core.c 169.3 KB
Newer Older
T
Thomas Gleixner 已提交
1
/*
I
Ingo Molnar 已提交
2
 * Performance events core code:
T
Thomas Gleixner 已提交
3
 *
4
 *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5 6
 *  Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
 *  Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
7
 *  Copyright    2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
8
 *
I
Ingo Molnar 已提交
9
 * For licensing details see kernel-base/COPYING
T
Thomas Gleixner 已提交
10 11 12
 */

#include <linux/fs.h>
13
#include <linux/mm.h>
T
Thomas Gleixner 已提交
14 15
#include <linux/cpu.h>
#include <linux/smp.h>
P
Peter Zijlstra 已提交
16
#include <linux/idr.h>
17
#include <linux/file.h>
T
Thomas Gleixner 已提交
18
#include <linux/poll.h>
19
#include <linux/slab.h>
20
#include <linux/hash.h>
T
Thomas Gleixner 已提交
21
#include <linux/sysfs.h>
22
#include <linux/dcache.h>
T
Thomas Gleixner 已提交
23
#include <linux/percpu.h>
24
#include <linux/ptrace.h>
P
Peter Zijlstra 已提交
25
#include <linux/reboot.h>
26
#include <linux/vmstat.h>
P
Peter Zijlstra 已提交
27
#include <linux/device.h>
28
#include <linux/vmalloc.h>
29 30
#include <linux/hardirq.h>
#include <linux/rculist.h>
T
Thomas Gleixner 已提交
31 32 33
#include <linux/uaccess.h>
#include <linux/syscalls.h>
#include <linux/anon_inodes.h>
I
Ingo Molnar 已提交
34
#include <linux/kernel_stat.h>
35
#include <linux/perf_event.h>
L
Li Zefan 已提交
36
#include <linux/ftrace_event.h>
37
#include <linux/hw_breakpoint.h>
T
Thomas Gleixner 已提交
38

39 40
#include <asm/irq_regs.h>

41
struct remote_function_call {
42 43 44 45
	struct task_struct	*p;
	int			(*func)(void *info);
	void			*info;
	int			ret;
46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78
};

static void remote_function(void *data)
{
	struct remote_function_call *tfc = data;
	struct task_struct *p = tfc->p;

	if (p) {
		tfc->ret = -EAGAIN;
		if (task_cpu(p) != smp_processor_id() || !task_curr(p))
			return;
	}

	tfc->ret = tfc->func(tfc->info);
}

/**
 * task_function_call - call a function on the cpu on which a task runs
 * @p:		the task to evaluate
 * @func:	the function to be called
 * @info:	the function call argument
 *
 * Calls the function @func when the task is currently running. This might
 * be on the current CPU, which just calls the function directly
 *
 * returns: @func return value, or
 *	    -ESRCH  - when the process isn't running
 *	    -EAGAIN - when the process moved away
 */
static int
task_function_call(struct task_struct *p, int (*func) (void *info), void *info)
{
	struct remote_function_call data = {
79 80 81 82
		.p	= p,
		.func	= func,
		.info	= info,
		.ret	= -ESRCH, /* No such (running) process */
83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102
	};

	if (task_curr(p))
		smp_call_function_single(task_cpu(p), remote_function, &data, 1);

	return data.ret;
}

/**
 * cpu_function_call - call a function on the cpu
 * @func:	the function to be called
 * @info:	the function call argument
 *
 * Calls the function @func on the remote cpu.
 *
 * returns: @func return value or -ENXIO when the cpu is offline
 */
static int cpu_function_call(int cpu, int (*func) (void *info), void *info)
{
	struct remote_function_call data = {
103 104 105 106
		.p	= NULL,
		.func	= func,
		.info	= info,
		.ret	= -ENXIO, /* No such CPU */
107 108 109 110 111 112 113
	};

	smp_call_function_single(cpu, remote_function, &data, 1);

	return data.ret;
}

S
Stephane Eranian 已提交
114 115 116 117
#define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\
		       PERF_FLAG_FD_OUTPUT  |\
		       PERF_FLAG_PID_CGROUP)

118 119 120 121 122 123
enum event_type_t {
	EVENT_FLEXIBLE = 0x1,
	EVENT_PINNED = 0x2,
	EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
};

S
Stephane Eranian 已提交
124 125 126 127
/*
 * perf_sched_events : >0 events exist
 * perf_cgroup_events: >0 per-cpu cgroup events exist on this cpu
 */
128
struct jump_label_key perf_sched_events __read_mostly;
S
Stephane Eranian 已提交
129 130
static DEFINE_PER_CPU(atomic_t, perf_cgroup_events);

131 132 133
static atomic_t nr_mmap_events __read_mostly;
static atomic_t nr_comm_events __read_mostly;
static atomic_t nr_task_events __read_mostly;
134

P
Peter Zijlstra 已提交
135 136 137 138
static LIST_HEAD(pmus);
static DEFINE_MUTEX(pmus_lock);
static struct srcu_struct pmus_srcu;

139
/*
140
 * perf event paranoia level:
141 142
 *  -1 - not paranoid at all
 *   0 - disallow raw tracepoint access for unpriv
143
 *   1 - disallow cpu events for unpriv
144
 *   2 - disallow kernel profiling for unpriv
145
 */
146
int sysctl_perf_event_paranoid __read_mostly = 1;
147

148 149
/* Minimum for 512 kiB + 1 user control page */
int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */
150 151

/*
152
 * max perf event sample rate
153
 */
P
Peter Zijlstra 已提交
154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171
#define DEFAULT_MAX_SAMPLE_RATE 100000
int sysctl_perf_event_sample_rate __read_mostly = DEFAULT_MAX_SAMPLE_RATE;
static int max_samples_per_tick __read_mostly =
	DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ);

int perf_proc_update_handler(struct ctl_table *table, int write,
		void __user *buffer, size_t *lenp,
		loff_t *ppos)
{
	int ret = proc_dointvec(table, write, buffer, lenp, ppos);

	if (ret || !write)
		return ret;

	max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ);

	return 0;
}
172

173
static atomic64_t perf_event_id;
174

175 176 177 178
static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
			      enum event_type_t event_type);

static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
S
Stephane Eranian 已提交
179 180 181 182 183
			     enum event_type_t event_type,
			     struct task_struct *task);

static void update_context_time(struct perf_event_context *ctx);
static u64 perf_event_time(struct perf_event *event);
184

185
void __weak perf_event_print_debug(void)	{ }
T
Thomas Gleixner 已提交
186

187
extern __weak const char *perf_pmu_name(void)
T
Thomas Gleixner 已提交
188
{
189
	return "pmu";
T
Thomas Gleixner 已提交
190 191
}

192 193 194 195 196
static inline u64 perf_clock(void)
{
	return local_clock();
}

S
Stephane Eranian 已提交
197 198 199 200 201 202
static inline struct perf_cpu_context *
__get_cpu_context(struct perf_event_context *ctx)
{
	return this_cpu_ptr(ctx->pmu->pmu_cpu_context);
}

203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218
static void perf_ctx_lock(struct perf_cpu_context *cpuctx,
			  struct perf_event_context *ctx)
{
	raw_spin_lock(&cpuctx->ctx.lock);
	if (ctx)
		raw_spin_lock(&ctx->lock);
}

static void perf_ctx_unlock(struct perf_cpu_context *cpuctx,
			    struct perf_event_context *ctx)
{
	if (ctx)
		raw_spin_unlock(&ctx->lock);
	raw_spin_unlock(&cpuctx->ctx.lock);
}

S
Stephane Eranian 已提交
219 220
#ifdef CONFIG_CGROUP_PERF

221 222 223 224 225
/*
 * Must ensure cgroup is pinned (css_get) before calling
 * this function. In other words, we cannot call this function
 * if there is no cgroup event for the current CPU context.
 */
S
Stephane Eranian 已提交
226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292
static inline struct perf_cgroup *
perf_cgroup_from_task(struct task_struct *task)
{
	return container_of(task_subsys_state(task, perf_subsys_id),
			struct perf_cgroup, css);
}

static inline bool
perf_cgroup_match(struct perf_event *event)
{
	struct perf_event_context *ctx = event->ctx;
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);

	return !event->cgrp || event->cgrp == cpuctx->cgrp;
}

static inline void perf_get_cgroup(struct perf_event *event)
{
	css_get(&event->cgrp->css);
}

static inline void perf_put_cgroup(struct perf_event *event)
{
	css_put(&event->cgrp->css);
}

static inline void perf_detach_cgroup(struct perf_event *event)
{
	perf_put_cgroup(event);
	event->cgrp = NULL;
}

static inline int is_cgroup_event(struct perf_event *event)
{
	return event->cgrp != NULL;
}

static inline u64 perf_cgroup_event_time(struct perf_event *event)
{
	struct perf_cgroup_info *t;

	t = per_cpu_ptr(event->cgrp->info, event->cpu);
	return t->time;
}

static inline void __update_cgrp_time(struct perf_cgroup *cgrp)
{
	struct perf_cgroup_info *info;
	u64 now;

	now = perf_clock();

	info = this_cpu_ptr(cgrp->info);

	info->time += now - info->timestamp;
	info->timestamp = now;
}

static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
{
	struct perf_cgroup *cgrp_out = cpuctx->cgrp;
	if (cgrp_out)
		__update_cgrp_time(cgrp_out);
}

static inline void update_cgrp_time_from_event(struct perf_event *event)
{
293 294
	struct perf_cgroup *cgrp;

S
Stephane Eranian 已提交
295
	/*
296 297
	 * ensure we access cgroup data only when needed and
	 * when we know the cgroup is pinned (css_get)
S
Stephane Eranian 已提交
298
	 */
299
	if (!is_cgroup_event(event))
S
Stephane Eranian 已提交
300 301
		return;

302 303 304 305 306 307
	cgrp = perf_cgroup_from_task(current);
	/*
	 * Do not update time when cgroup is not active
	 */
	if (cgrp == event->cgrp)
		__update_cgrp_time(event->cgrp);
S
Stephane Eranian 已提交
308 309 310
}

static inline void
311 312
perf_cgroup_set_timestamp(struct task_struct *task,
			  struct perf_event_context *ctx)
S
Stephane Eranian 已提交
313 314 315 316
{
	struct perf_cgroup *cgrp;
	struct perf_cgroup_info *info;

317 318 319 320 321 322
	/*
	 * ctx->lock held by caller
	 * ensure we do not access cgroup data
	 * unless we have the cgroup pinned (css_get)
	 */
	if (!task || !ctx->nr_cgroups)
S
Stephane Eranian 已提交
323 324 325 326
		return;

	cgrp = perf_cgroup_from_task(task);
	info = this_cpu_ptr(cgrp->info);
327
	info->timestamp = ctx->timestamp;
S
Stephane Eranian 已提交
328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368
}

#define PERF_CGROUP_SWOUT	0x1 /* cgroup switch out every event */
#define PERF_CGROUP_SWIN	0x2 /* cgroup switch in events based on task */

/*
 * reschedule events based on the cgroup constraint of task.
 *
 * mode SWOUT : schedule out everything
 * mode SWIN : schedule in based on cgroup for next
 */
void perf_cgroup_switch(struct task_struct *task, int mode)
{
	struct perf_cpu_context *cpuctx;
	struct pmu *pmu;
	unsigned long flags;

	/*
	 * disable interrupts to avoid geting nr_cgroup
	 * changes via __perf_event_disable(). Also
	 * avoids preemption.
	 */
	local_irq_save(flags);

	/*
	 * we reschedule only in the presence of cgroup
	 * constrained events.
	 */
	rcu_read_lock();

	list_for_each_entry_rcu(pmu, &pmus, entry) {
		cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);

		/*
		 * perf_cgroup_events says at least one
		 * context on this CPU has cgroup events.
		 *
		 * ctx->nr_cgroups reports the number of cgroup
		 * events for a context.
		 */
		if (cpuctx->ctx.nr_cgroups > 0) {
369 370
			perf_ctx_lock(cpuctx, cpuctx->task_ctx);
			perf_pmu_disable(cpuctx->ctx.pmu);
S
Stephane Eranian 已提交
371 372 373 374 375 376 377 378 379 380 381

			if (mode & PERF_CGROUP_SWOUT) {
				cpu_ctx_sched_out(cpuctx, EVENT_ALL);
				/*
				 * must not be done before ctxswout due
				 * to event_filter_match() in event_sched_out()
				 */
				cpuctx->cgrp = NULL;
			}

			if (mode & PERF_CGROUP_SWIN) {
382
				WARN_ON_ONCE(cpuctx->cgrp);
S
Stephane Eranian 已提交
383 384 385 386 387 388 389
				/* set cgrp before ctxsw in to
				 * allow event_filter_match() to not
				 * have to pass task around
				 */
				cpuctx->cgrp = perf_cgroup_from_task(task);
				cpu_ctx_sched_in(cpuctx, EVENT_ALL, task);
			}
390 391
			perf_pmu_enable(cpuctx->ctx.pmu);
			perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
S
Stephane Eranian 已提交
392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423
		}
	}

	rcu_read_unlock();

	local_irq_restore(flags);
}

static inline void perf_cgroup_sched_out(struct task_struct *task)
{
	perf_cgroup_switch(task, PERF_CGROUP_SWOUT);
}

static inline void perf_cgroup_sched_in(struct task_struct *task)
{
	perf_cgroup_switch(task, PERF_CGROUP_SWIN);
}

static inline int perf_cgroup_connect(int fd, struct perf_event *event,
				      struct perf_event_attr *attr,
				      struct perf_event *group_leader)
{
	struct perf_cgroup *cgrp;
	struct cgroup_subsys_state *css;
	struct file *file;
	int ret = 0, fput_needed;

	file = fget_light(fd, &fput_needed);
	if (!file)
		return -EBADF;

	css = cgroup_css_from_dir(file, perf_subsys_id);
424 425 426 427
	if (IS_ERR(css)) {
		ret = PTR_ERR(css);
		goto out;
	}
S
Stephane Eranian 已提交
428 429 430 431

	cgrp = container_of(css, struct perf_cgroup, css);
	event->cgrp = cgrp;

432 433 434
	/* must be done before we fput() the file */
	perf_get_cgroup(event);

S
Stephane Eranian 已提交
435 436 437 438 439 440 441 442 443
	/*
	 * all events in a group must monitor
	 * the same cgroup because a task belongs
	 * to only one perf cgroup at a time
	 */
	if (group_leader && group_leader->cgrp != cgrp) {
		perf_detach_cgroup(event);
		ret = -EINVAL;
	}
444
out:
S
Stephane Eranian 已提交
445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534
	fput_light(file, fput_needed);
	return ret;
}

static inline void
perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
{
	struct perf_cgroup_info *t;
	t = per_cpu_ptr(event->cgrp->info, event->cpu);
	event->shadow_ctx_time = now - t->timestamp;
}

static inline void
perf_cgroup_defer_enabled(struct perf_event *event)
{
	/*
	 * when the current task's perf cgroup does not match
	 * the event's, we need to remember to call the
	 * perf_mark_enable() function the first time a task with
	 * a matching perf cgroup is scheduled in.
	 */
	if (is_cgroup_event(event) && !perf_cgroup_match(event))
		event->cgrp_defer_enabled = 1;
}

static inline void
perf_cgroup_mark_enabled(struct perf_event *event,
			 struct perf_event_context *ctx)
{
	struct perf_event *sub;
	u64 tstamp = perf_event_time(event);

	if (!event->cgrp_defer_enabled)
		return;

	event->cgrp_defer_enabled = 0;

	event->tstamp_enabled = tstamp - event->total_time_enabled;
	list_for_each_entry(sub, &event->sibling_list, group_entry) {
		if (sub->state >= PERF_EVENT_STATE_INACTIVE) {
			sub->tstamp_enabled = tstamp - sub->total_time_enabled;
			sub->cgrp_defer_enabled = 0;
		}
	}
}
#else /* !CONFIG_CGROUP_PERF */

static inline bool
perf_cgroup_match(struct perf_event *event)
{
	return true;
}

static inline void perf_detach_cgroup(struct perf_event *event)
{}

static inline int is_cgroup_event(struct perf_event *event)
{
	return 0;
}

static inline u64 perf_cgroup_event_cgrp_time(struct perf_event *event)
{
	return 0;
}

static inline void update_cgrp_time_from_event(struct perf_event *event)
{
}

static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
{
}

static inline void perf_cgroup_sched_out(struct task_struct *task)
{
}

static inline void perf_cgroup_sched_in(struct task_struct *task)
{
}

static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event,
				      struct perf_event_attr *attr,
				      struct perf_event *group_leader)
{
	return -EINVAL;
}

static inline void
535 536
perf_cgroup_set_timestamp(struct task_struct *task,
			  struct perf_event_context *ctx)
S
Stephane Eranian 已提交
537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566
{
}

void
perf_cgroup_switch(struct task_struct *task, struct task_struct *next)
{
}

static inline void
perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
{
}

static inline u64 perf_cgroup_event_time(struct perf_event *event)
{
	return 0;
}

static inline void
perf_cgroup_defer_enabled(struct perf_event *event)
{
}

static inline void
perf_cgroup_mark_enabled(struct perf_event *event,
			 struct perf_event_context *ctx)
{
}
#endif

P
Peter Zijlstra 已提交
567
void perf_pmu_disable(struct pmu *pmu)
568
{
P
Peter Zijlstra 已提交
569 570 571
	int *count = this_cpu_ptr(pmu->pmu_disable_count);
	if (!(*count)++)
		pmu->pmu_disable(pmu);
572 573
}

P
Peter Zijlstra 已提交
574
void perf_pmu_enable(struct pmu *pmu)
575
{
P
Peter Zijlstra 已提交
576 577 578
	int *count = this_cpu_ptr(pmu->pmu_disable_count);
	if (!--(*count))
		pmu->pmu_enable(pmu);
579 580
}

581 582 583 584 585 586 587
static DEFINE_PER_CPU(struct list_head, rotation_list);

/*
 * perf_pmu_rotate_start() and perf_rotate_context() are fully serialized
 * because they're strictly cpu affine and rotate_start is called with IRQs
 * disabled, while rotate_context is called from IRQ context.
 */
P
Peter Zijlstra 已提交
588
static void perf_pmu_rotate_start(struct pmu *pmu)
589
{
P
Peter Zijlstra 已提交
590
	struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
591
	struct list_head *head = &__get_cpu_var(rotation_list);
592

593
	WARN_ON(!irqs_disabled());
594

595 596
	if (list_empty(&cpuctx->rotation_list))
		list_add(&cpuctx->rotation_list, head);
597 598
}

599
static void get_ctx(struct perf_event_context *ctx)
600
{
601
	WARN_ON(!atomic_inc_not_zero(&ctx->refcount));
602 603
}

604
static void put_ctx(struct perf_event_context *ctx)
605
{
606 607 608
	if (atomic_dec_and_test(&ctx->refcount)) {
		if (ctx->parent_ctx)
			put_ctx(ctx->parent_ctx);
609 610
		if (ctx->task)
			put_task_struct(ctx->task);
611
		kfree_rcu(ctx, rcu_head);
612
	}
613 614
}

615
static void unclone_ctx(struct perf_event_context *ctx)
616 617 618 619 620 621 622
{
	if (ctx->parent_ctx) {
		put_ctx(ctx->parent_ctx);
		ctx->parent_ctx = NULL;
	}
}

623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644
static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
{
	/*
	 * only top level events have the pid namespace they were created in
	 */
	if (event->parent)
		event = event->parent;

	return task_tgid_nr_ns(p, event->ns);
}

static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
{
	/*
	 * only top level events have the pid namespace they were created in
	 */
	if (event->parent)
		event = event->parent;

	return task_pid_nr_ns(p, event->ns);
}

645
/*
646
 * If we inherit events we want to return the parent event id
647 648
 * to userspace.
 */
649
static u64 primary_event_id(struct perf_event *event)
650
{
651
	u64 id = event->id;
652

653 654
	if (event->parent)
		id = event->parent->id;
655 656 657 658

	return id;
}

659
/*
660
 * Get the perf_event_context for a task and lock it.
661 662 663
 * This has to cope with with the fact that until it is locked,
 * the context could get moved to another task.
 */
664
static struct perf_event_context *
P
Peter Zijlstra 已提交
665
perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags)
666
{
667
	struct perf_event_context *ctx;
668 669

	rcu_read_lock();
P
Peter Zijlstra 已提交
670
retry:
P
Peter Zijlstra 已提交
671
	ctx = rcu_dereference(task->perf_event_ctxp[ctxn]);
672 673 674 675
	if (ctx) {
		/*
		 * If this context is a clone of another, it might
		 * get swapped for another underneath us by
676
		 * perf_event_task_sched_out, though the
677 678 679 680 681 682
		 * rcu_read_lock() protects us from any context
		 * getting freed.  Lock the context and check if it
		 * got swapped before we could get the lock, and retry
		 * if so.  If we locked the right context, then it
		 * can't get swapped on us any more.
		 */
683
		raw_spin_lock_irqsave(&ctx->lock, *flags);
P
Peter Zijlstra 已提交
684
		if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) {
685
			raw_spin_unlock_irqrestore(&ctx->lock, *flags);
686 687
			goto retry;
		}
688 689

		if (!atomic_inc_not_zero(&ctx->refcount)) {
690
			raw_spin_unlock_irqrestore(&ctx->lock, *flags);
691 692
			ctx = NULL;
		}
693 694 695 696 697 698 699 700 701 702
	}
	rcu_read_unlock();
	return ctx;
}

/*
 * Get the context for a task and increment its pin_count so it
 * can't get swapped to another task.  This also increments its
 * reference count so that the context can't get freed.
 */
P
Peter Zijlstra 已提交
703 704
static struct perf_event_context *
perf_pin_task_context(struct task_struct *task, int ctxn)
705
{
706
	struct perf_event_context *ctx;
707 708
	unsigned long flags;

P
Peter Zijlstra 已提交
709
	ctx = perf_lock_task_context(task, ctxn, &flags);
710 711
	if (ctx) {
		++ctx->pin_count;
712
		raw_spin_unlock_irqrestore(&ctx->lock, flags);
713 714 715 716
	}
	return ctx;
}

717
static void perf_unpin_context(struct perf_event_context *ctx)
718 719 720
{
	unsigned long flags;

721
	raw_spin_lock_irqsave(&ctx->lock, flags);
722
	--ctx->pin_count;
723
	raw_spin_unlock_irqrestore(&ctx->lock, flags);
724 725
}

726 727 728 729 730 731 732 733 734 735 736
/*
 * Update the record of the current time in a context.
 */
static void update_context_time(struct perf_event_context *ctx)
{
	u64 now = perf_clock();

	ctx->time += now - ctx->timestamp;
	ctx->timestamp = now;
}

737 738 739
static u64 perf_event_time(struct perf_event *event)
{
	struct perf_event_context *ctx = event->ctx;
S
Stephane Eranian 已提交
740 741 742 743

	if (is_cgroup_event(event))
		return perf_cgroup_event_time(event);

744 745 746
	return ctx ? ctx->time : 0;
}

747 748 749 750 751 752 753 754 755 756 757
/*
 * Update the total_time_enabled and total_time_running fields for a event.
 */
static void update_event_times(struct perf_event *event)
{
	struct perf_event_context *ctx = event->ctx;
	u64 run_end;

	if (event->state < PERF_EVENT_STATE_INACTIVE ||
	    event->group_leader->state < PERF_EVENT_STATE_INACTIVE)
		return;
S
Stephane Eranian 已提交
758 759 760 761 762 763 764 765 766 767 768
	/*
	 * in cgroup mode, time_enabled represents
	 * the time the event was enabled AND active
	 * tasks were in the monitored cgroup. This is
	 * independent of the activity of the context as
	 * there may be a mix of cgroup and non-cgroup events.
	 *
	 * That is why we treat cgroup events differently
	 * here.
	 */
	if (is_cgroup_event(event))
769
		run_end = perf_event_time(event);
S
Stephane Eranian 已提交
770 771
	else if (ctx->is_active)
		run_end = ctx->time;
772 773 774 775
	else
		run_end = event->tstamp_stopped;

	event->total_time_enabled = run_end - event->tstamp_enabled;
776 777 778 779

	if (event->state == PERF_EVENT_STATE_INACTIVE)
		run_end = event->tstamp_stopped;
	else
780
		run_end = perf_event_time(event);
781 782

	event->total_time_running = run_end - event->tstamp_running;
S
Stephane Eranian 已提交
783

784 785
}

786 787 788 789 790 791 792 793 794 795 796 797
/*
 * Update total_time_enabled and total_time_running for all events in a group.
 */
static void update_group_times(struct perf_event *leader)
{
	struct perf_event *event;

	update_event_times(leader);
	list_for_each_entry(event, &leader->sibling_list, group_entry)
		update_event_times(event);
}

798 799 800 801 802 803 804 805 806
static struct list_head *
ctx_group_list(struct perf_event *event, struct perf_event_context *ctx)
{
	if (event->attr.pinned)
		return &ctx->pinned_groups;
	else
		return &ctx->flexible_groups;
}

807
/*
808
 * Add a event from the lists for its context.
809 810
 * Must be called with ctx->mutex and ctx->lock held.
 */
811
static void
812
list_add_event(struct perf_event *event, struct perf_event_context *ctx)
813
{
814 815
	WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
	event->attach_state |= PERF_ATTACH_CONTEXT;
816 817

	/*
818 819 820
	 * If we're a stand alone event or group leader, we go to the context
	 * list, group events are kept attached to the group so that
	 * perf_group_detach can, at all times, locate all siblings.
821
	 */
822
	if (event->group_leader == event) {
823 824
		struct list_head *list;

825 826 827
		if (is_software_event(event))
			event->group_flags |= PERF_GROUP_SOFTWARE;

828 829
		list = ctx_group_list(event, ctx);
		list_add_tail(&event->group_entry, list);
P
Peter Zijlstra 已提交
830
	}
P
Peter Zijlstra 已提交
831

832
	if (is_cgroup_event(event))
S
Stephane Eranian 已提交
833 834
		ctx->nr_cgroups++;

835
	list_add_rcu(&event->event_entry, &ctx->event_list);
836
	if (!ctx->nr_events)
P
Peter Zijlstra 已提交
837
		perf_pmu_rotate_start(ctx->pmu);
838 839
	ctx->nr_events++;
	if (event->attr.inherit_stat)
840
		ctx->nr_stat++;
841 842
}

843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881
/*
 * Called at perf_event creation and when events are attached/detached from a
 * group.
 */
static void perf_event__read_size(struct perf_event *event)
{
	int entry = sizeof(u64); /* value */
	int size = 0;
	int nr = 1;

	if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
		size += sizeof(u64);

	if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
		size += sizeof(u64);

	if (event->attr.read_format & PERF_FORMAT_ID)
		entry += sizeof(u64);

	if (event->attr.read_format & PERF_FORMAT_GROUP) {
		nr += event->group_leader->nr_siblings;
		size += sizeof(u64);
	}

	size += entry * nr;
	event->read_size = size;
}

static void perf_event__header_size(struct perf_event *event)
{
	struct perf_sample_data *data;
	u64 sample_type = event->attr.sample_type;
	u16 size = 0;

	perf_event__read_size(event);

	if (sample_type & PERF_SAMPLE_IP)
		size += sizeof(data->ip);

882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899
	if (sample_type & PERF_SAMPLE_ADDR)
		size += sizeof(data->addr);

	if (sample_type & PERF_SAMPLE_PERIOD)
		size += sizeof(data->period);

	if (sample_type & PERF_SAMPLE_READ)
		size += event->read_size;

	event->header_size = size;
}

static void perf_event__id_header_size(struct perf_event *event)
{
	struct perf_sample_data *data;
	u64 sample_type = event->attr.sample_type;
	u16 size = 0;

900 901 902 903 904 905 906 907 908 909 910 911 912 913 914
	if (sample_type & PERF_SAMPLE_TID)
		size += sizeof(data->tid_entry);

	if (sample_type & PERF_SAMPLE_TIME)
		size += sizeof(data->time);

	if (sample_type & PERF_SAMPLE_ID)
		size += sizeof(data->id);

	if (sample_type & PERF_SAMPLE_STREAM_ID)
		size += sizeof(data->stream_id);

	if (sample_type & PERF_SAMPLE_CPU)
		size += sizeof(data->cpu_entry);

915
	event->id_header_size = size;
916 917
}

918 919
static void perf_group_attach(struct perf_event *event)
{
920
	struct perf_event *group_leader = event->group_leader, *pos;
921

P
Peter Zijlstra 已提交
922 923 924 925 926 927
	/*
	 * We can have double attach due to group movement in perf_event_open.
	 */
	if (event->attach_state & PERF_ATTACH_GROUP)
		return;

928 929 930 931 932 933 934 935 936 937 938
	event->attach_state |= PERF_ATTACH_GROUP;

	if (group_leader == event)
		return;

	if (group_leader->group_flags & PERF_GROUP_SOFTWARE &&
			!is_software_event(event))
		group_leader->group_flags &= ~PERF_GROUP_SOFTWARE;

	list_add_tail(&event->group_entry, &group_leader->sibling_list);
	group_leader->nr_siblings++;
939 940 941 942 943

	perf_event__header_size(group_leader);

	list_for_each_entry(pos, &group_leader->sibling_list, group_entry)
		perf_event__header_size(pos);
944 945
}

946
/*
947
 * Remove a event from the lists for its context.
948
 * Must be called with ctx->mutex and ctx->lock held.
949
 */
950
static void
951
list_del_event(struct perf_event *event, struct perf_event_context *ctx)
952
{
953
	struct perf_cpu_context *cpuctx;
954 955 956 957
	/*
	 * We can have double detach due to exit/hot-unplug + close.
	 */
	if (!(event->attach_state & PERF_ATTACH_CONTEXT))
958
		return;
959 960 961

	event->attach_state &= ~PERF_ATTACH_CONTEXT;

962
	if (is_cgroup_event(event)) {
S
Stephane Eranian 已提交
963
		ctx->nr_cgroups--;
964 965 966 967 968 969 970 971 972
		cpuctx = __get_cpu_context(ctx);
		/*
		 * if there are no more cgroup events
		 * then cler cgrp to avoid stale pointer
		 * in update_cgrp_time_from_cpuctx()
		 */
		if (!ctx->nr_cgroups)
			cpuctx->cgrp = NULL;
	}
S
Stephane Eranian 已提交
973

974 975
	ctx->nr_events--;
	if (event->attr.inherit_stat)
976
		ctx->nr_stat--;
977

978
	list_del_rcu(&event->event_entry);
979

980 981
	if (event->group_leader == event)
		list_del_init(&event->group_entry);
P
Peter Zijlstra 已提交
982

983
	update_group_times(event);
984 985 986 987 988 989 990 991 992 993

	/*
	 * If event was in error state, then keep it
	 * that way, otherwise bogus counts will be
	 * returned on read(). The only way to get out
	 * of error state is by explicit re-enabling
	 * of the event
	 */
	if (event->state > PERF_EVENT_STATE_OFF)
		event->state = PERF_EVENT_STATE_OFF;
994 995
}

996
static void perf_group_detach(struct perf_event *event)
997 998
{
	struct perf_event *sibling, *tmp;
999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014
	struct list_head *list = NULL;

	/*
	 * We can have double detach due to exit/hot-unplug + close.
	 */
	if (!(event->attach_state & PERF_ATTACH_GROUP))
		return;

	event->attach_state &= ~PERF_ATTACH_GROUP;

	/*
	 * If this is a sibling, remove it from its group.
	 */
	if (event->group_leader != event) {
		list_del_init(&event->group_entry);
		event->group_leader->nr_siblings--;
1015
		goto out;
1016 1017 1018 1019
	}

	if (!list_empty(&event->group_entry))
		list = &event->group_entry;
1020

1021
	/*
1022 1023
	 * If this was a group event with sibling events then
	 * upgrade the siblings to singleton events by adding them
1024
	 * to whatever list we are on.
1025
	 */
1026
	list_for_each_entry_safe(sibling, tmp, &event->sibling_list, group_entry) {
1027 1028
		if (list)
			list_move_tail(&sibling->group_entry, list);
1029
		sibling->group_leader = sibling;
1030 1031 1032

		/* Inherit group flags from the previous leader */
		sibling->group_flags = event->group_flags;
1033
	}
1034 1035 1036 1037 1038 1039

out:
	perf_event__header_size(event->group_leader);

	list_for_each_entry(tmp, &event->group_leader->sibling_list, group_entry)
		perf_event__header_size(tmp);
1040 1041
}

1042 1043 1044
static inline int
event_filter_match(struct perf_event *event)
{
S
Stephane Eranian 已提交
1045 1046
	return (event->cpu == -1 || event->cpu == smp_processor_id())
	    && perf_cgroup_match(event);
1047 1048
}

1049 1050
static void
event_sched_out(struct perf_event *event,
1051
		  struct perf_cpu_context *cpuctx,
1052
		  struct perf_event_context *ctx)
1053
{
1054
	u64 tstamp = perf_event_time(event);
1055 1056 1057 1058 1059 1060 1061 1062 1063
	u64 delta;
	/*
	 * An event which could not be activated because of
	 * filter mismatch still needs to have its timings
	 * maintained, otherwise bogus information is return
	 * via read() for time_enabled, time_running:
	 */
	if (event->state == PERF_EVENT_STATE_INACTIVE
	    && !event_filter_match(event)) {
S
Stephane Eranian 已提交
1064
		delta = tstamp - event->tstamp_stopped;
1065
		event->tstamp_running += delta;
1066
		event->tstamp_stopped = tstamp;
1067 1068
	}

1069
	if (event->state != PERF_EVENT_STATE_ACTIVE)
1070
		return;
1071

1072 1073 1074 1075
	event->state = PERF_EVENT_STATE_INACTIVE;
	if (event->pending_disable) {
		event->pending_disable = 0;
		event->state = PERF_EVENT_STATE_OFF;
1076
	}
1077
	event->tstamp_stopped = tstamp;
P
Peter Zijlstra 已提交
1078
	event->pmu->del(event, 0);
1079
	event->oncpu = -1;
1080

1081
	if (!is_software_event(event))
1082 1083
		cpuctx->active_oncpu--;
	ctx->nr_active--;
1084
	if (event->attr.exclusive || !cpuctx->active_oncpu)
1085 1086 1087
		cpuctx->exclusive = 0;
}

1088
static void
1089
group_sched_out(struct perf_event *group_event,
1090
		struct perf_cpu_context *cpuctx,
1091
		struct perf_event_context *ctx)
1092
{
1093
	struct perf_event *event;
1094
	int state = group_event->state;
1095

1096
	event_sched_out(group_event, cpuctx, ctx);
1097 1098 1099 1100

	/*
	 * Schedule out siblings (if any):
	 */
1101 1102
	list_for_each_entry(event, &group_event->sibling_list, group_entry)
		event_sched_out(event, cpuctx, ctx);
1103

1104
	if (state == PERF_EVENT_STATE_ACTIVE && group_event->attr.exclusive)
1105 1106 1107
		cpuctx->exclusive = 0;
}

T
Thomas Gleixner 已提交
1108
/*
1109
 * Cross CPU call to remove a performance event
T
Thomas Gleixner 已提交
1110
 *
1111
 * We disable the event on the hardware level first. After that we
T
Thomas Gleixner 已提交
1112 1113
 * remove it from the context list.
 */
1114
static int __perf_remove_from_context(void *info)
T
Thomas Gleixner 已提交
1115
{
1116 1117
	struct perf_event *event = info;
	struct perf_event_context *ctx = event->ctx;
P
Peter Zijlstra 已提交
1118
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
T
Thomas Gleixner 已提交
1119

1120
	raw_spin_lock(&ctx->lock);
1121 1122
	event_sched_out(event, cpuctx, ctx);
	list_del_event(event, ctx);
1123
	raw_spin_unlock(&ctx->lock);
1124 1125

	return 0;
T
Thomas Gleixner 已提交
1126 1127 1128 1129
}


/*
1130
 * Remove the event from a task's (or a CPU's) list of events.
T
Thomas Gleixner 已提交
1131
 *
1132
 * CPU events are removed with a smp call. For task events we only
T
Thomas Gleixner 已提交
1133
 * call when the task is on a CPU.
1134
 *
1135 1136
 * If event->ctx is a cloned context, callers must make sure that
 * every task struct that event->ctx->task could possibly point to
1137 1138
 * remains valid.  This is OK when called from perf_release since
 * that only calls us on the top-level context, which can't be a clone.
1139
 * When called from perf_event_exit_task, it's OK because the
1140
 * context has been detached from its task.
T
Thomas Gleixner 已提交
1141
 */
1142
static void perf_remove_from_context(struct perf_event *event)
T
Thomas Gleixner 已提交
1143
{
1144
	struct perf_event_context *ctx = event->ctx;
T
Thomas Gleixner 已提交
1145 1146
	struct task_struct *task = ctx->task;

1147 1148
	lockdep_assert_held(&ctx->mutex);

T
Thomas Gleixner 已提交
1149 1150
	if (!task) {
		/*
1151
		 * Per cpu events are removed via an smp call and
1152
		 * the removal is always successful.
T
Thomas Gleixner 已提交
1153
		 */
1154
		cpu_function_call(event->cpu, __perf_remove_from_context, event);
T
Thomas Gleixner 已提交
1155 1156 1157 1158
		return;
	}

retry:
1159 1160
	if (!task_function_call(task, __perf_remove_from_context, event))
		return;
T
Thomas Gleixner 已提交
1161

1162
	raw_spin_lock_irq(&ctx->lock);
T
Thomas Gleixner 已提交
1163
	/*
1164 1165
	 * If we failed to find a running task, but find the context active now
	 * that we've acquired the ctx->lock, retry.
T
Thomas Gleixner 已提交
1166
	 */
1167
	if (ctx->is_active) {
1168
		raw_spin_unlock_irq(&ctx->lock);
T
Thomas Gleixner 已提交
1169 1170 1171 1172
		goto retry;
	}

	/*
1173 1174
	 * Since the task isn't running, its safe to remove the event, us
	 * holding the ctx->lock ensures the task won't get scheduled in.
T
Thomas Gleixner 已提交
1175
	 */
1176
	list_del_event(event, ctx);
1177
	raw_spin_unlock_irq(&ctx->lock);
T
Thomas Gleixner 已提交
1178 1179
}

1180
/*
1181
 * Cross CPU call to disable a performance event
1182
 */
1183
static int __perf_event_disable(void *info)
1184
{
1185 1186
	struct perf_event *event = info;
	struct perf_event_context *ctx = event->ctx;
P
Peter Zijlstra 已提交
1187
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1188 1189

	/*
1190 1191
	 * If this is a per-task event, need to check whether this
	 * event's task is the current task on this cpu.
1192 1193 1194
	 *
	 * Can trigger due to concurrent perf_event_context_sched_out()
	 * flipping contexts around.
1195
	 */
1196
	if (ctx->task && cpuctx->task_ctx != ctx)
1197
		return -EINVAL;
1198

1199
	raw_spin_lock(&ctx->lock);
1200 1201

	/*
1202
	 * If the event is on, turn it off.
1203 1204
	 * If it is in error state, leave it in error state.
	 */
1205
	if (event->state >= PERF_EVENT_STATE_INACTIVE) {
1206
		update_context_time(ctx);
S
Stephane Eranian 已提交
1207
		update_cgrp_time_from_event(event);
1208 1209 1210
		update_group_times(event);
		if (event == event->group_leader)
			group_sched_out(event, cpuctx, ctx);
1211
		else
1212 1213
			event_sched_out(event, cpuctx, ctx);
		event->state = PERF_EVENT_STATE_OFF;
1214 1215
	}

1216
	raw_spin_unlock(&ctx->lock);
1217 1218

	return 0;
1219 1220 1221
}

/*
1222
 * Disable a event.
1223
 *
1224 1225
 * If event->ctx is a cloned context, callers must make sure that
 * every task struct that event->ctx->task could possibly point to
1226
 * remains valid.  This condition is satisifed when called through
1227 1228 1229 1230
 * perf_event_for_each_child or perf_event_for_each because they
 * hold the top-level event's child_mutex, so any descendant that
 * goes to exit will block in sync_child_event.
 * When called from perf_pending_event it's OK because event->ctx
1231
 * is the current context on this CPU and preemption is disabled,
1232
 * hence we can't get into perf_event_task_sched_out for this context.
1233
 */
1234
void perf_event_disable(struct perf_event *event)
1235
{
1236
	struct perf_event_context *ctx = event->ctx;
1237 1238 1239 1240
	struct task_struct *task = ctx->task;

	if (!task) {
		/*
1241
		 * Disable the event on the cpu that it's on
1242
		 */
1243
		cpu_function_call(event->cpu, __perf_event_disable, event);
1244 1245 1246
		return;
	}

P
Peter Zijlstra 已提交
1247
retry:
1248 1249
	if (!task_function_call(task, __perf_event_disable, event))
		return;
1250

1251
	raw_spin_lock_irq(&ctx->lock);
1252
	/*
1253
	 * If the event is still active, we need to retry the cross-call.
1254
	 */
1255
	if (event->state == PERF_EVENT_STATE_ACTIVE) {
1256
		raw_spin_unlock_irq(&ctx->lock);
1257 1258 1259 1260 1261
		/*
		 * Reload the task pointer, it might have been changed by
		 * a concurrent perf_event_context_sched_out().
		 */
		task = ctx->task;
1262 1263 1264 1265 1266 1267 1268
		goto retry;
	}

	/*
	 * Since we have the lock this context can't be scheduled
	 * in, so we can change the state safely.
	 */
1269 1270 1271
	if (event->state == PERF_EVENT_STATE_INACTIVE) {
		update_group_times(event);
		event->state = PERF_EVENT_STATE_OFF;
1272
	}
1273
	raw_spin_unlock_irq(&ctx->lock);
1274 1275
}

S
Stephane Eranian 已提交
1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310
static void perf_set_shadow_time(struct perf_event *event,
				 struct perf_event_context *ctx,
				 u64 tstamp)
{
	/*
	 * use the correct time source for the time snapshot
	 *
	 * We could get by without this by leveraging the
	 * fact that to get to this function, the caller
	 * has most likely already called update_context_time()
	 * and update_cgrp_time_xx() and thus both timestamp
	 * are identical (or very close). Given that tstamp is,
	 * already adjusted for cgroup, we could say that:
	 *    tstamp - ctx->timestamp
	 * is equivalent to
	 *    tstamp - cgrp->timestamp.
	 *
	 * Then, in perf_output_read(), the calculation would
	 * work with no changes because:
	 * - event is guaranteed scheduled in
	 * - no scheduled out in between
	 * - thus the timestamp would be the same
	 *
	 * But this is a bit hairy.
	 *
	 * So instead, we have an explicit cgroup call to remain
	 * within the time time source all along. We believe it
	 * is cleaner and simpler to understand.
	 */
	if (is_cgroup_event(event))
		perf_cgroup_set_shadow_time(event, tstamp);
	else
		event->shadow_ctx_time = tstamp - ctx->timestamp;
}

P
Peter Zijlstra 已提交
1311 1312 1313 1314
#define MAX_INTERRUPTS (~0ULL)

static void perf_log_throttle(struct perf_event *event, int enable);

1315
static int
1316
event_sched_in(struct perf_event *event,
1317
		 struct perf_cpu_context *cpuctx,
1318
		 struct perf_event_context *ctx)
1319
{
1320 1321
	u64 tstamp = perf_event_time(event);

1322
	if (event->state <= PERF_EVENT_STATE_OFF)
1323 1324
		return 0;

1325
	event->state = PERF_EVENT_STATE_ACTIVE;
1326
	event->oncpu = smp_processor_id();
P
Peter Zijlstra 已提交
1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337

	/*
	 * Unthrottle events, since we scheduled we might have missed several
	 * ticks already, also for a heavily scheduling task there is little
	 * guarantee it'll get a tick in a timely manner.
	 */
	if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) {
		perf_log_throttle(event, 1);
		event->hw.interrupts = 0;
	}

1338 1339 1340 1341 1342
	/*
	 * The new state must be visible before we turn it on in the hardware:
	 */
	smp_wmb();

P
Peter Zijlstra 已提交
1343
	if (event->pmu->add(event, PERF_EF_START)) {
1344 1345
		event->state = PERF_EVENT_STATE_INACTIVE;
		event->oncpu = -1;
1346 1347 1348
		return -EAGAIN;
	}

1349
	event->tstamp_running += tstamp - event->tstamp_stopped;
1350

S
Stephane Eranian 已提交
1351
	perf_set_shadow_time(event, ctx, tstamp);
1352

1353
	if (!is_software_event(event))
1354
		cpuctx->active_oncpu++;
1355 1356
	ctx->nr_active++;

1357
	if (event->attr.exclusive)
1358 1359
		cpuctx->exclusive = 1;

1360 1361 1362
	return 0;
}

1363
static int
1364
group_sched_in(struct perf_event *group_event,
1365
	       struct perf_cpu_context *cpuctx,
1366
	       struct perf_event_context *ctx)
1367
{
1368
	struct perf_event *event, *partial_group = NULL;
P
Peter Zijlstra 已提交
1369
	struct pmu *pmu = group_event->pmu;
1370 1371
	u64 now = ctx->time;
	bool simulate = false;
1372

1373
	if (group_event->state == PERF_EVENT_STATE_OFF)
1374 1375
		return 0;

P
Peter Zijlstra 已提交
1376
	pmu->start_txn(pmu);
1377

1378
	if (event_sched_in(group_event, cpuctx, ctx)) {
P
Peter Zijlstra 已提交
1379
		pmu->cancel_txn(pmu);
1380
		return -EAGAIN;
1381
	}
1382 1383 1384 1385

	/*
	 * Schedule in siblings as one group (if any):
	 */
1386
	list_for_each_entry(event, &group_event->sibling_list, group_entry) {
1387
		if (event_sched_in(event, cpuctx, ctx)) {
1388
			partial_group = event;
1389 1390 1391 1392
			goto group_error;
		}
	}

1393
	if (!pmu->commit_txn(pmu))
1394
		return 0;
1395

1396 1397 1398 1399
group_error:
	/*
	 * Groups can be scheduled in as one unit only, so undo any
	 * partial group before returning:
1400 1401 1402 1403 1404 1405 1406 1407 1408 1409
	 * The events up to the failed event are scheduled out normally,
	 * tstamp_stopped will be updated.
	 *
	 * The failed events and the remaining siblings need to have
	 * their timings updated as if they had gone thru event_sched_in()
	 * and event_sched_out(). This is required to get consistent timings
	 * across the group. This also takes care of the case where the group
	 * could never be scheduled by ensuring tstamp_stopped is set to mark
	 * the time the event was actually stopped, such that time delta
	 * calculation in update_event_times() is correct.
1410
	 */
1411 1412
	list_for_each_entry(event, &group_event->sibling_list, group_entry) {
		if (event == partial_group)
1413 1414 1415 1416 1417 1418 1419 1420
			simulate = true;

		if (simulate) {
			event->tstamp_running += now - event->tstamp_stopped;
			event->tstamp_stopped = now;
		} else {
			event_sched_out(event, cpuctx, ctx);
		}
1421
	}
1422
	event_sched_out(group_event, cpuctx, ctx);
1423

P
Peter Zijlstra 已提交
1424
	pmu->cancel_txn(pmu);
1425

1426 1427 1428
	return -EAGAIN;
}

1429
/*
1430
 * Work out whether we can put this event group on the CPU now.
1431
 */
1432
static int group_can_go_on(struct perf_event *event,
1433 1434 1435 1436
			   struct perf_cpu_context *cpuctx,
			   int can_add_hw)
{
	/*
1437
	 * Groups consisting entirely of software events can always go on.
1438
	 */
1439
	if (event->group_flags & PERF_GROUP_SOFTWARE)
1440 1441 1442
		return 1;
	/*
	 * If an exclusive group is already on, no other hardware
1443
	 * events can go on.
1444 1445 1446 1447 1448
	 */
	if (cpuctx->exclusive)
		return 0;
	/*
	 * If this group is exclusive and there are already
1449
	 * events on the CPU, it can't go on.
1450
	 */
1451
	if (event->attr.exclusive && cpuctx->active_oncpu)
1452 1453 1454 1455 1456 1457 1458 1459
		return 0;
	/*
	 * Otherwise, try to add it if all previous groups were able
	 * to go on.
	 */
	return can_add_hw;
}

1460 1461
static void add_event_to_ctx(struct perf_event *event,
			       struct perf_event_context *ctx)
1462
{
1463 1464
	u64 tstamp = perf_event_time(event);

1465
	list_add_event(event, ctx);
1466
	perf_group_attach(event);
1467 1468 1469
	event->tstamp_enabled = tstamp;
	event->tstamp_running = tstamp;
	event->tstamp_stopped = tstamp;
1470 1471
}

1472 1473 1474 1475 1476 1477
static void task_ctx_sched_out(struct perf_event_context *ctx);
static void
ctx_sched_in(struct perf_event_context *ctx,
	     struct perf_cpu_context *cpuctx,
	     enum event_type_t event_type,
	     struct task_struct *task);
1478

1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490
static void perf_event_sched_in(struct perf_cpu_context *cpuctx,
				struct perf_event_context *ctx,
				struct task_struct *task)
{
	cpu_ctx_sched_in(cpuctx, EVENT_PINNED, task);
	if (ctx)
		ctx_sched_in(ctx, cpuctx, EVENT_PINNED, task);
	cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE, task);
	if (ctx)
		ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE, task);
}

T
Thomas Gleixner 已提交
1491
/*
1492
 * Cross CPU call to install and enable a performance event
1493 1494
 *
 * Must be called with ctx->mutex held
T
Thomas Gleixner 已提交
1495
 */
1496
static int  __perf_install_in_context(void *info)
T
Thomas Gleixner 已提交
1497
{
1498 1499
	struct perf_event *event = info;
	struct perf_event_context *ctx = event->ctx;
P
Peter Zijlstra 已提交
1500
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1501 1502 1503 1504 1505
	struct perf_event_context *task_ctx = cpuctx->task_ctx;
	struct task_struct *task = current;

	perf_ctx_lock(cpuctx, cpuctx->task_ctx);
	perf_pmu_disable(cpuctx->ctx.pmu);
T
Thomas Gleixner 已提交
1506 1507

	/*
1508
	 * If there was an active task_ctx schedule it out.
T
Thomas Gleixner 已提交
1509
	 */
1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523
	if (task_ctx) {
		task_ctx_sched_out(task_ctx);
		/*
		 * If the context we're installing events in is not the
		 * active task_ctx, flip them.
		 */
		if (ctx->task && task_ctx != ctx) {
			raw_spin_unlock(&cpuctx->ctx.lock);
			raw_spin_lock(&ctx->lock);
			cpuctx->task_ctx = task_ctx = ctx;
		}
		task = task_ctx->task;
	}
	cpu_ctx_sched_out(cpuctx, EVENT_ALL);
T
Thomas Gleixner 已提交
1524

1525
	update_context_time(ctx);
S
Stephane Eranian 已提交
1526 1527 1528 1529 1530 1531
	/*
	 * update cgrp time only if current cgrp
	 * matches event->cgrp. Must be done before
	 * calling add_event_to_ctx()
	 */
	update_cgrp_time_from_event(event);
T
Thomas Gleixner 已提交
1532

1533
	add_event_to_ctx(event, ctx);
T
Thomas Gleixner 已提交
1534

1535
	/*
1536
	 * Schedule everything back in
1537
	 */
1538
	perf_event_sched_in(cpuctx, task_ctx, task);
1539 1540 1541

	perf_pmu_enable(cpuctx->ctx.pmu);
	perf_ctx_unlock(cpuctx, task_ctx);
1542 1543

	return 0;
T
Thomas Gleixner 已提交
1544 1545 1546
}

/*
1547
 * Attach a performance event to a context
T
Thomas Gleixner 已提交
1548
 *
1549 1550
 * First we add the event to the list with the hardware enable bit
 * in event->hw_config cleared.
T
Thomas Gleixner 已提交
1551
 *
1552
 * If the event is attached to a task which is on a CPU we use a smp
T
Thomas Gleixner 已提交
1553 1554 1555 1556
 * call to enable it in the task context. The task might have been
 * scheduled away, but we check this in the smp call again.
 */
static void
1557 1558
perf_install_in_context(struct perf_event_context *ctx,
			struct perf_event *event,
T
Thomas Gleixner 已提交
1559 1560 1561 1562
			int cpu)
{
	struct task_struct *task = ctx->task;

1563 1564
	lockdep_assert_held(&ctx->mutex);

1565 1566
	event->ctx = ctx;

T
Thomas Gleixner 已提交
1567 1568
	if (!task) {
		/*
1569
		 * Per cpu events are installed via an smp call and
1570
		 * the install is always successful.
T
Thomas Gleixner 已提交
1571
		 */
1572
		cpu_function_call(cpu, __perf_install_in_context, event);
T
Thomas Gleixner 已提交
1573 1574 1575 1576
		return;
	}

retry:
1577 1578
	if (!task_function_call(task, __perf_install_in_context, event))
		return;
T
Thomas Gleixner 已提交
1579

1580
	raw_spin_lock_irq(&ctx->lock);
T
Thomas Gleixner 已提交
1581
	/*
1582 1583
	 * If we failed to find a running task, but find the context active now
	 * that we've acquired the ctx->lock, retry.
T
Thomas Gleixner 已提交
1584
	 */
1585
	if (ctx->is_active) {
1586
		raw_spin_unlock_irq(&ctx->lock);
T
Thomas Gleixner 已提交
1587 1588 1589 1590
		goto retry;
	}

	/*
1591 1592
	 * Since the task isn't running, its safe to add the event, us holding
	 * the ctx->lock ensures the task won't get scheduled in.
T
Thomas Gleixner 已提交
1593
	 */
1594
	add_event_to_ctx(event, ctx);
1595
	raw_spin_unlock_irq(&ctx->lock);
T
Thomas Gleixner 已提交
1596 1597
}

1598
/*
1599
 * Put a event into inactive state and update time fields.
1600 1601 1602 1603 1604 1605
 * Enabling the leader of a group effectively enables all
 * the group members that aren't explicitly disabled, so we
 * have to update their ->tstamp_enabled also.
 * Note: this works for group members as well as group leaders
 * since the non-leader members' sibling_lists will be empty.
 */
1606 1607
static void __perf_event_mark_enabled(struct perf_event *event,
					struct perf_event_context *ctx)
1608
{
1609
	struct perf_event *sub;
1610
	u64 tstamp = perf_event_time(event);
1611

1612
	event->state = PERF_EVENT_STATE_INACTIVE;
1613
	event->tstamp_enabled = tstamp - event->total_time_enabled;
P
Peter Zijlstra 已提交
1614
	list_for_each_entry(sub, &event->sibling_list, group_entry) {
1615 1616
		if (sub->state >= PERF_EVENT_STATE_INACTIVE)
			sub->tstamp_enabled = tstamp - sub->total_time_enabled;
P
Peter Zijlstra 已提交
1617
	}
1618 1619
}

1620
/*
1621
 * Cross CPU call to enable a performance event
1622
 */
1623
static int __perf_event_enable(void *info)
1624
{
1625 1626 1627
	struct perf_event *event = info;
	struct perf_event_context *ctx = event->ctx;
	struct perf_event *leader = event->group_leader;
P
Peter Zijlstra 已提交
1628
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1629
	int err;
1630

1631 1632
	if (WARN_ON_ONCE(!ctx->is_active))
		return -EINVAL;
1633

1634
	raw_spin_lock(&ctx->lock);
1635
	update_context_time(ctx);
1636

1637
	if (event->state >= PERF_EVENT_STATE_INACTIVE)
1638
		goto unlock;
S
Stephane Eranian 已提交
1639 1640 1641 1642

	/*
	 * set current task's cgroup time reference point
	 */
1643
	perf_cgroup_set_timestamp(current, ctx);
S
Stephane Eranian 已提交
1644

1645
	__perf_event_mark_enabled(event, ctx);
1646

S
Stephane Eranian 已提交
1647 1648 1649
	if (!event_filter_match(event)) {
		if (is_cgroup_event(event))
			perf_cgroup_defer_enabled(event);
1650
		goto unlock;
S
Stephane Eranian 已提交
1651
	}
1652

1653
	/*
1654
	 * If the event is in a group and isn't the group leader,
1655
	 * then don't put it on unless the group is on.
1656
	 */
1657
	if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE)
1658
		goto unlock;
1659

1660
	if (!group_can_go_on(event, cpuctx, 1)) {
1661
		err = -EEXIST;
1662
	} else {
1663
		if (event == leader)
1664
			err = group_sched_in(event, cpuctx, ctx);
1665
		else
1666
			err = event_sched_in(event, cpuctx, ctx);
1667
	}
1668 1669 1670

	if (err) {
		/*
1671
		 * If this event can't go on and it's part of a
1672 1673
		 * group, then the whole group has to come off.
		 */
1674
		if (leader != event)
1675
			group_sched_out(leader, cpuctx, ctx);
1676
		if (leader->attr.pinned) {
1677
			update_group_times(leader);
1678
			leader->state = PERF_EVENT_STATE_ERROR;
1679
		}
1680 1681
	}

P
Peter Zijlstra 已提交
1682
unlock:
1683
	raw_spin_unlock(&ctx->lock);
1684 1685

	return 0;
1686 1687 1688
}

/*
1689
 * Enable a event.
1690
 *
1691 1692
 * If event->ctx is a cloned context, callers must make sure that
 * every task struct that event->ctx->task could possibly point to
1693
 * remains valid.  This condition is satisfied when called through
1694 1695
 * perf_event_for_each_child or perf_event_for_each as described
 * for perf_event_disable.
1696
 */
1697
void perf_event_enable(struct perf_event *event)
1698
{
1699
	struct perf_event_context *ctx = event->ctx;
1700 1701 1702 1703
	struct task_struct *task = ctx->task;

	if (!task) {
		/*
1704
		 * Enable the event on the cpu that it's on
1705
		 */
1706
		cpu_function_call(event->cpu, __perf_event_enable, event);
1707 1708 1709
		return;
	}

1710
	raw_spin_lock_irq(&ctx->lock);
1711
	if (event->state >= PERF_EVENT_STATE_INACTIVE)
1712 1713 1714
		goto out;

	/*
1715 1716
	 * If the event is in error state, clear that first.
	 * That way, if we see the event in error state below, we
1717 1718 1719 1720
	 * know that it has gone back into error state, as distinct
	 * from the task having been scheduled away before the
	 * cross-call arrived.
	 */
1721 1722
	if (event->state == PERF_EVENT_STATE_ERROR)
		event->state = PERF_EVENT_STATE_OFF;
1723

P
Peter Zijlstra 已提交
1724
retry:
1725 1726 1727 1728 1729
	if (!ctx->is_active) {
		__perf_event_mark_enabled(event, ctx);
		goto out;
	}

1730
	raw_spin_unlock_irq(&ctx->lock);
1731 1732 1733

	if (!task_function_call(task, __perf_event_enable, event))
		return;
1734

1735
	raw_spin_lock_irq(&ctx->lock);
1736 1737

	/*
1738
	 * If the context is active and the event is still off,
1739 1740
	 * we need to retry the cross-call.
	 */
1741 1742 1743 1744 1745 1746
	if (ctx->is_active && event->state == PERF_EVENT_STATE_OFF) {
		/*
		 * task could have been flipped by a concurrent
		 * perf_event_context_sched_out()
		 */
		task = ctx->task;
1747
		goto retry;
1748
	}
1749

P
Peter Zijlstra 已提交
1750
out:
1751
	raw_spin_unlock_irq(&ctx->lock);
1752 1753
}

1754
static int perf_event_refresh(struct perf_event *event, int refresh)
1755
{
1756
	/*
1757
	 * not supported on inherited events
1758
	 */
1759
	if (event->attr.inherit || !is_sampling_event(event))
1760 1761
		return -EINVAL;

1762 1763
	atomic_add(refresh, &event->event_limit);
	perf_event_enable(event);
1764 1765

	return 0;
1766 1767
}

1768 1769 1770
static void ctx_sched_out(struct perf_event_context *ctx,
			  struct perf_cpu_context *cpuctx,
			  enum event_type_t event_type)
1771
{
1772
	struct perf_event *event;
1773
	int is_active = ctx->is_active;
1774

1775
	ctx->is_active &= ~event_type;
1776
	if (likely(!ctx->nr_events))
1777 1778
		return;

1779
	update_context_time(ctx);
S
Stephane Eranian 已提交
1780
	update_cgrp_time_from_cpuctx(cpuctx);
1781
	if (!ctx->nr_active)
1782
		return;
1783

P
Peter Zijlstra 已提交
1784
	perf_pmu_disable(ctx->pmu);
1785
	if ((is_active & EVENT_PINNED) && (event_type & EVENT_PINNED)) {
1786 1787
		list_for_each_entry(event, &ctx->pinned_groups, group_entry)
			group_sched_out(event, cpuctx, ctx);
P
Peter Zijlstra 已提交
1788
	}
1789

1790
	if ((is_active & EVENT_FLEXIBLE) && (event_type & EVENT_FLEXIBLE)) {
1791
		list_for_each_entry(event, &ctx->flexible_groups, group_entry)
1792
			group_sched_out(event, cpuctx, ctx);
P
Peter Zijlstra 已提交
1793
	}
P
Peter Zijlstra 已提交
1794
	perf_pmu_enable(ctx->pmu);
1795 1796
}

1797 1798 1799
/*
 * Test whether two contexts are equivalent, i.e. whether they
 * have both been cloned from the same version of the same context
1800 1801 1802 1803
 * and they both have the same number of enabled events.
 * If the number of enabled events is the same, then the set
 * of enabled events should be the same, because these are both
 * inherited contexts, therefore we can't access individual events
1804
 * in them directly with an fd; we can only enable/disable all
1805
 * events via prctl, or enable/disable all events in a family
1806 1807
 * via ioctl, which will have the same effect on both contexts.
 */
1808 1809
static int context_equiv(struct perf_event_context *ctx1,
			 struct perf_event_context *ctx2)
1810 1811
{
	return ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx
1812
		&& ctx1->parent_gen == ctx2->parent_gen
1813
		&& !ctx1->pin_count && !ctx2->pin_count;
1814 1815
}

1816 1817
static void __perf_event_sync_stat(struct perf_event *event,
				     struct perf_event *next_event)
1818 1819 1820
{
	u64 value;

1821
	if (!event->attr.inherit_stat)
1822 1823 1824
		return;

	/*
1825
	 * Update the event value, we cannot use perf_event_read()
1826 1827
	 * because we're in the middle of a context switch and have IRQs
	 * disabled, which upsets smp_call_function_single(), however
1828
	 * we know the event must be on the current CPU, therefore we
1829 1830
	 * don't need to use it.
	 */
1831 1832
	switch (event->state) {
	case PERF_EVENT_STATE_ACTIVE:
1833 1834
		event->pmu->read(event);
		/* fall-through */
1835

1836 1837
	case PERF_EVENT_STATE_INACTIVE:
		update_event_times(event);
1838 1839 1840 1841 1842 1843 1844
		break;

	default:
		break;
	}

	/*
1845
	 * In order to keep per-task stats reliable we need to flip the event
1846 1847
	 * values when we flip the contexts.
	 */
1848 1849 1850
	value = local64_read(&next_event->count);
	value = local64_xchg(&event->count, value);
	local64_set(&next_event->count, value);
1851

1852 1853
	swap(event->total_time_enabled, next_event->total_time_enabled);
	swap(event->total_time_running, next_event->total_time_running);
1854

1855
	/*
1856
	 * Since we swizzled the values, update the user visible data too.
1857
	 */
1858 1859
	perf_event_update_userpage(event);
	perf_event_update_userpage(next_event);
1860 1861 1862 1863 1864
}

#define list_next_entry(pos, member) \
	list_entry(pos->member.next, typeof(*pos), member)

1865 1866
static void perf_event_sync_stat(struct perf_event_context *ctx,
				   struct perf_event_context *next_ctx)
1867
{
1868
	struct perf_event *event, *next_event;
1869 1870 1871 1872

	if (!ctx->nr_stat)
		return;

1873 1874
	update_context_time(ctx);

1875 1876
	event = list_first_entry(&ctx->event_list,
				   struct perf_event, event_entry);
1877

1878 1879
	next_event = list_first_entry(&next_ctx->event_list,
					struct perf_event, event_entry);
1880

1881 1882
	while (&event->event_entry != &ctx->event_list &&
	       &next_event->event_entry != &next_ctx->event_list) {
1883

1884
		__perf_event_sync_stat(event, next_event);
1885

1886 1887
		event = list_next_entry(event, event_entry);
		next_event = list_next_entry(next_event, event_entry);
1888 1889 1890
	}
}

1891 1892
static void perf_event_context_sched_out(struct task_struct *task, int ctxn,
					 struct task_struct *next)
T
Thomas Gleixner 已提交
1893
{
P
Peter Zijlstra 已提交
1894
	struct perf_event_context *ctx = task->perf_event_ctxp[ctxn];
1895 1896
	struct perf_event_context *next_ctx;
	struct perf_event_context *parent;
P
Peter Zijlstra 已提交
1897
	struct perf_cpu_context *cpuctx;
1898
	int do_switch = 1;
T
Thomas Gleixner 已提交
1899

P
Peter Zijlstra 已提交
1900 1901
	if (likely(!ctx))
		return;
1902

P
Peter Zijlstra 已提交
1903 1904
	cpuctx = __get_cpu_context(ctx);
	if (!cpuctx->task_ctx)
T
Thomas Gleixner 已提交
1905 1906
		return;

1907 1908
	rcu_read_lock();
	parent = rcu_dereference(ctx->parent_ctx);
P
Peter Zijlstra 已提交
1909
	next_ctx = next->perf_event_ctxp[ctxn];
1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920
	if (parent && next_ctx &&
	    rcu_dereference(next_ctx->parent_ctx) == parent) {
		/*
		 * Looks like the two contexts are clones, so we might be
		 * able to optimize the context switch.  We lock both
		 * contexts and check that they are clones under the
		 * lock (including re-checking that neither has been
		 * uncloned in the meantime).  It doesn't matter which
		 * order we take the locks because no other cpu could
		 * be trying to lock both of these tasks.
		 */
1921 1922
		raw_spin_lock(&ctx->lock);
		raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
1923
		if (context_equiv(ctx, next_ctx)) {
1924 1925
			/*
			 * XXX do we need a memory barrier of sorts
1926
			 * wrt to rcu_dereference() of perf_event_ctxp
1927
			 */
P
Peter Zijlstra 已提交
1928 1929
			task->perf_event_ctxp[ctxn] = next_ctx;
			next->perf_event_ctxp[ctxn] = ctx;
1930 1931 1932
			ctx->task = next;
			next_ctx->task = task;
			do_switch = 0;
1933

1934
			perf_event_sync_stat(ctx, next_ctx);
1935
		}
1936 1937
		raw_spin_unlock(&next_ctx->lock);
		raw_spin_unlock(&ctx->lock);
1938
	}
1939
	rcu_read_unlock();
1940

1941
	if (do_switch) {
1942
		raw_spin_lock(&ctx->lock);
1943
		ctx_sched_out(ctx, cpuctx, EVENT_ALL);
1944
		cpuctx->task_ctx = NULL;
1945
		raw_spin_unlock(&ctx->lock);
1946
	}
T
Thomas Gleixner 已提交
1947 1948
}

P
Peter Zijlstra 已提交
1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962
#define for_each_task_context_nr(ctxn)					\
	for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++)

/*
 * Called from scheduler to remove the events of the current task,
 * with interrupts disabled.
 *
 * We stop each event and update the event value in event->count.
 *
 * This does not protect us against NMI, but disable()
 * sets the disabled bit in the control field of event _before_
 * accessing the event control register. If a NMI hits, then it will
 * not restart the event.
 */
1963 1964
void __perf_event_task_sched_out(struct task_struct *task,
				 struct task_struct *next)
P
Peter Zijlstra 已提交
1965 1966 1967 1968 1969
{
	int ctxn;

	for_each_task_context_nr(ctxn)
		perf_event_context_sched_out(task, ctxn, next);
S
Stephane Eranian 已提交
1970 1971 1972 1973 1974 1975 1976 1977

	/*
	 * if cgroup events exist on this CPU, then we need
	 * to check if we have to switch out PMU state.
	 * cgroup event are system-wide mode only
	 */
	if (atomic_read(&__get_cpu_var(perf_cgroup_events)))
		perf_cgroup_sched_out(task);
P
Peter Zijlstra 已提交
1978 1979
}

1980
static void task_ctx_sched_out(struct perf_event_context *ctx)
1981
{
P
Peter Zijlstra 已提交
1982
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1983

1984 1985
	if (!cpuctx->task_ctx)
		return;
1986 1987 1988 1989

	if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
		return;

1990
	ctx_sched_out(ctx, cpuctx, EVENT_ALL);
1991 1992 1993
	cpuctx->task_ctx = NULL;
}

1994 1995 1996 1997 1998 1999 2000
/*
 * Called with IRQs disabled
 */
static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
			      enum event_type_t event_type)
{
	ctx_sched_out(&cpuctx->ctx, cpuctx, event_type);
2001 2002
}

2003
static void
2004
ctx_pinned_sched_in(struct perf_event_context *ctx,
2005
		    struct perf_cpu_context *cpuctx)
T
Thomas Gleixner 已提交
2006
{
2007
	struct perf_event *event;
T
Thomas Gleixner 已提交
2008

2009 2010
	list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
		if (event->state <= PERF_EVENT_STATE_OFF)
2011
			continue;
2012
		if (!event_filter_match(event))
2013 2014
			continue;

S
Stephane Eranian 已提交
2015 2016 2017 2018
		/* may need to reset tstamp_enabled */
		if (is_cgroup_event(event))
			perf_cgroup_mark_enabled(event, ctx);

2019
		if (group_can_go_on(event, cpuctx, 1))
2020
			group_sched_in(event, cpuctx, ctx);
2021 2022 2023 2024 2025

		/*
		 * If this pinned group hasn't been scheduled,
		 * put it in error state.
		 */
2026 2027 2028
		if (event->state == PERF_EVENT_STATE_INACTIVE) {
			update_group_times(event);
			event->state = PERF_EVENT_STATE_ERROR;
2029
		}
2030
	}
2031 2032 2033 2034
}

static void
ctx_flexible_sched_in(struct perf_event_context *ctx,
2035
		      struct perf_cpu_context *cpuctx)
2036 2037 2038
{
	struct perf_event *event;
	int can_add_hw = 1;
2039

2040 2041 2042
	list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
		/* Ignore events in OFF or ERROR state */
		if (event->state <= PERF_EVENT_STATE_OFF)
2043
			continue;
2044 2045
		/*
		 * Listen to the 'cpu' scheduling filter constraint
2046
		 * of events:
2047
		 */
2048
		if (!event_filter_match(event))
T
Thomas Gleixner 已提交
2049 2050
			continue;

S
Stephane Eranian 已提交
2051 2052 2053 2054
		/* may need to reset tstamp_enabled */
		if (is_cgroup_event(event))
			perf_cgroup_mark_enabled(event, ctx);

P
Peter Zijlstra 已提交
2055
		if (group_can_go_on(event, cpuctx, can_add_hw)) {
2056
			if (group_sched_in(event, cpuctx, ctx))
2057
				can_add_hw = 0;
P
Peter Zijlstra 已提交
2058
		}
T
Thomas Gleixner 已提交
2059
	}
2060 2061 2062 2063 2064
}

static void
ctx_sched_in(struct perf_event_context *ctx,
	     struct perf_cpu_context *cpuctx,
S
Stephane Eranian 已提交
2065 2066
	     enum event_type_t event_type,
	     struct task_struct *task)
2067
{
S
Stephane Eranian 已提交
2068
	u64 now;
2069
	int is_active = ctx->is_active;
S
Stephane Eranian 已提交
2070

2071
	ctx->is_active |= event_type;
2072
	if (likely(!ctx->nr_events))
2073
		return;
2074

S
Stephane Eranian 已提交
2075 2076
	now = perf_clock();
	ctx->timestamp = now;
2077
	perf_cgroup_set_timestamp(task, ctx);
2078 2079 2080 2081
	/*
	 * First go through the list and put on any pinned groups
	 * in order to give them the best chance of going on.
	 */
2082
	if (!(is_active & EVENT_PINNED) && (event_type & EVENT_PINNED))
2083
		ctx_pinned_sched_in(ctx, cpuctx);
2084 2085

	/* Then walk through the lower prio flexible groups */
2086
	if (!(is_active & EVENT_FLEXIBLE) && (event_type & EVENT_FLEXIBLE))
2087
		ctx_flexible_sched_in(ctx, cpuctx);
2088 2089
}

2090
static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
S
Stephane Eranian 已提交
2091 2092
			     enum event_type_t event_type,
			     struct task_struct *task)
2093 2094 2095
{
	struct perf_event_context *ctx = &cpuctx->ctx;

S
Stephane Eranian 已提交
2096
	ctx_sched_in(ctx, cpuctx, event_type, task);
2097 2098
}

S
Stephane Eranian 已提交
2099 2100
static void perf_event_context_sched_in(struct perf_event_context *ctx,
					struct task_struct *task)
2101
{
P
Peter Zijlstra 已提交
2102
	struct perf_cpu_context *cpuctx;
2103

P
Peter Zijlstra 已提交
2104
	cpuctx = __get_cpu_context(ctx);
2105 2106 2107
	if (cpuctx->task_ctx == ctx)
		return;

2108
	perf_ctx_lock(cpuctx, ctx);
P
Peter Zijlstra 已提交
2109
	perf_pmu_disable(ctx->pmu);
2110 2111 2112 2113 2114 2115 2116
	/*
	 * We want to keep the following priority order:
	 * cpu pinned (that don't need to move), task pinned,
	 * cpu flexible, task flexible.
	 */
	cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);

2117
	perf_event_sched_in(cpuctx, ctx, task);
2118 2119

	cpuctx->task_ctx = ctx;
2120

2121 2122 2123
	perf_pmu_enable(ctx->pmu);
	perf_ctx_unlock(cpuctx, ctx);

2124 2125 2126 2127
	/*
	 * Since these rotations are per-cpu, we need to ensure the
	 * cpu-context we got scheduled on is actually rotating.
	 */
P
Peter Zijlstra 已提交
2128
	perf_pmu_rotate_start(ctx->pmu);
2129 2130
}

P
Peter Zijlstra 已提交
2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141
/*
 * Called from scheduler to add the events of the current task
 * with interrupts disabled.
 *
 * We restore the event value and then enable it.
 *
 * This does not protect us against NMI, but enable()
 * sets the enabled bit in the control field of event _before_
 * accessing the event control register. If a NMI hits, then it will
 * keep the event running.
 */
2142
void __perf_event_task_sched_in(struct task_struct *task)
P
Peter Zijlstra 已提交
2143 2144 2145 2146 2147 2148 2149 2150 2151
{
	struct perf_event_context *ctx;
	int ctxn;

	for_each_task_context_nr(ctxn) {
		ctx = task->perf_event_ctxp[ctxn];
		if (likely(!ctx))
			continue;

S
Stephane Eranian 已提交
2152
		perf_event_context_sched_in(ctx, task);
P
Peter Zijlstra 已提交
2153
	}
S
Stephane Eranian 已提交
2154 2155 2156 2157 2158 2159 2160
	/*
	 * if cgroup events exist on this CPU, then we need
	 * to check if we have to switch in PMU state.
	 * cgroup event are system-wide mode only
	 */
	if (atomic_read(&__get_cpu_var(perf_cgroup_events)))
		perf_cgroup_sched_in(task);
2161 2162
}

2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189
static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
{
	u64 frequency = event->attr.sample_freq;
	u64 sec = NSEC_PER_SEC;
	u64 divisor, dividend;

	int count_fls, nsec_fls, frequency_fls, sec_fls;

	count_fls = fls64(count);
	nsec_fls = fls64(nsec);
	frequency_fls = fls64(frequency);
	sec_fls = 30;

	/*
	 * We got @count in @nsec, with a target of sample_freq HZ
	 * the target period becomes:
	 *
	 *             @count * 10^9
	 * period = -------------------
	 *          @nsec * sample_freq
	 *
	 */

	/*
	 * Reduce accuracy by one bit such that @a and @b converge
	 * to a similar magnitude.
	 */
2190
#define REDUCE_FLS(a, b)		\
2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229
do {					\
	if (a##_fls > b##_fls) {	\
		a >>= 1;		\
		a##_fls--;		\
	} else {			\
		b >>= 1;		\
		b##_fls--;		\
	}				\
} while (0)

	/*
	 * Reduce accuracy until either term fits in a u64, then proceed with
	 * the other, so that finally we can do a u64/u64 division.
	 */
	while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
		REDUCE_FLS(nsec, frequency);
		REDUCE_FLS(sec, count);
	}

	if (count_fls + sec_fls > 64) {
		divisor = nsec * frequency;

		while (count_fls + sec_fls > 64) {
			REDUCE_FLS(count, sec);
			divisor >>= 1;
		}

		dividend = count * sec;
	} else {
		dividend = count * sec;

		while (nsec_fls + frequency_fls > 64) {
			REDUCE_FLS(nsec, frequency);
			dividend >>= 1;
		}

		divisor = nsec * frequency;
	}

2230 2231 2232
	if (!divisor)
		return dividend;

2233 2234 2235 2236
	return div64_u64(dividend, divisor);
}

static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count)
2237
{
2238
	struct hw_perf_event *hwc = &event->hw;
2239
	s64 period, sample_period;
2240 2241
	s64 delta;

2242
	period = perf_calculate_period(event, nsec, count);
2243 2244 2245 2246 2247 2248 2249 2250 2251 2252

	delta = (s64)(period - hwc->sample_period);
	delta = (delta + 7) / 8; /* low pass filter */

	sample_period = hwc->sample_period + delta;

	if (!sample_period)
		sample_period = 1;

	hwc->sample_period = sample_period;
2253

2254
	if (local64_read(&hwc->period_left) > 8*sample_period) {
P
Peter Zijlstra 已提交
2255
		event->pmu->stop(event, PERF_EF_UPDATE);
2256
		local64_set(&hwc->period_left, 0);
P
Peter Zijlstra 已提交
2257
		event->pmu->start(event, PERF_EF_RELOAD);
2258
	}
2259 2260
}

2261
static void perf_ctx_adjust_freq(struct perf_event_context *ctx, u64 period)
2262
{
2263 2264
	struct perf_event *event;
	struct hw_perf_event *hwc;
2265 2266
	u64 interrupts, now;
	s64 delta;
2267

2268
	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
2269
		if (event->state != PERF_EVENT_STATE_ACTIVE)
2270 2271
			continue;

2272
		if (!event_filter_match(event))
2273 2274
			continue;

2275
		hwc = &event->hw;
2276 2277 2278

		interrupts = hwc->interrupts;
		hwc->interrupts = 0;
2279

2280
		/*
2281
		 * unthrottle events on the tick
2282
		 */
2283
		if (interrupts == MAX_INTERRUPTS) {
2284
			perf_log_throttle(event, 1);
P
Peter Zijlstra 已提交
2285
			event->pmu->start(event, 0);
2286 2287
		}

2288
		if (!event->attr.freq || !event->attr.sample_freq)
2289 2290
			continue;

2291
		event->pmu->read(event);
2292
		now = local64_read(&event->count);
2293 2294
		delta = now - hwc->freq_count_stamp;
		hwc->freq_count_stamp = now;
2295

2296
		if (delta > 0)
2297
			perf_adjust_period(event, period, delta);
2298 2299 2300
	}
}

2301
/*
2302
 * Round-robin a context's events:
2303
 */
2304
static void rotate_ctx(struct perf_event_context *ctx)
T
Thomas Gleixner 已提交
2305
{
2306 2307 2308 2309 2310 2311
	/*
	 * Rotate the first entry last of non-pinned groups. Rotation might be
	 * disabled by the inheritance code.
	 */
	if (!ctx->rotate_disable)
		list_rotate_left(&ctx->flexible_groups);
2312 2313
}

2314
/*
2315 2316 2317
 * perf_pmu_rotate_start() and perf_rotate_context() are fully serialized
 * because they're strictly cpu affine and rotate_start is called with IRQs
 * disabled, while rotate_context is called from IRQ context.
2318
 */
2319
static void perf_rotate_context(struct perf_cpu_context *cpuctx)
2320
{
2321
	u64 interval = (u64)cpuctx->jiffies_interval * TICK_NSEC;
P
Peter Zijlstra 已提交
2322
	struct perf_event_context *ctx = NULL;
2323
	int rotate = 0, remove = 1;
2324

2325
	if (cpuctx->ctx.nr_events) {
2326
		remove = 0;
2327 2328 2329
		if (cpuctx->ctx.nr_events != cpuctx->ctx.nr_active)
			rotate = 1;
	}
2330

P
Peter Zijlstra 已提交
2331
	ctx = cpuctx->task_ctx;
2332
	if (ctx && ctx->nr_events) {
2333
		remove = 0;
2334 2335 2336
		if (ctx->nr_events != ctx->nr_active)
			rotate = 1;
	}
2337

2338
	perf_ctx_lock(cpuctx, cpuctx->task_ctx);
P
Peter Zijlstra 已提交
2339
	perf_pmu_disable(cpuctx->ctx.pmu);
2340
	perf_ctx_adjust_freq(&cpuctx->ctx, interval);
2341
	if (ctx)
2342
		perf_ctx_adjust_freq(ctx, interval);
2343

2344
	if (!rotate)
2345
		goto done;
2346

2347
	cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
2348
	if (ctx)
2349
		ctx_sched_out(ctx, cpuctx, EVENT_FLEXIBLE);
T
Thomas Gleixner 已提交
2350

2351
	rotate_ctx(&cpuctx->ctx);
2352 2353
	if (ctx)
		rotate_ctx(ctx);
2354

2355
	perf_event_sched_in(cpuctx, ctx, current);
2356 2357

done:
2358 2359 2360
	if (remove)
		list_del_init(&cpuctx->rotation_list);

P
Peter Zijlstra 已提交
2361
	perf_pmu_enable(cpuctx->ctx.pmu);
2362
	perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
2363 2364 2365 2366 2367 2368
}

void perf_event_task_tick(void)
{
	struct list_head *head = &__get_cpu_var(rotation_list);
	struct perf_cpu_context *cpuctx, *tmp;
2369

2370 2371 2372 2373 2374 2375 2376
	WARN_ON(!irqs_disabled());

	list_for_each_entry_safe(cpuctx, tmp, head, rotation_list) {
		if (cpuctx->jiffies_interval == 1 ||
				!(jiffies % cpuctx->jiffies_interval))
			perf_rotate_context(cpuctx);
	}
T
Thomas Gleixner 已提交
2377 2378
}

2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393
static int event_enable_on_exec(struct perf_event *event,
				struct perf_event_context *ctx)
{
	if (!event->attr.enable_on_exec)
		return 0;

	event->attr.enable_on_exec = 0;
	if (event->state >= PERF_EVENT_STATE_INACTIVE)
		return 0;

	__perf_event_mark_enabled(event, ctx);

	return 1;
}

2394
/*
2395
 * Enable all of a task's events that have been marked enable-on-exec.
2396 2397
 * This expects task == current.
 */
P
Peter Zijlstra 已提交
2398
static void perf_event_enable_on_exec(struct perf_event_context *ctx)
2399
{
2400
	struct perf_event *event;
2401 2402
	unsigned long flags;
	int enabled = 0;
2403
	int ret;
2404 2405

	local_irq_save(flags);
2406
	if (!ctx || !ctx->nr_events)
2407 2408
		goto out;

2409 2410 2411 2412 2413 2414 2415 2416
	/*
	 * We must ctxsw out cgroup events to avoid conflict
	 * when invoking perf_task_event_sched_in() later on
	 * in this function. Otherwise we end up trying to
	 * ctxswin cgroup events which are already scheduled
	 * in.
	 */
	perf_cgroup_sched_out(current);
2417

2418
	raw_spin_lock(&ctx->lock);
2419
	task_ctx_sched_out(ctx);
2420

2421 2422 2423 2424 2425 2426 2427 2428 2429 2430
	list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
		ret = event_enable_on_exec(event, ctx);
		if (ret)
			enabled = 1;
	}

	list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
		ret = event_enable_on_exec(event, ctx);
		if (ret)
			enabled = 1;
2431 2432 2433
	}

	/*
2434
	 * Unclone this context if we enabled any event.
2435
	 */
2436 2437
	if (enabled)
		unclone_ctx(ctx);
2438

2439
	raw_spin_unlock(&ctx->lock);
2440

2441 2442 2443
	/*
	 * Also calls ctxswin for cgroup events, if any:
	 */
S
Stephane Eranian 已提交
2444
	perf_event_context_sched_in(ctx, ctx->task);
P
Peter Zijlstra 已提交
2445
out:
2446 2447 2448
	local_irq_restore(flags);
}

T
Thomas Gleixner 已提交
2449
/*
2450
 * Cross CPU call to read the hardware event
T
Thomas Gleixner 已提交
2451
 */
2452
static void __perf_event_read(void *info)
T
Thomas Gleixner 已提交
2453
{
2454 2455
	struct perf_event *event = info;
	struct perf_event_context *ctx = event->ctx;
P
Peter Zijlstra 已提交
2456
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
I
Ingo Molnar 已提交
2457

2458 2459 2460 2461
	/*
	 * If this is a task context, we need to check whether it is
	 * the current task context of this cpu.  If not it has been
	 * scheduled out before the smp call arrived.  In that case
2462 2463
	 * event->count would have been updated to a recent sample
	 * when the event was scheduled out.
2464 2465 2466 2467
	 */
	if (ctx->task && cpuctx->task_ctx != ctx)
		return;

2468
	raw_spin_lock(&ctx->lock);
S
Stephane Eranian 已提交
2469
	if (ctx->is_active) {
2470
		update_context_time(ctx);
S
Stephane Eranian 已提交
2471 2472
		update_cgrp_time_from_event(event);
	}
2473
	update_event_times(event);
2474 2475
	if (event->state == PERF_EVENT_STATE_ACTIVE)
		event->pmu->read(event);
2476
	raw_spin_unlock(&ctx->lock);
T
Thomas Gleixner 已提交
2477 2478
}

P
Peter Zijlstra 已提交
2479 2480
static inline u64 perf_event_count(struct perf_event *event)
{
2481
	return local64_read(&event->count) + atomic64_read(&event->child_count);
P
Peter Zijlstra 已提交
2482 2483
}

2484
static u64 perf_event_read(struct perf_event *event)
T
Thomas Gleixner 已提交
2485 2486
{
	/*
2487 2488
	 * If event is enabled and currently active on a CPU, update the
	 * value in the event structure:
T
Thomas Gleixner 已提交
2489
	 */
2490 2491 2492 2493
	if (event->state == PERF_EVENT_STATE_ACTIVE) {
		smp_call_function_single(event->oncpu,
					 __perf_event_read, event, 1);
	} else if (event->state == PERF_EVENT_STATE_INACTIVE) {
P
Peter Zijlstra 已提交
2494 2495 2496
		struct perf_event_context *ctx = event->ctx;
		unsigned long flags;

2497
		raw_spin_lock_irqsave(&ctx->lock, flags);
2498 2499 2500 2501 2502
		/*
		 * may read while context is not active
		 * (e.g., thread is blocked), in that case
		 * we cannot update context time
		 */
S
Stephane Eranian 已提交
2503
		if (ctx->is_active) {
2504
			update_context_time(ctx);
S
Stephane Eranian 已提交
2505 2506
			update_cgrp_time_from_event(event);
		}
2507
		update_event_times(event);
2508
		raw_spin_unlock_irqrestore(&ctx->lock, flags);
T
Thomas Gleixner 已提交
2509 2510
	}

P
Peter Zijlstra 已提交
2511
	return perf_event_count(event);
T
Thomas Gleixner 已提交
2512 2513
}

2514
/*
2515
 * Callchain support
2516
 */
2517 2518 2519 2520 2521 2522

struct callchain_cpus_entries {
	struct rcu_head			rcu_head;
	struct perf_callchain_entry	*cpu_entries[0];
};

2523
static DEFINE_PER_CPU(int, callchain_recursion[PERF_NR_CONTEXTS]);
2524 2525 2526 2527 2528 2529 2530
static atomic_t nr_callchain_events;
static DEFINE_MUTEX(callchain_mutex);
struct callchain_cpus_entries *callchain_cpus_entries;


__weak void perf_callchain_kernel(struct perf_callchain_entry *entry,
				  struct pt_regs *regs)
2531 2532 2533
{
}

2534 2535
__weak void perf_callchain_user(struct perf_callchain_entry *entry,
				struct pt_regs *regs)
T
Thomas Gleixner 已提交
2536
{
2537
}
T
Thomas Gleixner 已提交
2538

2539 2540 2541 2542
static void release_callchain_buffers_rcu(struct rcu_head *head)
{
	struct callchain_cpus_entries *entries;
	int cpu;
T
Thomas Gleixner 已提交
2543

2544
	entries = container_of(head, struct callchain_cpus_entries, rcu_head);
T
Thomas Gleixner 已提交
2545

2546 2547
	for_each_possible_cpu(cpu)
		kfree(entries->cpu_entries[cpu]);
T
Thomas Gleixner 已提交
2548

2549 2550
	kfree(entries);
}
T
Thomas Gleixner 已提交
2551

2552 2553 2554
static void release_callchain_buffers(void)
{
	struct callchain_cpus_entries *entries;
T
Thomas Gleixner 已提交
2555

2556 2557 2558 2559
	entries = callchain_cpus_entries;
	rcu_assign_pointer(callchain_cpus_entries, NULL);
	call_rcu(&entries->rcu_head, release_callchain_buffers_rcu);
}
T
Thomas Gleixner 已提交
2560

2561 2562 2563 2564 2565
static int alloc_callchain_buffers(void)
{
	int cpu;
	int size;
	struct callchain_cpus_entries *entries;
T
Thomas Gleixner 已提交
2566

2567
	/*
2568 2569 2570
	 * We can't use the percpu allocation API for data that can be
	 * accessed from NMI. Use a temporary manual per cpu allocation
	 * until that gets sorted out.
2571
	 */
2572
	size = offsetof(struct callchain_cpus_entries, cpu_entries[nr_cpu_ids]);
2573

2574 2575 2576
	entries = kzalloc(size, GFP_KERNEL);
	if (!entries)
		return -ENOMEM;
2577

2578
	size = sizeof(struct perf_callchain_entry) * PERF_NR_CONTEXTS;
T
Thomas Gleixner 已提交
2579

2580 2581 2582 2583 2584
	for_each_possible_cpu(cpu) {
		entries->cpu_entries[cpu] = kmalloc_node(size, GFP_KERNEL,
							 cpu_to_node(cpu));
		if (!entries->cpu_entries[cpu])
			goto fail;
2585 2586
	}

2587
	rcu_assign_pointer(callchain_cpus_entries, entries);
T
Thomas Gleixner 已提交
2588

2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722
	return 0;

fail:
	for_each_possible_cpu(cpu)
		kfree(entries->cpu_entries[cpu]);
	kfree(entries);

	return -ENOMEM;
}

static int get_callchain_buffers(void)
{
	int err = 0;
	int count;

	mutex_lock(&callchain_mutex);

	count = atomic_inc_return(&nr_callchain_events);
	if (WARN_ON_ONCE(count < 1)) {
		err = -EINVAL;
		goto exit;
	}

	if (count > 1) {
		/* If the allocation failed, give up */
		if (!callchain_cpus_entries)
			err = -ENOMEM;
		goto exit;
	}

	err = alloc_callchain_buffers();
	if (err)
		release_callchain_buffers();
exit:
	mutex_unlock(&callchain_mutex);

	return err;
}

static void put_callchain_buffers(void)
{
	if (atomic_dec_and_mutex_lock(&nr_callchain_events, &callchain_mutex)) {
		release_callchain_buffers();
		mutex_unlock(&callchain_mutex);
	}
}

static int get_recursion_context(int *recursion)
{
	int rctx;

	if (in_nmi())
		rctx = 3;
	else if (in_irq())
		rctx = 2;
	else if (in_softirq())
		rctx = 1;
	else
		rctx = 0;

	if (recursion[rctx])
		return -1;

	recursion[rctx]++;
	barrier();

	return rctx;
}

static inline void put_recursion_context(int *recursion, int rctx)
{
	barrier();
	recursion[rctx]--;
}

static struct perf_callchain_entry *get_callchain_entry(int *rctx)
{
	int cpu;
	struct callchain_cpus_entries *entries;

	*rctx = get_recursion_context(__get_cpu_var(callchain_recursion));
	if (*rctx == -1)
		return NULL;

	entries = rcu_dereference(callchain_cpus_entries);
	if (!entries)
		return NULL;

	cpu = smp_processor_id();

	return &entries->cpu_entries[cpu][*rctx];
}

static void
put_callchain_entry(int rctx)
{
	put_recursion_context(__get_cpu_var(callchain_recursion), rctx);
}

static struct perf_callchain_entry *perf_callchain(struct pt_regs *regs)
{
	int rctx;
	struct perf_callchain_entry *entry;


	entry = get_callchain_entry(&rctx);
	if (rctx == -1)
		return NULL;

	if (!entry)
		goto exit_put;

	entry->nr = 0;

	if (!user_mode(regs)) {
		perf_callchain_store(entry, PERF_CONTEXT_KERNEL);
		perf_callchain_kernel(entry, regs);
		if (current->mm)
			regs = task_pt_regs(current);
		else
			regs = NULL;
	}

	if (regs) {
		perf_callchain_store(entry, PERF_CONTEXT_USER);
		perf_callchain_user(entry, regs);
	}

exit_put:
	put_callchain_entry(rctx);

	return entry;
}

2723
/*
2724
 * Initialize the perf_event context in a task_struct:
2725
 */
2726
static void __perf_event_init_context(struct perf_event_context *ctx)
2727
{
2728
	raw_spin_lock_init(&ctx->lock);
2729
	mutex_init(&ctx->mutex);
2730 2731
	INIT_LIST_HEAD(&ctx->pinned_groups);
	INIT_LIST_HEAD(&ctx->flexible_groups);
2732 2733
	INIT_LIST_HEAD(&ctx->event_list);
	atomic_set(&ctx->refcount, 1);
2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748
}

static struct perf_event_context *
alloc_perf_context(struct pmu *pmu, struct task_struct *task)
{
	struct perf_event_context *ctx;

	ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
	if (!ctx)
		return NULL;

	__perf_event_init_context(ctx);
	if (task) {
		ctx->task = task;
		get_task_struct(task);
T
Thomas Gleixner 已提交
2749
	}
2750 2751 2752
	ctx->pmu = pmu;

	return ctx;
2753 2754
}

2755 2756 2757 2758 2759
static struct task_struct *
find_lively_task_by_vpid(pid_t vpid)
{
	struct task_struct *task;
	int err;
T
Thomas Gleixner 已提交
2760 2761

	rcu_read_lock();
2762
	if (!vpid)
T
Thomas Gleixner 已提交
2763 2764
		task = current;
	else
2765
		task = find_task_by_vpid(vpid);
T
Thomas Gleixner 已提交
2766 2767 2768 2769 2770 2771 2772 2773
	if (task)
		get_task_struct(task);
	rcu_read_unlock();

	if (!task)
		return ERR_PTR(-ESRCH);

	/* Reuse ptrace permission checks for now. */
2774 2775 2776 2777
	err = -EACCES;
	if (!ptrace_may_access(task, PTRACE_MODE_READ))
		goto errout;

2778 2779 2780 2781 2782 2783 2784
	return task;
errout:
	put_task_struct(task);
	return ERR_PTR(err);

}

2785 2786 2787
/*
 * Returns a matching context with refcount and pincount.
 */
P
Peter Zijlstra 已提交
2788
static struct perf_event_context *
M
Matt Helsley 已提交
2789
find_get_context(struct pmu *pmu, struct task_struct *task, int cpu)
T
Thomas Gleixner 已提交
2790
{
2791
	struct perf_event_context *ctx;
2792
	struct perf_cpu_context *cpuctx;
2793
	unsigned long flags;
P
Peter Zijlstra 已提交
2794
	int ctxn, err;
T
Thomas Gleixner 已提交
2795

2796
	if (!task) {
2797
		/* Must be root to operate on a CPU event: */
2798
		if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
T
Thomas Gleixner 已提交
2799 2800 2801
			return ERR_PTR(-EACCES);

		/*
2802
		 * We could be clever and allow to attach a event to an
T
Thomas Gleixner 已提交
2803 2804 2805
		 * offline CPU and activate it when the CPU comes up, but
		 * that's for later.
		 */
2806
		if (!cpu_online(cpu))
T
Thomas Gleixner 已提交
2807 2808
			return ERR_PTR(-ENODEV);

P
Peter Zijlstra 已提交
2809
		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
T
Thomas Gleixner 已提交
2810
		ctx = &cpuctx->ctx;
2811
		get_ctx(ctx);
2812
		++ctx->pin_count;
T
Thomas Gleixner 已提交
2813 2814 2815 2816

		return ctx;
	}

P
Peter Zijlstra 已提交
2817 2818 2819 2820 2821
	err = -EINVAL;
	ctxn = pmu->task_ctx_nr;
	if (ctxn < 0)
		goto errout;

P
Peter Zijlstra 已提交
2822
retry:
P
Peter Zijlstra 已提交
2823
	ctx = perf_lock_task_context(task, ctxn, &flags);
2824
	if (ctx) {
2825
		unclone_ctx(ctx);
2826
		++ctx->pin_count;
2827
		raw_spin_unlock_irqrestore(&ctx->lock, flags);
2828
	} else {
2829
		ctx = alloc_perf_context(pmu, task);
2830 2831 2832
		err = -ENOMEM;
		if (!ctx)
			goto errout;
2833

2834 2835 2836 2837 2838 2839 2840 2841 2842 2843
		err = 0;
		mutex_lock(&task->perf_event_mutex);
		/*
		 * If it has already passed perf_event_exit_task().
		 * we must see PF_EXITING, it takes this mutex too.
		 */
		if (task->flags & PF_EXITING)
			err = -ESRCH;
		else if (task->perf_event_ctxp[ctxn])
			err = -EAGAIN;
2844
		else {
2845
			get_ctx(ctx);
2846
			++ctx->pin_count;
2847
			rcu_assign_pointer(task->perf_event_ctxp[ctxn], ctx);
2848
		}
2849 2850 2851
		mutex_unlock(&task->perf_event_mutex);

		if (unlikely(err)) {
2852
			put_ctx(ctx);
2853 2854 2855 2856

			if (err == -EAGAIN)
				goto retry;
			goto errout;
2857 2858 2859
		}
	}

T
Thomas Gleixner 已提交
2860
	return ctx;
2861

P
Peter Zijlstra 已提交
2862
errout:
2863
	return ERR_PTR(err);
T
Thomas Gleixner 已提交
2864 2865
}

L
Li Zefan 已提交
2866 2867
static void perf_event_free_filter(struct perf_event *event);

2868
static void free_event_rcu(struct rcu_head *head)
P
Peter Zijlstra 已提交
2869
{
2870
	struct perf_event *event;
P
Peter Zijlstra 已提交
2871

2872 2873 2874
	event = container_of(head, struct perf_event, rcu_head);
	if (event->ns)
		put_pid_ns(event->ns);
L
Li Zefan 已提交
2875
	perf_event_free_filter(event);
2876
	kfree(event);
P
Peter Zijlstra 已提交
2877 2878
}

2879
static void perf_buffer_put(struct perf_buffer *buffer);
2880

2881
static void free_event(struct perf_event *event)
2882
{
2883
	irq_work_sync(&event->pending);
2884

2885
	if (!event->parent) {
2886
		if (event->attach_state & PERF_ATTACH_TASK)
S
Stephane Eranian 已提交
2887
			jump_label_dec(&perf_sched_events);
2888
		if (event->attr.mmap || event->attr.mmap_data)
2889 2890 2891 2892 2893
			atomic_dec(&nr_mmap_events);
		if (event->attr.comm)
			atomic_dec(&nr_comm_events);
		if (event->attr.task)
			atomic_dec(&nr_task_events);
2894 2895
		if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
			put_callchain_buffers();
2896 2897 2898 2899
		if (is_cgroup_event(event)) {
			atomic_dec(&per_cpu(perf_cgroup_events, event->cpu));
			jump_label_dec(&perf_sched_events);
		}
2900
	}
2901

2902 2903 2904
	if (event->buffer) {
		perf_buffer_put(event->buffer);
		event->buffer = NULL;
2905 2906
	}

S
Stephane Eranian 已提交
2907 2908 2909
	if (is_cgroup_event(event))
		perf_detach_cgroup(event);

2910 2911
	if (event->destroy)
		event->destroy(event);
2912

P
Peter Zijlstra 已提交
2913 2914 2915
	if (event->ctx)
		put_ctx(event->ctx);

2916
	call_rcu(&event->rcu_head, free_event_rcu);
2917 2918
}

2919
int perf_event_release_kernel(struct perf_event *event)
T
Thomas Gleixner 已提交
2920
{
2921
	struct perf_event_context *ctx = event->ctx;
T
Thomas Gleixner 已提交
2922

2923 2924 2925 2926 2927 2928
	/*
	 * Remove from the PMU, can't get re-enabled since we got
	 * here because the last ref went.
	 */
	perf_event_disable(event);

2929
	WARN_ON_ONCE(ctx->parent_ctx);
2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942
	/*
	 * There are two ways this annotation is useful:
	 *
	 *  1) there is a lock recursion from perf_event_exit_task
	 *     see the comment there.
	 *
	 *  2) there is a lock-inversion with mmap_sem through
	 *     perf_event_read_group(), which takes faults while
	 *     holding ctx->mutex, however this is called after
	 *     the last filedesc died, so there is no possibility
	 *     to trigger the AB-BA case.
	 */
	mutex_lock_nested(&ctx->mutex, SINGLE_DEPTH_NESTING);
2943
	raw_spin_lock_irq(&ctx->lock);
2944
	perf_group_detach(event);
2945 2946
	list_del_event(event, ctx);
	raw_spin_unlock_irq(&ctx->lock);
2947
	mutex_unlock(&ctx->mutex);
T
Thomas Gleixner 已提交
2948

2949
	free_event(event);
T
Thomas Gleixner 已提交
2950 2951 2952

	return 0;
}
2953
EXPORT_SYMBOL_GPL(perf_event_release_kernel);
T
Thomas Gleixner 已提交
2954

2955 2956 2957 2958
/*
 * Called when the last reference to the file is gone.
 */
static int perf_release(struct inode *inode, struct file *file)
2959
{
2960
	struct perf_event *event = file->private_data;
P
Peter Zijlstra 已提交
2961
	struct task_struct *owner;
2962

2963
	file->private_data = NULL;
2964

P
Peter Zijlstra 已提交
2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997
	rcu_read_lock();
	owner = ACCESS_ONCE(event->owner);
	/*
	 * Matches the smp_wmb() in perf_event_exit_task(). If we observe
	 * !owner it means the list deletion is complete and we can indeed
	 * free this event, otherwise we need to serialize on
	 * owner->perf_event_mutex.
	 */
	smp_read_barrier_depends();
	if (owner) {
		/*
		 * Since delayed_put_task_struct() also drops the last
		 * task reference we can safely take a new reference
		 * while holding the rcu_read_lock().
		 */
		get_task_struct(owner);
	}
	rcu_read_unlock();

	if (owner) {
		mutex_lock(&owner->perf_event_mutex);
		/*
		 * We have to re-check the event->owner field, if it is cleared
		 * we raced with perf_event_exit_task(), acquiring the mutex
		 * ensured they're done, and we can proceed with freeing the
		 * event.
		 */
		if (event->owner)
			list_del_init(&event->owner_entry);
		mutex_unlock(&owner->perf_event_mutex);
		put_task_struct(owner);
	}

2998
	return perf_event_release_kernel(event);
2999 3000
}

3001
u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
3002
{
3003
	struct perf_event *child;
3004 3005
	u64 total = 0;

3006 3007 3008
	*enabled = 0;
	*running = 0;

3009
	mutex_lock(&event->child_mutex);
3010
	total += perf_event_read(event);
3011 3012 3013 3014 3015 3016
	*enabled += event->total_time_enabled +
			atomic64_read(&event->child_total_time_enabled);
	*running += event->total_time_running +
			atomic64_read(&event->child_total_time_running);

	list_for_each_entry(child, &event->child_list, child_list) {
3017
		total += perf_event_read(child);
3018 3019 3020
		*enabled += child->total_time_enabled;
		*running += child->total_time_running;
	}
3021
	mutex_unlock(&event->child_mutex);
3022 3023 3024

	return total;
}
3025
EXPORT_SYMBOL_GPL(perf_event_read_value);
3026

3027
static int perf_event_read_group(struct perf_event *event,
3028 3029
				   u64 read_format, char __user *buf)
{
3030
	struct perf_event *leader = event->group_leader, *sub;
3031 3032
	int n = 0, size = 0, ret = -EFAULT;
	struct perf_event_context *ctx = leader->ctx;
3033
	u64 values[5];
3034
	u64 count, enabled, running;
3035

3036
	mutex_lock(&ctx->mutex);
3037
	count = perf_event_read_value(leader, &enabled, &running);
3038 3039

	values[n++] = 1 + leader->nr_siblings;
3040 3041 3042 3043
	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
		values[n++] = enabled;
	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
		values[n++] = running;
3044 3045 3046
	values[n++] = count;
	if (read_format & PERF_FORMAT_ID)
		values[n++] = primary_event_id(leader);
3047 3048 3049 3050

	size = n * sizeof(u64);

	if (copy_to_user(buf, values, size))
3051
		goto unlock;
3052

3053
	ret = size;
3054

3055
	list_for_each_entry(sub, &leader->sibling_list, group_entry) {
3056
		n = 0;
3057

3058
		values[n++] = perf_event_read_value(sub, &enabled, &running);
3059 3060 3061 3062 3063
		if (read_format & PERF_FORMAT_ID)
			values[n++] = primary_event_id(sub);

		size = n * sizeof(u64);

3064
		if (copy_to_user(buf + ret, values, size)) {
3065 3066 3067
			ret = -EFAULT;
			goto unlock;
		}
3068 3069

		ret += size;
3070
	}
3071 3072
unlock:
	mutex_unlock(&ctx->mutex);
3073

3074
	return ret;
3075 3076
}

3077
static int perf_event_read_one(struct perf_event *event,
3078 3079
				 u64 read_format, char __user *buf)
{
3080
	u64 enabled, running;
3081 3082 3083
	u64 values[4];
	int n = 0;

3084 3085 3086 3087 3088
	values[n++] = perf_event_read_value(event, &enabled, &running);
	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
		values[n++] = enabled;
	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
		values[n++] = running;
3089
	if (read_format & PERF_FORMAT_ID)
3090
		values[n++] = primary_event_id(event);
3091 3092 3093 3094 3095 3096 3097

	if (copy_to_user(buf, values, n * sizeof(u64)))
		return -EFAULT;

	return n * sizeof(u64);
}

T
Thomas Gleixner 已提交
3098
/*
3099
 * Read the performance event - simple non blocking version for now
T
Thomas Gleixner 已提交
3100 3101
 */
static ssize_t
3102
perf_read_hw(struct perf_event *event, char __user *buf, size_t count)
T
Thomas Gleixner 已提交
3103
{
3104
	u64 read_format = event->attr.read_format;
3105
	int ret;
T
Thomas Gleixner 已提交
3106

3107
	/*
3108
	 * Return end-of-file for a read on a event that is in
3109 3110 3111
	 * error state (i.e. because it was pinned but it couldn't be
	 * scheduled on to the CPU at some point).
	 */
3112
	if (event->state == PERF_EVENT_STATE_ERROR)
3113 3114
		return 0;

3115
	if (count < event->read_size)
3116 3117
		return -ENOSPC;

3118
	WARN_ON_ONCE(event->ctx->parent_ctx);
3119
	if (read_format & PERF_FORMAT_GROUP)
3120
		ret = perf_event_read_group(event, read_format, buf);
3121
	else
3122
		ret = perf_event_read_one(event, read_format, buf);
T
Thomas Gleixner 已提交
3123

3124
	return ret;
T
Thomas Gleixner 已提交
3125 3126 3127 3128 3129
}

static ssize_t
perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
{
3130
	struct perf_event *event = file->private_data;
T
Thomas Gleixner 已提交
3131

3132
	return perf_read_hw(event, buf, count);
T
Thomas Gleixner 已提交
3133 3134 3135 3136
}

static unsigned int perf_poll(struct file *file, poll_table *wait)
{
3137
	struct perf_event *event = file->private_data;
3138
	struct perf_buffer *buffer;
3139
	unsigned int events = POLL_HUP;
P
Peter Zijlstra 已提交
3140 3141

	rcu_read_lock();
3142 3143 3144
	buffer = rcu_dereference(event->buffer);
	if (buffer)
		events = atomic_xchg(&buffer->poll, 0);
P
Peter Zijlstra 已提交
3145
	rcu_read_unlock();
T
Thomas Gleixner 已提交
3146

3147
	poll_wait(file, &event->waitq, wait);
T
Thomas Gleixner 已提交
3148 3149 3150 3151

	return events;
}

3152
static void perf_event_reset(struct perf_event *event)
3153
{
3154
	(void)perf_event_read(event);
3155
	local64_set(&event->count, 0);
3156
	perf_event_update_userpage(event);
P
Peter Zijlstra 已提交
3157 3158
}

3159
/*
3160 3161 3162 3163
 * Holding the top-level event's child_mutex means that any
 * descendant process that has inherited this event will block
 * in sync_child_event if it goes to exit, thus satisfying the
 * task existence requirements of perf_event_enable/disable.
3164
 */
3165 3166
static void perf_event_for_each_child(struct perf_event *event,
					void (*func)(struct perf_event *))
P
Peter Zijlstra 已提交
3167
{
3168
	struct perf_event *child;
P
Peter Zijlstra 已提交
3169

3170 3171 3172 3173
	WARN_ON_ONCE(event->ctx->parent_ctx);
	mutex_lock(&event->child_mutex);
	func(event);
	list_for_each_entry(child, &event->child_list, child_list)
P
Peter Zijlstra 已提交
3174
		func(child);
3175
	mutex_unlock(&event->child_mutex);
P
Peter Zijlstra 已提交
3176 3177
}

3178 3179
static void perf_event_for_each(struct perf_event *event,
				  void (*func)(struct perf_event *))
P
Peter Zijlstra 已提交
3180
{
3181 3182
	struct perf_event_context *ctx = event->ctx;
	struct perf_event *sibling;
P
Peter Zijlstra 已提交
3183

3184 3185
	WARN_ON_ONCE(ctx->parent_ctx);
	mutex_lock(&ctx->mutex);
3186
	event = event->group_leader;
3187

3188 3189 3190 3191
	perf_event_for_each_child(event, func);
	func(event);
	list_for_each_entry(sibling, &event->sibling_list, group_entry)
		perf_event_for_each_child(event, func);
3192
	mutex_unlock(&ctx->mutex);
3193 3194
}

3195
static int perf_event_period(struct perf_event *event, u64 __user *arg)
3196
{
3197
	struct perf_event_context *ctx = event->ctx;
3198 3199 3200
	int ret = 0;
	u64 value;

3201
	if (!is_sampling_event(event))
3202 3203
		return -EINVAL;

3204
	if (copy_from_user(&value, arg, sizeof(value)))
3205 3206 3207 3208 3209
		return -EFAULT;

	if (!value)
		return -EINVAL;

3210
	raw_spin_lock_irq(&ctx->lock);
3211 3212
	if (event->attr.freq) {
		if (value > sysctl_perf_event_sample_rate) {
3213 3214 3215 3216
			ret = -EINVAL;
			goto unlock;
		}

3217
		event->attr.sample_freq = value;
3218
	} else {
3219 3220
		event->attr.sample_period = value;
		event->hw.sample_period = value;
3221 3222
	}
unlock:
3223
	raw_spin_unlock_irq(&ctx->lock);
3224 3225 3226 3227

	return ret;
}

3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248
static const struct file_operations perf_fops;

static struct perf_event *perf_fget_light(int fd, int *fput_needed)
{
	struct file *file;

	file = fget_light(fd, fput_needed);
	if (!file)
		return ERR_PTR(-EBADF);

	if (file->f_op != &perf_fops) {
		fput_light(file, *fput_needed);
		*fput_needed = 0;
		return ERR_PTR(-EBADF);
	}

	return file->private_data;
}

static int perf_event_set_output(struct perf_event *event,
				 struct perf_event *output_event);
L
Li Zefan 已提交
3249
static int perf_event_set_filter(struct perf_event *event, void __user *arg);
3250

3251 3252
static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
{
3253 3254
	struct perf_event *event = file->private_data;
	void (*func)(struct perf_event *);
P
Peter Zijlstra 已提交
3255
	u32 flags = arg;
3256 3257

	switch (cmd) {
3258 3259
	case PERF_EVENT_IOC_ENABLE:
		func = perf_event_enable;
3260
		break;
3261 3262
	case PERF_EVENT_IOC_DISABLE:
		func = perf_event_disable;
3263
		break;
3264 3265
	case PERF_EVENT_IOC_RESET:
		func = perf_event_reset;
3266
		break;
P
Peter Zijlstra 已提交
3267

3268 3269
	case PERF_EVENT_IOC_REFRESH:
		return perf_event_refresh(event, arg);
3270

3271 3272
	case PERF_EVENT_IOC_PERIOD:
		return perf_event_period(event, (u64 __user *)arg);
3273

3274
	case PERF_EVENT_IOC_SET_OUTPUT:
3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291
	{
		struct perf_event *output_event = NULL;
		int fput_needed = 0;
		int ret;

		if (arg != -1) {
			output_event = perf_fget_light(arg, &fput_needed);
			if (IS_ERR(output_event))
				return PTR_ERR(output_event);
		}

		ret = perf_event_set_output(event, output_event);
		if (output_event)
			fput_light(output_event->filp, fput_needed);

		return ret;
	}
3292

L
Li Zefan 已提交
3293 3294 3295
	case PERF_EVENT_IOC_SET_FILTER:
		return perf_event_set_filter(event, (void __user *)arg);

3296
	default:
P
Peter Zijlstra 已提交
3297
		return -ENOTTY;
3298
	}
P
Peter Zijlstra 已提交
3299 3300

	if (flags & PERF_IOC_FLAG_GROUP)
3301
		perf_event_for_each(event, func);
P
Peter Zijlstra 已提交
3302
	else
3303
		perf_event_for_each_child(event, func);
P
Peter Zijlstra 已提交
3304 3305

	return 0;
3306 3307
}

3308
int perf_event_task_enable(void)
3309
{
3310
	struct perf_event *event;
3311

3312 3313 3314 3315
	mutex_lock(&current->perf_event_mutex);
	list_for_each_entry(event, &current->perf_event_list, owner_entry)
		perf_event_for_each_child(event, perf_event_enable);
	mutex_unlock(&current->perf_event_mutex);
3316 3317 3318 3319

	return 0;
}

3320
int perf_event_task_disable(void)
3321
{
3322
	struct perf_event *event;
3323

3324 3325 3326 3327
	mutex_lock(&current->perf_event_mutex);
	list_for_each_entry(event, &current->perf_event_list, owner_entry)
		perf_event_for_each_child(event, perf_event_disable);
	mutex_unlock(&current->perf_event_mutex);
3328 3329 3330 3331

	return 0;
}

3332 3333
#ifndef PERF_EVENT_INDEX_OFFSET
# define PERF_EVENT_INDEX_OFFSET 0
I
Ingo Molnar 已提交
3334 3335
#endif

3336
static int perf_event_index(struct perf_event *event)
3337
{
P
Peter Zijlstra 已提交
3338 3339 3340
	if (event->hw.state & PERF_HES_STOPPED)
		return 0;

3341
	if (event->state != PERF_EVENT_STATE_ACTIVE)
3342 3343
		return 0;

3344
	return event->hw.idx + 1 - PERF_EVENT_INDEX_OFFSET;
3345 3346
}

3347 3348 3349 3350 3351
/*
 * Callers need to ensure there can be no nesting of this function, otherwise
 * the seqlock logic goes bad. We can not serialize this because the arch
 * code calls this from NMI context.
 */
3352
void perf_event_update_userpage(struct perf_event *event)
3353
{
3354
	struct perf_event_mmap_page *userpg;
3355
	struct perf_buffer *buffer;
3356 3357

	rcu_read_lock();
3358 3359
	buffer = rcu_dereference(event->buffer);
	if (!buffer)
3360 3361
		goto unlock;

3362
	userpg = buffer->user_page;
3363

3364 3365 3366 3367 3368
	/*
	 * Disable preemption so as to not let the corresponding user-space
	 * spin too long if we get preempted.
	 */
	preempt_disable();
3369
	++userpg->lock;
3370
	barrier();
3371
	userpg->index = perf_event_index(event);
P
Peter Zijlstra 已提交
3372
	userpg->offset = perf_event_count(event);
3373
	if (event->state == PERF_EVENT_STATE_ACTIVE)
3374
		userpg->offset -= local64_read(&event->hw.prev_count);
3375

3376 3377
	userpg->time_enabled = event->total_time_enabled +
			atomic64_read(&event->child_total_time_enabled);
3378

3379 3380
	userpg->time_running = event->total_time_running +
			atomic64_read(&event->child_total_time_running);
3381

3382
	barrier();
3383
	++userpg->lock;
3384
	preempt_enable();
3385
unlock:
3386
	rcu_read_unlock();
3387 3388
}

3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407
static unsigned long perf_data_size(struct perf_buffer *buffer);

static void
perf_buffer_init(struct perf_buffer *buffer, long watermark, int flags)
{
	long max_size = perf_data_size(buffer);

	if (watermark)
		buffer->watermark = min(max_size, watermark);

	if (!buffer->watermark)
		buffer->watermark = max_size / 2;

	if (flags & PERF_BUFFER_WRITABLE)
		buffer->writable = 1;

	atomic_set(&buffer->refcount, 1);
}

3408
#ifndef CONFIG_PERF_USE_VMALLOC
3409

3410 3411 3412
/*
 * Back perf_mmap() with regular GFP_KERNEL-0 pages.
 */
3413

3414
static struct page *
3415
perf_mmap_to_page(struct perf_buffer *buffer, unsigned long pgoff)
3416
{
3417
	if (pgoff > buffer->nr_pages)
3418
		return NULL;
3419

3420
	if (pgoff == 0)
3421
		return virt_to_page(buffer->user_page);
3422

3423
	return virt_to_page(buffer->data_pages[pgoff - 1]);
3424 3425
}

3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438
static void *perf_mmap_alloc_page(int cpu)
{
	struct page *page;
	int node;

	node = (cpu == -1) ? cpu : cpu_to_node(cpu);
	page = alloc_pages_node(node, GFP_KERNEL | __GFP_ZERO, 0);
	if (!page)
		return NULL;

	return page_address(page);
}

3439
static struct perf_buffer *
3440
perf_buffer_alloc(int nr_pages, long watermark, int cpu, int flags)
3441
{
3442
	struct perf_buffer *buffer;
3443 3444 3445
	unsigned long size;
	int i;

3446
	size = sizeof(struct perf_buffer);
3447 3448
	size += nr_pages * sizeof(void *);

3449 3450
	buffer = kzalloc(size, GFP_KERNEL);
	if (!buffer)
3451 3452
		goto fail;

3453
	buffer->user_page = perf_mmap_alloc_page(cpu);
3454
	if (!buffer->user_page)
3455 3456 3457
		goto fail_user_page;

	for (i = 0; i < nr_pages; i++) {
3458
		buffer->data_pages[i] = perf_mmap_alloc_page(cpu);
3459
		if (!buffer->data_pages[i])
3460 3461 3462
			goto fail_data_pages;
	}

3463
	buffer->nr_pages = nr_pages;
3464

3465 3466
	perf_buffer_init(buffer, watermark, flags);

3467
	return buffer;
3468 3469 3470

fail_data_pages:
	for (i--; i >= 0; i--)
3471
		free_page((unsigned long)buffer->data_pages[i]);
3472

3473
	free_page((unsigned long)buffer->user_page);
3474 3475

fail_user_page:
3476
	kfree(buffer);
3477 3478

fail:
3479
	return NULL;
3480 3481
}

3482 3483
static void perf_mmap_free_page(unsigned long addr)
{
K
Kevin Cernekee 已提交
3484
	struct page *page = virt_to_page((void *)addr);
3485 3486 3487 3488 3489

	page->mapping = NULL;
	__free_page(page);
}

3490
static void perf_buffer_free(struct perf_buffer *buffer)
3491 3492 3493
{
	int i;

3494 3495 3496 3497
	perf_mmap_free_page((unsigned long)buffer->user_page);
	for (i = 0; i < buffer->nr_pages; i++)
		perf_mmap_free_page((unsigned long)buffer->data_pages[i]);
	kfree(buffer);
3498 3499
}

3500
static inline int page_order(struct perf_buffer *buffer)
3501 3502 3503 3504
{
	return 0;
}

3505 3506 3507 3508 3509 3510 3511 3512
#else

/*
 * Back perf_mmap() with vmalloc memory.
 *
 * Required for architectures that have d-cache aliasing issues.
 */

3513
static inline int page_order(struct perf_buffer *buffer)
3514
{
3515
	return buffer->page_order;
3516 3517
}

3518
static struct page *
3519
perf_mmap_to_page(struct perf_buffer *buffer, unsigned long pgoff)
3520
{
3521
	if (pgoff > (1UL << page_order(buffer)))
3522 3523
		return NULL;

3524
	return vmalloc_to_page((void *)buffer->user_page + pgoff * PAGE_SIZE);
3525 3526 3527 3528 3529 3530 3531 3532 3533
}

static void perf_mmap_unmark_page(void *addr)
{
	struct page *page = vmalloc_to_page(addr);

	page->mapping = NULL;
}

3534
static void perf_buffer_free_work(struct work_struct *work)
3535
{
3536
	struct perf_buffer *buffer;
3537 3538 3539
	void *base;
	int i, nr;

3540 3541
	buffer = container_of(work, struct perf_buffer, work);
	nr = 1 << page_order(buffer);
3542

3543
	base = buffer->user_page;
3544 3545 3546 3547
	for (i = 0; i < nr + 1; i++)
		perf_mmap_unmark_page(base + (i * PAGE_SIZE));

	vfree(base);
3548
	kfree(buffer);
3549 3550
}

3551
static void perf_buffer_free(struct perf_buffer *buffer)
3552
{
3553
	schedule_work(&buffer->work);
3554 3555
}

3556
static struct perf_buffer *
3557
perf_buffer_alloc(int nr_pages, long watermark, int cpu, int flags)
3558
{
3559
	struct perf_buffer *buffer;
3560 3561 3562
	unsigned long size;
	void *all_buf;

3563
	size = sizeof(struct perf_buffer);
3564 3565
	size += sizeof(void *);

3566 3567
	buffer = kzalloc(size, GFP_KERNEL);
	if (!buffer)
3568 3569
		goto fail;

3570
	INIT_WORK(&buffer->work, perf_buffer_free_work);
3571 3572 3573 3574 3575

	all_buf = vmalloc_user((nr_pages + 1) * PAGE_SIZE);
	if (!all_buf)
		goto fail_all_buf;

3576 3577 3578 3579
	buffer->user_page = all_buf;
	buffer->data_pages[0] = all_buf + PAGE_SIZE;
	buffer->page_order = ilog2(nr_pages);
	buffer->nr_pages = 1;
3580

3581 3582
	perf_buffer_init(buffer, watermark, flags);

3583
	return buffer;
3584 3585

fail_all_buf:
3586
	kfree(buffer);
3587 3588 3589 3590 3591 3592 3593

fail:
	return NULL;
}

#endif

3594
static unsigned long perf_data_size(struct perf_buffer *buffer)
3595
{
3596
	return buffer->nr_pages << (PAGE_SHIFT + page_order(buffer));
3597 3598
}

3599 3600 3601
static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
{
	struct perf_event *event = vma->vm_file->private_data;
3602
	struct perf_buffer *buffer;
3603 3604 3605 3606 3607 3608 3609 3610 3611
	int ret = VM_FAULT_SIGBUS;

	if (vmf->flags & FAULT_FLAG_MKWRITE) {
		if (vmf->pgoff == 0)
			ret = 0;
		return ret;
	}

	rcu_read_lock();
3612 3613
	buffer = rcu_dereference(event->buffer);
	if (!buffer)
3614 3615 3616 3617 3618
		goto unlock;

	if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
		goto unlock;

3619
	vmf->page = perf_mmap_to_page(buffer, vmf->pgoff);
3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633
	if (!vmf->page)
		goto unlock;

	get_page(vmf->page);
	vmf->page->mapping = vma->vm_file->f_mapping;
	vmf->page->index   = vmf->pgoff;

	ret = 0;
unlock:
	rcu_read_unlock();

	return ret;
}

3634
static void perf_buffer_free_rcu(struct rcu_head *rcu_head)
3635
{
3636
	struct perf_buffer *buffer;
3637

3638 3639
	buffer = container_of(rcu_head, struct perf_buffer, rcu_head);
	perf_buffer_free(buffer);
3640 3641
}

3642
static struct perf_buffer *perf_buffer_get(struct perf_event *event)
3643
{
3644
	struct perf_buffer *buffer;
3645

3646
	rcu_read_lock();
3647 3648 3649 3650
	buffer = rcu_dereference(event->buffer);
	if (buffer) {
		if (!atomic_inc_not_zero(&buffer->refcount))
			buffer = NULL;
3651 3652 3653
	}
	rcu_read_unlock();

3654
	return buffer;
3655 3656
}

3657
static void perf_buffer_put(struct perf_buffer *buffer)
3658
{
3659
	if (!atomic_dec_and_test(&buffer->refcount))
3660
		return;
3661

3662
	call_rcu(&buffer->rcu_head, perf_buffer_free_rcu);
3663 3664 3665 3666
}

static void perf_mmap_open(struct vm_area_struct *vma)
{
3667
	struct perf_event *event = vma->vm_file->private_data;
3668

3669
	atomic_inc(&event->mmap_count);
3670 3671 3672 3673
}

static void perf_mmap_close(struct vm_area_struct *vma)
{
3674
	struct perf_event *event = vma->vm_file->private_data;
3675

3676
	if (atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex)) {
3677
		unsigned long size = perf_data_size(event->buffer);
3678
		struct user_struct *user = event->mmap_user;
3679
		struct perf_buffer *buffer = event->buffer;
3680

3681
		atomic_long_sub((size >> PAGE_SHIFT) + 1, &user->locked_vm);
3682
		vma->vm_mm->locked_vm -= event->mmap_locked;
3683
		rcu_assign_pointer(event->buffer, NULL);
3684
		mutex_unlock(&event->mmap_mutex);
3685

3686
		perf_buffer_put(buffer);
3687
		free_uid(user);
3688
	}
3689 3690
}

3691
static const struct vm_operations_struct perf_mmap_vmops = {
3692 3693 3694 3695
	.open		= perf_mmap_open,
	.close		= perf_mmap_close,
	.fault		= perf_mmap_fault,
	.page_mkwrite	= perf_mmap_fault,
3696 3697 3698 3699
};

static int perf_mmap(struct file *file, struct vm_area_struct *vma)
{
3700
	struct perf_event *event = file->private_data;
3701
	unsigned long user_locked, user_lock_limit;
3702
	struct user_struct *user = current_user();
3703
	unsigned long locked, lock_limit;
3704
	struct perf_buffer *buffer;
3705 3706
	unsigned long vma_size;
	unsigned long nr_pages;
3707
	long user_extra, extra;
3708
	int ret = 0, flags = 0;
3709

3710 3711 3712 3713 3714 3715 3716 3717
	/*
	 * Don't allow mmap() of inherited per-task counters. This would
	 * create a performance issue due to all children writing to the
	 * same buffer.
	 */
	if (event->cpu == -1 && event->attr.inherit)
		return -EINVAL;

3718
	if (!(vma->vm_flags & VM_SHARED))
3719
		return -EINVAL;
3720 3721 3722 3723

	vma_size = vma->vm_end - vma->vm_start;
	nr_pages = (vma_size / PAGE_SIZE) - 1;

3724
	/*
3725
	 * If we have buffer pages ensure they're a power-of-two number, so we
3726 3727 3728
	 * can do bitmasks instead of modulo.
	 */
	if (nr_pages != 0 && !is_power_of_2(nr_pages))
3729 3730
		return -EINVAL;

3731
	if (vma_size != PAGE_SIZE * (1 + nr_pages))
3732 3733
		return -EINVAL;

3734 3735
	if (vma->vm_pgoff != 0)
		return -EINVAL;
3736

3737 3738
	WARN_ON_ONCE(event->ctx->parent_ctx);
	mutex_lock(&event->mmap_mutex);
3739 3740 3741
	if (event->buffer) {
		if (event->buffer->nr_pages == nr_pages)
			atomic_inc(&event->buffer->refcount);
3742
		else
3743 3744 3745 3746
			ret = -EINVAL;
		goto unlock;
	}

3747
	user_extra = nr_pages + 1;
3748
	user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
I
Ingo Molnar 已提交
3749 3750 3751 3752 3753 3754

	/*
	 * Increase the limit linearly with more CPUs:
	 */
	user_lock_limit *= num_online_cpus();

3755
	user_locked = atomic_long_read(&user->locked_vm) + user_extra;
3756

3757 3758 3759
	extra = 0;
	if (user_locked > user_lock_limit)
		extra = user_locked - user_lock_limit;
3760

3761
	lock_limit = rlimit(RLIMIT_MEMLOCK);
3762
	lock_limit >>= PAGE_SHIFT;
3763
	locked = vma->vm_mm->locked_vm + extra;
3764

3765 3766
	if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() &&
		!capable(CAP_IPC_LOCK)) {
3767 3768 3769
		ret = -EPERM;
		goto unlock;
	}
3770

3771
	WARN_ON(event->buffer);
3772

3773 3774 3775 3776 3777
	if (vma->vm_flags & VM_WRITE)
		flags |= PERF_BUFFER_WRITABLE;

	buffer = perf_buffer_alloc(nr_pages, event->attr.wakeup_watermark,
				   event->cpu, flags);
3778
	if (!buffer) {
3779
		ret = -ENOMEM;
3780
		goto unlock;
3781
	}
3782
	rcu_assign_pointer(event->buffer, buffer);
3783

3784 3785 3786 3787 3788
	atomic_long_add(user_extra, &user->locked_vm);
	event->mmap_locked = extra;
	event->mmap_user = get_current_user();
	vma->vm_mm->locked_vm += event->mmap_locked;

3789
unlock:
3790 3791
	if (!ret)
		atomic_inc(&event->mmap_count);
3792
	mutex_unlock(&event->mmap_mutex);
3793 3794 3795

	vma->vm_flags |= VM_RESERVED;
	vma->vm_ops = &perf_mmap_vmops;
3796 3797

	return ret;
3798 3799
}

P
Peter Zijlstra 已提交
3800 3801 3802
static int perf_fasync(int fd, struct file *filp, int on)
{
	struct inode *inode = filp->f_path.dentry->d_inode;
3803
	struct perf_event *event = filp->private_data;
P
Peter Zijlstra 已提交
3804 3805 3806
	int retval;

	mutex_lock(&inode->i_mutex);
3807
	retval = fasync_helper(fd, filp, on, &event->fasync);
P
Peter Zijlstra 已提交
3808 3809 3810 3811 3812 3813 3814 3815
	mutex_unlock(&inode->i_mutex);

	if (retval < 0)
		return retval;

	return 0;
}

T
Thomas Gleixner 已提交
3816
static const struct file_operations perf_fops = {
3817
	.llseek			= no_llseek,
T
Thomas Gleixner 已提交
3818 3819 3820
	.release		= perf_release,
	.read			= perf_read,
	.poll			= perf_poll,
3821 3822
	.unlocked_ioctl		= perf_ioctl,
	.compat_ioctl		= perf_ioctl,
3823
	.mmap			= perf_mmap,
P
Peter Zijlstra 已提交
3824
	.fasync			= perf_fasync,
T
Thomas Gleixner 已提交
3825 3826
};

3827
/*
3828
 * Perf event wakeup
3829 3830 3831 3832 3833
 *
 * If there's data, ensure we set the poll() state and publish everything
 * to user-space before waking everybody up.
 */

3834
void perf_event_wakeup(struct perf_event *event)
3835
{
3836
	wake_up_all(&event->waitq);
3837

3838 3839 3840
	if (event->pending_kill) {
		kill_fasync(&event->fasync, SIGIO, event->pending_kill);
		event->pending_kill = 0;
3841
	}
3842 3843
}

3844
static void perf_pending_event(struct irq_work *entry)
3845
{
3846 3847
	struct perf_event *event = container_of(entry,
			struct perf_event, pending);
3848

3849 3850 3851
	if (event->pending_disable) {
		event->pending_disable = 0;
		__perf_event_disable(event);
3852 3853
	}

3854 3855 3856
	if (event->pending_wakeup) {
		event->pending_wakeup = 0;
		perf_event_wakeup(event);
3857 3858 3859
	}
}

3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880
/*
 * We assume there is only KVM supporting the callbacks.
 * Later on, we might change it to a list if there is
 * another virtualization implementation supporting the callbacks.
 */
struct perf_guest_info_callbacks *perf_guest_cbs;

int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
{
	perf_guest_cbs = cbs;
	return 0;
}
EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);

int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
{
	perf_guest_cbs = NULL;
	return 0;
}
EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);

3881 3882 3883
/*
 * Output
 */
3884
static bool perf_output_space(struct perf_buffer *buffer, unsigned long tail,
3885
			      unsigned long offset, unsigned long head)
3886 3887 3888
{
	unsigned long mask;

3889
	if (!buffer->writable)
3890 3891
		return true;

3892
	mask = perf_data_size(buffer) - 1;
3893 3894 3895 3896 3897 3898 3899 3900 3901 3902

	offset = (offset - tail) & mask;
	head   = (head   - tail) & mask;

	if ((int)(head - offset) < 0)
		return false;

	return true;
}

3903
static void perf_output_wakeup(struct perf_output_handle *handle)
3904
{
3905
	atomic_set(&handle->buffer->poll, POLL_IN);
3906

3907
	if (handle->nmi) {
3908
		handle->event->pending_wakeup = 1;
3909
		irq_work_queue(&handle->event->pending);
3910
	} else
3911
		perf_event_wakeup(handle->event);
3912 3913
}

3914
/*
3915
 * We need to ensure a later event_id doesn't publish a head when a former
3916
 * event isn't done writing. However since we need to deal with NMIs we
3917 3918 3919
 * cannot fully serialize things.
 *
 * We only publish the head (and generate a wakeup) when the outer-most
3920
 * event completes.
3921
 */
3922
static void perf_output_get_handle(struct perf_output_handle *handle)
3923
{
3924
	struct perf_buffer *buffer = handle->buffer;
3925

3926
	preempt_disable();
3927 3928
	local_inc(&buffer->nest);
	handle->wakeup = local_read(&buffer->wakeup);
3929 3930
}

3931
static void perf_output_put_handle(struct perf_output_handle *handle)
3932
{
3933
	struct perf_buffer *buffer = handle->buffer;
3934
	unsigned long head;
3935 3936

again:
3937
	head = local_read(&buffer->head);
3938 3939

	/*
3940
	 * IRQ/NMI can happen here, which means we can miss a head update.
3941 3942
	 */

3943
	if (!local_dec_and_test(&buffer->nest))
3944
		goto out;
3945 3946

	/*
3947
	 * Publish the known good head. Rely on the full barrier implied
3948
	 * by atomic_dec_and_test() order the buffer->head read and this
3949
	 * write.
3950
	 */
3951
	buffer->user_page->data_head = head;
3952

3953 3954
	/*
	 * Now check if we missed an update, rely on the (compiler)
3955
	 * barrier in atomic_dec_and_test() to re-read buffer->head.
3956
	 */
3957 3958
	if (unlikely(head != local_read(&buffer->head))) {
		local_inc(&buffer->nest);
3959 3960 3961
		goto again;
	}

3962
	if (handle->wakeup != local_read(&buffer->wakeup))
3963
		perf_output_wakeup(handle);
3964

P
Peter Zijlstra 已提交
3965
out:
3966
	preempt_enable();
3967 3968
}

3969
__always_inline void perf_output_copy(struct perf_output_handle *handle,
3970
		      const void *buf, unsigned int len)
3971
{
3972
	do {
3973
		unsigned long size = min_t(unsigned long, handle->size, len);
3974 3975 3976 3977 3978

		memcpy(handle->addr, buf, size);

		len -= size;
		handle->addr += size;
3979
		buf += size;
3980 3981
		handle->size -= size;
		if (!handle->size) {
3982
			struct perf_buffer *buffer = handle->buffer;
3983

3984
			handle->page++;
3985 3986 3987
			handle->page &= buffer->nr_pages - 1;
			handle->addr = buffer->data_pages[handle->page];
			handle->size = PAGE_SIZE << page_order(buffer);
3988 3989
		}
	} while (len);
3990 3991
}

3992 3993 3994
static void __perf_event_header__init_id(struct perf_event_header *header,
					 struct perf_sample_data *data,
					 struct perf_event *event)
3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021
{
	u64 sample_type = event->attr.sample_type;

	data->type = sample_type;
	header->size += event->id_header_size;

	if (sample_type & PERF_SAMPLE_TID) {
		/* namespace issues */
		data->tid_entry.pid = perf_event_pid(event, current);
		data->tid_entry.tid = perf_event_tid(event, current);
	}

	if (sample_type & PERF_SAMPLE_TIME)
		data->time = perf_clock();

	if (sample_type & PERF_SAMPLE_ID)
		data->id = primary_event_id(event);

	if (sample_type & PERF_SAMPLE_STREAM_ID)
		data->stream_id = event->id;

	if (sample_type & PERF_SAMPLE_CPU) {
		data->cpu_entry.cpu	 = raw_smp_processor_id();
		data->cpu_entry.reserved = 0;
	}
}

4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058
static void perf_event_header__init_id(struct perf_event_header *header,
				       struct perf_sample_data *data,
				       struct perf_event *event)
{
	if (event->attr.sample_id_all)
		__perf_event_header__init_id(header, data, event);
}

static void __perf_event__output_id_sample(struct perf_output_handle *handle,
					   struct perf_sample_data *data)
{
	u64 sample_type = data->type;

	if (sample_type & PERF_SAMPLE_TID)
		perf_output_put(handle, data->tid_entry);

	if (sample_type & PERF_SAMPLE_TIME)
		perf_output_put(handle, data->time);

	if (sample_type & PERF_SAMPLE_ID)
		perf_output_put(handle, data->id);

	if (sample_type & PERF_SAMPLE_STREAM_ID)
		perf_output_put(handle, data->stream_id);

	if (sample_type & PERF_SAMPLE_CPU)
		perf_output_put(handle, data->cpu_entry);
}

static void perf_event__output_id_sample(struct perf_event *event,
					 struct perf_output_handle *handle,
					 struct perf_sample_data *sample)
{
	if (event->attr.sample_id_all)
		__perf_event__output_id_sample(handle, sample);
}

4059
int perf_output_begin(struct perf_output_handle *handle,
4060
		      struct perf_event *event, unsigned int size,
4061
		      int nmi, int sample)
4062
{
4063
	struct perf_buffer *buffer;
4064
	unsigned long tail, offset, head;
4065
	int have_lost;
4066
	struct perf_sample_data sample_data;
4067 4068 4069 4070 4071
	struct {
		struct perf_event_header header;
		u64			 id;
		u64			 lost;
	} lost_event;
4072

4073
	rcu_read_lock();
4074
	/*
4075
	 * For inherited events we send all the output towards the parent.
4076
	 */
4077 4078
	if (event->parent)
		event = event->parent;
4079

4080 4081
	buffer = rcu_dereference(event->buffer);
	if (!buffer)
4082 4083
		goto out;

4084
	handle->buffer	= buffer;
4085
	handle->event	= event;
4086 4087
	handle->nmi	= nmi;
	handle->sample	= sample;
4088

4089
	if (!buffer->nr_pages)
4090
		goto out;
4091

4092
	have_lost = local_read(&buffer->lost);
4093 4094 4095 4096 4097 4098
	if (have_lost) {
		lost_event.header.size = sizeof(lost_event);
		perf_event_header__init_id(&lost_event.header, &sample_data,
					   event);
		size += lost_event.header.size;
	}
4099

4100
	perf_output_get_handle(handle);
4101

4102
	do {
4103 4104 4105 4106 4107
		/*
		 * Userspace could choose to issue a mb() before updating the
		 * tail pointer. So that all reads will be completed before the
		 * write is issued.
		 */
4108
		tail = ACCESS_ONCE(buffer->user_page->data_tail);
4109
		smp_rmb();
4110
		offset = head = local_read(&buffer->head);
P
Peter Zijlstra 已提交
4111
		head += size;
4112
		if (unlikely(!perf_output_space(buffer, tail, offset, head)))
4113
			goto fail;
4114
	} while (local_cmpxchg(&buffer->head, offset, head) != offset);
4115

4116 4117
	if (head - local_read(&buffer->wakeup) > buffer->watermark)
		local_add(buffer->watermark, &buffer->wakeup);
4118

4119 4120 4121 4122
	handle->page = offset >> (PAGE_SHIFT + page_order(buffer));
	handle->page &= buffer->nr_pages - 1;
	handle->size = offset & ((PAGE_SIZE << page_order(buffer)) - 1);
	handle->addr = buffer->data_pages[handle->page];
4123
	handle->addr += handle->size;
4124
	handle->size = (PAGE_SIZE << page_order(buffer)) - handle->size;
4125

4126
	if (have_lost) {
4127
		lost_event.header.type = PERF_RECORD_LOST;
4128
		lost_event.header.misc = 0;
4129
		lost_event.id          = event->id;
4130
		lost_event.lost        = local_xchg(&buffer->lost, 0);
4131 4132

		perf_output_put(handle, lost_event);
4133
		perf_event__output_id_sample(event, handle, &sample_data);
4134 4135
	}

4136
	return 0;
4137

4138
fail:
4139
	local_inc(&buffer->lost);
4140
	perf_output_put_handle(handle);
4141 4142
out:
	rcu_read_unlock();
4143

4144 4145
	return -ENOSPC;
}
4146

4147
void perf_output_end(struct perf_output_handle *handle)
4148
{
4149
	struct perf_event *event = handle->event;
4150
	struct perf_buffer *buffer = handle->buffer;
4151

4152
	int wakeup_events = event->attr.wakeup_events;
P
Peter Zijlstra 已提交
4153

4154
	if (handle->sample && wakeup_events) {
4155
		int events = local_inc_return(&buffer->events);
P
Peter Zijlstra 已提交
4156
		if (events >= wakeup_events) {
4157 4158
			local_sub(wakeup_events, &buffer->events);
			local_inc(&buffer->wakeup);
P
Peter Zijlstra 已提交
4159
		}
4160 4161
	}

4162
	perf_output_put_handle(handle);
4163
	rcu_read_unlock();
4164 4165
}

4166
static void perf_output_read_one(struct perf_output_handle *handle,
4167 4168
				 struct perf_event *event,
				 u64 enabled, u64 running)
4169
{
4170
	u64 read_format = event->attr.read_format;
4171 4172 4173
	u64 values[4];
	int n = 0;

P
Peter Zijlstra 已提交
4174
	values[n++] = perf_event_count(event);
4175
	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
4176
		values[n++] = enabled +
4177
			atomic64_read(&event->child_total_time_enabled);
4178 4179
	}
	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
4180
		values[n++] = running +
4181
			atomic64_read(&event->child_total_time_running);
4182 4183
	}
	if (read_format & PERF_FORMAT_ID)
4184
		values[n++] = primary_event_id(event);
4185 4186 4187 4188 4189

	perf_output_copy(handle, values, n * sizeof(u64));
}

/*
4190
 * XXX PERF_FORMAT_GROUP vs inherited events seems difficult.
4191 4192
 */
static void perf_output_read_group(struct perf_output_handle *handle,
4193 4194
			    struct perf_event *event,
			    u64 enabled, u64 running)
4195
{
4196 4197
	struct perf_event *leader = event->group_leader, *sub;
	u64 read_format = event->attr.read_format;
4198 4199 4200 4201 4202 4203
	u64 values[5];
	int n = 0;

	values[n++] = 1 + leader->nr_siblings;

	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
4204
		values[n++] = enabled;
4205 4206

	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
4207
		values[n++] = running;
4208

4209
	if (leader != event)
4210 4211
		leader->pmu->read(leader);

P
Peter Zijlstra 已提交
4212
	values[n++] = perf_event_count(leader);
4213
	if (read_format & PERF_FORMAT_ID)
4214
		values[n++] = primary_event_id(leader);
4215 4216 4217

	perf_output_copy(handle, values, n * sizeof(u64));

4218
	list_for_each_entry(sub, &leader->sibling_list, group_entry) {
4219 4220
		n = 0;

4221
		if (sub != event)
4222 4223
			sub->pmu->read(sub);

P
Peter Zijlstra 已提交
4224
		values[n++] = perf_event_count(sub);
4225
		if (read_format & PERF_FORMAT_ID)
4226
			values[n++] = primary_event_id(sub);
4227 4228 4229 4230 4231

		perf_output_copy(handle, values, n * sizeof(u64));
	}
}

4232 4233 4234
#define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\
				 PERF_FORMAT_TOTAL_TIME_RUNNING)

4235
static void perf_output_read(struct perf_output_handle *handle,
4236
			     struct perf_event *event)
4237
{
4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256
	u64 enabled = 0, running = 0, now, ctx_time;
	u64 read_format = event->attr.read_format;

	/*
	 * compute total_time_enabled, total_time_running
	 * based on snapshot values taken when the event
	 * was last scheduled in.
	 *
	 * we cannot simply called update_context_time()
	 * because of locking issue as we are called in
	 * NMI context
	 */
	if (read_format & PERF_FORMAT_TOTAL_TIMES) {
		now = perf_clock();
		ctx_time = event->shadow_ctx_time + now;
		enabled = ctx_time - event->tstamp_enabled;
		running = ctx_time - event->tstamp_running;
	}

4257
	if (event->attr.read_format & PERF_FORMAT_GROUP)
4258
		perf_output_read_group(handle, event, enabled, running);
4259
	else
4260
		perf_output_read_one(handle, event, enabled, running);
4261 4262
}

4263 4264 4265
void perf_output_sample(struct perf_output_handle *handle,
			struct perf_event_header *header,
			struct perf_sample_data *data,
4266
			struct perf_event *event)
4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296
{
	u64 sample_type = data->type;

	perf_output_put(handle, *header);

	if (sample_type & PERF_SAMPLE_IP)
		perf_output_put(handle, data->ip);

	if (sample_type & PERF_SAMPLE_TID)
		perf_output_put(handle, data->tid_entry);

	if (sample_type & PERF_SAMPLE_TIME)
		perf_output_put(handle, data->time);

	if (sample_type & PERF_SAMPLE_ADDR)
		perf_output_put(handle, data->addr);

	if (sample_type & PERF_SAMPLE_ID)
		perf_output_put(handle, data->id);

	if (sample_type & PERF_SAMPLE_STREAM_ID)
		perf_output_put(handle, data->stream_id);

	if (sample_type & PERF_SAMPLE_CPU)
		perf_output_put(handle, data->cpu_entry);

	if (sample_type & PERF_SAMPLE_PERIOD)
		perf_output_put(handle, data->period);

	if (sample_type & PERF_SAMPLE_READ)
4297
		perf_output_read(handle, event);
4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334

	if (sample_type & PERF_SAMPLE_CALLCHAIN) {
		if (data->callchain) {
			int size = 1;

			if (data->callchain)
				size += data->callchain->nr;

			size *= sizeof(u64);

			perf_output_copy(handle, data->callchain, size);
		} else {
			u64 nr = 0;
			perf_output_put(handle, nr);
		}
	}

	if (sample_type & PERF_SAMPLE_RAW) {
		if (data->raw) {
			perf_output_put(handle, data->raw->size);
			perf_output_copy(handle, data->raw->data,
					 data->raw->size);
		} else {
			struct {
				u32	size;
				u32	data;
			} raw = {
				.size = sizeof(u32),
				.data = 0,
			};
			perf_output_put(handle, raw);
		}
	}
}

void perf_prepare_sample(struct perf_event_header *header,
			 struct perf_sample_data *data,
4335
			 struct perf_event *event,
4336
			 struct pt_regs *regs)
4337
{
4338
	u64 sample_type = event->attr.sample_type;
4339

4340
	header->type = PERF_RECORD_SAMPLE;
4341
	header->size = sizeof(*header) + event->header_size;
4342 4343 4344

	header->misc = 0;
	header->misc |= perf_misc_flags(regs);
4345

4346
	__perf_event_header__init_id(header, data, event);
4347

4348
	if (sample_type & PERF_SAMPLE_IP)
4349 4350
		data->ip = perf_instruction_pointer(regs);

4351
	if (sample_type & PERF_SAMPLE_CALLCHAIN) {
4352
		int size = 1;
4353

4354 4355 4356 4357 4358 4359
		data->callchain = perf_callchain(regs);

		if (data->callchain)
			size += data->callchain->nr;

		header->size += size * sizeof(u64);
4360 4361
	}

4362
	if (sample_type & PERF_SAMPLE_RAW) {
4363 4364 4365 4366 4367 4368 4369 4370
		int size = sizeof(u32);

		if (data->raw)
			size += data->raw->size;
		else
			size += sizeof(u32);

		WARN_ON_ONCE(size & (sizeof(u64)-1));
4371
		header->size += size;
4372
	}
4373
}
4374

4375
static void perf_event_output(struct perf_event *event, int nmi,
4376 4377 4378 4379 4380
				struct perf_sample_data *data,
				struct pt_regs *regs)
{
	struct perf_output_handle handle;
	struct perf_event_header header;
4381

4382 4383 4384
	/* protect the callchain buffers */
	rcu_read_lock();

4385
	perf_prepare_sample(&header, data, event, regs);
P
Peter Zijlstra 已提交
4386

4387
	if (perf_output_begin(&handle, event, header.size, nmi, 1))
4388
		goto exit;
4389

4390
	perf_output_sample(&handle, &header, data, event);
4391

4392
	perf_output_end(&handle);
4393 4394 4395

exit:
	rcu_read_unlock();
4396 4397
}

4398
/*
4399
 * read event_id
4400 4401 4402 4403 4404 4405 4406 4407 4408 4409
 */

struct perf_read_event {
	struct perf_event_header	header;

	u32				pid;
	u32				tid;
};

static void
4410
perf_event_read_event(struct perf_event *event,
4411 4412 4413
			struct task_struct *task)
{
	struct perf_output_handle handle;
4414
	struct perf_sample_data sample;
4415
	struct perf_read_event read_event = {
4416
		.header = {
4417
			.type = PERF_RECORD_READ,
4418
			.misc = 0,
4419
			.size = sizeof(read_event) + event->read_size,
4420
		},
4421 4422
		.pid = perf_event_pid(event, task),
		.tid = perf_event_tid(event, task),
4423
	};
4424
	int ret;
4425

4426
	perf_event_header__init_id(&read_event.header, &sample, event);
4427
	ret = perf_output_begin(&handle, event, read_event.header.size, 0, 0);
4428 4429 4430
	if (ret)
		return;

4431
	perf_output_put(&handle, read_event);
4432
	perf_output_read(&handle, event);
4433
	perf_event__output_id_sample(event, &handle, &sample);
4434

4435 4436 4437
	perf_output_end(&handle);
}

P
Peter Zijlstra 已提交
4438
/*
P
Peter Zijlstra 已提交
4439 4440
 * task tracking -- fork/exit
 *
4441
 * enabled by: attr.comm | attr.mmap | attr.mmap_data | attr.task
P
Peter Zijlstra 已提交
4442 4443
 */

P
Peter Zijlstra 已提交
4444
struct perf_task_event {
4445
	struct task_struct		*task;
4446
	struct perf_event_context	*task_ctx;
P
Peter Zijlstra 已提交
4447 4448 4449 4450 4451 4452

	struct {
		struct perf_event_header	header;

		u32				pid;
		u32				ppid;
P
Peter Zijlstra 已提交
4453 4454
		u32				tid;
		u32				ptid;
4455
		u64				time;
4456
	} event_id;
P
Peter Zijlstra 已提交
4457 4458
};

4459
static void perf_event_task_output(struct perf_event *event,
P
Peter Zijlstra 已提交
4460
				     struct perf_task_event *task_event)
P
Peter Zijlstra 已提交
4461 4462
{
	struct perf_output_handle handle;
4463
	struct perf_sample_data	sample;
P
Peter Zijlstra 已提交
4464
	struct task_struct *task = task_event->task;
4465
	int ret, size = task_event->event_id.header.size;
4466

4467
	perf_event_header__init_id(&task_event->event_id.header, &sample, event);
P
Peter Zijlstra 已提交
4468

4469 4470
	ret = perf_output_begin(&handle, event,
				task_event->event_id.header.size, 0, 0);
4471
	if (ret)
4472
		goto out;
P
Peter Zijlstra 已提交
4473

4474 4475
	task_event->event_id.pid = perf_event_pid(event, task);
	task_event->event_id.ppid = perf_event_pid(event, current);
P
Peter Zijlstra 已提交
4476

4477 4478
	task_event->event_id.tid = perf_event_tid(event, task);
	task_event->event_id.ptid = perf_event_tid(event, current);
P
Peter Zijlstra 已提交
4479

4480
	perf_output_put(&handle, task_event->event_id);
4481

4482 4483
	perf_event__output_id_sample(event, &handle, &sample);

P
Peter Zijlstra 已提交
4484
	perf_output_end(&handle);
4485 4486
out:
	task_event->event_id.header.size = size;
P
Peter Zijlstra 已提交
4487 4488
}

4489
static int perf_event_task_match(struct perf_event *event)
P
Peter Zijlstra 已提交
4490
{
P
Peter Zijlstra 已提交
4491
	if (event->state < PERF_EVENT_STATE_INACTIVE)
4492 4493
		return 0;

4494
	if (!event_filter_match(event))
4495 4496
		return 0;

4497 4498
	if (event->attr.comm || event->attr.mmap ||
	    event->attr.mmap_data || event->attr.task)
P
Peter Zijlstra 已提交
4499 4500 4501 4502 4503
		return 1;

	return 0;
}

4504
static void perf_event_task_ctx(struct perf_event_context *ctx,
P
Peter Zijlstra 已提交
4505
				  struct perf_task_event *task_event)
P
Peter Zijlstra 已提交
4506
{
4507
	struct perf_event *event;
P
Peter Zijlstra 已提交
4508

4509 4510 4511
	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
		if (perf_event_task_match(event))
			perf_event_task_output(event, task_event);
P
Peter Zijlstra 已提交
4512 4513 4514
	}
}

4515
static void perf_event_task_event(struct perf_task_event *task_event)
P
Peter Zijlstra 已提交
4516 4517
{
	struct perf_cpu_context *cpuctx;
P
Peter Zijlstra 已提交
4518
	struct perf_event_context *ctx;
P
Peter Zijlstra 已提交
4519
	struct pmu *pmu;
P
Peter Zijlstra 已提交
4520
	int ctxn;
P
Peter Zijlstra 已提交
4521

4522
	rcu_read_lock();
P
Peter Zijlstra 已提交
4523
	list_for_each_entry_rcu(pmu, &pmus, entry) {
4524
		cpuctx = get_cpu_ptr(pmu->pmu_cpu_context);
4525 4526
		if (cpuctx->active_pmu != pmu)
			goto next;
P
Peter Zijlstra 已提交
4527
		perf_event_task_ctx(&cpuctx->ctx, task_event);
P
Peter Zijlstra 已提交
4528 4529 4530 4531 4532

		ctx = task_event->task_ctx;
		if (!ctx) {
			ctxn = pmu->task_ctx_nr;
			if (ctxn < 0)
4533
				goto next;
P
Peter Zijlstra 已提交
4534 4535 4536 4537
			ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
		}
		if (ctx)
			perf_event_task_ctx(ctx, task_event);
4538 4539
next:
		put_cpu_ptr(pmu->pmu_cpu_context);
P
Peter Zijlstra 已提交
4540
	}
P
Peter Zijlstra 已提交
4541 4542 4543
	rcu_read_unlock();
}

4544 4545
static void perf_event_task(struct task_struct *task,
			      struct perf_event_context *task_ctx,
4546
			      int new)
P
Peter Zijlstra 已提交
4547
{
P
Peter Zijlstra 已提交
4548
	struct perf_task_event task_event;
P
Peter Zijlstra 已提交
4549

4550 4551 4552
	if (!atomic_read(&nr_comm_events) &&
	    !atomic_read(&nr_mmap_events) &&
	    !atomic_read(&nr_task_events))
P
Peter Zijlstra 已提交
4553 4554
		return;

P
Peter Zijlstra 已提交
4555
	task_event = (struct perf_task_event){
4556 4557
		.task	  = task,
		.task_ctx = task_ctx,
4558
		.event_id    = {
P
Peter Zijlstra 已提交
4559
			.header = {
4560
				.type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
4561
				.misc = 0,
4562
				.size = sizeof(task_event.event_id),
P
Peter Zijlstra 已提交
4563
			},
4564 4565
			/* .pid  */
			/* .ppid */
P
Peter Zijlstra 已提交
4566 4567
			/* .tid  */
			/* .ptid */
P
Peter Zijlstra 已提交
4568
			.time = perf_clock(),
P
Peter Zijlstra 已提交
4569 4570 4571
		},
	};

4572
	perf_event_task_event(&task_event);
P
Peter Zijlstra 已提交
4573 4574
}

4575
void perf_event_fork(struct task_struct *task)
P
Peter Zijlstra 已提交
4576
{
4577
	perf_event_task(task, NULL, 1);
P
Peter Zijlstra 已提交
4578 4579
}

4580 4581 4582 4583 4584
/*
 * comm tracking
 */

struct perf_comm_event {
4585 4586
	struct task_struct	*task;
	char			*comm;
4587 4588 4589 4590 4591 4592 4593
	int			comm_size;

	struct {
		struct perf_event_header	header;

		u32				pid;
		u32				tid;
4594
	} event_id;
4595 4596
};

4597
static void perf_event_comm_output(struct perf_event *event,
4598 4599 4600
				     struct perf_comm_event *comm_event)
{
	struct perf_output_handle handle;
4601
	struct perf_sample_data sample;
4602
	int size = comm_event->event_id.header.size;
4603 4604 4605 4606 4607
	int ret;

	perf_event_header__init_id(&comm_event->event_id.header, &sample, event);
	ret = perf_output_begin(&handle, event,
				comm_event->event_id.header.size, 0, 0);
4608 4609

	if (ret)
4610
		goto out;
4611

4612 4613
	comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
	comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
4614

4615
	perf_output_put(&handle, comm_event->event_id);
4616 4617
	perf_output_copy(&handle, comm_event->comm,
				   comm_event->comm_size);
4618 4619 4620

	perf_event__output_id_sample(event, &handle, &sample);

4621
	perf_output_end(&handle);
4622 4623
out:
	comm_event->event_id.header.size = size;
4624 4625
}

4626
static int perf_event_comm_match(struct perf_event *event)
4627
{
P
Peter Zijlstra 已提交
4628
	if (event->state < PERF_EVENT_STATE_INACTIVE)
4629 4630
		return 0;

4631
	if (!event_filter_match(event))
4632 4633
		return 0;

4634
	if (event->attr.comm)
4635 4636 4637 4638 4639
		return 1;

	return 0;
}

4640
static void perf_event_comm_ctx(struct perf_event_context *ctx,
4641 4642
				  struct perf_comm_event *comm_event)
{
4643
	struct perf_event *event;
4644

4645 4646 4647
	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
		if (perf_event_comm_match(event))
			perf_event_comm_output(event, comm_event);
4648 4649 4650
	}
}

4651
static void perf_event_comm_event(struct perf_comm_event *comm_event)
4652 4653
{
	struct perf_cpu_context *cpuctx;
4654
	struct perf_event_context *ctx;
4655
	char comm[TASK_COMM_LEN];
4656
	unsigned int size;
P
Peter Zijlstra 已提交
4657
	struct pmu *pmu;
P
Peter Zijlstra 已提交
4658
	int ctxn;
4659

4660
	memset(comm, 0, sizeof(comm));
4661
	strlcpy(comm, comm_event->task->comm, sizeof(comm));
4662
	size = ALIGN(strlen(comm)+1, sizeof(u64));
4663 4664 4665 4666

	comm_event->comm = comm;
	comm_event->comm_size = size;

4667
	comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
4668
	rcu_read_lock();
P
Peter Zijlstra 已提交
4669
	list_for_each_entry_rcu(pmu, &pmus, entry) {
4670
		cpuctx = get_cpu_ptr(pmu->pmu_cpu_context);
4671 4672
		if (cpuctx->active_pmu != pmu)
			goto next;
P
Peter Zijlstra 已提交
4673
		perf_event_comm_ctx(&cpuctx->ctx, comm_event);
P
Peter Zijlstra 已提交
4674 4675 4676

		ctxn = pmu->task_ctx_nr;
		if (ctxn < 0)
4677
			goto next;
P
Peter Zijlstra 已提交
4678 4679 4680 4681

		ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
		if (ctx)
			perf_event_comm_ctx(ctx, comm_event);
4682 4683
next:
		put_cpu_ptr(pmu->pmu_cpu_context);
P
Peter Zijlstra 已提交
4684
	}
4685
	rcu_read_unlock();
4686 4687
}

4688
void perf_event_comm(struct task_struct *task)
4689
{
4690
	struct perf_comm_event comm_event;
P
Peter Zijlstra 已提交
4691 4692
	struct perf_event_context *ctx;
	int ctxn;
4693

P
Peter Zijlstra 已提交
4694 4695 4696 4697
	for_each_task_context_nr(ctxn) {
		ctx = task->perf_event_ctxp[ctxn];
		if (!ctx)
			continue;
4698

P
Peter Zijlstra 已提交
4699 4700
		perf_event_enable_on_exec(ctx);
	}
4701

4702
	if (!atomic_read(&nr_comm_events))
4703
		return;
4704

4705
	comm_event = (struct perf_comm_event){
4706
		.task	= task,
4707 4708
		/* .comm      */
		/* .comm_size */
4709
		.event_id  = {
4710
			.header = {
4711
				.type = PERF_RECORD_COMM,
4712 4713 4714 4715 4716
				.misc = 0,
				/* .size */
			},
			/* .pid */
			/* .tid */
4717 4718 4719
		},
	};

4720
	perf_event_comm_event(&comm_event);
4721 4722
}

4723 4724 4725 4726 4727
/*
 * mmap tracking
 */

struct perf_mmap_event {
4728 4729 4730 4731
	struct vm_area_struct	*vma;

	const char		*file_name;
	int			file_size;
4732 4733 4734 4735 4736 4737 4738 4739 4740

	struct {
		struct perf_event_header	header;

		u32				pid;
		u32				tid;
		u64				start;
		u64				len;
		u64				pgoff;
4741
	} event_id;
4742 4743
};

4744
static void perf_event_mmap_output(struct perf_event *event,
4745 4746 4747
				     struct perf_mmap_event *mmap_event)
{
	struct perf_output_handle handle;
4748
	struct perf_sample_data sample;
4749
	int size = mmap_event->event_id.header.size;
4750
	int ret;
4751

4752 4753 4754
	perf_event_header__init_id(&mmap_event->event_id.header, &sample, event);
	ret = perf_output_begin(&handle, event,
				mmap_event->event_id.header.size, 0, 0);
4755
	if (ret)
4756
		goto out;
4757

4758 4759
	mmap_event->event_id.pid = perf_event_pid(event, current);
	mmap_event->event_id.tid = perf_event_tid(event, current);
4760

4761
	perf_output_put(&handle, mmap_event->event_id);
4762 4763
	perf_output_copy(&handle, mmap_event->file_name,
				   mmap_event->file_size);
4764 4765 4766

	perf_event__output_id_sample(event, &handle, &sample);

4767
	perf_output_end(&handle);
4768 4769
out:
	mmap_event->event_id.header.size = size;
4770 4771
}

4772
static int perf_event_mmap_match(struct perf_event *event,
4773 4774
				   struct perf_mmap_event *mmap_event,
				   int executable)
4775
{
P
Peter Zijlstra 已提交
4776
	if (event->state < PERF_EVENT_STATE_INACTIVE)
4777 4778
		return 0;

4779
	if (!event_filter_match(event))
4780 4781
		return 0;

4782 4783
	if ((!executable && event->attr.mmap_data) ||
	    (executable && event->attr.mmap))
4784 4785 4786 4787 4788
		return 1;

	return 0;
}

4789
static void perf_event_mmap_ctx(struct perf_event_context *ctx,
4790 4791
				  struct perf_mmap_event *mmap_event,
				  int executable)
4792
{
4793
	struct perf_event *event;
4794

4795
	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
4796
		if (perf_event_mmap_match(event, mmap_event, executable))
4797
			perf_event_mmap_output(event, mmap_event);
4798 4799 4800
	}
}

4801
static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
4802 4803
{
	struct perf_cpu_context *cpuctx;
4804
	struct perf_event_context *ctx;
4805 4806
	struct vm_area_struct *vma = mmap_event->vma;
	struct file *file = vma->vm_file;
4807 4808 4809
	unsigned int size;
	char tmp[16];
	char *buf = NULL;
4810
	const char *name;
P
Peter Zijlstra 已提交
4811
	struct pmu *pmu;
P
Peter Zijlstra 已提交
4812
	int ctxn;
4813

4814 4815
	memset(tmp, 0, sizeof(tmp));

4816
	if (file) {
4817 4818 4819 4820 4821 4822
		/*
		 * d_path works from the end of the buffer backwards, so we
		 * need to add enough zero bytes after the string to handle
		 * the 64bit alignment we do later.
		 */
		buf = kzalloc(PATH_MAX + sizeof(u64), GFP_KERNEL);
4823 4824 4825 4826
		if (!buf) {
			name = strncpy(tmp, "//enomem", sizeof(tmp));
			goto got_name;
		}
4827
		name = d_path(&file->f_path, buf, PATH_MAX);
4828 4829 4830 4831 4832
		if (IS_ERR(name)) {
			name = strncpy(tmp, "//toolong", sizeof(tmp));
			goto got_name;
		}
	} else {
4833 4834 4835
		if (arch_vma_name(mmap_event->vma)) {
			name = strncpy(tmp, arch_vma_name(mmap_event->vma),
				       sizeof(tmp));
4836
			goto got_name;
4837
		}
4838 4839 4840 4841

		if (!vma->vm_mm) {
			name = strncpy(tmp, "[vdso]", sizeof(tmp));
			goto got_name;
4842 4843 4844 4845 4846 4847 4848 4849
		} else if (vma->vm_start <= vma->vm_mm->start_brk &&
				vma->vm_end >= vma->vm_mm->brk) {
			name = strncpy(tmp, "[heap]", sizeof(tmp));
			goto got_name;
		} else if (vma->vm_start <= vma->vm_mm->start_stack &&
				vma->vm_end >= vma->vm_mm->start_stack) {
			name = strncpy(tmp, "[stack]", sizeof(tmp));
			goto got_name;
4850 4851
		}

4852 4853 4854 4855 4856
		name = strncpy(tmp, "//anon", sizeof(tmp));
		goto got_name;
	}

got_name:
4857
	size = ALIGN(strlen(name)+1, sizeof(u64));
4858 4859 4860 4861

	mmap_event->file_name = name;
	mmap_event->file_size = size;

4862
	mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
4863

4864
	rcu_read_lock();
P
Peter Zijlstra 已提交
4865
	list_for_each_entry_rcu(pmu, &pmus, entry) {
4866
		cpuctx = get_cpu_ptr(pmu->pmu_cpu_context);
4867 4868
		if (cpuctx->active_pmu != pmu)
			goto next;
P
Peter Zijlstra 已提交
4869 4870
		perf_event_mmap_ctx(&cpuctx->ctx, mmap_event,
					vma->vm_flags & VM_EXEC);
P
Peter Zijlstra 已提交
4871 4872 4873

		ctxn = pmu->task_ctx_nr;
		if (ctxn < 0)
4874
			goto next;
P
Peter Zijlstra 已提交
4875 4876 4877 4878 4879 4880

		ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
		if (ctx) {
			perf_event_mmap_ctx(ctx, mmap_event,
					vma->vm_flags & VM_EXEC);
		}
4881 4882
next:
		put_cpu_ptr(pmu->pmu_cpu_context);
P
Peter Zijlstra 已提交
4883
	}
4884 4885
	rcu_read_unlock();

4886 4887 4888
	kfree(buf);
}

4889
void perf_event_mmap(struct vm_area_struct *vma)
4890
{
4891 4892
	struct perf_mmap_event mmap_event;

4893
	if (!atomic_read(&nr_mmap_events))
4894 4895 4896
		return;

	mmap_event = (struct perf_mmap_event){
4897
		.vma	= vma,
4898 4899
		/* .file_name */
		/* .file_size */
4900
		.event_id  = {
4901
			.header = {
4902
				.type = PERF_RECORD_MMAP,
4903
				.misc = PERF_RECORD_MISC_USER,
4904 4905 4906 4907
				/* .size */
			},
			/* .pid */
			/* .tid */
4908 4909
			.start  = vma->vm_start,
			.len    = vma->vm_end - vma->vm_start,
4910
			.pgoff  = (u64)vma->vm_pgoff << PAGE_SHIFT,
4911 4912 4913
		},
	};

4914
	perf_event_mmap_event(&mmap_event);
4915 4916
}

4917 4918 4919 4920
/*
 * IRQ throttle logging
 */

4921
static void perf_log_throttle(struct perf_event *event, int enable)
4922 4923
{
	struct perf_output_handle handle;
4924
	struct perf_sample_data sample;
4925 4926 4927 4928 4929
	int ret;

	struct {
		struct perf_event_header	header;
		u64				time;
4930
		u64				id;
4931
		u64				stream_id;
4932 4933
	} throttle_event = {
		.header = {
4934
			.type = PERF_RECORD_THROTTLE,
4935 4936 4937
			.misc = 0,
			.size = sizeof(throttle_event),
		},
P
Peter Zijlstra 已提交
4938
		.time		= perf_clock(),
4939 4940
		.id		= primary_event_id(event),
		.stream_id	= event->id,
4941 4942
	};

4943
	if (enable)
4944
		throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
4945

4946 4947 4948 4949
	perf_event_header__init_id(&throttle_event.header, &sample, event);

	ret = perf_output_begin(&handle, event,
				throttle_event.header.size, 1, 0);
4950 4951 4952 4953
	if (ret)
		return;

	perf_output_put(&handle, throttle_event);
4954
	perf_event__output_id_sample(event, &handle, &sample);
4955 4956 4957
	perf_output_end(&handle);
}

4958
/*
4959
 * Generic event overflow handling, sampling.
4960 4961
 */

4962
static int __perf_event_overflow(struct perf_event *event, int nmi,
4963 4964
				   int throttle, struct perf_sample_data *data,
				   struct pt_regs *regs)
4965
{
4966 4967
	int events = atomic_read(&event->event_limit);
	struct hw_perf_event *hwc = &event->hw;
4968 4969
	int ret = 0;

4970 4971 4972 4973 4974 4975 4976
	/*
	 * Non-sampling counters might still use the PMI to fold short
	 * hardware counters, ignore those.
	 */
	if (unlikely(!is_sampling_event(event)))
		return 0;

P
Peter Zijlstra 已提交
4977 4978 4979 4980
	if (unlikely(hwc->interrupts >= max_samples_per_tick)) {
		if (throttle) {
			hwc->interrupts = MAX_INTERRUPTS;
			perf_log_throttle(event, 0);
4981 4982
			ret = 1;
		}
P
Peter Zijlstra 已提交
4983 4984
	} else
		hwc->interrupts++;
4985

4986
	if (event->attr.freq) {
P
Peter Zijlstra 已提交
4987
		u64 now = perf_clock();
4988
		s64 delta = now - hwc->freq_time_stamp;
4989

4990
		hwc->freq_time_stamp = now;
4991

4992 4993
		if (delta > 0 && delta < 2*TICK_NSEC)
			perf_adjust_period(event, delta, hwc->last_period);
4994 4995
	}

4996 4997
	/*
	 * XXX event_limit might not quite work as expected on inherited
4998
	 * events
4999 5000
	 */

5001 5002
	event->pending_kill = POLL_IN;
	if (events && atomic_dec_and_test(&event->event_limit)) {
5003
		ret = 1;
5004
		event->pending_kill = POLL_HUP;
5005
		if (nmi) {
5006
			event->pending_disable = 1;
5007
			irq_work_queue(&event->pending);
5008
		} else
5009
			perf_event_disable(event);
5010 5011
	}

5012 5013 5014 5015 5016
	if (event->overflow_handler)
		event->overflow_handler(event, nmi, data, regs);
	else
		perf_event_output(event, nmi, data, regs);

P
Peter Zijlstra 已提交
5017 5018 5019 5020 5021 5022 5023 5024
	if (event->fasync && event->pending_kill) {
		if (nmi) {
			event->pending_wakeup = 1;
			irq_work_queue(&event->pending);
		} else
			perf_event_wakeup(event);
	}

5025
	return ret;
5026 5027
}

5028
int perf_event_overflow(struct perf_event *event, int nmi,
5029 5030
			  struct perf_sample_data *data,
			  struct pt_regs *regs)
5031
{
5032
	return __perf_event_overflow(event, nmi, 1, data, regs);
5033 5034
}

5035
/*
5036
 * Generic software event infrastructure
5037 5038
 */

5039 5040 5041 5042 5043 5044 5045 5046 5047 5048 5049
struct swevent_htable {
	struct swevent_hlist		*swevent_hlist;
	struct mutex			hlist_mutex;
	int				hlist_refcount;

	/* Recursion avoidance in each contexts */
	int				recursion[PERF_NR_CONTEXTS];
};

static DEFINE_PER_CPU(struct swevent_htable, swevent_htable);

5050
/*
5051 5052
 * We directly increment event->count and keep a second value in
 * event->hw.period_left to count intervals. This period event
5053 5054 5055 5056
 * is kept in the range [-sample_period, 0] so that we can use the
 * sign as trigger.
 */

5057
static u64 perf_swevent_set_period(struct perf_event *event)
5058
{
5059
	struct hw_perf_event *hwc = &event->hw;
5060 5061 5062 5063 5064
	u64 period = hwc->last_period;
	u64 nr, offset;
	s64 old, val;

	hwc->last_period = hwc->sample_period;
5065 5066

again:
5067
	old = val = local64_read(&hwc->period_left);
5068 5069
	if (val < 0)
		return 0;
5070

5071 5072 5073
	nr = div64_u64(period + val, period);
	offset = nr * period;
	val -= offset;
5074
	if (local64_cmpxchg(&hwc->period_left, old, val) != old)
5075
		goto again;
5076

5077
	return nr;
5078 5079
}

5080
static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
5081 5082
				    int nmi, struct perf_sample_data *data,
				    struct pt_regs *regs)
5083
{
5084
	struct hw_perf_event *hwc = &event->hw;
5085
	int throttle = 0;
5086

5087
	data->period = event->hw.last_period;
5088 5089
	if (!overflow)
		overflow = perf_swevent_set_period(event);
5090

5091 5092
	if (hwc->interrupts == MAX_INTERRUPTS)
		return;
5093

5094
	for (; overflow; overflow--) {
5095
		if (__perf_event_overflow(event, nmi, throttle,
5096
					    data, regs)) {
5097 5098 5099 5100 5101 5102
			/*
			 * We inhibit the overflow from happening when
			 * hwc->interrupts == MAX_INTERRUPTS.
			 */
			break;
		}
5103
		throttle = 1;
5104
	}
5105 5106
}

P
Peter Zijlstra 已提交
5107
static void perf_swevent_event(struct perf_event *event, u64 nr,
5108 5109
			       int nmi, struct perf_sample_data *data,
			       struct pt_regs *regs)
5110
{
5111
	struct hw_perf_event *hwc = &event->hw;
5112

5113
	local64_add(nr, &event->count);
5114

5115 5116 5117
	if (!regs)
		return;

5118
	if (!is_sampling_event(event))
5119
		return;
5120

5121 5122 5123
	if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
		return perf_swevent_overflow(event, 1, nmi, data, regs);

5124
	if (local64_add_negative(nr, &hwc->period_left))
5125
		return;
5126

5127
	perf_swevent_overflow(event, 0, nmi, data, regs);
5128 5129
}

5130 5131 5132
static int perf_exclude_event(struct perf_event *event,
			      struct pt_regs *regs)
{
P
Peter Zijlstra 已提交
5133
	if (event->hw.state & PERF_HES_STOPPED)
5134
		return 1;
P
Peter Zijlstra 已提交
5135

5136 5137 5138 5139 5140 5141 5142 5143 5144 5145 5146
	if (regs) {
		if (event->attr.exclude_user && user_mode(regs))
			return 1;

		if (event->attr.exclude_kernel && !user_mode(regs))
			return 1;
	}

	return 0;
}

5147
static int perf_swevent_match(struct perf_event *event,
P
Peter Zijlstra 已提交
5148
				enum perf_type_id type,
L
Li Zefan 已提交
5149 5150 5151
				u32 event_id,
				struct perf_sample_data *data,
				struct pt_regs *regs)
5152
{
5153
	if (event->attr.type != type)
5154
		return 0;
5155

5156
	if (event->attr.config != event_id)
5157 5158
		return 0;

5159 5160
	if (perf_exclude_event(event, regs))
		return 0;
5161 5162 5163 5164

	return 1;
}

5165 5166 5167 5168 5169 5170 5171
static inline u64 swevent_hash(u64 type, u32 event_id)
{
	u64 val = event_id | (type << 32);

	return hash_64(val, SWEVENT_HLIST_BITS);
}

5172 5173
static inline struct hlist_head *
__find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
5174
{
5175 5176 5177 5178
	u64 hash = swevent_hash(type, event_id);

	return &hlist->heads[hash];
}
5179

5180 5181
/* For the read side: events when they trigger */
static inline struct hlist_head *
5182
find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id)
5183 5184
{
	struct swevent_hlist *hlist;
5185

5186
	hlist = rcu_dereference(swhash->swevent_hlist);
5187 5188 5189
	if (!hlist)
		return NULL;

5190 5191 5192 5193 5194
	return __find_swevent_head(hlist, type, event_id);
}

/* For the event head insertion and removal in the hlist */
static inline struct hlist_head *
5195
find_swevent_head(struct swevent_htable *swhash, struct perf_event *event)
5196 5197 5198 5199 5200 5201 5202 5203 5204 5205
{
	struct swevent_hlist *hlist;
	u32 event_id = event->attr.config;
	u64 type = event->attr.type;

	/*
	 * Event scheduling is always serialized against hlist allocation
	 * and release. Which makes the protected version suitable here.
	 * The context lock guarantees that.
	 */
5206
	hlist = rcu_dereference_protected(swhash->swevent_hlist,
5207 5208 5209 5210 5211
					  lockdep_is_held(&event->ctx->lock));
	if (!hlist)
		return NULL;

	return __find_swevent_head(hlist, type, event_id);
5212 5213 5214 5215 5216 5217
}

static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
				    u64 nr, int nmi,
				    struct perf_sample_data *data,
				    struct pt_regs *regs)
5218
{
5219
	struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
5220
	struct perf_event *event;
5221 5222
	struct hlist_node *node;
	struct hlist_head *head;
5223

5224
	rcu_read_lock();
5225
	head = find_swevent_head_rcu(swhash, type, event_id);
5226 5227 5228 5229
	if (!head)
		goto end;

	hlist_for_each_entry_rcu(event, node, head, hlist_entry) {
L
Li Zefan 已提交
5230
		if (perf_swevent_match(event, type, event_id, data, regs))
P
Peter Zijlstra 已提交
5231
			perf_swevent_event(event, nr, nmi, data, regs);
5232
	}
5233 5234
end:
	rcu_read_unlock();
5235 5236
}

5237
int perf_swevent_get_recursion_context(void)
P
Peter Zijlstra 已提交
5238
{
5239
	struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
P
Peter Zijlstra 已提交
5240

5241
	return get_recursion_context(swhash->recursion);
P
Peter Zijlstra 已提交
5242
}
I
Ingo Molnar 已提交
5243
EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
P
Peter Zijlstra 已提交
5244

5245
inline void perf_swevent_put_recursion_context(int rctx)
5246
{
5247
	struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
5248

5249
	put_recursion_context(swhash->recursion, rctx);
5250
}
5251

5252
void __perf_sw_event(u32 event_id, u64 nr, int nmi,
5253
			    struct pt_regs *regs, u64 addr)
5254
{
5255
	struct perf_sample_data data;
5256 5257
	int rctx;

5258
	preempt_disable_notrace();
5259 5260 5261
	rctx = perf_swevent_get_recursion_context();
	if (rctx < 0)
		return;
5262

5263
	perf_sample_data_init(&data, addr);
5264

5265
	do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, nmi, &data, regs);
5266 5267

	perf_swevent_put_recursion_context(rctx);
5268
	preempt_enable_notrace();
5269 5270
}

5271
static void perf_swevent_read(struct perf_event *event)
5272 5273 5274
{
}

P
Peter Zijlstra 已提交
5275
static int perf_swevent_add(struct perf_event *event, int flags)
5276
{
5277
	struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
5278
	struct hw_perf_event *hwc = &event->hw;
5279 5280
	struct hlist_head *head;

5281
	if (is_sampling_event(event)) {
5282
		hwc->last_period = hwc->sample_period;
5283
		perf_swevent_set_period(event);
5284
	}
5285

P
Peter Zijlstra 已提交
5286 5287
	hwc->state = !(flags & PERF_EF_START);

5288
	head = find_swevent_head(swhash, event);
5289 5290 5291 5292 5293
	if (WARN_ON_ONCE(!head))
		return -EINVAL;

	hlist_add_head_rcu(&event->hlist_entry, head);

5294 5295 5296
	return 0;
}

P
Peter Zijlstra 已提交
5297
static void perf_swevent_del(struct perf_event *event, int flags)
5298
{
5299
	hlist_del_rcu(&event->hlist_entry);
5300 5301
}

P
Peter Zijlstra 已提交
5302
static void perf_swevent_start(struct perf_event *event, int flags)
5303
{
P
Peter Zijlstra 已提交
5304
	event->hw.state = 0;
5305
}
I
Ingo Molnar 已提交
5306

P
Peter Zijlstra 已提交
5307
static void perf_swevent_stop(struct perf_event *event, int flags)
5308
{
P
Peter Zijlstra 已提交
5309
	event->hw.state = PERF_HES_STOPPED;
5310 5311
}

5312 5313
/* Deref the hlist from the update side */
static inline struct swevent_hlist *
5314
swevent_hlist_deref(struct swevent_htable *swhash)
5315
{
5316 5317
	return rcu_dereference_protected(swhash->swevent_hlist,
					 lockdep_is_held(&swhash->hlist_mutex));
5318 5319
}

5320
static void swevent_hlist_release(struct swevent_htable *swhash)
5321
{
5322
	struct swevent_hlist *hlist = swevent_hlist_deref(swhash);
5323

5324
	if (!hlist)
5325 5326
		return;

5327
	rcu_assign_pointer(swhash->swevent_hlist, NULL);
5328
	kfree_rcu(hlist, rcu_head);
5329 5330 5331 5332
}

static void swevent_hlist_put_cpu(struct perf_event *event, int cpu)
{
5333
	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
5334

5335
	mutex_lock(&swhash->hlist_mutex);
5336

5337 5338
	if (!--swhash->hlist_refcount)
		swevent_hlist_release(swhash);
5339

5340
	mutex_unlock(&swhash->hlist_mutex);
5341 5342 5343 5344 5345 5346 5347 5348 5349 5350 5351 5352 5353 5354 5355 5356 5357
}

static void swevent_hlist_put(struct perf_event *event)
{
	int cpu;

	if (event->cpu != -1) {
		swevent_hlist_put_cpu(event, event->cpu);
		return;
	}

	for_each_possible_cpu(cpu)
		swevent_hlist_put_cpu(event, cpu);
}

static int swevent_hlist_get_cpu(struct perf_event *event, int cpu)
{
5358
	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
5359 5360
	int err = 0;

5361
	mutex_lock(&swhash->hlist_mutex);
5362

5363
	if (!swevent_hlist_deref(swhash) && cpu_online(cpu)) {
5364 5365 5366 5367 5368 5369 5370
		struct swevent_hlist *hlist;

		hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
		if (!hlist) {
			err = -ENOMEM;
			goto exit;
		}
5371
		rcu_assign_pointer(swhash->swevent_hlist, hlist);
5372
	}
5373
	swhash->hlist_refcount++;
P
Peter Zijlstra 已提交
5374
exit:
5375
	mutex_unlock(&swhash->hlist_mutex);
5376 5377 5378 5379 5380 5381 5382 5383 5384 5385 5386 5387 5388 5389 5390 5391 5392 5393 5394 5395 5396 5397 5398

	return err;
}

static int swevent_hlist_get(struct perf_event *event)
{
	int err;
	int cpu, failed_cpu;

	if (event->cpu != -1)
		return swevent_hlist_get_cpu(event, event->cpu);

	get_online_cpus();
	for_each_possible_cpu(cpu) {
		err = swevent_hlist_get_cpu(event, cpu);
		if (err) {
			failed_cpu = cpu;
			goto fail;
		}
	}
	put_online_cpus();

	return 0;
P
Peter Zijlstra 已提交
5399
fail:
5400 5401 5402 5403 5404 5405 5406 5407 5408 5409
	for_each_possible_cpu(cpu) {
		if (cpu == failed_cpu)
			break;
		swevent_hlist_put_cpu(event, cpu);
	}

	put_online_cpus();
	return err;
}

5410
struct jump_label_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
5411

5412 5413 5414
static void sw_perf_event_destroy(struct perf_event *event)
{
	u64 event_id = event->attr.config;
5415

5416 5417
	WARN_ON(event->parent);

P
Peter Zijlstra 已提交
5418
	jump_label_dec(&perf_swevent_enabled[event_id]);
5419 5420 5421 5422 5423 5424 5425 5426 5427 5428 5429 5430 5431 5432 5433 5434 5435 5436 5437
	swevent_hlist_put(event);
}

static int perf_swevent_init(struct perf_event *event)
{
	int event_id = event->attr.config;

	if (event->attr.type != PERF_TYPE_SOFTWARE)
		return -ENOENT;

	switch (event_id) {
	case PERF_COUNT_SW_CPU_CLOCK:
	case PERF_COUNT_SW_TASK_CLOCK:
		return -ENOENT;

	default:
		break;
	}

5438
	if (event_id >= PERF_COUNT_SW_MAX)
5439 5440 5441 5442 5443 5444 5445 5446 5447
		return -ENOENT;

	if (!event->parent) {
		int err;

		err = swevent_hlist_get(event);
		if (err)
			return err;

P
Peter Zijlstra 已提交
5448
		jump_label_inc(&perf_swevent_enabled[event_id]);
5449 5450 5451 5452 5453 5454 5455
		event->destroy = sw_perf_event_destroy;
	}

	return 0;
}

static struct pmu perf_swevent = {
5456
	.task_ctx_nr	= perf_sw_context,
5457

5458
	.event_init	= perf_swevent_init,
P
Peter Zijlstra 已提交
5459 5460 5461 5462
	.add		= perf_swevent_add,
	.del		= perf_swevent_del,
	.start		= perf_swevent_start,
	.stop		= perf_swevent_stop,
5463 5464 5465
	.read		= perf_swevent_read,
};

5466 5467
#ifdef CONFIG_EVENT_TRACING

5468 5469 5470 5471 5472 5473 5474 5475 5476 5477 5478 5479 5480 5481
static int perf_tp_filter_match(struct perf_event *event,
				struct perf_sample_data *data)
{
	void *record = data->raw->data;

	if (likely(!event->filter) || filter_match_preds(event->filter, record))
		return 1;
	return 0;
}

static int perf_tp_event_match(struct perf_event *event,
				struct perf_sample_data *data,
				struct pt_regs *regs)
{
5482 5483
	if (event->hw.state & PERF_HES_STOPPED)
		return 0;
5484 5485 5486 5487
	/*
	 * All tracepoints are from kernel-space.
	 */
	if (event->attr.exclude_kernel)
5488 5489 5490 5491 5492 5493 5494 5495 5496
		return 0;

	if (!perf_tp_filter_match(event, data))
		return 0;

	return 1;
}

void perf_tp_event(u64 addr, u64 count, void *record, int entry_size,
5497
		   struct pt_regs *regs, struct hlist_head *head, int rctx)
5498 5499
{
	struct perf_sample_data data;
5500 5501 5502
	struct perf_event *event;
	struct hlist_node *node;

5503 5504 5505 5506 5507 5508 5509 5510
	struct perf_raw_record raw = {
		.size = entry_size,
		.data = record,
	};

	perf_sample_data_init(&data, addr);
	data.raw = &raw;

5511 5512
	hlist_for_each_entry_rcu(event, node, head, hlist_entry) {
		if (perf_tp_event_match(event, &data, regs))
P
Peter Zijlstra 已提交
5513
			perf_swevent_event(event, count, 1, &data, regs);
5514
	}
5515 5516

	perf_swevent_put_recursion_context(rctx);
5517 5518 5519
}
EXPORT_SYMBOL_GPL(perf_tp_event);

5520
static void tp_perf_event_destroy(struct perf_event *event)
5521
{
5522
	perf_trace_destroy(event);
5523 5524
}

5525
static int perf_tp_event_init(struct perf_event *event)
5526
{
5527 5528
	int err;

5529 5530 5531
	if (event->attr.type != PERF_TYPE_TRACEPOINT)
		return -ENOENT;

5532 5533
	err = perf_trace_init(event);
	if (err)
5534
		return err;
5535

5536
	event->destroy = tp_perf_event_destroy;
5537

5538 5539 5540 5541
	return 0;
}

static struct pmu perf_tracepoint = {
5542 5543
	.task_ctx_nr	= perf_sw_context,

5544
	.event_init	= perf_tp_event_init,
P
Peter Zijlstra 已提交
5545 5546 5547 5548
	.add		= perf_trace_add,
	.del		= perf_trace_del,
	.start		= perf_swevent_start,
	.stop		= perf_swevent_stop,
5549 5550 5551 5552 5553
	.read		= perf_swevent_read,
};

static inline void perf_tp_register(void)
{
P
Peter Zijlstra 已提交
5554
	perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT);
5555
}
L
Li Zefan 已提交
5556 5557 5558 5559 5560 5561 5562 5563 5564 5565 5566 5567 5568 5569 5570 5571 5572 5573 5574 5575 5576 5577 5578 5579

static int perf_event_set_filter(struct perf_event *event, void __user *arg)
{
	char *filter_str;
	int ret;

	if (event->attr.type != PERF_TYPE_TRACEPOINT)
		return -EINVAL;

	filter_str = strndup_user(arg, PAGE_SIZE);
	if (IS_ERR(filter_str))
		return PTR_ERR(filter_str);

	ret = ftrace_profile_set_filter(event, event->attr.config, filter_str);

	kfree(filter_str);
	return ret;
}

static void perf_event_free_filter(struct perf_event *event)
{
	ftrace_profile_free_filter(event);
}

5580
#else
L
Li Zefan 已提交
5581

5582
static inline void perf_tp_register(void)
5583 5584
{
}
L
Li Zefan 已提交
5585 5586 5587 5588 5589 5590 5591 5592 5593 5594

static int perf_event_set_filter(struct perf_event *event, void __user *arg)
{
	return -ENOENT;
}

static void perf_event_free_filter(struct perf_event *event)
{
}

5595
#endif /* CONFIG_EVENT_TRACING */
5596

5597
#ifdef CONFIG_HAVE_HW_BREAKPOINT
5598
void perf_bp_event(struct perf_event *bp, void *data)
5599
{
5600 5601 5602
	struct perf_sample_data sample;
	struct pt_regs *regs = data;

5603
	perf_sample_data_init(&sample, bp->attr.bp_addr);
5604

P
Peter Zijlstra 已提交
5605 5606
	if (!bp->hw.state && !perf_exclude_event(bp, regs))
		perf_swevent_event(bp, 1, 1, &sample, regs);
5607 5608 5609
}
#endif

5610 5611 5612
/*
 * hrtimer based swevent callback
 */
5613

5614
static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
5615
{
5616 5617 5618 5619 5620
	enum hrtimer_restart ret = HRTIMER_RESTART;
	struct perf_sample_data data;
	struct pt_regs *regs;
	struct perf_event *event;
	u64 period;
5621

5622
	event = container_of(hrtimer, struct perf_event, hw.hrtimer);
P
Peter Zijlstra 已提交
5623 5624 5625 5626

	if (event->state != PERF_EVENT_STATE_ACTIVE)
		return HRTIMER_NORESTART;

5627
	event->pmu->read(event);
5628

5629 5630 5631 5632 5633 5634 5635 5636 5637
	perf_sample_data_init(&data, 0);
	data.period = event->hw.last_period;
	regs = get_irq_regs();

	if (regs && !perf_exclude_event(event, regs)) {
		if (!(event->attr.exclude_idle && current->pid == 0))
			if (perf_event_overflow(event, 0, &data, regs))
				ret = HRTIMER_NORESTART;
	}
5638

5639 5640
	period = max_t(u64, 10000, event->hw.sample_period);
	hrtimer_forward_now(hrtimer, ns_to_ktime(period));
5641

5642
	return ret;
5643 5644
}

5645
static void perf_swevent_start_hrtimer(struct perf_event *event)
5646
{
5647
	struct hw_perf_event *hwc = &event->hw;
5648 5649 5650 5651
	s64 period;

	if (!is_sampling_event(event))
		return;
5652

5653 5654 5655 5656
	period = local64_read(&hwc->period_left);
	if (period) {
		if (period < 0)
			period = 10000;
P
Peter Zijlstra 已提交
5657

5658 5659 5660 5661 5662
		local64_set(&hwc->period_left, 0);
	} else {
		period = max_t(u64, 10000, hwc->sample_period);
	}
	__hrtimer_start_range_ns(&hwc->hrtimer,
5663
				ns_to_ktime(period), 0,
5664
				HRTIMER_MODE_REL_PINNED, 0);
5665
}
5666 5667

static void perf_swevent_cancel_hrtimer(struct perf_event *event)
5668
{
5669 5670
	struct hw_perf_event *hwc = &event->hw;

5671
	if (is_sampling_event(event)) {
5672
		ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
P
Peter Zijlstra 已提交
5673
		local64_set(&hwc->period_left, ktime_to_ns(remaining));
5674 5675 5676

		hrtimer_cancel(&hwc->hrtimer);
	}
5677 5678
}

P
Peter Zijlstra 已提交
5679 5680 5681 5682 5683 5684 5685 5686 5687 5688 5689 5690 5691 5692 5693 5694 5695 5696 5697 5698 5699 5700 5701 5702
static void perf_swevent_init_hrtimer(struct perf_event *event)
{
	struct hw_perf_event *hwc = &event->hw;

	if (!is_sampling_event(event))
		return;

	hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
	hwc->hrtimer.function = perf_swevent_hrtimer;

	/*
	 * Since hrtimers have a fixed rate, we can do a static freq->period
	 * mapping and avoid the whole period adjust feedback stuff.
	 */
	if (event->attr.freq) {
		long freq = event->attr.sample_freq;

		event->attr.sample_period = NSEC_PER_SEC / freq;
		hwc->sample_period = event->attr.sample_period;
		local64_set(&hwc->period_left, hwc->sample_period);
		event->attr.freq = 0;
	}
}

5703 5704 5705 5706 5707
/*
 * Software event: cpu wall time clock
 */

static void cpu_clock_event_update(struct perf_event *event)
5708
{
5709 5710 5711
	s64 prev;
	u64 now;

P
Peter Zijlstra 已提交
5712
	now = local_clock();
5713 5714
	prev = local64_xchg(&event->hw.prev_count, now);
	local64_add(now - prev, &event->count);
5715 5716
}

P
Peter Zijlstra 已提交
5717
static void cpu_clock_event_start(struct perf_event *event, int flags)
5718
{
P
Peter Zijlstra 已提交
5719
	local64_set(&event->hw.prev_count, local_clock());
5720 5721 5722
	perf_swevent_start_hrtimer(event);
}

P
Peter Zijlstra 已提交
5723
static void cpu_clock_event_stop(struct perf_event *event, int flags)
5724
{
5725 5726 5727
	perf_swevent_cancel_hrtimer(event);
	cpu_clock_event_update(event);
}
5728

P
Peter Zijlstra 已提交
5729 5730 5731 5732 5733 5734 5735 5736 5737 5738 5739 5740 5741
static int cpu_clock_event_add(struct perf_event *event, int flags)
{
	if (flags & PERF_EF_START)
		cpu_clock_event_start(event, flags);

	return 0;
}

static void cpu_clock_event_del(struct perf_event *event, int flags)
{
	cpu_clock_event_stop(event, flags);
}

5742 5743 5744 5745
static void cpu_clock_event_read(struct perf_event *event)
{
	cpu_clock_event_update(event);
}
5746

5747 5748 5749 5750 5751 5752 5753 5754
static int cpu_clock_event_init(struct perf_event *event)
{
	if (event->attr.type != PERF_TYPE_SOFTWARE)
		return -ENOENT;

	if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK)
		return -ENOENT;

P
Peter Zijlstra 已提交
5755 5756
	perf_swevent_init_hrtimer(event);

5757
	return 0;
5758 5759
}

5760
static struct pmu perf_cpu_clock = {
5761 5762
	.task_ctx_nr	= perf_sw_context,

5763
	.event_init	= cpu_clock_event_init,
P
Peter Zijlstra 已提交
5764 5765 5766 5767
	.add		= cpu_clock_event_add,
	.del		= cpu_clock_event_del,
	.start		= cpu_clock_event_start,
	.stop		= cpu_clock_event_stop,
5768 5769 5770 5771 5772 5773 5774 5775
	.read		= cpu_clock_event_read,
};

/*
 * Software event: task time clock
 */

static void task_clock_event_update(struct perf_event *event, u64 now)
5776
{
5777 5778
	u64 prev;
	s64 delta;
5779

5780 5781 5782 5783
	prev = local64_xchg(&event->hw.prev_count, now);
	delta = now - prev;
	local64_add(delta, &event->count);
}
5784

P
Peter Zijlstra 已提交
5785
static void task_clock_event_start(struct perf_event *event, int flags)
5786
{
P
Peter Zijlstra 已提交
5787
	local64_set(&event->hw.prev_count, event->ctx->time);
5788 5789 5790
	perf_swevent_start_hrtimer(event);
}

P
Peter Zijlstra 已提交
5791
static void task_clock_event_stop(struct perf_event *event, int flags)
5792 5793 5794
{
	perf_swevent_cancel_hrtimer(event);
	task_clock_event_update(event, event->ctx->time);
P
Peter Zijlstra 已提交
5795 5796 5797 5798 5799 5800
}

static int task_clock_event_add(struct perf_event *event, int flags)
{
	if (flags & PERF_EF_START)
		task_clock_event_start(event, flags);
5801

P
Peter Zijlstra 已提交
5802 5803 5804 5805 5806 5807
	return 0;
}

static void task_clock_event_del(struct perf_event *event, int flags)
{
	task_clock_event_stop(event, PERF_EF_UPDATE);
5808 5809 5810 5811
}

static void task_clock_event_read(struct perf_event *event)
{
5812 5813 5814
	u64 now = perf_clock();
	u64 delta = now - event->ctx->timestamp;
	u64 time = event->ctx->time + delta;
5815 5816 5817 5818 5819

	task_clock_event_update(event, time);
}

static int task_clock_event_init(struct perf_event *event)
L
Li Zefan 已提交
5820
{
5821 5822 5823 5824 5825 5826
	if (event->attr.type != PERF_TYPE_SOFTWARE)
		return -ENOENT;

	if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK)
		return -ENOENT;

P
Peter Zijlstra 已提交
5827 5828
	perf_swevent_init_hrtimer(event);

5829
	return 0;
L
Li Zefan 已提交
5830 5831
}

5832
static struct pmu perf_task_clock = {
5833 5834
	.task_ctx_nr	= perf_sw_context,

5835
	.event_init	= task_clock_event_init,
P
Peter Zijlstra 已提交
5836 5837 5838 5839
	.add		= task_clock_event_add,
	.del		= task_clock_event_del,
	.start		= task_clock_event_start,
	.stop		= task_clock_event_stop,
5840 5841
	.read		= task_clock_event_read,
};
L
Li Zefan 已提交
5842

P
Peter Zijlstra 已提交
5843
static void perf_pmu_nop_void(struct pmu *pmu)
5844 5845
{
}
L
Li Zefan 已提交
5846

P
Peter Zijlstra 已提交
5847
static int perf_pmu_nop_int(struct pmu *pmu)
L
Li Zefan 已提交
5848
{
P
Peter Zijlstra 已提交
5849
	return 0;
L
Li Zefan 已提交
5850 5851
}

P
Peter Zijlstra 已提交
5852
static void perf_pmu_start_txn(struct pmu *pmu)
L
Li Zefan 已提交
5853
{
P
Peter Zijlstra 已提交
5854
	perf_pmu_disable(pmu);
L
Li Zefan 已提交
5855 5856
}

P
Peter Zijlstra 已提交
5857 5858 5859 5860 5861
static int perf_pmu_commit_txn(struct pmu *pmu)
{
	perf_pmu_enable(pmu);
	return 0;
}
5862

P
Peter Zijlstra 已提交
5863
static void perf_pmu_cancel_txn(struct pmu *pmu)
5864
{
P
Peter Zijlstra 已提交
5865
	perf_pmu_enable(pmu);
5866 5867
}

P
Peter Zijlstra 已提交
5868 5869 5870 5871 5872
/*
 * Ensures all contexts with the same task_ctx_nr have the same
 * pmu_cpu_context too.
 */
static void *find_pmu_context(int ctxn)
5873
{
P
Peter Zijlstra 已提交
5874
	struct pmu *pmu;
5875

P
Peter Zijlstra 已提交
5876 5877
	if (ctxn < 0)
		return NULL;
5878

P
Peter Zijlstra 已提交
5879 5880 5881 5882
	list_for_each_entry(pmu, &pmus, entry) {
		if (pmu->task_ctx_nr == ctxn)
			return pmu->pmu_cpu_context;
	}
5883

P
Peter Zijlstra 已提交
5884
	return NULL;
5885 5886
}

5887
static void update_pmu_context(struct pmu *pmu, struct pmu *old_pmu)
5888
{
5889 5890 5891 5892 5893 5894 5895 5896 5897 5898 5899 5900 5901 5902 5903
	int cpu;

	for_each_possible_cpu(cpu) {
		struct perf_cpu_context *cpuctx;

		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);

		if (cpuctx->active_pmu == old_pmu)
			cpuctx->active_pmu = pmu;
	}
}

static void free_pmu_context(struct pmu *pmu)
{
	struct pmu *i;
5904

P
Peter Zijlstra 已提交
5905
	mutex_lock(&pmus_lock);
5906
	/*
P
Peter Zijlstra 已提交
5907
	 * Like a real lame refcount.
5908
	 */
5909 5910 5911
	list_for_each_entry(i, &pmus, entry) {
		if (i->pmu_cpu_context == pmu->pmu_cpu_context) {
			update_pmu_context(i, pmu);
P
Peter Zijlstra 已提交
5912
			goto out;
5913
		}
P
Peter Zijlstra 已提交
5914
	}
5915

5916
	free_percpu(pmu->pmu_cpu_context);
P
Peter Zijlstra 已提交
5917 5918
out:
	mutex_unlock(&pmus_lock);
5919
}
P
Peter Zijlstra 已提交
5920
static struct idr pmu_idr;
5921

P
Peter Zijlstra 已提交
5922 5923 5924 5925 5926 5927 5928 5929 5930 5931 5932 5933 5934 5935 5936 5937 5938 5939 5940 5941 5942 5943 5944 5945 5946 5947 5948 5949 5950 5951 5952 5953 5954 5955 5956 5957 5958 5959 5960 5961 5962 5963 5964 5965 5966 5967 5968 5969 5970 5971 5972 5973
static ssize_t
type_show(struct device *dev, struct device_attribute *attr, char *page)
{
	struct pmu *pmu = dev_get_drvdata(dev);

	return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->type);
}

static struct device_attribute pmu_dev_attrs[] = {
       __ATTR_RO(type),
       __ATTR_NULL,
};

static int pmu_bus_running;
static struct bus_type pmu_bus = {
	.name		= "event_source",
	.dev_attrs	= pmu_dev_attrs,
};

static void pmu_dev_release(struct device *dev)
{
	kfree(dev);
}

static int pmu_dev_alloc(struct pmu *pmu)
{
	int ret = -ENOMEM;

	pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL);
	if (!pmu->dev)
		goto out;

	device_initialize(pmu->dev);
	ret = dev_set_name(pmu->dev, "%s", pmu->name);
	if (ret)
		goto free_dev;

	dev_set_drvdata(pmu->dev, pmu);
	pmu->dev->bus = &pmu_bus;
	pmu->dev->release = pmu_dev_release;
	ret = device_add(pmu->dev);
	if (ret)
		goto free_dev;

out:
	return ret;

free_dev:
	put_device(pmu->dev);
	goto out;
}

5974
static struct lock_class_key cpuctx_mutex;
5975
static struct lock_class_key cpuctx_lock;
5976

P
Peter Zijlstra 已提交
5977
int perf_pmu_register(struct pmu *pmu, char *name, int type)
5978
{
P
Peter Zijlstra 已提交
5979
	int cpu, ret;
5980

5981
	mutex_lock(&pmus_lock);
P
Peter Zijlstra 已提交
5982 5983 5984 5985
	ret = -ENOMEM;
	pmu->pmu_disable_count = alloc_percpu(int);
	if (!pmu->pmu_disable_count)
		goto unlock;
5986

P
Peter Zijlstra 已提交
5987 5988 5989 5990 5991 5992 5993 5994 5995 5996 5997 5998 5999 6000 6001 6002 6003 6004
	pmu->type = -1;
	if (!name)
		goto skip_type;
	pmu->name = name;

	if (type < 0) {
		int err = idr_pre_get(&pmu_idr, GFP_KERNEL);
		if (!err)
			goto free_pdc;

		err = idr_get_new_above(&pmu_idr, pmu, PERF_TYPE_MAX, &type);
		if (err) {
			ret = err;
			goto free_pdc;
		}
	}
	pmu->type = type;

P
Peter Zijlstra 已提交
6005 6006 6007 6008 6009 6010
	if (pmu_bus_running) {
		ret = pmu_dev_alloc(pmu);
		if (ret)
			goto free_idr;
	}

P
Peter Zijlstra 已提交
6011
skip_type:
P
Peter Zijlstra 已提交
6012 6013 6014
	pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr);
	if (pmu->pmu_cpu_context)
		goto got_cpu_context;
6015

P
Peter Zijlstra 已提交
6016 6017
	pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context);
	if (!pmu->pmu_cpu_context)
P
Peter Zijlstra 已提交
6018
		goto free_dev;
6019

P
Peter Zijlstra 已提交
6020 6021 6022 6023
	for_each_possible_cpu(cpu) {
		struct perf_cpu_context *cpuctx;

		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
6024
		__perf_event_init_context(&cpuctx->ctx);
6025
		lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex);
6026
		lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock);
6027
		cpuctx->ctx.type = cpu_context;
P
Peter Zijlstra 已提交
6028
		cpuctx->ctx.pmu = pmu;
6029 6030
		cpuctx->jiffies_interval = 1;
		INIT_LIST_HEAD(&cpuctx->rotation_list);
6031
		cpuctx->active_pmu = pmu;
P
Peter Zijlstra 已提交
6032
	}
6033

P
Peter Zijlstra 已提交
6034
got_cpu_context:
P
Peter Zijlstra 已提交
6035 6036 6037 6038 6039 6040 6041 6042 6043 6044 6045 6046 6047 6048
	if (!pmu->start_txn) {
		if (pmu->pmu_enable) {
			/*
			 * If we have pmu_enable/pmu_disable calls, install
			 * transaction stubs that use that to try and batch
			 * hardware accesses.
			 */
			pmu->start_txn  = perf_pmu_start_txn;
			pmu->commit_txn = perf_pmu_commit_txn;
			pmu->cancel_txn = perf_pmu_cancel_txn;
		} else {
			pmu->start_txn  = perf_pmu_nop_void;
			pmu->commit_txn = perf_pmu_nop_int;
			pmu->cancel_txn = perf_pmu_nop_void;
6049
		}
6050
	}
6051

P
Peter Zijlstra 已提交
6052 6053 6054 6055 6056
	if (!pmu->pmu_enable) {
		pmu->pmu_enable  = perf_pmu_nop_void;
		pmu->pmu_disable = perf_pmu_nop_void;
	}

6057
	list_add_rcu(&pmu->entry, &pmus);
P
Peter Zijlstra 已提交
6058 6059
	ret = 0;
unlock:
6060 6061
	mutex_unlock(&pmus_lock);

P
Peter Zijlstra 已提交
6062
	return ret;
P
Peter Zijlstra 已提交
6063

P
Peter Zijlstra 已提交
6064 6065 6066 6067
free_dev:
	device_del(pmu->dev);
	put_device(pmu->dev);

P
Peter Zijlstra 已提交
6068 6069 6070 6071
free_idr:
	if (pmu->type >= PERF_TYPE_MAX)
		idr_remove(&pmu_idr, pmu->type);

P
Peter Zijlstra 已提交
6072 6073 6074
free_pdc:
	free_percpu(pmu->pmu_disable_count);
	goto unlock;
6075 6076
}

6077
void perf_pmu_unregister(struct pmu *pmu)
6078
{
6079 6080 6081
	mutex_lock(&pmus_lock);
	list_del_rcu(&pmu->entry);
	mutex_unlock(&pmus_lock);
6082

6083
	/*
P
Peter Zijlstra 已提交
6084 6085
	 * We dereference the pmu list under both SRCU and regular RCU, so
	 * synchronize against both of those.
6086
	 */
6087
	synchronize_srcu(&pmus_srcu);
P
Peter Zijlstra 已提交
6088
	synchronize_rcu();
6089

P
Peter Zijlstra 已提交
6090
	free_percpu(pmu->pmu_disable_count);
P
Peter Zijlstra 已提交
6091 6092
	if (pmu->type >= PERF_TYPE_MAX)
		idr_remove(&pmu_idr, pmu->type);
P
Peter Zijlstra 已提交
6093 6094
	device_del(pmu->dev);
	put_device(pmu->dev);
6095
	free_pmu_context(pmu);
6096
}
6097

6098 6099 6100 6101
struct pmu *perf_init_event(struct perf_event *event)
{
	struct pmu *pmu = NULL;
	int idx;
6102
	int ret;
6103 6104

	idx = srcu_read_lock(&pmus_srcu);
P
Peter Zijlstra 已提交
6105 6106 6107 6108

	rcu_read_lock();
	pmu = idr_find(&pmu_idr, event->attr.type);
	rcu_read_unlock();
6109 6110 6111 6112
	if (pmu) {
		ret = pmu->event_init(event);
		if (ret)
			pmu = ERR_PTR(ret);
P
Peter Zijlstra 已提交
6113
		goto unlock;
6114
	}
P
Peter Zijlstra 已提交
6115

6116
	list_for_each_entry_rcu(pmu, &pmus, entry) {
6117
		ret = pmu->event_init(event);
6118
		if (!ret)
P
Peter Zijlstra 已提交
6119
			goto unlock;
6120

6121 6122
		if (ret != -ENOENT) {
			pmu = ERR_PTR(ret);
P
Peter Zijlstra 已提交
6123
			goto unlock;
6124
		}
6125
	}
P
Peter Zijlstra 已提交
6126 6127
	pmu = ERR_PTR(-ENOENT);
unlock:
6128
	srcu_read_unlock(&pmus_srcu, idx);
6129

6130
	return pmu;
6131 6132
}

T
Thomas Gleixner 已提交
6133
/*
6134
 * Allocate and initialize a event structure
T
Thomas Gleixner 已提交
6135
 */
6136
static struct perf_event *
6137
perf_event_alloc(struct perf_event_attr *attr, int cpu,
6138 6139 6140 6141
		 struct task_struct *task,
		 struct perf_event *group_leader,
		 struct perf_event *parent_event,
		 perf_overflow_handler_t overflow_handler)
T
Thomas Gleixner 已提交
6142
{
P
Peter Zijlstra 已提交
6143
	struct pmu *pmu;
6144 6145
	struct perf_event *event;
	struct hw_perf_event *hwc;
6146
	long err;
T
Thomas Gleixner 已提交
6147

6148 6149 6150 6151 6152
	if ((unsigned)cpu >= nr_cpu_ids) {
		if (!task || cpu != -1)
			return ERR_PTR(-EINVAL);
	}

6153
	event = kzalloc(sizeof(*event), GFP_KERNEL);
6154
	if (!event)
6155
		return ERR_PTR(-ENOMEM);
T
Thomas Gleixner 已提交
6156

6157
	/*
6158
	 * Single events are their own group leaders, with an
6159 6160 6161
	 * empty sibling list:
	 */
	if (!group_leader)
6162
		group_leader = event;
6163

6164 6165
	mutex_init(&event->child_mutex);
	INIT_LIST_HEAD(&event->child_list);
6166

6167 6168 6169 6170
	INIT_LIST_HEAD(&event->group_entry);
	INIT_LIST_HEAD(&event->event_entry);
	INIT_LIST_HEAD(&event->sibling_list);
	init_waitqueue_head(&event->waitq);
6171
	init_irq_work(&event->pending, perf_pending_event);
T
Thomas Gleixner 已提交
6172

6173
	mutex_init(&event->mmap_mutex);
6174

6175 6176 6177 6178 6179
	event->cpu		= cpu;
	event->attr		= *attr;
	event->group_leader	= group_leader;
	event->pmu		= NULL;
	event->oncpu		= -1;
6180

6181
	event->parent		= parent_event;
6182

6183 6184
	event->ns		= get_pid_ns(current->nsproxy->pid_ns);
	event->id		= atomic64_inc_return(&perf_event_id);
6185

6186
	event->state		= PERF_EVENT_STATE_INACTIVE;
6187

6188 6189 6190 6191 6192 6193 6194 6195 6196 6197 6198
	if (task) {
		event->attach_state = PERF_ATTACH_TASK;
#ifdef CONFIG_HAVE_HW_BREAKPOINT
		/*
		 * hw_breakpoint is a bit difficult here..
		 */
		if (attr->type == PERF_TYPE_BREAKPOINT)
			event->hw.bp_target = task;
#endif
	}

6199 6200
	if (!overflow_handler && parent_event)
		overflow_handler = parent_event->overflow_handler;
6201

6202
	event->overflow_handler	= overflow_handler;
6203

6204
	if (attr->disabled)
6205
		event->state = PERF_EVENT_STATE_OFF;
6206

6207
	pmu = NULL;
6208

6209
	hwc = &event->hw;
6210
	hwc->sample_period = attr->sample_period;
6211
	if (attr->freq && attr->sample_freq)
6212
		hwc->sample_period = 1;
6213
	hwc->last_period = hwc->sample_period;
6214

6215
	local64_set(&hwc->period_left, hwc->sample_period);
6216

6217
	/*
6218
	 * we currently do not support PERF_FORMAT_GROUP on inherited events
6219
	 */
6220
	if (attr->inherit && (attr->read_format & PERF_FORMAT_GROUP))
6221 6222
		goto done;

6223
	pmu = perf_init_event(event);
6224

6225 6226
done:
	err = 0;
6227
	if (!pmu)
6228
		err = -EINVAL;
6229 6230
	else if (IS_ERR(pmu))
		err = PTR_ERR(pmu);
6231

6232
	if (err) {
6233 6234 6235
		if (event->ns)
			put_pid_ns(event->ns);
		kfree(event);
6236
		return ERR_PTR(err);
I
Ingo Molnar 已提交
6237
	}
6238

6239
	event->pmu = pmu;
T
Thomas Gleixner 已提交
6240

6241
	if (!event->parent) {
6242
		if (event->attach_state & PERF_ATTACH_TASK)
S
Stephane Eranian 已提交
6243
			jump_label_inc(&perf_sched_events);
6244
		if (event->attr.mmap || event->attr.mmap_data)
6245 6246 6247 6248 6249
			atomic_inc(&nr_mmap_events);
		if (event->attr.comm)
			atomic_inc(&nr_comm_events);
		if (event->attr.task)
			atomic_inc(&nr_task_events);
6250 6251 6252 6253 6254 6255 6256
		if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) {
			err = get_callchain_buffers();
			if (err) {
				free_event(event);
				return ERR_PTR(err);
			}
		}
6257
	}
6258

6259
	return event;
T
Thomas Gleixner 已提交
6260 6261
}

6262 6263
static int perf_copy_attr(struct perf_event_attr __user *uattr,
			  struct perf_event_attr *attr)
6264 6265
{
	u32 size;
6266
	int ret;
6267 6268 6269 6270 6271 6272 6273 6274 6275 6276 6277 6278 6279 6280 6281 6282 6283 6284 6285 6286 6287 6288 6289 6290

	if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0))
		return -EFAULT;

	/*
	 * zero the full structure, so that a short copy will be nice.
	 */
	memset(attr, 0, sizeof(*attr));

	ret = get_user(size, &uattr->size);
	if (ret)
		return ret;

	if (size > PAGE_SIZE)	/* silly large */
		goto err_size;

	if (!size)		/* abi compat */
		size = PERF_ATTR_SIZE_VER0;

	if (size < PERF_ATTR_SIZE_VER0)
		goto err_size;

	/*
	 * If we're handed a bigger struct than we know of,
6291 6292 6293
	 * ensure all the unknown bits are 0 - i.e. new
	 * user-space does not rely on any kernel feature
	 * extensions we dont know about yet.
6294 6295
	 */
	if (size > sizeof(*attr)) {
6296 6297 6298
		unsigned char __user *addr;
		unsigned char __user *end;
		unsigned char val;
6299

6300 6301
		addr = (void __user *)uattr + sizeof(*attr);
		end  = (void __user *)uattr + size;
6302

6303
		for (; addr < end; addr++) {
6304 6305 6306 6307 6308 6309
			ret = get_user(val, addr);
			if (ret)
				return ret;
			if (val)
				goto err_size;
		}
6310
		size = sizeof(*attr);
6311 6312 6313 6314 6315 6316 6317 6318 6319 6320 6321 6322 6323
	}

	ret = copy_from_user(attr, uattr, size);
	if (ret)
		return -EFAULT;

	/*
	 * If the type exists, the corresponding creation will verify
	 * the attr->config.
	 */
	if (attr->type >= PERF_TYPE_MAX)
		return -EINVAL;

6324
	if (attr->__reserved_1)
6325 6326 6327 6328 6329 6330 6331 6332 6333 6334 6335 6336 6337 6338 6339 6340 6341
		return -EINVAL;

	if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
		return -EINVAL;

	if (attr->read_format & ~(PERF_FORMAT_MAX-1))
		return -EINVAL;

out:
	return ret;

err_size:
	put_user(sizeof(*attr), &uattr->size);
	ret = -E2BIG;
	goto out;
}

6342 6343
static int
perf_event_set_output(struct perf_event *event, struct perf_event *output_event)
6344
{
6345
	struct perf_buffer *buffer = NULL, *old_buffer = NULL;
6346 6347
	int ret = -EINVAL;

6348
	if (!output_event)
6349 6350
		goto set;

6351 6352
	/* don't allow circular references */
	if (event == output_event)
6353 6354
		goto out;

6355 6356 6357 6358 6359 6360 6361 6362 6363 6364 6365 6366
	/*
	 * Don't allow cross-cpu buffers
	 */
	if (output_event->cpu != event->cpu)
		goto out;

	/*
	 * If its not a per-cpu buffer, it must be the same task.
	 */
	if (output_event->cpu == -1 && output_event->ctx != event->ctx)
		goto out;

6367
set:
6368
	mutex_lock(&event->mmap_mutex);
6369 6370 6371
	/* Can't redirect output if we've got an active mmap() */
	if (atomic_read(&event->mmap_count))
		goto unlock;
6372

6373 6374
	if (output_event) {
		/* get the buffer we want to redirect to */
6375 6376
		buffer = perf_buffer_get(output_event);
		if (!buffer)
6377
			goto unlock;
6378 6379
	}

6380 6381
	old_buffer = event->buffer;
	rcu_assign_pointer(event->buffer, buffer);
6382
	ret = 0;
6383 6384 6385
unlock:
	mutex_unlock(&event->mmap_mutex);

6386 6387
	if (old_buffer)
		perf_buffer_put(old_buffer);
6388 6389 6390 6391
out:
	return ret;
}

T
Thomas Gleixner 已提交
6392
/**
6393
 * sys_perf_event_open - open a performance event, associate it to a task/cpu
I
Ingo Molnar 已提交
6394
 *
6395
 * @attr_uptr:	event_id type attributes for monitoring/sampling
T
Thomas Gleixner 已提交
6396
 * @pid:		target pid
I
Ingo Molnar 已提交
6397
 * @cpu:		target cpu
6398
 * @group_fd:		group leader event fd
T
Thomas Gleixner 已提交
6399
 */
6400 6401
SYSCALL_DEFINE5(perf_event_open,
		struct perf_event_attr __user *, attr_uptr,
6402
		pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
T
Thomas Gleixner 已提交
6403
{
6404 6405
	struct perf_event *group_leader = NULL, *output_event = NULL;
	struct perf_event *event, *sibling;
6406 6407 6408
	struct perf_event_attr attr;
	struct perf_event_context *ctx;
	struct file *event_file = NULL;
6409
	struct file *group_file = NULL;
M
Matt Helsley 已提交
6410
	struct task_struct *task = NULL;
6411
	struct pmu *pmu;
6412
	int event_fd;
6413
	int move_group = 0;
6414
	int fput_needed = 0;
6415
	int err;
T
Thomas Gleixner 已提交
6416

6417
	/* for future expandability... */
S
Stephane Eranian 已提交
6418
	if (flags & ~PERF_FLAG_ALL)
6419 6420
		return -EINVAL;

6421 6422 6423
	err = perf_copy_attr(attr_uptr, &attr);
	if (err)
		return err;
6424

6425 6426 6427 6428 6429
	if (!attr.exclude_kernel) {
		if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
			return -EACCES;
	}

6430
	if (attr.freq) {
6431
		if (attr.sample_freq > sysctl_perf_event_sample_rate)
6432 6433 6434
			return -EINVAL;
	}

S
Stephane Eranian 已提交
6435 6436 6437 6438 6439 6440 6441 6442 6443
	/*
	 * In cgroup mode, the pid argument is used to pass the fd
	 * opened to the cgroup directory in cgroupfs. The cpu argument
	 * designates the cpu on which to monitor threads from that
	 * cgroup.
	 */
	if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1))
		return -EINVAL;

6444 6445 6446 6447
	event_fd = get_unused_fd_flags(O_RDWR);
	if (event_fd < 0)
		return event_fd;

6448 6449 6450 6451
	if (group_fd != -1) {
		group_leader = perf_fget_light(group_fd, &fput_needed);
		if (IS_ERR(group_leader)) {
			err = PTR_ERR(group_leader);
6452
			goto err_fd;
6453 6454 6455 6456 6457 6458 6459 6460
		}
		group_file = group_leader->filp;
		if (flags & PERF_FLAG_FD_OUTPUT)
			output_event = group_leader;
		if (flags & PERF_FLAG_FD_NO_GROUP)
			group_leader = NULL;
	}

S
Stephane Eranian 已提交
6461
	if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) {
6462 6463 6464 6465 6466 6467 6468
		task = find_lively_task_by_vpid(pid);
		if (IS_ERR(task)) {
			err = PTR_ERR(task);
			goto err_group_fd;
		}
	}

6469
	event = perf_event_alloc(&attr, cpu, task, group_leader, NULL, NULL);
6470 6471
	if (IS_ERR(event)) {
		err = PTR_ERR(event);
6472
		goto err_task;
6473 6474
	}

S
Stephane Eranian 已提交
6475 6476 6477 6478
	if (flags & PERF_FLAG_PID_CGROUP) {
		err = perf_cgroup_connect(pid, event, &attr, group_leader);
		if (err)
			goto err_alloc;
6479 6480 6481 6482 6483 6484 6485
		/*
		 * one more event:
		 * - that has cgroup constraint on event->cpu
		 * - that may need work on context switch
		 */
		atomic_inc(&per_cpu(perf_cgroup_events, event->cpu));
		jump_label_inc(&perf_sched_events);
S
Stephane Eranian 已提交
6486 6487
	}

6488 6489 6490 6491 6492
	/*
	 * Special case software events and allow them to be part of
	 * any hardware group.
	 */
	pmu = event->pmu;
6493 6494 6495 6496 6497 6498 6499 6500 6501 6502 6503 6504 6505 6506 6507 6508 6509 6510 6511 6512 6513 6514 6515

	if (group_leader &&
	    (is_software_event(event) != is_software_event(group_leader))) {
		if (is_software_event(event)) {
			/*
			 * If event and group_leader are not both a software
			 * event, and event is, then group leader is not.
			 *
			 * Allow the addition of software events to !software
			 * groups, this is safe because software events never
			 * fail to schedule.
			 */
			pmu = group_leader->pmu;
		} else if (is_software_event(group_leader) &&
			   (group_leader->group_flags & PERF_GROUP_SOFTWARE)) {
			/*
			 * In case the group is a pure software group, and we
			 * try to add a hardware event, move the whole group to
			 * the hardware context.
			 */
			move_group = 1;
		}
	}
6516 6517 6518 6519

	/*
	 * Get the target context (task or percpu):
	 */
M
Matt Helsley 已提交
6520
	ctx = find_get_context(pmu, task, cpu);
6521 6522
	if (IS_ERR(ctx)) {
		err = PTR_ERR(ctx);
6523
		goto err_alloc;
6524 6525
	}

6526 6527 6528 6529 6530
	if (task) {
		put_task_struct(task);
		task = NULL;
	}

I
Ingo Molnar 已提交
6531
	/*
6532
	 * Look up the group leader (we will attach this event to it):
6533
	 */
6534
	if (group_leader) {
6535
		err = -EINVAL;
6536 6537

		/*
I
Ingo Molnar 已提交
6538 6539 6540 6541
		 * Do not allow a recursive hierarchy (this new sibling
		 * becoming part of another group-sibling):
		 */
		if (group_leader->group_leader != group_leader)
6542
			goto err_context;
I
Ingo Molnar 已提交
6543 6544 6545
		/*
		 * Do not allow to attach to a group in a different
		 * task or CPU context:
6546
		 */
6547 6548 6549 6550 6551 6552 6553 6554
		if (move_group) {
			if (group_leader->ctx->type != ctx->type)
				goto err_context;
		} else {
			if (group_leader->ctx != ctx)
				goto err_context;
		}

6555 6556 6557
		/*
		 * Only a group leader can be exclusive or pinned
		 */
6558
		if (attr.exclusive || attr.pinned)
6559
			goto err_context;
6560 6561 6562 6563 6564
	}

	if (output_event) {
		err = perf_event_set_output(event, output_event);
		if (err)
6565
			goto err_context;
6566
	}
T
Thomas Gleixner 已提交
6567

6568 6569 6570
	event_file = anon_inode_getfile("[perf_event]", &perf_fops, event, O_RDWR);
	if (IS_ERR(event_file)) {
		err = PTR_ERR(event_file);
6571
		goto err_context;
6572
	}
6573

6574 6575 6576 6577
	if (move_group) {
		struct perf_event_context *gctx = group_leader->ctx;

		mutex_lock(&gctx->mutex);
6578
		perf_remove_from_context(group_leader);
6579 6580
		list_for_each_entry(sibling, &group_leader->sibling_list,
				    group_entry) {
6581
			perf_remove_from_context(sibling);
6582 6583 6584 6585
			put_ctx(gctx);
		}
		mutex_unlock(&gctx->mutex);
		put_ctx(gctx);
6586
	}
6587

6588
	event->filp = event_file;
6589
	WARN_ON_ONCE(ctx->parent_ctx);
6590
	mutex_lock(&ctx->mutex);
6591 6592 6593 6594 6595 6596 6597 6598 6599 6600 6601

	if (move_group) {
		perf_install_in_context(ctx, group_leader, cpu);
		get_ctx(ctx);
		list_for_each_entry(sibling, &group_leader->sibling_list,
				    group_entry) {
			perf_install_in_context(ctx, sibling, cpu);
			get_ctx(ctx);
		}
	}

6602
	perf_install_in_context(ctx, event, cpu);
6603
	++ctx->generation;
6604
	perf_unpin_context(ctx);
6605
	mutex_unlock(&ctx->mutex);
6606

6607
	event->owner = current;
P
Peter Zijlstra 已提交
6608

6609 6610 6611
	mutex_lock(&current->perf_event_mutex);
	list_add_tail(&event->owner_entry, &current->perf_event_list);
	mutex_unlock(&current->perf_event_mutex);
6612

6613 6614 6615 6616
	/*
	 * Precalculate sample_data sizes
	 */
	perf_event__header_size(event);
6617
	perf_event__id_header_size(event);
6618

6619 6620 6621 6622 6623 6624
	/*
	 * Drop the reference on the group_event after placing the
	 * new event on the sibling_list. This ensures destruction
	 * of the group leader will find the pointer to itself in
	 * perf_group_detach().
	 */
6625 6626 6627
	fput_light(group_file, fput_needed);
	fd_install(event_fd, event_file);
	return event_fd;
T
Thomas Gleixner 已提交
6628

6629
err_context:
6630
	perf_unpin_context(ctx);
6631
	put_ctx(ctx);
6632
err_alloc:
6633
	free_event(event);
P
Peter Zijlstra 已提交
6634 6635 6636
err_task:
	if (task)
		put_task_struct(task);
6637
err_group_fd:
6638
	fput_light(group_file, fput_needed);
6639 6640
err_fd:
	put_unused_fd(event_fd);
6641
	return err;
T
Thomas Gleixner 已提交
6642 6643
}

6644 6645 6646 6647 6648
/**
 * perf_event_create_kernel_counter
 *
 * @attr: attributes of the counter to create
 * @cpu: cpu in which the counter is bound
M
Matt Helsley 已提交
6649
 * @task: task to profile (NULL for percpu)
6650 6651 6652
 */
struct perf_event *
perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
M
Matt Helsley 已提交
6653
				 struct task_struct *task,
6654
				 perf_overflow_handler_t overflow_handler)
6655 6656
{
	struct perf_event_context *ctx;
6657
	struct perf_event *event;
6658
	int err;
6659

6660 6661 6662
	/*
	 * Get the target context (task or percpu):
	 */
6663

6664
	event = perf_event_alloc(attr, cpu, task, NULL, NULL, overflow_handler);
6665 6666 6667 6668
	if (IS_ERR(event)) {
		err = PTR_ERR(event);
		goto err;
	}
6669

M
Matt Helsley 已提交
6670
	ctx = find_get_context(event->pmu, task, cpu);
6671 6672
	if (IS_ERR(ctx)) {
		err = PTR_ERR(ctx);
6673
		goto err_free;
6674
	}
6675 6676 6677 6678 6679 6680

	event->filp = NULL;
	WARN_ON_ONCE(ctx->parent_ctx);
	mutex_lock(&ctx->mutex);
	perf_install_in_context(ctx, event, cpu);
	++ctx->generation;
6681
	perf_unpin_context(ctx);
6682 6683 6684 6685
	mutex_unlock(&ctx->mutex);

	return event;

6686 6687 6688
err_free:
	free_event(event);
err:
6689
	return ERR_PTR(err);
6690
}
6691
EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
6692

6693
static void sync_child_event(struct perf_event *child_event,
6694
			       struct task_struct *child)
6695
{
6696
	struct perf_event *parent_event = child_event->parent;
6697
	u64 child_val;
6698

6699 6700
	if (child_event->attr.inherit_stat)
		perf_event_read_event(child_event, child);
6701

P
Peter Zijlstra 已提交
6702
	child_val = perf_event_count(child_event);
6703 6704 6705 6706

	/*
	 * Add back the child's count to the parent's count:
	 */
6707
	atomic64_add(child_val, &parent_event->child_count);
6708 6709 6710 6711
	atomic64_add(child_event->total_time_enabled,
		     &parent_event->child_total_time_enabled);
	atomic64_add(child_event->total_time_running,
		     &parent_event->child_total_time_running);
6712 6713

	/*
6714
	 * Remove this event from the parent's list
6715
	 */
6716 6717 6718 6719
	WARN_ON_ONCE(parent_event->ctx->parent_ctx);
	mutex_lock(&parent_event->child_mutex);
	list_del_init(&child_event->child_list);
	mutex_unlock(&parent_event->child_mutex);
6720 6721

	/*
6722
	 * Release the parent event, if this was the last
6723 6724
	 * reference to it.
	 */
6725
	fput(parent_event->filp);
6726 6727
}

6728
static void
6729 6730
__perf_event_exit_task(struct perf_event *child_event,
			 struct perf_event_context *child_ctx,
6731
			 struct task_struct *child)
6732
{
6733 6734 6735 6736 6737
	if (child_event->parent) {
		raw_spin_lock_irq(&child_ctx->lock);
		perf_group_detach(child_event);
		raw_spin_unlock_irq(&child_ctx->lock);
	}
6738

6739
	perf_remove_from_context(child_event);
6740

6741
	/*
6742
	 * It can happen that the parent exits first, and has events
6743
	 * that are still around due to the child reference. These
6744
	 * events need to be zapped.
6745
	 */
6746
	if (child_event->parent) {
6747 6748
		sync_child_event(child_event, child);
		free_event(child_event);
6749
	}
6750 6751
}

P
Peter Zijlstra 已提交
6752
static void perf_event_exit_task_context(struct task_struct *child, int ctxn)
6753
{
6754 6755
	struct perf_event *child_event, *tmp;
	struct perf_event_context *child_ctx;
6756
	unsigned long flags;
6757

P
Peter Zijlstra 已提交
6758
	if (likely(!child->perf_event_ctxp[ctxn])) {
6759
		perf_event_task(child, NULL, 0);
6760
		return;
P
Peter Zijlstra 已提交
6761
	}
6762

6763
	local_irq_save(flags);
6764 6765 6766 6767 6768 6769
	/*
	 * We can't reschedule here because interrupts are disabled,
	 * and either child is current or it is a task that can't be
	 * scheduled, so we are now safe from rescheduling changing
	 * our context.
	 */
6770
	child_ctx = rcu_dereference_raw(child->perf_event_ctxp[ctxn]);
6771 6772 6773

	/*
	 * Take the context lock here so that if find_get_context is
6774
	 * reading child->perf_event_ctxp, we wait until it has
6775 6776
	 * incremented the context's refcount before we do put_ctx below.
	 */
6777
	raw_spin_lock(&child_ctx->lock);
6778
	task_ctx_sched_out(child_ctx);
P
Peter Zijlstra 已提交
6779
	child->perf_event_ctxp[ctxn] = NULL;
6780 6781 6782
	/*
	 * If this context is a clone; unclone it so it can't get
	 * swapped to another process while we're removing all
6783
	 * the events from it.
6784 6785
	 */
	unclone_ctx(child_ctx);
6786
	update_context_time(child_ctx);
6787
	raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
P
Peter Zijlstra 已提交
6788 6789

	/*
6790 6791 6792
	 * Report the task dead after unscheduling the events so that we
	 * won't get any samples after PERF_RECORD_EXIT. We can however still
	 * get a few PERF_RECORD_READ events.
P
Peter Zijlstra 已提交
6793
	 */
6794
	perf_event_task(child, child_ctx, 0);
6795

6796 6797 6798
	/*
	 * We can recurse on the same lock type through:
	 *
6799 6800 6801
	 *   __perf_event_exit_task()
	 *     sync_child_event()
	 *       fput(parent_event->filp)
6802 6803 6804 6805 6806
	 *         perf_release()
	 *           mutex_lock(&ctx->mutex)
	 *
	 * But since its the parent context it won't be the same instance.
	 */
6807
	mutex_lock(&child_ctx->mutex);
6808

6809
again:
6810 6811 6812 6813 6814
	list_for_each_entry_safe(child_event, tmp, &child_ctx->pinned_groups,
				 group_entry)
		__perf_event_exit_task(child_event, child_ctx, child);

	list_for_each_entry_safe(child_event, tmp, &child_ctx->flexible_groups,
6815
				 group_entry)
6816
		__perf_event_exit_task(child_event, child_ctx, child);
6817 6818

	/*
6819
	 * If the last event was a group event, it will have appended all
6820 6821 6822
	 * its siblings to the list, but we obtained 'tmp' before that which
	 * will still point to the list head terminating the iteration.
	 */
6823 6824
	if (!list_empty(&child_ctx->pinned_groups) ||
	    !list_empty(&child_ctx->flexible_groups))
6825
		goto again;
6826 6827 6828 6829

	mutex_unlock(&child_ctx->mutex);

	put_ctx(child_ctx);
6830 6831
}

P
Peter Zijlstra 已提交
6832 6833 6834 6835 6836
/*
 * When a child task exits, feed back event values to parent events.
 */
void perf_event_exit_task(struct task_struct *child)
{
P
Peter Zijlstra 已提交
6837
	struct perf_event *event, *tmp;
P
Peter Zijlstra 已提交
6838 6839
	int ctxn;

P
Peter Zijlstra 已提交
6840 6841 6842 6843 6844 6845 6846 6847 6848 6849 6850 6851 6852 6853 6854
	mutex_lock(&child->perf_event_mutex);
	list_for_each_entry_safe(event, tmp, &child->perf_event_list,
				 owner_entry) {
		list_del_init(&event->owner_entry);

		/*
		 * Ensure the list deletion is visible before we clear
		 * the owner, closes a race against perf_release() where
		 * we need to serialize on the owner->perf_event_mutex.
		 */
		smp_wmb();
		event->owner = NULL;
	}
	mutex_unlock(&child->perf_event_mutex);

P
Peter Zijlstra 已提交
6855 6856 6857 6858
	for_each_task_context_nr(ctxn)
		perf_event_exit_task_context(child, ctxn);
}

6859 6860 6861 6862 6863 6864 6865 6866 6867 6868 6869 6870 6871 6872
static void perf_free_event(struct perf_event *event,
			    struct perf_event_context *ctx)
{
	struct perf_event *parent = event->parent;

	if (WARN_ON_ONCE(!parent))
		return;

	mutex_lock(&parent->child_mutex);
	list_del_init(&event->child_list);
	mutex_unlock(&parent->child_mutex);

	fput(parent->filp);

6873
	perf_group_detach(event);
6874 6875 6876 6877
	list_del_event(event, ctx);
	free_event(event);
}

6878 6879
/*
 * free an unexposed, unused context as created by inheritance by
P
Peter Zijlstra 已提交
6880
 * perf_event_init_task below, used by fork() in case of fail.
6881
 */
6882
void perf_event_free_task(struct task_struct *task)
6883
{
P
Peter Zijlstra 已提交
6884
	struct perf_event_context *ctx;
6885
	struct perf_event *event, *tmp;
P
Peter Zijlstra 已提交
6886
	int ctxn;
6887

P
Peter Zijlstra 已提交
6888 6889 6890 6891
	for_each_task_context_nr(ctxn) {
		ctx = task->perf_event_ctxp[ctxn];
		if (!ctx)
			continue;
6892

P
Peter Zijlstra 已提交
6893
		mutex_lock(&ctx->mutex);
6894
again:
P
Peter Zijlstra 已提交
6895 6896 6897
		list_for_each_entry_safe(event, tmp, &ctx->pinned_groups,
				group_entry)
			perf_free_event(event, ctx);
6898

P
Peter Zijlstra 已提交
6899 6900 6901
		list_for_each_entry_safe(event, tmp, &ctx->flexible_groups,
				group_entry)
			perf_free_event(event, ctx);
6902

P
Peter Zijlstra 已提交
6903 6904 6905
		if (!list_empty(&ctx->pinned_groups) ||
				!list_empty(&ctx->flexible_groups))
			goto again;
6906

P
Peter Zijlstra 已提交
6907
		mutex_unlock(&ctx->mutex);
6908

P
Peter Zijlstra 已提交
6909 6910
		put_ctx(ctx);
	}
6911 6912
}

6913 6914 6915 6916 6917 6918 6919 6920
void perf_event_delayed_put(struct task_struct *task)
{
	int ctxn;

	for_each_task_context_nr(ctxn)
		WARN_ON_ONCE(task->perf_event_ctxp[ctxn]);
}

P
Peter Zijlstra 已提交
6921 6922 6923 6924 6925 6926 6927 6928 6929 6930 6931 6932
/*
 * inherit a event from parent task to child task:
 */
static struct perf_event *
inherit_event(struct perf_event *parent_event,
	      struct task_struct *parent,
	      struct perf_event_context *parent_ctx,
	      struct task_struct *child,
	      struct perf_event *group_leader,
	      struct perf_event_context *child_ctx)
{
	struct perf_event *child_event;
6933
	unsigned long flags;
P
Peter Zijlstra 已提交
6934 6935 6936 6937 6938 6939 6940 6941 6942 6943 6944 6945

	/*
	 * Instead of creating recursive hierarchies of events,
	 * we link inherited events back to the original parent,
	 * which has a filp for sure, which we use as the reference
	 * count:
	 */
	if (parent_event->parent)
		parent_event = parent_event->parent;

	child_event = perf_event_alloc(&parent_event->attr,
					   parent_event->cpu,
6946
					   child,
P
Peter Zijlstra 已提交
6947 6948 6949 6950 6951 6952 6953 6954 6955 6956 6957 6958 6959 6960 6961 6962 6963 6964 6965 6966 6967 6968 6969 6970 6971 6972 6973 6974 6975
					   group_leader, parent_event,
					   NULL);
	if (IS_ERR(child_event))
		return child_event;
	get_ctx(child_ctx);

	/*
	 * Make the child state follow the state of the parent event,
	 * not its attr.disabled bit.  We hold the parent's mutex,
	 * so we won't race with perf_event_{en, dis}able_family.
	 */
	if (parent_event->state >= PERF_EVENT_STATE_INACTIVE)
		child_event->state = PERF_EVENT_STATE_INACTIVE;
	else
		child_event->state = PERF_EVENT_STATE_OFF;

	if (parent_event->attr.freq) {
		u64 sample_period = parent_event->hw.sample_period;
		struct hw_perf_event *hwc = &child_event->hw;

		hwc->sample_period = sample_period;
		hwc->last_period   = sample_period;

		local64_set(&hwc->period_left, sample_period);
	}

	child_event->ctx = child_ctx;
	child_event->overflow_handler = parent_event->overflow_handler;

6976 6977 6978 6979
	/*
	 * Precalculate sample_data sizes
	 */
	perf_event__header_size(child_event);
6980
	perf_event__id_header_size(child_event);
6981

P
Peter Zijlstra 已提交
6982 6983 6984
	/*
	 * Link it up in the child's context:
	 */
6985
	raw_spin_lock_irqsave(&child_ctx->lock, flags);
P
Peter Zijlstra 已提交
6986
	add_event_to_ctx(child_event, child_ctx);
6987
	raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
P
Peter Zijlstra 已提交
6988 6989 6990 6991 6992 6993 6994 6995 6996 6997 6998 6999 7000 7001 7002 7003 7004 7005 7006 7007 7008 7009 7010 7011 7012 7013 7014 7015 7016 7017 7018 7019 7020 7021 7022 7023 7024 7025 7026 7027 7028

	/*
	 * Get a reference to the parent filp - we will fput it
	 * when the child event exits. This is safe to do because
	 * we are in the parent and we know that the filp still
	 * exists and has a nonzero count:
	 */
	atomic_long_inc(&parent_event->filp->f_count);

	/*
	 * Link this into the parent event's child list
	 */
	WARN_ON_ONCE(parent_event->ctx->parent_ctx);
	mutex_lock(&parent_event->child_mutex);
	list_add_tail(&child_event->child_list, &parent_event->child_list);
	mutex_unlock(&parent_event->child_mutex);

	return child_event;
}

static int inherit_group(struct perf_event *parent_event,
	      struct task_struct *parent,
	      struct perf_event_context *parent_ctx,
	      struct task_struct *child,
	      struct perf_event_context *child_ctx)
{
	struct perf_event *leader;
	struct perf_event *sub;
	struct perf_event *child_ctr;

	leader = inherit_event(parent_event, parent, parent_ctx,
				 child, NULL, child_ctx);
	if (IS_ERR(leader))
		return PTR_ERR(leader);
	list_for_each_entry(sub, &parent_event->sibling_list, group_entry) {
		child_ctr = inherit_event(sub, parent, parent_ctx,
					    child, leader, child_ctx);
		if (IS_ERR(child_ctr))
			return PTR_ERR(child_ctr);
	}
	return 0;
7029 7030 7031 7032 7033
}

static int
inherit_task_group(struct perf_event *event, struct task_struct *parent,
		   struct perf_event_context *parent_ctx,
P
Peter Zijlstra 已提交
7034
		   struct task_struct *child, int ctxn,
7035 7036 7037
		   int *inherited_all)
{
	int ret;
P
Peter Zijlstra 已提交
7038
	struct perf_event_context *child_ctx;
7039 7040 7041 7042

	if (!event->attr.inherit) {
		*inherited_all = 0;
		return 0;
7043 7044
	}

7045
	child_ctx = child->perf_event_ctxp[ctxn];
7046 7047 7048 7049 7050 7051 7052
	if (!child_ctx) {
		/*
		 * This is executed from the parent task context, so
		 * inherit events that have been marked for cloning.
		 * First allocate and initialize a context for the
		 * child.
		 */
7053

7054
		child_ctx = alloc_perf_context(event->pmu, child);
7055 7056
		if (!child_ctx)
			return -ENOMEM;
7057

P
Peter Zijlstra 已提交
7058
		child->perf_event_ctxp[ctxn] = child_ctx;
7059 7060 7061 7062 7063 7064 7065 7066 7067
	}

	ret = inherit_group(event, parent, parent_ctx,
			    child, child_ctx);

	if (ret)
		*inherited_all = 0;

	return ret;
7068 7069
}

7070
/*
7071
 * Initialize the perf_event context in task_struct
7072
 */
P
Peter Zijlstra 已提交
7073
int perf_event_init_context(struct task_struct *child, int ctxn)
7074
{
7075
	struct perf_event_context *child_ctx, *parent_ctx;
7076 7077
	struct perf_event_context *cloned_ctx;
	struct perf_event *event;
7078
	struct task_struct *parent = current;
7079
	int inherited_all = 1;
7080
	unsigned long flags;
7081
	int ret = 0;
7082

P
Peter Zijlstra 已提交
7083
	if (likely(!parent->perf_event_ctxp[ctxn]))
7084 7085
		return 0;

7086
	/*
7087 7088
	 * If the parent's context is a clone, pin it so it won't get
	 * swapped under us.
7089
	 */
P
Peter Zijlstra 已提交
7090
	parent_ctx = perf_pin_task_context(parent, ctxn);
7091

7092 7093 7094 7095 7096 7097 7098
	/*
	 * No need to check if parent_ctx != NULL here; since we saw
	 * it non-NULL earlier, the only reason for it to become NULL
	 * is if we exit, and since we're currently in the middle of
	 * a fork we can't be exiting at the same time.
	 */

7099 7100 7101 7102
	/*
	 * Lock the parent list. No need to lock the child - not PID
	 * hashed yet and not running, so nobody can access it.
	 */
7103
	mutex_lock(&parent_ctx->mutex);
7104 7105 7106 7107 7108

	/*
	 * We dont have to disable NMIs - we are only looking at
	 * the list, not manipulating it:
	 */
7109
	list_for_each_entry(event, &parent_ctx->pinned_groups, group_entry) {
P
Peter Zijlstra 已提交
7110 7111
		ret = inherit_task_group(event, parent, parent_ctx,
					 child, ctxn, &inherited_all);
7112 7113 7114
		if (ret)
			break;
	}
7115

7116 7117 7118 7119 7120 7121 7122 7123 7124
	/*
	 * We can't hold ctx->lock when iterating the ->flexible_group list due
	 * to allocations, but we need to prevent rotation because
	 * rotate_ctx() will change the list from interrupt context.
	 */
	raw_spin_lock_irqsave(&parent_ctx->lock, flags);
	parent_ctx->rotate_disable = 1;
	raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);

7125
	list_for_each_entry(event, &parent_ctx->flexible_groups, group_entry) {
P
Peter Zijlstra 已提交
7126 7127
		ret = inherit_task_group(event, parent, parent_ctx,
					 child, ctxn, &inherited_all);
7128
		if (ret)
7129
			break;
7130 7131
	}

7132 7133 7134
	raw_spin_lock_irqsave(&parent_ctx->lock, flags);
	parent_ctx->rotate_disable = 0;

P
Peter Zijlstra 已提交
7135
	child_ctx = child->perf_event_ctxp[ctxn];
7136

7137
	if (child_ctx && inherited_all) {
7138 7139 7140
		/*
		 * Mark the child context as a clone of the parent
		 * context, or of whatever the parent is a clone of.
P
Peter Zijlstra 已提交
7141 7142 7143
		 *
		 * Note that if the parent is a clone, the holding of
		 * parent_ctx->lock avoids it from being uncloned.
7144
		 */
P
Peter Zijlstra 已提交
7145
		cloned_ctx = parent_ctx->parent_ctx;
7146 7147
		if (cloned_ctx) {
			child_ctx->parent_ctx = cloned_ctx;
7148
			child_ctx->parent_gen = parent_ctx->parent_gen;
7149 7150 7151 7152 7153
		} else {
			child_ctx->parent_ctx = parent_ctx;
			child_ctx->parent_gen = parent_ctx->generation;
		}
		get_ctx(child_ctx->parent_ctx);
7154 7155
	}

P
Peter Zijlstra 已提交
7156
	raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
7157
	mutex_unlock(&parent_ctx->mutex);
7158

7159
	perf_unpin_context(parent_ctx);
7160
	put_ctx(parent_ctx);
7161

7162
	return ret;
7163 7164
}

P
Peter Zijlstra 已提交
7165 7166 7167 7168 7169 7170 7171
/*
 * Initialize the perf_event context in task_struct
 */
int perf_event_init_task(struct task_struct *child)
{
	int ctxn, ret;

7172 7173 7174 7175
	memset(child->perf_event_ctxp, 0, sizeof(child->perf_event_ctxp));
	mutex_init(&child->perf_event_mutex);
	INIT_LIST_HEAD(&child->perf_event_list);

P
Peter Zijlstra 已提交
7176 7177 7178 7179 7180 7181 7182 7183 7184
	for_each_task_context_nr(ctxn) {
		ret = perf_event_init_context(child, ctxn);
		if (ret)
			return ret;
	}

	return 0;
}

7185 7186
static void __init perf_event_init_all_cpus(void)
{
7187
	struct swevent_htable *swhash;
7188 7189 7190
	int cpu;

	for_each_possible_cpu(cpu) {
7191 7192
		swhash = &per_cpu(swevent_htable, cpu);
		mutex_init(&swhash->hlist_mutex);
7193
		INIT_LIST_HEAD(&per_cpu(rotation_list, cpu));
7194 7195 7196
	}
}

7197
static void __cpuinit perf_event_init_cpu(int cpu)
T
Thomas Gleixner 已提交
7198
{
P
Peter Zijlstra 已提交
7199
	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
T
Thomas Gleixner 已提交
7200

7201 7202
	mutex_lock(&swhash->hlist_mutex);
	if (swhash->hlist_refcount > 0) {
7203 7204
		struct swevent_hlist *hlist;

7205 7206 7207
		hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu));
		WARN_ON(!hlist);
		rcu_assign_pointer(swhash->swevent_hlist, hlist);
7208
	}
7209
	mutex_unlock(&swhash->hlist_mutex);
T
Thomas Gleixner 已提交
7210 7211
}

P
Peter Zijlstra 已提交
7212
#if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC
7213
static void perf_pmu_rotate_stop(struct pmu *pmu)
T
Thomas Gleixner 已提交
7214
{
7215 7216 7217 7218 7219 7220 7221
	struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);

	WARN_ON(!irqs_disabled());

	list_del_init(&cpuctx->rotation_list);
}

P
Peter Zijlstra 已提交
7222
static void __perf_event_exit_context(void *__info)
T
Thomas Gleixner 已提交
7223
{
P
Peter Zijlstra 已提交
7224
	struct perf_event_context *ctx = __info;
7225
	struct perf_event *event, *tmp;
T
Thomas Gleixner 已提交
7226

P
Peter Zijlstra 已提交
7227
	perf_pmu_rotate_stop(ctx->pmu);
7228

7229
	list_for_each_entry_safe(event, tmp, &ctx->pinned_groups, group_entry)
7230
		__perf_remove_from_context(event);
7231
	list_for_each_entry_safe(event, tmp, &ctx->flexible_groups, group_entry)
7232
		__perf_remove_from_context(event);
T
Thomas Gleixner 已提交
7233
}
P
Peter Zijlstra 已提交
7234 7235 7236 7237 7238 7239 7240 7241 7242

static void perf_event_exit_cpu_context(int cpu)
{
	struct perf_event_context *ctx;
	struct pmu *pmu;
	int idx;

	idx = srcu_read_lock(&pmus_srcu);
	list_for_each_entry_rcu(pmu, &pmus, entry) {
7243
		ctx = &per_cpu_ptr(pmu->pmu_cpu_context, cpu)->ctx;
P
Peter Zijlstra 已提交
7244 7245 7246 7247 7248 7249 7250 7251

		mutex_lock(&ctx->mutex);
		smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1);
		mutex_unlock(&ctx->mutex);
	}
	srcu_read_unlock(&pmus_srcu, idx);
}

7252
static void perf_event_exit_cpu(int cpu)
T
Thomas Gleixner 已提交
7253
{
7254
	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
7255

7256 7257 7258
	mutex_lock(&swhash->hlist_mutex);
	swevent_hlist_release(swhash);
	mutex_unlock(&swhash->hlist_mutex);
7259

P
Peter Zijlstra 已提交
7260
	perf_event_exit_cpu_context(cpu);
T
Thomas Gleixner 已提交
7261 7262
}
#else
7263
static inline void perf_event_exit_cpu(int cpu) { }
T
Thomas Gleixner 已提交
7264 7265
#endif

P
Peter Zijlstra 已提交
7266 7267 7268 7269 7270 7271 7272 7273 7274 7275 7276 7277 7278 7279 7280 7281 7282 7283 7284 7285
static int
perf_reboot(struct notifier_block *notifier, unsigned long val, void *v)
{
	int cpu;

	for_each_online_cpu(cpu)
		perf_event_exit_cpu(cpu);

	return NOTIFY_OK;
}

/*
 * Run the perf reboot notifier at the very last possible moment so that
 * the generic watchdog code runs as long as possible.
 */
static struct notifier_block perf_reboot_notifier = {
	.notifier_call = perf_reboot,
	.priority = INT_MIN,
};

T
Thomas Gleixner 已提交
7286 7287 7288 7289 7290
static int __cpuinit
perf_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu)
{
	unsigned int cpu = (long)hcpu;

P
Peter Zijlstra 已提交
7291
	switch (action & ~CPU_TASKS_FROZEN) {
T
Thomas Gleixner 已提交
7292 7293

	case CPU_UP_PREPARE:
P
Peter Zijlstra 已提交
7294
	case CPU_DOWN_FAILED:
7295
		perf_event_init_cpu(cpu);
T
Thomas Gleixner 已提交
7296 7297
		break;

P
Peter Zijlstra 已提交
7298
	case CPU_UP_CANCELED:
T
Thomas Gleixner 已提交
7299
	case CPU_DOWN_PREPARE:
7300
		perf_event_exit_cpu(cpu);
T
Thomas Gleixner 已提交
7301 7302 7303 7304 7305 7306 7307 7308 7309
		break;

	default:
		break;
	}

	return NOTIFY_OK;
}

7310
void __init perf_event_init(void)
T
Thomas Gleixner 已提交
7311
{
7312 7313
	int ret;

P
Peter Zijlstra 已提交
7314 7315
	idr_init(&pmu_idr);

7316
	perf_event_init_all_cpus();
7317
	init_srcu_struct(&pmus_srcu);
P
Peter Zijlstra 已提交
7318 7319 7320
	perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE);
	perf_pmu_register(&perf_cpu_clock, NULL, -1);
	perf_pmu_register(&perf_task_clock, NULL, -1);
7321 7322
	perf_tp_register();
	perf_cpu_notifier(perf_cpu_notify);
P
Peter Zijlstra 已提交
7323
	register_reboot_notifier(&perf_reboot_notifier);
7324 7325 7326

	ret = init_hw_breakpoint();
	WARN(ret, "hw_breakpoint initialization failed with: %d", ret);
T
Thomas Gleixner 已提交
7327
}
P
Peter Zijlstra 已提交
7328 7329 7330 7331 7332 7333 7334 7335 7336 7337 7338 7339 7340 7341 7342 7343 7344 7345 7346 7347 7348 7349 7350 7351 7352 7353 7354 7355

static int __init perf_event_sysfs_init(void)
{
	struct pmu *pmu;
	int ret;

	mutex_lock(&pmus_lock);

	ret = bus_register(&pmu_bus);
	if (ret)
		goto unlock;

	list_for_each_entry(pmu, &pmus, entry) {
		if (!pmu->name || pmu->type < 0)
			continue;

		ret = pmu_dev_alloc(pmu);
		WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret);
	}
	pmu_bus_running = 1;
	ret = 0;

unlock:
	mutex_unlock(&pmus_lock);

	return ret;
}
device_initcall(perf_event_sysfs_init);
S
Stephane Eranian 已提交
7356 7357 7358 7359 7360 7361 7362

#ifdef CONFIG_CGROUP_PERF
static struct cgroup_subsys_state *perf_cgroup_create(
	struct cgroup_subsys *ss, struct cgroup *cont)
{
	struct perf_cgroup *jc;

7363
	jc = kzalloc(sizeof(*jc), GFP_KERNEL);
S
Stephane Eranian 已提交
7364 7365 7366 7367 7368 7369 7370 7371 7372 7373 7374 7375 7376 7377 7378 7379 7380 7381 7382 7383 7384 7385 7386 7387 7388 7389 7390 7391 7392 7393 7394 7395 7396 7397 7398 7399 7400 7401 7402 7403 7404 7405 7406 7407 7408 7409 7410 7411 7412 7413 7414 7415 7416 7417 7418 7419 7420 7421 7422 7423 7424 7425 7426 7427
	if (!jc)
		return ERR_PTR(-ENOMEM);

	jc->info = alloc_percpu(struct perf_cgroup_info);
	if (!jc->info) {
		kfree(jc);
		return ERR_PTR(-ENOMEM);
	}

	return &jc->css;
}

static void perf_cgroup_destroy(struct cgroup_subsys *ss,
				struct cgroup *cont)
{
	struct perf_cgroup *jc;
	jc = container_of(cgroup_subsys_state(cont, perf_subsys_id),
			  struct perf_cgroup, css);
	free_percpu(jc->info);
	kfree(jc);
}

static int __perf_cgroup_move(void *info)
{
	struct task_struct *task = info;
	perf_cgroup_switch(task, PERF_CGROUP_SWOUT | PERF_CGROUP_SWIN);
	return 0;
}

static void perf_cgroup_move(struct task_struct *task)
{
	task_function_call(task, __perf_cgroup_move, task);
}

static void perf_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
		struct cgroup *old_cgrp, struct task_struct *task,
		bool threadgroup)
{
	perf_cgroup_move(task);
	if (threadgroup) {
		struct task_struct *c;
		rcu_read_lock();
		list_for_each_entry_rcu(c, &task->thread_group, thread_group) {
			perf_cgroup_move(c);
		}
		rcu_read_unlock();
	}
}

static void perf_cgroup_exit(struct cgroup_subsys *ss, struct cgroup *cgrp,
		struct cgroup *old_cgrp, struct task_struct *task)
{
	/*
	 * cgroup_exit() is called in the copy_process() failure path.
	 * Ignore this case since the task hasn't ran yet, this avoids
	 * trying to poke a half freed task state from generic code.
	 */
	if (!(task->flags & PF_EXITING))
		return;

	perf_cgroup_move(task);
}

struct cgroup_subsys perf_subsys = {
7428 7429 7430 7431 7432 7433
	.name		= "perf_event",
	.subsys_id	= perf_subsys_id,
	.create		= perf_cgroup_create,
	.destroy	= perf_cgroup_destroy,
	.exit		= perf_cgroup_exit,
	.attach		= perf_cgroup_attach,
S
Stephane Eranian 已提交
7434 7435
};
#endif /* CONFIG_CGROUP_PERF */