct perf_event *leader = event->group_leader, *sub;
3395 3396
	int n = 0, size = 0, ret = -EFAULT;
	struct perf_event_context *ctx = leader->ctx;
3397
	u64 values[5];
3398
	u64 count, enabled, running;
3399

3400
	mutex_lock(&ctx->mutex);
3401
	count = perf_event_read_value(leader, &enabled, &running);
3402 3403

	values[n++] = 1 + leader->nr_siblings;
3404 3405 3406 3407
	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
		values[n++] = enabled;
	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
		values[n++] = running;
3408 3409 3410
	values[n++] = count;
	if (read_format & PERF_FORMAT_ID)
		values[n++] = primary_event_id(leader);
3411 3412 3413 3414

	size = n * sizeof(u64);

	if (copy_to_user(buf, values, size))
3415
		goto unlock;
3416

3417
	ret = size;
3418

3419
	list_for_each_entry(sub, &leader->sibling_list, group_entry) {
3420
		n = 0;
3421

3422
		values[n++] = perf_event_read_value(sub, &enabled, &running);
3423 3424 3425 3426 3427
		if (read_format & PERF_FORMAT_ID)
			values[n++] = primary_event_id(sub);

		size = n * sizeof(u64);

3428
		if (copy_to_user(buf + ret, values, size)) {
3429 3430 3431
			ret = -EFAULT;
			goto unlock;
		}
3432 3433

		ret += size;
3434
	}
3435 3436
unlock:
	mutex_unlock(&ctx->mutex);
3437

3438
	return ret;
3439 3440
}

3441
static int perf_event_read_one(struct perf_event *event,
3442 3443
				 u64 read_format, char __user *buf)
{
3444
	u64 enabled, running;
3445 3446 3447
	u64 values[4];
	int n = 0;

3448 3449 3450 3451 3452
	values[n++] = perf_event_read_value(event, &enabled, &running);
	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
		values[n++] = enabled;
	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
		values[n++] = running;
3453
	if (read_format & PERF_FORMAT_ID)
3454
		values[n++] = primary_event_id(event);
3455 3456 3457 3458 3459 3460 3461

	if (copy_to_user(buf, values, n * sizeof(u64)))
		return -EFAULT;

	return n * sizeof(u64);
}

T
Thomas Gleixner 已提交
3462
/*
3463
 * Read the performance event - simple non blocking version for now
T
Thomas Gleixner 已提交
3464 3465
 */
static ssize_t
3466
perf_read_hw(struct perf_event *event, char __user *buf, size_t count)
T
Thomas Gleixner 已提交
3467
{
3468
	u64 read_format = event->attr.read_format;
3469
	int ret;
T
Thomas Gleixner 已提交
3470

3471
	/*
3472
	 * Return end-of-file for a read on a event that is in
3473 3474 3475
	 * error state (i.e. because it was pinned but it couldn't be
	 * scheduled on to the CPU at some point).
	 */
3476
	if (event->state == PERF_EVENT_STATE_ERROR)
3477 3478
		return 0;

3479
	if (count < event->read_size)
3480 3481
		return -ENOSPC;

3482
	WARN_ON_ONCE(event->ctx->parent_ctx);
3483
	if (read_format & PERF_FORMAT_GROUP)
3484
		ret = perf_event_read_group(event, read_format, buf);
3485
	else
3486
		ret = perf_event_read_one(event, read_format, buf);
T
Thomas Gleixner 已提交
3487

3488
	return ret;
T
Thomas Gleixner 已提交
3489 3490 3491 3492 3493
}

static ssize_t
perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
{
3494
	struct perf_event *event = file->private_data;
T
Thomas Gleixner 已提交
3495

3496
	return perf_read_hw(event, buf, count);
T
Thomas Gleixner 已提交
3497 3498 3499 3500
}

static unsigned int perf_poll(struct file *file, poll_table *wait)
{
3501
	struct perf_event *event = file->private_data;
3502
	struct ring_buffer *rb;
3503
	unsigned int events = POLL_HUP;
P
Peter Zijlstra 已提交
3504

3505
	/*
3506 3507
	 * Pin the event->rb by taking event->mmap_mutex; otherwise
	 * perf_event_set_output() can swizzle our rb and make us miss wakeups.
3508 3509
	 */
	mutex_lock(&event->mmap_mutex);
3510 3511
	rb = event->rb;
	if (rb)
3512
		events = atomic_xchg(&rb->poll, 0);
3513 3514
	mutex_unlock(&event->mmap_mutex);

3515
	poll_wait(file, &event->waitq, wait);
T
Thomas Gleixner 已提交
3516 3517 3518 3519

	return events;
}

3520
static void perf_event_reset(struct perf_event *event)
3521
{
3522
	(void)perf_event_read(event);
3523
	local64_set(&event->count, 0);
3524
	perf_event_update_userpage(event);
P
Peter Zijlstra 已提交
3525 3526
}

3527
/*
3528 3529 3530 3531
 * Holding the top-level event's child_mutex means that any
 * descendant process that has inherited this event will block
 * in sync_child_event if it goes to exit, thus satisfying the
 * task existence requirements of perf_event_enable/disable.
3532
 */
3533 3534
static void perf_event_for_each_child(struct perf_event *event,
					void (*func)(struct perf_event *))
P
Peter Zijlstra 已提交
3535
{
3536
	struct perf_event *child;
P
Peter Zijlstra 已提交
3537

3538 3539 3540 3541
	WARN_ON_ONCE(event->ctx->parent_ctx);
	mutex_lock(&event->child_mutex);
	func(event);
	list_for_each_entry(child, &event->child_list, child_list)
P
Peter Zijlstra 已提交
3542
		func(child);
3543
	mutex_unlock(&event->child_mutex);
P
Peter Zijlstra 已提交
3544 3545
}

3546 3547
static void perf_event_for_each(struct perf_event *event,
				  void (*func)(struct perf_event *))
P
Peter Zijlstra 已提交
3548
{
3549 3550
	struct perf_event_context *ctx = event->ctx;
	struct perf_event *sibling;
P
Peter Zijlstra 已提交
3551

3552 3553
	WARN_ON_ONCE(ctx->parent_ctx);
	mutex_lock(&ctx->mutex);
3554
	event = event->group_leader;
3555

3556 3557
	perf_event_for_each_child(event, func);
	list_for_each_entry(sibling, &event->sibling_list, group_entry)
3558
		perf_event_for_each_child(sibling, func);
3559
	mutex_unlock(&ctx->mutex);
3560 3561
}

3562
static int perf_event_period(struct perf_event *event, u64 __user *arg)
3563
{
3564
	struct perf_event_context *ctx = event->ctx;
3565
	int ret = 0, active;
3566 3567
	u64 value;

3568
	if (!is_sampling_event(event))
3569 3570
		return -EINVAL;

3571
	if (copy_from_user(&value, arg, sizeof(value)))
3572 3573 3574 3575 3576
		return -EFAULT;

	if (!value)
		return -EINVAL;

3577
	raw_spin_lock_irq(&ctx->lock);
3578 3579
	if (event->attr.freq) {
		if (value > sysctl_perf_event_sample_rate) {
3580 3581 3582 3583
			ret = -EINVAL;
			goto unlock;
		}

3584
		event->attr.sample_freq = value;
3585
	} else {
3586 3587
		event->attr.sample_period = value;
		event->hw.sample_period = value;
3588
	}
3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602

	active = (event->state == PERF_EVENT_STATE_ACTIVE);
	if (active) {
		perf_pmu_disable(ctx->pmu);
		event->pmu->stop(event, PERF_EF_UPDATE);
	}

	local64_set(&event->hw.period_left, 0);

	if (active) {
		event->pmu->start(event, PERF_EF_RELOAD);
		perf_pmu_enable(ctx->pmu);
	}

3603
unlock:
3604
	raw_spin_unlock_irq(&ctx->lock);
3605 3606 3607 3608

	return ret;
}

3609 3610
static const struct file_operations perf_fops;

3611
static inline int perf_fget_light(int fd, struct fd *p)
3612
{
3613 3614 3615
	struct fd f = fdget(fd);
	if (!f.file)
		return -EBADF;
3616

3617 3618 3619
	if (f.file->f_op != &perf_fops) {
		fdput(f);
		return -EBADF;
3620
	}
3621 3622
	*p = f;
	return 0;
3623 3624 3625 3626
}

static int perf_event_set_output(struct perf_event *event,
				 struct perf_event *output_event);
L
Li Zefan 已提交
3627
static int perf_event_set_filter(struct perf_event *event, void __user *arg);
3628

3629 3630
static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
{
3631 3632
	struct perf_event *event = file->private_data;
	void (*func)(struct perf_event *);
P
Peter Zijlstra 已提交
3633
	u32 flags = arg;
3634 3635

	switch (cmd) {
3636 3637
	case PERF_EVENT_IOC_ENABLE:
		func = perf_event_enable;
3638
		break;
3639 3640
	case PERF_EVENT_IOC_DISABLE:
		func = perf_event_disable;
3641
		break;
3642 3643
	case PERF_EVENT_IOC_RESET:
		func = perf_event_reset;
3644
		break;
P
Peter Zijlstra 已提交
3645

3646 3647
	case PERF_EVENT_IOC_REFRESH:
		return perf_event_refresh(event, arg);
3648

3649 3650
	case PERF_EVENT_IOC_PERIOD:
		return perf_event_period(event, (u64 __user *)arg);
3651

3652 3653 3654 3655 3656 3657 3658 3659 3660
	case PERF_EVENT_IOC_ID:
	{
		u64 id = primary_event_id(event);

		if (copy_to_user((void __user *)arg, &id, sizeof(id)))
			return -EFAULT;
		return 0;
	}

3661
	case PERF_EVENT_IOC_SET_OUTPUT:
3662 3663 3664
	{
		int ret;
		if (arg != -1) {
3665 3666 3667 3668 3669 3670 3671 3672 3673 3674
			struct perf_event *output_event;
			struct fd output;
			ret = perf_fget_light(arg, &output);
			if (ret)
				return ret;
			output_event = output.file->private_data;
			ret = perf_event_set_output(event, output_event);
			fdput(output);
		} else {
			ret = perf_event_set_output(event, NULL);
3675 3676 3677
		}
		return ret;
	}
3678

L
Li Zefan 已提交
3679 3680 3681
	case PERF_EVENT_IOC_SET_FILTER:
		return perf_event_set_filter(event, (void __user *)arg);

3682
	default:
P
Peter Zijlstra 已提交
3683
		return -ENOTTY;
3684
	}
P
Peter Zijlstra 已提交
3685 3686

	if (flags & PERF_IOC_FLAG_GROUP)
3687
		perf_event_for_each(event, func);
P
Peter Zijlstra 已提交
3688
	else
3689
		perf_event_for_each_child(event, func);
P
Peter Zijlstra 已提交
3690 3691

	return 0;
3692 3693
}

3694
int perf_event_task_enable(void)
3695
{
3696
	struct perf_event *event;
3697

3698 3699 3700 3701
	mutex_lock(&current->perf_event_mutex);
	list_for_each_entry(event, &current->perf_event_list, owner_entry)
		perf_event_for_each_child(event, perf_event_enable);
	mutex_unlock(&current->perf_event_mutex);
3702 3703 3704 3705

	return 0;
}

3706
int perf_event_task_disable(void)
3707
{
3708
	struct perf_event *event;
3709

3710 3711 3712 3713
	mutex_lock(&current->perf_event_mutex);
	list_for_each_entry(event, &current->perf_event_list, owner_entry)
		perf_event_for_each_child(event, perf_event_disable);
	mutex_unlock(&current->perf_event_mutex);
3714 3715 3716 3717

	return 0;
}

3718
static int perf_event_index(struct perf_event *event)
3719
{
P
Peter Zijlstra 已提交
3720 3721 3722
	if (event->hw.state & PERF_HES_STOPPED)
		return 0;

3723
	if (event->state != PERF_EVENT_STATE_ACTIVE)
3724 3725
		return 0;

3726
	return event->pmu->event_idx(event);
3727 3728
}

3729
static void calc_timer_values(struct perf_event *event,
3730
				u64 *now,
3731 3732
				u64 *enabled,
				u64 *running)
3733
{
3734
	u64 ctx_time;
3735

3736 3737
	*now = perf_clock();
	ctx_time = event->shadow_ctx_time + *now;
3738 3739 3740 3741
	*enabled = ctx_time - event->tstamp_enabled;
	*running = ctx_time - event->tstamp_running;
}

3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761
static void perf_event_init_userpage(struct perf_event *event)
{
	struct perf_event_mmap_page *userpg;
	struct ring_buffer *rb;

	rcu_read_lock();
	rb = rcu_dereference(event->rb);
	if (!rb)
		goto unlock;

	userpg = rb->user_page;

	/* Allow new userspace to detect that bit 0 is deprecated */
	userpg->cap_bit0_is_deprecated = 1;
	userpg->size = offsetof(struct perf_event_mmap_page, __reserved);

unlock:
	rcu_read_unlock();
}

3762
void __weak arch_perf_update_userpage(struct perf_event_mmap_page *userpg, u64 now)
3763 3764 3765
{
}

3766 3767 3768 3769 3770
/*
 * Callers need to ensure there can be no nesting of this function, otherwise
 * the seqlock logic goes bad. We can not serialize this because the arch
 * code calls this from NMI context.
 */
3771
void perf_event_update_userpage(struct perf_event *event)
3772
{
3773
	struct perf_event_mmap_page *userpg;
3774
	struct ring_buffer *rb;
3775
	u64 enabled, running, now;
3776 3777

	rcu_read_lock();
3778 3779 3780 3781
	rb = rcu_dereference(event->rb);
	if (!rb)
		goto unlock;

3782 3783 3784 3785 3786 3787 3788 3789 3790
	/*
	 * compute total_time_enabled, total_time_running
	 * based on snapshot values taken when the event
	 * was last scheduled in.
	 *
	 * we cannot simply called update_context_time()
	 * because of locking issue as we can be called in
	 * NMI context
	 */
3791
	calc_timer_values(event, &now, &enabled, &running);
3792

3793
	userpg = rb->user_page;
3794 3795 3796 3797 3798
	/*
	 * Disable preemption so as to not let the corresponding user-space
	 * spin too long if we get preempted.
	 */
	preempt_disable();
3799
	++userpg->lock;
3800
	barrier();
3801
	userpg->index = perf_event_index(event);
P
Peter Zijlstra 已提交
3802
	userpg->offset = perf_event_count(event);
3803
	if (userpg->index)
3804
		userpg->offset -= local64_read(&event->hw.prev_count);
3805

3806
	userpg->time_enabled = enabled +
3807
			atomic64_read(&event->child_total_time_enabled);
3808

3809
	userpg->time_running = running +
3810
			atomic64_read(&event->child_total_time_running);
3811

3812
	arch_perf_update_userpage(userpg, now);
3813

3814
	barrier();
3815
	++userpg->lock;
3816
	preempt_enable();
3817
unlock:
3818
	rcu_read_unlock();
3819 3820
}

3821 3822 3823
static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
{
	struct perf_event *event = vma->vm_file->private_data;
3824
	struct ring_buffer *rb;
3825 3826 3827 3828 3829 3830 3831 3832 3833
	int ret = VM_FAULT_SIGBUS;

	if (vmf->flags & FAULT_FLAG_MKWRITE) {
		if (vmf->pgoff == 0)
			ret = 0;
		return ret;
	}

	rcu_read_lock();
3834 3835
	rb = rcu_dereference(event->rb);
	if (!rb)
3836 3837 3838 3839 3840
		goto unlock;

	if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
		goto unlock;

3841
	vmf->page = perf_mmap_to_page(rb, vmf->pgoff);
3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855
	if (!vmf->page)
		goto unlock;

	get_page(vmf->page);
	vmf->page->mapping = vma->vm_file->f_mapping;
	vmf->page->index   = vmf->pgoff;

	ret = 0;
unlock:
	rcu_read_unlock();

	return ret;
}

3856 3857 3858 3859 3860 3861 3862 3863 3864
static void ring_buffer_attach(struct perf_event *event,
			       struct ring_buffer *rb)
{
	unsigned long flags;

	if (!list_empty(&event->rb_entry))
		return;

	spin_lock_irqsave(&rb->event_lock, flags);
3865 3866
	if (list_empty(&event->rb_entry))
		list_add(&event->rb_entry, &rb->event_list);
3867 3868 3869
	spin_unlock_irqrestore(&rb->event_lock, flags);
}

3870
static void ring_buffer_detach(struct perf_event *event, struct ring_buffer *rb)
3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888
{
	unsigned long flags;

	if (list_empty(&event->rb_entry))
		return;

	spin_lock_irqsave(&rb->event_lock, flags);
	list_del_init(&event->rb_entry);
	wake_up_all(&event->waitq);
	spin_unlock_irqrestore(&rb->event_lock, flags);
}

static void ring_buffer_wakeup(struct perf_event *event)
{
	struct ring_buffer *rb;

	rcu_read_lock();
	rb = rcu_dereference(event->rb);
3889 3890 3891 3892
	if (rb) {
		list_for_each_entry_rcu(event, &rb->event_list, rb_entry)
			wake_up_all(&event->waitq);
	}
3893 3894 3895
	rcu_read_unlock();
}

3896
static void rb_free_rcu(struct rcu_head *rcu_head)
3897
{
3898
	struct ring_buffer *rb;
3899

3900 3901
	rb = container_of(rcu_head, struct ring_buffer, rcu_head);
	rb_free(rb);
3902 3903
}

3904
static struct ring_buffer *ring_buffer_get(struct perf_event *event)
3905
{
3906
	struct ring_buffer *rb;
3907

3908
	rcu_read_lock();
3909 3910 3911 3912
	rb = rcu_dereference(event->rb);
	if (rb) {
		if (!atomic_inc_not_zero(&rb->refcount))
			rb = NULL;
3913 3914 3915
	}
	rcu_read_unlock();

3916
	return rb;
3917 3918
}

3919
static void ring_buffer_put(struct ring_buffer *rb)
3920
{
3921
	if (!atomic_dec_and_test(&rb->refcount))
3922
		return;
3923

3924
	WARN_ON_ONCE(!list_empty(&rb->event_list));
3925

3926
	call_rcu(&rb->rcu_head, rb_free_rcu);
3927 3928 3929 3930
}

static void perf_mmap_open(struct vm_area_struct *vma)
{
3931
	struct perf_event *event = vma->vm_file->private_data;
3932

3933
	atomic_inc(&event->mmap_count);
3934
	atomic_inc(&event->rb->mmap_count);
3935 3936
}

3937 3938 3939 3940 3941 3942 3943 3944
/*
 * A buffer can be mmap()ed multiple times; either directly through the same
 * event, or through other events by use of perf_event_set_output().
 *
 * In order to undo the VM accounting done by perf_mmap() we need to destroy
 * the buffer here, where we still have a VM context. This means we need
 * to detach all events redirecting to us.
 */
3945 3946
static void perf_mmap_close(struct vm_area_struct *vma)
{
3947
	struct perf_event *event = vma->vm_file->private_data;
3948

3949 3950 3951 3952
	struct ring_buffer *rb = event->rb;
	struct user_struct *mmap_user = rb->mmap_user;
	int mmap_locked = rb->mmap_locked;
	unsigned long size = perf_data_size(rb);
3953

3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968
	atomic_dec(&rb->mmap_count);

	if (!atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex))
		return;

	/* Detach current event from the buffer. */
	rcu_assign_pointer(event->rb, NULL);
	ring_buffer_detach(event, rb);
	mutex_unlock(&event->mmap_mutex);

	/* If there's still other mmap()s of this buffer, we're done. */
	if (atomic_read(&rb->mmap_count)) {
		ring_buffer_put(rb); /* can't be last */
		return;
	}
3969

3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985
	/*
	 * No other mmap()s, detach from all other events that might redirect
	 * into the now unreachable buffer. Somewhat complicated by the
	 * fact that rb::event_lock otherwise nests inside mmap_mutex.
	 */
again:
	rcu_read_lock();
	list_for_each_entry_rcu(event, &rb->event_list, rb_entry) {
		if (!atomic_long_inc_not_zero(&event->refcount)) {
			/*
			 * This event is en-route to free_event() which will
			 * detach it and remove it from the list.
			 */
			continue;
		}
		rcu_read_unlock();
3986

3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001
		mutex_lock(&event->mmap_mutex);
		/*
		 * Check we didn't race with perf_event_set_output() which can
		 * swizzle the rb from under us while we were waiting to
		 * acquire mmap_mutex.
		 *
		 * If we find a different rb; ignore this event, a next
		 * iteration will no longer find it on the list. We have to
		 * still restart the iteration to make sure we're not now
		 * iterating the wrong list.
		 */
		if (event->rb == rb) {
			rcu_assign_pointer(event->rb, NULL);
			ring_buffer_detach(event, rb);
			ring_buffer_put(rb); /* can't be last, we still have one */
P
Peter Zijlstra 已提交
4002
		}
4003
		mutex_unlock(&event->mmap_mutex);
4004
		put_event(event);
4005

4006 4007 4008 4009 4010
		/*
		 * Restart the iteration; either we're on the wrong list or
		 * destroyed its integrity by doing a deletion.
		 */
		goto again;
4011
	}
4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027
	rcu_read_unlock();

	/*
	 * It could be there's still a few 0-ref events on the list; they'll
	 * get cleaned up by free_event() -- they'll also still have their
	 * ref on the rb and will free it whenever they are done with it.
	 *
	 * Aside from that, this buffer is 'fully' detached and unmapped,
	 * undo the VM accounting.
	 */

	atomic_long_sub((size >> PAGE_SHIFT) + 1, &mmap_user->locked_vm);
	vma->vm_mm->pinned_vm -= mmap_locked;
	free_uid(mmap_user);

	ring_buffer_put(rb); /* could be last */
4028 4029
}

4030
static const struct vm_operations_struct perf_mmap_vmops = {
4031 4032 4033 4034
	.open		= perf_mmap_open,
	.close		= perf_mmap_close,
	.fault		= perf_mmap_fault,
	.page_mkwrite	= perf_mmap_fault,
4035 4036 4037 4038
};

static int perf_mmap(struct file *file, struct vm_area_struct *vma)
{
4039
	struct perf_event *event = file->private_data;
4040
	unsigned long user_locked, user_lock_limit;
4041
	struct user_struct *user = current_user();
4042
	unsigned long locked, lock_limit;
4043
	struct ring_buffer *rb;
4044 4045
	unsigned long vma_size;
	unsigned long nr_pages;
4046
	long user_extra, extra;
4047
	int ret = 0, flags = 0;
4048

4049 4050 4051
	/*
	 * Don't allow mmap() of inherited per-task counters. This would
	 * create a performance issue due to all children writing to the
4052
	 * same rb.
4053 4054 4055 4056
	 */
	if (event->cpu == -1 && event->attr.inherit)
		return -EINVAL;

4057
	if (!(vma->vm_flags & VM_SHARED))
4058
		return -EINVAL;
4059 4060 4061 4062

	vma_size = vma->vm_end - vma->vm_start;
	nr_pages = (vma_size / PAGE_SIZE) - 1;

4063
	/*
4064
	 * If we have rb pages ensure they're a power-of-two number, so we
4065 4066 4067
	 * can do bitmasks instead of modulo.
	 */
	if (nr_pages != 0 && !is_power_of_2(nr_pages))
4068 4069
		return -EINVAL;

4070
	if (vma_size != PAGE_SIZE * (1 + nr_pages))
4071 4072
		return -EINVAL;

4073 4074
	if (vma->vm_pgoff != 0)
		return -EINVAL;
4075

4076
	WARN_ON_ONCE(event->ctx->parent_ctx);
4077
again:
4078
	mutex_lock(&event->mmap_mutex);
4079
	if (event->rb) {
4080
		if (event->rb->nr_pages != nr_pages) {
4081
			ret = -EINVAL;
4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094
			goto unlock;
		}

		if (!atomic_inc_not_zero(&event->rb->mmap_count)) {
			/*
			 * Raced against perf_mmap_close() through
			 * perf_event_set_output(). Try again, hope for better
			 * luck.
			 */
			mutex_unlock(&event->mmap_mutex);
			goto again;
		}

4095 4096 4097
		goto unlock;
	}

4098
	user_extra = nr_pages + 1;
4099
	user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
I
Ingo Molnar 已提交
4100 4101 4102 4103 4104 4105

	/*
	 * Increase the limit linearly with more CPUs:
	 */
	user_lock_limit *= num_online_cpus();

4106
	user_locked = atomic_long_read(&user->locked_vm) + user_extra;
4107

4108 4109 4110
	extra = 0;
	if (user_locked > user_lock_limit)
		extra = user_locked - user_lock_limit;
4111

4112
	lock_limit = rlimit(RLIMIT_MEMLOCK);
4113
	lock_limit >>= PAGE_SHIFT;
4114
	locked = vma->vm_mm->pinned_vm + extra;
4115

4116 4117
	if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() &&
		!capable(CAP_IPC_LOCK)) {
4118 4119 4120
		ret = -EPERM;
		goto unlock;
	}
4121

4122
	WARN_ON(event->rb);
4123

4124
	if (vma->vm_flags & VM_WRITE)
4125
		flags |= RING_BUFFER_WRITABLE;
4126

4127 4128 4129 4130
	rb = rb_alloc(nr_pages, 
		event->attr.watermark ? event->attr.wakeup_watermark : 0,
		event->cpu, flags);

4131
	if (!rb) {
4132
		ret = -ENOMEM;
4133
		goto unlock;
4134
	}
P
Peter Zijlstra 已提交
4135

4136
	atomic_set(&rb->mmap_count, 1);
P
Peter Zijlstra 已提交
4137 4138
	rb->mmap_locked = extra;
	rb->mmap_user = get_current_user();
4139

4140
	atomic_long_add(user_extra, &user->locked_vm);
P
Peter Zijlstra 已提交
4141 4142
	vma->vm_mm->pinned_vm += extra;

4143
	ring_buffer_attach(event, rb);
P
Peter Zijlstra 已提交
4144
	rcu_assign_pointer(event->rb, rb);
4145

4146
	perf_event_init_userpage(event);
4147 4148
	perf_event_update_userpage(event);

4149
unlock:
4150 4151
	if (!ret)
		atomic_inc(&event->mmap_count);
4152
	mutex_unlock(&event->mmap_mutex);
4153

4154 4155 4156 4157
	/*
	 * Since pinned accounting is per vm we cannot allow fork() to copy our
	 * vma.
	 */
P
Peter Zijlstra 已提交
4158
	vma->vm_flags |= VM_DONTCOPY | VM_DONTEXPAND | VM_DONTDUMP;
4159
	vma->vm_ops = &perf_mmap_vmops;
4160 4161

	return ret;
4162 4163
}

P
Peter Zijlstra 已提交
4164 4165
static int perf_fasync(int fd, struct file *filp, int on)
{
A
Al Viro 已提交
4166
	struct inode *inode = file_inode(filp);
4167
	struct perf_event *event = filp->private_data;
P
Peter Zijlstra 已提交
4168 4169 4170
	int retval;

	mutex_lock(&inode->i_mutex);
4171
	retval = fasync_helper(fd, filp, on, &event->fasync);
P
Peter Zijlstra 已提交
4172 4173 4174 4175 4176 4177 4178 4179
	mutex_unlock(&inode->i_mutex);

	if (retval < 0)
		return retval;

	return 0;
}

T
Thomas Gleixner 已提交
4180
static const struct file_operations perf_fops = {
4181
	.llseek			= no_llseek,
T
Thomas Gleixner 已提交
4182 4183 4184
	.release		= perf_release,
	.read			= perf_read,
	.poll			= perf_poll,
4185 4186
	.unlocked_ioctl		= perf_ioctl,
	.compat_ioctl		= perf_ioctl,
4187
	.mmap			= perf_mmap,
P
Peter Zijlstra 已提交
4188
	.fasync			= perf_fasync,
T
Thomas Gleixner 已提交
4189 4190
};

4191
/*
4192
 * Perf event wakeup
4193 4194 4195 4196 4197
 *
 * If there's data, ensure we set the poll() state and publish everything
 * to user-space before waking everybody up.
 */

4198
void perf_event_wakeup(struct perf_event *event)
4199
{
4200
	ring_buffer_wakeup(event);
4201

4202 4203 4204
	if (event->pending_kill) {
		kill_fasync(&event->fasync, SIGIO, event->pending_kill);
		event->pending_kill = 0;
4205
	}
4206 4207
}

4208
static void perf_pending_event(struct irq_work *entry)
4209
{
4210 4211
	struct perf_event *event = container_of(entry,
			struct perf_event, pending);
4212

4213 4214 4215
	if (event->pending_disable) {
		event->pending_disable = 0;
		__perf_event_disable(event);
4216 4217
	}

4218 4219 4220
	if (event->pending_wakeup) {
		event->pending_wakeup = 0;
		perf_event_wakeup(event);
4221 4222 4223
	}
}

4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244
/*
 * We assume there is only KVM supporting the callbacks.
 * Later on, we might change it to a list if there is
 * another virtualization implementation supporting the callbacks.
 */
struct perf_guest_info_callbacks *perf_guest_cbs;

int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
{
	perf_guest_cbs = cbs;
	return 0;
}
EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);

int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
{
	perf_guest_cbs = NULL;
	return 0;
}
EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);

4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275
static void
perf_output_sample_regs(struct perf_output_handle *handle,
			struct pt_regs *regs, u64 mask)
{
	int bit;

	for_each_set_bit(bit, (const unsigned long *) &mask,
			 sizeof(mask) * BITS_PER_BYTE) {
		u64 val;

		val = perf_reg_value(regs, bit);
		perf_output_put(handle, val);
	}
}

static void perf_sample_regs_user(struct perf_regs_user *regs_user,
				  struct pt_regs *regs)
{
	if (!user_mode(regs)) {
		if (current->mm)
			regs = task_pt_regs(current);
		else
			regs = NULL;
	}

	if (regs) {
		regs_user->regs = regs;
		regs_user->abi  = perf_reg_abi(current);
	}
}

4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370
/*
 * Get remaining task size from user stack pointer.
 *
 * It'd be better to take stack vma map and limit this more
 * precisly, but there's no way to get it safely under interrupt,
 * so using TASK_SIZE as limit.
 */
static u64 perf_ustack_task_size(struct pt_regs *regs)
{
	unsigned long addr = perf_user_stack_pointer(regs);

	if (!addr || addr >= TASK_SIZE)
		return 0;

	return TASK_SIZE - addr;
}

static u16
perf_sample_ustack_size(u16 stack_size, u16 header_size,
			struct pt_regs *regs)
{
	u64 task_size;

	/* No regs, no stack pointer, no dump. */
	if (!regs)
		return 0;

	/*
	 * Check if we fit in with the requested stack size into the:
	 * - TASK_SIZE
	 *   If we don't, we limit the size to the TASK_SIZE.
	 *
	 * - remaining sample size
	 *   If we don't, we customize the stack size to
	 *   fit in to the remaining sample size.
	 */

	task_size  = min((u64) USHRT_MAX, perf_ustack_task_size(regs));
	stack_size = min(stack_size, (u16) task_size);

	/* Current header size plus static size and dynamic size. */
	header_size += 2 * sizeof(u64);

	/* Do we fit in with the current stack dump size? */
	if ((u16) (header_size + stack_size) < header_size) {
		/*
		 * If we overflow the maximum size for the sample,
		 * we customize the stack dump size to fit in.
		 */
		stack_size = USHRT_MAX - header_size - sizeof(u64);
		stack_size = round_up(stack_size, sizeof(u64));
	}

	return stack_size;
}

static void
perf_output_sample_ustack(struct perf_output_handle *handle, u64 dump_size,
			  struct pt_regs *regs)
{
	/* Case of a kernel thread, nothing to dump */
	if (!regs) {
		u64 size = 0;
		perf_output_put(handle, size);
	} else {
		unsigned long sp;
		unsigned int rem;
		u64 dyn_size;

		/*
		 * We dump:
		 * static size
		 *   - the size requested by user or the best one we can fit
		 *     in to the sample max size
		 * data
		 *   - user stack dump data
		 * dynamic size
		 *   - the actual dumped size
		 */

		/* Static size. */
		perf_output_put(handle, dump_size);

		/* Data. */
		sp = perf_user_stack_pointer(regs);
		rem = __output_copy_user(handle, (void *) sp, dump_size);
		dyn_size = dump_size - rem;

		perf_output_skip(handle, rem);

		/* Dynamic size. */
		perf_output_put(handle, dyn_size);
	}
}

4371 4372 4373
static void __perf_event_header__init_id(struct perf_event_header *header,
					 struct perf_sample_data *data,
					 struct perf_event *event)
4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388
{
	u64 sample_type = event->attr.sample_type;

	data->type = sample_type;
	header->size += event->id_header_size;

	if (sample_type & PERF_SAMPLE_TID) {
		/* namespace issues */
		data->tid_entry.pid = perf_event_pid(event, current);
		data->tid_entry.tid = perf_event_tid(event, current);
	}

	if (sample_type & PERF_SAMPLE_TIME)
		data->time = perf_clock();

4389
	if (sample_type & (PERF_SAMPLE_ID | PERF_SAMPLE_IDENTIFIER))
4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400
		data->id = primary_event_id(event);

	if (sample_type & PERF_SAMPLE_STREAM_ID)
		data->stream_id = event->id;

	if (sample_type & PERF_SAMPLE_CPU) {
		data->cpu_entry.cpu	 = raw_smp_processor_id();
		data->cpu_entry.reserved = 0;
	}
}

4401 4402 4403
void perf_event_header__init_id(struct perf_event_header *header,
				struct perf_sample_data *data,
				struct perf_event *event)
4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427
{
	if (event->attr.sample_id_all)
		__perf_event_header__init_id(header, data, event);
}

static void __perf_event__output_id_sample(struct perf_output_handle *handle,
					   struct perf_sample_data *data)
{
	u64 sample_type = data->type;

	if (sample_type & PERF_SAMPLE_TID)
		perf_output_put(handle, data->tid_entry);

	if (sample_type & PERF_SAMPLE_TIME)
		perf_output_put(handle, data->time);

	if (sample_type & PERF_SAMPLE_ID)
		perf_output_put(handle, data->id);

	if (sample_type & PERF_SAMPLE_STREAM_ID)
		perf_output_put(handle, data->stream_id);

	if (sample_type & PERF_SAMPLE_CPU)
		perf_output_put(handle, data->cpu_entry);
4428 4429 4430

	if (sample_type & PERF_SAMPLE_IDENTIFIER)
		perf_output_put(handle, data->id);
4431 4432
}

4433 4434 4435
void perf_event__output_id_sample(struct perf_event *event,
				  struct perf_output_handle *handle,
				  struct perf_sample_data *sample)
4436 4437 4438 4439 4440
{
	if (event->attr.sample_id_all)
		__perf_event__output_id_sample(handle, sample);
}

4441
static void perf_output_read_one(struct perf_output_handle *handle,
4442 4443
				 struct perf_event *event,
				 u64 enabled, u64 running)
4444
{
4445
	u64 read_format = event->attr.read_format;
4446 4447 4448
	u64 values[4];
	int n = 0;

P
Peter Zijlstra 已提交
4449
	values[n++] = perf_event_count(event);
4450
	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
4451
		values[n++] = enabled +
4452
			atomic64_read(&event->child_total_time_enabled);
4453 4454
	}
	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
4455
		values[n++] = running +
4456
			atomic64_read(&event->child_total_time_running);
4457 4458
	}
	if (read_format & PERF_FORMAT_ID)
4459
		values[n++] = primary_event_id(event);
4460

4461
	__output_copy(handle, values, n * sizeof(u64));
4462 4463 4464
}

/*
4465
 * XXX PERF_FORMAT_GROUP vs inherited events seems difficult.
4466 4467
 */
static void perf_output_read_group(struct perf_output_handle *handle,
4468 4469
			    struct perf_event *event,
			    u64 enabled, u64 running)
4470
{
4471 4472
	struct perf_event *leader = event->group_leader, *sub;
	u64 read_format = event->attr.read_format;
4473 4474 4475 4476 4477 4478
	u64 values[5];
	int n = 0;

	values[n++] = 1 + leader->nr_siblings;

	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
4479
		values[n++] = enabled;
4480 4481

	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
4482
		values[n++] = running;
4483

4484
	if (leader != event)
4485 4486
		leader->pmu->read(leader);

P
Peter Zijlstra 已提交
4487
	values[n++] = perf_event_count(leader);
4488
	if (read_format & PERF_FORMAT_ID)
4489
		values[n++] = primary_event_id(leader);
4490

4491
	__output_copy(handle, values, n * sizeof(u64));
4492

4493
	list_for_each_entry(sub, &leader->sibling_list, group_entry) {
4494 4495
		n = 0;

4496 4497
		if ((sub != event) &&
		    (sub->state == PERF_EVENT_STATE_ACTIVE))
4498 4499
			sub->pmu->read(sub);

P
Peter Zijlstra 已提交
4500
		values[n++] = perf_event_count(sub);
4501
		if (read_format & PERF_FORMAT_ID)
4502
			values[n++] = primary_event_id(sub);
4503

4504
		__output_copy(handle, values, n * sizeof(u64));
4505 4506 4507
	}
}

4508 4509 4510
#define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\
				 PERF_FORMAT_TOTAL_TIME_RUNNING)

4511
static void perf_output_read(struct perf_output_handle *handle,
4512
			     struct perf_event *event)
4513
{
4514
	u64 enabled = 0, running = 0, now;
4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525
	u64 read_format = event->attr.read_format;

	/*
	 * compute total_time_enabled, total_time_running
	 * based on snapshot values taken when the event
	 * was last scheduled in.
	 *
	 * we cannot simply called update_context_time()
	 * because of locking issue as we are called in
	 * NMI context
	 */
4526
	if (read_format & PERF_FORMAT_TOTAL_TIMES)
4527
		calc_timer_values(event, &now, &enabled, &running);
4528

4529
	if (event->attr.read_format & PERF_FORMAT_GROUP)
4530
		perf_output_read_group(handle, event, enabled, running);
4531
	else
4532
		perf_output_read_one(handle, event, enabled, running);
4533 4534
}

4535 4536 4537
void perf_output_sample(struct perf_output_handle *handle,
			struct perf_event_header *header,
			struct perf_sample_data *data,
4538
			struct perf_event *event)
4539 4540 4541 4542 4543
{
	u64 sample_type = data->type;

	perf_output_put(handle, *header);

4544 4545 4546
	if (sample_type & PERF_SAMPLE_IDENTIFIER)
		perf_output_put(handle, data->id);

4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571
	if (sample_type & PERF_SAMPLE_IP)
		perf_output_put(handle, data->ip);

	if (sample_type & PERF_SAMPLE_TID)
		perf_output_put(handle, data->tid_entry);

	if (sample_type & PERF_SAMPLE_TIME)
		perf_output_put(handle, data->time);

	if (sample_type & PERF_SAMPLE_ADDR)
		perf_output_put(handle, data->addr);

	if (sample_type & PERF_SAMPLE_ID)
		perf_output_put(handle, data->id);

	if (sample_type & PERF_SAMPLE_STREAM_ID)
		perf_output_put(handle, data->stream_id);

	if (sample_type & PERF_SAMPLE_CPU)
		perf_output_put(handle, data->cpu_entry);

	if (sample_type & PERF_SAMPLE_PERIOD)
		perf_output_put(handle, data->period);

	if (sample_type & PERF_SAMPLE_READ)
4572
		perf_output_read(handle, event);
4573 4574 4575 4576 4577 4578 4579 4580 4581 4582

	if (sample_type & PERF_SAMPLE_CALLCHAIN) {
		if (data->callchain) {
			int size = 1;

			if (data->callchain)
				size += data->callchain->nr;

			size *= sizeof(u64);

4583
			__output_copy(handle, data->callchain, size);
4584 4585 4586 4587 4588 4589 4590 4591 4592
		} else {
			u64 nr = 0;
			perf_output_put(handle, nr);
		}
	}

	if (sample_type & PERF_SAMPLE_RAW) {
		if (data->raw) {
			perf_output_put(handle, data->raw->size);
4593 4594
			__output_copy(handle, data->raw->data,
					   data->raw->size);
4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605
		} else {
			struct {
				u32	size;
				u32	data;
			} raw = {
				.size = sizeof(u32),
				.data = 0,
			};
			perf_output_put(handle, raw);
		}
	}
4606

4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623
	if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
		if (data->br_stack) {
			size_t size;

			size = data->br_stack->nr
			     * sizeof(struct perf_branch_entry);

			perf_output_put(handle, data->br_stack->nr);
			perf_output_copy(handle, data->br_stack->entries, size);
		} else {
			/*
			 * we always store at least the value of nr
			 */
			u64 nr = 0;
			perf_output_put(handle, nr);
		}
	}
4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640

	if (sample_type & PERF_SAMPLE_REGS_USER) {
		u64 abi = data->regs_user.abi;

		/*
		 * If there are no regs to dump, notice it through
		 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
		 */
		perf_output_put(handle, abi);

		if (abi) {
			u64 mask = event->attr.sample_regs_user;
			perf_output_sample_regs(handle,
						data->regs_user.regs,
						mask);
		}
	}
4641

4642
	if (sample_type & PERF_SAMPLE_STACK_USER) {
4643 4644 4645
		perf_output_sample_ustack(handle,
					  data->stack_user_size,
					  data->regs_user.regs);
4646
	}
A
Andi Kleen 已提交
4647 4648 4649

	if (sample_type & PERF_SAMPLE_WEIGHT)
		perf_output_put(handle, data->weight);
4650 4651 4652

	if (sample_type & PERF_SAMPLE_DATA_SRC)
		perf_output_put(handle, data->data_src.val);
4653

A
Andi Kleen 已提交
4654 4655 4656
	if (sample_type & PERF_SAMPLE_TRANSACTION)
		perf_output_put(handle, data->txn);

4657 4658 4659 4660 4661 4662 4663 4664 4665 4666 4667 4668 4669
	if (!event->attr.watermark) {
		int wakeup_events = event->attr.wakeup_events;

		if (wakeup_events) {
			struct ring_buffer *rb = handle->rb;
			int events = local_inc_return(&rb->events);

			if (events >= wakeup_events) {
				local_sub(wakeup_events, &rb->events);
				local_inc(&rb->wakeup);
			}
		}
	}
4670 4671 4672 4673
}

void perf_prepare_sample(struct perf_event_header *header,
			 struct perf_sample_data *data,
4674
			 struct perf_event *event,
4675
			 struct pt_regs *regs)
4676
{
4677
	u64 sample_type = event->attr.sample_type;
4678

4679
	header->type = PERF_RECORD_SAMPLE;
4680
	header->size = sizeof(*header) + event->header_size;
4681 4682 4683

	header->misc = 0;
	header->misc |= perf_misc_flags(regs);
4684

4685
	__perf_event_header__init_id(header, data, event);
4686

4687
	if (sample_type & PERF_SAMPLE_IP)
4688 4689
		data->ip = perf_instruction_pointer(regs);

4690
	if (sample_type & PERF_SAMPLE_CALLCHAIN) {
4691
		int size = 1;
4692

4693
		data->callchain = perf_callchain(event, regs);
4694 4695 4696 4697 4698

		if (data->callchain)
			size += data->callchain->nr;

		header->size += size * sizeof(u64);
4699 4700
	}

4701
	if (sample_type & PERF_SAMPLE_RAW) {
4702 4703 4704 4705 4706 4707 4708 4709
		int size = sizeof(u32);

		if (data->raw)
			size += data->raw->size;
		else
			size += sizeof(u32);

		WARN_ON_ONCE(size & (sizeof(u64)-1));
4710
		header->size += size;
4711
	}
4712 4713 4714 4715 4716 4717 4718 4719 4720

	if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
		int size = sizeof(u64); /* nr */
		if (data->br_stack) {
			size += data->br_stack->nr
			      * sizeof(struct perf_branch_entry);
		}
		header->size += size;
	}
4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734

	if (sample_type & PERF_SAMPLE_REGS_USER) {
		/* regs dump ABI info */
		int size = sizeof(u64);

		perf_sample_regs_user(&data->regs_user, regs);

		if (data->regs_user.regs) {
			u64 mask = event->attr.sample_regs_user;
			size += hweight64(mask) * sizeof(u64);
		}

		header->size += size;
	}
4735 4736 4737 4738 4739 4740 4741 4742 4743 4744 4745 4746 4747 4748 4749 4750 4751 4752 4753 4754 4755 4756 4757 4758 4759 4760 4761 4762 4763

	if (sample_type & PERF_SAMPLE_STACK_USER) {
		/*
		 * Either we need PERF_SAMPLE_STACK_USER bit to be allways
		 * processed as the last one or have additional check added
		 * in case new sample type is added, because we could eat
		 * up the rest of the sample size.
		 */
		struct perf_regs_user *uregs = &data->regs_user;
		u16 stack_size = event->attr.sample_stack_user;
		u16 size = sizeof(u64);

		if (!uregs->abi)
			perf_sample_regs_user(uregs, regs);

		stack_size = perf_sample_ustack_size(stack_size, header->size,
						     uregs->regs);

		/*
		 * If there is something to dump, add space for the dump
		 * itself and for the field that tells the dynamic size,
		 * which is how many have been actually dumped.
		 */
		if (stack_size)
			size += sizeof(u64) + stack_size;

		data->stack_user_size = stack_size;
		header->size += size;
	}
4764
}
4765

4766
static void perf_event_output(struct perf_event *event,
4767 4768 4769 4770 4771
				struct perf_sample_data *data,
				struct pt_regs *regs)
{
	struct perf_output_handle handle;
	struct perf_event_header header;
4772

4773 4774 4775
	/* protect the callchain buffers */
	rcu_read_lock();

4776
	perf_prepare_sample(&header, data, event, regs);
P
Peter Zijlstra 已提交
4777

4778
	if (perf_output_begin(&handle, event, header.size))
4779
		goto exit;
4780

4781
	perf_output_sample(&handle, &header, data, event);
4782

4783
	perf_output_end(&handle);
4784 4785 4786

exit:
	rcu_read_unlock();
4787 4788
}

4789
/*
4790
 * read event_id
4791 4792 4793 4794 4795 4796 4797 4798 4799 4800
 */

struct perf_read_event {
	struct perf_event_header	header;

	u32				pid;
	u32				tid;
};

static void
4801
perf_event_read_event(struct perf_event *event,
4802 4803 4804
			struct task_struct *task)
{
	struct perf_output_handle handle;
4805
	struct perf_sample_data sample;
4806
	struct perf_read_event read_event = {
4807
		.header = {
4808
			.type = PERF_RECORD_READ,
4809
			.misc = 0,
4810
			.size = sizeof(read_event) + event->read_size,
4811
		},
4812 4813
		.pid = perf_event_pid(event, task),
		.tid = perf_event_tid(event, task),
4814
	};
4815
	int ret;
4816

4817
	perf_event_header__init_id(&read_event.header, &sample, event);
4818
	ret = perf_output_begin(&handle, event, read_event.header.size);
4819 4820 4821
	if (ret)
		return;

4822
	perf_output_put(&handle, read_event);
4823
	perf_output_read(&handle, event);
4824
	perf_event__output_id_sample(event, &handle, &sample);
4825

4826 4827 4828
	perf_output_end(&handle);
}

4829 4830 4831 4832 4833 4834 4835 4836 4837 4838 4839 4840 4841 4842
typedef void (perf_event_aux_output_cb)(struct perf_event *event, void *data);

static void
perf_event_aux_ctx(struct perf_event_context *ctx,
		   perf_event_aux_output_cb output,
		   void *data)
{
	struct perf_event *event;

	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
		if (event->state < PERF_EVENT_STATE_INACTIVE)
			continue;
		if (!event_filter_match(event))
			continue;
4843
		output(event, data);
4844 4845 4846 4847
	}
}

static void
4848
perf_event_aux(perf_event_aux_output_cb output, void *data,
4849 4850 4851 4852 4853 4854 4855 4856 4857 4858 4859 4860
	       struct perf_event_context *task_ctx)
{
	struct perf_cpu_context *cpuctx;
	struct perf_event_context *ctx;
	struct pmu *pmu;
	int ctxn;

	rcu_read_lock();
	list_for_each_entry_rcu(pmu, &pmus, entry) {
		cpuctx = get_cpu_ptr(pmu->pmu_cpu_context);
		if (cpuctx->unique_pmu != pmu)
			goto next;
4861
		perf_event_aux_ctx(&cpuctx->ctx, output, data);
4862 4863 4864 4865 4866 4867 4868
		if (task_ctx)
			goto next;
		ctxn = pmu->task_ctx_nr;
		if (ctxn < 0)
			goto next;
		ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
		if (ctx)
4869
			perf_event_aux_ctx(ctx, output, data);
4870 4871 4872 4873 4874 4875
next:
		put_cpu_ptr(pmu->pmu_cpu_context);
	}

	if (task_ctx) {
		preempt_disable();
4876
		perf_event_aux_ctx(task_ctx, output, data);
4877 4878 4879 4880 4881
		preempt_enable();
	}
	rcu_read_unlock();
}

P
Peter Zijlstra 已提交
4882
/*
P
Peter Zijlstra 已提交
4883 4884
 * task tracking -- fork/exit
 *
4885
 * enabled by: attr.comm | attr.mmap | attr.mmap2 | attr.mmap_data | attr.task
P
Peter Zijlstra 已提交
4886 4887
 */

P
Peter Zijlstra 已提交
4888
struct perf_task_event {
4889
	struct task_struct		*task;
4890
	struct perf_event_context	*task_ctx;
P
Peter Zijlstra 已提交
4891 4892 4893 4894 4895 4896

	struct {
		struct perf_event_header	header;

		u32				pid;
		u32				ppid;
P
Peter Zijlstra 已提交
4897 4898
		u32				tid;
		u32				ptid;
4899
		u64				time;
4900
	} event_id;
P
Peter Zijlstra 已提交
4901 4902
};

4903 4904
static int perf_event_task_match(struct perf_event *event)
{
4905 4906 4907
	return event->attr.comm  || event->attr.mmap ||
	       event->attr.mmap2 || event->attr.mmap_data ||
	       event->attr.task;
4908 4909
}

4910
static void perf_event_task_output(struct perf_event *event,
4911
				   void *data)
P
Peter Zijlstra 已提交
4912
{
4913
	struct perf_task_event *task_event = data;
P
Peter Zijlstra 已提交
4914
	struct perf_output_handle handle;
4915
	struct perf_sample_data	sample;
P
Peter Zijlstra 已提交
4916
	struct task_struct *task = task_event->task;
4917
	int ret, size = task_event->event_id.header.size;
4918

4919 4920 4921
	if (!perf_event_task_match(event))
		return;

4922
	perf_event_header__init_id(&task_event->event_id.header, &sample, event);
P
Peter Zijlstra 已提交
4923

4924
	ret = perf_output_begin(&handle, event,
4925
				task_event->event_id.header.size);
4926
	if (ret)
4927
		goto out;
P
Peter Zijlstra 已提交
4928

4929 4930
	task_event->event_id.pid = perf_event_pid(event, task);
	task_event->event_id.ppid = perf_event_pid(event, current);
P
Peter Zijlstra 已提交
4931

4932 4933
	task_event->event_id.tid = perf_event_tid(event, task);
	task_event->event_id.ptid = perf_event_tid(event, current);
P
Peter Zijlstra 已提交
4934

4935
	perf_output_put(&handle, task_event->event_id);
4936

4937 4938
	perf_event__output_id_sample(event, &handle, &sample);

P
Peter Zijlstra 已提交
4939
	perf_output_end(&handle);
4940 4941
out:
	task_event->event_id.header.size = size;
P
Peter Zijlstra 已提交
4942 4943
}

4944 4945
static void perf_event_task(struct task_struct *task,
			      struct perf_event_context *task_ctx,
4946
			      int new)
P
Peter Zijlstra 已提交
4947
{
P
Peter Zijlstra 已提交
4948
	struct perf_task_event task_event;
P
Peter Zijlstra 已提交
4949

4950 4951 4952
	if (!atomic_read(&nr_comm_events) &&
	    !atomic_read(&nr_mmap_events) &&
	    !atomic_read(&nr_task_events))
P
Peter Zijlstra 已提交
4953 4954
		return;

P
Peter Zijlstra 已提交
4955
	task_event = (struct perf_task_event){
4956 4957
		.task	  = task,
		.task_ctx = task_ctx,
4958
		.event_id    = {
P
Peter Zijlstra 已提交
4959
			.header = {
4960
				.type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
4961
				.misc = 0,
4962
				.size = sizeof(task_event.event_id),
P
Peter Zijlstra 已提交
4963
			},
4964 4965
			/* .pid  */
			/* .ppid */
P
Peter Zijlstra 已提交
4966 4967
			/* .tid  */
			/* .ptid */
P
Peter Zijlstra 已提交
4968
			.time = perf_clock(),
P
Peter Zijlstra 已提交
4969 4970 4971
		},
	};

4972
	perf_event_aux(perf_event_task_output,
4973 4974
		       &task_event,
		       task_ctx);
P
Peter Zijlstra 已提交
4975 4976
}

4977
void perf_event_fork(struct task_struct *task)
P
Peter Zijlstra 已提交
4978
{
4979
	perf_event_task(task, NULL, 1);
P
Peter Zijlstra 已提交
4980 4981
}

4982 4983 4984 4985 4986
/*
 * comm tracking
 */

struct perf_comm_event {
4987 4988
	struct task_struct	*task;
	char			*comm;
4989 4990 4991 4992 4993 4994 4995
	int			comm_size;

	struct {
		struct perf_event_header	header;

		u32				pid;
		u32				tid;
4996
	} event_id;
4997 4998
};

4999 5000 5001 5002 5003
static int perf_event_comm_match(struct perf_event *event)
{
	return event->attr.comm;
}

5004
static void perf_event_comm_output(struct perf_event *event,
5005
				   void *data)
5006
{
5007
	struct perf_comm_event *comm_event = data;
5008
	struct perf_output_handle handle;
5009
	struct perf_sample_data sample;
5010
	int size = comm_event->event_id.header.size;
5011 5012
	int ret;

5013 5014 5015
	if (!perf_event_comm_match(event))
		return;

5016 5017
	perf_event_header__init_id(&comm_event->event_id.header, &sample, event);
	ret = perf_output_begin(&handle, event,
5018
				comm_event->event_id.header.size);
5019 5020

	if (ret)
5021
		goto out;
5022

5023 5024
	comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
	comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
5025

5026
	perf_output_put(&handle, comm_event->event_id);
5027
	__output_copy(&handle, comm_event->comm,
5028
				   comm_event->comm_size);
5029 5030 5031

	perf_event__output_id_sample(event, &handle, &sample);

5032
	perf_output_end(&handle);
5033 5034
out:
	comm_event->event_id.header.size = size;
5035 5036
}

5037
static void perf_event_comm_event(struct perf_comm_event *comm_event)
5038
{
5039
	char comm[TASK_COMM_LEN];
5040 5041
	unsigned int size;

5042
	memset(comm, 0, sizeof(comm));
5043
	strlcpy(comm, comm_event->task->comm, sizeof(comm));
5044
	size = ALIGN(strlen(comm)+1, sizeof(u64));
5045 5046 5047 5048

	comm_event->comm = comm;
	comm_event->comm_size = size;

5049
	comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
P
Peter Zijlstra 已提交
5050

5051
	perf_event_aux(perf_event_comm_output,
5052 5053
		       comm_event,
		       NULL);
5054 5055
}

5056
void perf_event_comm(struct task_struct *task)
5057
{
5058
	struct perf_comm_event comm_event;
P
Peter Zijlstra 已提交
5059 5060
	struct perf_event_context *ctx;
	int ctxn;
5061

5062
	rcu_read_lock();
P
Peter Zijlstra 已提交
5063 5064 5065 5066
	for_each_task_context_nr(ctxn) {
		ctx = task->perf_event_ctxp[ctxn];
		if (!ctx)
			continue;
5067

P
Peter Zijlstra 已提交
5068 5069
		perf_event_enable_on_exec(ctx);
	}
5070
	rcu_read_unlock();
5071

5072
	if (!atomic_read(&nr_comm_events))
5073
		return;
5074

5075
	comm_event = (struct perf_comm_event){
5076
		.task	= task,
5077 5078
		/* .comm      */
		/* .comm_size */
5079
		.event_id  = {
5080
			.header = {
5081
				.type = PERF_RECORD_COMM,
5082 5083 5084 5085 5086
				.misc = 0,
				/* .size */
			},
			/* .pid */
			/* .tid */
5087 5088 5089
		},
	};

5090
	perf_event_comm_event(&comm_event);
5091 5092
}

5093 5094 5095 5096 5097
/*
 * mmap tracking
 */

struct perf_mmap_event {
5098 5099 5100 5101
	struct vm_area_struct	*vma;

	const char		*file_name;
	int			file_size;
5102 5103 5104
	int			maj, min;
	u64			ino;
	u64			ino_generation;
5105 5106 5107 5108 5109 5110 5111 5112 5113

	struct {
		struct perf_event_header	header;

		u32				pid;
		u32				tid;
		u64				start;
		u64				len;
		u64				pgoff;
5114
	} event_id;
5115 5116
};

5117 5118 5119 5120 5121 5122 5123 5124
static int perf_event_mmap_match(struct perf_event *event,
				 void *data)
{
	struct perf_mmap_event *mmap_event = data;
	struct vm_area_struct *vma = mmap_event->vma;
	int executable = vma->vm_flags & VM_EXEC;

	return (!executable && event->attr.mmap_data) ||
5125
	       (executable && (event->attr.mmap || event->attr.mmap2));
5126 5127
}

5128
static void perf_event_mmap_output(struct perf_event *event,
5129
				   void *data)
5130
{
5131
	struct perf_mmap_event *mmap_event = data;
5132
	struct perf_output_handle handle;
5133
	struct perf_sample_data sample;
5134
	int size = mmap_event->event_id.header.size;
5135
	int ret;
5136

5137 5138 5139
	if (!perf_event_mmap_match(event, data))
		return;

5140 5141 5142 5143 5144
	if (event->attr.mmap2) {
		mmap_event->event_id.header.type = PERF_RECORD_MMAP2;
		mmap_event->event_id.header.size += sizeof(mmap_event->maj);
		mmap_event->event_id.header.size += sizeof(mmap_event->min);
		mmap_event->event_id.header.size += sizeof(mmap_event->ino);
5145
		mmap_event->event_id.header.size += sizeof(mmap_event->ino_generation);
5146 5147
	}

5148 5149
	perf_event_header__init_id(&mmap_event->event_id.header, &sample, event);
	ret = perf_output_begin(&handle, event,
5150
				mmap_event->event_id.header.size);
5151
	if (ret)
5152
		goto out;
5153

5154 5155
	mmap_event->event_id.pid = perf_event_pid(event, current);
	mmap_event->event_id.tid = perf_event_tid(event, current);
5156

5157
	perf_output_put(&handle, mmap_event->event_id);
5158 5159 5160 5161 5162 5163 5164 5165

	if (event->attr.mmap2) {
		perf_output_put(&handle, mmap_event->maj);
		perf_output_put(&handle, mmap_event->min);
		perf_output_put(&handle, mmap_event->ino);
		perf_output_put(&handle, mmap_event->ino_generation);
	}

5166
	__output_copy(&handle, mmap_event->file_name,
5167
				   mmap_event->file_size);
5168 5169 5170

	perf_event__output_id_sample(event, &handle, &sample);

5171
	perf_output_end(&handle);
5172 5173
out:
	mmap_event->event_id.header.size = size;
5174 5175
}

5176
static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
5177
{
5178 5179
	struct vm_area_struct *vma = mmap_event->vma;
	struct file *file = vma->vm_file;
5180 5181
	int maj = 0, min = 0;
	u64 ino = 0, gen = 0;
5182 5183 5184
	unsigned int size;
	char tmp[16];
	char *buf = NULL;
5185
	char *name;
5186

5187
	if (file) {
5188 5189
		struct inode *inode;
		dev_t dev;
5190

5191
		buf = kmalloc(PATH_MAX, GFP_KERNEL);
5192
		if (!buf) {
5193 5194
			name = "//enomem";
			goto cpy_name;
5195
		}
5196
		/*
5197
		 * d_path() works from the end of the rb backwards, so we
5198 5199 5200
		 * need to add enough zero bytes after the string to handle
		 * the 64bit alignment we do later.
		 */
5201
		name = d_path(&file->f_path, buf, PATH_MAX - sizeof(u64));
5202
		if (IS_ERR(name)) {
5203 5204
			name = "//toolong";
			goto cpy_name;
5205
		}
5206 5207 5208 5209 5210 5211
		inode = file_inode(vma->vm_file);
		dev = inode->i_sb->s_dev;
		ino = inode->i_ino;
		gen = inode->i_generation;
		maj = MAJOR(dev);
		min = MINOR(dev);
5212
		goto got_name;
5213
	} else {
5214
		name = (char *)arch_vma_name(vma);
5215 5216
		if (name)
			goto cpy_name;
5217

5218
		if (vma->vm_start <= vma->vm_mm->start_brk &&
5219
				vma->vm_end >= vma->vm_mm->brk) {
5220 5221
			name = "[heap]";
			goto cpy_name;
5222 5223
		}
		if (vma->vm_start <= vma->vm_mm->start_stack &&
5224
				vma->vm_end >= vma->vm_mm->start_stack) {
5225 5226
			name = "[stack]";
			goto cpy_name;
5227 5228
		}

5229 5230
		name = "//anon";
		goto cpy_name;
5231 5232
	}

5233 5234 5235
cpy_name:
	strlcpy(tmp, name, sizeof(tmp));
	name = tmp;
5236
got_name:
5237 5238 5239 5240 5241 5242 5243 5244
	/*
	 * Since our buffer works in 8 byte units we need to align our string
	 * size to a multiple of 8. However, we must guarantee the tail end is
	 * zero'd out to avoid leaking random bits to userspace.
	 */
	size = strlen(name)+1;
	while (!IS_ALIGNED(size, sizeof(u64)))
		name[size++] = '\0';
5245 5246 5247

	mmap_event->file_name = name;
	mmap_event->file_size = size;
5248 5249 5250 5251
	mmap_event->maj = maj;
	mmap_event->min = min;
	mmap_event->ino = ino;
	mmap_event->ino_generation = gen;
5252

5253 5254 5255
	if (!(vma->vm_flags & VM_EXEC))
		mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_DATA;

5256
	mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
5257

5258
	perf_event_aux(perf_event_mmap_output,
5259 5260
		       mmap_event,
		       NULL);
5261

5262 5263 5264
	kfree(buf);
}

5265
void perf_event_mmap(struct vm_area_struct *vma)
5266
{
5267 5268
	struct perf_mmap_event mmap_event;

5269
	if (!atomic_read(&nr_mmap_events))
5270 5271 5272
		return;

	mmap_event = (struct perf_mmap_event){
5273
		.vma	= vma,
5274 5275
		/* .file_name */
		/* .file_size */
5276
		.event_id  = {
5277
			.header = {
5278
				.type = PERF_RECORD_MMAP,
5279
				.misc = PERF_RECORD_MISC_USER,
5280 5281 5282 5283
				/* .size */
			},
			/* .pid */
			/* .tid */
5284 5285
			.start  = vma->vm_start,
			.len    = vma->vm_end - vma->vm_start,
5286
			.pgoff  = (u64)vma->vm_pgoff << PAGE_SHIFT,
5287
		},
5288 5289 5290 5291
		/* .maj (attr_mmap2 only) */
		/* .min (attr_mmap2 only) */
		/* .ino (attr_mmap2 only) */
		/* .ino_generation (attr_mmap2 only) */
5292 5293
	};

5294
	perf_event_mmap_event(&mmap_event);
5295 5296
}

5297 5298 5299 5300
/*
 * IRQ throttle logging
 */

5301
static void perf_log_throttle(struct perf_event *event, int enable)
5302 5303
{
	struct perf_output_handle handle;
5304
	struct perf_sample_data sample;
5305 5306 5307 5308 5309
	int ret;

	struct {
		struct perf_event_header	header;
		u64				time;
5310
		u64				id;
5311
		u64				stream_id;
5312 5313
	} throttle_event = {
		.header = {
5314
			.type = PERF_RECORD_THROTTLE,
5315 5316 5317
			.misc = 0,
			.size = sizeof(throttle_event),
		},
P
Peter Zijlstra 已提交
5318
		.time		= perf_clock(),
5319 5320
		.id		= primary_event_id(event),
		.stream_id	= event->id,
5321 5322
	};

5323
	if (enable)
5324
		throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
5325

5326 5327 5328
	perf_event_header__init_id(&throttle_event.header, &sample, event);

	ret = perf_output_begin(&handle, event,
5329
				throttle_event.header.size);
5330 5331 5332 5333
	if (ret)
		return;

	perf_output_put(&handle, throttle_event);
5334
	perf_event__output_id_sample(event, &handle, &sample);
5335 5336 5337
	perf_output_end(&handle);
}

5338
/*
5339
 * Generic event overflow handling, sampling.
5340 5341
 */

5342
static int __perf_event_overflow(struct perf_event *event,
5343 5344
				   int throttle, struct perf_sample_data *data,
				   struct pt_regs *regs)
5345
{
5346 5347
	int events = atomic_read(&event->event_limit);
	struct hw_perf_event *hwc = &event->hw;
5348
	u64 seq;
5349 5350
	int ret = 0;

5351 5352 5353 5354 5355 5356 5357
	/*
	 * Non-sampling counters might still use the PMI to fold short
	 * hardware counters, ignore those.
	 */
	if (unlikely(!is_sampling_event(event)))
		return 0;

5358 5359 5360 5361 5362 5363 5364 5365 5366
	seq = __this_cpu_read(perf_throttled_seq);
	if (seq != hwc->interrupts_seq) {
		hwc->interrupts_seq = seq;
		hwc->interrupts = 1;
	} else {
		hwc->interrupts++;
		if (unlikely(throttle
			     && hwc->interrupts >= max_samples_per_tick)) {
			__this_cpu_inc(perf_throttled_count);
P
Peter Zijlstra 已提交
5367 5368
			hwc->interrupts = MAX_INTERRUPTS;
			perf_log_throttle(event, 0);
5369
			tick_nohz_full_kick();
5370 5371
			ret = 1;
		}
5372
	}
5373

5374
	if (event->attr.freq) {
P
Peter Zijlstra 已提交
5375
		u64 now = perf_clock();
5376
		s64 delta = now - hwc->freq_time_stamp;
5377

5378
		hwc->freq_time_stamp = now;
5379

5380
		if (delta > 0 && delta < 2*TICK_NSEC)
5381
			perf_adjust_period(event, delta, hwc->last_period, true);
5382 5383
	}

5384 5385
	/*
	 * XXX event_limit might not quite work as expected on inherited
5386
	 * events
5387 5388
	 */

5389 5390
	event->pending_kill = POLL_IN;
	if (events && atomic_dec_and_test(&event->event_limit)) {
5391
		ret = 1;
5392
		event->pending_kill = POLL_HUP;
5393 5394
		event->pending_disable = 1;
		irq_work_queue(&event->pending);
5395 5396
	}

5397
	if (event->overflow_handler)
5398
		event->overflow_handler(event, data, regs);
5399
	else
5400
		perf_event_output(event, data, regs);
5401

P
Peter Zijlstra 已提交
5402
	if (event->fasync && event->pending_kill) {
5403 5404
		event->pending_wakeup = 1;
		irq_work_queue(&event->pending);
P
Peter Zijlstra 已提交
5405 5406
	}

5407
	return ret;
5408 5409
}

5410
int perf_event_overflow(struct perf_event *event,
5411 5412
			  struct perf_sample_data *data,
			  struct pt_regs *regs)
5413
{
5414
	return __perf_event_overflow(event, 1, data, regs);
5415 5416
}

5417
/*
5418
 * Generic software event infrastructure
5419 5420
 */

5421 5422 5423 5424 5425 5426 5427 5428 5429 5430 5431
struct swevent_htable {
	struct swevent_hlist		*swevent_hlist;
	struct mutex			hlist_mutex;
	int				hlist_refcount;

	/* Recursion avoidance in each contexts */
	int				recursion[PERF_NR_CONTEXTS];
};

static DEFINE_PER_CPU(struct swevent_htable, swevent_htable);

5432
/*
5433 5434
 * We directly increment event->count and keep a second value in
 * event->hw.period_left to count intervals. This period event
5435 5436 5437 5438
 * is kept in the range [-sample_period, 0] so that we can use the
 * sign as trigger.
 */

5439
u64 perf_swevent_set_period(struct perf_event *event)
5440
{
5441
	struct hw_perf_event *hwc = &event->hw;
5442 5443 5444 5445 5446
	u64 period = hwc->last_period;
	u64 nr, offset;
	s64 old, val;

	hwc->last_period = hwc->sample_period;
5447 5448

again:
5449
	old = val = local64_read(&hwc->period_left);
5450 5451
	if (val < 0)
		return 0;
5452

5453 5454 5455
	nr = div64_u64(period + val, period);
	offset = nr * period;
	val -= offset;
5456
	if (local64_cmpxchg(&hwc->period_left, old, val) != old)
5457
		goto again;
5458

5459
	return nr;
5460 5461
}

5462
static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
5463
				    struct perf_sample_data *data,
5464
				    struct pt_regs *regs)
5465
{
5466
	struct hw_perf_event *hwc = &event->hw;
5467
	int throttle = 0;
5468

5469 5470
	if (!overflow)
		overflow = perf_swevent_set_period(event);
5471

5472 5473
	if (hwc->interrupts == MAX_INTERRUPTS)
		return;
5474

5475
	for (; overflow; overflow--) {
5476
		if (__perf_event_overflow(event, throttle,
5477
					    data, regs)) {
5478 5479 5480 5481 5482 5483
			/*
			 * We inhibit the overflow from happening when
			 * hwc->interrupts == MAX_INTERRUPTS.
			 */
			break;
		}
5484
		throttle = 1;
5485
	}
5486 5487
}

P
Peter Zijlstra 已提交
5488
static void perf_swevent_event(struct perf_event *event, u64 nr,
5489
			       struct perf_sample_data *data,
5490
			       struct pt_regs *regs)
5491
{
5492
	struct hw_perf_event *hwc = &event->hw;
5493

5494
	local64_add(nr, &event->count);
5495

5496 5497 5498
	if (!regs)
		return;

5499
	if (!is_sampling_event(event))
5500
		return;
5501

5502 5503 5504 5505 5506 5507
	if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) {
		data->period = nr;
		return perf_swevent_overflow(event, 1, data, regs);
	} else
		data->period = event->hw.last_period;

5508
	if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
5509
		return perf_swevent_overflow(event, 1, data, regs);
5510

5511
	if (local64_add_negative(nr, &hwc->period_left))
5512
		return;
5513

5514
	perf_swevent_overflow(event, 0, data, regs);
5515 5516
}

5517 5518 5519
static int perf_exclude_event(struct perf_event *event,
			      struct pt_regs *regs)
{
P
Peter Zijlstra 已提交
5520
	if (event->hw.state & PERF_HES_STOPPED)
5521
		return 1;
P
Peter Zijlstra 已提交
5522

5523 5524 5525 5526 5527 5528 5529 5530 5531 5532 5533
	if (regs) {
		if (event->attr.exclude_user && user_mode(regs))
			return 1;

		if (event->attr.exclude_kernel && !user_mode(regs))
			return 1;
	}

	return 0;
}

5534
static int perf_swevent_match(struct perf_event *event,
P
Peter Zijlstra 已提交
5535
				enum perf_type_id type,
L
Li Zefan 已提交
5536 5537 5538
				u32 event_id,
				struct perf_sample_data *data,
				struct pt_regs *regs)
5539
{
5540
	if (event->attr.type != type)
5541
		return 0;
5542

5543
	if (event->attr.config != event_id)
5544 5545
		return 0;

5546 5547
	if (perf_exclude_event(event, regs))
		return 0;
5548 5549 5550 5551

	return 1;
}

5552 5553 5554 5555 5556 5557 5558
static inline u64 swevent_hash(u64 type, u32 event_id)
{
	u64 val = event_id | (type << 32);

	return hash_64(val, SWEVENT_HLIST_BITS);
}

5559 5560
static inline struct hlist_head *
__find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
5561
{
5562 5563 5564 5565
	u64 hash = swevent_hash(type, event_id);

	return &hlist->heads[hash];
}
5566

5567 5568
/* For the read side: events when they trigger */
static inline struct hlist_head *
5569
find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id)
5570 5571
{
	struct swevent_hlist *hlist;
5572

5573
	hlist = rcu_dereference(swhash->swevent_hlist);
5574 5575 5576
	if (!hlist)
		return NULL;

5577 5578 5579 5580 5581
	return __find_swevent_head(hlist, type, event_id);
}

/* For the event head insertion and removal in the hlist */
static inline struct hlist_head *
5582
find_swevent_head(struct swevent_htable *swhash, struct perf_event *event)
5583 5584 5585 5586 5587 5588 5589 5590 5591 5592
{
	struct swevent_hlist *hlist;
	u32 event_id = event->attr.config;
	u64 type = event->attr.type;

	/*
	 * Event scheduling is always serialized against hlist allocation
	 * and release. Which makes the protected version suitable here.
	 * The context lock guarantees that.
	 */
5593
	hlist = rcu_dereference_protected(swhash->swevent_hlist,
5594 5595 5596 5597 5598
					  lockdep_is_held(&event->ctx->lock));
	if (!hlist)
		return NULL;

	return __find_swevent_head(hlist, type, event_id);
5599 5600 5601
}

static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
5602
				    u64 nr,
5603 5604
				    struct perf_sample_data *data,
				    struct pt_regs *regs)
5605
{
5606
	struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
5607
	struct perf_event *event;
5608
	struct hlist_head *head;
5609

5610
	rcu_read_lock();
5611
	head = find_swevent_head_rcu(swhash, type, event_id);
5612 5613 5614
	if (!head)
		goto end;

5615
	hlist_for_each_entry_rcu(event, head, hlist_entry) {
L
Li Zefan 已提交
5616
		if (perf_swevent_match(event, type, event_id, data, regs))
5617
			perf_swevent_event(event, nr, data, regs);
5618
	}
5619 5620
end:
	rcu_read_unlock();
5621 5622
}

5623
int perf_swevent_get_recursion_context(void)
P
Peter Zijlstra 已提交
5624
{
5625
	struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
P
Peter Zijlstra 已提交
5626

5627
	return get_recursion_context(swhash->recursion);
P
Peter Zijlstra 已提交
5628
}
I
Ingo Molnar 已提交
5629
EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
P
Peter Zijlstra 已提交
5630

5631
inline void perf_swevent_put_recursion_context(int rctx)
5632
{
5633
	struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
5634

5635
	put_recursion_context(swhash->recursion, rctx);
5636
}
5637

5638
void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
5639
{
5640
	struct perf_sample_data data;
5641 5642
	int rctx;

5643
	preempt_disable_notrace();
5644 5645 5646
	rctx = perf_swevent_get_recursion_context();
	if (rctx < 0)
		return;
5647

5648
	perf_sample_data_init(&data, addr, 0);
5649

5650
	do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs);
5651 5652

	perf_swevent_put_recursion_context(rctx);
5653
	preempt_enable_notrace();
5654 5655
}

5656
static void perf_swevent_read(struct perf_event *event)
5657 5658 5659
{
}

P
Peter Zijlstra 已提交
5660
static int perf_swevent_add(struct perf_event *event, int flags)
5661
{
5662
	struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
5663
	struct hw_perf_event *hwc = &event->hw;
5664 5665
	struct hlist_head *head;

5666
	if (is_sampling_event(event)) {
5667
		hwc->last_period = hwc->sample_period;
5668
		perf_swevent_set_period(event);
5669
	}
5670

P
Peter Zijlstra 已提交
5671 5672
	hwc->state = !(flags & PERF_EF_START);

5673
	head = find_swevent_head(swhash, event);
5674 5675 5676 5677 5678
	if (WARN_ON_ONCE(!head))
		return -EINVAL;

	hlist_add_head_rcu(&event->hlist_entry, head);

5679 5680 5681
	return 0;
}

P
Peter Zijlstra 已提交
5682
static void perf_swevent_del(struct perf_event *event, int flags)
5683
{
5684
	hlist_del_rcu(&event->hlist_entry);
5685 5686
}

P
Peter Zijlstra 已提交
5687
static void perf_swevent_start(struct perf_event *event, int flags)
5688
{
P
Peter Zijlstra 已提交
5689
	event->hw.state = 0;
5690
}
I
Ingo Molnar 已提交
5691

P
Peter Zijlstra 已提交
5692
static void perf_swevent_stop(struct perf_event *event, int flags)
5693
{
P
Peter Zijlstra 已提交
5694
	event->hw.state = PERF_HES_STOPPED;
5695 5696
}

5697 5698
/* Deref the hlist from the update side */
static inline struct swevent_hlist *
5699
swevent_hlist_deref(struct swevent_htable *swhash)
5700
{
5701 5702
	return rcu_dereference_protected(swhash->swevent_hlist,
					 lockdep_is_held(&swhash->hlist_mutex));
5703 5704
}

5705
static void swevent_hlist_release(struct swevent_htable *swhash)
5706
{
5707
	struct swevent_hlist *hlist = swevent_hlist_deref(swhash);
5708

5709
	if (!hlist)
5710 5711
		return;

5712
	rcu_assign_pointer(swhash->swevent_hlist, NULL);
5713
	kfree_rcu(hlist, rcu_head);
5714 5715 5716 5717
}

static void swevent_hlist_put_cpu(struct perf_event *event, int cpu)
{
5718
	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
5719

5720
	mutex_lock(&swhash->hlist_mutex);
5721

5722 5723
	if (!--swhash->hlist_refcount)
		swevent_hlist_release(swhash);
5724

5725
	mutex_unlock(&swhash->hlist_mutex);
5726 5727 5728 5729 5730 5731 5732 5733 5734 5735 5736 5737
}

static void swevent_hlist_put(struct perf_event *event)
{
	int cpu;

	for_each_possible_cpu(cpu)
		swevent_hlist_put_cpu(event, cpu);
}

static int swevent_hlist_get_cpu(struct perf_event *event, int cpu)
{
5738
	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
5739 5740
	int err = 0;

5741
	mutex_lock(&swhash->hlist_mutex);
5742

5743
	if (!swevent_hlist_deref(swhash) && cpu_online(cpu)) {
5744 5745 5746 5747 5748 5749 5750
		struct swevent_hlist *hlist;

		hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
		if (!hlist) {
			err = -ENOMEM;
			goto exit;
		}
5751
		rcu_assign_pointer(swhash->swevent_hlist, hlist);
5752
	}
5753
	swhash->hlist_refcount++;
P
Peter Zijlstra 已提交
5754
exit:
5755
	mutex_unlock(&swhash->hlist_mutex);
5756 5757 5758 5759 5760 5761 5762 5763 5764 5765 5766 5767 5768 5769 5770 5771 5772 5773 5774 5775

	return err;
}

static int swevent_hlist_get(struct perf_event *event)
{
	int err;
	int cpu, failed_cpu;

	get_online_cpus();
	for_each_possible_cpu(cpu) {
		err = swevent_hlist_get_cpu(event, cpu);
		if (err) {
			failed_cpu = cpu;
			goto fail;
		}
	}
	put_online_cpus();

	return 0;
P
Peter Zijlstra 已提交
5776
fail:
5777 5778 5779 5780 5781 5782 5783 5784 5785 5786
	for_each_possible_cpu(cpu) {
		if (cpu == failed_cpu)
			break;
		swevent_hlist_put_cpu(event, cpu);
	}

	put_online_cpus();
	return err;
}

5787
struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
5788

5789 5790 5791
static void sw_perf_event_destroy(struct perf_event *event)
{
	u64 event_id = event->attr.config;
5792

5793 5794
	WARN_ON(event->parent);

5795
	static_key_slow_dec(&perf_swevent_enabled[event_id]);
5796 5797 5798 5799 5800
	swevent_hlist_put(event);
}

static int perf_swevent_init(struct perf_event *event)
{
5801
	u64 event_id = event->attr.config;
5802 5803 5804 5805

	if (event->attr.type != PERF_TYPE_SOFTWARE)
		return -ENOENT;

5806 5807 5808 5809 5810 5811
	/*
	 * no branch sampling for software events
	 */
	if (has_branch_stack(event))
		return -EOPNOTSUPP;

5812 5813 5814 5815 5816 5817 5818 5819 5820
	switch (event_id) {
	case PERF_COUNT_SW_CPU_CLOCK:
	case PERF_COUNT_SW_TASK_CLOCK:
		return -ENOENT;

	default:
		break;
	}

5821
	if (event_id >= PERF_COUNT_SW_MAX)
5822 5823 5824 5825 5826 5827 5828 5829 5830
		return -ENOENT;

	if (!event->parent) {
		int err;

		err = swevent_hlist_get(event);
		if (err)
			return err;

5831
		static_key_slow_inc(&perf_swevent_enabled[event_id]);
5832 5833 5834 5835 5836 5837
		event->destroy = sw_perf_event_destroy;
	}

	return 0;
}

5838 5839 5840 5841 5842
static int perf_swevent_event_idx(struct perf_event *event)
{
	return 0;
}

5843
static struct pmu perf_swevent = {
5844
	.task_ctx_nr	= perf_sw_context,
5845

5846
	.event_init	= perf_swevent_init,
P
Peter Zijlstra 已提交
5847 5848 5849 5850
	.add		= perf_swevent_add,
	.del		= perf_swevent_del,
	.start		= perf_swevent_start,
	.stop		= perf_swevent_stop,
5851
	.read		= perf_swevent_read,
5852 5853

	.event_idx	= perf_swevent_event_idx,
5854 5855
};

5856 5857
#ifdef CONFIG_EVENT_TRACING

5858 5859 5860 5861 5862 5863 5864 5865 5866 5867 5868 5869 5870 5871
static int perf_tp_filter_match(struct perf_event *event,
				struct perf_sample_data *data)
{
	void *record = data->raw->data;

	if (likely(!event->filter) || filter_match_preds(event->filter, record))
		return 1;
	return 0;
}

static int perf_tp_event_match(struct perf_event *event,
				struct perf_sample_data *data,
				struct pt_regs *regs)
{
5872 5873
	if (event->hw.state & PERF_HES_STOPPED)
		return 0;
5874 5875 5876 5877
	/*
	 * All tracepoints are from kernel-space.
	 */
	if (event->attr.exclude_kernel)
5878 5879 5880 5881 5882 5883 5884 5885 5886
		return 0;

	if (!perf_tp_filter_match(event, data))
		return 0;

	return 1;
}

void perf_tp_event(u64 addr, u64 count, void *record, int entry_size,
5887 5888
		   struct pt_regs *regs, struct hlist_head *head, int rctx,
		   struct task_struct *task)
5889 5890
{
	struct perf_sample_data data;
5891 5892
	struct perf_event *event;

5893 5894 5895 5896 5897
	struct perf_raw_record raw = {
		.size = entry_size,
		.data = record,
	};

5898
	perf_sample_data_init(&data, addr, 0);
5899 5900
	data.raw = &raw;

5901
	hlist_for_each_entry_rcu(event, head, hlist_entry) {
5902
		if (perf_tp_event_match(event, &data, regs))
5903
			perf_swevent_event(event, count, &data, regs);
5904
	}
5905

5906 5907 5908 5909 5910 5911 5912 5913 5914 5915 5916 5917 5918 5919 5920 5921 5922 5923 5924 5925 5926 5927 5928 5929 5930
	/*
	 * If we got specified a target task, also iterate its context and
	 * deliver this event there too.
	 */
	if (task && task != current) {
		struct perf_event_context *ctx;
		struct trace_entry *entry = record;

		rcu_read_lock();
		ctx = rcu_dereference(task->perf_event_ctxp[perf_sw_context]);
		if (!ctx)
			goto unlock;

		list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
			if (event->attr.type != PERF_TYPE_TRACEPOINT)
				continue;
			if (event->attr.config != entry->type)
				continue;
			if (perf_tp_event_match(event, &data, regs))
				perf_swevent_event(event, count, &data, regs);
		}
unlock:
		rcu_read_unlock();
	}

5931
	perf_swevent_put_recursion_context(rctx);
5932 5933 5934
}
EXPORT_SYMBOL_GPL(perf_tp_event);

5935
static void tp_perf_event_destroy(struct perf_event *event)
5936
{
5937
	perf_trace_destroy(event);
5938 5939
}

5940
static int perf_tp_event_init(struct perf_event *event)
5941
{
5942 5943
	int err;

5944 5945 5946
	if (event->attr.type != PERF_TYPE_TRACEPOINT)
		return -ENOENT;

5947 5948 5949 5950 5951 5952
	/*
	 * no branch sampling for tracepoint events
	 */
	if (has_branch_stack(event))
		return -EOPNOTSUPP;

5953 5954
	err = perf_trace_init(event);
	if (err)
5955
		return err;
5956

5957
	event->destroy = tp_perf_event_destroy;
5958

5959 5960 5961 5962
	return 0;
}

static struct pmu perf_tracepoint = {
5963 5964
	.task_ctx_nr	= perf_sw_context,

5965
	.event_init	= perf_tp_event_init,
P
Peter Zijlstra 已提交
5966 5967 5968 5969
	.add		= perf_trace_add,
	.del		= perf_trace_del,
	.start		= perf_swevent_start,
	.stop		= perf_swevent_stop,
5970
	.read		= perf_swevent_read,
5971 5972

	.event_idx	= perf_swevent_event_idx,
5973 5974 5975 5976
};

static inline void perf_tp_register(void)
{
P
Peter Zijlstra 已提交
5977
	perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT);
5978
}
L
Li Zefan 已提交
5979 5980 5981 5982 5983 5984 5985 5986 5987 5988 5989 5990 5991 5992 5993 5994 5995 5996 5997 5998 5999 6000 6001 6002

static int perf_event_set_filter(struct perf_event *event, void __user *arg)
{
	char *filter_str;
	int ret;

	if (event->attr.type != PERF_TYPE_TRACEPOINT)
		return -EINVAL;

	filter_str = strndup_user(arg, PAGE_SIZE);
	if (IS_ERR(filter_str))
		return PTR_ERR(filter_str);

	ret = ftrace_profile_set_filter(event, event->attr.config, filter_str);

	kfree(filter_str);
	return ret;
}

static void perf_event_free_filter(struct perf_event *event)
{
	ftrace_profile_free_filter(event);
}

6003
#else
L
Li Zefan 已提交
6004

6005
static inline void perf_tp_register(void)
6006 6007
{
}
L
Li Zefan 已提交
6008 6009 6010 6011 6012 6013 6014 6015 6016 6017

static int perf_event_set_filter(struct perf_event *event, void __user *arg)
{
	return -ENOENT;
}

static void perf_event_free_filter(struct perf_event *event)
{
}

6018
#endif /* CONFIG_EVENT_TRACING */
6019

6020
#ifdef CONFIG_HAVE_HW_BREAKPOINT
6021
void perf_bp_event(struct perf_event *bp, void *data)
6022
{
6023 6024 6025
	struct perf_sample_data sample;
	struct pt_regs *regs = data;

6026
	perf_sample_data_init(&sample, bp->attr.bp_addr, 0);
6027

P
Peter Zijlstra 已提交
6028
	if (!bp->hw.state && !perf_exclude_event(bp, regs))
6029
		perf_swevent_event(bp, 1, &sample, regs);
6030 6031 6032
}
#endif

6033 6034 6035
/*
 * hrtimer based swevent callback
 */
6036

6037
static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
6038
{
6039 6040 6041 6042 6043
	enum hrtimer_restart ret = HRTIMER_RESTART;
	struct perf_sample_data data;
	struct pt_regs *regs;
	struct perf_event *event;
	u64 period;
6044

6045
	event = container_of(hrtimer, struct perf_event, hw.hrtimer);
P
Peter Zijlstra 已提交
6046 6047 6048 6049

	if (event->state != PERF_EVENT_STATE_ACTIVE)
		return HRTIMER_NORESTART;

6050
	event->pmu->read(event);
6051

6052
	perf_sample_data_init(&data, 0, event->hw.last_period);
6053 6054 6055
	regs = get_irq_regs();

	if (regs && !perf_exclude_event(event, regs)) {
6056
		if (!(event->attr.exclude_idle && is_idle_task(current)))
6057
			if (__perf_event_overflow(event, 1, &data, regs))
6058 6059
				ret = HRTIMER_NORESTART;
	}
6060

6061 6062
	period = max_t(u64, 10000, event->hw.sample_period);
	hrtimer_forward_now(hrtimer, ns_to_ktime(period));
6063

6064
	return ret;
6065 6066
}

6067
static void perf_swevent_start_hrtimer(struct perf_event *event)
6068
{
6069
	struct hw_perf_event *hwc = &event->hw;
6070 6071 6072 6073
	s64 period;

	if (!is_sampling_event(event))
		return;
6074

6075 6076 6077 6078
	period = local64_read(&hwc->period_left);
	if (period) {
		if (period < 0)
			period = 10000;
P
Peter Zijlstra 已提交
6079

6080 6081 6082 6083 6084
		local64_set(&hwc->period_left, 0);
	} else {
		period = max_t(u64, 10000, hwc->sample_period);
	}
	__hrtimer_start_range_ns(&hwc->hrtimer,
6085
				ns_to_ktime(period), 0,
6086
				HRTIMER_MODE_REL_PINNED, 0);
6087
}
6088 6089

static void perf_swevent_cancel_hrtimer(struct perf_event *event)
6090
{
6091 6092
	struct hw_perf_event *hwc = &event->hw;

6093
	if (is_sampling_event(event)) {
6094
		ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
P
Peter Zijlstra 已提交
6095
		local64_set(&hwc->period_left, ktime_to_ns(remaining));
6096 6097 6098

		hrtimer_cancel(&hwc->hrtimer);
	}
6099 6100
}

P
Peter Zijlstra 已提交
6101 6102 6103 6104 6105 6106 6107 6108 6109 6110 6111 6112 6113 6114 6115 6116 6117 6118 6119 6120
static void perf_swevent_init_hrtimer(struct perf_event *event)
{
	struct hw_perf_event *hwc = &event->hw;

	if (!is_sampling_event(event))
		return;

	hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
	hwc->hrtimer.function = perf_swevent_hrtimer;

	/*
	 * Since hrtimers have a fixed rate, we can do a static freq->period
	 * mapping and avoid the whole period adjust feedback stuff.
	 */
	if (event->attr.freq) {
		long freq = event->attr.sample_freq;

		event->attr.sample_period = NSEC_PER_SEC / freq;
		hwc->sample_period = event->attr.sample_period;
		local64_set(&hwc->period_left, hwc->sample_period);
6121
		hwc->last_period = hwc->sample_period;
P
Peter Zijlstra 已提交
6122 6123 6124 6125
		event->attr.freq = 0;
	}
}

6126 6127 6128 6129 6130
/*
 * Software event: cpu wall time clock
 */

static void cpu_clock_event_update(struct perf_event *event)
6131
{
6132 6133 6134
	s64 prev;
	u64 now;

P
Peter Zijlstra 已提交
6135
	now = local_clock();
6136 6137
	prev = local64_xchg(&event->hw.prev_count, now);
	local64_add(now - prev, &event->count);
6138 6139
}

P
Peter Zijlstra 已提交
6140
static void cpu_clock_event_start(struct perf_event *event, int flags)
6141
{
P
Peter Zijlstra 已提交
6142
	local64_set(&event->hw.prev_count, local_clock());
6143 6144 6145
	perf_swevent_start_hrtimer(event);
}

P
Peter Zijlstra 已提交
6146
static void cpu_clock_event_stop(struct perf_event *event, int flags)
6147
{
6148 6149 6150
	perf_swevent_cancel_hrtimer(event);
	cpu_clock_event_update(event);
}
6151

P
Peter Zijlstra 已提交
6152 6153 6154 6155 6156 6157 6158 6159 6160 6161 6162 6163 6164
static int cpu_clock_event_add(struct perf_event *event, int flags)
{
	if (flags & PERF_EF_START)
		cpu_clock_event_start(event, flags);

	return 0;
}

static void cpu_clock_event_del(struct perf_event *event, int flags)
{
	cpu_clock_event_stop(event, flags);
}

6165 6166 6167 6168
static void cpu_clock_event_read(struct perf_event *event)
{
	cpu_clock_event_update(event);
}
6169

6170 6171 6172 6173 6174 6175 6176 6177
static int cpu_clock_event_init(struct perf_event *event)
{
	if (event->attr.type != PERF_TYPE_SOFTWARE)
		return -ENOENT;

	if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK)
		return -ENOENT;

6178 6179 6180 6181 6182 6183
	/*
	 * no branch sampling for software events
	 */
	if (has_branch_stack(event))
		return -EOPNOTSUPP;

P
Peter Zijlstra 已提交
6184 6185
	perf_swevent_init_hrtimer(event);

6186
	return 0;
6187 6188
}

6189
static struct pmu perf_cpu_clock = {
6190 6191
	.task_ctx_nr	= perf_sw_context,

6192
	.event_init	= cpu_clock_event_init,
P
Peter Zijlstra 已提交
6193 6194 6195 6196
	.add		= cpu_clock_event_add,
	.del		= cpu_clock_event_del,
	.start		= cpu_clock_event_start,
	.stop		= cpu_clock_event_stop,
6197
	.read		= cpu_clock_event_read,
6198 6199

	.event_idx	= perf_swevent_event_idx,
6200 6201 6202 6203 6204 6205 6206
};

/*
 * Software event: task time clock
 */

static void task_clock_event_update(struct perf_event *event, u64 now)
6207
{
6208 6209
	u64 prev;
	s64 delta;
6210

6211 6212 6213 6214
	prev = local64_xchg(&event->hw.prev_count, now);
	delta = now - prev;
	local64_add(delta, &event->count);
}
6215

P
Peter Zijlstra 已提交
6216
static void task_clock_event_start(struct perf_event *event, int flags)
6217
{
P
Peter Zijlstra 已提交
6218
	local64_set(&event->hw.prev_count, event->ctx->time);
6219 6220 6221
	perf_swevent_start_hrtimer(event);
}

P
Peter Zijlstra 已提交
6222
static void task_clock_event_stop(struct perf_event *event, int flags)
6223 6224 6225
{
	perf_swevent_cancel_hrtimer(event);
	task_clock_event_update(event, event->ctx->time);
P
Peter Zijlstra 已提交
6226 6227 6228 6229 6230 6231
}

static int task_clock_event_add(struct perf_event *event, int flags)
{
	if (flags & PERF_EF_START)
		task_clock_event_start(event, flags);
6232

P
Peter Zijlstra 已提交
6233 6234 6235 6236 6237 6238
	return 0;
}

static void task_clock_event_del(struct perf_event *event, int flags)
{
	task_clock_event_stop(event, PERF_EF_UPDATE);
6239 6240 6241 6242
}

static void task_clock_event_read(struct perf_event *event)
{
6243 6244 6245
	u64 now = perf_clock();
	u64 delta = now - event->ctx->timestamp;
	u64 time = event->ctx->time + delta;
6246 6247 6248 6249 6250

	task_clock_event_update(event, time);
}

static int task_clock_event_init(struct perf_event *event)
L
Li Zefan 已提交
6251
{
6252 6253 6254 6255 6256 6257
	if (event->attr.type != PERF_TYPE_SOFTWARE)
		return -ENOENT;

	if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK)
		return -ENOENT;

6258 6259 6260 6261 6262 6263
	/*
	 * no branch sampling for software events
	 */
	if (has_branch_stack(event))
		return -EOPNOTSUPP;

P
Peter Zijlstra 已提交
6264 6265
	perf_swevent_init_hrtimer(event);

6266
	return 0;
L
Li Zefan 已提交
6267 6268
}

6269
static struct pmu perf_task_clock = {
6270 6271
	.task_ctx_nr	= perf_sw_context,

6272
	.event_init	= task_clock_event_init,
P
Peter Zijlstra 已提交
6273 6274 6275 6276
	.add		= task_clock_event_add,
	.del		= task_clock_event_del,
	.start		= task_clock_event_start,
	.stop		= task_clock_event_stop,
6277
	.read		= task_clock_event_read,
6278 6279

	.event_idx	= perf_swevent_event_idx,
6280
};
L
Li Zefan 已提交
6281

P
Peter Zijlstra 已提交
6282
static void perf_pmu_nop_void(struct pmu *pmu)
6283 6284
{
}
L
Li Zefan 已提交
6285

P
Peter Zijlstra 已提交
6286
static int perf_pmu_nop_int(struct pmu *pmu)
L
Li Zefan 已提交
6287
{
P
Peter Zijlstra 已提交
6288
	return 0;
L
Li Zefan 已提交
6289 6290
}

P
Peter Zijlstra 已提交
6291
static void perf_pmu_start_txn(struct pmu *pmu)
L
Li Zefan 已提交
6292
{
P
Peter Zijlstra 已提交
6293
	perf_pmu_disable(pmu);
L
Li Zefan 已提交
6294 6295
}

P
Peter Zijlstra 已提交
6296 6297 6298 6299 6300
static int perf_pmu_commit_txn(struct pmu *pmu)
{
	perf_pmu_enable(pmu);
	return 0;
}
6301

P
Peter Zijlstra 已提交
6302
static void perf_pmu_cancel_txn(struct pmu *pmu)
6303
{
P
Peter Zijlstra 已提交
6304
	perf_pmu_enable(pmu);
6305 6306
}

6307 6308 6309 6310 6311
static int perf_event_idx_default(struct perf_event *event)
{
	return event->hw.idx + 1;
}

P
Peter Zijlstra 已提交
6312 6313 6314 6315
/*
 * Ensures all contexts with the same task_ctx_nr have the same
 * pmu_cpu_context too.
 */
6316
static struct perf_cpu_context __percpu *find_pmu_context(int ctxn)
6317
{
P
Peter Zijlstra 已提交
6318
	struct pmu *pmu;
6319

P
Peter Zijlstra 已提交
6320 6321
	if (ctxn < 0)
		return NULL;
6322

P
Peter Zijlstra 已提交
6323 6324 6325 6326
	list_for_each_entry(pmu, &pmus, entry) {
		if (pmu->task_ctx_nr == ctxn)
			return pmu->pmu_cpu_context;
	}
6327

P
Peter Zijlstra 已提交
6328
	return NULL;
6329 6330
}

6331
static void update_pmu_context(struct pmu *pmu, struct pmu *old_pmu)
6332
{
6333 6334 6335 6336 6337 6338 6339
	int cpu;

	for_each_possible_cpu(cpu) {
		struct perf_cpu_context *cpuctx;

		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);

6340 6341
		if (cpuctx->unique_pmu == old_pmu)
			cpuctx->unique_pmu = pmu;
6342 6343 6344 6345 6346 6347
	}
}

static void free_pmu_context(struct pmu *pmu)
{
	struct pmu *i;
6348

P
Peter Zijlstra 已提交
6349
	mutex_lock(&pmus_lock);
6350
	/*
P
Peter Zijlstra 已提交
6351
	 * Like a real lame refcount.
6352
	 */
6353 6354 6355
	list_for_each_entry(i, &pmus, entry) {
		if (i->pmu_cpu_context == pmu->pmu_cpu_context) {
			update_pmu_context(i, pmu);
P
Peter Zijlstra 已提交
6356
			goto out;
6357
		}
P
Peter Zijlstra 已提交
6358
	}
6359

6360
	free_percpu(pmu->pmu_cpu_context);
P
Peter Zijlstra 已提交
6361 6362
out:
	mutex_unlock(&pmus_lock);
6363
}
P
Peter Zijlstra 已提交
6364
static struct idr pmu_idr;
6365

P
Peter Zijlstra 已提交
6366 6367 6368 6369 6370 6371 6372
static ssize_t
type_show(struct device *dev, struct device_attribute *attr, char *page)
{
	struct pmu *pmu = dev_get_drvdata(dev);

	return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->type);
}
6373
static DEVICE_ATTR_RO(type);
P
Peter Zijlstra 已提交
6374

6375 6376 6377 6378 6379 6380 6381 6382 6383 6384 6385 6386 6387 6388 6389 6390 6391 6392 6393 6394 6395 6396 6397 6398 6399 6400 6401 6402 6403 6404 6405 6406 6407 6408 6409 6410 6411 6412 6413 6414 6415 6416 6417
static ssize_t
perf_event_mux_interval_ms_show(struct device *dev,
				struct device_attribute *attr,
				char *page)
{
	struct pmu *pmu = dev_get_drvdata(dev);

	return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->hrtimer_interval_ms);
}

static ssize_t
perf_event_mux_interval_ms_store(struct device *dev,
				 struct device_attribute *attr,
				 const char *buf, size_t count)
{
	struct pmu *pmu = dev_get_drvdata(dev);
	int timer, cpu, ret;

	ret = kstrtoint(buf, 0, &timer);
	if (ret)
		return ret;

	if (timer < 1)
		return -EINVAL;

	/* same value, noting to do */
	if (timer == pmu->hrtimer_interval_ms)
		return count;

	pmu->hrtimer_interval_ms = timer;

	/* update all cpuctx for this PMU */
	for_each_possible_cpu(cpu) {
		struct perf_cpu_context *cpuctx;
		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
		cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer);

		if (hrtimer_active(&cpuctx->hrtimer))
			hrtimer_forward_now(&cpuctx->hrtimer, cpuctx->hrtimer_interval);
	}

	return count;
}
6418
static DEVICE_ATTR_RW(perf_event_mux_interval_ms);
6419

6420 6421 6422 6423
static struct attribute *pmu_dev_attrs[] = {
	&dev_attr_type.attr,
	&dev_attr_perf_event_mux_interval_ms.attr,
	NULL,
P
Peter Zijlstra 已提交
6424
};
6425
ATTRIBUTE_GROUPS(pmu_dev);
P
Peter Zijlstra 已提交
6426 6427 6428 6429

static int pmu_bus_running;
static struct bus_type pmu_bus = {
	.name		= "event_source",
6430
	.dev_groups	= pmu_dev_groups,
P
Peter Zijlstra 已提交
6431 6432 6433 6434 6435 6436 6437 6438 6439 6440 6441 6442 6443 6444 6445
};

static void pmu_dev_release(struct device *dev)
{
	kfree(dev);
}

static int pmu_dev_alloc(struct pmu *pmu)
{
	int ret = -ENOMEM;

	pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL);
	if (!pmu->dev)
		goto out;

6446
	pmu->dev->groups = pmu->attr_groups;
P
Peter Zijlstra 已提交
6447 6448 6449 6450 6451 6452 6453 6454 6455 6456 6457 6458 6459 6460 6461 6462 6463 6464 6465 6466
	device_initialize(pmu->dev);
	ret = dev_set_name(pmu->dev, "%s", pmu->name);
	if (ret)
		goto free_dev;

	dev_set_drvdata(pmu->dev, pmu);
	pmu->dev->bus = &pmu_bus;
	pmu->dev->release = pmu_dev_release;
	ret = device_add(pmu->dev);
	if (ret)
		goto free_dev;

out:
	return ret;

free_dev:
	put_device(pmu->dev);
	goto out;
}

6467
static struct lock_class_key cpuctx_mutex;
6468
static struct lock_class_key cpuctx_lock;
6469

6470
int perf_pmu_register(struct pmu *pmu, const char *name, int type)
6471
{
P
Peter Zijlstra 已提交
6472
	int cpu, ret;
6473

6474
	mutex_lock(&pmus_lock);
P
Peter Zijlstra 已提交
6475 6476 6477 6478
	ret = -ENOMEM;
	pmu->pmu_disable_count = alloc_percpu(int);
	if (!pmu->pmu_disable_count)
		goto unlock;
6479

P
Peter Zijlstra 已提交
6480 6481 6482 6483 6484 6485
	pmu->type = -1;
	if (!name)
		goto skip_type;
	pmu->name = name;

	if (type < 0) {
T
Tejun Heo 已提交
6486 6487 6488
		type = idr_alloc(&pmu_idr, pmu, PERF_TYPE_MAX, 0, GFP_KERNEL);
		if (type < 0) {
			ret = type;
P
Peter Zijlstra 已提交
6489 6490 6491 6492 6493
			goto free_pdc;
		}
	}
	pmu->type = type;

P
Peter Zijlstra 已提交
6494 6495 6496 6497 6498 6499
	if (pmu_bus_running) {
		ret = pmu_dev_alloc(pmu);
		if (ret)
			goto free_idr;
	}

P
Peter Zijlstra 已提交
6500
skip_type:
P
Peter Zijlstra 已提交
6501 6502 6503
	pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr);
	if (pmu->pmu_cpu_context)
		goto got_cpu_context;
6504

W
Wei Yongjun 已提交
6505
	ret = -ENOMEM;
P
Peter Zijlstra 已提交
6506 6507
	pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context);
	if (!pmu->pmu_cpu_context)
P
Peter Zijlstra 已提交
6508
		goto free_dev;
6509

P
Peter Zijlstra 已提交
6510 6511 6512 6513
	for_each_possible_cpu(cpu) {
		struct perf_cpu_context *cpuctx;

		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
6514
		__perf_event_init_context(&cpuctx->ctx);
6515
		lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex);
6516
		lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock);
6517
		cpuctx->ctx.type = cpu_context;
P
Peter Zijlstra 已提交
6518
		cpuctx->ctx.pmu = pmu;
6519 6520 6521

		__perf_cpu_hrtimer_init(cpuctx, cpu);

6522
		INIT_LIST_HEAD(&cpuctx->rotation_list);
6523
		cpuctx->unique_pmu = pmu;
P
Peter Zijlstra 已提交
6524
	}
6525

P
Peter Zijlstra 已提交
6526
got_cpu_context:
P
Peter Zijlstra 已提交
6527 6528 6529 6530 6531 6532 6533 6534 6535 6536 6537 6538 6539 6540
	if (!pmu->start_txn) {
		if (pmu->pmu_enable) {
			/*
			 * If we have pmu_enable/pmu_disable calls, install
			 * transaction stubs that use that to try and batch
			 * hardware accesses.
			 */
			pmu->start_txn  = perf_pmu_start_txn;
			pmu->commit_txn = perf_pmu_commit_txn;
			pmu->cancel_txn = perf_pmu_cancel_txn;
		} else {
			pmu->start_txn  = perf_pmu_nop_void;
			pmu->commit_txn = perf_pmu_nop_int;
			pmu->cancel_txn = perf_pmu_nop_void;
6541
		}
6542
	}
6543

P
Peter Zijlstra 已提交
6544 6545 6546 6547 6548
	if (!pmu->pmu_enable) {
		pmu->pmu_enable  = perf_pmu_nop_void;
		pmu->pmu_disable = perf_pmu_nop_void;
	}

6549 6550 6551
	if (!pmu->event_idx)
		pmu->event_idx = perf_event_idx_default;

6552
	list_add_rcu(&pmu->entry, &pmus);
P
Peter Zijlstra 已提交
6553 6554
	ret = 0;
unlock:
6555 6556
	mutex_unlock(&pmus_lock);

P
Peter Zijlstra 已提交
6557
	return ret;
P
Peter Zijlstra 已提交
6558

P
Peter Zijlstra 已提交
6559 6560 6561 6562
free_dev:
	device_del(pmu->dev);
	put_device(pmu->dev);

P
Peter Zijlstra 已提交
6563 6564 6565 6566
free_idr:
	if (pmu->type >= PERF_TYPE_MAX)
		idr_remove(&pmu_idr, pmu->type);

P
Peter Zijlstra 已提交
6567 6568 6569
free_pdc:
	free_percpu(pmu->pmu_disable_count);
	goto unlock;
6570 6571
}

6572
void perf_pmu_unregister(struct pmu *pmu)
6573
{
6574 6575 6576
	mutex_lock(&pmus_lock);
	list_del_rcu(&pmu->entry);
	mutex_unlock(&pmus_lock);
6577

6578
	/*
P
Peter Zijlstra 已提交
6579 6580
	 * We dereference the pmu list under both SRCU and regular RCU, so
	 * synchronize against both of those.
6581
	 */
6582
	synchronize_srcu(&pmus_srcu);
P
Peter Zijlstra 已提交
6583
	synchronize_rcu();
6584

P
Peter Zijlstra 已提交
6585
	free_percpu(pmu->pmu_disable_count);
P
Peter Zijlstra 已提交
6586 6587
	if (pmu->type >= PERF_TYPE_MAX)
		idr_remove(&pmu_idr, pmu->type);
P
Peter Zijlstra 已提交
6588 6589
	device_del(pmu->dev);
	put_device(pmu->dev);
6590
	free_pmu_context(pmu);
6591
}
6592

6593 6594 6595 6596
struct pmu *perf_init_event(struct perf_event *event)
{
	struct pmu *pmu = NULL;
	int idx;
6597
	int ret;
6598 6599

	idx = srcu_read_lock(&pmus_srcu);
P
Peter Zijlstra 已提交
6600 6601 6602 6603

	rcu_read_lock();
	pmu = idr_find(&pmu_idr, event->attr.type);
	rcu_read_unlock();
6604
	if (pmu) {
6605
		event->pmu = pmu;
6606 6607 6608
		ret = pmu->event_init(event);
		if (ret)
			pmu = ERR_PTR(ret);
P
Peter Zijlstra 已提交
6609
		goto unlock;
6610
	}
P
Peter Zijlstra 已提交
6611

6612
	list_for_each_entry_rcu(pmu, &pmus, entry) {
6613
		event->pmu = pmu;
6614
		ret = pmu->event_init(event);
6615
		if (!ret)
P
Peter Zijlstra 已提交
6616
			goto unlock;
6617

6618 6619
		if (ret != -ENOENT) {
			pmu = ERR_PTR(ret);
P
Peter Zijlstra 已提交
6620
			goto unlock;
6621
		}
6622
	}
P
Peter Zijlstra 已提交
6623 6624
	pmu = ERR_PTR(-ENOENT);
unlock:
6625
	srcu_read_unlock(&pmus_srcu, idx);
6626

6627
	return pmu;
6628 6629
}

6630 6631 6632 6633 6634 6635 6636 6637 6638 6639 6640 6641 6642
static void account_event_cpu(struct perf_event *event, int cpu)
{
	if (event->parent)
		return;

	if (has_branch_stack(event)) {
		if (!(event->attach_state & PERF_ATTACH_TASK))
			atomic_inc(&per_cpu(perf_branch_stack_events, cpu));
	}
	if (is_cgroup_event(event))
		atomic_inc(&per_cpu(perf_cgroup_events, cpu));
}

6643 6644
static void account_event(struct perf_event *event)
{
6645 6646 6647
	if (event->parent)
		return;

6648 6649 6650 6651 6652 6653 6654 6655
	if (event->attach_state & PERF_ATTACH_TASK)
		static_key_slow_inc(&perf_sched_events.key);
	if (event->attr.mmap || event->attr.mmap_data)
		atomic_inc(&nr_mmap_events);
	if (event->attr.comm)
		atomic_inc(&nr_comm_events);
	if (event->attr.task)
		atomic_inc(&nr_task_events);
6656 6657 6658 6659
	if (event->attr.freq) {
		if (atomic_inc_return(&nr_freq_events) == 1)
			tick_nohz_full_kick_all();
	}
6660
	if (has_branch_stack(event))
6661
		static_key_slow_inc(&perf_sched_events.key);
6662
	if (is_cgroup_event(event))
6663
		static_key_slow_inc(&perf_sched_events.key);
6664 6665

	account_event_cpu(event, event->cpu);
6666 6667
}

T
Thomas Gleixner 已提交
6668
/*
6669
 * Allocate and initialize a event structure
T
Thomas Gleixner 已提交
6670
 */
6671
static struct perf_event *
6672
perf_event_alloc(struct perf_event_attr *attr, int cpu,
6673 6674 6675
		 struct task_struct *task,
		 struct perf_event *group_leader,
		 struct perf_event *parent_event,
6676 6677
		 perf_overflow_handler_t overflow_handler,
		 void *context)
T
Thomas Gleixner 已提交
6678
{
P
Peter Zijlstra 已提交
6679
	struct pmu *pmu;
6680 6681
	struct perf_event *event;
	struct hw_perf_event *hwc;
6682
	long err = -EINVAL;
T
Thomas Gleixner 已提交
6683

6684 6685 6686 6687 6688
	if ((unsigned)cpu >= nr_cpu_ids) {
		if (!task || cpu != -1)
			return ERR_PTR(-EINVAL);
	}

6689
	event = kzalloc(sizeof(*event), GFP_KERNEL);
6690
	if (!event)
6691
		return ERR_PTR(-ENOMEM);
T
Thomas Gleixner 已提交
6692

6693
	/*
6694
	 * Single events are their own group leaders, with an
6695 6696 6697
	 * empty sibling list:
	 */
	if (!group_leader)
6698
		group_leader = event;
6699

6700 6701
	mutex_init(&event->child_mutex);
	INIT_LIST_HEAD(&event->child_list);
6702

6703 6704 6705
	INIT_LIST_HEAD(&event->group_entry);
	INIT_LIST_HEAD(&event->event_entry);
	INIT_LIST_HEAD(&event->sibling_list);
6706
	INIT_LIST_HEAD(&event->rb_entry);
6707
	INIT_LIST_HEAD(&event->active_entry);
6708 6709
	INIT_HLIST_NODE(&event->hlist_entry);

6710

6711
	init_waitqueue_head(&event->waitq);
6712
	init_irq_work(&event->pending, perf_pending_event);
T
Thomas Gleixner 已提交
6713

6714
	mutex_init(&event->mmap_mutex);
6715

6716
	atomic_long_set(&event->refcount, 1);
6717 6718 6719 6720 6721
	event->cpu		= cpu;
	event->attr		= *attr;
	event->group_leader	= group_leader;
	event->pmu		= NULL;
	event->oncpu		= -1;
6722

6723
	event->parent		= parent_event;
6724

6725
	event->ns		= get_pid_ns(task_active_pid_ns(current));
6726
	event->id		= atomic64_inc_return(&perf_event_id);
6727

6728
	event->state		= PERF_EVENT_STATE_INACTIVE;
6729

6730 6731
	if (task) {
		event->attach_state = PERF_ATTACH_TASK;
6732 6733 6734

		if (attr->type == PERF_TYPE_TRACEPOINT)
			event->hw.tp_target = task;
6735 6736 6737 6738
#ifdef CONFIG_HAVE_HW_BREAKPOINT
		/*
		 * hw_breakpoint is a bit difficult here..
		 */
6739
		else if (attr->type == PERF_TYPE_BREAKPOINT)
6740 6741 6742 6743
			event->hw.bp_target = task;
#endif
	}

6744
	if (!overflow_handler && parent_event) {
6745
		overflow_handler = parent_event->overflow_handler;
6746 6747
		context = parent_event->overflow_handler_context;
	}
6748

6749
	event->overflow_handler	= overflow_handler;
6750
	event->overflow_handler_context = context;
6751

J
Jiri Olsa 已提交
6752
	perf_event__state_init(event);
6753

6754
	pmu = NULL;
6755

6756
	hwc = &event->hw;
6757
	hwc->sample_period = attr->sample_period;
6758
	if (attr->freq && attr->sample_freq)
6759
		hwc->sample_period = 1;
6760
	hwc->last_period = hwc->sample_period;
6761

6762
	local64_set(&hwc->period_left, hwc->sample_period);
6763

6764
	/*
6765
	 * we currently do not support PERF_FORMAT_GROUP on inherited events
6766
	 */
6767
	if (attr->inherit && (attr->read_format & PERF_FORMAT_GROUP))
6768
		goto err_ns;
6769

6770
	pmu = perf_init_event(event);
6771
	if (!pmu)
6772 6773
		goto err_ns;
	else if (IS_ERR(pmu)) {
6774
		err = PTR_ERR(pmu);
6775
		goto err_ns;
I
Ingo Molnar 已提交
6776
	}
6777

6778
	if (!event->parent) {
6779 6780
		if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) {
			err = get_callchain_buffers();
6781 6782
			if (err)
				goto err_pmu;
6783
		}
6784
	}
6785

6786
	return event;
6787 6788 6789 6790 6791 6792 6793 6794 6795 6796

err_pmu:
	if (event->destroy)
		event->destroy(event);
err_ns:
	if (event->ns)
		put_pid_ns(event->ns);
	kfree(event);

	return ERR_PTR(err);
T
Thomas Gleixner 已提交
6797 6798
}

6799 6800
static int perf_copy_attr(struct perf_event_attr __user *uattr,
			  struct perf_event_attr *attr)
6801 6802
{
	u32 size;
6803
	int ret;
6804 6805 6806 6807 6808 6809 6810 6811 6812 6813 6814 6815 6816 6817 6818 6819 6820 6821 6822 6823 6824 6825 6826 6827

	if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0))
		return -EFAULT;

	/*
	 * zero the full structure, so that a short copy will be nice.
	 */
	memset(attr, 0, sizeof(*attr));

	ret = get_user(size, &uattr->size);
	if (ret)
		return ret;

	if (size > PAGE_SIZE)	/* silly large */
		goto err_size;

	if (!size)		/* abi compat */
		size = PERF_ATTR_SIZE_VER0;

	if (size < PERF_ATTR_SIZE_VER0)
		goto err_size;

	/*
	 * If we're handed a bigger struct than we know of,
6828 6829 6830
	 * ensure all the unknown bits are 0 - i.e. new
	 * user-space does not rely on any kernel feature
	 * extensions we dont know about yet.
6831 6832
	 */
	if (size > sizeof(*attr)) {
6833 6834 6835
		unsigned char __user *addr;
		unsigned char __user *end;
		unsigned char val;
6836

6837 6838
		addr = (void __user *)uattr + sizeof(*attr);
		end  = (void __user *)uattr + size;
6839

6840
		for (; addr < end; addr++) {
6841 6842 6843 6844 6845 6846
			ret = get_user(val, addr);
			if (ret)
				return ret;
			if (val)
				goto err_size;
		}
6847
		size = sizeof(*attr);
6848 6849 6850 6851 6852 6853
	}

	ret = copy_from_user(attr, uattr, size);
	if (ret)
		return -EFAULT;

6854 6855 6856 6857
	/* disabled for now */
	if (attr->mmap2)
		return -EINVAL;

6858
	if (attr->__reserved_1)
6859 6860 6861 6862 6863 6864 6865 6866
		return -EINVAL;

	if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
		return -EINVAL;

	if (attr->read_format & ~(PERF_FORMAT_MAX-1))
		return -EINVAL;

6867 6868 6869 6870 6871 6872 6873 6874 6875 6876 6877 6878 6879 6880 6881 6882 6883 6884 6885 6886 6887 6888 6889 6890 6891 6892 6893 6894
	if (attr->sample_type & PERF_SAMPLE_BRANCH_STACK) {
		u64 mask = attr->branch_sample_type;

		/* only using defined bits */
		if (mask & ~(PERF_SAMPLE_BRANCH_MAX-1))
			return -EINVAL;

		/* at least one branch bit must be set */
		if (!(mask & ~PERF_SAMPLE_BRANCH_PLM_ALL))
			return -EINVAL;

		/* propagate priv level, when not set for branch */
		if (!(mask & PERF_SAMPLE_BRANCH_PLM_ALL)) {

			/* exclude_kernel checked on syscall entry */
			if (!attr->exclude_kernel)
				mask |= PERF_SAMPLE_BRANCH_KERNEL;

			if (!attr->exclude_user)
				mask |= PERF_SAMPLE_BRANCH_USER;

			if (!attr->exclude_hv)
				mask |= PERF_SAMPLE_BRANCH_HV;
			/*
			 * adjust user setting (for HW filter setup)
			 */
			attr->branch_sample_type = mask;
		}
6895 6896
		/* privileged levels capture (kernel, hv): check permissions */
		if ((mask & PERF_SAMPLE_BRANCH_PERM_PLM)
6897 6898
		    && perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
			return -EACCES;
6899
	}
6900

6901
	if (attr->sample_type & PERF_SAMPLE_REGS_USER) {
6902
		ret = perf_reg_validate(attr->sample_regs_user);
6903 6904 6905 6906 6907 6908 6909 6910 6911 6912 6913 6914 6915 6916 6917 6918 6919 6920
		if (ret)
			return ret;
	}

	if (attr->sample_type & PERF_SAMPLE_STACK_USER) {
		if (!arch_perf_have_user_stack_dump())
			return -ENOSYS;

		/*
		 * We have __u32 type for the size, but so far
		 * we can only use __u16 as maximum due to the
		 * __u16 sample size limit.
		 */
		if (attr->sample_stack_user >= USHRT_MAX)
			ret = -EINVAL;
		else if (!IS_ALIGNED(attr->sample_stack_user, sizeof(u64)))
			ret = -EINVAL;
	}
6921

6922 6923 6924 6925 6926 6927 6928 6929 6930
out:
	return ret;

err_size:
	put_user(sizeof(*attr), &uattr->size);
	ret = -E2BIG;
	goto out;
}

6931 6932
static int
perf_event_set_output(struct perf_event *event, struct perf_event *output_event)
6933
{
6934
	struct ring_buffer *rb = NULL, *old_rb = NULL;
6935 6936
	int ret = -EINVAL;

6937
	if (!output_event)
6938 6939
		goto set;

6940 6941
	/* don't allow circular references */
	if (event == output_event)
6942 6943
		goto out;

6944 6945 6946 6947 6948 6949 6950
	/*
	 * Don't allow cross-cpu buffers
	 */
	if (output_event->cpu != event->cpu)
		goto out;

	/*
6951
	 * If its not a per-cpu rb, it must be the same task.
6952 6953 6954 6955
	 */
	if (output_event->cpu == -1 && output_event->ctx != event->ctx)
		goto out;

6956
set:
6957
	mutex_lock(&event->mmap_mutex);
6958 6959 6960
	/* Can't redirect output if we've got an active mmap() */
	if (atomic_read(&event->mmap_count))
		goto unlock;
6961

6962 6963
	old_rb = event->rb;

6964
	if (output_event) {
6965 6966 6967
		/* get the rb we want to redirect to */
		rb = ring_buffer_get(output_event);
		if (!rb)
6968
			goto unlock;
6969 6970
	}

6971 6972
	if (old_rb)
		ring_buffer_detach(event, old_rb);
6973 6974 6975 6976 6977 6978 6979 6980 6981 6982 6983 6984 6985 6986 6987 6988

	if (rb)
		ring_buffer_attach(event, rb);

	rcu_assign_pointer(event->rb, rb);

	if (old_rb) {
		ring_buffer_put(old_rb);
		/*
		 * Since we detached before setting the new rb, so that we
		 * could attach the new rb, we could have missed a wakeup.
		 * Provide it now.
		 */
		wake_up_all(&event->waitq);
	}

6989
	ret = 0;
6990 6991 6992
unlock:
	mutex_unlock(&event->mmap_mutex);

6993 6994 6995 6996
out:
	return ret;
}

T
Thomas Gleixner 已提交
6997
/**
6998
 * sys_perf_event_open - open a performance event, associate it to a task/cpu
I
Ingo Molnar 已提交
6999
 *
7000
 * @attr_uptr:	event_id type attributes for monitoring/sampling
T
Thomas Gleixner 已提交
7001
 * @pid:		target pid
I
Ingo Molnar 已提交
7002
 * @cpu:		target cpu
7003
 * @group_fd:		group leader event fd
T
Thomas Gleixner 已提交
7004
 */
7005 7006
SYSCALL_DEFINE5(perf_event_open,
		struct perf_event_attr __user *, attr_uptr,
7007
		pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
T
Thomas Gleixner 已提交
7008
{
7009 7010
	struct perf_event *group_leader = NULL, *output_event = NULL;
	struct perf_event *event, *sibling;
7011 7012 7013
	struct perf_event_attr attr;
	struct perf_event_context *ctx;
	struct file *event_file = NULL;
7014
	struct fd group = {NULL, 0};
M
Matt Helsley 已提交
7015
	struct task_struct *task = NULL;
7016
	struct pmu *pmu;
7017
	int event_fd;
7018
	int move_group = 0;
7019
	int err;
7020
	int f_flags = O_RDWR;
T
Thomas Gleixner 已提交
7021

7022
	/* for future expandability... */
S
Stephane Eranian 已提交
7023
	if (flags & ~PERF_FLAG_ALL)
7024 7025
		return -EINVAL;

7026 7027 7028
	err = perf_copy_attr(attr_uptr, &attr);
	if (err)
		return err;
7029

7030 7031 7032 7033 7034
	if (!attr.exclude_kernel) {
		if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
			return -EACCES;
	}

7035
	if (attr.freq) {
7036
		if (attr.sample_freq > sysctl_perf_event_sample_rate)
7037 7038 7039
			return -EINVAL;
	}

S
Stephane Eranian 已提交
7040 7041 7042 7043 7044 7045 7046 7047 7048
	/*
	 * In cgroup mode, the pid argument is used to pass the fd
	 * opened to the cgroup directory in cgroupfs. The cpu argument
	 * designates the cpu on which to monitor threads from that
	 * cgroup.
	 */
	if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1))
		return -EINVAL;

7049 7050 7051 7052
	if (flags & PERF_FLAG_FD_CLOEXEC)
		f_flags |= O_CLOEXEC;

	event_fd = get_unused_fd_flags(f_flags);
7053 7054 7055
	if (event_fd < 0)
		return event_fd;

7056
	if (group_fd != -1) {
7057 7058
		err = perf_fget_light(group_fd, &group);
		if (err)
7059
			goto err_fd;
7060
		group_leader = group.file->private_data;
7061 7062 7063 7064 7065 7066
		if (flags & PERF_FLAG_FD_OUTPUT)
			output_event = group_leader;
		if (flags & PERF_FLAG_FD_NO_GROUP)
			group_leader = NULL;
	}

S
Stephane Eranian 已提交
7067
	if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) {
7068 7069 7070 7071 7072 7073 7074
		task = find_lively_task_by_vpid(pid);
		if (IS_ERR(task)) {
			err = PTR_ERR(task);
			goto err_group_fd;
		}
	}

7075 7076
	get_online_cpus();

7077 7078
	event = perf_event_alloc(&attr, cpu, task, group_leader, NULL,
				 NULL, NULL);
7079 7080
	if (IS_ERR(event)) {
		err = PTR_ERR(event);
7081
		goto err_task;
7082 7083
	}

S
Stephane Eranian 已提交
7084 7085
	if (flags & PERF_FLAG_PID_CGROUP) {
		err = perf_cgroup_connect(pid, event, &attr, group_leader);
7086 7087 7088 7089
		if (err) {
			__free_event(event);
			goto err_task;
		}
S
Stephane Eranian 已提交
7090 7091
	}

7092 7093
	account_event(event);

7094 7095 7096 7097 7098
	/*
	 * Special case software events and allow them to be part of
	 * any hardware group.
	 */
	pmu = event->pmu;
7099 7100 7101 7102 7103 7104 7105 7106 7107 7108 7109 7110 7111 7112 7113 7114 7115 7116 7117 7118 7119 7120 7121

	if (group_leader &&
	    (is_software_event(event) != is_software_event(group_leader))) {
		if (is_software_event(event)) {
			/*
			 * If event and group_leader are not both a software
			 * event, and event is, then group leader is not.
			 *
			 * Allow the addition of software events to !software
			 * groups, this is safe because software events never
			 * fail to schedule.
			 */
			pmu = group_leader->pmu;
		} else if (is_software_event(group_leader) &&
			   (group_leader->group_flags & PERF_GROUP_SOFTWARE)) {
			/*
			 * In case the group is a pure software group, and we
			 * try to add a hardware event, move the whole group to
			 * the hardware context.
			 */
			move_group = 1;
		}
	}
7122 7123 7124 7125

	/*
	 * Get the target context (task or percpu):
	 */
7126
	ctx = find_get_context(pmu, task, event->cpu);
7127 7128
	if (IS_ERR(ctx)) {
		err = PTR_ERR(ctx);
7129
		goto err_alloc;
7130 7131
	}

7132 7133 7134 7135 7136
	if (task) {
		put_task_struct(task);
		task = NULL;
	}

I
Ingo Molnar 已提交
7137
	/*
7138
	 * Look up the group leader (we will attach this event to it):
7139
	 */
7140
	if (group_leader) {
7141
		err = -EINVAL;
7142 7143

		/*
I
Ingo Molnar 已提交
7144 7145 7146 7147
		 * Do not allow a recursive hierarchy (this new sibling
		 * becoming part of another group-sibling):
		 */
		if (group_leader->group_leader != group_leader)
7148
			goto err_context;
I
Ingo Molnar 已提交
7149 7150 7151
		/*
		 * Do not allow to attach to a group in a different
		 * task or CPU context:
7152
		 */
7153 7154 7155 7156 7157 7158 7159 7160
		if (move_group) {
			if (group_leader->ctx->type != ctx->type)
				goto err_context;
		} else {
			if (group_leader->ctx != ctx)
				goto err_context;
		}

7161 7162 7163
		/*
		 * Only a group leader can be exclusive or pinned
		 */
7164
		if (attr.exclusive || attr.pinned)
7165
			goto err_context;
7166 7167 7168 7169 7170
	}

	if (output_event) {
		err = perf_event_set_output(event, output_event);
		if (err)
7171
			goto err_context;
7172
	}
T
Thomas Gleixner 已提交
7173

7174 7175
	event_file = anon_inode_getfile("[perf_event]", &perf_fops, event,
					f_flags);
7176 7177
	if (IS_ERR(event_file)) {
		err = PTR_ERR(event_file);
7178
		goto err_context;
7179
	}
7180

7181 7182 7183 7184
	if (move_group) {
		struct perf_event_context *gctx = group_leader->ctx;

		mutex_lock(&gctx->mutex);
7185
		perf_remove_from_context(group_leader);
J
Jiri Olsa 已提交
7186 7187 7188 7189 7190 7191 7192

		/*
		 * Removing from the context ends up with disabled
		 * event. What we want here is event in the initial
		 * startup state, ready to be add into new context.
		 */
		perf_event__state_init(group_leader);
7193 7194
		list_for_each_entry(sibling, &group_leader->sibling_list,
				    group_entry) {
7195
			perf_remove_from_context(sibling);
J
Jiri Olsa 已提交
7196
			perf_event__state_init(sibling);
7197 7198 7199 7200
			put_ctx(gctx);
		}
		mutex_unlock(&gctx->mutex);
		put_ctx(gctx);
7201
	}
7202

7203
	WARN_ON_ONCE(ctx->parent_ctx);
7204
	mutex_lock(&ctx->mutex);
7205 7206

	if (move_group) {
7207
		synchronize_rcu();
7208
		perf_install_in_context(ctx, group_leader, event->cpu);
7209 7210 7211
		get_ctx(ctx);
		list_for_each_entry(sibling, &group_leader->sibling_list,
				    group_entry) {
7212
			perf_install_in_context(ctx, sibling, event->cpu);
7213 7214 7215 7216
			get_ctx(ctx);
		}
	}

7217
	perf_install_in_context(ctx, event, event->cpu);
7218
	perf_unpin_context(ctx);
7219
	mutex_unlock(&ctx->mutex);
7220

7221 7222
	put_online_cpus();

7223
	event->owner = current;
P
Peter Zijlstra 已提交
7224

7225 7226 7227
	mutex_lock(&current->perf_event_mutex);
	list_add_tail(&event->owner_entry, &current->perf_event_list);
	mutex_unlock(&current->perf_event_mutex);
7228

7229 7230 7231 7232
	/*
	 * Precalculate sample_data sizes
	 */
	perf_event__header_size(event);
7233
	perf_event__id_header_size(event);
7234

7235 7236 7237 7238 7239 7240
	/*
	 * Drop the reference on the group_event after placing the
	 * new event on the sibling_list. This ensures destruction
	 * of the group leader will find the pointer to itself in
	 * perf_group_detach().
	 */
7241
	fdput(group);
7242 7243
	fd_install(event_fd, event_file);
	return event_fd;
T
Thomas Gleixner 已提交
7244

7245
err_context:
7246
	perf_unpin_context(ctx);
7247
	put_ctx(ctx);
7248
err_alloc:
7249
	free_event(event);
P
Peter Zijlstra 已提交
7250
err_task:
7251
	put_online_cpus();
P
Peter Zijlstra 已提交
7252 7253
	if (task)
		put_task_struct(task);
7254
err_group_fd:
7255
	fdput(group);
7256 7257
err_fd:
	put_unused_fd(event_fd);
7258
	return err;
T
Thomas Gleixner 已提交
7259 7260
}

7261 7262 7263 7264 7265
/**
 * perf_event_create_kernel_counter
 *
 * @attr: attributes of the counter to create
 * @cpu: cpu in which the counter is bound
M
Matt Helsley 已提交
7266
 * @task: task to profile (NULL for percpu)
7267 7268 7269
 */
struct perf_event *
perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
M
Matt Helsley 已提交
7270
				 struct task_struct *task,
7271 7272
				 perf_overflow_handler_t overflow_handler,
				 void *context)
7273 7274
{
	struct perf_event_context *ctx;
7275
	struct perf_event *event;
7276
	int err;
7277

7278 7279 7280
	/*
	 * Get the target context (task or percpu):
	 */
7281

7282 7283
	event = perf_event_alloc(attr, cpu, task, NULL, NULL,
				 overflow_handler, context);
7284 7285 7286 7287
	if (IS_ERR(event)) {
		err = PTR_ERR(event);
		goto err;
	}
7288

7289 7290
	account_event(event);

M
Matt Helsley 已提交
7291
	ctx = find_get_context(event->pmu, task, cpu);
7292 7293
	if (IS_ERR(ctx)) {
		err = PTR_ERR(ctx);
7294
		goto err_free;
7295
	}
7296 7297 7298 7299

	WARN_ON_ONCE(ctx->parent_ctx);
	mutex_lock(&ctx->mutex);
	perf_install_in_context(ctx, event, cpu);
7300
	perf_unpin_context(ctx);
7301 7302 7303 7304
	mutex_unlock(&ctx->mutex);

	return event;

7305 7306 7307
err_free:
	free_event(event);
err:
7308
	return ERR_PTR(err);
7309
}
7310
EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
7311

7312 7313 7314 7315 7316 7317 7318 7319 7320 7321 7322 7323 7324 7325
void perf_pmu_migrate_context(struct pmu *pmu, int src_cpu, int dst_cpu)
{
	struct perf_event_context *src_ctx;
	struct perf_event_context *dst_ctx;
	struct perf_event *event, *tmp;
	LIST_HEAD(events);

	src_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, src_cpu)->ctx;
	dst_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, dst_cpu)->ctx;

	mutex_lock(&src_ctx->mutex);
	list_for_each_entry_safe(event, tmp, &src_ctx->event_list,
				 event_entry) {
		perf_remove_from_context(event);
7326
		unaccount_event_cpu(event, src_cpu);
7327
		put_ctx(src_ctx);
7328
		list_add(&event->migrate_entry, &events);
7329 7330 7331 7332 7333 7334
	}
	mutex_unlock(&src_ctx->mutex);

	synchronize_rcu();

	mutex_lock(&dst_ctx->mutex);
7335 7336
	list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
		list_del(&event->migrate_entry);
7337 7338
		if (event->state >= PERF_EVENT_STATE_OFF)
			event->state = PERF_EVENT_STATE_INACTIVE;
7339
		account_event_cpu(event, dst_cpu);
7340 7341 7342 7343 7344 7345 7346
		perf_install_in_context(dst_ctx, event, dst_cpu);
		get_ctx(dst_ctx);
	}
	mutex_unlock(&dst_ctx->mutex);
}
EXPORT_SYMBOL_GPL(perf_pmu_migrate_context);

7347
static void sync_child_event(struct perf_event *child_event,
7348
			       struct task_struct *child)
7349
{
7350
	struct perf_event *parent_event = child_event->parent;
7351
	u64 child_val;
7352

7353 7354
	if (child_event->attr.inherit_stat)
		perf_event_read_event(child_event, child);
7355

P
Peter Zijlstra 已提交
7356
	child_val = perf_event_count(child_event);
7357 7358 7359 7360

	/*
	 * Add back the child's count to the parent's count:
	 */
7361
	atomic64_add(child_val, &parent_event->child_count);
7362 7363 7364 7365
	atomic64_add(child_event->total_time_enabled,
		     &parent_event->child_total_time_enabled);
	atomic64_add(child_event->total_time_running,
		     &parent_event->child_total_time_running);
7366 7367

	/*
7368
	 * Remove this event from the parent's list
7369
	 */
7370 7371 7372 7373
	WARN_ON_ONCE(parent_event->ctx->parent_ctx);
	mutex_lock(&parent_event->child_mutex);
	list_del_init(&child_event->child_list);
	mutex_unlock(&parent_event->child_mutex);
7374 7375

	/*
7376
	 * Release the parent event, if this was the last
7377 7378
	 * reference to it.
	 */
7379
	put_event(parent_event);
7380 7381
}

7382
static void
7383 7384
__perf_event_exit_task(struct perf_event *child_event,
			 struct perf_event_context *child_ctx,
7385
			 struct task_struct *child)
7386
{
7387 7388 7389 7390 7391
	if (child_event->parent) {
		raw_spin_lock_irq(&child_ctx->lock);
		perf_group_detach(child_event);
		raw_spin_unlock_irq(&child_ctx->lock);
	}
7392

7393
	perf_remove_from_context(child_event);
7394

7395
	/*
7396
	 * It can happen that the parent exits first, and has events
7397
	 * that are still around due to the child reference. These
7398
	 * events need to be zapped.
7399
	 */
7400
	if (child_event->parent) {
7401 7402
		sync_child_event(child_event, child);
		free_event(child_event);
7403
	}
7404 7405
}

P
Peter Zijlstra 已提交
7406
static void perf_event_exit_task_context(struct task_struct *child, int ctxn)
7407
{
7408 7409
	struct perf_event *child_event, *tmp;
	struct perf_event_context *child_ctx;
7410
	unsigned long flags;
7411

P
Peter Zijlstra 已提交
7412
	if (likely(!child->perf_event_ctxp[ctxn])) {
7413
		perf_event_task(child, NULL, 0);
7414
		return;
P
Peter Zijlstra 已提交
7415
	}
7416

7417
	local_irq_save(flags);
7418 7419 7420 7421 7422 7423
	/*
	 * We can't reschedule here because interrupts are disabled,
	 * and either child is current or it is a task that can't be
	 * scheduled, so we are now safe from rescheduling changing
	 * our context.
	 */
7424
	child_ctx = rcu_dereference_raw(child->perf_event_ctxp[ctxn]);
7425 7426 7427

	/*
	 * Take the context lock here so that if find_get_context is
7428
	 * reading child->perf_event_ctxp, we wait until it has
7429 7430
	 * incremented the context's refcount before we do put_ctx below.
	 */
7431
	raw_spin_lock(&child_ctx->lock);
7432
	task_ctx_sched_out(child_ctx);
P
Peter Zijlstra 已提交
7433
	child->perf_event_ctxp[ctxn] = NULL;
7434 7435 7436
	/*
	 * If this context is a clone; unclone it so it can't get
	 * swapped to another process while we're removing all
7437
	 * the events from it.
7438 7439
	 */
	unclone_ctx(child_ctx);
7440
	update_context_time(child_ctx);
7441
	raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
P
Peter Zijlstra 已提交
7442 7443

	/*
7444 7445 7446
	 * Report the task dead after unscheduling the events so that we
	 * won't get any samples after PERF_RECORD_EXIT. We can however still
	 * get a few PERF_RECORD_READ events.
P
Peter Zijlstra 已提交
7447
	 */
7448
	perf_event_task(child, child_ctx, 0);
7449

7450 7451 7452
	/*
	 * We can recurse on the same lock type through:
	 *
7453 7454
	 *   __perf_event_exit_task()
	 *     sync_child_event()
7455 7456
	 *       put_event()
	 *         mutex_lock(&ctx->mutex)
7457 7458 7459
	 *
	 * But since its the parent context it won't be the same instance.
	 */
7460
	mutex_lock(&child_ctx->mutex);
7461

7462
again:
7463 7464 7465 7466 7467
	list_for_each_entry_safe(child_event, tmp, &child_ctx->pinned_groups,
				 group_entry)
		__perf_event_exit_task(child_event, child_ctx, child);

	list_for_each_entry_safe(child_event, tmp, &child_ctx->flexible_groups,
7468
				 group_entry)
7469
		__perf_event_exit_task(child_event, child_ctx, child);
7470 7471

	/*
7472
	 * If the last event was a group event, it will have appended all
7473 7474 7475
	 * its siblings to the list, but we obtained 'tmp' before that which
	 * will still point to the list head terminating the iteration.
	 */
7476 7477
	if (!list_empty(&child_ctx->pinned_groups) ||
	    !list_empty(&child_ctx->flexible_groups))
7478
		goto again;
7479 7480 7481 7482

	mutex_unlock(&child_ctx->mutex);

	put_ctx(child_ctx);
7483 7484
}

P
Peter Zijlstra 已提交
7485 7486 7487 7488 7489
/*
 * When a child task exits, feed back event values to parent events.
 */
void perf_event_exit_task(struct task_struct *child)
{
P
Peter Zijlstra 已提交
7490
	struct perf_event *event, *tmp;
P
Peter Zijlstra 已提交
7491 7492
	int ctxn;

P
Peter Zijlstra 已提交
7493 7494 7495 7496 7497 7498 7499 7500 7501 7502 7503 7504 7505 7506 7507
	mutex_lock(&child->perf_event_mutex);
	list_for_each_entry_safe(event, tmp, &child->perf_event_list,
				 owner_entry) {
		list_del_init(&event->owner_entry);

		/*
		 * Ensure the list deletion is visible before we clear
		 * the owner, closes a race against perf_release() where
		 * we need to serialize on the owner->perf_event_mutex.
		 */
		smp_wmb();
		event->owner = NULL;
	}
	mutex_unlock(&child->perf_event_mutex);

P
Peter Zijlstra 已提交
7508 7509 7510 7511
	for_each_task_context_nr(ctxn)
		perf_event_exit_task_context(child, ctxn);
}

7512 7513 7514 7515 7516 7517 7518 7519 7520 7521 7522 7523
static void perf_free_event(struct perf_event *event,
			    struct perf_event_context *ctx)
{
	struct perf_event *parent = event->parent;

	if (WARN_ON_ONCE(!parent))
		return;

	mutex_lock(&parent->child_mutex);
	list_del_init(&event->child_list);
	mutex_unlock(&parent->child_mutex);

7524
	put_event(parent);
7525

7526
	perf_group_detach(event);
7527 7528 7529 7530
	list_del_event(event, ctx);
	free_event(event);
}

7531 7532
/*
 * free an unexposed, unused context as created by inheritance by
P
Peter Zijlstra 已提交
7533
 * perf_event_init_task below, used by fork() in case of fail.
7534
 */
7535
void perf_event_free_task(struct task_struct *task)
7536
{
P
Peter Zijlstra 已提交
7537
	struct perf_event_context *ctx;
7538
	struct perf_event *event, *tmp;
P
Peter Zijlstra 已提交
7539
	int ctxn;
7540

P
Peter Zijlstra 已提交
7541 7542 7543 7544
	for_each_task_context_nr(ctxn) {
		ctx = task->perf_event_ctxp[ctxn];
		if (!ctx)
			continue;
7545

P
Peter Zijlstra 已提交
7546
		mutex_lock(&ctx->mutex);
7547
again:
P
Peter Zijlstra 已提交
7548 7549 7550
		list_for_each_entry_safe(event, tmp, &ctx->pinned_groups,
				group_entry)
			perf_free_event(event, ctx);
7551

P
Peter Zijlstra 已提交
7552 7553 7554
		list_for_each_entry_safe(event, tmp, &ctx->flexible_groups,
				group_entry)
			perf_free_event(event, ctx);
7555

P
Peter Zijlstra 已提交
7556 7557 7558
		if (!list_empty(&ctx->pinned_groups) ||
				!list_empty(&ctx->flexible_groups))
			goto again;
7559

P
Peter Zijlstra 已提交
7560
		mutex_unlock(&ctx->mutex);
7561

P
Peter Zijlstra 已提交
7562 7563
		put_ctx(ctx);
	}
7564 7565
}

7566 7567 7568 7569 7570 7571 7572 7573
void perf_event_delayed_put(struct task_struct *task)
{
	int ctxn;

	for_each_task_context_nr(ctxn)
		WARN_ON_ONCE(task->perf_event_ctxp[ctxn]);
}

P
Peter Zijlstra 已提交
7574 7575 7576 7577 7578 7579 7580 7581 7582 7583 7584 7585
/*
 * inherit a event from parent task to child task:
 */
static struct perf_event *
inherit_event(struct perf_event *parent_event,
	      struct task_struct *parent,
	      struct perf_event_context *parent_ctx,
	      struct task_struct *child,
	      struct perf_event *group_leader,
	      struct perf_event_context *child_ctx)
{
	struct perf_event *child_event;
7586
	unsigned long flags;
P
Peter Zijlstra 已提交
7587 7588 7589 7590 7591 7592 7593 7594 7595 7596 7597 7598

	/*
	 * Instead of creating recursive hierarchies of events,
	 * we link inherited events back to the original parent,
	 * which has a filp for sure, which we use as the reference
	 * count:
	 */
	if (parent_event->parent)
		parent_event = parent_event->parent;

	child_event = perf_event_alloc(&parent_event->attr,
					   parent_event->cpu,
7599
					   child,
P
Peter Zijlstra 已提交
7600
					   group_leader, parent_event,
7601
				           NULL, NULL);
P
Peter Zijlstra 已提交
7602 7603
	if (IS_ERR(child_event))
		return child_event;
7604 7605 7606 7607 7608 7609

	if (!atomic_long_inc_not_zero(&parent_event->refcount)) {
		free_event(child_event);
		return NULL;
	}

P
Peter Zijlstra 已提交
7610 7611 7612 7613 7614 7615 7616 7617 7618 7619 7620 7621 7622 7623 7624 7625 7626 7627 7628 7629 7630 7631 7632 7633
	get_ctx(child_ctx);

	/*
	 * Make the child state follow the state of the parent event,
	 * not its attr.disabled bit.  We hold the parent's mutex,
	 * so we won't race with perf_event_{en, dis}able_family.
	 */
	if (parent_event->state >= PERF_EVENT_STATE_INACTIVE)
		child_event->state = PERF_EVENT_STATE_INACTIVE;
	else
		child_event->state = PERF_EVENT_STATE_OFF;

	if (parent_event->attr.freq) {
		u64 sample_period = parent_event->hw.sample_period;
		struct hw_perf_event *hwc = &child_event->hw;

		hwc->sample_period = sample_period;
		hwc->last_period   = sample_period;

		local64_set(&hwc->period_left, sample_period);
	}

	child_event->ctx = child_ctx;
	child_event->overflow_handler = parent_event->overflow_handler;
7634 7635
	child_event->overflow_handler_context
		= parent_event->overflow_handler_context;
P
Peter Zijlstra 已提交
7636

7637 7638 7639 7640
	/*
	 * Precalculate sample_data sizes
	 */
	perf_event__header_size(child_event);
7641
	perf_event__id_header_size(child_event);
7642

P
Peter Zijlstra 已提交
7643 7644 7645
	/*
	 * Link it up in the child's context:
	 */
7646
	raw_spin_lock_irqsave(&child_ctx->lock, flags);
P
Peter Zijlstra 已提交
7647
	add_event_to_ctx(child_event, child_ctx);
7648
	raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
P
Peter Zijlstra 已提交
7649 7650 7651 7652 7653 7654 7655 7656 7657 7658 7659 7660 7661 7662 7663 7664 7665 7666 7667 7668 7669 7670 7671 7672 7673 7674 7675 7676 7677 7678 7679 7680 7681

	/*
	 * Link this into the parent event's child list
	 */
	WARN_ON_ONCE(parent_event->ctx->parent_ctx);
	mutex_lock(&parent_event->child_mutex);
	list_add_tail(&child_event->child_list, &parent_event->child_list);
	mutex_unlock(&parent_event->child_mutex);

	return child_event;
}

static int inherit_group(struct perf_event *parent_event,
	      struct task_struct *parent,
	      struct perf_event_context *parent_ctx,
	      struct task_struct *child,
	      struct perf_event_context *child_ctx)
{
	struct perf_event *leader;
	struct perf_event *sub;
	struct perf_event *child_ctr;

	leader = inherit_event(parent_event, parent, parent_ctx,
				 child, NULL, child_ctx);
	if (IS_ERR(leader))
		return PTR_ERR(leader);
	list_for_each_entry(sub, &parent_event->sibling_list, group_entry) {
		child_ctr = inherit_event(sub, parent, parent_ctx,
					    child, leader, child_ctx);
		if (IS_ERR(child_ctr))
			return PTR_ERR(child_ctr);
	}
	return 0;
7682 7683 7684 7685 7686
}

static int
inherit_task_group(struct perf_event *event, struct task_struct *parent,
		   struct perf_event_context *parent_ctx,
P
Peter Zijlstra 已提交
7687
		   struct task_struct *child, int ctxn,
7688 7689 7690
		   int *inherited_all)
{
	int ret;
P
Peter Zijlstra 已提交
7691
	struct perf_event_context *child_ctx;
7692 7693 7694 7695

	if (!event->attr.inherit) {
		*inherited_all = 0;
		return 0;
7696 7697
	}

7698
	child_ctx = child->perf_event_ctxp[ctxn];
7699 7700 7701 7702 7703 7704 7705
	if (!child_ctx) {
		/*
		 * This is executed from the parent task context, so
		 * inherit events that have been marked for cloning.
		 * First allocate and initialize a context for the
		 * child.
		 */
7706

7707
		child_ctx = alloc_perf_context(parent_ctx->pmu, child);
7708 7709
		if (!child_ctx)
			return -ENOMEM;
7710

P
Peter Zijlstra 已提交
7711
		child->perf_event_ctxp[ctxn] = child_ctx;
7712 7713 7714 7715 7716 7717 7718 7719 7720
	}

	ret = inherit_group(event, parent, parent_ctx,
			    child, child_ctx);

	if (ret)
		*inherited_all = 0;

	return ret;
7721 7722
}

7723
/*
7724
 * Initialize the perf_event context in task_struct
7725
 */
P
Peter Zijlstra 已提交
7726
int perf_event_init_context(struct task_struct *child, int ctxn)
7727
{
7728
	struct perf_event_context *child_ctx, *parent_ctx;
7729 7730
	struct perf_event_context *cloned_ctx;
	struct perf_event *event;
7731
	struct task_struct *parent = current;
7732
	int inherited_all = 1;
7733
	unsigned long flags;
7734
	int ret = 0;
7735

P
Peter Zijlstra 已提交
7736
	if (likely(!parent->perf_event_ctxp[ctxn]))
7737 7738
		return 0;

7739
	/*
7740 7741
	 * If the parent's context is a clone, pin it so it won't get
	 * swapped under us.
7742
	 */
P
Peter Zijlstra 已提交
7743
	parent_ctx = perf_pin_task_context(parent, ctxn);
7744

7745 7746 7747 7748 7749 7750 7751
	/*
	 * No need to check if parent_ctx != NULL here; since we saw
	 * it non-NULL earlier, the only reason for it to become NULL
	 * is if we exit, and since we're currently in the middle of
	 * a fork we can't be exiting at the same time.
	 */

7752 7753 7754 7755
	/*
	 * Lock the parent list. No need to lock the child - not PID
	 * hashed yet and not running, so nobody can access it.
	 */
7756
	mutex_lock(&parent_ctx->mutex);
7757 7758 7759 7760 7761

	/*
	 * We dont have to disable NMIs - we are only looking at
	 * the list, not manipulating it:
	 */
7762
	list_for_each_entry(event, &parent_ctx->pinned_groups, group_entry) {
P
Peter Zijlstra 已提交
7763 7764
		ret = inherit_task_group(event, parent, parent_ctx,
					 child, ctxn, &inherited_all);
7765 7766 7767
		if (ret)
			break;
	}
7768

7769 7770 7771 7772 7773 7774 7775 7776 7777
	/*
	 * We can't hold ctx->lock when iterating the ->flexible_group list due
	 * to allocations, but we need to prevent rotation because
	 * rotate_ctx() will change the list from interrupt context.
	 */
	raw_spin_lock_irqsave(&parent_ctx->lock, flags);
	parent_ctx->rotate_disable = 1;
	raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);

7778
	list_for_each_entry(event, &parent_ctx->flexible_groups, group_entry) {
P
Peter Zijlstra 已提交
7779 7780
		ret = inherit_task_group(event, parent, parent_ctx,
					 child, ctxn, &inherited_all);
7781
		if (ret)
7782
			break;
7783 7784
	}

7785 7786 7787
	raw_spin_lock_irqsave(&parent_ctx->lock, flags);
	parent_ctx->rotate_disable = 0;

P
Peter Zijlstra 已提交
7788
	child_ctx = child->perf_event_ctxp[ctxn];
7789

7790
	if (child_ctx && inherited_all) {
7791 7792 7793
		/*
		 * Mark the child context as a clone of the parent
		 * context, or of whatever the parent is a clone of.
P
Peter Zijlstra 已提交
7794 7795 7796
		 *
		 * Note that if the parent is a clone, the holding of
		 * parent_ctx->lock avoids it from being uncloned.
7797
		 */
P
Peter Zijlstra 已提交
7798
		cloned_ctx = parent_ctx->parent_ctx;
7799 7800
		if (cloned_ctx) {
			child_ctx->parent_ctx = cloned_ctx;
7801
			child_ctx->parent_gen = parent_ctx->parent_gen;
7802 7803 7804 7805 7806
		} else {
			child_ctx->parent_ctx = parent_ctx;
			child_ctx->parent_gen = parent_ctx->generation;
		}
		get_ctx(child_ctx->parent_ctx);
7807 7808
	}

P
Peter Zijlstra 已提交
7809
	raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
7810
	mutex_unlock(&parent_ctx->mutex);
7811

7812
	perf_unpin_context(parent_ctx);
7813
	put_ctx(parent_ctx);
7814

7815
	return ret;
7816 7817
}

P
Peter Zijlstra 已提交
7818 7819 7820 7821 7822 7823 7824
/*
 * Initialize the perf_event context in task_struct
 */
int perf_event_init_task(struct task_struct *child)
{
	int ctxn, ret;

7825 7826 7827 7828
	memset(child->perf_event_ctxp, 0, sizeof(child->perf_event_ctxp));
	mutex_init(&child->perf_event_mutex);
	INIT_LIST_HEAD(&child->perf_event_list);

P
Peter Zijlstra 已提交
7829 7830 7831 7832 7833 7834 7835 7836 7837
	for_each_task_context_nr(ctxn) {
		ret = perf_event_init_context(child, ctxn);
		if (ret)
			return ret;
	}

	return 0;
}

7838 7839
static void __init perf_event_init_all_cpus(void)
{
7840
	struct swevent_htable *swhash;
7841 7842 7843
	int cpu;

	for_each_possible_cpu(cpu) {
7844 7845
		swhash = &per_cpu(swevent_htable, cpu);
		mutex_init(&swhash->hlist_mutex);
7846
		INIT_LIST_HEAD(&per_cpu(rotation_list, cpu));
7847 7848 7849
	}
}

7850
static void perf_event_init_cpu(int cpu)
T
Thomas Gleixner 已提交
7851
{
P
Peter Zijlstra 已提交
7852
	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
T
Thomas Gleixner 已提交
7853

7854
	mutex_lock(&swhash->hlist_mutex);
7855
	if (swhash->hlist_refcount > 0) {
7856 7857
		struct swevent_hlist *hlist;

7858 7859 7860
		hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu));
		WARN_ON(!hlist);
		rcu_assign_pointer(swhash->swevent_hlist, hlist);
7861
	}
7862
	mutex_unlock(&swhash->hlist_mutex);
T
Thomas Gleixner 已提交
7863 7864
}

P
Peter Zijlstra 已提交
7865
#if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC
7866
static void perf_pmu_rotate_stop(struct pmu *pmu)
T
Thomas Gleixner 已提交
7867
{
7868 7869 7870 7871 7872 7873 7874
	struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);

	WARN_ON(!irqs_disabled());

	list_del_init(&cpuctx->rotation_list);
}

P
Peter Zijlstra 已提交
7875
static void __perf_event_exit_context(void *__info)
T
Thomas Gleixner 已提交
7876
{
P
Peter Zijlstra 已提交
7877
	struct perf_event_context *ctx = __info;
P
Peter Zijlstra 已提交
7878
	struct perf_event *event;
T
Thomas Gleixner 已提交
7879

P
Peter Zijlstra 已提交
7880
	perf_pmu_rotate_stop(ctx->pmu);
7881

P
Peter Zijlstra 已提交
7882 7883
	rcu_read_lock();
	list_for_each_entry_rcu(event, &ctx->event_list, event_entry)
7884
		__perf_remove_from_context(event);
P
Peter Zijlstra 已提交
7885
	rcu_read_unlock();
T
Thomas Gleixner 已提交
7886
}
P
Peter Zijlstra 已提交
7887 7888 7889 7890 7891 7892 7893 7894 7895

static void perf_event_exit_cpu_context(int cpu)
{
	struct perf_event_context *ctx;
	struct pmu *pmu;
	int idx;

	idx = srcu_read_lock(&pmus_srcu);
	list_for_each_entry_rcu(pmu, &pmus, entry) {
7896
		ctx = &per_cpu_ptr(pmu->pmu_cpu_context, cpu)->ctx;
P
Peter Zijlstra 已提交
7897 7898 7899 7900 7901 7902 7903 7904

		mutex_lock(&ctx->mutex);
		smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1);
		mutex_unlock(&ctx->mutex);
	}
	srcu_read_unlock(&pmus_srcu, idx);
}

7905
static void perf_event_exit_cpu(int cpu)
T
Thomas Gleixner 已提交
7906
{
7907
	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
7908

P
Peter Zijlstra 已提交
7909 7910
	perf_event_exit_cpu_context(cpu);

7911 7912 7913
	mutex_lock(&swhash->hlist_mutex);
	swevent_hlist_release(swhash);
	mutex_unlock(&swhash->hlist_mutex);
T
Thomas Gleixner 已提交
7914 7915
}
#else
7916
static inline void perf_event_exit_cpu(int cpu) { }
T
Thomas Gleixner 已提交
7917 7918
#endif

P
Peter Zijlstra 已提交
7919 7920 7921 7922 7923 7924 7925 7926 7927 7928 7929 7930 7931 7932 7933 7934 7935 7936 7937 7938
static int
perf_reboot(struct notifier_block *notifier, unsigned long val, void *v)
{
	int cpu;

	for_each_online_cpu(cpu)
		perf_event_exit_cpu(cpu);

	return NOTIFY_OK;
}

/*
 * Run the perf reboot notifier at the very last possible moment so that
 * the generic watchdog code runs as long as possible.
 */
static struct notifier_block perf_reboot_notifier = {
	.notifier_call = perf_reboot,
	.priority = INT_MIN,
};

7939
static int
T
Thomas Gleixner 已提交
7940 7941 7942 7943
perf_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu)
{
	unsigned int cpu = (long)hcpu;

7944
	switch (action & ~CPU_TASKS_FROZEN) {
T
Thomas Gleixner 已提交
7945 7946

	case CPU_UP_PREPARE:
P
Peter Zijlstra 已提交
7947
	case CPU_DOWN_FAILED:
7948
		perf_event_init_cpu(cpu);
T
Thomas Gleixner 已提交
7949 7950
		break;

P
Peter Zijlstra 已提交
7951
	case CPU_UP_CANCELED:
T
Thomas Gleixner 已提交
7952
	case CPU_DOWN_PREPARE:
7953
		perf_event_exit_cpu(cpu);
T
Thomas Gleixner 已提交
7954 7955 7956 7957 7958 7959 7960 7961
		break;
	default:
		break;
	}

	return NOTIFY_OK;
}

7962
void __init perf_event_init(void)
T
Thomas Gleixner 已提交
7963
{
7964 7965
	int ret;

P
Peter Zijlstra 已提交
7966 7967
	idr_init(&pmu_idr);

7968
	perf_event_init_all_cpus();
7969
	init_srcu_struct(&pmus_srcu);
P
Peter Zijlstra 已提交
7970 7971 7972
	perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE);
	perf_pmu_register(&perf_cpu_clock, NULL, -1);
	perf_pmu_register(&perf_task_clock, NULL, -1);
7973 7974
	perf_tp_register();
	perf_cpu_notifier(perf_cpu_notify);
P
Peter Zijlstra 已提交
7975
	register_reboot_notifier(&perf_reboot_notifier);
7976 7977 7978

	ret = init_hw_breakpoint();
	WARN(ret, "hw_breakpoint initialization failed with: %d", ret);
7979 7980 7981

	/* do not patch jump label more than once per second */
	jump_label_rate_limit(&perf_sched_events, HZ);
7982 7983 7984 7985 7986 7987 7988

	/*
	 * Build time assertion that we keep the data_head at the intended
	 * location.  IOW, validation we got the __reserved[] size right.
	 */
	BUILD_BUG_ON((offsetof(struct perf_event_mmap_page, data_head))
		     != 1024);
T
Thomas Gleixner 已提交
7989
}
P
Peter Zijlstra 已提交
7990 7991 7992 7993 7994 7995 7996 7997 7998 7999 8000 8001 8002 8003 8004 8005 8006 8007 8008 8009 8010 8011 8012 8013 8014 8015 8016 8017

static int __init perf_event_sysfs_init(void)
{
	struct pmu *pmu;
	int ret;

	mutex_lock(&pmus_lock);

	ret = bus_register(&pmu_bus);
	if (ret)
		goto unlock;

	list_for_each_entry(pmu, &pmus, entry) {
		if (!pmu->name || pmu->type < 0)
			continue;

		ret = pmu_dev_alloc(pmu);
		WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret);
	}
	pmu_bus_running = 1;
	ret = 0;

unlock:
	mutex_unlock(&pmus_lock);

	return ret;
}
device_initcall(perf_event_sysfs_init);
S
Stephane Eranian 已提交
8018 8019

#ifdef CONFIG_CGROUP_PERF
8020 8021
static struct cgroup_subsys_state *
perf_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
S
Stephane Eranian 已提交
8022 8023 8024
{
	struct perf_cgroup *jc;

8025
	jc = kzalloc(sizeof(*jc), GFP_KERNEL);
S
Stephane Eranian 已提交
8026 8027 8028 8029 8030 8031 8032 8033 8034 8035 8036 8037
	if (!jc)
		return ERR_PTR(-ENOMEM);

	jc->info = alloc_percpu(struct perf_cgroup_info);
	if (!jc->info) {
		kfree(jc);
		return ERR_PTR(-ENOMEM);
	}

	return &jc->css;
}

8038
static void perf_cgroup_css_free(struct cgroup_subsys_state *css)
S
Stephane Eranian 已提交
8039
{
8040 8041
	struct perf_cgroup *jc = container_of(css, struct perf_cgroup, css);

S
Stephane Eranian 已提交
8042 8043 8044 8045 8046 8047 8048 8049 8050 8051 8052
	free_percpu(jc->info);
	kfree(jc);
}

static int __perf_cgroup_move(void *info)
{
	struct task_struct *task = info;
	perf_cgroup_switch(task, PERF_CGROUP_SWOUT | PERF_CGROUP_SWIN);
	return 0;
}

8053 8054
static void perf_cgroup_attach(struct cgroup_subsys_state *css,
			       struct cgroup_taskset *tset)
S
Stephane Eranian 已提交
8055
{
8056 8057
	struct task_struct *task;

8058
	cgroup_taskset_for_each(task, css, tset)
8059
		task_function_call(task, __perf_cgroup_move, task);
S
Stephane Eranian 已提交
8060 8061
}

8062 8063
static void perf_cgroup_exit(struct cgroup_subsys_state *css,
			     struct cgroup_subsys_state *old_css,
8064
			     struct task_struct *task)
S
Stephane Eranian 已提交
8065 8066 8067 8068 8069 8070 8071 8072 8073
{
	/*
	 * cgroup_exit() is called in the copy_process() failure path.
	 * Ignore this case since the task hasn't ran yet, this avoids
	 * trying to poke a half freed task state from generic code.
	 */
	if (!(task->flags & PF_EXITING))
		return;

8074
	task_function_call(task, __perf_cgroup_move, task);
S
Stephane Eranian 已提交
8075 8076 8077
}

struct cgroup_subsys perf_subsys = {
8078 8079
	.name		= "perf_event",
	.subsys_id	= perf_subsys_id,
8080 8081
	.css_alloc	= perf_cgroup_css_alloc,
	.css_free	= perf_cgroup_css_free,
8082
	.exit		= perf_cgroup_exit,
8083
	.attach		= perf_cgroup_attach,
S
Stephane Eranian 已提交
8084 8085
};
#endif /* CONFIG_CGROUP_PERF */