core.c 160.1 KB
Newer Older
T
Thomas Gleixner 已提交
1
/*
I
Ingo Molnar 已提交
2
 * Performance events core code:
T
Thomas Gleixner 已提交
3
 *
4
 *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5 6
 *  Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
 *  Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
7
 *  Copyright    2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
8
 *
I
Ingo Molnar 已提交
9
 * For licensing details see kernel-base/COPYING
T
Thomas Gleixner 已提交
10 11 12
 */

#include <linux/fs.h>
13
#include <linux/mm.h>
T
Thomas Gleixner 已提交
14 15
#include <linux/cpu.h>
#include <linux/smp.h>
P
Peter Zijlstra 已提交
16
#include <linux/idr.h>
17
#include <linux/file.h>
T
Thomas Gleixner 已提交
18
#include <linux/poll.h>
19
#include <linux/slab.h>
20
#include <linux/hash.h>
T
Thomas Gleixner 已提交
21
#include <linux/sysfs.h>
22
#include <linux/dcache.h>
T
Thomas Gleixner 已提交
23
#include <linux/percpu.h>
24
#include <linux/ptrace.h>
P
Peter Zijlstra 已提交
25
#include <linux/reboot.h>
26
#include <linux/vmstat.h>
P
Peter Zijlstra 已提交
27
#include <linux/device.h>
28
#include <linux/export.h>
29
#include <linux/vmalloc.h>
30 31
#include <linux/hardirq.h>
#include <linux/rculist.h>
T
Thomas Gleixner 已提交
32 33 34
#include <linux/uaccess.h>
#include <linux/syscalls.h>
#include <linux/anon_inodes.h>
I
Ingo Molnar 已提交
35
#include <linux/kernel_stat.h>
36
#include <linux/perf_event.h>
L
Li Zefan 已提交
37
#include <linux/ftrace_event.h>
38
#include <linux/hw_breakpoint.h>
T
Thomas Gleixner 已提交
39

40 41
#include "internal.h"

42 43
#include <asm/irq_regs.h>

44
struct remote_function_call {
45 46 47 48
	struct task_struct	*p;
	int			(*func)(void *info);
	void			*info;
	int			ret;
49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81
};

static void remote_function(void *data)
{
	struct remote_function_call *tfc = data;
	struct task_struct *p = tfc->p;

	if (p) {
		tfc->ret = -EAGAIN;
		if (task_cpu(p) != smp_processor_id() || !task_curr(p))
			return;
	}

	tfc->ret = tfc->func(tfc->info);
}

/**
 * task_function_call - call a function on the cpu on which a task runs
 * @p:		the task to evaluate
 * @func:	the function to be called
 * @info:	the function call argument
 *
 * Calls the function @func when the task is currently running. This might
 * be on the current CPU, which just calls the function directly
 *
 * returns: @func return value, or
 *	    -ESRCH  - when the process isn't running
 *	    -EAGAIN - when the process moved away
 */
static int
task_function_call(struct task_struct *p, int (*func) (void *info), void *info)
{
	struct remote_function_call data = {
82 83 84 85
		.p	= p,
		.func	= func,
		.info	= info,
		.ret	= -ESRCH, /* No such (running) process */
86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105
	};

	if (task_curr(p))
		smp_call_function_single(task_cpu(p), remote_function, &data, 1);

	return data.ret;
}

/**
 * cpu_function_call - call a function on the cpu
 * @func:	the function to be called
 * @info:	the function call argument
 *
 * Calls the function @func on the remote cpu.
 *
 * returns: @func return value or -ENXIO when the cpu is offline
 */
static int cpu_function_call(int cpu, int (*func) (void *info), void *info)
{
	struct remote_function_call data = {
106 107 108 109
		.p	= NULL,
		.func	= func,
		.info	= info,
		.ret	= -ENXIO, /* No such CPU */
110 111 112 113 114 115 116
	};

	smp_call_function_single(cpu, remote_function, &data, 1);

	return data.ret;
}

S
Stephane Eranian 已提交
117 118 119 120
#define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\
		       PERF_FLAG_FD_OUTPUT  |\
		       PERF_FLAG_PID_CGROUP)

121 122 123 124 125 126
enum event_type_t {
	EVENT_FLEXIBLE = 0x1,
	EVENT_PINNED = 0x2,
	EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
};

S
Stephane Eranian 已提交
127 128 129 130
/*
 * perf_sched_events : >0 events exist
 * perf_cgroup_events: >0 per-cpu cgroup events exist on this cpu
 */
131
struct jump_label_key perf_sched_events __read_mostly;
S
Stephane Eranian 已提交
132 133
static DEFINE_PER_CPU(atomic_t, perf_cgroup_events);

134 135 136
static atomic_t nr_mmap_events __read_mostly;
static atomic_t nr_comm_events __read_mostly;
static atomic_t nr_task_events __read_mostly;
137

P
Peter Zijlstra 已提交
138 139 140 141
static LIST_HEAD(pmus);
static DEFINE_MUTEX(pmus_lock);
static struct srcu_struct pmus_srcu;

142
/*
143
 * perf event paranoia level:
144 145
 *  -1 - not paranoid at all
 *   0 - disallow raw tracepoint access for unpriv
146
 *   1 - disallow cpu events for unpriv
147
 *   2 - disallow kernel profiling for unpriv
148
 */
149
int sysctl_perf_event_paranoid __read_mostly = 1;
150

151 152
/* Minimum for 512 kiB + 1 user control page */
int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */
153 154

/*
155
 * max perf event sample rate
156
 */
P
Peter Zijlstra 已提交
157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174
#define DEFAULT_MAX_SAMPLE_RATE 100000
int sysctl_perf_event_sample_rate __read_mostly = DEFAULT_MAX_SAMPLE_RATE;
static int max_samples_per_tick __read_mostly =
	DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ);

int perf_proc_update_handler(struct ctl_table *table, int write,
		void __user *buffer, size_t *lenp,
		loff_t *ppos)
{
	int ret = proc_dointvec(table, write, buffer, lenp, ppos);

	if (ret || !write)
		return ret;

	max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ);

	return 0;
}
175

176
static atomic64_t perf_event_id;
177

178 179 180 181
static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
			      enum event_type_t event_type);

static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
S
Stephane Eranian 已提交
182 183 184 185 186
			     enum event_type_t event_type,
			     struct task_struct *task);

static void update_context_time(struct perf_event_context *ctx);
static u64 perf_event_time(struct perf_event *event);
187

188 189 190
static void ring_buffer_attach(struct perf_event *event,
			       struct ring_buffer *rb);

191
void __weak perf_event_print_debug(void)	{ }
T
Thomas Gleixner 已提交
192

193
extern __weak const char *perf_pmu_name(void)
T
Thomas Gleixner 已提交
194
{
195
	return "pmu";
T
Thomas Gleixner 已提交
196 197
}

198 199 200 201 202
static inline u64 perf_clock(void)
{
	return local_clock();
}

S
Stephane Eranian 已提交
203 204 205 206 207 208
static inline struct perf_cpu_context *
__get_cpu_context(struct perf_event_context *ctx)
{
	return this_cpu_ptr(ctx->pmu->pmu_cpu_context);
}

209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224
static void perf_ctx_lock(struct perf_cpu_context *cpuctx,
			  struct perf_event_context *ctx)
{
	raw_spin_lock(&cpuctx->ctx.lock);
	if (ctx)
		raw_spin_lock(&ctx->lock);
}

static void perf_ctx_unlock(struct perf_cpu_context *cpuctx,
			    struct perf_event_context *ctx)
{
	if (ctx)
		raw_spin_unlock(&ctx->lock);
	raw_spin_unlock(&cpuctx->ctx.lock);
}

S
Stephane Eranian 已提交
225 226
#ifdef CONFIG_CGROUP_PERF

227 228 229 230 231
/*
 * Must ensure cgroup is pinned (css_get) before calling
 * this function. In other words, we cannot call this function
 * if there is no cgroup event for the current CPU context.
 */
S
Stephane Eranian 已提交
232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298
static inline struct perf_cgroup *
perf_cgroup_from_task(struct task_struct *task)
{
	return container_of(task_subsys_state(task, perf_subsys_id),
			struct perf_cgroup, css);
}

static inline bool
perf_cgroup_match(struct perf_event *event)
{
	struct perf_event_context *ctx = event->ctx;
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);

	return !event->cgrp || event->cgrp == cpuctx->cgrp;
}

static inline void perf_get_cgroup(struct perf_event *event)
{
	css_get(&event->cgrp->css);
}

static inline void perf_put_cgroup(struct perf_event *event)
{
	css_put(&event->cgrp->css);
}

static inline void perf_detach_cgroup(struct perf_event *event)
{
	perf_put_cgroup(event);
	event->cgrp = NULL;
}

static inline int is_cgroup_event(struct perf_event *event)
{
	return event->cgrp != NULL;
}

static inline u64 perf_cgroup_event_time(struct perf_event *event)
{
	struct perf_cgroup_info *t;

	t = per_cpu_ptr(event->cgrp->info, event->cpu);
	return t->time;
}

static inline void __update_cgrp_time(struct perf_cgroup *cgrp)
{
	struct perf_cgroup_info *info;
	u64 now;

	now = perf_clock();

	info = this_cpu_ptr(cgrp->info);

	info->time += now - info->timestamp;
	info->timestamp = now;
}

static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
{
	struct perf_cgroup *cgrp_out = cpuctx->cgrp;
	if (cgrp_out)
		__update_cgrp_time(cgrp_out);
}

static inline void update_cgrp_time_from_event(struct perf_event *event)
{
299 300
	struct perf_cgroup *cgrp;

S
Stephane Eranian 已提交
301
	/*
302 303
	 * ensure we access cgroup data only when needed and
	 * when we know the cgroup is pinned (css_get)
S
Stephane Eranian 已提交
304
	 */
305
	if (!is_cgroup_event(event))
S
Stephane Eranian 已提交
306 307
		return;

308 309 310 311 312 313
	cgrp = perf_cgroup_from_task(current);
	/*
	 * Do not update time when cgroup is not active
	 */
	if (cgrp == event->cgrp)
		__update_cgrp_time(event->cgrp);
S
Stephane Eranian 已提交
314 315 316
}

static inline void
317 318
perf_cgroup_set_timestamp(struct task_struct *task,
			  struct perf_event_context *ctx)
S
Stephane Eranian 已提交
319 320 321 322
{
	struct perf_cgroup *cgrp;
	struct perf_cgroup_info *info;

323 324 325 326 327 328
	/*
	 * ctx->lock held by caller
	 * ensure we do not access cgroup data
	 * unless we have the cgroup pinned (css_get)
	 */
	if (!task || !ctx->nr_cgroups)
S
Stephane Eranian 已提交
329 330 331 332
		return;

	cgrp = perf_cgroup_from_task(task);
	info = this_cpu_ptr(cgrp->info);
333
	info->timestamp = ctx->timestamp;
S
Stephane Eranian 已提交
334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374
}

#define PERF_CGROUP_SWOUT	0x1 /* cgroup switch out every event */
#define PERF_CGROUP_SWIN	0x2 /* cgroup switch in events based on task */

/*
 * reschedule events based on the cgroup constraint of task.
 *
 * mode SWOUT : schedule out everything
 * mode SWIN : schedule in based on cgroup for next
 */
void perf_cgroup_switch(struct task_struct *task, int mode)
{
	struct perf_cpu_context *cpuctx;
	struct pmu *pmu;
	unsigned long flags;

	/*
	 * disable interrupts to avoid geting nr_cgroup
	 * changes via __perf_event_disable(). Also
	 * avoids preemption.
	 */
	local_irq_save(flags);

	/*
	 * we reschedule only in the presence of cgroup
	 * constrained events.
	 */
	rcu_read_lock();

	list_for_each_entry_rcu(pmu, &pmus, entry) {
		cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);

		/*
		 * perf_cgroup_events says at least one
		 * context on this CPU has cgroup events.
		 *
		 * ctx->nr_cgroups reports the number of cgroup
		 * events for a context.
		 */
		if (cpuctx->ctx.nr_cgroups > 0) {
375 376
			perf_ctx_lock(cpuctx, cpuctx->task_ctx);
			perf_pmu_disable(cpuctx->ctx.pmu);
S
Stephane Eranian 已提交
377 378 379 380 381 382 383 384 385 386 387

			if (mode & PERF_CGROUP_SWOUT) {
				cpu_ctx_sched_out(cpuctx, EVENT_ALL);
				/*
				 * must not be done before ctxswout due
				 * to event_filter_match() in event_sched_out()
				 */
				cpuctx->cgrp = NULL;
			}

			if (mode & PERF_CGROUP_SWIN) {
388
				WARN_ON_ONCE(cpuctx->cgrp);
S
Stephane Eranian 已提交
389 390 391 392 393 394 395
				/* set cgrp before ctxsw in to
				 * allow event_filter_match() to not
				 * have to pass task around
				 */
				cpuctx->cgrp = perf_cgroup_from_task(task);
				cpu_ctx_sched_in(cpuctx, EVENT_ALL, task);
			}
396 397
			perf_pmu_enable(cpuctx->ctx.pmu);
			perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
S
Stephane Eranian 已提交
398 399 400 401 402 403 404 405
		}
	}

	rcu_read_unlock();

	local_irq_restore(flags);
}

406 407
static inline void perf_cgroup_sched_out(struct task_struct *task,
					 struct task_struct *next)
S
Stephane Eranian 已提交
408
{
409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430
	struct perf_cgroup *cgrp1;
	struct perf_cgroup *cgrp2 = NULL;

	/*
	 * we come here when we know perf_cgroup_events > 0
	 */
	cgrp1 = perf_cgroup_from_task(task);

	/*
	 * next is NULL when called from perf_event_enable_on_exec()
	 * that will systematically cause a cgroup_switch()
	 */
	if (next)
		cgrp2 = perf_cgroup_from_task(next);

	/*
	 * only schedule out current cgroup events if we know
	 * that we are switching to a different cgroup. Otherwise,
	 * do no touch the cgroup events.
	 */
	if (cgrp1 != cgrp2)
		perf_cgroup_switch(task, PERF_CGROUP_SWOUT);
S
Stephane Eranian 已提交
431 432
}

433 434
static inline void perf_cgroup_sched_in(struct task_struct *prev,
					struct task_struct *task)
S
Stephane Eranian 已提交
435
{
436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453
	struct perf_cgroup *cgrp1;
	struct perf_cgroup *cgrp2 = NULL;

	/*
	 * we come here when we know perf_cgroup_events > 0
	 */
	cgrp1 = perf_cgroup_from_task(task);

	/* prev can never be NULL */
	cgrp2 = perf_cgroup_from_task(prev);

	/*
	 * only need to schedule in cgroup events if we are changing
	 * cgroup during ctxsw. Cgroup events were not scheduled
	 * out of ctxsw out if that was not the case.
	 */
	if (cgrp1 != cgrp2)
		perf_cgroup_switch(task, PERF_CGROUP_SWIN);
S
Stephane Eranian 已提交
454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469
}

static inline int perf_cgroup_connect(int fd, struct perf_event *event,
				      struct perf_event_attr *attr,
				      struct perf_event *group_leader)
{
	struct perf_cgroup *cgrp;
	struct cgroup_subsys_state *css;
	struct file *file;
	int ret = 0, fput_needed;

	file = fget_light(fd, &fput_needed);
	if (!file)
		return -EBADF;

	css = cgroup_css_from_dir(file, perf_subsys_id);
470 471 472 473
	if (IS_ERR(css)) {
		ret = PTR_ERR(css);
		goto out;
	}
S
Stephane Eranian 已提交
474 475 476 477

	cgrp = container_of(css, struct perf_cgroup, css);
	event->cgrp = cgrp;

478 479 480
	/* must be done before we fput() the file */
	perf_get_cgroup(event);

S
Stephane Eranian 已提交
481 482 483 484 485 486 487 488 489
	/*
	 * all events in a group must monitor
	 * the same cgroup because a task belongs
	 * to only one perf cgroup at a time
	 */
	if (group_leader && group_leader->cgrp != cgrp) {
		perf_detach_cgroup(event);
		ret = -EINVAL;
	}
490
out:
S
Stephane Eranian 已提交
491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564
	fput_light(file, fput_needed);
	return ret;
}

static inline void
perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
{
	struct perf_cgroup_info *t;
	t = per_cpu_ptr(event->cgrp->info, event->cpu);
	event->shadow_ctx_time = now - t->timestamp;
}

static inline void
perf_cgroup_defer_enabled(struct perf_event *event)
{
	/*
	 * when the current task's perf cgroup does not match
	 * the event's, we need to remember to call the
	 * perf_mark_enable() function the first time a task with
	 * a matching perf cgroup is scheduled in.
	 */
	if (is_cgroup_event(event) && !perf_cgroup_match(event))
		event->cgrp_defer_enabled = 1;
}

static inline void
perf_cgroup_mark_enabled(struct perf_event *event,
			 struct perf_event_context *ctx)
{
	struct perf_event *sub;
	u64 tstamp = perf_event_time(event);

	if (!event->cgrp_defer_enabled)
		return;

	event->cgrp_defer_enabled = 0;

	event->tstamp_enabled = tstamp - event->total_time_enabled;
	list_for_each_entry(sub, &event->sibling_list, group_entry) {
		if (sub->state >= PERF_EVENT_STATE_INACTIVE) {
			sub->tstamp_enabled = tstamp - sub->total_time_enabled;
			sub->cgrp_defer_enabled = 0;
		}
	}
}
#else /* !CONFIG_CGROUP_PERF */

static inline bool
perf_cgroup_match(struct perf_event *event)
{
	return true;
}

static inline void perf_detach_cgroup(struct perf_event *event)
{}

static inline int is_cgroup_event(struct perf_event *event)
{
	return 0;
}

static inline u64 perf_cgroup_event_cgrp_time(struct perf_event *event)
{
	return 0;
}

static inline void update_cgrp_time_from_event(struct perf_event *event)
{
}

static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
{
}

565 566
static inline void perf_cgroup_sched_out(struct task_struct *task,
					 struct task_struct *next)
S
Stephane Eranian 已提交
567 568 569
{
}

570 571
static inline void perf_cgroup_sched_in(struct task_struct *prev,
					struct task_struct *task)
S
Stephane Eranian 已提交
572 573 574 575 576 577 578 579 580 581 582
{
}

static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event,
				      struct perf_event_attr *attr,
				      struct perf_event *group_leader)
{
	return -EINVAL;
}

static inline void
583 584
perf_cgroup_set_timestamp(struct task_struct *task,
			  struct perf_event_context *ctx)
S
Stephane Eranian 已提交
585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614
{
}

void
perf_cgroup_switch(struct task_struct *task, struct task_struct *next)
{
}

static inline void
perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
{
}

static inline u64 perf_cgroup_event_time(struct perf_event *event)
{
	return 0;
}

static inline void
perf_cgroup_defer_enabled(struct perf_event *event)
{
}

static inline void
perf_cgroup_mark_enabled(struct perf_event *event,
			 struct perf_event_context *ctx)
{
}
#endif

P
Peter Zijlstra 已提交
615
void perf_pmu_disable(struct pmu *pmu)
616
{
P
Peter Zijlstra 已提交
617 618 619
	int *count = this_cpu_ptr(pmu->pmu_disable_count);
	if (!(*count)++)
		pmu->pmu_disable(pmu);
620 621
}

P
Peter Zijlstra 已提交
622
void perf_pmu_enable(struct pmu *pmu)
623
{
P
Peter Zijlstra 已提交
624 625 626
	int *count = this_cpu_ptr(pmu->pmu_disable_count);
	if (!--(*count))
		pmu->pmu_enable(pmu);
627 628
}

629 630 631 632 633 634 635
static DEFINE_PER_CPU(struct list_head, rotation_list);

/*
 * perf_pmu_rotate_start() and perf_rotate_context() are fully serialized
 * because they're strictly cpu affine and rotate_start is called with IRQs
 * disabled, while rotate_context is called from IRQ context.
 */
P
Peter Zijlstra 已提交
636
static void perf_pmu_rotate_start(struct pmu *pmu)
637
{
P
Peter Zijlstra 已提交
638
	struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
639
	struct list_head *head = &__get_cpu_var(rotation_list);
640

641
	WARN_ON(!irqs_disabled());
642

643 644
	if (list_empty(&cpuctx->rotation_list))
		list_add(&cpuctx->rotation_list, head);
645 646
}

647
static void get_ctx(struct perf_event_context *ctx)
648
{
649
	WARN_ON(!atomic_inc_not_zero(&ctx->refcount));
650 651
}

652
static void put_ctx(struct perf_event_context *ctx)
653
{
654 655 656
	if (atomic_dec_and_test(&ctx->refcount)) {
		if (ctx->parent_ctx)
			put_ctx(ctx->parent_ctx);
657 658
		if (ctx->task)
			put_task_struct(ctx->task);
659
		kfree_rcu(ctx, rcu_head);
660
	}
661 662
}

663
static void unclone_ctx(struct perf_event_context *ctx)
664 665 666 667 668 669 670
{
	if (ctx->parent_ctx) {
		put_ctx(ctx->parent_ctx);
		ctx->parent_ctx = NULL;
	}
}

671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692
static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
{
	/*
	 * only top level events have the pid namespace they were created in
	 */
	if (event->parent)
		event = event->parent;

	return task_tgid_nr_ns(p, event->ns);
}

static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
{
	/*
	 * only top level events have the pid namespace they were created in
	 */
	if (event->parent)
		event = event->parent;

	return task_pid_nr_ns(p, event->ns);
}

693
/*
694
 * If we inherit events we want to return the parent event id
695 696
 * to userspace.
 */
697
static u64 primary_event_id(struct perf_event *event)
698
{
699
	u64 id = event->id;
700

701 702
	if (event->parent)
		id = event->parent->id;
703 704 705 706

	return id;
}

707
/*
708
 * Get the perf_event_context for a task and lock it.
709 710 711
 * This has to cope with with the fact that until it is locked,
 * the context could get moved to another task.
 */
712
static struct perf_event_context *
P
Peter Zijlstra 已提交
713
perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags)
714
{
715
	struct perf_event_context *ctx;
716 717

	rcu_read_lock();
P
Peter Zijlstra 已提交
718
retry:
P
Peter Zijlstra 已提交
719
	ctx = rcu_dereference(task->perf_event_ctxp[ctxn]);
720 721 722 723
	if (ctx) {
		/*
		 * If this context is a clone of another, it might
		 * get swapped for another underneath us by
724
		 * perf_event_task_sched_out, though the
725 726 727 728 729 730
		 * rcu_read_lock() protects us from any context
		 * getting freed.  Lock the context and check if it
		 * got swapped before we could get the lock, and retry
		 * if so.  If we locked the right context, then it
		 * can't get swapped on us any more.
		 */
731
		raw_spin_lock_irqsave(&ctx->lock, *flags);
P
Peter Zijlstra 已提交
732
		if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) {
733
			raw_spin_unlock_irqrestore(&ctx->lock, *flags);
734 735
			goto retry;
		}
736 737

		if (!atomic_inc_not_zero(&ctx->refcount)) {
738
			raw_spin_unlock_irqrestore(&ctx->lock, *flags);
739 740
			ctx = NULL;
		}
741 742 743 744 745 746 747 748 749 750
	}
	rcu_read_unlock();
	return ctx;
}

/*
 * Get the context for a task and increment its pin_count so it
 * can't get swapped to another task.  This also increments its
 * reference count so that the context can't get freed.
 */
P
Peter Zijlstra 已提交
751 752
static struct perf_event_context *
perf_pin_task_context(struct task_struct *task, int ctxn)
753
{
754
	struct perf_event_context *ctx;
755 756
	unsigned long flags;

P
Peter Zijlstra 已提交
757
	ctx = perf_lock_task_context(task, ctxn, &flags);
758 759
	if (ctx) {
		++ctx->pin_count;
760
		raw_spin_unlock_irqrestore(&ctx->lock, flags);
761 762 763 764
	}
	return ctx;
}

765
static void perf_unpin_context(struct perf_event_context *ctx)
766 767 768
{
	unsigned long flags;

769
	raw_spin_lock_irqsave(&ctx->lock, flags);
770
	--ctx->pin_count;
771
	raw_spin_unlock_irqrestore(&ctx->lock, flags);
772 773
}

774 775 776 777 778 779 780 781 782 783 784
/*
 * Update the record of the current time in a context.
 */
static void update_context_time(struct perf_event_context *ctx)
{
	u64 now = perf_clock();

	ctx->time += now - ctx->timestamp;
	ctx->timestamp = now;
}

785 786 787
static u64 perf_event_time(struct perf_event *event)
{
	struct perf_event_context *ctx = event->ctx;
S
Stephane Eranian 已提交
788 789 790 791

	if (is_cgroup_event(event))
		return perf_cgroup_event_time(event);

792 793 794
	return ctx ? ctx->time : 0;
}

795 796
/*
 * Update the total_time_enabled and total_time_running fields for a event.
797
 * The caller of this function needs to hold the ctx->lock.
798 799 800 801 802 803 804 805 806
 */
static void update_event_times(struct perf_event *event)
{
	struct perf_event_context *ctx = event->ctx;
	u64 run_end;

	if (event->state < PERF_EVENT_STATE_INACTIVE ||
	    event->group_leader->state < PERF_EVENT_STATE_INACTIVE)
		return;
S
Stephane Eranian 已提交
807 808 809 810 811 812 813 814 815 816 817
	/*
	 * in cgroup mode, time_enabled represents
	 * the time the event was enabled AND active
	 * tasks were in the monitored cgroup. This is
	 * independent of the activity of the context as
	 * there may be a mix of cgroup and non-cgroup events.
	 *
	 * That is why we treat cgroup events differently
	 * here.
	 */
	if (is_cgroup_event(event))
818
		run_end = perf_event_time(event);
S
Stephane Eranian 已提交
819 820
	else if (ctx->is_active)
		run_end = ctx->time;
821 822 823 824
	else
		run_end = event->tstamp_stopped;

	event->total_time_enabled = run_end - event->tstamp_enabled;
825 826 827 828

	if (event->state == PERF_EVENT_STATE_INACTIVE)
		run_end = event->tstamp_stopped;
	else
829
		run_end = perf_event_time(event);
830 831

	event->total_time_running = run_end - event->tstamp_running;
S
Stephane Eranian 已提交
832

833 834
}

835 836 837 838 839 840 841 842 843 844 845 846
/*
 * Update total_time_enabled and total_time_running for all events in a group.
 */
static void update_group_times(struct perf_event *leader)
{
	struct perf_event *event;

	update_event_times(leader);
	list_for_each_entry(event, &leader->sibling_list, group_entry)
		update_event_times(event);
}

847 848 849 850 851 852 853 854 855
static struct list_head *
ctx_group_list(struct perf_event *event, struct perf_event_context *ctx)
{
	if (event->attr.pinned)
		return &ctx->pinned_groups;
	else
		return &ctx->flexible_groups;
}

856
/*
857
 * Add a event from the lists for its context.
858 859
 * Must be called with ctx->mutex and ctx->lock held.
 */
860
static void
861
list_add_event(struct perf_event *event, struct perf_event_context *ctx)
862
{
863 864
	WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
	event->attach_state |= PERF_ATTACH_CONTEXT;
865 866

	/*
867 868 869
	 * If we're a stand alone event or group leader, we go to the context
	 * list, group events are kept attached to the group so that
	 * perf_group_detach can, at all times, locate all siblings.
870
	 */
871
	if (event->group_leader == event) {
872 873
		struct list_head *list;

874 875 876
		if (is_software_event(event))
			event->group_flags |= PERF_GROUP_SOFTWARE;

877 878
		list = ctx_group_list(event, ctx);
		list_add_tail(&event->group_entry, list);
P
Peter Zijlstra 已提交
879
	}
P
Peter Zijlstra 已提交
880

881
	if (is_cgroup_event(event))
S
Stephane Eranian 已提交
882 883
		ctx->nr_cgroups++;

884
	list_add_rcu(&event->event_entry, &ctx->event_list);
885
	if (!ctx->nr_events)
P
Peter Zijlstra 已提交
886
		perf_pmu_rotate_start(ctx->pmu);
887 888
	ctx->nr_events++;
	if (event->attr.inherit_stat)
889
		ctx->nr_stat++;
890 891
}

892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930
/*
 * Called at perf_event creation and when events are attached/detached from a
 * group.
 */
static void perf_event__read_size(struct perf_event *event)
{
	int entry = sizeof(u64); /* value */
	int size = 0;
	int nr = 1;

	if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
		size += sizeof(u64);

	if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
		size += sizeof(u64);

	if (event->attr.read_format & PERF_FORMAT_ID)
		entry += sizeof(u64);

	if (event->attr.read_format & PERF_FORMAT_GROUP) {
		nr += event->group_leader->nr_siblings;
		size += sizeof(u64);
	}

	size += entry * nr;
	event->read_size = size;
}

static void perf_event__header_size(struct perf_event *event)
{
	struct perf_sample_data *data;
	u64 sample_type = event->attr.sample_type;
	u16 size = 0;

	perf_event__read_size(event);

	if (sample_type & PERF_SAMPLE_IP)
		size += sizeof(data->ip);

931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948
	if (sample_type & PERF_SAMPLE_ADDR)
		size += sizeof(data->addr);

	if (sample_type & PERF_SAMPLE_PERIOD)
		size += sizeof(data->period);

	if (sample_type & PERF_SAMPLE_READ)
		size += event->read_size;

	event->header_size = size;
}

static void perf_event__id_header_size(struct perf_event *event)
{
	struct perf_sample_data *data;
	u64 sample_type = event->attr.sample_type;
	u16 size = 0;

949 950 951 952 953 954 955 956 957 958 959 960 961 962 963
	if (sample_type & PERF_SAMPLE_TID)
		size += sizeof(data->tid_entry);

	if (sample_type & PERF_SAMPLE_TIME)
		size += sizeof(data->time);

	if (sample_type & PERF_SAMPLE_ID)
		size += sizeof(data->id);

	if (sample_type & PERF_SAMPLE_STREAM_ID)
		size += sizeof(data->stream_id);

	if (sample_type & PERF_SAMPLE_CPU)
		size += sizeof(data->cpu_entry);

964
	event->id_header_size = size;
965 966
}

967 968
static void perf_group_attach(struct perf_event *event)
{
969
	struct perf_event *group_leader = event->group_leader, *pos;
970

P
Peter Zijlstra 已提交
971 972 973 974 975 976
	/*
	 * We can have double attach due to group movement in perf_event_open.
	 */
	if (event->attach_state & PERF_ATTACH_GROUP)
		return;

977 978 979 980 981 982 983 984 985 986 987
	event->attach_state |= PERF_ATTACH_GROUP;

	if (group_leader == event)
		return;

	if (group_leader->group_flags & PERF_GROUP_SOFTWARE &&
			!is_software_event(event))
		group_leader->group_flags &= ~PERF_GROUP_SOFTWARE;

	list_add_tail(&event->group_entry, &group_leader->sibling_list);
	group_leader->nr_siblings++;
988 989 990 991 992

	perf_event__header_size(group_leader);

	list_for_each_entry(pos, &group_leader->sibling_list, group_entry)
		perf_event__header_size(pos);
993 994
}

995
/*
996
 * Remove a event from the lists for its context.
997
 * Must be called with ctx->mutex and ctx->lock held.
998
 */
999
static void
1000
list_del_event(struct perf_event *event, struct perf_event_context *ctx)
1001
{
1002
	struct perf_cpu_context *cpuctx;
1003 1004 1005 1006
	/*
	 * We can have double detach due to exit/hot-unplug + close.
	 */
	if (!(event->attach_state & PERF_ATTACH_CONTEXT))
1007
		return;
1008 1009 1010

	event->attach_state &= ~PERF_ATTACH_CONTEXT;

1011
	if (is_cgroup_event(event)) {
S
Stephane Eranian 已提交
1012
		ctx->nr_cgroups--;
1013 1014 1015 1016 1017 1018 1019 1020 1021
		cpuctx = __get_cpu_context(ctx);
		/*
		 * if there are no more cgroup events
		 * then cler cgrp to avoid stale pointer
		 * in update_cgrp_time_from_cpuctx()
		 */
		if (!ctx->nr_cgroups)
			cpuctx->cgrp = NULL;
	}
S
Stephane Eranian 已提交
1022

1023 1024
	ctx->nr_events--;
	if (event->attr.inherit_stat)
1025
		ctx->nr_stat--;
1026

1027
	list_del_rcu(&event->event_entry);
1028

1029 1030
	if (event->group_leader == event)
		list_del_init(&event->group_entry);
P
Peter Zijlstra 已提交
1031

1032
	update_group_times(event);
1033 1034 1035 1036 1037 1038 1039 1040 1041 1042

	/*
	 * If event was in error state, then keep it
	 * that way, otherwise bogus counts will be
	 * returned on read(). The only way to get out
	 * of error state is by explicit re-enabling
	 * of the event
	 */
	if (event->state > PERF_EVENT_STATE_OFF)
		event->state = PERF_EVENT_STATE_OFF;
1043 1044
}

1045
static void perf_group_detach(struct perf_event *event)
1046 1047
{
	struct perf_event *sibling, *tmp;
1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063
	struct list_head *list = NULL;

	/*
	 * We can have double detach due to exit/hot-unplug + close.
	 */
	if (!(event->attach_state & PERF_ATTACH_GROUP))
		return;

	event->attach_state &= ~PERF_ATTACH_GROUP;

	/*
	 * If this is a sibling, remove it from its group.
	 */
	if (event->group_leader != event) {
		list_del_init(&event->group_entry);
		event->group_leader->nr_siblings--;
1064
		goto out;
1065 1066 1067 1068
	}

	if (!list_empty(&event->group_entry))
		list = &event->group_entry;
1069

1070
	/*
1071 1072
	 * If this was a group event with sibling events then
	 * upgrade the siblings to singleton events by adding them
1073
	 * to whatever list we are on.
1074
	 */
1075
	list_for_each_entry_safe(sibling, tmp, &event->sibling_list, group_entry) {
1076 1077
		if (list)
			list_move_tail(&sibling->group_entry, list);
1078
		sibling->group_leader = sibling;
1079 1080 1081

		/* Inherit group flags from the previous leader */
		sibling->group_flags = event->group_flags;
1082
	}
1083 1084 1085 1086 1087 1088

out:
	perf_event__header_size(event->group_leader);

	list_for_each_entry(tmp, &event->group_leader->sibling_list, group_entry)
		perf_event__header_size(tmp);
1089 1090
}

1091 1092 1093
static inline int
event_filter_match(struct perf_event *event)
{
S
Stephane Eranian 已提交
1094 1095
	return (event->cpu == -1 || event->cpu == smp_processor_id())
	    && perf_cgroup_match(event);
1096 1097
}

1098 1099
static void
event_sched_out(struct perf_event *event,
1100
		  struct perf_cpu_context *cpuctx,
1101
		  struct perf_event_context *ctx)
1102
{
1103
	u64 tstamp = perf_event_time(event);
1104 1105 1106 1107 1108 1109 1110 1111 1112
	u64 delta;
	/*
	 * An event which could not be activated because of
	 * filter mismatch still needs to have its timings
	 * maintained, otherwise bogus information is return
	 * via read() for time_enabled, time_running:
	 */
	if (event->state == PERF_EVENT_STATE_INACTIVE
	    && !event_filter_match(event)) {
S
Stephane Eranian 已提交
1113
		delta = tstamp - event->tstamp_stopped;
1114
		event->tstamp_running += delta;
1115
		event->tstamp_stopped = tstamp;
1116 1117
	}

1118
	if (event->state != PERF_EVENT_STATE_ACTIVE)
1119
		return;
1120

1121 1122 1123 1124
	event->state = PERF_EVENT_STATE_INACTIVE;
	if (event->pending_disable) {
		event->pending_disable = 0;
		event->state = PERF_EVENT_STATE_OFF;
1125
	}
1126
	event->tstamp_stopped = tstamp;
P
Peter Zijlstra 已提交
1127
	event->pmu->del(event, 0);
1128
	event->oncpu = -1;
1129

1130
	if (!is_software_event(event))
1131 1132
		cpuctx->active_oncpu--;
	ctx->nr_active--;
1133 1134
	if (event->attr.freq && event->attr.sample_freq)
		ctx->nr_freq--;
1135
	if (event->attr.exclusive || !cpuctx->active_oncpu)
1136 1137 1138
		cpuctx->exclusive = 0;
}

1139
static void
1140
group_sched_out(struct perf_event *group_event,
1141
		struct perf_cpu_context *cpuctx,
1142
		struct perf_event_context *ctx)
1143
{
1144
	struct perf_event *event;
1145
	int state = group_event->state;
1146

1147
	event_sched_out(group_event, cpuctx, ctx);
1148 1149 1150 1151

	/*
	 * Schedule out siblings (if any):
	 */
1152 1153
	list_for_each_entry(event, &group_event->sibling_list, group_entry)
		event_sched_out(event, cpuctx, ctx);
1154

1155
	if (state == PERF_EVENT_STATE_ACTIVE && group_event->attr.exclusive)
1156 1157 1158
		cpuctx->exclusive = 0;
}

T
Thomas Gleixner 已提交
1159
/*
1160
 * Cross CPU call to remove a performance event
T
Thomas Gleixner 已提交
1161
 *
1162
 * We disable the event on the hardware level first. After that we
T
Thomas Gleixner 已提交
1163 1164
 * remove it from the context list.
 */
1165
static int __perf_remove_from_context(void *info)
T
Thomas Gleixner 已提交
1166
{
1167 1168
	struct perf_event *event = info;
	struct perf_event_context *ctx = event->ctx;
P
Peter Zijlstra 已提交
1169
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
T
Thomas Gleixner 已提交
1170

1171
	raw_spin_lock(&ctx->lock);
1172 1173
	event_sched_out(event, cpuctx, ctx);
	list_del_event(event, ctx);
1174 1175 1176 1177
	if (!ctx->nr_events && cpuctx->task_ctx == ctx) {
		ctx->is_active = 0;
		cpuctx->task_ctx = NULL;
	}
1178
	raw_spin_unlock(&ctx->lock);
1179 1180

	return 0;
T
Thomas Gleixner 已提交
1181 1182 1183 1184
}


/*
1185
 * Remove the event from a task's (or a CPU's) list of events.
T
Thomas Gleixner 已提交
1186
 *
1187
 * CPU events are removed with a smp call. For task events we only
T
Thomas Gleixner 已提交
1188
 * call when the task is on a CPU.
1189
 *
1190 1191
 * If event->ctx is a cloned context, callers must make sure that
 * every task struct that event->ctx->task could possibly point to
1192 1193
 * remains valid.  This is OK when called from perf_release since
 * that only calls us on the top-level context, which can't be a clone.
1194
 * When called from perf_event_exit_task, it's OK because the
1195
 * context has been detached from its task.
T
Thomas Gleixner 已提交
1196
 */
1197
static void perf_remove_from_context(struct perf_event *event)
T
Thomas Gleixner 已提交
1198
{
1199
	struct perf_event_context *ctx = event->ctx;
T
Thomas Gleixner 已提交
1200 1201
	struct task_struct *task = ctx->task;

1202 1203
	lockdep_assert_held(&ctx->mutex);

T
Thomas Gleixner 已提交
1204 1205
	if (!task) {
		/*
1206
		 * Per cpu events are removed via an smp call and
1207
		 * the removal is always successful.
T
Thomas Gleixner 已提交
1208
		 */
1209
		cpu_function_call(event->cpu, __perf_remove_from_context, event);
T
Thomas Gleixner 已提交
1210 1211 1212 1213
		return;
	}

retry:
1214 1215
	if (!task_function_call(task, __perf_remove_from_context, event))
		return;
T
Thomas Gleixner 已提交
1216

1217
	raw_spin_lock_irq(&ctx->lock);
T
Thomas Gleixner 已提交
1218
	/*
1219 1220
	 * If we failed to find a running task, but find the context active now
	 * that we've acquired the ctx->lock, retry.
T
Thomas Gleixner 已提交
1221
	 */
1222
	if (ctx->is_active) {
1223
		raw_spin_unlock_irq(&ctx->lock);
T
Thomas Gleixner 已提交
1224 1225 1226 1227
		goto retry;
	}

	/*
1228 1229
	 * Since the task isn't running, its safe to remove the event, us
	 * holding the ctx->lock ensures the task won't get scheduled in.
T
Thomas Gleixner 已提交
1230
	 */
1231
	list_del_event(event, ctx);
1232
	raw_spin_unlock_irq(&ctx->lock);
T
Thomas Gleixner 已提交
1233 1234
}

1235
/*
1236
 * Cross CPU call to disable a performance event
1237
 */
1238
static int __perf_event_disable(void *info)
1239
{
1240 1241
	struct perf_event *event = info;
	struct perf_event_context *ctx = event->ctx;
P
Peter Zijlstra 已提交
1242
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1243 1244

	/*
1245 1246
	 * If this is a per-task event, need to check whether this
	 * event's task is the current task on this cpu.
1247 1248 1249
	 *
	 * Can trigger due to concurrent perf_event_context_sched_out()
	 * flipping contexts around.
1250
	 */
1251
	if (ctx->task && cpuctx->task_ctx != ctx)
1252
		return -EINVAL;
1253

1254
	raw_spin_lock(&ctx->lock);
1255 1256

	/*
1257
	 * If the event is on, turn it off.
1258 1259
	 * If it is in error state, leave it in error state.
	 */
1260
	if (event->state >= PERF_EVENT_STATE_INACTIVE) {
1261
		update_context_time(ctx);
S
Stephane Eranian 已提交
1262
		update_cgrp_time_from_event(event);
1263 1264 1265
		update_group_times(event);
		if (event == event->group_leader)
			group_sched_out(event, cpuctx, ctx);
1266
		else
1267 1268
			event_sched_out(event, cpuctx, ctx);
		event->state = PERF_EVENT_STATE_OFF;
1269 1270
	}

1271
	raw_spin_unlock(&ctx->lock);
1272 1273

	return 0;
1274 1275 1276
}

/*
1277
 * Disable a event.
1278
 *
1279 1280
 * If event->ctx is a cloned context, callers must make sure that
 * every task struct that event->ctx->task could possibly point to
1281
 * remains valid.  This condition is satisifed when called through
1282 1283 1284 1285
 * perf_event_for_each_child or perf_event_for_each because they
 * hold the top-level event's child_mutex, so any descendant that
 * goes to exit will block in sync_child_event.
 * When called from perf_pending_event it's OK because event->ctx
1286
 * is the current context on this CPU and preemption is disabled,
1287
 * hence we can't get into perf_event_task_sched_out for this context.
1288
 */
1289
void perf_event_disable(struct perf_event *event)
1290
{
1291
	struct perf_event_context *ctx = event->ctx;
1292 1293 1294 1295
	struct task_struct *task = ctx->task;

	if (!task) {
		/*
1296
		 * Disable the event on the cpu that it's on
1297
		 */
1298
		cpu_function_call(event->cpu, __perf_event_disable, event);
1299 1300 1301
		return;
	}

P
Peter Zijlstra 已提交
1302
retry:
1303 1304
	if (!task_function_call(task, __perf_event_disable, event))
		return;
1305

1306
	raw_spin_lock_irq(&ctx->lock);
1307
	/*
1308
	 * If the event is still active, we need to retry the cross-call.
1309
	 */
1310
	if (event->state == PERF_EVENT_STATE_ACTIVE) {
1311
		raw_spin_unlock_irq(&ctx->lock);
1312 1313 1314 1315 1316
		/*
		 * Reload the task pointer, it might have been changed by
		 * a concurrent perf_event_context_sched_out().
		 */
		task = ctx->task;
1317 1318 1319 1320 1321 1322 1323
		goto retry;
	}

	/*
	 * Since we have the lock this context can't be scheduled
	 * in, so we can change the state safely.
	 */
1324 1325 1326
	if (event->state == PERF_EVENT_STATE_INACTIVE) {
		update_group_times(event);
		event->state = PERF_EVENT_STATE_OFF;
1327
	}
1328
	raw_spin_unlock_irq(&ctx->lock);
1329
}
1330
EXPORT_SYMBOL_GPL(perf_event_disable);
1331

S
Stephane Eranian 已提交
1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366
static void perf_set_shadow_time(struct perf_event *event,
				 struct perf_event_context *ctx,
				 u64 tstamp)
{
	/*
	 * use the correct time source for the time snapshot
	 *
	 * We could get by without this by leveraging the
	 * fact that to get to this function, the caller
	 * has most likely already called update_context_time()
	 * and update_cgrp_time_xx() and thus both timestamp
	 * are identical (or very close). Given that tstamp is,
	 * already adjusted for cgroup, we could say that:
	 *    tstamp - ctx->timestamp
	 * is equivalent to
	 *    tstamp - cgrp->timestamp.
	 *
	 * Then, in perf_output_read(), the calculation would
	 * work with no changes because:
	 * - event is guaranteed scheduled in
	 * - no scheduled out in between
	 * - thus the timestamp would be the same
	 *
	 * But this is a bit hairy.
	 *
	 * So instead, we have an explicit cgroup call to remain
	 * within the time time source all along. We believe it
	 * is cleaner and simpler to understand.
	 */
	if (is_cgroup_event(event))
		perf_cgroup_set_shadow_time(event, tstamp);
	else
		event->shadow_ctx_time = tstamp - ctx->timestamp;
}

P
Peter Zijlstra 已提交
1367 1368 1369 1370
#define MAX_INTERRUPTS (~0ULL)

static void perf_log_throttle(struct perf_event *event, int enable);

1371
static int
1372
event_sched_in(struct perf_event *event,
1373
		 struct perf_cpu_context *cpuctx,
1374
		 struct perf_event_context *ctx)
1375
{
1376 1377
	u64 tstamp = perf_event_time(event);

1378
	if (event->state <= PERF_EVENT_STATE_OFF)
1379 1380
		return 0;

1381
	event->state = PERF_EVENT_STATE_ACTIVE;
1382
	event->oncpu = smp_processor_id();
P
Peter Zijlstra 已提交
1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393

	/*
	 * Unthrottle events, since we scheduled we might have missed several
	 * ticks already, also for a heavily scheduling task there is little
	 * guarantee it'll get a tick in a timely manner.
	 */
	if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) {
		perf_log_throttle(event, 1);
		event->hw.interrupts = 0;
	}

1394 1395 1396 1397 1398
	/*
	 * The new state must be visible before we turn it on in the hardware:
	 */
	smp_wmb();

P
Peter Zijlstra 已提交
1399
	if (event->pmu->add(event, PERF_EF_START)) {
1400 1401
		event->state = PERF_EVENT_STATE_INACTIVE;
		event->oncpu = -1;
1402 1403 1404
		return -EAGAIN;
	}

1405
	event->tstamp_running += tstamp - event->tstamp_stopped;
1406

S
Stephane Eranian 已提交
1407
	perf_set_shadow_time(event, ctx, tstamp);
1408

1409
	if (!is_software_event(event))
1410
		cpuctx->active_oncpu++;
1411
	ctx->nr_active++;
1412 1413
	if (event->attr.freq && event->attr.sample_freq)
		ctx->nr_freq++;
1414

1415
	if (event->attr.exclusive)
1416 1417
		cpuctx->exclusive = 1;

1418 1419 1420
	return 0;
}

1421
static int
1422
group_sched_in(struct perf_event *group_event,
1423
	       struct perf_cpu_context *cpuctx,
1424
	       struct perf_event_context *ctx)
1425
{
1426
	struct perf_event *event, *partial_group = NULL;
P
Peter Zijlstra 已提交
1427
	struct pmu *pmu = group_event->pmu;
1428 1429
	u64 now = ctx->time;
	bool simulate = false;
1430

1431
	if (group_event->state == PERF_EVENT_STATE_OFF)
1432 1433
		return 0;

P
Peter Zijlstra 已提交
1434
	pmu->start_txn(pmu);
1435

1436
	if (event_sched_in(group_event, cpuctx, ctx)) {
P
Peter Zijlstra 已提交
1437
		pmu->cancel_txn(pmu);
1438
		return -EAGAIN;
1439
	}
1440 1441 1442 1443

	/*
	 * Schedule in siblings as one group (if any):
	 */
1444
	list_for_each_entry(event, &group_event->sibling_list, group_entry) {
1445
		if (event_sched_in(event, cpuctx, ctx)) {
1446
			partial_group = event;
1447 1448 1449 1450
			goto group_error;
		}
	}

1451
	if (!pmu->commit_txn(pmu))
1452
		return 0;
1453

1454 1455 1456 1457
group_error:
	/*
	 * Groups can be scheduled in as one unit only, so undo any
	 * partial group before returning:
1458 1459 1460 1461 1462 1463 1464 1465 1466 1467
	 * The events up to the failed event are scheduled out normally,
	 * tstamp_stopped will be updated.
	 *
	 * The failed events and the remaining siblings need to have
	 * their timings updated as if they had gone thru event_sched_in()
	 * and event_sched_out(). This is required to get consistent timings
	 * across the group. This also takes care of the case where the group
	 * could never be scheduled by ensuring tstamp_stopped is set to mark
	 * the time the event was actually stopped, such that time delta
	 * calculation in update_event_times() is correct.
1468
	 */
1469 1470
	list_for_each_entry(event, &group_event->sibling_list, group_entry) {
		if (event == partial_group)
1471 1472 1473 1474 1475 1476 1477 1478
			simulate = true;

		if (simulate) {
			event->tstamp_running += now - event->tstamp_stopped;
			event->tstamp_stopped = now;
		} else {
			event_sched_out(event, cpuctx, ctx);
		}
1479
	}
1480
	event_sched_out(group_event, cpuctx, ctx);
1481

P
Peter Zijlstra 已提交
1482
	pmu->cancel_txn(pmu);
1483

1484 1485 1486
	return -EAGAIN;
}

1487
/*
1488
 * Work out whether we can put this event group on the CPU now.
1489
 */
1490
static int group_can_go_on(struct perf_event *event,
1491 1492 1493 1494
			   struct perf_cpu_context *cpuctx,
			   int can_add_hw)
{
	/*
1495
	 * Groups consisting entirely of software events can always go on.
1496
	 */
1497
	if (event->group_flags & PERF_GROUP_SOFTWARE)
1498 1499 1500
		return 1;
	/*
	 * If an exclusive group is already on, no other hardware
1501
	 * events can go on.
1502 1503 1504 1505 1506
	 */
	if (cpuctx->exclusive)
		return 0;
	/*
	 * If this group is exclusive and there are already
1507
	 * events on the CPU, it can't go on.
1508
	 */
1509
	if (event->attr.exclusive && cpuctx->active_oncpu)
1510 1511 1512 1513 1514 1515 1516 1517
		return 0;
	/*
	 * Otherwise, try to add it if all previous groups were able
	 * to go on.
	 */
	return can_add_hw;
}

1518 1519
static void add_event_to_ctx(struct perf_event *event,
			       struct perf_event_context *ctx)
1520
{
1521 1522
	u64 tstamp = perf_event_time(event);

1523
	list_add_event(event, ctx);
1524
	perf_group_attach(event);
1525 1526 1527
	event->tstamp_enabled = tstamp;
	event->tstamp_running = tstamp;
	event->tstamp_stopped = tstamp;
1528 1529
}

1530 1531 1532 1533 1534 1535
static void task_ctx_sched_out(struct perf_event_context *ctx);
static void
ctx_sched_in(struct perf_event_context *ctx,
	     struct perf_cpu_context *cpuctx,
	     enum event_type_t event_type,
	     struct task_struct *task);
1536

1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548
static void perf_event_sched_in(struct perf_cpu_context *cpuctx,
				struct perf_event_context *ctx,
				struct task_struct *task)
{
	cpu_ctx_sched_in(cpuctx, EVENT_PINNED, task);
	if (ctx)
		ctx_sched_in(ctx, cpuctx, EVENT_PINNED, task);
	cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE, task);
	if (ctx)
		ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE, task);
}

T
Thomas Gleixner 已提交
1549
/*
1550
 * Cross CPU call to install and enable a performance event
1551 1552
 *
 * Must be called with ctx->mutex held
T
Thomas Gleixner 已提交
1553
 */
1554
static int  __perf_install_in_context(void *info)
T
Thomas Gleixner 已提交
1555
{
1556 1557
	struct perf_event *event = info;
	struct perf_event_context *ctx = event->ctx;
P
Peter Zijlstra 已提交
1558
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1559 1560 1561
	struct perf_event_context *task_ctx = cpuctx->task_ctx;
	struct task_struct *task = current;

1562
	perf_ctx_lock(cpuctx, task_ctx);
1563
	perf_pmu_disable(cpuctx->ctx.pmu);
T
Thomas Gleixner 已提交
1564 1565

	/*
1566
	 * If there was an active task_ctx schedule it out.
T
Thomas Gleixner 已提交
1567
	 */
1568
	if (task_ctx)
1569
		task_ctx_sched_out(task_ctx);
1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583

	/*
	 * If the context we're installing events in is not the
	 * active task_ctx, flip them.
	 */
	if (ctx->task && task_ctx != ctx) {
		if (task_ctx)
			raw_spin_unlock(&task_ctx->lock);
		raw_spin_lock(&ctx->lock);
		task_ctx = ctx;
	}

	if (task_ctx) {
		cpuctx->task_ctx = task_ctx;
1584 1585
		task = task_ctx->task;
	}
1586

1587
	cpu_ctx_sched_out(cpuctx, EVENT_ALL);
T
Thomas Gleixner 已提交
1588

1589
	update_context_time(ctx);
S
Stephane Eranian 已提交
1590 1591 1592 1593 1594 1595
	/*
	 * update cgrp time only if current cgrp
	 * matches event->cgrp. Must be done before
	 * calling add_event_to_ctx()
	 */
	update_cgrp_time_from_event(event);
T
Thomas Gleixner 已提交
1596

1597
	add_event_to_ctx(event, ctx);
T
Thomas Gleixner 已提交
1598

1599
	/*
1600
	 * Schedule everything back in
1601
	 */
1602
	perf_event_sched_in(cpuctx, task_ctx, task);
1603 1604 1605

	perf_pmu_enable(cpuctx->ctx.pmu);
	perf_ctx_unlock(cpuctx, task_ctx);
1606 1607

	return 0;
T
Thomas Gleixner 已提交
1608 1609 1610
}

/*
1611
 * Attach a performance event to a context
T
Thomas Gleixner 已提交
1612
 *
1613 1614
 * First we add the event to the list with the hardware enable bit
 * in event->hw_config cleared.
T
Thomas Gleixner 已提交
1615
 *
1616
 * If the event is attached to a task which is on a CPU we use a smp
T
Thomas Gleixner 已提交
1617 1618 1619 1620
 * call to enable it in the task context. The task might have been
 * scheduled away, but we check this in the smp call again.
 */
static void
1621 1622
perf_install_in_context(struct perf_event_context *ctx,
			struct perf_event *event,
T
Thomas Gleixner 已提交
1623 1624 1625 1626
			int cpu)
{
	struct task_struct *task = ctx->task;

1627 1628
	lockdep_assert_held(&ctx->mutex);

1629 1630
	event->ctx = ctx;

T
Thomas Gleixner 已提交
1631 1632
	if (!task) {
		/*
1633
		 * Per cpu events are installed via an smp call and
1634
		 * the install is always successful.
T
Thomas Gleixner 已提交
1635
		 */
1636
		cpu_function_call(cpu, __perf_install_in_context, event);
T
Thomas Gleixner 已提交
1637 1638 1639 1640
		return;
	}

retry:
1641 1642
	if (!task_function_call(task, __perf_install_in_context, event))
		return;
T
Thomas Gleixner 已提交
1643

1644
	raw_spin_lock_irq(&ctx->lock);
T
Thomas Gleixner 已提交
1645
	/*
1646 1647
	 * If we failed to find a running task, but find the context active now
	 * that we've acquired the ctx->lock, retry.
T
Thomas Gleixner 已提交
1648
	 */
1649
	if (ctx->is_active) {
1650
		raw_spin_unlock_irq(&ctx->lock);
T
Thomas Gleixner 已提交
1651 1652 1653 1654
		goto retry;
	}

	/*
1655 1656
	 * Since the task isn't running, its safe to add the event, us holding
	 * the ctx->lock ensures the task won't get scheduled in.
T
Thomas Gleixner 已提交
1657
	 */
1658
	add_event_to_ctx(event, ctx);
1659
	raw_spin_unlock_irq(&ctx->lock);
T
Thomas Gleixner 已提交
1660 1661
}

1662
/*
1663
 * Put a event into inactive state and update time fields.
1664 1665 1666 1667 1668 1669
 * Enabling the leader of a group effectively enables all
 * the group members that aren't explicitly disabled, so we
 * have to update their ->tstamp_enabled also.
 * Note: this works for group members as well as group leaders
 * since the non-leader members' sibling_lists will be empty.
 */
1670
static void __perf_event_mark_enabled(struct perf_event *event)
1671
{
1672
	struct perf_event *sub;
1673
	u64 tstamp = perf_event_time(event);
1674

1675
	event->state = PERF_EVENT_STATE_INACTIVE;
1676
	event->tstamp_enabled = tstamp - event->total_time_enabled;
P
Peter Zijlstra 已提交
1677
	list_for_each_entry(sub, &event->sibling_list, group_entry) {
1678 1679
		if (sub->state >= PERF_EVENT_STATE_INACTIVE)
			sub->tstamp_enabled = tstamp - sub->total_time_enabled;
P
Peter Zijlstra 已提交
1680
	}
1681 1682
}

1683
/*
1684
 * Cross CPU call to enable a performance event
1685
 */
1686
static int __perf_event_enable(void *info)
1687
{
1688 1689 1690
	struct perf_event *event = info;
	struct perf_event_context *ctx = event->ctx;
	struct perf_event *leader = event->group_leader;
P
Peter Zijlstra 已提交
1691
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1692
	int err;
1693

1694 1695
	if (WARN_ON_ONCE(!ctx->is_active))
		return -EINVAL;
1696

1697
	raw_spin_lock(&ctx->lock);
1698
	update_context_time(ctx);
1699

1700
	if (event->state >= PERF_EVENT_STATE_INACTIVE)
1701
		goto unlock;
S
Stephane Eranian 已提交
1702 1703 1704 1705

	/*
	 * set current task's cgroup time reference point
	 */
1706
	perf_cgroup_set_timestamp(current, ctx);
S
Stephane Eranian 已提交
1707

1708
	__perf_event_mark_enabled(event);
1709

S
Stephane Eranian 已提交
1710 1711 1712
	if (!event_filter_match(event)) {
		if (is_cgroup_event(event))
			perf_cgroup_defer_enabled(event);
1713
		goto unlock;
S
Stephane Eranian 已提交
1714
	}
1715

1716
	/*
1717
	 * If the event is in a group and isn't the group leader,
1718
	 * then don't put it on unless the group is on.
1719
	 */
1720
	if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE)
1721
		goto unlock;
1722

1723
	if (!group_can_go_on(event, cpuctx, 1)) {
1724
		err = -EEXIST;
1725
	} else {
1726
		if (event == leader)
1727
			err = group_sched_in(event, cpuctx, ctx);
1728
		else
1729
			err = event_sched_in(event, cpuctx, ctx);
1730
	}
1731 1732 1733

	if (err) {
		/*
1734
		 * If this event can't go on and it's part of a
1735 1736
		 * group, then the whole group has to come off.
		 */
1737
		if (leader != event)
1738
			group_sched_out(leader, cpuctx, ctx);
1739
		if (leader->attr.pinned) {
1740
			update_group_times(leader);
1741
			leader->state = PERF_EVENT_STATE_ERROR;
1742
		}
1743 1744
	}

P
Peter Zijlstra 已提交
1745
unlock:
1746
	raw_spin_unlock(&ctx->lock);
1747 1748

	return 0;
1749 1750 1751
}

/*
1752
 * Enable a event.
1753
 *
1754 1755
 * If event->ctx is a cloned context, callers must make sure that
 * every task struct that event->ctx->task could possibly point to
1756
 * remains valid.  This condition is satisfied when called through
1757 1758
 * perf_event_for_each_child or perf_event_for_each as described
 * for perf_event_disable.
1759
 */
1760
void perf_event_enable(struct perf_event *event)
1761
{
1762
	struct perf_event_context *ctx = event->ctx;
1763 1764 1765 1766
	struct task_struct *task = ctx->task;

	if (!task) {
		/*
1767
		 * Enable the event on the cpu that it's on
1768
		 */
1769
		cpu_function_call(event->cpu, __perf_event_enable, event);
1770 1771 1772
		return;
	}

1773
	raw_spin_lock_irq(&ctx->lock);
1774
	if (event->state >= PERF_EVENT_STATE_INACTIVE)
1775 1776 1777
		goto out;

	/*
1778 1779
	 * If the event is in error state, clear that first.
	 * That way, if we see the event in error state below, we
1780 1781 1782 1783
	 * know that it has gone back into error state, as distinct
	 * from the task having been scheduled away before the
	 * cross-call arrived.
	 */
1784 1785
	if (event->state == PERF_EVENT_STATE_ERROR)
		event->state = PERF_EVENT_STATE_OFF;
1786

P
Peter Zijlstra 已提交
1787
retry:
1788
	if (!ctx->is_active) {
1789
		__perf_event_mark_enabled(event);
1790 1791 1792
		goto out;
	}

1793
	raw_spin_unlock_irq(&ctx->lock);
1794 1795 1796

	if (!task_function_call(task, __perf_event_enable, event))
		return;
1797

1798
	raw_spin_lock_irq(&ctx->lock);
1799 1800

	/*
1801
	 * If the context is active and the event is still off,
1802 1803
	 * we need to retry the cross-call.
	 */
1804 1805 1806 1807 1808 1809
	if (ctx->is_active && event->state == PERF_EVENT_STATE_OFF) {
		/*
		 * task could have been flipped by a concurrent
		 * perf_event_context_sched_out()
		 */
		task = ctx->task;
1810
		goto retry;
1811
	}
1812

P
Peter Zijlstra 已提交
1813
out:
1814
	raw_spin_unlock_irq(&ctx->lock);
1815
}
1816
EXPORT_SYMBOL_GPL(perf_event_enable);
1817

1818
int perf_event_refresh(struct perf_event *event, int refresh)
1819
{
1820
	/*
1821
	 * not supported on inherited events
1822
	 */
1823
	if (event->attr.inherit || !is_sampling_event(event))
1824 1825
		return -EINVAL;

1826 1827
	atomic_add(refresh, &event->event_limit);
	perf_event_enable(event);
1828 1829

	return 0;
1830
}
1831
EXPORT_SYMBOL_GPL(perf_event_refresh);
1832

1833 1834 1835
static void ctx_sched_out(struct perf_event_context *ctx,
			  struct perf_cpu_context *cpuctx,
			  enum event_type_t event_type)
1836
{
1837
	struct perf_event *event;
1838
	int is_active = ctx->is_active;
1839

1840
	ctx->is_active &= ~event_type;
1841
	if (likely(!ctx->nr_events))
1842 1843
		return;

1844
	update_context_time(ctx);
S
Stephane Eranian 已提交
1845
	update_cgrp_time_from_cpuctx(cpuctx);
1846
	if (!ctx->nr_active)
1847
		return;
1848

P
Peter Zijlstra 已提交
1849
	perf_pmu_disable(ctx->pmu);
1850
	if ((is_active & EVENT_PINNED) && (event_type & EVENT_PINNED)) {
1851 1852
		list_for_each_entry(event, &ctx->pinned_groups, group_entry)
			group_sched_out(event, cpuctx, ctx);
P
Peter Zijlstra 已提交
1853
	}
1854

1855
	if ((is_active & EVENT_FLEXIBLE) && (event_type & EVENT_FLEXIBLE)) {
1856
		list_for_each_entry(event, &ctx->flexible_groups, group_entry)
1857
			group_sched_out(event, cpuctx, ctx);
P
Peter Zijlstra 已提交
1858
	}
P
Peter Zijlstra 已提交
1859
	perf_pmu_enable(ctx->pmu);
1860 1861
}

1862 1863 1864
/*
 * Test whether two contexts are equivalent, i.e. whether they
 * have both been cloned from the same version of the same context
1865 1866 1867 1868
 * and they both have the same number of enabled events.
 * If the number of enabled events is the same, then the set
 * of enabled events should be the same, because these are both
 * inherited contexts, therefore we can't access individual events
1869
 * in them directly with an fd; we can only enable/disable all
1870
 * events via prctl, or enable/disable all events in a family
1871 1872
 * via ioctl, which will have the same effect on both contexts.
 */
1873 1874
static int context_equiv(struct perf_event_context *ctx1,
			 struct perf_event_context *ctx2)
1875 1876
{
	return ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx
1877
		&& ctx1->parent_gen == ctx2->parent_gen
1878
		&& !ctx1->pin_count && !ctx2->pin_count;
1879 1880
}

1881 1882
static void __perf_event_sync_stat(struct perf_event *event,
				     struct perf_event *next_event)
1883 1884 1885
{
	u64 value;

1886
	if (!event->attr.inherit_stat)
1887 1888 1889
		return;

	/*
1890
	 * Update the event value, we cannot use perf_event_read()
1891 1892
	 * because we're in the middle of a context switch and have IRQs
	 * disabled, which upsets smp_call_function_single(), however
1893
	 * we know the event must be on the current CPU, therefore we
1894 1895
	 * don't need to use it.
	 */
1896 1897
	switch (event->state) {
	case PERF_EVENT_STATE_ACTIVE:
1898 1899
		event->pmu->read(event);
		/* fall-through */
1900

1901 1902
	case PERF_EVENT_STATE_INACTIVE:
		update_event_times(event);
1903 1904 1905 1906 1907 1908 1909
		break;

	default:
		break;
	}

	/*
1910
	 * In order to keep per-task stats reliable we need to flip the event
1911 1912
	 * values when we flip the contexts.
	 */
1913 1914 1915
	value = local64_read(&next_event->count);
	value = local64_xchg(&event->count, value);
	local64_set(&next_event->count, value);
1916

1917 1918
	swap(event->total_time_enabled, next_event->total_time_enabled);
	swap(event->total_time_running, next_event->total_time_running);
1919

1920
	/*
1921
	 * Since we swizzled the values, update the user visible data too.
1922
	 */
1923 1924
	perf_event_update_userpage(event);
	perf_event_update_userpage(next_event);
1925 1926 1927 1928 1929
}

#define list_next_entry(pos, member) \
	list_entry(pos->member.next, typeof(*pos), member)

1930 1931
static void perf_event_sync_stat(struct perf_event_context *ctx,
				   struct perf_event_context *next_ctx)
1932
{
1933
	struct perf_event *event, *next_event;
1934 1935 1936 1937

	if (!ctx->nr_stat)
		return;

1938 1939
	update_context_time(ctx);

1940 1941
	event = list_first_entry(&ctx->event_list,
				   struct perf_event, event_entry);
1942

1943 1944
	next_event = list_first_entry(&next_ctx->event_list,
					struct perf_event, event_entry);
1945

1946 1947
	while (&event->event_entry != &ctx->event_list &&
	       &next_event->event_entry != &next_ctx->event_list) {
1948

1949
		__perf_event_sync_stat(event, next_event);
1950

1951 1952
		event = list_next_entry(event, event_entry);
		next_event = list_next_entry(next_event, event_entry);
1953 1954 1955
	}
}

1956 1957
static void perf_event_context_sched_out(struct task_struct *task, int ctxn,
					 struct task_struct *next)
T
Thomas Gleixner 已提交
1958
{
P
Peter Zijlstra 已提交
1959
	struct perf_event_context *ctx = task->perf_event_ctxp[ctxn];
1960 1961
	struct perf_event_context *next_ctx;
	struct perf_event_context *parent;
P
Peter Zijlstra 已提交
1962
	struct perf_cpu_context *cpuctx;
1963
	int do_switch = 1;
T
Thomas Gleixner 已提交
1964

P
Peter Zijlstra 已提交
1965 1966
	if (likely(!ctx))
		return;
1967

P
Peter Zijlstra 已提交
1968 1969
	cpuctx = __get_cpu_context(ctx);
	if (!cpuctx->task_ctx)
T
Thomas Gleixner 已提交
1970 1971
		return;

1972 1973
	rcu_read_lock();
	parent = rcu_dereference(ctx->parent_ctx);
P
Peter Zijlstra 已提交
1974
	next_ctx = next->perf_event_ctxp[ctxn];
1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985
	if (parent && next_ctx &&
	    rcu_dereference(next_ctx->parent_ctx) == parent) {
		/*
		 * Looks like the two contexts are clones, so we might be
		 * able to optimize the context switch.  We lock both
		 * contexts and check that they are clones under the
		 * lock (including re-checking that neither has been
		 * uncloned in the meantime).  It doesn't matter which
		 * order we take the locks because no other cpu could
		 * be trying to lock both of these tasks.
		 */
1986 1987
		raw_spin_lock(&ctx->lock);
		raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
1988
		if (context_equiv(ctx, next_ctx)) {
1989 1990
			/*
			 * XXX do we need a memory barrier of sorts
1991
			 * wrt to rcu_dereference() of perf_event_ctxp
1992
			 */
P
Peter Zijlstra 已提交
1993 1994
			task->perf_event_ctxp[ctxn] = next_ctx;
			next->perf_event_ctxp[ctxn] = ctx;
1995 1996 1997
			ctx->task = next;
			next_ctx->task = task;
			do_switch = 0;
1998

1999
			perf_event_sync_stat(ctx, next_ctx);
2000
		}
2001 2002
		raw_spin_unlock(&next_ctx->lock);
		raw_spin_unlock(&ctx->lock);
2003
	}
2004
	rcu_read_unlock();
2005

2006
	if (do_switch) {
2007
		raw_spin_lock(&ctx->lock);
2008
		ctx_sched_out(ctx, cpuctx, EVENT_ALL);
2009
		cpuctx->task_ctx = NULL;
2010
		raw_spin_unlock(&ctx->lock);
2011
	}
T
Thomas Gleixner 已提交
2012 2013
}

P
Peter Zijlstra 已提交
2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027
#define for_each_task_context_nr(ctxn)					\
	for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++)

/*
 * Called from scheduler to remove the events of the current task,
 * with interrupts disabled.
 *
 * We stop each event and update the event value in event->count.
 *
 * This does not protect us against NMI, but disable()
 * sets the disabled bit in the control field of event _before_
 * accessing the event control register. If a NMI hits, then it will
 * not restart the event.
 */
2028 2029
void __perf_event_task_sched_out(struct task_struct *task,
				 struct task_struct *next)
P
Peter Zijlstra 已提交
2030 2031 2032 2033 2034
{
	int ctxn;

	for_each_task_context_nr(ctxn)
		perf_event_context_sched_out(task, ctxn, next);
S
Stephane Eranian 已提交
2035 2036 2037 2038 2039 2040 2041

	/*
	 * if cgroup events exist on this CPU, then we need
	 * to check if we have to switch out PMU state.
	 * cgroup event are system-wide mode only
	 */
	if (atomic_read(&__get_cpu_var(perf_cgroup_events)))
2042
		perf_cgroup_sched_out(task, next);
P
Peter Zijlstra 已提交
2043 2044
}

2045
static void task_ctx_sched_out(struct perf_event_context *ctx)
2046
{
P
Peter Zijlstra 已提交
2047
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2048

2049 2050
	if (!cpuctx->task_ctx)
		return;
2051 2052 2053 2054

	if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
		return;

2055
	ctx_sched_out(ctx, cpuctx, EVENT_ALL);
2056 2057 2058
	cpuctx->task_ctx = NULL;
}

2059 2060 2061 2062 2063 2064 2065
/*
 * Called with IRQs disabled
 */
static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
			      enum event_type_t event_type)
{
	ctx_sched_out(&cpuctx->ctx, cpuctx, event_type);
2066 2067
}

2068
static void
2069
ctx_pinned_sched_in(struct perf_event_context *ctx,
2070
		    struct perf_cpu_context *cpuctx)
T
Thomas Gleixner 已提交
2071
{
2072
	struct perf_event *event;
T
Thomas Gleixner 已提交
2073

2074 2075
	list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
		if (event->state <= PERF_EVENT_STATE_OFF)
2076
			continue;
2077
		if (!event_filter_match(event))
2078 2079
			continue;

S
Stephane Eranian 已提交
2080 2081 2082 2083
		/* may need to reset tstamp_enabled */
		if (is_cgroup_event(event))
			perf_cgroup_mark_enabled(event, ctx);

2084
		if (group_can_go_on(event, cpuctx, 1))
2085
			group_sched_in(event, cpuctx, ctx);
2086 2087 2088 2089 2090

		/*
		 * If this pinned group hasn't been scheduled,
		 * put it in error state.
		 */
2091 2092 2093
		if (event->state == PERF_EVENT_STATE_INACTIVE) {
			update_group_times(event);
			event->state = PERF_EVENT_STATE_ERROR;
2094
		}
2095
	}
2096 2097 2098 2099
}

static void
ctx_flexible_sched_in(struct perf_event_context *ctx,
2100
		      struct perf_cpu_context *cpuctx)
2101 2102 2103
{
	struct perf_event *event;
	int can_add_hw = 1;
2104

2105 2106 2107
	list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
		/* Ignore events in OFF or ERROR state */
		if (event->state <= PERF_EVENT_STATE_OFF)
2108
			continue;
2109 2110
		/*
		 * Listen to the 'cpu' scheduling filter constraint
2111
		 * of events:
2112
		 */
2113
		if (!event_filter_match(event))
T
Thomas Gleixner 已提交
2114 2115
			continue;

S
Stephane Eranian 已提交
2116 2117 2118 2119
		/* may need to reset tstamp_enabled */
		if (is_cgroup_event(event))
			perf_cgroup_mark_enabled(event, ctx);

P
Peter Zijlstra 已提交
2120
		if (group_can_go_on(event, cpuctx, can_add_hw)) {
2121
			if (group_sched_in(event, cpuctx, ctx))
2122
				can_add_hw = 0;
P
Peter Zijlstra 已提交
2123
		}
T
Thomas Gleixner 已提交
2124
	}
2125 2126 2127 2128 2129
}

static void
ctx_sched_in(struct perf_event_context *ctx,
	     struct perf_cpu_context *cpuctx,
S
Stephane Eranian 已提交
2130 2131
	     enum event_type_t event_type,
	     struct task_struct *task)
2132
{
S
Stephane Eranian 已提交
2133
	u64 now;
2134
	int is_active = ctx->is_active;
S
Stephane Eranian 已提交
2135

2136
	ctx->is_active |= event_type;
2137
	if (likely(!ctx->nr_events))
2138
		return;
2139

S
Stephane Eranian 已提交
2140 2141
	now = perf_clock();
	ctx->timestamp = now;
2142
	perf_cgroup_set_timestamp(task, ctx);
2143 2144 2145 2146
	/*
	 * First go through the list and put on any pinned groups
	 * in order to give them the best chance of going on.
	 */
2147
	if (!(is_active & EVENT_PINNED) && (event_type & EVENT_PINNED))
2148
		ctx_pinned_sched_in(ctx, cpuctx);
2149 2150

	/* Then walk through the lower prio flexible groups */
2151
	if (!(is_active & EVENT_FLEXIBLE) && (event_type & EVENT_FLEXIBLE))
2152
		ctx_flexible_sched_in(ctx, cpuctx);
2153 2154
}

2155
static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
S
Stephane Eranian 已提交
2156 2157
			     enum event_type_t event_type,
			     struct task_struct *task)
2158 2159 2160
{
	struct perf_event_context *ctx = &cpuctx->ctx;

S
Stephane Eranian 已提交
2161
	ctx_sched_in(ctx, cpuctx, event_type, task);
2162 2163
}

S
Stephane Eranian 已提交
2164 2165
static void perf_event_context_sched_in(struct perf_event_context *ctx,
					struct task_struct *task)
2166
{
P
Peter Zijlstra 已提交
2167
	struct perf_cpu_context *cpuctx;
2168

P
Peter Zijlstra 已提交
2169
	cpuctx = __get_cpu_context(ctx);
2170 2171 2172
	if (cpuctx->task_ctx == ctx)
		return;

2173
	perf_ctx_lock(cpuctx, ctx);
P
Peter Zijlstra 已提交
2174
	perf_pmu_disable(ctx->pmu);
2175 2176 2177 2178 2179 2180 2181
	/*
	 * We want to keep the following priority order:
	 * cpu pinned (that don't need to move), task pinned,
	 * cpu flexible, task flexible.
	 */
	cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);

2182
	perf_event_sched_in(cpuctx, ctx, task);
2183

2184 2185
	if (ctx->nr_events)
		cpuctx->task_ctx = ctx;
2186

2187 2188 2189
	perf_pmu_enable(ctx->pmu);
	perf_ctx_unlock(cpuctx, ctx);

2190 2191 2192 2193
	/*
	 * Since these rotations are per-cpu, we need to ensure the
	 * cpu-context we got scheduled on is actually rotating.
	 */
P
Peter Zijlstra 已提交
2194
	perf_pmu_rotate_start(ctx->pmu);
2195 2196
}

P
Peter Zijlstra 已提交
2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207
/*
 * Called from scheduler to add the events of the current task
 * with interrupts disabled.
 *
 * We restore the event value and then enable it.
 *
 * This does not protect us against NMI, but enable()
 * sets the enabled bit in the control field of event _before_
 * accessing the event control register. If a NMI hits, then it will
 * keep the event running.
 */
2208 2209
void __perf_event_task_sched_in(struct task_struct *prev,
				struct task_struct *task)
P
Peter Zijlstra 已提交
2210 2211 2212 2213 2214 2215 2216 2217 2218
{
	struct perf_event_context *ctx;
	int ctxn;

	for_each_task_context_nr(ctxn) {
		ctx = task->perf_event_ctxp[ctxn];
		if (likely(!ctx))
			continue;

S
Stephane Eranian 已提交
2219
		perf_event_context_sched_in(ctx, task);
P
Peter Zijlstra 已提交
2220
	}
S
Stephane Eranian 已提交
2221 2222 2223 2224 2225 2226
	/*
	 * if cgroup events exist on this CPU, then we need
	 * to check if we have to switch in PMU state.
	 * cgroup event are system-wide mode only
	 */
	if (atomic_read(&__get_cpu_var(perf_cgroup_events)))
2227
		perf_cgroup_sched_in(prev, task);
2228 2229
}

2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256
static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
{
	u64 frequency = event->attr.sample_freq;
	u64 sec = NSEC_PER_SEC;
	u64 divisor, dividend;

	int count_fls, nsec_fls, frequency_fls, sec_fls;

	count_fls = fls64(count);
	nsec_fls = fls64(nsec);
	frequency_fls = fls64(frequency);
	sec_fls = 30;

	/*
	 * We got @count in @nsec, with a target of sample_freq HZ
	 * the target period becomes:
	 *
	 *             @count * 10^9
	 * period = -------------------
	 *          @nsec * sample_freq
	 *
	 */

	/*
	 * Reduce accuracy by one bit such that @a and @b converge
	 * to a similar magnitude.
	 */
2257
#define REDUCE_FLS(a, b)		\
2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296
do {					\
	if (a##_fls > b##_fls) {	\
		a >>= 1;		\
		a##_fls--;		\
	} else {			\
		b >>= 1;		\
		b##_fls--;		\
	}				\
} while (0)

	/*
	 * Reduce accuracy until either term fits in a u64, then proceed with
	 * the other, so that finally we can do a u64/u64 division.
	 */
	while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
		REDUCE_FLS(nsec, frequency);
		REDUCE_FLS(sec, count);
	}

	if (count_fls + sec_fls > 64) {
		divisor = nsec * frequency;

		while (count_fls + sec_fls > 64) {
			REDUCE_FLS(count, sec);
			divisor >>= 1;
		}

		dividend = count * sec;
	} else {
		dividend = count * sec;

		while (nsec_fls + frequency_fls > 64) {
			REDUCE_FLS(nsec, frequency);
			dividend >>= 1;
		}

		divisor = nsec * frequency;
	}

2297 2298 2299
	if (!divisor)
		return dividend;

2300 2301 2302 2303
	return div64_u64(dividend, divisor);
}

static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count)
2304
{
2305
	struct hw_perf_event *hwc = &event->hw;
2306
	s64 period, sample_period;
2307 2308
	s64 delta;

2309
	period = perf_calculate_period(event, nsec, count);
2310 2311 2312 2313 2314 2315 2316 2317 2318 2319

	delta = (s64)(period - hwc->sample_period);
	delta = (delta + 7) / 8; /* low pass filter */

	sample_period = hwc->sample_period + delta;

	if (!sample_period)
		sample_period = 1;

	hwc->sample_period = sample_period;
2320

2321
	if (local64_read(&hwc->period_left) > 8*sample_period) {
P
Peter Zijlstra 已提交
2322
		event->pmu->stop(event, PERF_EF_UPDATE);
2323
		local64_set(&hwc->period_left, 0);
P
Peter Zijlstra 已提交
2324
		event->pmu->start(event, PERF_EF_RELOAD);
2325
	}
2326 2327
}

2328
static void perf_ctx_adjust_freq(struct perf_event_context *ctx, u64 period)
2329
{
2330 2331
	struct perf_event *event;
	struct hw_perf_event *hwc;
2332 2333
	u64 interrupts, now;
	s64 delta;
2334

2335 2336 2337
	if (!ctx->nr_freq)
		return;

2338
	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
2339
		if (event->state != PERF_EVENT_STATE_ACTIVE)
2340 2341
			continue;

2342
		if (!event_filter_match(event))
2343 2344
			continue;

2345
		hwc = &event->hw;
2346 2347 2348

		interrupts = hwc->interrupts;
		hwc->interrupts = 0;
2349

2350
		/*
2351
		 * unthrottle events on the tick
2352
		 */
2353
		if (interrupts == MAX_INTERRUPTS) {
2354
			perf_log_throttle(event, 1);
P
Peter Zijlstra 已提交
2355
			event->pmu->start(event, 0);
2356 2357
		}

2358
		if (!event->attr.freq || !event->attr.sample_freq)
2359 2360
			continue;

2361
		event->pmu->read(event);
2362
		now = local64_read(&event->count);
2363 2364
		delta = now - hwc->freq_count_stamp;
		hwc->freq_count_stamp = now;
2365

2366
		if (delta > 0)
2367
			perf_adjust_period(event, period, delta);
2368 2369 2370
	}
}

2371
/*
2372
 * Round-robin a context's events:
2373
 */
2374
static void rotate_ctx(struct perf_event_context *ctx)
T
Thomas Gleixner 已提交
2375
{
2376 2377 2378 2379 2380 2381
	/*
	 * Rotate the first entry last of non-pinned groups. Rotation might be
	 * disabled by the inheritance code.
	 */
	if (!ctx->rotate_disable)
		list_rotate_left(&ctx->flexible_groups);
2382 2383
}

2384
/*
2385 2386 2387
 * perf_pmu_rotate_start() and perf_rotate_context() are fully serialized
 * because they're strictly cpu affine and rotate_start is called with IRQs
 * disabled, while rotate_context is called from IRQ context.
2388
 */
2389
static void perf_rotate_context(struct perf_cpu_context *cpuctx)
2390
{
2391
	u64 interval = (u64)cpuctx->jiffies_interval * TICK_NSEC;
P
Peter Zijlstra 已提交
2392
	struct perf_event_context *ctx = NULL;
2393
	int rotate = 0, remove = 1, freq = 0;
2394

2395
	if (cpuctx->ctx.nr_events) {
2396
		remove = 0;
2397 2398
		if (cpuctx->ctx.nr_events != cpuctx->ctx.nr_active)
			rotate = 1;
2399 2400
		if (cpuctx->ctx.nr_freq)
			freq = 1;
2401
	}
2402

P
Peter Zijlstra 已提交
2403
	ctx = cpuctx->task_ctx;
2404
	if (ctx && ctx->nr_events) {
2405
		remove = 0;
2406 2407
		if (ctx->nr_events != ctx->nr_active)
			rotate = 1;
2408 2409
		if (ctx->nr_freq)
			freq = 1;
2410
	}
2411

2412 2413 2414
	if (!rotate && !freq)
		goto done;

2415
	perf_ctx_lock(cpuctx, cpuctx->task_ctx);
P
Peter Zijlstra 已提交
2416
	perf_pmu_disable(cpuctx->ctx.pmu);
2417

2418 2419 2420 2421 2422
	if (freq) {
		perf_ctx_adjust_freq(&cpuctx->ctx, interval);
		if (ctx)
			perf_ctx_adjust_freq(ctx, interval);
	}
2423

2424 2425 2426 2427
	if (rotate) {
		cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
		if (ctx)
			ctx_sched_out(ctx, cpuctx, EVENT_FLEXIBLE);
T
Thomas Gleixner 已提交
2428

2429 2430 2431 2432 2433 2434
		rotate_ctx(&cpuctx->ctx);
		if (ctx)
			rotate_ctx(ctx);

		perf_event_sched_in(cpuctx, ctx, current);
	}
2435

2436 2437
	perf_pmu_enable(cpuctx->ctx.pmu);
	perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
2438 2439

done:
2440 2441 2442 2443 2444 2445 2446 2447
	if (remove)
		list_del_init(&cpuctx->rotation_list);
}

void perf_event_task_tick(void)
{
	struct list_head *head = &__get_cpu_var(rotation_list);
	struct perf_cpu_context *cpuctx, *tmp;
2448

2449 2450 2451 2452 2453 2454 2455
	WARN_ON(!irqs_disabled());

	list_for_each_entry_safe(cpuctx, tmp, head, rotation_list) {
		if (cpuctx->jiffies_interval == 1 ||
				!(jiffies % cpuctx->jiffies_interval))
			perf_rotate_context(cpuctx);
	}
T
Thomas Gleixner 已提交
2456 2457
}

2458 2459 2460 2461 2462 2463 2464 2465 2466 2467
static int event_enable_on_exec(struct perf_event *event,
				struct perf_event_context *ctx)
{
	if (!event->attr.enable_on_exec)
		return 0;

	event->attr.enable_on_exec = 0;
	if (event->state >= PERF_EVENT_STATE_INACTIVE)
		return 0;

2468
	__perf_event_mark_enabled(event);
2469 2470 2471 2472

	return 1;
}

2473
/*
2474
 * Enable all of a task's events that have been marked enable-on-exec.
2475 2476
 * This expects task == current.
 */
P
Peter Zijlstra 已提交
2477
static void perf_event_enable_on_exec(struct perf_event_context *ctx)
2478
{
2479
	struct perf_event *event;
2480 2481
	unsigned long flags;
	int enabled = 0;
2482
	int ret;
2483 2484

	local_irq_save(flags);
2485
	if (!ctx || !ctx->nr_events)
2486 2487
		goto out;

2488 2489 2490 2491 2492 2493 2494
	/*
	 * We must ctxsw out cgroup events to avoid conflict
	 * when invoking perf_task_event_sched_in() later on
	 * in this function. Otherwise we end up trying to
	 * ctxswin cgroup events which are already scheduled
	 * in.
	 */
2495
	perf_cgroup_sched_out(current, NULL);
2496

2497
	raw_spin_lock(&ctx->lock);
2498
	task_ctx_sched_out(ctx);
2499

2500 2501 2502 2503 2504 2505 2506 2507 2508 2509
	list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
		ret = event_enable_on_exec(event, ctx);
		if (ret)
			enabled = 1;
	}

	list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
		ret = event_enable_on_exec(event, ctx);
		if (ret)
			enabled = 1;
2510 2511 2512
	}

	/*
2513
	 * Unclone this context if we enabled any event.
2514
	 */
2515 2516
	if (enabled)
		unclone_ctx(ctx);
2517

2518
	raw_spin_unlock(&ctx->lock);
2519

2520 2521 2522
	/*
	 * Also calls ctxswin for cgroup events, if any:
	 */
S
Stephane Eranian 已提交
2523
	perf_event_context_sched_in(ctx, ctx->task);
P
Peter Zijlstra 已提交
2524
out:
2525 2526 2527
	local_irq_restore(flags);
}

T
Thomas Gleixner 已提交
2528
/*
2529
 * Cross CPU call to read the hardware event
T
Thomas Gleixner 已提交
2530
 */
2531
static void __perf_event_read(void *info)
T
Thomas Gleixner 已提交
2532
{
2533 2534
	struct perf_event *event = info;
	struct perf_event_context *ctx = event->ctx;
P
Peter Zijlstra 已提交
2535
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
I
Ingo Molnar 已提交
2536

2537 2538 2539 2540
	/*
	 * If this is a task context, we need to check whether it is
	 * the current task context of this cpu.  If not it has been
	 * scheduled out before the smp call arrived.  In that case
2541 2542
	 * event->count would have been updated to a recent sample
	 * when the event was scheduled out.
2543 2544 2545 2546
	 */
	if (ctx->task && cpuctx->task_ctx != ctx)
		return;

2547
	raw_spin_lock(&ctx->lock);
S
Stephane Eranian 已提交
2548
	if (ctx->is_active) {
2549
		update_context_time(ctx);
S
Stephane Eranian 已提交
2550 2551
		update_cgrp_time_from_event(event);
	}
2552
	update_event_times(event);
2553 2554
	if (event->state == PERF_EVENT_STATE_ACTIVE)
		event->pmu->read(event);
2555
	raw_spin_unlock(&ctx->lock);
T
Thomas Gleixner 已提交
2556 2557
}

P
Peter Zijlstra 已提交
2558 2559
static inline u64 perf_event_count(struct perf_event *event)
{
2560
	return local64_read(&event->count) + atomic64_read(&event->child_count);
P
Peter Zijlstra 已提交
2561 2562
}

2563
static u64 perf_event_read(struct perf_event *event)
T
Thomas Gleixner 已提交
2564 2565
{
	/*
2566 2567
	 * If event is enabled and currently active on a CPU, update the
	 * value in the event structure:
T
Thomas Gleixner 已提交
2568
	 */
2569 2570 2571 2572
	if (event->state == PERF_EVENT_STATE_ACTIVE) {
		smp_call_function_single(event->oncpu,
					 __perf_event_read, event, 1);
	} else if (event->state == PERF_EVENT_STATE_INACTIVE) {
P
Peter Zijlstra 已提交
2573 2574 2575
		struct perf_event_context *ctx = event->ctx;
		unsigned long flags;

2576
		raw_spin_lock_irqsave(&ctx->lock, flags);
2577 2578 2579 2580 2581
		/*
		 * may read while context is not active
		 * (e.g., thread is blocked), in that case
		 * we cannot update context time
		 */
S
Stephane Eranian 已提交
2582
		if (ctx->is_active) {
2583
			update_context_time(ctx);
S
Stephane Eranian 已提交
2584 2585
			update_cgrp_time_from_event(event);
		}
2586
		update_event_times(event);
2587
		raw_spin_unlock_irqrestore(&ctx->lock, flags);
T
Thomas Gleixner 已提交
2588 2589
	}

P
Peter Zijlstra 已提交
2590
	return perf_event_count(event);
T
Thomas Gleixner 已提交
2591 2592
}

2593
/*
2594
 * Initialize the perf_event context in a task_struct:
2595
 */
2596
static void __perf_event_init_context(struct perf_event_context *ctx)
2597
{
2598
	raw_spin_lock_init(&ctx->lock);
2599
	mutex_init(&ctx->mutex);
2600 2601
	INIT_LIST_HEAD(&ctx->pinned_groups);
	INIT_LIST_HEAD(&ctx->flexible_groups);
2602 2603
	INIT_LIST_HEAD(&ctx->event_list);
	atomic_set(&ctx->refcount, 1);
2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618
}

static struct perf_event_context *
alloc_perf_context(struct pmu *pmu, struct task_struct *task)
{
	struct perf_event_context *ctx;

	ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
	if (!ctx)
		return NULL;

	__perf_event_init_context(ctx);
	if (task) {
		ctx->task = task;
		get_task_struct(task);
T
Thomas Gleixner 已提交
2619
	}
2620 2621 2622
	ctx->pmu = pmu;

	return ctx;
2623 2624
}

2625 2626 2627 2628 2629
static struct task_struct *
find_lively_task_by_vpid(pid_t vpid)
{
	struct task_struct *task;
	int err;
T
Thomas Gleixner 已提交
2630 2631

	rcu_read_lock();
2632
	if (!vpid)
T
Thomas Gleixner 已提交
2633 2634
		task = current;
	else
2635
		task = find_task_by_vpid(vpid);
T
Thomas Gleixner 已提交
2636 2637 2638 2639 2640 2641 2642 2643
	if (task)
		get_task_struct(task);
	rcu_read_unlock();

	if (!task)
		return ERR_PTR(-ESRCH);

	/* Reuse ptrace permission checks for now. */
2644 2645 2646 2647
	err = -EACCES;
	if (!ptrace_may_access(task, PTRACE_MODE_READ))
		goto errout;

2648 2649 2650 2651 2652 2653 2654
	return task;
errout:
	put_task_struct(task);
	return ERR_PTR(err);

}

2655 2656 2657
/*
 * Returns a matching context with refcount and pincount.
 */
P
Peter Zijlstra 已提交
2658
static struct perf_event_context *
M
Matt Helsley 已提交
2659
find_get_context(struct pmu *pmu, struct task_struct *task, int cpu)
T
Thomas Gleixner 已提交
2660
{
2661
	struct perf_event_context *ctx;
2662
	struct perf_cpu_context *cpuctx;
2663
	unsigned long flags;
P
Peter Zijlstra 已提交
2664
	int ctxn, err;
T
Thomas Gleixner 已提交
2665

2666
	if (!task) {
2667
		/* Must be root to operate on a CPU event: */
2668
		if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
T
Thomas Gleixner 已提交
2669 2670 2671
			return ERR_PTR(-EACCES);

		/*
2672
		 * We could be clever and allow to attach a event to an
T
Thomas Gleixner 已提交
2673 2674 2675
		 * offline CPU and activate it when the CPU comes up, but
		 * that's for later.
		 */
2676
		if (!cpu_online(cpu))
T
Thomas Gleixner 已提交
2677 2678
			return ERR_PTR(-ENODEV);

P
Peter Zijlstra 已提交
2679
		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
T
Thomas Gleixner 已提交
2680
		ctx = &cpuctx->ctx;
2681
		get_ctx(ctx);
2682
		++ctx->pin_count;
T
Thomas Gleixner 已提交
2683 2684 2685 2686

		return ctx;
	}

P
Peter Zijlstra 已提交
2687 2688 2689 2690 2691
	err = -EINVAL;
	ctxn = pmu->task_ctx_nr;
	if (ctxn < 0)
		goto errout;

P
Peter Zijlstra 已提交
2692
retry:
P
Peter Zijlstra 已提交
2693
	ctx = perf_lock_task_context(task, ctxn, &flags);
2694
	if (ctx) {
2695
		unclone_ctx(ctx);
2696
		++ctx->pin_count;
2697
		raw_spin_unlock_irqrestore(&ctx->lock, flags);
2698
	} else {
2699
		ctx = alloc_perf_context(pmu, task);
2700 2701 2702
		err = -ENOMEM;
		if (!ctx)
			goto errout;
2703

2704 2705 2706 2707 2708 2709 2710 2711 2712 2713
		err = 0;
		mutex_lock(&task->perf_event_mutex);
		/*
		 * If it has already passed perf_event_exit_task().
		 * we must see PF_EXITING, it takes this mutex too.
		 */
		if (task->flags & PF_EXITING)
			err = -ESRCH;
		else if (task->perf_event_ctxp[ctxn])
			err = -EAGAIN;
2714
		else {
2715
			get_ctx(ctx);
2716
			++ctx->pin_count;
2717
			rcu_assign_pointer(task->perf_event_ctxp[ctxn], ctx);
2718
		}
2719 2720 2721
		mutex_unlock(&task->perf_event_mutex);

		if (unlikely(err)) {
2722
			put_ctx(ctx);
2723 2724 2725 2726

			if (err == -EAGAIN)
				goto retry;
			goto errout;
2727 2728 2729
		}
	}

T
Thomas Gleixner 已提交
2730
	return ctx;
2731

P
Peter Zijlstra 已提交
2732
errout:
2733
	return ERR_PTR(err);
T
Thomas Gleixner 已提交
2734 2735
}

L
Li Zefan 已提交
2736 2737
static void perf_event_free_filter(struct perf_event *event);

2738
static void free_event_rcu(struct rcu_head *head)
P
Peter Zijlstra 已提交
2739
{
2740
	struct perf_event *event;
P
Peter Zijlstra 已提交
2741

2742 2743 2744
	event = container_of(head, struct perf_event, rcu_head);
	if (event->ns)
		put_pid_ns(event->ns);
L
Li Zefan 已提交
2745
	perf_event_free_filter(event);
2746
	kfree(event);
P
Peter Zijlstra 已提交
2747 2748
}

2749
static void ring_buffer_put(struct ring_buffer *rb);
2750

2751
static void free_event(struct perf_event *event)
2752
{
2753
	irq_work_sync(&event->pending);
2754

2755
	if (!event->parent) {
2756
		if (event->attach_state & PERF_ATTACH_TASK)
S
Stephane Eranian 已提交
2757
			jump_label_dec(&perf_sched_events);
2758
		if (event->attr.mmap || event->attr.mmap_data)
2759 2760 2761 2762 2763
			atomic_dec(&nr_mmap_events);
		if (event->attr.comm)
			atomic_dec(&nr_comm_events);
		if (event->attr.task)
			atomic_dec(&nr_task_events);
2764 2765
		if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
			put_callchain_buffers();
2766 2767 2768 2769
		if (is_cgroup_event(event)) {
			atomic_dec(&per_cpu(perf_cgroup_events, event->cpu));
			jump_label_dec(&perf_sched_events);
		}
2770
	}
2771

2772 2773 2774
	if (event->rb) {
		ring_buffer_put(event->rb);
		event->rb = NULL;
2775 2776
	}

S
Stephane Eranian 已提交
2777 2778 2779
	if (is_cgroup_event(event))
		perf_detach_cgroup(event);

2780 2781
	if (event->destroy)
		event->destroy(event);
2782

P
Peter Zijlstra 已提交
2783 2784 2785
	if (event->ctx)
		put_ctx(event->ctx);

2786
	call_rcu(&event->rcu_head, free_event_rcu);
2787 2788
}

2789
int perf_event_release_kernel(struct perf_event *event)
T
Thomas Gleixner 已提交
2790
{
2791
	struct perf_event_context *ctx = event->ctx;
T
Thomas Gleixner 已提交
2792

2793
	WARN_ON_ONCE(ctx->parent_ctx);
2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806
	/*
	 * There are two ways this annotation is useful:
	 *
	 *  1) there is a lock recursion from perf_event_exit_task
	 *     see the comment there.
	 *
	 *  2) there is a lock-inversion with mmap_sem through
	 *     perf_event_read_group(), which takes faults while
	 *     holding ctx->mutex, however this is called after
	 *     the last filedesc died, so there is no possibility
	 *     to trigger the AB-BA case.
	 */
	mutex_lock_nested(&ctx->mutex, SINGLE_DEPTH_NESTING);
2807
	raw_spin_lock_irq(&ctx->lock);
2808
	perf_group_detach(event);
2809
	raw_spin_unlock_irq(&ctx->lock);
2810
	perf_remove_from_context(event);
2811
	mutex_unlock(&ctx->mutex);
T
Thomas Gleixner 已提交
2812

2813
	free_event(event);
T
Thomas Gleixner 已提交
2814 2815 2816

	return 0;
}
2817
EXPORT_SYMBOL_GPL(perf_event_release_kernel);
T
Thomas Gleixner 已提交
2818

2819 2820 2821 2822
/*
 * Called when the last reference to the file is gone.
 */
static int perf_release(struct inode *inode, struct file *file)
2823
{
2824
	struct perf_event *event = file->private_data;
P
Peter Zijlstra 已提交
2825
	struct task_struct *owner;
2826

2827
	file->private_data = NULL;
2828

P
Peter Zijlstra 已提交
2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861
	rcu_read_lock();
	owner = ACCESS_ONCE(event->owner);
	/*
	 * Matches the smp_wmb() in perf_event_exit_task(). If we observe
	 * !owner it means the list deletion is complete and we can indeed
	 * free this event, otherwise we need to serialize on
	 * owner->perf_event_mutex.
	 */
	smp_read_barrier_depends();
	if (owner) {
		/*
		 * Since delayed_put_task_struct() also drops the last
		 * task reference we can safely take a new reference
		 * while holding the rcu_read_lock().
		 */
		get_task_struct(owner);
	}
	rcu_read_unlock();

	if (owner) {
		mutex_lock(&owner->perf_event_mutex);
		/*
		 * We have to re-check the event->owner field, if it is cleared
		 * we raced with perf_event_exit_task(), acquiring the mutex
		 * ensured they're done, and we can proceed with freeing the
		 * event.
		 */
		if (event->owner)
			list_del_init(&event->owner_entry);
		mutex_unlock(&owner->perf_event_mutex);
		put_task_struct(owner);
	}

2862
	return perf_event_release_kernel(event);
2863 2864
}

2865
u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
2866
{
2867
	struct perf_event *child;
2868 2869
	u64 total = 0;

2870 2871 2872
	*enabled = 0;
	*running = 0;

2873
	mutex_lock(&event->child_mutex);
2874
	total += perf_event_read(event);
2875 2876 2877 2878 2879 2880
	*enabled += event->total_time_enabled +
			atomic64_read(&event->child_total_time_enabled);
	*running += event->total_time_running +
			atomic64_read(&event->child_total_time_running);

	list_for_each_entry(child, &event->child_list, child_list) {
2881
		total += perf_event_read(child);
2882 2883 2884
		*enabled += child->total_time_enabled;
		*running += child->total_time_running;
	}
2885
	mutex_unlock(&event->child_mutex);
2886 2887 2888

	return total;
}
2889
EXPORT_SYMBOL_GPL(perf_event_read_value);
2890

2891
static int perf_event_read_group(struct perf_event *event,
2892 2893
				   u64 read_format, char __user *buf)
{
2894
	struct perf_event *leader = event->group_leader, *sub;
2895 2896
	int n = 0, size = 0, ret = -EFAULT;
	struct perf_event_context *ctx = leader->ctx;
2897
	u64 values[5];
2898
	u64 count, enabled, running;
2899

2900
	mutex_lock(&ctx->mutex);
2901
	count = perf_event_read_value(leader, &enabled, &running);
2902 2903

	values[n++] = 1 + leader->nr_siblings;
2904 2905 2906 2907
	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
		values[n++] = enabled;
	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
		values[n++] = running;
2908 2909 2910
	values[n++] = count;
	if (read_format & PERF_FORMAT_ID)
		values[n++] = primary_event_id(leader);
2911 2912 2913 2914

	size = n * sizeof(u64);

	if (copy_to_user(buf, values, size))
2915
		goto unlock;
2916

2917
	ret = size;
2918

2919
	list_for_each_entry(sub, &leader->sibling_list, group_entry) {
2920
		n = 0;
2921

2922
		values[n++] = perf_event_read_value(sub, &enabled, &running);
2923 2924 2925 2926 2927
		if (read_format & PERF_FORMAT_ID)
			values[n++] = primary_event_id(sub);

		size = n * sizeof(u64);

2928
		if (copy_to_user(buf + ret, values, size)) {
2929 2930 2931
			ret = -EFAULT;
			goto unlock;
		}
2932 2933

		ret += size;
2934
	}
2935 2936
unlock:
	mutex_unlock(&ctx->mutex);
2937

2938
	return ret;
2939 2940
}

2941
static int perf_event_read_one(struct perf_event *event,
2942 2943
				 u64 read_format, char __user *buf)
{
2944
	u64 enabled, running;
2945 2946 2947
	u64 values[4];
	int n = 0;

2948 2949 2950 2951 2952
	values[n++] = perf_event_read_value(event, &enabled, &running);
	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
		values[n++] = enabled;
	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
		values[n++] = running;
2953
	if (read_format & PERF_FORMAT_ID)
2954
		values[n++] = primary_event_id(event);
2955 2956 2957 2958 2959 2960 2961

	if (copy_to_user(buf, values, n * sizeof(u64)))
		return -EFAULT;

	return n * sizeof(u64);
}

T
Thomas Gleixner 已提交
2962
/*
2963
 * Read the performance event - simple non blocking version for now
T
Thomas Gleixner 已提交
2964 2965
 */
static ssize_t
2966
perf_read_hw(struct perf_event *event, char __user *buf, size_t count)
T
Thomas Gleixner 已提交
2967
{
2968
	u64 read_format = event->attr.read_format;
2969
	int ret;
T
Thomas Gleixner 已提交
2970

2971
	/*
2972
	 * Return end-of-file for a read on a event that is in
2973 2974 2975
	 * error state (i.e. because it was pinned but it couldn't be
	 * scheduled on to the CPU at some point).
	 */
2976
	if (event->state == PERF_EVENT_STATE_ERROR)
2977 2978
		return 0;

2979
	if (count < event->read_size)
2980 2981
		return -ENOSPC;

2982
	WARN_ON_ONCE(event->ctx->parent_ctx);
2983
	if (read_format & PERF_FORMAT_GROUP)
2984
		ret = perf_event_read_group(event, read_format, buf);
2985
	else
2986
		ret = perf_event_read_one(event, read_format, buf);
T
Thomas Gleixner 已提交
2987

2988
	return ret;
T
Thomas Gleixner 已提交
2989 2990 2991 2992 2993
}

static ssize_t
perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
{
2994
	struct perf_event *event = file->private_data;
T
Thomas Gleixner 已提交
2995

2996
	return perf_read_hw(event, buf, count);
T
Thomas Gleixner 已提交
2997 2998 2999 3000
}

static unsigned int perf_poll(struct file *file, poll_table *wait)
{
3001
	struct perf_event *event = file->private_data;
3002
	struct ring_buffer *rb;
3003
	unsigned int events = POLL_HUP;
P
Peter Zijlstra 已提交
3004

3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021
	/*
	 * Race between perf_event_set_output() and perf_poll(): perf_poll()
	 * grabs the rb reference but perf_event_set_output() overrides it.
	 * Here is the timeline for two threads T1, T2:
	 * t0: T1, rb = rcu_dereference(event->rb)
	 * t1: T2, old_rb = event->rb
	 * t2: T2, event->rb = new rb
	 * t3: T2, ring_buffer_detach(old_rb)
	 * t4: T1, ring_buffer_attach(rb1)
	 * t5: T1, poll_wait(event->waitq)
	 *
	 * To avoid this problem, we grab mmap_mutex in perf_poll()
	 * thereby ensuring that the assignment of the new ring buffer
	 * and the detachment of the old buffer appear atomic to perf_poll()
	 */
	mutex_lock(&event->mmap_mutex);

P
Peter Zijlstra 已提交
3022
	rcu_read_lock();
3023
	rb = rcu_dereference(event->rb);
3024 3025
	if (rb) {
		ring_buffer_attach(event, rb);
3026
		events = atomic_xchg(&rb->poll, 0);
3027
	}
P
Peter Zijlstra 已提交
3028
	rcu_read_unlock();
T
Thomas Gleixner 已提交
3029

3030 3031
	mutex_unlock(&event->mmap_mutex);

3032
	poll_wait(file, &event->waitq, wait);
T
Thomas Gleixner 已提交
3033 3034 3035 3036

	return events;
}

3037
static void perf_event_reset(struct perf_event *event)
3038
{
3039
	(void)perf_event_read(event);
3040
	local64_set(&event->count, 0);
3041
	perf_event_update_userpage(event);
P
Peter Zijlstra 已提交
3042 3043
}

3044
/*
3045 3046 3047 3048
 * Holding the top-level event's child_mutex means that any
 * descendant process that has inherited this event will block
 * in sync_child_event if it goes to exit, thus satisfying the
 * task existence requirements of perf_event_enable/disable.
3049
 */
3050 3051
static void perf_event_for_each_child(struct perf_event *event,
					void (*func)(struct perf_event *))
P
Peter Zijlstra 已提交
3052
{
3053
	struct perf_event *child;
P
Peter Zijlstra 已提交
3054

3055 3056 3057 3058
	WARN_ON_ONCE(event->ctx->parent_ctx);
	mutex_lock(&event->child_mutex);
	func(event);
	list_for_each_entry(child, &event->child_list, child_list)
P
Peter Zijlstra 已提交
3059
		func(child);
3060
	mutex_unlock(&event->child_mutex);
P
Peter Zijlstra 已提交
3061 3062
}

3063 3064
static void perf_event_for_each(struct perf_event *event,
				  void (*func)(struct perf_event *))
P
Peter Zijlstra 已提交
3065
{
3066 3067
	struct perf_event_context *ctx = event->ctx;
	struct perf_event *sibling;
P
Peter Zijlstra 已提交
3068

3069 3070
	WARN_ON_ONCE(ctx->parent_ctx);
	mutex_lock(&ctx->mutex);
3071
	event = event->group_leader;
3072

3073 3074 3075 3076
	perf_event_for_each_child(event, func);
	func(event);
	list_for_each_entry(sibling, &event->sibling_list, group_entry)
		perf_event_for_each_child(event, func);
3077
	mutex_unlock(&ctx->mutex);
3078 3079
}

3080
static int perf_event_period(struct perf_event *event, u64 __user *arg)
3081
{
3082
	struct perf_event_context *ctx = event->ctx;
3083 3084 3085
	int ret = 0;
	u64 value;

3086
	if (!is_sampling_event(event))
3087 3088
		return -EINVAL;

3089
	if (copy_from_user(&value, arg, sizeof(value)))
3090 3091 3092 3093 3094
		return -EFAULT;

	if (!value)
		return -EINVAL;

3095
	raw_spin_lock_irq(&ctx->lock);
3096 3097
	if (event->attr.freq) {
		if (value > sysctl_perf_event_sample_rate) {
3098 3099 3100 3101
			ret = -EINVAL;
			goto unlock;
		}

3102
		event->attr.sample_freq = value;
3103
	} else {
3104 3105
		event->attr.sample_period = value;
		event->hw.sample_period = value;
3106 3107
	}
unlock:
3108
	raw_spin_unlock_irq(&ctx->lock);
3109 3110 3111 3112

	return ret;
}

3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133
static const struct file_operations perf_fops;

static struct perf_event *perf_fget_light(int fd, int *fput_needed)
{
	struct file *file;

	file = fget_light(fd, fput_needed);
	if (!file)
		return ERR_PTR(-EBADF);

	if (file->f_op != &perf_fops) {
		fput_light(file, *fput_needed);
		*fput_needed = 0;
		return ERR_PTR(-EBADF);
	}

	return file->private_data;
}

static int perf_event_set_output(struct perf_event *event,
				 struct perf_event *output_event);
L
Li Zefan 已提交
3134
static int perf_event_set_filter(struct perf_event *event, void __user *arg);
3135

3136 3137
static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
{
3138 3139
	struct perf_event *event = file->private_data;
	void (*func)(struct perf_event *);
P
Peter Zijlstra 已提交
3140
	u32 flags = arg;
3141 3142

	switch (cmd) {
3143 3144
	case PERF_EVENT_IOC_ENABLE:
		func = perf_event_enable;
3145
		break;
3146 3147
	case PERF_EVENT_IOC_DISABLE:
		func = perf_event_disable;
3148
		break;
3149 3150
	case PERF_EVENT_IOC_RESET:
		func = perf_event_reset;
3151
		break;
P
Peter Zijlstra 已提交
3152

3153 3154
	case PERF_EVENT_IOC_REFRESH:
		return perf_event_refresh(event, arg);
3155

3156 3157
	case PERF_EVENT_IOC_PERIOD:
		return perf_event_period(event, (u64 __user *)arg);
3158

3159
	case PERF_EVENT_IOC_SET_OUTPUT:
3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176
	{
		struct perf_event *output_event = NULL;
		int fput_needed = 0;
		int ret;

		if (arg != -1) {
			output_event = perf_fget_light(arg, &fput_needed);
			if (IS_ERR(output_event))
				return PTR_ERR(output_event);
		}

		ret = perf_event_set_output(event, output_event);
		if (output_event)
			fput_light(output_event->filp, fput_needed);

		return ret;
	}
3177

L
Li Zefan 已提交
3178 3179 3180
	case PERF_EVENT_IOC_SET_FILTER:
		return perf_event_set_filter(event, (void __user *)arg);

3181
	default:
P
Peter Zijlstra 已提交
3182
		return -ENOTTY;
3183
	}
P
Peter Zijlstra 已提交
3184 3185

	if (flags & PERF_IOC_FLAG_GROUP)
3186
		perf_event_for_each(event, func);
P
Peter Zijlstra 已提交
3187
	else
3188
		perf_event_for_each_child(event, func);
P
Peter Zijlstra 已提交
3189 3190

	return 0;
3191 3192
}

3193
int perf_event_task_enable(void)
3194
{
3195
	struct perf_event *event;
3196

3197 3198 3199 3200
	mutex_lock(&current->perf_event_mutex);
	list_for_each_entry(event, &current->perf_event_list, owner_entry)
		perf_event_for_each_child(event, perf_event_enable);
	mutex_unlock(&current->perf_event_mutex);
3201 3202 3203 3204

	return 0;
}

3205
int perf_event_task_disable(void)
3206
{
3207
	struct perf_event *event;
3208

3209 3210 3211 3212
	mutex_lock(&current->perf_event_mutex);
	list_for_each_entry(event, &current->perf_event_list, owner_entry)
		perf_event_for_each_child(event, perf_event_disable);
	mutex_unlock(&current->perf_event_mutex);
3213 3214 3215 3216

	return 0;
}

3217 3218
#ifndef PERF_EVENT_INDEX_OFFSET
# define PERF_EVENT_INDEX_OFFSET 0
I
Ingo Molnar 已提交
3219 3220
#endif

3221
static int perf_event_index(struct perf_event *event)
3222
{
P
Peter Zijlstra 已提交
3223 3224 3225
	if (event->hw.state & PERF_HES_STOPPED)
		return 0;

3226
	if (event->state != PERF_EVENT_STATE_ACTIVE)
3227 3228
		return 0;

3229
	return event->hw.idx + 1 - PERF_EVENT_INDEX_OFFSET;
3230 3231
}

3232
static void calc_timer_values(struct perf_event *event,
3233 3234
				u64 *enabled,
				u64 *running)
3235 3236 3237 3238 3239 3240 3241 3242 3243
{
	u64 now, ctx_time;

	now = perf_clock();
	ctx_time = event->shadow_ctx_time + now;
	*enabled = ctx_time - event->tstamp_enabled;
	*running = ctx_time - event->tstamp_running;
}

3244 3245 3246 3247 3248
/*
 * Callers need to ensure there can be no nesting of this function, otherwise
 * the seqlock logic goes bad. We can not serialize this because the arch
 * code calls this from NMI context.
 */
3249
void perf_event_update_userpage(struct perf_event *event)
3250
{
3251
	struct perf_event_mmap_page *userpg;
3252
	struct ring_buffer *rb;
3253
	u64 enabled, running;
3254 3255

	rcu_read_lock();
3256 3257 3258 3259 3260 3261 3262 3263 3264 3265
	/*
	 * compute total_time_enabled, total_time_running
	 * based on snapshot values taken when the event
	 * was last scheduled in.
	 *
	 * we cannot simply called update_context_time()
	 * because of locking issue as we can be called in
	 * NMI context
	 */
	calc_timer_values(event, &enabled, &running);
3266 3267
	rb = rcu_dereference(event->rb);
	if (!rb)
3268 3269
		goto unlock;

3270
	userpg = rb->user_page;
3271

3272 3273 3274 3275 3276
	/*
	 * Disable preemption so as to not let the corresponding user-space
	 * spin too long if we get preempted.
	 */
	preempt_disable();
3277
	++userpg->lock;
3278
	barrier();
3279
	userpg->index = perf_event_index(event);
P
Peter Zijlstra 已提交
3280
	userpg->offset = perf_event_count(event);
3281
	if (event->state == PERF_EVENT_STATE_ACTIVE)
3282
		userpg->offset -= local64_read(&event->hw.prev_count);
3283

3284
	userpg->time_enabled = enabled +
3285
			atomic64_read(&event->child_total_time_enabled);
3286

3287
	userpg->time_running = running +
3288
			atomic64_read(&event->child_total_time_running);
3289

3290
	barrier();
3291
	++userpg->lock;
3292
	preempt_enable();
3293
unlock:
3294
	rcu_read_unlock();
3295 3296
}

3297 3298 3299
static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
{
	struct perf_event *event = vma->vm_file->private_data;
3300
	struct ring_buffer *rb;
3301 3302 3303 3304 3305 3306 3307 3308 3309
	int ret = VM_FAULT_SIGBUS;

	if (vmf->flags & FAULT_FLAG_MKWRITE) {
		if (vmf->pgoff == 0)
			ret = 0;
		return ret;
	}

	rcu_read_lock();
3310 3311
	rb = rcu_dereference(event->rb);
	if (!rb)
3312 3313 3314 3315 3316
		goto unlock;

	if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
		goto unlock;

3317
	vmf->page = perf_mmap_to_page(rb, vmf->pgoff);
3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331
	if (!vmf->page)
		goto unlock;

	get_page(vmf->page);
	vmf->page->mapping = vma->vm_file->f_mapping;
	vmf->page->index   = vmf->pgoff;

	ret = 0;
unlock:
	rcu_read_unlock();

	return ret;
}

3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374
static void ring_buffer_attach(struct perf_event *event,
			       struct ring_buffer *rb)
{
	unsigned long flags;

	if (!list_empty(&event->rb_entry))
		return;

	spin_lock_irqsave(&rb->event_lock, flags);
	if (!list_empty(&event->rb_entry))
		goto unlock;

	list_add(&event->rb_entry, &rb->event_list);
unlock:
	spin_unlock_irqrestore(&rb->event_lock, flags);
}

static void ring_buffer_detach(struct perf_event *event,
			       struct ring_buffer *rb)
{
	unsigned long flags;

	if (list_empty(&event->rb_entry))
		return;

	spin_lock_irqsave(&rb->event_lock, flags);
	list_del_init(&event->rb_entry);
	wake_up_all(&event->waitq);
	spin_unlock_irqrestore(&rb->event_lock, flags);
}

static void ring_buffer_wakeup(struct perf_event *event)
{
	struct ring_buffer *rb;

	rcu_read_lock();
	rb = rcu_dereference(event->rb);
	list_for_each_entry_rcu(event, &rb->event_list, rb_entry) {
		wake_up_all(&event->waitq);
	}
	rcu_read_unlock();
}

3375
static void rb_free_rcu(struct rcu_head *rcu_head)
3376
{
3377
	struct ring_buffer *rb;
3378

3379 3380
	rb = container_of(rcu_head, struct ring_buffer, rcu_head);
	rb_free(rb);
3381 3382
}

3383
static struct ring_buffer *ring_buffer_get(struct perf_event *event)
3384
{
3385
	struct ring_buffer *rb;
3386

3387
	rcu_read_lock();
3388 3389 3390 3391
	rb = rcu_dereference(event->rb);
	if (rb) {
		if (!atomic_inc_not_zero(&rb->refcount))
			rb = NULL;
3392 3393 3394
	}
	rcu_read_unlock();

3395
	return rb;
3396 3397
}

3398
static void ring_buffer_put(struct ring_buffer *rb)
3399
{
3400 3401 3402
	struct perf_event *event, *n;
	unsigned long flags;

3403
	if (!atomic_dec_and_test(&rb->refcount))
3404
		return;
3405

3406 3407 3408 3409 3410 3411 3412
	spin_lock_irqsave(&rb->event_lock, flags);
	list_for_each_entry_safe(event, n, &rb->event_list, rb_entry) {
		list_del_init(&event->rb_entry);
		wake_up_all(&event->waitq);
	}
	spin_unlock_irqrestore(&rb->event_lock, flags);

3413
	call_rcu(&rb->rcu_head, rb_free_rcu);
3414 3415 3416 3417
}

static void perf_mmap_open(struct vm_area_struct *vma)
{
3418
	struct perf_event *event = vma->vm_file->private_data;
3419

3420
	atomic_inc(&event->mmap_count);
3421 3422 3423 3424
}

static void perf_mmap_close(struct vm_area_struct *vma)
{
3425
	struct perf_event *event = vma->vm_file->private_data;
3426

3427
	if (atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex)) {
3428
		unsigned long size = perf_data_size(event->rb);
3429
		struct user_struct *user = event->mmap_user;
3430
		struct ring_buffer *rb = event->rb;
3431

3432
		atomic_long_sub((size >> PAGE_SHIFT) + 1, &user->locked_vm);
3433
		vma->vm_mm->pinned_vm -= event->mmap_locked;
3434
		rcu_assign_pointer(event->rb, NULL);
3435
		ring_buffer_detach(event, rb);
3436
		mutex_unlock(&event->mmap_mutex);
3437

3438
		ring_buffer_put(rb);
3439
		free_uid(user);
3440
	}
3441 3442
}

3443
static const struct vm_operations_struct perf_mmap_vmops = {
3444 3445 3446 3447
	.open		= perf_mmap_open,
	.close		= perf_mmap_close,
	.fault		= perf_mmap_fault,
	.page_mkwrite	= perf_mmap_fault,
3448 3449 3450 3451
};

static int perf_mmap(struct file *file, struct vm_area_struct *vma)
{
3452
	struct perf_event *event = file->private_data;
3453
	unsigned long user_locked, user_lock_limit;
3454
	struct user_struct *user = current_user();
3455
	unsigned long locked, lock_limit;
3456
	struct ring_buffer *rb;
3457 3458
	unsigned long vma_size;
	unsigned long nr_pages;
3459
	long user_extra, extra;
3460
	int ret = 0, flags = 0;
3461

3462 3463 3464
	/*
	 * Don't allow mmap() of inherited per-task counters. This would
	 * create a performance issue due to all children writing to the
3465
	 * same rb.
3466 3467 3468 3469
	 */
	if (event->cpu == -1 && event->attr.inherit)
		return -EINVAL;

3470
	if (!(vma->vm_flags & VM_SHARED))
3471
		return -EINVAL;
3472 3473 3474 3475

	vma_size = vma->vm_end - vma->vm_start;
	nr_pages = (vma_size / PAGE_SIZE) - 1;

3476
	/*
3477
	 * If we have rb pages ensure they're a power-of-two number, so we
3478 3479 3480
	 * can do bitmasks instead of modulo.
	 */
	if (nr_pages != 0 && !is_power_of_2(nr_pages))
3481 3482
		return -EINVAL;

3483
	if (vma_size != PAGE_SIZE * (1 + nr_pages))
3484 3485
		return -EINVAL;

3486 3487
	if (vma->vm_pgoff != 0)
		return -EINVAL;
3488

3489 3490
	WARN_ON_ONCE(event->ctx->parent_ctx);
	mutex_lock(&event->mmap_mutex);
3491 3492 3493
	if (event->rb) {
		if (event->rb->nr_pages == nr_pages)
			atomic_inc(&event->rb->refcount);
3494
		else
3495 3496 3497 3498
			ret = -EINVAL;
		goto unlock;
	}

3499
	user_extra = nr_pages + 1;
3500
	user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
I
Ingo Molnar 已提交
3501 3502 3503 3504 3505 3506

	/*
	 * Increase the limit linearly with more CPUs:
	 */
	user_lock_limit *= num_online_cpus();

3507
	user_locked = atomic_long_read(&user->locked_vm) + user_extra;
3508

3509 3510 3511
	extra = 0;
	if (user_locked > user_lock_limit)
		extra = user_locked - user_lock_limit;
3512

3513
	lock_limit = rlimit(RLIMIT_MEMLOCK);
3514
	lock_limit >>= PAGE_SHIFT;
3515
	locked = vma->vm_mm->pinned_vm + extra;
3516

3517 3518
	if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() &&
		!capable(CAP_IPC_LOCK)) {
3519 3520 3521
		ret = -EPERM;
		goto unlock;
	}
3522

3523
	WARN_ON(event->rb);
3524

3525
	if (vma->vm_flags & VM_WRITE)
3526
		flags |= RING_BUFFER_WRITABLE;
3527

3528 3529 3530 3531
	rb = rb_alloc(nr_pages, 
		event->attr.watermark ? event->attr.wakeup_watermark : 0,
		event->cpu, flags);

3532
	if (!rb) {
3533
		ret = -ENOMEM;
3534
		goto unlock;
3535
	}
3536
	rcu_assign_pointer(event->rb, rb);
3537

3538 3539 3540
	atomic_long_add(user_extra, &user->locked_vm);
	event->mmap_locked = extra;
	event->mmap_user = get_current_user();
3541
	vma->vm_mm->pinned_vm += event->mmap_locked;
3542

3543
unlock:
3544 3545
	if (!ret)
		atomic_inc(&event->mmap_count);
3546
	mutex_unlock(&event->mmap_mutex);
3547 3548 3549

	vma->vm_flags |= VM_RESERVED;
	vma->vm_ops = &perf_mmap_vmops;
3550 3551

	return ret;
3552 3553
}

P
Peter Zijlstra 已提交
3554 3555 3556
static int perf_fasync(int fd, struct file *filp, int on)
{
	struct inode *inode = filp->f_path.dentry->d_inode;
3557
	struct perf_event *event = filp->private_data;
P
Peter Zijlstra 已提交
3558 3559 3560
	int retval;

	mutex_lock(&inode->i_mutex);
3561
	retval = fasync_helper(fd, filp, on, &event->fasync);
P
Peter Zijlstra 已提交
3562 3563 3564 3565 3566 3567 3568 3569
	mutex_unlock(&inode->i_mutex);

	if (retval < 0)
		return retval;

	return 0;
}

T
Thomas Gleixner 已提交
3570
static const struct file_operations perf_fops = {
3571
	.llseek			= no_llseek,
T
Thomas Gleixner 已提交
3572 3573 3574
	.release		= perf_release,
	.read			= perf_read,
	.poll			= perf_poll,
3575 3576
	.unlocked_ioctl		= perf_ioctl,
	.compat_ioctl		= perf_ioctl,
3577
	.mmap			= perf_mmap,
P
Peter Zijlstra 已提交
3578
	.fasync			= perf_fasync,
T
Thomas Gleixner 已提交
3579 3580
};

3581
/*
3582
 * Perf event wakeup
3583 3584 3585 3586 3587
 *
 * If there's data, ensure we set the poll() state and publish everything
 * to user-space before waking everybody up.
 */

3588
void perf_event_wakeup(struct perf_event *event)
3589
{
3590
	ring_buffer_wakeup(event);
3591

3592 3593 3594
	if (event->pending_kill) {
		kill_fasync(&event->fasync, SIGIO, event->pending_kill);
		event->pending_kill = 0;
3595
	}
3596 3597
}

3598
static void perf_pending_event(struct irq_work *entry)
3599
{
3600 3601
	struct perf_event *event = container_of(entry,
			struct perf_event, pending);
3602

3603 3604 3605
	if (event->pending_disable) {
		event->pending_disable = 0;
		__perf_event_disable(event);
3606 3607
	}

3608 3609 3610
	if (event->pending_wakeup) {
		event->pending_wakeup = 0;
		perf_event_wakeup(event);
3611 3612 3613
	}
}

3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634
/*
 * We assume there is only KVM supporting the callbacks.
 * Later on, we might change it to a list if there is
 * another virtualization implementation supporting the callbacks.
 */
struct perf_guest_info_callbacks *perf_guest_cbs;

int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
{
	perf_guest_cbs = cbs;
	return 0;
}
EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);

int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
{
	perf_guest_cbs = NULL;
	return 0;
}
EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);

3635 3636 3637
static void __perf_event_header__init_id(struct perf_event_header *header,
					 struct perf_sample_data *data,
					 struct perf_event *event)
3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664
{
	u64 sample_type = event->attr.sample_type;

	data->type = sample_type;
	header->size += event->id_header_size;

	if (sample_type & PERF_SAMPLE_TID) {
		/* namespace issues */
		data->tid_entry.pid = perf_event_pid(event, current);
		data->tid_entry.tid = perf_event_tid(event, current);
	}

	if (sample_type & PERF_SAMPLE_TIME)
		data->time = perf_clock();

	if (sample_type & PERF_SAMPLE_ID)
		data->id = primary_event_id(event);

	if (sample_type & PERF_SAMPLE_STREAM_ID)
		data->stream_id = event->id;

	if (sample_type & PERF_SAMPLE_CPU) {
		data->cpu_entry.cpu	 = raw_smp_processor_id();
		data->cpu_entry.reserved = 0;
	}
}

3665 3666 3667
void perf_event_header__init_id(struct perf_event_header *header,
				struct perf_sample_data *data,
				struct perf_event *event)
3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693
{
	if (event->attr.sample_id_all)
		__perf_event_header__init_id(header, data, event);
}

static void __perf_event__output_id_sample(struct perf_output_handle *handle,
					   struct perf_sample_data *data)
{
	u64 sample_type = data->type;

	if (sample_type & PERF_SAMPLE_TID)
		perf_output_put(handle, data->tid_entry);

	if (sample_type & PERF_SAMPLE_TIME)
		perf_output_put(handle, data->time);

	if (sample_type & PERF_SAMPLE_ID)
		perf_output_put(handle, data->id);

	if (sample_type & PERF_SAMPLE_STREAM_ID)
		perf_output_put(handle, data->stream_id);

	if (sample_type & PERF_SAMPLE_CPU)
		perf_output_put(handle, data->cpu_entry);
}

3694 3695 3696
void perf_event__output_id_sample(struct perf_event *event,
				  struct perf_output_handle *handle,
				  struct perf_sample_data *sample)
3697 3698 3699 3700 3701
{
	if (event->attr.sample_id_all)
		__perf_event__output_id_sample(handle, sample);
}

3702
static void perf_output_read_one(struct perf_output_handle *handle,
3703 3704
				 struct perf_event *event,
				 u64 enabled, u64 running)
3705
{
3706
	u64 read_format = event->attr.read_format;
3707 3708 3709
	u64 values[4];
	int n = 0;

P
Peter Zijlstra 已提交
3710
	values[n++] = perf_event_count(event);
3711
	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
3712
		values[n++] = enabled +
3713
			atomic64_read(&event->child_total_time_enabled);
3714 3715
	}
	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
3716
		values[n++] = running +
3717
			atomic64_read(&event->child_total_time_running);
3718 3719
	}
	if (read_format & PERF_FORMAT_ID)
3720
		values[n++] = primary_event_id(event);
3721

3722
	__output_copy(handle, values, n * sizeof(u64));
3723 3724 3725
}

/*
3726
 * XXX PERF_FORMAT_GROUP vs inherited events seems difficult.
3727 3728
 */
static void perf_output_read_group(struct perf_output_handle *handle,
3729 3730
			    struct perf_event *event,
			    u64 enabled, u64 running)
3731
{
3732 3733
	struct perf_event *leader = event->group_leader, *sub;
	u64 read_format = event->attr.read_format;
3734 3735 3736 3737 3738 3739
	u64 values[5];
	int n = 0;

	values[n++] = 1 + leader->nr_siblings;

	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
3740
		values[n++] = enabled;
3741 3742

	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
3743
		values[n++] = running;
3744

3745
	if (leader != event)
3746 3747
		leader->pmu->read(leader);

P
Peter Zijlstra 已提交
3748
	values[n++] = perf_event_count(leader);
3749
	if (read_format & PERF_FORMAT_ID)
3750
		values[n++] = primary_event_id(leader);
3751

3752
	__output_copy(handle, values, n * sizeof(u64));
3753

3754
	list_for_each_entry(sub, &leader->sibling_list, group_entry) {
3755 3756
		n = 0;

3757
		if (sub != event)
3758 3759
			sub->pmu->read(sub);

P
Peter Zijlstra 已提交
3760
		values[n++] = perf_event_count(sub);
3761
		if (read_format & PERF_FORMAT_ID)
3762
			values[n++] = primary_event_id(sub);
3763

3764
		__output_copy(handle, values, n * sizeof(u64));
3765 3766 3767
	}
}

3768 3769 3770
#define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\
				 PERF_FORMAT_TOTAL_TIME_RUNNING)

3771
static void perf_output_read(struct perf_output_handle *handle,
3772
			     struct perf_event *event)
3773
{
3774
	u64 enabled = 0, running = 0;
3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785
	u64 read_format = event->attr.read_format;

	/*
	 * compute total_time_enabled, total_time_running
	 * based on snapshot values taken when the event
	 * was last scheduled in.
	 *
	 * we cannot simply called update_context_time()
	 * because of locking issue as we are called in
	 * NMI context
	 */
3786 3787
	if (read_format & PERF_FORMAT_TOTAL_TIMES)
		calc_timer_values(event, &enabled, &running);
3788

3789
	if (event->attr.read_format & PERF_FORMAT_GROUP)
3790
		perf_output_read_group(handle, event, enabled, running);
3791
	else
3792
		perf_output_read_one(handle, event, enabled, running);
3793 3794
}

3795 3796 3797
void perf_output_sample(struct perf_output_handle *handle,
			struct perf_event_header *header,
			struct perf_sample_data *data,
3798
			struct perf_event *event)
3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828
{
	u64 sample_type = data->type;

	perf_output_put(handle, *header);

	if (sample_type & PERF_SAMPLE_IP)
		perf_output_put(handle, data->ip);

	if (sample_type & PERF_SAMPLE_TID)
		perf_output_put(handle, data->tid_entry);

	if (sample_type & PERF_SAMPLE_TIME)
		perf_output_put(handle, data->time);

	if (sample_type & PERF_SAMPLE_ADDR)
		perf_output_put(handle, data->addr);

	if (sample_type & PERF_SAMPLE_ID)
		perf_output_put(handle, data->id);

	if (sample_type & PERF_SAMPLE_STREAM_ID)
		perf_output_put(handle, data->stream_id);

	if (sample_type & PERF_SAMPLE_CPU)
		perf_output_put(handle, data->cpu_entry);

	if (sample_type & PERF_SAMPLE_PERIOD)
		perf_output_put(handle, data->period);

	if (sample_type & PERF_SAMPLE_READ)
3829
		perf_output_read(handle, event);
3830 3831 3832 3833 3834 3835 3836 3837 3838 3839

	if (sample_type & PERF_SAMPLE_CALLCHAIN) {
		if (data->callchain) {
			int size = 1;

			if (data->callchain)
				size += data->callchain->nr;

			size *= sizeof(u64);

3840
			__output_copy(handle, data->callchain, size);
3841 3842 3843 3844 3845 3846 3847 3848 3849
		} else {
			u64 nr = 0;
			perf_output_put(handle, nr);
		}
	}

	if (sample_type & PERF_SAMPLE_RAW) {
		if (data->raw) {
			perf_output_put(handle, data->raw->size);
3850 3851
			__output_copy(handle, data->raw->data,
					   data->raw->size);
3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862
		} else {
			struct {
				u32	size;
				u32	data;
			} raw = {
				.size = sizeof(u32),
				.data = 0,
			};
			perf_output_put(handle, raw);
		}
	}
3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876

	if (!event->attr.watermark) {
		int wakeup_events = event->attr.wakeup_events;

		if (wakeup_events) {
			struct ring_buffer *rb = handle->rb;
			int events = local_inc_return(&rb->events);

			if (events >= wakeup_events) {
				local_sub(wakeup_events, &rb->events);
				local_inc(&rb->wakeup);
			}
		}
	}
3877 3878 3879 3880
}

void perf_prepare_sample(struct perf_event_header *header,
			 struct perf_sample_data *data,
3881
			 struct perf_event *event,
3882
			 struct pt_regs *regs)
3883
{
3884
	u64 sample_type = event->attr.sample_type;
3885

3886
	header->type = PERF_RECORD_SAMPLE;
3887
	header->size = sizeof(*header) + event->header_size;
3888 3889 3890

	header->misc = 0;
	header->misc |= perf_misc_flags(regs);
3891

3892
	__perf_event_header__init_id(header, data, event);
3893

3894
	if (sample_type & PERF_SAMPLE_IP)
3895 3896
		data->ip = perf_instruction_pointer(regs);

3897
	if (sample_type & PERF_SAMPLE_CALLCHAIN) {
3898
		int size = 1;
3899

3900 3901 3902 3903 3904 3905
		data->callchain = perf_callchain(regs);

		if (data->callchain)
			size += data->callchain->nr;

		header->size += size * sizeof(u64);
3906 3907
	}

3908
	if (sample_type & PERF_SAMPLE_RAW) {
3909 3910 3911 3912 3913 3914 3915 3916
		int size = sizeof(u32);

		if (data->raw)
			size += data->raw->size;
		else
			size += sizeof(u32);

		WARN_ON_ONCE(size & (sizeof(u64)-1));
3917
		header->size += size;
3918
	}
3919
}
3920

3921
static void perf_event_output(struct perf_event *event,
3922 3923 3924 3925 3926
				struct perf_sample_data *data,
				struct pt_regs *regs)
{
	struct perf_output_handle handle;
	struct perf_event_header header;
3927

3928 3929 3930
	/* protect the callchain buffers */
	rcu_read_lock();

3931
	perf_prepare_sample(&header, data, event, regs);
P
Peter Zijlstra 已提交
3932

3933
	if (perf_output_begin(&handle, event, header.size))
3934
		goto exit;
3935

3936
	perf_output_sample(&handle, &header, data, event);
3937

3938
	perf_output_end(&handle);
3939 3940 3941

exit:
	rcu_read_unlock();
3942 3943
}

3944
/*
3945
 * read event_id
3946 3947 3948 3949 3950 3951 3952 3953 3954 3955
 */

struct perf_read_event {
	struct perf_event_header	header;

	u32				pid;
	u32				tid;
};

static void
3956
perf_event_read_event(struct perf_event *event,
3957 3958 3959
			struct task_struct *task)
{
	struct perf_output_handle handle;
3960
	struct perf_sample_data sample;
3961
	struct perf_read_event read_event = {
3962
		.header = {
3963
			.type = PERF_RECORD_READ,
3964
			.misc = 0,
3965
			.size = sizeof(read_event) + event->read_size,
3966
		},
3967 3968
		.pid = perf_event_pid(event, task),
		.tid = perf_event_tid(event, task),
3969
	};
3970
	int ret;
3971

3972
	perf_event_header__init_id(&read_event.header, &sample, event);
3973
	ret = perf_output_begin(&handle, event, read_event.header.size);
3974 3975 3976
	if (ret)
		return;

3977
	perf_output_put(&handle, read_event);
3978
	perf_output_read(&handle, event);
3979
	perf_event__output_id_sample(event, &handle, &sample);
3980

3981 3982 3983
	perf_output_end(&handle);
}

P
Peter Zijlstra 已提交
3984
/*
P
Peter Zijlstra 已提交
3985 3986
 * task tracking -- fork/exit
 *
3987
 * enabled by: attr.comm | attr.mmap | attr.mmap_data | attr.task
P
Peter Zijlstra 已提交
3988 3989
 */

P
Peter Zijlstra 已提交
3990
struct perf_task_event {
3991
	struct task_struct		*task;
3992
	struct perf_event_context	*task_ctx;
P
Peter Zijlstra 已提交
3993 3994 3995 3996 3997 3998

	struct {
		struct perf_event_header	header;

		u32				pid;
		u32				ppid;
P
Peter Zijlstra 已提交
3999 4000
		u32				tid;
		u32				ptid;
4001
		u64				time;
4002
	} event_id;
P
Peter Zijlstra 已提交
4003 4004
};

4005
static void perf_event_task_output(struct perf_event *event,
P
Peter Zijlstra 已提交
4006
				     struct perf_task_event *task_event)
P
Peter Zijlstra 已提交
4007 4008
{
	struct perf_output_handle handle;
4009
	struct perf_sample_data	sample;
P
Peter Zijlstra 已提交
4010
	struct task_struct *task = task_event->task;
4011
	int ret, size = task_event->event_id.header.size;
4012

4013
	perf_event_header__init_id(&task_event->event_id.header, &sample, event);
P
Peter Zijlstra 已提交
4014

4015
	ret = perf_output_begin(&handle, event,
4016
				task_event->event_id.header.size);
4017
	if (ret)
4018
		goto out;
P
Peter Zijlstra 已提交
4019

4020 4021
	task_event->event_id.pid = perf_event_pid(event, task);
	task_event->event_id.ppid = perf_event_pid(event, current);
P
Peter Zijlstra 已提交
4022

4023 4024
	task_event->event_id.tid = perf_event_tid(event, task);
	task_event->event_id.ptid = perf_event_tid(event, current);
P
Peter Zijlstra 已提交
4025

4026
	perf_output_put(&handle, task_event->event_id);
4027

4028 4029
	perf_event__output_id_sample(event, &handle, &sample);

P
Peter Zijlstra 已提交
4030
	perf_output_end(&handle);
4031 4032
out:
	task_event->event_id.header.size = size;
P
Peter Zijlstra 已提交
4033 4034
}

4035
static int perf_event_task_match(struct perf_event *event)
P
Peter Zijlstra 已提交
4036
{
P
Peter Zijlstra 已提交
4037
	if (event->state < PERF_EVENT_STATE_INACTIVE)
4038 4039
		return 0;

4040
	if (!event_filter_match(event))
4041 4042
		return 0;

4043 4044
	if (event->attr.comm || event->attr.mmap ||
	    event->attr.mmap_data || event->attr.task)
P
Peter Zijlstra 已提交
4045 4046 4047 4048 4049
		return 1;

	return 0;
}

4050
static void perf_event_task_ctx(struct perf_event_context *ctx,
P
Peter Zijlstra 已提交
4051
				  struct perf_task_event *task_event)
P
Peter Zijlstra 已提交
4052
{
4053
	struct perf_event *event;
P
Peter Zijlstra 已提交
4054

4055 4056 4057
	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
		if (perf_event_task_match(event))
			perf_event_task_output(event, task_event);
P
Peter Zijlstra 已提交
4058 4059 4060
	}
}

4061
static void perf_event_task_event(struct perf_task_event *task_event)
P
Peter Zijlstra 已提交
4062 4063
{
	struct perf_cpu_context *cpuctx;
P
Peter Zijlstra 已提交
4064
	struct perf_event_context *ctx;
P
Peter Zijlstra 已提交
4065
	struct pmu *pmu;
P
Peter Zijlstra 已提交
4066
	int ctxn;
P
Peter Zijlstra 已提交
4067

4068
	rcu_read_lock();
P
Peter Zijlstra 已提交
4069
	list_for_each_entry_rcu(pmu, &pmus, entry) {
4070
		cpuctx = get_cpu_ptr(pmu->pmu_cpu_context);
4071 4072
		if (cpuctx->active_pmu != pmu)
			goto next;
P
Peter Zijlstra 已提交
4073
		perf_event_task_ctx(&cpuctx->ctx, task_event);
P
Peter Zijlstra 已提交
4074 4075 4076 4077 4078

		ctx = task_event->task_ctx;
		if (!ctx) {
			ctxn = pmu->task_ctx_nr;
			if (ctxn < 0)
4079
				goto next;
P
Peter Zijlstra 已提交
4080 4081 4082 4083
			ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
		}
		if (ctx)
			perf_event_task_ctx(ctx, task_event);
4084 4085
next:
		put_cpu_ptr(pmu->pmu_cpu_context);
P
Peter Zijlstra 已提交
4086
	}
P
Peter Zijlstra 已提交
4087 4088 4089
	rcu_read_unlock();
}

4090 4091
static void perf_event_task(struct task_struct *task,
			      struct perf_event_context *task_ctx,
4092
			      int new)
P
Peter Zijlstra 已提交
4093
{
P
Peter Zijlstra 已提交
4094
	struct perf_task_event task_event;
P
Peter Zijlstra 已提交
4095

4096 4097 4098
	if (!atomic_read(&nr_comm_events) &&
	    !atomic_read(&nr_mmap_events) &&
	    !atomic_read(&nr_task_events))
P
Peter Zijlstra 已提交
4099 4100
		return;

P
Peter Zijlstra 已提交
4101
	task_event = (struct perf_task_event){
4102 4103
		.task	  = task,
		.task_ctx = task_ctx,
4104
		.event_id    = {
P
Peter Zijlstra 已提交
4105
			.header = {
4106
				.type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
4107
				.misc = 0,
4108
				.size = sizeof(task_event.event_id),
P
Peter Zijlstra 已提交
4109
			},
4110 4111
			/* .pid  */
			/* .ppid */
P
Peter Zijlstra 已提交
4112 4113
			/* .tid  */
			/* .ptid */
P
Peter Zijlstra 已提交
4114
			.time = perf_clock(),
P
Peter Zijlstra 已提交
4115 4116 4117
		},
	};

4118
	perf_event_task_event(&task_event);
P
Peter Zijlstra 已提交
4119 4120
}

4121
void perf_event_fork(struct task_struct *task)
P
Peter Zijlstra 已提交
4122
{
4123
	perf_event_task(task, NULL, 1);
P
Peter Zijlstra 已提交
4124 4125
}

4126 4127 4128 4129 4130
/*
 * comm tracking
 */

struct perf_comm_event {
4131 4132
	struct task_struct	*task;
	char			*comm;
4133 4134 4135 4136 4137 4138 4139
	int			comm_size;

	struct {
		struct perf_event_header	header;

		u32				pid;
		u32				tid;
4140
	} event_id;
4141 4142
};

4143
static void perf_event_comm_output(struct perf_event *event,
4144 4145 4146
				     struct perf_comm_event *comm_event)
{
	struct perf_output_handle handle;
4147
	struct perf_sample_data sample;
4148
	int size = comm_event->event_id.header.size;
4149 4150 4151 4152
	int ret;

	perf_event_header__init_id(&comm_event->event_id.header, &sample, event);
	ret = perf_output_begin(&handle, event,
4153
				comm_event->event_id.header.size);
4154 4155

	if (ret)
4156
		goto out;
4157

4158 4159
	comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
	comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
4160

4161
	perf_output_put(&handle, comm_event->event_id);
4162
	__output_copy(&handle, comm_event->comm,
4163
				   comm_event->comm_size);
4164 4165 4166

	perf_event__output_id_sample(event, &handle, &sample);

4167
	perf_output_end(&handle);
4168 4169
out:
	comm_event->event_id.header.size = size;
4170 4171
}

4172
static int perf_event_comm_match(struct perf_event *event)
4173
{
P
Peter Zijlstra 已提交
4174
	if (event->state < PERF_EVENT_STATE_INACTIVE)
4175 4176
		return 0;

4177
	if (!event_filter_match(event))
4178 4179
		return 0;

4180
	if (event->attr.comm)
4181 4182 4183 4184 4185
		return 1;

	return 0;
}

4186
static void perf_event_comm_ctx(struct perf_event_context *ctx,
4187 4188
				  struct perf_comm_event *comm_event)
{
4189
	struct perf_event *event;
4190

4191 4192 4193
	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
		if (perf_event_comm_match(event))
			perf_event_comm_output(event, comm_event);
4194 4195 4196
	}
}

4197
static void perf_event_comm_event(struct perf_comm_event *comm_event)
4198 4199
{
	struct perf_cpu_context *cpuctx;
4200
	struct perf_event_context *ctx;
4201
	char comm[TASK_COMM_LEN];
4202
	unsigned int size;
P
Peter Zijlstra 已提交
4203
	struct pmu *pmu;
P
Peter Zijlstra 已提交
4204
	int ctxn;
4205

4206
	memset(comm, 0, sizeof(comm));
4207
	strlcpy(comm, comm_event->task->comm, sizeof(comm));
4208
	size = ALIGN(strlen(comm)+1, sizeof(u64));
4209 4210 4211 4212

	comm_event->comm = comm;
	comm_event->comm_size = size;

4213
	comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
4214
	rcu_read_lock();
P
Peter Zijlstra 已提交
4215
	list_for_each_entry_rcu(pmu, &pmus, entry) {
4216
		cpuctx = get_cpu_ptr(pmu->pmu_cpu_context);
4217 4218
		if (cpuctx->active_pmu != pmu)
			goto next;
P
Peter Zijlstra 已提交
4219
		perf_event_comm_ctx(&cpuctx->ctx, comm_event);
P
Peter Zijlstra 已提交
4220 4221 4222

		ctxn = pmu->task_ctx_nr;
		if (ctxn < 0)
4223
			goto next;
P
Peter Zijlstra 已提交
4224 4225 4226 4227

		ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
		if (ctx)
			perf_event_comm_ctx(ctx, comm_event);
4228 4229
next:
		put_cpu_ptr(pmu->pmu_cpu_context);
P
Peter Zijlstra 已提交
4230
	}
4231
	rcu_read_unlock();
4232 4233
}

4234
void perf_event_comm(struct task_struct *task)
4235
{
4236
	struct perf_comm_event comm_event;
P
Peter Zijlstra 已提交
4237 4238
	struct perf_event_context *ctx;
	int ctxn;
4239

P
Peter Zijlstra 已提交
4240 4241 4242 4243
	for_each_task_context_nr(ctxn) {
		ctx = task->perf_event_ctxp[ctxn];
		if (!ctx)
			continue;
4244

P
Peter Zijlstra 已提交
4245 4246
		perf_event_enable_on_exec(ctx);
	}
4247

4248
	if (!atomic_read(&nr_comm_events))
4249
		return;
4250

4251
	comm_event = (struct perf_comm_event){
4252
		.task	= task,
4253 4254
		/* .comm      */
		/* .comm_size */
4255
		.event_id  = {
4256
			.header = {
4257
				.type = PERF_RECORD_COMM,
4258 4259 4260 4261 4262
				.misc = 0,
				/* .size */
			},
			/* .pid */
			/* .tid */
4263 4264 4265
		},
	};

4266
	perf_event_comm_event(&comm_event);
4267 4268
}

4269 4270 4271 4272 4273
/*
 * mmap tracking
 */

struct perf_mmap_event {
4274 4275 4276 4277
	struct vm_area_struct	*vma;

	const char		*file_name;
	int			file_size;
4278 4279 4280 4281 4282 4283 4284 4285 4286

	struct {
		struct perf_event_header	header;

		u32				pid;
		u32				tid;
		u64				start;
		u64				len;
		u64				pgoff;
4287
	} event_id;
4288 4289
};

4290
static void perf_event_mmap_output(struct perf_event *event,
4291 4292 4293
				     struct perf_mmap_event *mmap_event)
{
	struct perf_output_handle handle;
4294
	struct perf_sample_data sample;
4295
	int size = mmap_event->event_id.header.size;
4296
	int ret;
4297

4298 4299
	perf_event_header__init_id(&mmap_event->event_id.header, &sample, event);
	ret = perf_output_begin(&handle, event,
4300
				mmap_event->event_id.header.size);
4301
	if (ret)
4302
		goto out;
4303

4304 4305
	mmap_event->event_id.pid = perf_event_pid(event, current);
	mmap_event->event_id.tid = perf_event_tid(event, current);
4306

4307
	perf_output_put(&handle, mmap_event->event_id);
4308
	__output_copy(&handle, mmap_event->file_name,
4309
				   mmap_event->file_size);
4310 4311 4312

	perf_event__output_id_sample(event, &handle, &sample);

4313
	perf_output_end(&handle);
4314 4315
out:
	mmap_event->event_id.header.size = size;
4316 4317
}

4318
static int perf_event_mmap_match(struct perf_event *event,
4319 4320
				   struct perf_mmap_event *mmap_event,
				   int executable)
4321
{
P
Peter Zijlstra 已提交
4322
	if (event->state < PERF_EVENT_STATE_INACTIVE)
4323 4324
		return 0;

4325
	if (!event_filter_match(event))
4326 4327
		return 0;

4328 4329
	if ((!executable && event->attr.mmap_data) ||
	    (executable && event->attr.mmap))
4330 4331 4332 4333 4334
		return 1;

	return 0;
}

4335
static void perf_event_mmap_ctx(struct perf_event_context *ctx,
4336 4337
				  struct perf_mmap_event *mmap_event,
				  int executable)
4338
{
4339
	struct perf_event *event;
4340

4341
	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
4342
		if (perf_event_mmap_match(event, mmap_event, executable))
4343
			perf_event_mmap_output(event, mmap_event);
4344 4345 4346
	}
}

4347
static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
4348 4349
{
	struct perf_cpu_context *cpuctx;
4350
	struct perf_event_context *ctx;
4351 4352
	struct vm_area_struct *vma = mmap_event->vma;
	struct file *file = vma->vm_file;
4353 4354 4355
	unsigned int size;
	char tmp[16];
	char *buf = NULL;
4356
	const char *name;
P
Peter Zijlstra 已提交
4357
	struct pmu *pmu;
P
Peter Zijlstra 已提交
4358
	int ctxn;
4359

4360 4361
	memset(tmp, 0, sizeof(tmp));

4362
	if (file) {
4363
		/*
4364
		 * d_path works from the end of the rb backwards, so we
4365 4366 4367 4368
		 * need to add enough zero bytes after the string to handle
		 * the 64bit alignment we do later.
		 */
		buf = kzalloc(PATH_MAX + sizeof(u64), GFP_KERNEL);
4369 4370 4371 4372
		if (!buf) {
			name = strncpy(tmp, "//enomem", sizeof(tmp));
			goto got_name;
		}
4373
		name = d_path(&file->f_path, buf, PATH_MAX);
4374 4375 4376 4377 4378
		if (IS_ERR(name)) {
			name = strncpy(tmp, "//toolong", sizeof(tmp));
			goto got_name;
		}
	} else {
4379 4380 4381
		if (arch_vma_name(mmap_event->vma)) {
			name = strncpy(tmp, arch_vma_name(mmap_event->vma),
				       sizeof(tmp));
4382
			goto got_name;
4383
		}
4384 4385 4386 4387

		if (!vma->vm_mm) {
			name = strncpy(tmp, "[vdso]", sizeof(tmp));
			goto got_name;
4388 4389 4390 4391 4392 4393 4394 4395
		} else if (vma->vm_start <= vma->vm_mm->start_brk &&
				vma->vm_end >= vma->vm_mm->brk) {
			name = strncpy(tmp, "[heap]", sizeof(tmp));
			goto got_name;
		} else if (vma->vm_start <= vma->vm_mm->start_stack &&
				vma->vm_end >= vma->vm_mm->start_stack) {
			name = strncpy(tmp, "[stack]", sizeof(tmp));
			goto got_name;
4396 4397
		}

4398 4399 4400 4401 4402
		name = strncpy(tmp, "//anon", sizeof(tmp));
		goto got_name;
	}

got_name:
4403
	size = ALIGN(strlen(name)+1, sizeof(u64));
4404 4405 4406 4407

	mmap_event->file_name = name;
	mmap_event->file_size = size;

4408
	mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
4409

4410
	rcu_read_lock();
P
Peter Zijlstra 已提交
4411
	list_for_each_entry_rcu(pmu, &pmus, entry) {
4412
		cpuctx = get_cpu_ptr(pmu->pmu_cpu_context);
4413 4414
		if (cpuctx->active_pmu != pmu)
			goto next;
P
Peter Zijlstra 已提交
4415 4416
		perf_event_mmap_ctx(&cpuctx->ctx, mmap_event,
					vma->vm_flags & VM_EXEC);
P
Peter Zijlstra 已提交
4417 4418 4419

		ctxn = pmu->task_ctx_nr;
		if (ctxn < 0)
4420
			goto next;
P
Peter Zijlstra 已提交
4421 4422 4423 4424 4425 4426

		ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
		if (ctx) {
			perf_event_mmap_ctx(ctx, mmap_event,
					vma->vm_flags & VM_EXEC);
		}
4427 4428
next:
		put_cpu_ptr(pmu->pmu_cpu_context);
P
Peter Zijlstra 已提交
4429
	}
4430 4431
	rcu_read_unlock();

4432 4433 4434
	kfree(buf);
}

4435
void perf_event_mmap(struct vm_area_struct *vma)
4436
{
4437 4438
	struct perf_mmap_event mmap_event;

4439
	if (!atomic_read(&nr_mmap_events))
4440 4441 4442
		return;

	mmap_event = (struct perf_mmap_event){
4443
		.vma	= vma,
4444 4445
		/* .file_name */
		/* .file_size */
4446
		.event_id  = {
4447
			.header = {
4448
				.type = PERF_RECORD_MMAP,
4449
				.misc = PERF_RECORD_MISC_USER,
4450 4451 4452 4453
				/* .size */
			},
			/* .pid */
			/* .tid */
4454 4455
			.start  = vma->vm_start,
			.len    = vma->vm_end - vma->vm_start,
4456
			.pgoff  = (u64)vma->vm_pgoff << PAGE_SHIFT,
4457 4458 4459
		},
	};

4460
	perf_event_mmap_event(&mmap_event);
4461 4462
}

4463 4464 4465 4466
/*
 * IRQ throttle logging
 */

4467
static void perf_log_throttle(struct perf_event *event, int enable)
4468 4469
{
	struct perf_output_handle handle;
4470
	struct perf_sample_data sample;
4471 4472 4473 4474 4475
	int ret;

	struct {
		struct perf_event_header	header;
		u64				time;
4476
		u64				id;
4477
		u64				stream_id;
4478 4479
	} throttle_event = {
		.header = {
4480
			.type = PERF_RECORD_THROTTLE,
4481 4482 4483
			.misc = 0,
			.size = sizeof(throttle_event),
		},
P
Peter Zijlstra 已提交
4484
		.time		= perf_clock(),
4485 4486
		.id		= primary_event_id(event),
		.stream_id	= event->id,
4487 4488
	};

4489
	if (enable)
4490
		throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
4491

4492 4493 4494
	perf_event_header__init_id(&throttle_event.header, &sample, event);

	ret = perf_output_begin(&handle, event,
4495
				throttle_event.header.size);
4496 4497 4498 4499
	if (ret)
		return;

	perf_output_put(&handle, throttle_event);
4500
	perf_event__output_id_sample(event, &handle, &sample);
4501 4502 4503
	perf_output_end(&handle);
}

4504
/*
4505
 * Generic event overflow handling, sampling.
4506 4507
 */

4508
static int __perf_event_overflow(struct perf_event *event,
4509 4510
				   int throttle, struct perf_sample_data *data,
				   struct pt_regs *regs)
4511
{
4512 4513
	int events = atomic_read(&event->event_limit);
	struct hw_perf_event *hwc = &event->hw;
4514 4515
	int ret = 0;

4516 4517 4518 4519 4520 4521 4522
	/*
	 * Non-sampling counters might still use the PMI to fold short
	 * hardware counters, ignore those.
	 */
	if (unlikely(!is_sampling_event(event)))
		return 0;

P
Peter Zijlstra 已提交
4523 4524 4525 4526
	if (unlikely(hwc->interrupts >= max_samples_per_tick)) {
		if (throttle) {
			hwc->interrupts = MAX_INTERRUPTS;
			perf_log_throttle(event, 0);
4527 4528
			ret = 1;
		}
P
Peter Zijlstra 已提交
4529 4530
	} else
		hwc->interrupts++;
4531

4532
	if (event->attr.freq) {
P
Peter Zijlstra 已提交
4533
		u64 now = perf_clock();
4534
		s64 delta = now - hwc->freq_time_stamp;
4535

4536
		hwc->freq_time_stamp = now;
4537

4538 4539
		if (delta > 0 && delta < 2*TICK_NSEC)
			perf_adjust_period(event, delta, hwc->last_period);
4540 4541
	}

4542 4543
	/*
	 * XXX event_limit might not quite work as expected on inherited
4544
	 * events
4545 4546
	 */

4547 4548
	event->pending_kill = POLL_IN;
	if (events && atomic_dec_and_test(&event->event_limit)) {
4549
		ret = 1;
4550
		event->pending_kill = POLL_HUP;
4551 4552
		event->pending_disable = 1;
		irq_work_queue(&event->pending);
4553 4554
	}

4555
	if (event->overflow_handler)
4556
		event->overflow_handler(event, data, regs);
4557
	else
4558
		perf_event_output(event, data, regs);
4559

P
Peter Zijlstra 已提交
4560
	if (event->fasync && event->pending_kill) {
4561 4562
		event->pending_wakeup = 1;
		irq_work_queue(&event->pending);
P
Peter Zijlstra 已提交
4563 4564
	}

4565
	return ret;
4566 4567
}

4568
int perf_event_overflow(struct perf_event *event,
4569 4570
			  struct perf_sample_data *data,
			  struct pt_regs *regs)
4571
{
4572
	return __perf_event_overflow(event, 1, data, regs);
4573 4574
}

4575
/*
4576
 * Generic software event infrastructure
4577 4578
 */

4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589
struct swevent_htable {
	struct swevent_hlist		*swevent_hlist;
	struct mutex			hlist_mutex;
	int				hlist_refcount;

	/* Recursion avoidance in each contexts */
	int				recursion[PERF_NR_CONTEXTS];
};

static DEFINE_PER_CPU(struct swevent_htable, swevent_htable);

4590
/*
4591 4592
 * We directly increment event->count and keep a second value in
 * event->hw.period_left to count intervals. This period event
4593 4594 4595 4596
 * is kept in the range [-sample_period, 0] so that we can use the
 * sign as trigger.
 */

4597
static u64 perf_swevent_set_period(struct perf_event *event)
4598
{
4599
	struct hw_perf_event *hwc = &event->hw;
4600 4601 4602 4603 4604
	u64 period = hwc->last_period;
	u64 nr, offset;
	s64 old, val;

	hwc->last_period = hwc->sample_period;
4605 4606

again:
4607
	old = val = local64_read(&hwc->period_left);
4608 4609
	if (val < 0)
		return 0;
4610

4611 4612 4613
	nr = div64_u64(period + val, period);
	offset = nr * period;
	val -= offset;
4614
	if (local64_cmpxchg(&hwc->period_left, old, val) != old)
4615
		goto again;
4616

4617
	return nr;
4618 4619
}

4620
static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
4621
				    struct perf_sample_data *data,
4622
				    struct pt_regs *regs)
4623
{
4624
	struct hw_perf_event *hwc = &event->hw;
4625
	int throttle = 0;
4626

4627 4628
	if (!overflow)
		overflow = perf_swevent_set_period(event);
4629

4630 4631
	if (hwc->interrupts == MAX_INTERRUPTS)
		return;
4632

4633
	for (; overflow; overflow--) {
4634
		if (__perf_event_overflow(event, throttle,
4635
					    data, regs)) {
4636 4637 4638 4639 4640 4641
			/*
			 * We inhibit the overflow from happening when
			 * hwc->interrupts == MAX_INTERRUPTS.
			 */
			break;
		}
4642
		throttle = 1;
4643
	}
4644 4645
}

P
Peter Zijlstra 已提交
4646
static void perf_swevent_event(struct perf_event *event, u64 nr,
4647
			       struct perf_sample_data *data,
4648
			       struct pt_regs *regs)
4649
{
4650
	struct hw_perf_event *hwc = &event->hw;
4651

4652
	local64_add(nr, &event->count);
4653

4654 4655 4656
	if (!regs)
		return;

4657
	if (!is_sampling_event(event))
4658
		return;
4659

4660 4661 4662 4663 4664 4665
	if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) {
		data->period = nr;
		return perf_swevent_overflow(event, 1, data, regs);
	} else
		data->period = event->hw.last_period;

4666
	if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
4667
		return perf_swevent_overflow(event, 1, data, regs);
4668

4669
	if (local64_add_negative(nr, &hwc->period_left))
4670
		return;
4671

4672
	perf_swevent_overflow(event, 0, data, regs);
4673 4674
}

4675 4676 4677
static int perf_exclude_event(struct perf_event *event,
			      struct pt_regs *regs)
{
P
Peter Zijlstra 已提交
4678
	if (event->hw.state & PERF_HES_STOPPED)
4679
		return 1;
P
Peter Zijlstra 已提交
4680

4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691
	if (regs) {
		if (event->attr.exclude_user && user_mode(regs))
			return 1;

		if (event->attr.exclude_kernel && !user_mode(regs))
			return 1;
	}

	return 0;
}

4692
static int perf_swevent_match(struct perf_event *event,
P
Peter Zijlstra 已提交
4693
				enum perf_type_id type,
L
Li Zefan 已提交
4694 4695 4696
				u32 event_id,
				struct perf_sample_data *data,
				struct pt_regs *regs)
4697
{
4698
	if (event->attr.type != type)
4699
		return 0;
4700

4701
	if (event->attr.config != event_id)
4702 4703
		return 0;

4704 4705
	if (perf_exclude_event(event, regs))
		return 0;
4706 4707 4708 4709

	return 1;
}

4710 4711 4712 4713 4714 4715 4716
static inline u64 swevent_hash(u64 type, u32 event_id)
{
	u64 val = event_id | (type << 32);

	return hash_64(val, SWEVENT_HLIST_BITS);
}

4717 4718
static inline struct hlist_head *
__find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
4719
{
4720 4721 4722 4723
	u64 hash = swevent_hash(type, event_id);

	return &hlist->heads[hash];
}
4724

4725 4726
/* For the read side: events when they trigger */
static inline struct hlist_head *
4727
find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id)
4728 4729
{
	struct swevent_hlist *hlist;
4730

4731
	hlist = rcu_dereference(swhash->swevent_hlist);
4732 4733 4734
	if (!hlist)
		return NULL;

4735 4736 4737 4738 4739
	return __find_swevent_head(hlist, type, event_id);
}

/* For the event head insertion and removal in the hlist */
static inline struct hlist_head *
4740
find_swevent_head(struct swevent_htable *swhash, struct perf_event *event)
4741 4742 4743 4744 4745 4746 4747 4748 4749 4750
{
	struct swevent_hlist *hlist;
	u32 event_id = event->attr.config;
	u64 type = event->attr.type;

	/*
	 * Event scheduling is always serialized against hlist allocation
	 * and release. Which makes the protected version suitable here.
	 * The context lock guarantees that.
	 */
4751
	hlist = rcu_dereference_protected(swhash->swevent_hlist,
4752 4753 4754 4755 4756
					  lockdep_is_held(&event->ctx->lock));
	if (!hlist)
		return NULL;

	return __find_swevent_head(hlist, type, event_id);
4757 4758 4759
}

static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
4760
				    u64 nr,
4761 4762
				    struct perf_sample_data *data,
				    struct pt_regs *regs)
4763
{
4764
	struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
4765
	struct perf_event *event;
4766 4767
	struct hlist_node *node;
	struct hlist_head *head;
4768

4769
	rcu_read_lock();
4770
	head = find_swevent_head_rcu(swhash, type, event_id);
4771 4772 4773 4774
	if (!head)
		goto end;

	hlist_for_each_entry_rcu(event, node, head, hlist_entry) {
L
Li Zefan 已提交
4775
		if (perf_swevent_match(event, type, event_id, data, regs))
4776
			perf_swevent_event(event, nr, data, regs);
4777
	}
4778 4779
end:
	rcu_read_unlock();
4780 4781
}

4782
int perf_swevent_get_recursion_context(void)
P
Peter Zijlstra 已提交
4783
{
4784
	struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
P
Peter Zijlstra 已提交
4785

4786
	return get_recursion_context(swhash->recursion);
P
Peter Zijlstra 已提交
4787
}
I
Ingo Molnar 已提交
4788
EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
P
Peter Zijlstra 已提交
4789

4790
inline void perf_swevent_put_recursion_context(int rctx)
4791
{
4792
	struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
4793

4794
	put_recursion_context(swhash->recursion, rctx);
4795
}
4796

4797
void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
4798
{
4799
	struct perf_sample_data data;
4800 4801
	int rctx;

4802
	preempt_disable_notrace();
4803 4804 4805
	rctx = perf_swevent_get_recursion_context();
	if (rctx < 0)
		return;
4806

4807
	perf_sample_data_init(&data, addr);
4808

4809
	do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs);
4810 4811

	perf_swevent_put_recursion_context(rctx);
4812
	preempt_enable_notrace();
4813 4814
}

4815
static void perf_swevent_read(struct perf_event *event)
4816 4817 4818
{
}

P
Peter Zijlstra 已提交
4819
static int perf_swevent_add(struct perf_event *event, int flags)
4820
{
4821
	struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
4822
	struct hw_perf_event *hwc = &event->hw;
4823 4824
	struct hlist_head *head;

4825
	if (is_sampling_event(event)) {
4826
		hwc->last_period = hwc->sample_period;
4827
		perf_swevent_set_period(event);
4828
	}
4829

P
Peter Zijlstra 已提交
4830 4831
	hwc->state = !(flags & PERF_EF_START);

4832
	head = find_swevent_head(swhash, event);
4833 4834 4835 4836 4837
	if (WARN_ON_ONCE(!head))
		return -EINVAL;

	hlist_add_head_rcu(&event->hlist_entry, head);

4838 4839 4840
	return 0;
}

P
Peter Zijlstra 已提交
4841
static void perf_swevent_del(struct perf_event *event, int flags)
4842
{
4843
	hlist_del_rcu(&event->hlist_entry);
4844 4845
}

P
Peter Zijlstra 已提交
4846
static void perf_swevent_start(struct perf_event *event, int flags)
4847
{
P
Peter Zijlstra 已提交
4848
	event->hw.state = 0;
4849
}
I
Ingo Molnar 已提交
4850

P
Peter Zijlstra 已提交
4851
static void perf_swevent_stop(struct perf_event *event, int flags)
4852
{
P
Peter Zijlstra 已提交
4853
	event->hw.state = PERF_HES_STOPPED;
4854 4855
}

4856 4857
/* Deref the hlist from the update side */
static inline struct swevent_hlist *
4858
swevent_hlist_deref(struct swevent_htable *swhash)
4859
{
4860 4861
	return rcu_dereference_protected(swhash->swevent_hlist,
					 lockdep_is_held(&swhash->hlist_mutex));
4862 4863
}

4864
static void swevent_hlist_release(struct swevent_htable *swhash)
4865
{
4866
	struct swevent_hlist *hlist = swevent_hlist_deref(swhash);
4867

4868
	if (!hlist)
4869 4870
		return;

4871
	rcu_assign_pointer(swhash->swevent_hlist, NULL);
4872
	kfree_rcu(hlist, rcu_head);
4873 4874 4875 4876
}

static void swevent_hlist_put_cpu(struct perf_event *event, int cpu)
{
4877
	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
4878

4879
	mutex_lock(&swhash->hlist_mutex);
4880

4881 4882
	if (!--swhash->hlist_refcount)
		swevent_hlist_release(swhash);
4883

4884
	mutex_unlock(&swhash->hlist_mutex);
4885 4886 4887 4888 4889 4890 4891 4892 4893 4894 4895 4896 4897 4898 4899 4900 4901
}

static void swevent_hlist_put(struct perf_event *event)
{
	int cpu;

	if (event->cpu != -1) {
		swevent_hlist_put_cpu(event, event->cpu);
		return;
	}

	for_each_possible_cpu(cpu)
		swevent_hlist_put_cpu(event, cpu);
}

static int swevent_hlist_get_cpu(struct perf_event *event, int cpu)
{
4902
	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
4903 4904
	int err = 0;

4905
	mutex_lock(&swhash->hlist_mutex);
4906

4907
	if (!swevent_hlist_deref(swhash) && cpu_online(cpu)) {
4908 4909 4910 4911 4912 4913 4914
		struct swevent_hlist *hlist;

		hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
		if (!hlist) {
			err = -ENOMEM;
			goto exit;
		}
4915
		rcu_assign_pointer(swhash->swevent_hlist, hlist);
4916
	}
4917
	swhash->hlist_refcount++;
P
Peter Zijlstra 已提交
4918
exit:
4919
	mutex_unlock(&swhash->hlist_mutex);
4920 4921 4922 4923 4924 4925 4926 4927 4928 4929 4930 4931 4932 4933 4934 4935 4936 4937 4938 4939 4940 4941 4942

	return err;
}

static int swevent_hlist_get(struct perf_event *event)
{
	int err;
	int cpu, failed_cpu;

	if (event->cpu != -1)
		return swevent_hlist_get_cpu(event, event->cpu);

	get_online_cpus();
	for_each_possible_cpu(cpu) {
		err = swevent_hlist_get_cpu(event, cpu);
		if (err) {
			failed_cpu = cpu;
			goto fail;
		}
	}
	put_online_cpus();

	return 0;
P
Peter Zijlstra 已提交
4943
fail:
4944 4945 4946 4947 4948 4949 4950 4951 4952 4953
	for_each_possible_cpu(cpu) {
		if (cpu == failed_cpu)
			break;
		swevent_hlist_put_cpu(event, cpu);
	}

	put_online_cpus();
	return err;
}

4954
struct jump_label_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
4955

4956 4957 4958
static void sw_perf_event_destroy(struct perf_event *event)
{
	u64 event_id = event->attr.config;
4959

4960 4961
	WARN_ON(event->parent);

P
Peter Zijlstra 已提交
4962
	jump_label_dec(&perf_swevent_enabled[event_id]);
4963 4964 4965 4966 4967 4968 4969 4970 4971 4972 4973 4974 4975 4976 4977 4978 4979 4980 4981
	swevent_hlist_put(event);
}

static int perf_swevent_init(struct perf_event *event)
{
	int event_id = event->attr.config;

	if (event->attr.type != PERF_TYPE_SOFTWARE)
		return -ENOENT;

	switch (event_id) {
	case PERF_COUNT_SW_CPU_CLOCK:
	case PERF_COUNT_SW_TASK_CLOCK:
		return -ENOENT;

	default:
		break;
	}

4982
	if (event_id >= PERF_COUNT_SW_MAX)
4983 4984 4985 4986 4987 4988 4989 4990 4991
		return -ENOENT;

	if (!event->parent) {
		int err;

		err = swevent_hlist_get(event);
		if (err)
			return err;

P
Peter Zijlstra 已提交
4992
		jump_label_inc(&perf_swevent_enabled[event_id]);
4993 4994 4995 4996 4997 4998 4999
		event->destroy = sw_perf_event_destroy;
	}

	return 0;
}

static struct pmu perf_swevent = {
5000
	.task_ctx_nr	= perf_sw_context,
5001

5002
	.event_init	= perf_swevent_init,
P
Peter Zijlstra 已提交
5003 5004 5005 5006
	.add		= perf_swevent_add,
	.del		= perf_swevent_del,
	.start		= perf_swevent_start,
	.stop		= perf_swevent_stop,
5007 5008 5009
	.read		= perf_swevent_read,
};

5010 5011
#ifdef CONFIG_EVENT_TRACING

5012 5013 5014 5015 5016 5017 5018 5019 5020 5021 5022 5023 5024 5025
static int perf_tp_filter_match(struct perf_event *event,
				struct perf_sample_data *data)
{
	void *record = data->raw->data;

	if (likely(!event->filter) || filter_match_preds(event->filter, record))
		return 1;
	return 0;
}

static int perf_tp_event_match(struct perf_event *event,
				struct perf_sample_data *data,
				struct pt_regs *regs)
{
5026 5027
	if (event->hw.state & PERF_HES_STOPPED)
		return 0;
5028 5029 5030 5031
	/*
	 * All tracepoints are from kernel-space.
	 */
	if (event->attr.exclude_kernel)
5032 5033 5034 5035 5036 5037 5038 5039 5040
		return 0;

	if (!perf_tp_filter_match(event, data))
		return 0;

	return 1;
}

void perf_tp_event(u64 addr, u64 count, void *record, int entry_size,
5041
		   struct pt_regs *regs, struct hlist_head *head, int rctx)
5042 5043
{
	struct perf_sample_data data;
5044 5045 5046
	struct perf_event *event;
	struct hlist_node *node;

5047 5048 5049 5050 5051 5052 5053 5054
	struct perf_raw_record raw = {
		.size = entry_size,
		.data = record,
	};

	perf_sample_data_init(&data, addr);
	data.raw = &raw;

5055 5056
	hlist_for_each_entry_rcu(event, node, head, hlist_entry) {
		if (perf_tp_event_match(event, &data, regs))
5057
			perf_swevent_event(event, count, &data, regs);
5058
	}
5059 5060

	perf_swevent_put_recursion_context(rctx);
5061 5062 5063
}
EXPORT_SYMBOL_GPL(perf_tp_event);

5064
static void tp_perf_event_destroy(struct perf_event *event)
5065
{
5066
	perf_trace_destroy(event);
5067 5068
}

5069
static int perf_tp_event_init(struct perf_event *event)
5070
{
5071 5072
	int err;

5073 5074 5075
	if (event->attr.type != PERF_TYPE_TRACEPOINT)
		return -ENOENT;

5076 5077
	err = perf_trace_init(event);
	if (err)
5078
		return err;
5079

5080
	event->destroy = tp_perf_event_destroy;
5081

5082 5083 5084 5085
	return 0;
}

static struct pmu perf_tracepoint = {
5086 5087
	.task_ctx_nr	= perf_sw_context,

5088
	.event_init	= perf_tp_event_init,
P
Peter Zijlstra 已提交
5089 5090 5091 5092
	.add		= perf_trace_add,
	.del		= perf_trace_del,
	.start		= perf_swevent_start,
	.stop		= perf_swevent_stop,
5093 5094 5095 5096 5097
	.read		= perf_swevent_read,
};

static inline void perf_tp_register(void)
{
P
Peter Zijlstra 已提交
5098
	perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT);
5099
}
L
Li Zefan 已提交
5100 5101 5102 5103 5104 5105 5106 5107 5108 5109 5110 5111 5112 5113 5114 5115 5116 5117 5118 5119 5120 5121 5122 5123

static int perf_event_set_filter(struct perf_event *event, void __user *arg)
{
	char *filter_str;
	int ret;

	if (event->attr.type != PERF_TYPE_TRACEPOINT)
		return -EINVAL;

	filter_str = strndup_user(arg, PAGE_SIZE);
	if (IS_ERR(filter_str))
		return PTR_ERR(filter_str);

	ret = ftrace_profile_set_filter(event, event->attr.config, filter_str);

	kfree(filter_str);
	return ret;
}

static void perf_event_free_filter(struct perf_event *event)
{
	ftrace_profile_free_filter(event);
}

5124
#else
L
Li Zefan 已提交
5125

5126
static inline void perf_tp_register(void)
5127 5128
{
}
L
Li Zefan 已提交
5129 5130 5131 5132 5133 5134 5135 5136 5137 5138

static int perf_event_set_filter(struct perf_event *event, void __user *arg)
{
	return -ENOENT;
}

static void perf_event_free_filter(struct perf_event *event)
{
}

5139
#endif /* CONFIG_EVENT_TRACING */
5140

5141
#ifdef CONFIG_HAVE_HW_BREAKPOINT
5142
void perf_bp_event(struct perf_event *bp, void *data)
5143
{
5144 5145 5146
	struct perf_sample_data sample;
	struct pt_regs *regs = data;

5147
	perf_sample_data_init(&sample, bp->attr.bp_addr);
5148

P
Peter Zijlstra 已提交
5149
	if (!bp->hw.state && !perf_exclude_event(bp, regs))
5150
		perf_swevent_event(bp, 1, &sample, regs);
5151 5152 5153
}
#endif

5154 5155 5156
/*
 * hrtimer based swevent callback
 */
5157

5158
static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
5159
{
5160 5161 5162 5163 5164
	enum hrtimer_restart ret = HRTIMER_RESTART;
	struct perf_sample_data data;
	struct pt_regs *regs;
	struct perf_event *event;
	u64 period;
5165

5166
	event = container_of(hrtimer, struct perf_event, hw.hrtimer);
P
Peter Zijlstra 已提交
5167 5168 5169 5170

	if (event->state != PERF_EVENT_STATE_ACTIVE)
		return HRTIMER_NORESTART;

5171
	event->pmu->read(event);
5172

5173 5174 5175 5176 5177 5178
	perf_sample_data_init(&data, 0);
	data.period = event->hw.last_period;
	regs = get_irq_regs();

	if (regs && !perf_exclude_event(event, regs)) {
		if (!(event->attr.exclude_idle && current->pid == 0))
5179
			if (perf_event_overflow(event, &data, regs))
5180 5181
				ret = HRTIMER_NORESTART;
	}
5182

5183 5184
	period = max_t(u64, 10000, event->hw.sample_period);
	hrtimer_forward_now(hrtimer, ns_to_ktime(period));
5185

5186
	return ret;
5187 5188
}

5189
static void perf_swevent_start_hrtimer(struct perf_event *event)
5190
{
5191
	struct hw_perf_event *hwc = &event->hw;
5192 5193 5194 5195
	s64 period;

	if (!is_sampling_event(event))
		return;
5196

5197 5198 5199 5200
	period = local64_read(&hwc->period_left);
	if (period) {
		if (period < 0)
			period = 10000;
P
Peter Zijlstra 已提交
5201

5202 5203 5204 5205 5206
		local64_set(&hwc->period_left, 0);
	} else {
		period = max_t(u64, 10000, hwc->sample_period);
	}
	__hrtimer_start_range_ns(&hwc->hrtimer,
5207
				ns_to_ktime(period), 0,
5208
				HRTIMER_MODE_REL_PINNED, 0);
5209
}
5210 5211

static void perf_swevent_cancel_hrtimer(struct perf_event *event)
5212
{
5213 5214
	struct hw_perf_event *hwc = &event->hw;

5215
	if (is_sampling_event(event)) {
5216
		ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
P
Peter Zijlstra 已提交
5217
		local64_set(&hwc->period_left, ktime_to_ns(remaining));
5218 5219 5220

		hrtimer_cancel(&hwc->hrtimer);
	}
5221 5222
}

P
Peter Zijlstra 已提交
5223 5224 5225 5226 5227 5228 5229 5230 5231 5232 5233 5234 5235 5236 5237 5238 5239 5240 5241 5242 5243 5244 5245 5246
static void perf_swevent_init_hrtimer(struct perf_event *event)
{
	struct hw_perf_event *hwc = &event->hw;

	if (!is_sampling_event(event))
		return;

	hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
	hwc->hrtimer.function = perf_swevent_hrtimer;

	/*
	 * Since hrtimers have a fixed rate, we can do a static freq->period
	 * mapping and avoid the whole period adjust feedback stuff.
	 */
	if (event->attr.freq) {
		long freq = event->attr.sample_freq;

		event->attr.sample_period = NSEC_PER_SEC / freq;
		hwc->sample_period = event->attr.sample_period;
		local64_set(&hwc->period_left, hwc->sample_period);
		event->attr.freq = 0;
	}
}

5247 5248 5249 5250 5251
/*
 * Software event: cpu wall time clock
 */

static void cpu_clock_event_update(struct perf_event *event)
5252
{
5253 5254 5255
	s64 prev;
	u64 now;

P
Peter Zijlstra 已提交
5256
	now = local_clock();
5257 5258
	prev = local64_xchg(&event->hw.prev_count, now);
	local64_add(now - prev, &event->count);
5259 5260
}

P
Peter Zijlstra 已提交
5261
static void cpu_clock_event_start(struct perf_event *event, int flags)
5262
{
P
Peter Zijlstra 已提交
5263
	local64_set(&event->hw.prev_count, local_clock());
5264 5265 5266
	perf_swevent_start_hrtimer(event);
}

P
Peter Zijlstra 已提交
5267
static void cpu_clock_event_stop(struct perf_event *event, int flags)
5268
{
5269 5270 5271
	perf_swevent_cancel_hrtimer(event);
	cpu_clock_event_update(event);
}
5272

P
Peter Zijlstra 已提交
5273 5274 5275 5276 5277 5278 5279 5280 5281 5282 5283 5284 5285
static int cpu_clock_event_add(struct perf_event *event, int flags)
{
	if (flags & PERF_EF_START)
		cpu_clock_event_start(event, flags);

	return 0;
}

static void cpu_clock_event_del(struct perf_event *event, int flags)
{
	cpu_clock_event_stop(event, flags);
}

5286 5287 5288 5289
static void cpu_clock_event_read(struct perf_event *event)
{
	cpu_clock_event_update(event);
}
5290

5291 5292 5293 5294 5295 5296 5297 5298
static int cpu_clock_event_init(struct perf_event *event)
{
	if (event->attr.type != PERF_TYPE_SOFTWARE)
		return -ENOENT;

	if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK)
		return -ENOENT;

P
Peter Zijlstra 已提交
5299 5300
	perf_swevent_init_hrtimer(event);

5301
	return 0;
5302 5303
}

5304
static struct pmu perf_cpu_clock = {
5305 5306
	.task_ctx_nr	= perf_sw_context,

5307
	.event_init	= cpu_clock_event_init,
P
Peter Zijlstra 已提交
5308 5309 5310 5311
	.add		= cpu_clock_event_add,
	.del		= cpu_clock_event_del,
	.start		= cpu_clock_event_start,
	.stop		= cpu_clock_event_stop,
5312 5313 5314 5315 5316 5317 5318 5319
	.read		= cpu_clock_event_read,
};

/*
 * Software event: task time clock
 */

static void task_clock_event_update(struct perf_event *event, u64 now)
5320
{
5321 5322
	u64 prev;
	s64 delta;
5323

5324 5325 5326 5327
	prev = local64_xchg(&event->hw.prev_count, now);
	delta = now - prev;
	local64_add(delta, &event->count);
}
5328

P
Peter Zijlstra 已提交
5329
static void task_clock_event_start(struct perf_event *event, int flags)
5330
{
P
Peter Zijlstra 已提交
5331
	local64_set(&event->hw.prev_count, event->ctx->time);
5332 5333 5334
	perf_swevent_start_hrtimer(event);
}

P
Peter Zijlstra 已提交
5335
static void task_clock_event_stop(struct perf_event *event, int flags)
5336 5337 5338
{
	perf_swevent_cancel_hrtimer(event);
	task_clock_event_update(event, event->ctx->time);
P
Peter Zijlstra 已提交
5339 5340 5341 5342 5343 5344
}

static int task_clock_event_add(struct perf_event *event, int flags)
{
	if (flags & PERF_EF_START)
		task_clock_event_start(event, flags);
5345

P
Peter Zijlstra 已提交
5346 5347 5348 5349 5350 5351
	return 0;
}

static void task_clock_event_del(struct perf_event *event, int flags)
{
	task_clock_event_stop(event, PERF_EF_UPDATE);
5352 5353 5354 5355
}

static void task_clock_event_read(struct perf_event *event)
{
5356 5357 5358
	u64 now = perf_clock();
	u64 delta = now - event->ctx->timestamp;
	u64 time = event->ctx->time + delta;
5359 5360 5361 5362 5363

	task_clock_event_update(event, time);
}

static int task_clock_event_init(struct perf_event *event)
L
Li Zefan 已提交
5364
{
5365 5366 5367 5368 5369 5370
	if (event->attr.type != PERF_TYPE_SOFTWARE)
		return -ENOENT;

	if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK)
		return -ENOENT;

P
Peter Zijlstra 已提交
5371 5372
	perf_swevent_init_hrtimer(event);

5373
	return 0;
L
Li Zefan 已提交
5374 5375
}

5376
static struct pmu perf_task_clock = {
5377 5378
	.task_ctx_nr	= perf_sw_context,

5379
	.event_init	= task_clock_event_init,
P
Peter Zijlstra 已提交
5380 5381 5382 5383
	.add		= task_clock_event_add,
	.del		= task_clock_event_del,
	.start		= task_clock_event_start,
	.stop		= task_clock_event_stop,
5384 5385
	.read		= task_clock_event_read,
};
L
Li Zefan 已提交
5386

P
Peter Zijlstra 已提交
5387
static void perf_pmu_nop_void(struct pmu *pmu)
5388 5389
{
}
L
Li Zefan 已提交
5390

P
Peter Zijlstra 已提交
5391
static int perf_pmu_nop_int(struct pmu *pmu)
L
Li Zefan 已提交
5392
{
P
Peter Zijlstra 已提交
5393
	return 0;
L
Li Zefan 已提交
5394 5395
}

P
Peter Zijlstra 已提交
5396
static void perf_pmu_start_txn(struct pmu *pmu)
L
Li Zefan 已提交
5397
{
P
Peter Zijlstra 已提交
5398
	perf_pmu_disable(pmu);
L
Li Zefan 已提交
5399 5400
}

P
Peter Zijlstra 已提交
5401 5402 5403 5404 5405
static int perf_pmu_commit_txn(struct pmu *pmu)
{
	perf_pmu_enable(pmu);
	return 0;
}
5406

P
Peter Zijlstra 已提交
5407
static void perf_pmu_cancel_txn(struct pmu *pmu)
5408
{
P
Peter Zijlstra 已提交
5409
	perf_pmu_enable(pmu);
5410 5411
}

P
Peter Zijlstra 已提交
5412 5413 5414 5415 5416
/*
 * Ensures all contexts with the same task_ctx_nr have the same
 * pmu_cpu_context too.
 */
static void *find_pmu_context(int ctxn)
5417
{
P
Peter Zijlstra 已提交
5418
	struct pmu *pmu;
5419

P
Peter Zijlstra 已提交
5420 5421
	if (ctxn < 0)
		return NULL;
5422

P
Peter Zijlstra 已提交
5423 5424 5425 5426
	list_for_each_entry(pmu, &pmus, entry) {
		if (pmu->task_ctx_nr == ctxn)
			return pmu->pmu_cpu_context;
	}
5427

P
Peter Zijlstra 已提交
5428
	return NULL;
5429 5430
}

5431
static void update_pmu_context(struct pmu *pmu, struct pmu *old_pmu)
5432
{
5433 5434 5435 5436 5437 5438 5439 5440 5441 5442 5443 5444 5445 5446 5447
	int cpu;

	for_each_possible_cpu(cpu) {
		struct perf_cpu_context *cpuctx;

		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);

		if (cpuctx->active_pmu == old_pmu)
			cpuctx->active_pmu = pmu;
	}
}

static void free_pmu_context(struct pmu *pmu)
{
	struct pmu *i;
5448

P
Peter Zijlstra 已提交
5449
	mutex_lock(&pmus_lock);
5450
	/*
P
Peter Zijlstra 已提交
5451
	 * Like a real lame refcount.
5452
	 */
5453 5454 5455
	list_for_each_entry(i, &pmus, entry) {
		if (i->pmu_cpu_context == pmu->pmu_cpu_context) {
			update_pmu_context(i, pmu);
P
Peter Zijlstra 已提交
5456
			goto out;
5457
		}
P
Peter Zijlstra 已提交
5458
	}
5459

5460
	free_percpu(pmu->pmu_cpu_context);
P
Peter Zijlstra 已提交
5461 5462
out:
	mutex_unlock(&pmus_lock);
5463
}
P
Peter Zijlstra 已提交
5464
static struct idr pmu_idr;
5465

P
Peter Zijlstra 已提交
5466 5467 5468 5469 5470 5471 5472 5473 5474 5475 5476 5477 5478 5479 5480 5481 5482 5483 5484 5485 5486 5487 5488 5489 5490 5491 5492 5493 5494 5495 5496 5497 5498 5499 5500 5501 5502 5503 5504 5505 5506 5507 5508 5509 5510 5511 5512 5513 5514 5515 5516 5517
static ssize_t
type_show(struct device *dev, struct device_attribute *attr, char *page)
{
	struct pmu *pmu = dev_get_drvdata(dev);

	return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->type);
}

static struct device_attribute pmu_dev_attrs[] = {
       __ATTR_RO(type),
       __ATTR_NULL,
};

static int pmu_bus_running;
static struct bus_type pmu_bus = {
	.name		= "event_source",
	.dev_attrs	= pmu_dev_attrs,
};

static void pmu_dev_release(struct device *dev)
{
	kfree(dev);
}

static int pmu_dev_alloc(struct pmu *pmu)
{
	int ret = -ENOMEM;

	pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL);
	if (!pmu->dev)
		goto out;

	device_initialize(pmu->dev);
	ret = dev_set_name(pmu->dev, "%s", pmu->name);
	if (ret)
		goto free_dev;

	dev_set_drvdata(pmu->dev, pmu);
	pmu->dev->bus = &pmu_bus;
	pmu->dev->release = pmu_dev_release;
	ret = device_add(pmu->dev);
	if (ret)
		goto free_dev;

out:
	return ret;

free_dev:
	put_device(pmu->dev);
	goto out;
}

5518
static struct lock_class_key cpuctx_mutex;
5519
static struct lock_class_key cpuctx_lock;
5520

P
Peter Zijlstra 已提交
5521
int perf_pmu_register(struct pmu *pmu, char *name, int type)
5522
{
P
Peter Zijlstra 已提交
5523
	int cpu, ret;
5524

5525
	mutex_lock(&pmus_lock);
P
Peter Zijlstra 已提交
5526 5527 5528 5529
	ret = -ENOMEM;
	pmu->pmu_disable_count = alloc_percpu(int);
	if (!pmu->pmu_disable_count)
		goto unlock;
5530

P
Peter Zijlstra 已提交
5531 5532 5533 5534 5535 5536 5537 5538 5539 5540 5541 5542 5543 5544 5545 5546 5547 5548
	pmu->type = -1;
	if (!name)
		goto skip_type;
	pmu->name = name;

	if (type < 0) {
		int err = idr_pre_get(&pmu_idr, GFP_KERNEL);
		if (!err)
			goto free_pdc;

		err = idr_get_new_above(&pmu_idr, pmu, PERF_TYPE_MAX, &type);
		if (err) {
			ret = err;
			goto free_pdc;
		}
	}
	pmu->type = type;

P
Peter Zijlstra 已提交
5549 5550 5551 5552 5553 5554
	if (pmu_bus_running) {
		ret = pmu_dev_alloc(pmu);
		if (ret)
			goto free_idr;
	}

P
Peter Zijlstra 已提交
5555
skip_type:
P
Peter Zijlstra 已提交
5556 5557 5558
	pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr);
	if (pmu->pmu_cpu_context)
		goto got_cpu_context;
5559

P
Peter Zijlstra 已提交
5560 5561
	pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context);
	if (!pmu->pmu_cpu_context)
P
Peter Zijlstra 已提交
5562
		goto free_dev;
5563

P
Peter Zijlstra 已提交
5564 5565 5566 5567
	for_each_possible_cpu(cpu) {
		struct perf_cpu_context *cpuctx;

		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
5568
		__perf_event_init_context(&cpuctx->ctx);
5569
		lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex);
5570
		lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock);
5571
		cpuctx->ctx.type = cpu_context;
P
Peter Zijlstra 已提交
5572
		cpuctx->ctx.pmu = pmu;
5573 5574
		cpuctx->jiffies_interval = 1;
		INIT_LIST_HEAD(&cpuctx->rotation_list);
5575
		cpuctx->active_pmu = pmu;
P
Peter Zijlstra 已提交
5576
	}
5577

P
Peter Zijlstra 已提交
5578
got_cpu_context:
P
Peter Zijlstra 已提交
5579 5580 5581 5582 5583 5584 5585 5586 5587 5588 5589 5590 5591 5592
	if (!pmu->start_txn) {
		if (pmu->pmu_enable) {
			/*
			 * If we have pmu_enable/pmu_disable calls, install
			 * transaction stubs that use that to try and batch
			 * hardware accesses.
			 */
			pmu->start_txn  = perf_pmu_start_txn;
			pmu->commit_txn = perf_pmu_commit_txn;
			pmu->cancel_txn = perf_pmu_cancel_txn;
		} else {
			pmu->start_txn  = perf_pmu_nop_void;
			pmu->commit_txn = perf_pmu_nop_int;
			pmu->cancel_txn = perf_pmu_nop_void;
5593
		}
5594
	}
5595

P
Peter Zijlstra 已提交
5596 5597 5598 5599 5600
	if (!pmu->pmu_enable) {
		pmu->pmu_enable  = perf_pmu_nop_void;
		pmu->pmu_disable = perf_pmu_nop_void;
	}

5601
	list_add_rcu(&pmu->entry, &pmus);
P
Peter Zijlstra 已提交
5602 5603
	ret = 0;
unlock:
5604 5605
	mutex_unlock(&pmus_lock);

P
Peter Zijlstra 已提交
5606
	return ret;
P
Peter Zijlstra 已提交
5607

P
Peter Zijlstra 已提交
5608 5609 5610 5611
free_dev:
	device_del(pmu->dev);
	put_device(pmu->dev);

P
Peter Zijlstra 已提交
5612 5613 5614 5615
free_idr:
	if (pmu->type >= PERF_TYPE_MAX)
		idr_remove(&pmu_idr, pmu->type);

P
Peter Zijlstra 已提交
5616 5617 5618
free_pdc:
	free_percpu(pmu->pmu_disable_count);
	goto unlock;
5619 5620
}

5621
void perf_pmu_unregister(struct pmu *pmu)
5622
{
5623 5624 5625
	mutex_lock(&pmus_lock);
	list_del_rcu(&pmu->entry);
	mutex_unlock(&pmus_lock);
5626

5627
	/*
P
Peter Zijlstra 已提交
5628 5629
	 * We dereference the pmu list under both SRCU and regular RCU, so
	 * synchronize against both of those.
5630
	 */
5631
	synchronize_srcu(&pmus_srcu);
P
Peter Zijlstra 已提交
5632
	synchronize_rcu();
5633

P
Peter Zijlstra 已提交
5634
	free_percpu(pmu->pmu_disable_count);
P
Peter Zijlstra 已提交
5635 5636
	if (pmu->type >= PERF_TYPE_MAX)
		idr_remove(&pmu_idr, pmu->type);
P
Peter Zijlstra 已提交
5637 5638
	device_del(pmu->dev);
	put_device(pmu->dev);
5639
	free_pmu_context(pmu);
5640
}
5641

5642 5643 5644 5645
struct pmu *perf_init_event(struct perf_event *event)
{
	struct pmu *pmu = NULL;
	int idx;
5646
	int ret;
5647 5648

	idx = srcu_read_lock(&pmus_srcu);
P
Peter Zijlstra 已提交
5649 5650 5651 5652

	rcu_read_lock();
	pmu = idr_find(&pmu_idr, event->attr.type);
	rcu_read_unlock();
5653
	if (pmu) {
5654
		event->pmu = pmu;
5655 5656 5657
		ret = pmu->event_init(event);
		if (ret)
			pmu = ERR_PTR(ret);
P
Peter Zijlstra 已提交
5658
		goto unlock;
5659
	}
P
Peter Zijlstra 已提交
5660

5661
	list_for_each_entry_rcu(pmu, &pmus, entry) {
5662
		event->pmu = pmu;
5663
		ret = pmu->event_init(event);
5664
		if (!ret)
P
Peter Zijlstra 已提交
5665
			goto unlock;
5666

5667 5668
		if (ret != -ENOENT) {
			pmu = ERR_PTR(ret);
P
Peter Zijlstra 已提交
5669
			goto unlock;
5670
		}
5671
	}
P
Peter Zijlstra 已提交
5672 5673
	pmu = ERR_PTR(-ENOENT);
unlock:
5674
	srcu_read_unlock(&pmus_srcu, idx);
5675

5676
	return pmu;
5677 5678
}

T
Thomas Gleixner 已提交
5679
/*
5680
 * Allocate and initialize a event structure
T
Thomas Gleixner 已提交
5681
 */
5682
static struct perf_event *
5683
perf_event_alloc(struct perf_event_attr *attr, int cpu,
5684 5685 5686
		 struct task_struct *task,
		 struct perf_event *group_leader,
		 struct perf_event *parent_event,
5687 5688
		 perf_overflow_handler_t overflow_handler,
		 void *context)
T
Thomas Gleixner 已提交
5689
{
P
Peter Zijlstra 已提交
5690
	struct pmu *pmu;
5691 5692
	struct perf_event *event;
	struct hw_perf_event *hwc;
5693
	long err;
T
Thomas Gleixner 已提交
5694

5695 5696 5697 5698 5699
	if ((unsigned)cpu >= nr_cpu_ids) {
		if (!task || cpu != -1)
			return ERR_PTR(-EINVAL);
	}

5700
	event = kzalloc(sizeof(*event), GFP_KERNEL);
5701
	if (!event)
5702
		return ERR_PTR(-ENOMEM);
T
Thomas Gleixner 已提交
5703

5704
	/*
5705
	 * Single events are their own group leaders, with an
5706 5707 5708
	 * empty sibling list:
	 */
	if (!group_leader)
5709
		group_leader = event;
5710

5711 5712
	mutex_init(&event->child_mutex);
	INIT_LIST_HEAD(&event->child_list);
5713

5714 5715 5716
	INIT_LIST_HEAD(&event->group_entry);
	INIT_LIST_HEAD(&event->event_entry);
	INIT_LIST_HEAD(&event->sibling_list);
5717 5718
	INIT_LIST_HEAD(&event->rb_entry);

5719
	init_waitqueue_head(&event->waitq);
5720
	init_irq_work(&event->pending, perf_pending_event);
T
Thomas Gleixner 已提交
5721

5722
	mutex_init(&event->mmap_mutex);
5723

5724 5725 5726 5727 5728
	event->cpu		= cpu;
	event->attr		= *attr;
	event->group_leader	= group_leader;
	event->pmu		= NULL;
	event->oncpu		= -1;
5729

5730
	event->parent		= parent_event;
5731

5732 5733
	event->ns		= get_pid_ns(current->nsproxy->pid_ns);
	event->id		= atomic64_inc_return(&perf_event_id);
5734

5735
	event->state		= PERF_EVENT_STATE_INACTIVE;
5736

5737 5738 5739 5740 5741 5742 5743 5744 5745 5746 5747
	if (task) {
		event->attach_state = PERF_ATTACH_TASK;
#ifdef CONFIG_HAVE_HW_BREAKPOINT
		/*
		 * hw_breakpoint is a bit difficult here..
		 */
		if (attr->type == PERF_TYPE_BREAKPOINT)
			event->hw.bp_target = task;
#endif
	}

5748
	if (!overflow_handler && parent_event) {
5749
		overflow_handler = parent_event->overflow_handler;
5750 5751
		context = parent_event->overflow_handler_context;
	}
5752

5753
	event->overflow_handler	= overflow_handler;
5754
	event->overflow_handler_context = context;
5755

5756
	if (attr->disabled)
5757
		event->state = PERF_EVENT_STATE_OFF;
5758

5759
	pmu = NULL;
5760

5761
	hwc = &event->hw;
5762
	hwc->sample_period = attr->sample_period;
5763
	if (attr->freq && attr->sample_freq)
5764
		hwc->sample_period = 1;
5765
	hwc->last_period = hwc->sample_period;
5766

5767
	local64_set(&hwc->period_left, hwc->sample_period);
5768

5769
	/*
5770
	 * we currently do not support PERF_FORMAT_GROUP on inherited events
5771
	 */
5772
	if (attr->inherit && (attr->read_format & PERF_FORMAT_GROUP))
5773 5774
		goto done;

5775
	pmu = perf_init_event(event);
5776

5777 5778
done:
	err = 0;
5779
	if (!pmu)
5780
		err = -EINVAL;
5781 5782
	else if (IS_ERR(pmu))
		err = PTR_ERR(pmu);
5783

5784
	if (err) {
5785 5786 5787
		if (event->ns)
			put_pid_ns(event->ns);
		kfree(event);
5788
		return ERR_PTR(err);
I
Ingo Molnar 已提交
5789
	}
5790

5791
	if (!event->parent) {
5792
		if (event->attach_state & PERF_ATTACH_TASK)
S
Stephane Eranian 已提交
5793
			jump_label_inc(&perf_sched_events);
5794
		if (event->attr.mmap || event->attr.mmap_data)
5795 5796 5797 5798 5799
			atomic_inc(&nr_mmap_events);
		if (event->attr.comm)
			atomic_inc(&nr_comm_events);
		if (event->attr.task)
			atomic_inc(&nr_task_events);
5800 5801 5802 5803 5804 5805 5806
		if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) {
			err = get_callchain_buffers();
			if (err) {
				free_event(event);
				return ERR_PTR(err);
			}
		}
5807
	}
5808

5809
	return event;
T
Thomas Gleixner 已提交
5810 5811
}

5812 5813
static int perf_copy_attr(struct perf_event_attr __user *uattr,
			  struct perf_event_attr *attr)
5814 5815
{
	u32 size;
5816
	int ret;
5817 5818 5819 5820 5821 5822 5823 5824 5825 5826 5827 5828 5829 5830 5831 5832 5833 5834 5835 5836 5837 5838 5839 5840

	if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0))
		return -EFAULT;

	/*
	 * zero the full structure, so that a short copy will be nice.
	 */
	memset(attr, 0, sizeof(*attr));

	ret = get_user(size, &uattr->size);
	if (ret)
		return ret;

	if (size > PAGE_SIZE)	/* silly large */
		goto err_size;

	if (!size)		/* abi compat */
		size = PERF_ATTR_SIZE_VER0;

	if (size < PERF_ATTR_SIZE_VER0)
		goto err_size;

	/*
	 * If we're handed a bigger struct than we know of,
5841 5842 5843
	 * ensure all the unknown bits are 0 - i.e. new
	 * user-space does not rely on any kernel feature
	 * extensions we dont know about yet.
5844 5845
	 */
	if (size > sizeof(*attr)) {
5846 5847 5848
		unsigned char __user *addr;
		unsigned char __user *end;
		unsigned char val;
5849

5850 5851
		addr = (void __user *)uattr + sizeof(*attr);
		end  = (void __user *)uattr + size;
5852

5853
		for (; addr < end; addr++) {
5854 5855 5856 5857 5858 5859
			ret = get_user(val, addr);
			if (ret)
				return ret;
			if (val)
				goto err_size;
		}
5860
		size = sizeof(*attr);
5861 5862 5863 5864 5865 5866
	}

	ret = copy_from_user(attr, uattr, size);
	if (ret)
		return -EFAULT;

5867
	if (attr->__reserved_1)
5868 5869 5870 5871 5872 5873 5874 5875 5876 5877 5878 5879 5880 5881 5882 5883 5884
		return -EINVAL;

	if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
		return -EINVAL;

	if (attr->read_format & ~(PERF_FORMAT_MAX-1))
		return -EINVAL;

out:
	return ret;

err_size:
	put_user(sizeof(*attr), &uattr->size);
	ret = -E2BIG;
	goto out;
}

5885 5886
static int
perf_event_set_output(struct perf_event *event, struct perf_event *output_event)
5887
{
5888
	struct ring_buffer *rb = NULL, *old_rb = NULL;
5889 5890
	int ret = -EINVAL;

5891
	if (!output_event)
5892 5893
		goto set;

5894 5895
	/* don't allow circular references */
	if (event == output_event)
5896 5897
		goto out;

5898 5899 5900 5901 5902 5903 5904
	/*
	 * Don't allow cross-cpu buffers
	 */
	if (output_event->cpu != event->cpu)
		goto out;

	/*
5905
	 * If its not a per-cpu rb, it must be the same task.
5906 5907 5908 5909
	 */
	if (output_event->cpu == -1 && output_event->ctx != event->ctx)
		goto out;

5910
set:
5911
	mutex_lock(&event->mmap_mutex);
5912 5913 5914
	/* Can't redirect output if we've got an active mmap() */
	if (atomic_read(&event->mmap_count))
		goto unlock;
5915

5916
	if (output_event) {
5917 5918 5919
		/* get the rb we want to redirect to */
		rb = ring_buffer_get(output_event);
		if (!rb)
5920
			goto unlock;
5921 5922
	}

5923 5924
	old_rb = event->rb;
	rcu_assign_pointer(event->rb, rb);
5925 5926
	if (old_rb)
		ring_buffer_detach(event, old_rb);
5927
	ret = 0;
5928 5929 5930
unlock:
	mutex_unlock(&event->mmap_mutex);

5931 5932
	if (old_rb)
		ring_buffer_put(old_rb);
5933 5934 5935 5936
out:
	return ret;
}

T
Thomas Gleixner 已提交
5937
/**
5938
 * sys_perf_event_open - open a performance event, associate it to a task/cpu
I
Ingo Molnar 已提交
5939
 *
5940
 * @attr_uptr:	event_id type attributes for monitoring/sampling
T
Thomas Gleixner 已提交
5941
 * @pid:		target pid
I
Ingo Molnar 已提交
5942
 * @cpu:		target cpu
5943
 * @group_fd:		group leader event fd
T
Thomas Gleixner 已提交
5944
 */
5945 5946
SYSCALL_DEFINE5(perf_event_open,
		struct perf_event_attr __user *, attr_uptr,
5947
		pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
T
Thomas Gleixner 已提交
5948
{
5949 5950
	struct perf_event *group_leader = NULL, *output_event = NULL;
	struct perf_event *event, *sibling;
5951 5952 5953
	struct perf_event_attr attr;
	struct perf_event_context *ctx;
	struct file *event_file = NULL;
5954
	struct file *group_file = NULL;
M
Matt Helsley 已提交
5955
	struct task_struct *task = NULL;
5956
	struct pmu *pmu;
5957
	int event_fd;
5958
	int move_group = 0;
5959
	int fput_needed = 0;
5960
	int err;
T
Thomas Gleixner 已提交
5961

5962
	/* for future expandability... */
S
Stephane Eranian 已提交
5963
	if (flags & ~PERF_FLAG_ALL)
5964 5965
		return -EINVAL;

5966 5967 5968
	err = perf_copy_attr(attr_uptr, &attr);
	if (err)
		return err;
5969

5970 5971 5972 5973 5974
	if (!attr.exclude_kernel) {
		if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
			return -EACCES;
	}

5975
	if (attr.freq) {
5976
		if (attr.sample_freq > sysctl_perf_event_sample_rate)
5977 5978 5979
			return -EINVAL;
	}

S
Stephane Eranian 已提交
5980 5981 5982 5983 5984 5985 5986 5987 5988
	/*
	 * In cgroup mode, the pid argument is used to pass the fd
	 * opened to the cgroup directory in cgroupfs. The cpu argument
	 * designates the cpu on which to monitor threads from that
	 * cgroup.
	 */
	if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1))
		return -EINVAL;

5989 5990 5991 5992
	event_fd = get_unused_fd_flags(O_RDWR);
	if (event_fd < 0)
		return event_fd;

5993 5994 5995 5996
	if (group_fd != -1) {
		group_leader = perf_fget_light(group_fd, &fput_needed);
		if (IS_ERR(group_leader)) {
			err = PTR_ERR(group_leader);
5997
			goto err_fd;
5998 5999 6000 6001 6002 6003 6004 6005
		}
		group_file = group_leader->filp;
		if (flags & PERF_FLAG_FD_OUTPUT)
			output_event = group_leader;
		if (flags & PERF_FLAG_FD_NO_GROUP)
			group_leader = NULL;
	}

S
Stephane Eranian 已提交
6006
	if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) {
6007 6008 6009 6010 6011 6012 6013
		task = find_lively_task_by_vpid(pid);
		if (IS_ERR(task)) {
			err = PTR_ERR(task);
			goto err_group_fd;
		}
	}

6014 6015
	event = perf_event_alloc(&attr, cpu, task, group_leader, NULL,
				 NULL, NULL);
6016 6017
	if (IS_ERR(event)) {
		err = PTR_ERR(event);
6018
		goto err_task;
6019 6020
	}

S
Stephane Eranian 已提交
6021 6022 6023 6024
	if (flags & PERF_FLAG_PID_CGROUP) {
		err = perf_cgroup_connect(pid, event, &attr, group_leader);
		if (err)
			goto err_alloc;
6025 6026 6027 6028 6029 6030 6031
		/*
		 * one more event:
		 * - that has cgroup constraint on event->cpu
		 * - that may need work on context switch
		 */
		atomic_inc(&per_cpu(perf_cgroup_events, event->cpu));
		jump_label_inc(&perf_sched_events);
S
Stephane Eranian 已提交
6032 6033
	}

6034 6035 6036 6037 6038
	/*
	 * Special case software events and allow them to be part of
	 * any hardware group.
	 */
	pmu = event->pmu;
6039 6040 6041 6042 6043 6044 6045 6046 6047 6048 6049 6050 6051 6052 6053 6054 6055 6056 6057 6058 6059 6060 6061

	if (group_leader &&
	    (is_software_event(event) != is_software_event(group_leader))) {
		if (is_software_event(event)) {
			/*
			 * If event and group_leader are not both a software
			 * event, and event is, then group leader is not.
			 *
			 * Allow the addition of software events to !software
			 * groups, this is safe because software events never
			 * fail to schedule.
			 */
			pmu = group_leader->pmu;
		} else if (is_software_event(group_leader) &&
			   (group_leader->group_flags & PERF_GROUP_SOFTWARE)) {
			/*
			 * In case the group is a pure software group, and we
			 * try to add a hardware event, move the whole group to
			 * the hardware context.
			 */
			move_group = 1;
		}
	}
6062 6063 6064 6065

	/*
	 * Get the target context (task or percpu):
	 */
M
Matt Helsley 已提交
6066
	ctx = find_get_context(pmu, task, cpu);
6067 6068
	if (IS_ERR(ctx)) {
		err = PTR_ERR(ctx);
6069
		goto err_alloc;
6070 6071
	}

6072 6073 6074 6075 6076
	if (task) {
		put_task_struct(task);
		task = NULL;
	}

I
Ingo Molnar 已提交
6077
	/*
6078
	 * Look up the group leader (we will attach this event to it):
6079
	 */
6080
	if (group_leader) {
6081
		err = -EINVAL;
6082 6083

		/*
I
Ingo Molnar 已提交
6084 6085 6086 6087
		 * Do not allow a recursive hierarchy (this new sibling
		 * becoming part of another group-sibling):
		 */
		if (group_leader->group_leader != group_leader)
6088
			goto err_context;
I
Ingo Molnar 已提交
6089 6090 6091
		/*
		 * Do not allow to attach to a group in a different
		 * task or CPU context:
6092
		 */
6093 6094 6095 6096 6097 6098 6099 6100
		if (move_group) {
			if (group_leader->ctx->type != ctx->type)
				goto err_context;
		} else {
			if (group_leader->ctx != ctx)
				goto err_context;
		}

6101 6102 6103
		/*
		 * Only a group leader can be exclusive or pinned
		 */
6104
		if (attr.exclusive || attr.pinned)
6105
			goto err_context;
6106 6107 6108 6109 6110
	}

	if (output_event) {
		err = perf_event_set_output(event, output_event);
		if (err)
6111
			goto err_context;
6112
	}
T
Thomas Gleixner 已提交
6113

6114 6115 6116
	event_file = anon_inode_getfile("[perf_event]", &perf_fops, event, O_RDWR);
	if (IS_ERR(event_file)) {
		err = PTR_ERR(event_file);
6117
		goto err_context;
6118
	}
6119

6120 6121 6122 6123
	if (move_group) {
		struct perf_event_context *gctx = group_leader->ctx;

		mutex_lock(&gctx->mutex);
6124
		perf_remove_from_context(group_leader);
6125 6126
		list_for_each_entry(sibling, &group_leader->sibling_list,
				    group_entry) {
6127
			perf_remove_from_context(sibling);
6128 6129 6130 6131
			put_ctx(gctx);
		}
		mutex_unlock(&gctx->mutex);
		put_ctx(gctx);
6132
	}
6133

6134
	event->filp = event_file;
6135
	WARN_ON_ONCE(ctx->parent_ctx);
6136
	mutex_lock(&ctx->mutex);
6137 6138 6139 6140 6141 6142 6143 6144 6145 6146 6147

	if (move_group) {
		perf_install_in_context(ctx, group_leader, cpu);
		get_ctx(ctx);
		list_for_each_entry(sibling, &group_leader->sibling_list,
				    group_entry) {
			perf_install_in_context(ctx, sibling, cpu);
			get_ctx(ctx);
		}
	}

6148
	perf_install_in_context(ctx, event, cpu);
6149
	++ctx->generation;
6150
	perf_unpin_context(ctx);
6151
	mutex_unlock(&ctx->mutex);
6152

6153
	event->owner = current;
P
Peter Zijlstra 已提交
6154

6155 6156 6157
	mutex_lock(&current->perf_event_mutex);
	list_add_tail(&event->owner_entry, &current->perf_event_list);
	mutex_unlock(&current->perf_event_mutex);
6158

6159 6160 6161 6162
	/*
	 * Precalculate sample_data sizes
	 */
	perf_event__header_size(event);
6163
	perf_event__id_header_size(event);
6164

6165 6166 6167 6168 6169 6170
	/*
	 * Drop the reference on the group_event after placing the
	 * new event on the sibling_list. This ensures destruction
	 * of the group leader will find the pointer to itself in
	 * perf_group_detach().
	 */
6171 6172 6173
	fput_light(group_file, fput_needed);
	fd_install(event_fd, event_file);
	return event_fd;
T
Thomas Gleixner 已提交
6174

6175
err_context:
6176
	perf_unpin_context(ctx);
6177
	put_ctx(ctx);
6178
err_alloc:
6179
	free_event(event);
P
Peter Zijlstra 已提交
6180 6181 6182
err_task:
	if (task)
		put_task_struct(task);
6183
err_group_fd:
6184
	fput_light(group_file, fput_needed);
6185 6186
err_fd:
	put_unused_fd(event_fd);
6187
	return err;
T
Thomas Gleixner 已提交
6188 6189
}

6190 6191 6192 6193 6194
/**
 * perf_event_create_kernel_counter
 *
 * @attr: attributes of the counter to create
 * @cpu: cpu in which the counter is bound
M
Matt Helsley 已提交
6195
 * @task: task to profile (NULL for percpu)
6196 6197 6198
 */
struct perf_event *
perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
M
Matt Helsley 已提交
6199
				 struct task_struct *task,
6200 6201
				 perf_overflow_handler_t overflow_handler,
				 void *context)
6202 6203
{
	struct perf_event_context *ctx;
6204
	struct perf_event *event;
6205
	int err;
6206

6207 6208 6209
	/*
	 * Get the target context (task or percpu):
	 */
6210

6211 6212
	event = perf_event_alloc(attr, cpu, task, NULL, NULL,
				 overflow_handler, context);
6213 6214 6215 6216
	if (IS_ERR(event)) {
		err = PTR_ERR(event);
		goto err;
	}
6217

M
Matt Helsley 已提交
6218
	ctx = find_get_context(event->pmu, task, cpu);
6219 6220
	if (IS_ERR(ctx)) {
		err = PTR_ERR(ctx);
6221
		goto err_free;
6222
	}
6223 6224 6225 6226 6227 6228

	event->filp = NULL;
	WARN_ON_ONCE(ctx->parent_ctx);
	mutex_lock(&ctx->mutex);
	perf_install_in_context(ctx, event, cpu);
	++ctx->generation;
6229
	perf_unpin_context(ctx);
6230 6231 6232 6233
	mutex_unlock(&ctx->mutex);

	return event;

6234 6235 6236
err_free:
	free_event(event);
err:
6237
	return ERR_PTR(err);
6238
}
6239
EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
6240

6241
static void sync_child_event(struct perf_event *child_event,
6242
			       struct task_struct *child)
6243
{
6244
	struct perf_event *parent_event = child_event->parent;
6245
	u64 child_val;
6246

6247 6248
	if (child_event->attr.inherit_stat)
		perf_event_read_event(child_event, child);
6249

P
Peter Zijlstra 已提交
6250
	child_val = perf_event_count(child_event);
6251 6252 6253 6254

	/*
	 * Add back the child's count to the parent's count:
	 */
6255
	atomic64_add(child_val, &parent_event->child_count);
6256 6257 6258 6259
	atomic64_add(child_event->total_time_enabled,
		     &parent_event->child_total_time_enabled);
	atomic64_add(child_event->total_time_running,
		     &parent_event->child_total_time_running);
6260 6261

	/*
6262
	 * Remove this event from the parent's list
6263
	 */
6264 6265 6266 6267
	WARN_ON_ONCE(parent_event->ctx->parent_ctx);
	mutex_lock(&parent_event->child_mutex);
	list_del_init(&child_event->child_list);
	mutex_unlock(&parent_event->child_mutex);
6268 6269

	/*
6270
	 * Release the parent event, if this was the last
6271 6272
	 * reference to it.
	 */
6273
	fput(parent_event->filp);
6274 6275
}

6276
static void
6277 6278
__perf_event_exit_task(struct perf_event *child_event,
			 struct perf_event_context *child_ctx,
6279
			 struct task_struct *child)
6280
{
6281 6282 6283 6284 6285
	if (child_event->parent) {
		raw_spin_lock_irq(&child_ctx->lock);
		perf_group_detach(child_event);
		raw_spin_unlock_irq(&child_ctx->lock);
	}
6286

6287
	perf_remove_from_context(child_event);
6288

6289
	/*
6290
	 * It can happen that the parent exits first, and has events
6291
	 * that are still around due to the child reference. These
6292
	 * events need to be zapped.
6293
	 */
6294
	if (child_event->parent) {
6295 6296
		sync_child_event(child_event, child);
		free_event(child_event);
6297
	}
6298 6299
}

P
Peter Zijlstra 已提交
6300
static void perf_event_exit_task_context(struct task_struct *child, int ctxn)
6301
{
6302 6303
	struct perf_event *child_event, *tmp;
	struct perf_event_context *child_ctx;
6304
	unsigned long flags;
6305

P
Peter Zijlstra 已提交
6306
	if (likely(!child->perf_event_ctxp[ctxn])) {
6307
		perf_event_task(child, NULL, 0);
6308
		return;
P
Peter Zijlstra 已提交
6309
	}
6310

6311
	local_irq_save(flags);
6312 6313 6314 6315 6316 6317
	/*
	 * We can't reschedule here because interrupts are disabled,
	 * and either child is current or it is a task that can't be
	 * scheduled, so we are now safe from rescheduling changing
	 * our context.
	 */
6318
	child_ctx = rcu_dereference_raw(child->perf_event_ctxp[ctxn]);
6319 6320 6321

	/*
	 * Take the context lock here so that if find_get_context is
6322
	 * reading child->perf_event_ctxp, we wait until it has
6323 6324
	 * incremented the context's refcount before we do put_ctx below.
	 */
6325
	raw_spin_lock(&child_ctx->lock);
6326
	task_ctx_sched_out(child_ctx);
P
Peter Zijlstra 已提交
6327
	child->perf_event_ctxp[ctxn] = NULL;
6328 6329 6330
	/*
	 * If this context is a clone; unclone it so it can't get
	 * swapped to another process while we're removing all
6331
	 * the events from it.
6332 6333
	 */
	unclone_ctx(child_ctx);
6334
	update_context_time(child_ctx);
6335
	raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
P
Peter Zijlstra 已提交
6336 6337

	/*
6338 6339 6340
	 * Report the task dead after unscheduling the events so that we
	 * won't get any samples after PERF_RECORD_EXIT. We can however still
	 * get a few PERF_RECORD_READ events.
P
Peter Zijlstra 已提交
6341
	 */
6342
	perf_event_task(child, child_ctx, 0);
6343

6344 6345 6346
	/*
	 * We can recurse on the same lock type through:
	 *
6347 6348 6349
	 *   __perf_event_exit_task()
	 *     sync_child_event()
	 *       fput(parent_event->filp)
6350 6351 6352 6353 6354
	 *         perf_release()
	 *           mutex_lock(&ctx->mutex)
	 *
	 * But since its the parent context it won't be the same instance.
	 */
6355
	mutex_lock(&child_ctx->mutex);
6356

6357
again:
6358 6359 6360 6361 6362
	list_for_each_entry_safe(child_event, tmp, &child_ctx->pinned_groups,
				 group_entry)
		__perf_event_exit_task(child_event, child_ctx, child);

	list_for_each_entry_safe(child_event, tmp, &child_ctx->flexible_groups,
6363
				 group_entry)
6364
		__perf_event_exit_task(child_event, child_ctx, child);
6365 6366

	/*
6367
	 * If the last event was a group event, it will have appended all
6368 6369 6370
	 * its siblings to the list, but we obtained 'tmp' before that which
	 * will still point to the list head terminating the iteration.
	 */
6371 6372
	if (!list_empty(&child_ctx->pinned_groups) ||
	    !list_empty(&child_ctx->flexible_groups))
6373
		goto again;
6374 6375 6376 6377

	mutex_unlock(&child_ctx->mutex);

	put_ctx(child_ctx);
6378 6379
}

P
Peter Zijlstra 已提交
6380 6381 6382 6383 6384
/*
 * When a child task exits, feed back event values to parent events.
 */
void perf_event_exit_task(struct task_struct *child)
{
P
Peter Zijlstra 已提交
6385
	struct perf_event *event, *tmp;
P
Peter Zijlstra 已提交
6386 6387
	int ctxn;

P
Peter Zijlstra 已提交
6388 6389 6390 6391 6392 6393 6394 6395 6396 6397 6398 6399 6400 6401 6402
	mutex_lock(&child->perf_event_mutex);
	list_for_each_entry_safe(event, tmp, &child->perf_event_list,
				 owner_entry) {
		list_del_init(&event->owner_entry);

		/*
		 * Ensure the list deletion is visible before we clear
		 * the owner, closes a race against perf_release() where
		 * we need to serialize on the owner->perf_event_mutex.
		 */
		smp_wmb();
		event->owner = NULL;
	}
	mutex_unlock(&child->perf_event_mutex);

P
Peter Zijlstra 已提交
6403 6404 6405 6406
	for_each_task_context_nr(ctxn)
		perf_event_exit_task_context(child, ctxn);
}

6407 6408 6409 6410 6411 6412 6413 6414 6415 6416 6417 6418 6419 6420
static void perf_free_event(struct perf_event *event,
			    struct perf_event_context *ctx)
{
	struct perf_event *parent = event->parent;

	if (WARN_ON_ONCE(!parent))
		return;

	mutex_lock(&parent->child_mutex);
	list_del_init(&event->child_list);
	mutex_unlock(&parent->child_mutex);

	fput(parent->filp);

6421
	perf_group_detach(event);
6422 6423 6424 6425
	list_del_event(event, ctx);
	free_event(event);
}

6426 6427
/*
 * free an unexposed, unused context as created by inheritance by
P
Peter Zijlstra 已提交
6428
 * perf_event_init_task below, used by fork() in case of fail.
6429
 */
6430
void perf_event_free_task(struct task_struct *task)
6431
{
P
Peter Zijlstra 已提交
6432
	struct perf_event_context *ctx;
6433
	struct perf_event *event, *tmp;
P
Peter Zijlstra 已提交
6434
	int ctxn;
6435

P
Peter Zijlstra 已提交
6436 6437 6438 6439
	for_each_task_context_nr(ctxn) {
		ctx = task->perf_event_ctxp[ctxn];
		if (!ctx)
			continue;
6440

P
Peter Zijlstra 已提交
6441
		mutex_lock(&ctx->mutex);
6442
again:
P
Peter Zijlstra 已提交
6443 6444 6445
		list_for_each_entry_safe(event, tmp, &ctx->pinned_groups,
				group_entry)
			perf_free_event(event, ctx);
6446

P
Peter Zijlstra 已提交
6447 6448 6449
		list_for_each_entry_safe(event, tmp, &ctx->flexible_groups,
				group_entry)
			perf_free_event(event, ctx);
6450

P
Peter Zijlstra 已提交
6451 6452 6453
		if (!list_empty(&ctx->pinned_groups) ||
				!list_empty(&ctx->flexible_groups))
			goto again;
6454

P
Peter Zijlstra 已提交
6455
		mutex_unlock(&ctx->mutex);
6456

P
Peter Zijlstra 已提交
6457 6458
		put_ctx(ctx);
	}
6459 6460
}

6461 6462 6463 6464 6465 6466 6467 6468
void perf_event_delayed_put(struct task_struct *task)
{
	int ctxn;

	for_each_task_context_nr(ctxn)
		WARN_ON_ONCE(task->perf_event_ctxp[ctxn]);
}

P
Peter Zijlstra 已提交
6469 6470 6471 6472 6473 6474 6475 6476 6477 6478 6479 6480
/*
 * inherit a event from parent task to child task:
 */
static struct perf_event *
inherit_event(struct perf_event *parent_event,
	      struct task_struct *parent,
	      struct perf_event_context *parent_ctx,
	      struct task_struct *child,
	      struct perf_event *group_leader,
	      struct perf_event_context *child_ctx)
{
	struct perf_event *child_event;
6481
	unsigned long flags;
P
Peter Zijlstra 已提交
6482 6483 6484 6485 6486 6487 6488 6489 6490 6491 6492 6493

	/*
	 * Instead of creating recursive hierarchies of events,
	 * we link inherited events back to the original parent,
	 * which has a filp for sure, which we use as the reference
	 * count:
	 */
	if (parent_event->parent)
		parent_event = parent_event->parent;

	child_event = perf_event_alloc(&parent_event->attr,
					   parent_event->cpu,
6494
					   child,
P
Peter Zijlstra 已提交
6495
					   group_leader, parent_event,
6496
				           NULL, NULL);
P
Peter Zijlstra 已提交
6497 6498 6499 6500 6501 6502 6503 6504 6505 6506 6507 6508 6509 6510 6511 6512 6513 6514 6515 6516 6517 6518 6519 6520 6521 6522
	if (IS_ERR(child_event))
		return child_event;
	get_ctx(child_ctx);

	/*
	 * Make the child state follow the state of the parent event,
	 * not its attr.disabled bit.  We hold the parent's mutex,
	 * so we won't race with perf_event_{en, dis}able_family.
	 */
	if (parent_event->state >= PERF_EVENT_STATE_INACTIVE)
		child_event->state = PERF_EVENT_STATE_INACTIVE;
	else
		child_event->state = PERF_EVENT_STATE_OFF;

	if (parent_event->attr.freq) {
		u64 sample_period = parent_event->hw.sample_period;
		struct hw_perf_event *hwc = &child_event->hw;

		hwc->sample_period = sample_period;
		hwc->last_period   = sample_period;

		local64_set(&hwc->period_left, sample_period);
	}

	child_event->ctx = child_ctx;
	child_event->overflow_handler = parent_event->overflow_handler;
6523 6524
	child_event->overflow_handler_context
		= parent_event->overflow_handler_context;
P
Peter Zijlstra 已提交
6525

6526 6527 6528 6529
	/*
	 * Precalculate sample_data sizes
	 */
	perf_event__header_size(child_event);
6530
	perf_event__id_header_size(child_event);
6531

P
Peter Zijlstra 已提交
6532 6533 6534
	/*
	 * Link it up in the child's context:
	 */
6535
	raw_spin_lock_irqsave(&child_ctx->lock, flags);
P
Peter Zijlstra 已提交
6536
	add_event_to_ctx(child_event, child_ctx);
6537
	raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
P
Peter Zijlstra 已提交
6538 6539 6540 6541 6542 6543 6544 6545 6546 6547 6548 6549 6550 6551 6552 6553 6554 6555 6556 6557 6558 6559 6560 6561 6562 6563 6564 6565 6566 6567 6568 6569 6570 6571 6572 6573 6574 6575 6576 6577 6578

	/*
	 * Get a reference to the parent filp - we will fput it
	 * when the child event exits. This is safe to do because
	 * we are in the parent and we know that the filp still
	 * exists and has a nonzero count:
	 */
	atomic_long_inc(&parent_event->filp->f_count);

	/*
	 * Link this into the parent event's child list
	 */
	WARN_ON_ONCE(parent_event->ctx->parent_ctx);
	mutex_lock(&parent_event->child_mutex);
	list_add_tail(&child_event->child_list, &parent_event->child_list);
	mutex_unlock(&parent_event->child_mutex);

	return child_event;
}

static int inherit_group(struct perf_event *parent_event,
	      struct task_struct *parent,
	      struct perf_event_context *parent_ctx,
	      struct task_struct *child,
	      struct perf_event_context *child_ctx)
{
	struct perf_event *leader;
	struct perf_event *sub;
	struct perf_event *child_ctr;

	leader = inherit_event(parent_event, parent, parent_ctx,
				 child, NULL, child_ctx);
	if (IS_ERR(leader))
		return PTR_ERR(leader);
	list_for_each_entry(sub, &parent_event->sibling_list, group_entry) {
		child_ctr = inherit_event(sub, parent, parent_ctx,
					    child, leader, child_ctx);
		if (IS_ERR(child_ctr))
			return PTR_ERR(child_ctr);
	}
	return 0;
6579 6580 6581 6582 6583
}

static int
inherit_task_group(struct perf_event *event, struct task_struct *parent,
		   struct perf_event_context *parent_ctx,
P
Peter Zijlstra 已提交
6584
		   struct task_struct *child, int ctxn,
6585 6586 6587
		   int *inherited_all)
{
	int ret;
P
Peter Zijlstra 已提交
6588
	struct perf_event_context *child_ctx;
6589 6590 6591 6592

	if (!event->attr.inherit) {
		*inherited_all = 0;
		return 0;
6593 6594
	}

6595
	child_ctx = child->perf_event_ctxp[ctxn];
6596 6597 6598 6599 6600 6601 6602
	if (!child_ctx) {
		/*
		 * This is executed from the parent task context, so
		 * inherit events that have been marked for cloning.
		 * First allocate and initialize a context for the
		 * child.
		 */
6603

6604
		child_ctx = alloc_perf_context(event->pmu, child);
6605 6606
		if (!child_ctx)
			return -ENOMEM;
6607

P
Peter Zijlstra 已提交
6608
		child->perf_event_ctxp[ctxn] = child_ctx;
6609 6610 6611 6612 6613 6614 6615 6616 6617
	}

	ret = inherit_group(event, parent, parent_ctx,
			    child, child_ctx);

	if (ret)
		*inherited_all = 0;

	return ret;
6618 6619
}

6620
/*
6621
 * Initialize the perf_event context in task_struct
6622
 */
P
Peter Zijlstra 已提交
6623
int perf_event_init_context(struct task_struct *child, int ctxn)
6624
{
6625
	struct perf_event_context *child_ctx, *parent_ctx;
6626 6627
	struct perf_event_context *cloned_ctx;
	struct perf_event *event;
6628
	struct task_struct *parent = current;
6629
	int inherited_all = 1;
6630
	unsigned long flags;
6631
	int ret = 0;
6632

P
Peter Zijlstra 已提交
6633
	if (likely(!parent->perf_event_ctxp[ctxn]))
6634 6635
		return 0;

6636
	/*
6637 6638
	 * If the parent's context is a clone, pin it so it won't get
	 * swapped under us.
6639
	 */
P
Peter Zijlstra 已提交
6640
	parent_ctx = perf_pin_task_context(parent, ctxn);
6641

6642 6643 6644 6645 6646 6647 6648
	/*
	 * No need to check if parent_ctx != NULL here; since we saw
	 * it non-NULL earlier, the only reason for it to become NULL
	 * is if we exit, and since we're currently in the middle of
	 * a fork we can't be exiting at the same time.
	 */

6649 6650 6651 6652
	/*
	 * Lock the parent list. No need to lock the child - not PID
	 * hashed yet and not running, so nobody can access it.
	 */
6653
	mutex_lock(&parent_ctx->mutex);
6654 6655 6656 6657 6658

	/*
	 * We dont have to disable NMIs - we are only looking at
	 * the list, not manipulating it:
	 */
6659
	list_for_each_entry(event, &parent_ctx->pinned_groups, group_entry) {
P
Peter Zijlstra 已提交
6660 6661
		ret = inherit_task_group(event, parent, parent_ctx,
					 child, ctxn, &inherited_all);
6662 6663 6664
		if (ret)
			break;
	}
6665

6666 6667 6668 6669 6670 6671 6672 6673 6674
	/*
	 * We can't hold ctx->lock when iterating the ->flexible_group list due
	 * to allocations, but we need to prevent rotation because
	 * rotate_ctx() will change the list from interrupt context.
	 */
	raw_spin_lock_irqsave(&parent_ctx->lock, flags);
	parent_ctx->rotate_disable = 1;
	raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);

6675
	list_for_each_entry(event, &parent_ctx->flexible_groups, group_entry) {
P
Peter Zijlstra 已提交
6676 6677
		ret = inherit_task_group(event, parent, parent_ctx,
					 child, ctxn, &inherited_all);
6678
		if (ret)
6679
			break;
6680 6681
	}

6682 6683 6684
	raw_spin_lock_irqsave(&parent_ctx->lock, flags);
	parent_ctx->rotate_disable = 0;

P
Peter Zijlstra 已提交
6685
	child_ctx = child->perf_event_ctxp[ctxn];
6686

6687
	if (child_ctx && inherited_all) {
6688 6689 6690
		/*
		 * Mark the child context as a clone of the parent
		 * context, or of whatever the parent is a clone of.
P
Peter Zijlstra 已提交
6691 6692 6693
		 *
		 * Note that if the parent is a clone, the holding of
		 * parent_ctx->lock avoids it from being uncloned.
6694
		 */
P
Peter Zijlstra 已提交
6695
		cloned_ctx = parent_ctx->parent_ctx;
6696 6697
		if (cloned_ctx) {
			child_ctx->parent_ctx = cloned_ctx;
6698
			child_ctx->parent_gen = parent_ctx->parent_gen;
6699 6700 6701 6702 6703
		} else {
			child_ctx->parent_ctx = parent_ctx;
			child_ctx->parent_gen = parent_ctx->generation;
		}
		get_ctx(child_ctx->parent_ctx);
6704 6705
	}

P
Peter Zijlstra 已提交
6706
	raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
6707
	mutex_unlock(&parent_ctx->mutex);
6708

6709
	perf_unpin_context(parent_ctx);
6710
	put_ctx(parent_ctx);
6711

6712
	return ret;
6713 6714
}

P
Peter Zijlstra 已提交
6715 6716 6717 6718 6719 6720 6721
/*
 * Initialize the perf_event context in task_struct
 */
int perf_event_init_task(struct task_struct *child)
{
	int ctxn, ret;

6722 6723 6724 6725
	memset(child->perf_event_ctxp, 0, sizeof(child->perf_event_ctxp));
	mutex_init(&child->perf_event_mutex);
	INIT_LIST_HEAD(&child->perf_event_list);

P
Peter Zijlstra 已提交
6726 6727 6728 6729 6730 6731 6732 6733 6734
	for_each_task_context_nr(ctxn) {
		ret = perf_event_init_context(child, ctxn);
		if (ret)
			return ret;
	}

	return 0;
}

6735 6736
static void __init perf_event_init_all_cpus(void)
{
6737
	struct swevent_htable *swhash;
6738 6739 6740
	int cpu;

	for_each_possible_cpu(cpu) {
6741 6742
		swhash = &per_cpu(swevent_htable, cpu);
		mutex_init(&swhash->hlist_mutex);
6743
		INIT_LIST_HEAD(&per_cpu(rotation_list, cpu));
6744 6745 6746
	}
}

6747
static void __cpuinit perf_event_init_cpu(int cpu)
T
Thomas Gleixner 已提交
6748
{
P
Peter Zijlstra 已提交
6749
	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
T
Thomas Gleixner 已提交
6750

6751
	mutex_lock(&swhash->hlist_mutex);
6752
	if (swhash->hlist_refcount > 0) {
6753 6754
		struct swevent_hlist *hlist;

6755 6756 6757
		hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu));
		WARN_ON(!hlist);
		rcu_assign_pointer(swhash->swevent_hlist, hlist);
6758
	}
6759
	mutex_unlock(&swhash->hlist_mutex);
T
Thomas Gleixner 已提交
6760 6761
}

P
Peter Zijlstra 已提交
6762
#if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC
6763
static void perf_pmu_rotate_stop(struct pmu *pmu)
T
Thomas Gleixner 已提交
6764
{
6765 6766 6767 6768 6769 6770 6771
	struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);

	WARN_ON(!irqs_disabled());

	list_del_init(&cpuctx->rotation_list);
}

P
Peter Zijlstra 已提交
6772
static void __perf_event_exit_context(void *__info)
T
Thomas Gleixner 已提交
6773
{
P
Peter Zijlstra 已提交
6774
	struct perf_event_context *ctx = __info;
6775
	struct perf_event *event, *tmp;
T
Thomas Gleixner 已提交
6776

P
Peter Zijlstra 已提交
6777
	perf_pmu_rotate_stop(ctx->pmu);
6778

6779
	list_for_each_entry_safe(event, tmp, &ctx->pinned_groups, group_entry)
6780
		__perf_remove_from_context(event);
6781
	list_for_each_entry_safe(event, tmp, &ctx->flexible_groups, group_entry)
6782
		__perf_remove_from_context(event);
T
Thomas Gleixner 已提交
6783
}
P
Peter Zijlstra 已提交
6784 6785 6786 6787 6788 6789 6790 6791 6792

static void perf_event_exit_cpu_context(int cpu)
{
	struct perf_event_context *ctx;
	struct pmu *pmu;
	int idx;

	idx = srcu_read_lock(&pmus_srcu);
	list_for_each_entry_rcu(pmu, &pmus, entry) {
6793
		ctx = &per_cpu_ptr(pmu->pmu_cpu_context, cpu)->ctx;
P
Peter Zijlstra 已提交
6794 6795 6796 6797 6798 6799 6800 6801

		mutex_lock(&ctx->mutex);
		smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1);
		mutex_unlock(&ctx->mutex);
	}
	srcu_read_unlock(&pmus_srcu, idx);
}

6802
static void perf_event_exit_cpu(int cpu)
T
Thomas Gleixner 已提交
6803
{
6804
	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
6805

6806 6807 6808
	mutex_lock(&swhash->hlist_mutex);
	swevent_hlist_release(swhash);
	mutex_unlock(&swhash->hlist_mutex);
6809

P
Peter Zijlstra 已提交
6810
	perf_event_exit_cpu_context(cpu);
T
Thomas Gleixner 已提交
6811 6812
}
#else
6813
static inline void perf_event_exit_cpu(int cpu) { }
T
Thomas Gleixner 已提交
6814 6815
#endif

P
Peter Zijlstra 已提交
6816 6817 6818 6819 6820 6821 6822 6823 6824 6825 6826 6827 6828 6829 6830 6831 6832 6833 6834 6835
static int
perf_reboot(struct notifier_block *notifier, unsigned long val, void *v)
{
	int cpu;

	for_each_online_cpu(cpu)
		perf_event_exit_cpu(cpu);

	return NOTIFY_OK;
}

/*
 * Run the perf reboot notifier at the very last possible moment so that
 * the generic watchdog code runs as long as possible.
 */
static struct notifier_block perf_reboot_notifier = {
	.notifier_call = perf_reboot,
	.priority = INT_MIN,
};

T
Thomas Gleixner 已提交
6836 6837 6838 6839 6840
static int __cpuinit
perf_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu)
{
	unsigned int cpu = (long)hcpu;

6841
	switch (action & ~CPU_TASKS_FROZEN) {
T
Thomas Gleixner 已提交
6842 6843

	case CPU_UP_PREPARE:
P
Peter Zijlstra 已提交
6844
	case CPU_DOWN_FAILED:
6845
		perf_event_init_cpu(cpu);
T
Thomas Gleixner 已提交
6846 6847
		break;

P
Peter Zijlstra 已提交
6848
	case CPU_UP_CANCELED:
T
Thomas Gleixner 已提交
6849
	case CPU_DOWN_PREPARE:
6850
		perf_event_exit_cpu(cpu);
T
Thomas Gleixner 已提交
6851 6852 6853 6854 6855 6856 6857 6858 6859
		break;

	default:
		break;
	}

	return NOTIFY_OK;
}

6860
void __init perf_event_init(void)
T
Thomas Gleixner 已提交
6861
{
6862 6863
	int ret;

P
Peter Zijlstra 已提交
6864 6865
	idr_init(&pmu_idr);

6866
	perf_event_init_all_cpus();
6867
	init_srcu_struct(&pmus_srcu);
P
Peter Zijlstra 已提交
6868 6869 6870
	perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE);
	perf_pmu_register(&perf_cpu_clock, NULL, -1);
	perf_pmu_register(&perf_task_clock, NULL, -1);
6871 6872
	perf_tp_register();
	perf_cpu_notifier(perf_cpu_notify);
P
Peter Zijlstra 已提交
6873
	register_reboot_notifier(&perf_reboot_notifier);
6874 6875 6876

	ret = init_hw_breakpoint();
	WARN(ret, "hw_breakpoint initialization failed with: %d", ret);
T
Thomas Gleixner 已提交
6877
}
P
Peter Zijlstra 已提交
6878 6879 6880 6881 6882 6883 6884 6885 6886 6887 6888 6889 6890 6891 6892 6893 6894 6895 6896 6897 6898 6899 6900 6901 6902 6903 6904 6905

static int __init perf_event_sysfs_init(void)
{
	struct pmu *pmu;
	int ret;

	mutex_lock(&pmus_lock);

	ret = bus_register(&pmu_bus);
	if (ret)
		goto unlock;

	list_for_each_entry(pmu, &pmus, entry) {
		if (!pmu->name || pmu->type < 0)
			continue;

		ret = pmu_dev_alloc(pmu);
		WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret);
	}
	pmu_bus_running = 1;
	ret = 0;

unlock:
	mutex_unlock(&pmus_lock);

	return ret;
}
device_initcall(perf_event_sysfs_init);
S
Stephane Eranian 已提交
6906 6907 6908 6909 6910 6911 6912

#ifdef CONFIG_CGROUP_PERF
static struct cgroup_subsys_state *perf_cgroup_create(
	struct cgroup_subsys *ss, struct cgroup *cont)
{
	struct perf_cgroup *jc;

6913
	jc = kzalloc(sizeof(*jc), GFP_KERNEL);
S
Stephane Eranian 已提交
6914 6915 6916 6917 6918 6919 6920 6921 6922 6923 6924 6925 6926 6927 6928 6929 6930 6931 6932 6933 6934 6935 6936 6937 6938 6939 6940 6941 6942
	if (!jc)
		return ERR_PTR(-ENOMEM);

	jc->info = alloc_percpu(struct perf_cgroup_info);
	if (!jc->info) {
		kfree(jc);
		return ERR_PTR(-ENOMEM);
	}

	return &jc->css;
}

static void perf_cgroup_destroy(struct cgroup_subsys *ss,
				struct cgroup *cont)
{
	struct perf_cgroup *jc;
	jc = container_of(cgroup_subsys_state(cont, perf_subsys_id),
			  struct perf_cgroup, css);
	free_percpu(jc->info);
	kfree(jc);
}

static int __perf_cgroup_move(void *info)
{
	struct task_struct *task = info;
	perf_cgroup_switch(task, PERF_CGROUP_SWOUT | PERF_CGROUP_SWIN);
	return 0;
}

6943 6944
static void
perf_cgroup_attach_task(struct cgroup *cgrp, struct task_struct *task)
S
Stephane Eranian 已提交
6945 6946 6947 6948 6949 6950 6951 6952 6953 6954 6955 6956 6957 6958 6959
{
	task_function_call(task, __perf_cgroup_move, task);
}

static void perf_cgroup_exit(struct cgroup_subsys *ss, struct cgroup *cgrp,
		struct cgroup *old_cgrp, struct task_struct *task)
{
	/*
	 * cgroup_exit() is called in the copy_process() failure path.
	 * Ignore this case since the task hasn't ran yet, this avoids
	 * trying to poke a half freed task state from generic code.
	 */
	if (!(task->flags & PF_EXITING))
		return;

6960
	perf_cgroup_attach_task(cgrp, task);
S
Stephane Eranian 已提交
6961 6962 6963
}

struct cgroup_subsys perf_subsys = {
6964 6965 6966 6967 6968
	.name		= "perf_event",
	.subsys_id	= perf_subsys_id,
	.create		= perf_cgroup_create,
	.destroy	= perf_cgroup_destroy,
	.exit		= perf_cgroup_exit,
6969
	.attach_task	= perf_cgroup_attach_task,
S
Stephane Eranian 已提交
6970 6971
};
#endif /* CONFIG_CGROUP_PERF */