core.c 163.5 KB
Newer Older
T
Thomas Gleixner 已提交
1
/*
I
Ingo Molnar 已提交
2
 * Performance events core code:
T
Thomas Gleixner 已提交
3
 *
4
 *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5 6
 *  Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
 *  Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
7
 *  Copyright    2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
8
 *
I
Ingo Molnar 已提交
9
 * For licensing details see kernel-base/COPYING
T
Thomas Gleixner 已提交
10 11 12
 */

#include <linux/fs.h>
13
#include <linux/mm.h>
T
Thomas Gleixner 已提交
14 15
#include <linux/cpu.h>
#include <linux/smp.h>
P
Peter Zijlstra 已提交
16
#include <linux/idr.h>
17
#include <linux/file.h>
T
Thomas Gleixner 已提交
18
#include <linux/poll.h>
19
#include <linux/slab.h>
20
#include <linux/hash.h>
T
Thomas Gleixner 已提交
21
#include <linux/sysfs.h>
22
#include <linux/dcache.h>
T
Thomas Gleixner 已提交
23
#include <linux/percpu.h>
24
#include <linux/ptrace.h>
P
Peter Zijlstra 已提交
25
#include <linux/reboot.h>
26
#include <linux/vmstat.h>
P
Peter Zijlstra 已提交
27
#include <linux/device.h>
28
#include <linux/export.h>
29
#include <linux/vmalloc.h>
30 31
#include <linux/hardirq.h>
#include <linux/rculist.h>
T
Thomas Gleixner 已提交
32 33 34
#include <linux/uaccess.h>
#include <linux/syscalls.h>
#include <linux/anon_inodes.h>
I
Ingo Molnar 已提交
35
#include <linux/kernel_stat.h>
36
#include <linux/perf_event.h>
L
Li Zefan 已提交
37
#include <linux/ftrace_event.h>
38
#include <linux/hw_breakpoint.h>
T
Thomas Gleixner 已提交
39

40 41
#include "internal.h"

42 43
#include <asm/irq_regs.h>

44
struct remote_function_call {
45 46 47 48
	struct task_struct	*p;
	int			(*func)(void *info);
	void			*info;
	int			ret;
49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81
};

static void remote_function(void *data)
{
	struct remote_function_call *tfc = data;
	struct task_struct *p = tfc->p;

	if (p) {
		tfc->ret = -EAGAIN;
		if (task_cpu(p) != smp_processor_id() || !task_curr(p))
			return;
	}

	tfc->ret = tfc->func(tfc->info);
}

/**
 * task_function_call - call a function on the cpu on which a task runs
 * @p:		the task to evaluate
 * @func:	the function to be called
 * @info:	the function call argument
 *
 * Calls the function @func when the task is currently running. This might
 * be on the current CPU, which just calls the function directly
 *
 * returns: @func return value, or
 *	    -ESRCH  - when the process isn't running
 *	    -EAGAIN - when the process moved away
 */
static int
task_function_call(struct task_struct *p, int (*func) (void *info), void *info)
{
	struct remote_function_call data = {
82 83 84 85
		.p	= p,
		.func	= func,
		.info	= info,
		.ret	= -ESRCH, /* No such (running) process */
86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105
	};

	if (task_curr(p))
		smp_call_function_single(task_cpu(p), remote_function, &data, 1);

	return data.ret;
}

/**
 * cpu_function_call - call a function on the cpu
 * @func:	the function to be called
 * @info:	the function call argument
 *
 * Calls the function @func on the remote cpu.
 *
 * returns: @func return value or -ENXIO when the cpu is offline
 */
static int cpu_function_call(int cpu, int (*func) (void *info), void *info)
{
	struct remote_function_call data = {
106 107 108 109
		.p	= NULL,
		.func	= func,
		.info	= info,
		.ret	= -ENXIO, /* No such CPU */
110 111 112 113 114 115 116
	};

	smp_call_function_single(cpu, remote_function, &data, 1);

	return data.ret;
}

S
Stephane Eranian 已提交
117 118 119 120
#define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\
		       PERF_FLAG_FD_OUTPUT  |\
		       PERF_FLAG_PID_CGROUP)

121 122 123 124 125 126
enum event_type_t {
	EVENT_FLEXIBLE = 0x1,
	EVENT_PINNED = 0x2,
	EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
};

S
Stephane Eranian 已提交
127 128 129 130
/*
 * perf_sched_events : >0 events exist
 * perf_cgroup_events: >0 per-cpu cgroup events exist on this cpu
 */
131
struct jump_label_key perf_sched_events __read_mostly;
S
Stephane Eranian 已提交
132 133
static DEFINE_PER_CPU(atomic_t, perf_cgroup_events);

134 135 136
static atomic_t nr_mmap_events __read_mostly;
static atomic_t nr_comm_events __read_mostly;
static atomic_t nr_task_events __read_mostly;
137

P
Peter Zijlstra 已提交
138 139 140 141
static LIST_HEAD(pmus);
static DEFINE_MUTEX(pmus_lock);
static struct srcu_struct pmus_srcu;

142
/*
143
 * perf event paranoia level:
144 145
 *  -1 - not paranoid at all
 *   0 - disallow raw tracepoint access for unpriv
146
 *   1 - disallow cpu events for unpriv
147
 *   2 - disallow kernel profiling for unpriv
148
 */
149
int sysctl_perf_event_paranoid __read_mostly = 1;
150

151 152
/* Minimum for 512 kiB + 1 user control page */
int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */
153 154

/*
155
 * max perf event sample rate
156
 */
P
Peter Zijlstra 已提交
157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174
#define DEFAULT_MAX_SAMPLE_RATE 100000
int sysctl_perf_event_sample_rate __read_mostly = DEFAULT_MAX_SAMPLE_RATE;
static int max_samples_per_tick __read_mostly =
	DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ);

int perf_proc_update_handler(struct ctl_table *table, int write,
		void __user *buffer, size_t *lenp,
		loff_t *ppos)
{
	int ret = proc_dointvec(table, write, buffer, lenp, ppos);

	if (ret || !write)
		return ret;

	max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ);

	return 0;
}
175

176
static atomic64_t perf_event_id;
177

178 179 180 181
static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
			      enum event_type_t event_type);

static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
S
Stephane Eranian 已提交
182 183 184 185 186
			     enum event_type_t event_type,
			     struct task_struct *task);

static void update_context_time(struct perf_event_context *ctx);
static u64 perf_event_time(struct perf_event *event);
187

188 189 190
static void ring_buffer_attach(struct perf_event *event,
			       struct ring_buffer *rb);

191
void __weak perf_event_print_debug(void)	{ }
T
Thomas Gleixner 已提交
192

193
extern __weak const char *perf_pmu_name(void)
T
Thomas Gleixner 已提交
194
{
195
	return "pmu";
T
Thomas Gleixner 已提交
196 197
}

198 199 200 201 202
static inline u64 perf_clock(void)
{
	return local_clock();
}

S
Stephane Eranian 已提交
203 204 205 206 207 208
static inline struct perf_cpu_context *
__get_cpu_context(struct perf_event_context *ctx)
{
	return this_cpu_ptr(ctx->pmu->pmu_cpu_context);
}

209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224
static void perf_ctx_lock(struct perf_cpu_context *cpuctx,
			  struct perf_event_context *ctx)
{
	raw_spin_lock(&cpuctx->ctx.lock);
	if (ctx)
		raw_spin_lock(&ctx->lock);
}

static void perf_ctx_unlock(struct perf_cpu_context *cpuctx,
			    struct perf_event_context *ctx)
{
	if (ctx)
		raw_spin_unlock(&ctx->lock);
	raw_spin_unlock(&cpuctx->ctx.lock);
}

S
Stephane Eranian 已提交
225 226
#ifdef CONFIG_CGROUP_PERF

227 228 229 230 231
/*
 * Must ensure cgroup is pinned (css_get) before calling
 * this function. In other words, we cannot call this function
 * if there is no cgroup event for the current CPU context.
 */
S
Stephane Eranian 已提交
232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298
static inline struct perf_cgroup *
perf_cgroup_from_task(struct task_struct *task)
{
	return container_of(task_subsys_state(task, perf_subsys_id),
			struct perf_cgroup, css);
}

static inline bool
perf_cgroup_match(struct perf_event *event)
{
	struct perf_event_context *ctx = event->ctx;
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);

	return !event->cgrp || event->cgrp == cpuctx->cgrp;
}

static inline void perf_get_cgroup(struct perf_event *event)
{
	css_get(&event->cgrp->css);
}

static inline void perf_put_cgroup(struct perf_event *event)
{
	css_put(&event->cgrp->css);
}

static inline void perf_detach_cgroup(struct perf_event *event)
{
	perf_put_cgroup(event);
	event->cgrp = NULL;
}

static inline int is_cgroup_event(struct perf_event *event)
{
	return event->cgrp != NULL;
}

static inline u64 perf_cgroup_event_time(struct perf_event *event)
{
	struct perf_cgroup_info *t;

	t = per_cpu_ptr(event->cgrp->info, event->cpu);
	return t->time;
}

static inline void __update_cgrp_time(struct perf_cgroup *cgrp)
{
	struct perf_cgroup_info *info;
	u64 now;

	now = perf_clock();

	info = this_cpu_ptr(cgrp->info);

	info->time += now - info->timestamp;
	info->timestamp = now;
}

static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
{
	struct perf_cgroup *cgrp_out = cpuctx->cgrp;
	if (cgrp_out)
		__update_cgrp_time(cgrp_out);
}

static inline void update_cgrp_time_from_event(struct perf_event *event)
{
299 300
	struct perf_cgroup *cgrp;

S
Stephane Eranian 已提交
301
	/*
302 303
	 * ensure we access cgroup data only when needed and
	 * when we know the cgroup is pinned (css_get)
S
Stephane Eranian 已提交
304
	 */
305
	if (!is_cgroup_event(event))
S
Stephane Eranian 已提交
306 307
		return;

308 309 310 311 312 313
	cgrp = perf_cgroup_from_task(current);
	/*
	 * Do not update time when cgroup is not active
	 */
	if (cgrp == event->cgrp)
		__update_cgrp_time(event->cgrp);
S
Stephane Eranian 已提交
314 315 316
}

static inline void
317 318
perf_cgroup_set_timestamp(struct task_struct *task,
			  struct perf_event_context *ctx)
S
Stephane Eranian 已提交
319 320 321 322
{
	struct perf_cgroup *cgrp;
	struct perf_cgroup_info *info;

323 324 325 326 327 328
	/*
	 * ctx->lock held by caller
	 * ensure we do not access cgroup data
	 * unless we have the cgroup pinned (css_get)
	 */
	if (!task || !ctx->nr_cgroups)
S
Stephane Eranian 已提交
329 330 331 332
		return;

	cgrp = perf_cgroup_from_task(task);
	info = this_cpu_ptr(cgrp->info);
333
	info->timestamp = ctx->timestamp;
S
Stephane Eranian 已提交
334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374
}

#define PERF_CGROUP_SWOUT	0x1 /* cgroup switch out every event */
#define PERF_CGROUP_SWIN	0x2 /* cgroup switch in events based on task */

/*
 * reschedule events based on the cgroup constraint of task.
 *
 * mode SWOUT : schedule out everything
 * mode SWIN : schedule in based on cgroup for next
 */
void perf_cgroup_switch(struct task_struct *task, int mode)
{
	struct perf_cpu_context *cpuctx;
	struct pmu *pmu;
	unsigned long flags;

	/*
	 * disable interrupts to avoid geting nr_cgroup
	 * changes via __perf_event_disable(). Also
	 * avoids preemption.
	 */
	local_irq_save(flags);

	/*
	 * we reschedule only in the presence of cgroup
	 * constrained events.
	 */
	rcu_read_lock();

	list_for_each_entry_rcu(pmu, &pmus, entry) {
		cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);

		/*
		 * perf_cgroup_events says at least one
		 * context on this CPU has cgroup events.
		 *
		 * ctx->nr_cgroups reports the number of cgroup
		 * events for a context.
		 */
		if (cpuctx->ctx.nr_cgroups > 0) {
375 376
			perf_ctx_lock(cpuctx, cpuctx->task_ctx);
			perf_pmu_disable(cpuctx->ctx.pmu);
S
Stephane Eranian 已提交
377 378 379 380 381 382 383 384 385 386 387

			if (mode & PERF_CGROUP_SWOUT) {
				cpu_ctx_sched_out(cpuctx, EVENT_ALL);
				/*
				 * must not be done before ctxswout due
				 * to event_filter_match() in event_sched_out()
				 */
				cpuctx->cgrp = NULL;
			}

			if (mode & PERF_CGROUP_SWIN) {
388
				WARN_ON_ONCE(cpuctx->cgrp);
S
Stephane Eranian 已提交
389 390 391 392 393 394 395
				/* set cgrp before ctxsw in to
				 * allow event_filter_match() to not
				 * have to pass task around
				 */
				cpuctx->cgrp = perf_cgroup_from_task(task);
				cpu_ctx_sched_in(cpuctx, EVENT_ALL, task);
			}
396 397
			perf_pmu_enable(cpuctx->ctx.pmu);
			perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
S
Stephane Eranian 已提交
398 399 400 401 402 403 404 405
		}
	}

	rcu_read_unlock();

	local_irq_restore(flags);
}

406 407
static inline void perf_cgroup_sched_out(struct task_struct *task,
					 struct task_struct *next)
S
Stephane Eranian 已提交
408
{
409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430
	struct perf_cgroup *cgrp1;
	struct perf_cgroup *cgrp2 = NULL;

	/*
	 * we come here when we know perf_cgroup_events > 0
	 */
	cgrp1 = perf_cgroup_from_task(task);

	/*
	 * next is NULL when called from perf_event_enable_on_exec()
	 * that will systematically cause a cgroup_switch()
	 */
	if (next)
		cgrp2 = perf_cgroup_from_task(next);

	/*
	 * only schedule out current cgroup events if we know
	 * that we are switching to a different cgroup. Otherwise,
	 * do no touch the cgroup events.
	 */
	if (cgrp1 != cgrp2)
		perf_cgroup_switch(task, PERF_CGROUP_SWOUT);
S
Stephane Eranian 已提交
431 432
}

433 434
static inline void perf_cgroup_sched_in(struct task_struct *prev,
					struct task_struct *task)
S
Stephane Eranian 已提交
435
{
436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453
	struct perf_cgroup *cgrp1;
	struct perf_cgroup *cgrp2 = NULL;

	/*
	 * we come here when we know perf_cgroup_events > 0
	 */
	cgrp1 = perf_cgroup_from_task(task);

	/* prev can never be NULL */
	cgrp2 = perf_cgroup_from_task(prev);

	/*
	 * only need to schedule in cgroup events if we are changing
	 * cgroup during ctxsw. Cgroup events were not scheduled
	 * out of ctxsw out if that was not the case.
	 */
	if (cgrp1 != cgrp2)
		perf_cgroup_switch(task, PERF_CGROUP_SWIN);
S
Stephane Eranian 已提交
454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469
}

static inline int perf_cgroup_connect(int fd, struct perf_event *event,
				      struct perf_event_attr *attr,
				      struct perf_event *group_leader)
{
	struct perf_cgroup *cgrp;
	struct cgroup_subsys_state *css;
	struct file *file;
	int ret = 0, fput_needed;

	file = fget_light(fd, &fput_needed);
	if (!file)
		return -EBADF;

	css = cgroup_css_from_dir(file, perf_subsys_id);
470 471 472 473
	if (IS_ERR(css)) {
		ret = PTR_ERR(css);
		goto out;
	}
S
Stephane Eranian 已提交
474 475 476 477

	cgrp = container_of(css, struct perf_cgroup, css);
	event->cgrp = cgrp;

478 479 480
	/* must be done before we fput() the file */
	perf_get_cgroup(event);

S
Stephane Eranian 已提交
481 482 483 484 485 486 487 488 489
	/*
	 * all events in a group must monitor
	 * the same cgroup because a task belongs
	 * to only one perf cgroup at a time
	 */
	if (group_leader && group_leader->cgrp != cgrp) {
		perf_detach_cgroup(event);
		ret = -EINVAL;
	}
490
out:
S
Stephane Eranian 已提交
491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564
	fput_light(file, fput_needed);
	return ret;
}

static inline void
perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
{
	struct perf_cgroup_info *t;
	t = per_cpu_ptr(event->cgrp->info, event->cpu);
	event->shadow_ctx_time = now - t->timestamp;
}

static inline void
perf_cgroup_defer_enabled(struct perf_event *event)
{
	/*
	 * when the current task's perf cgroup does not match
	 * the event's, we need to remember to call the
	 * perf_mark_enable() function the first time a task with
	 * a matching perf cgroup is scheduled in.
	 */
	if (is_cgroup_event(event) && !perf_cgroup_match(event))
		event->cgrp_defer_enabled = 1;
}

static inline void
perf_cgroup_mark_enabled(struct perf_event *event,
			 struct perf_event_context *ctx)
{
	struct perf_event *sub;
	u64 tstamp = perf_event_time(event);

	if (!event->cgrp_defer_enabled)
		return;

	event->cgrp_defer_enabled = 0;

	event->tstamp_enabled = tstamp - event->total_time_enabled;
	list_for_each_entry(sub, &event->sibling_list, group_entry) {
		if (sub->state >= PERF_EVENT_STATE_INACTIVE) {
			sub->tstamp_enabled = tstamp - sub->total_time_enabled;
			sub->cgrp_defer_enabled = 0;
		}
	}
}
#else /* !CONFIG_CGROUP_PERF */

static inline bool
perf_cgroup_match(struct perf_event *event)
{
	return true;
}

static inline void perf_detach_cgroup(struct perf_event *event)
{}

static inline int is_cgroup_event(struct perf_event *event)
{
	return 0;
}

static inline u64 perf_cgroup_event_cgrp_time(struct perf_event *event)
{
	return 0;
}

static inline void update_cgrp_time_from_event(struct perf_event *event)
{
}

static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
{
}

565 566
static inline void perf_cgroup_sched_out(struct task_struct *task,
					 struct task_struct *next)
S
Stephane Eranian 已提交
567 568 569
{
}

570 571
static inline void perf_cgroup_sched_in(struct task_struct *prev,
					struct task_struct *task)
S
Stephane Eranian 已提交
572 573 574 575 576 577 578 579 580 581 582
{
}

static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event,
				      struct perf_event_attr *attr,
				      struct perf_event *group_leader)
{
	return -EINVAL;
}

static inline void
583 584
perf_cgroup_set_timestamp(struct task_struct *task,
			  struct perf_event_context *ctx)
S
Stephane Eranian 已提交
585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614
{
}

void
perf_cgroup_switch(struct task_struct *task, struct task_struct *next)
{
}

static inline void
perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
{
}

static inline u64 perf_cgroup_event_time(struct perf_event *event)
{
	return 0;
}

static inline void
perf_cgroup_defer_enabled(struct perf_event *event)
{
}

static inline void
perf_cgroup_mark_enabled(struct perf_event *event,
			 struct perf_event_context *ctx)
{
}
#endif

P
Peter Zijlstra 已提交
615
void perf_pmu_disable(struct pmu *pmu)
616
{
P
Peter Zijlstra 已提交
617 618 619
	int *count = this_cpu_ptr(pmu->pmu_disable_count);
	if (!(*count)++)
		pmu->pmu_disable(pmu);
620 621
}

P
Peter Zijlstra 已提交
622
void perf_pmu_enable(struct pmu *pmu)
623
{
P
Peter Zijlstra 已提交
624 625 626
	int *count = this_cpu_ptr(pmu->pmu_disable_count);
	if (!--(*count))
		pmu->pmu_enable(pmu);
627 628
}

629 630 631 632 633 634 635
static DEFINE_PER_CPU(struct list_head, rotation_list);

/*
 * perf_pmu_rotate_start() and perf_rotate_context() are fully serialized
 * because they're strictly cpu affine and rotate_start is called with IRQs
 * disabled, while rotate_context is called from IRQ context.
 */
P
Peter Zijlstra 已提交
636
static void perf_pmu_rotate_start(struct pmu *pmu)
637
{
P
Peter Zijlstra 已提交
638
	struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
639
	struct list_head *head = &__get_cpu_var(rotation_list);
640

641
	WARN_ON(!irqs_disabled());
642

643 644
	if (list_empty(&cpuctx->rotation_list))
		list_add(&cpuctx->rotation_list, head);
645 646
}

647
static void get_ctx(struct perf_event_context *ctx)
648
{
649
	WARN_ON(!atomic_inc_not_zero(&ctx->refcount));
650 651
}

652
static void put_ctx(struct perf_event_context *ctx)
653
{
654 655 656
	if (atomic_dec_and_test(&ctx->refcount)) {
		if (ctx->parent_ctx)
			put_ctx(ctx->parent_ctx);
657 658
		if (ctx->task)
			put_task_struct(ctx->task);
659
		kfree_rcu(ctx, rcu_head);
660
	}
661 662
}

663
static void unclone_ctx(struct perf_event_context *ctx)
664 665 666 667 668 669 670
{
	if (ctx->parent_ctx) {
		put_ctx(ctx->parent_ctx);
		ctx->parent_ctx = NULL;
	}
}

671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692
static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
{
	/*
	 * only top level events have the pid namespace they were created in
	 */
	if (event->parent)
		event = event->parent;

	return task_tgid_nr_ns(p, event->ns);
}

static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
{
	/*
	 * only top level events have the pid namespace they were created in
	 */
	if (event->parent)
		event = event->parent;

	return task_pid_nr_ns(p, event->ns);
}

693
/*
694
 * If we inherit events we want to return the parent event id
695 696
 * to userspace.
 */
697
static u64 primary_event_id(struct perf_event *event)
698
{
699
	u64 id = event->id;
700

701 702
	if (event->parent)
		id = event->parent->id;
703 704 705 706

	return id;
}

707
/*
708
 * Get the perf_event_context for a task and lock it.
709 710 711
 * This has to cope with with the fact that until it is locked,
 * the context could get moved to another task.
 */
712
static struct perf_event_context *
P
Peter Zijlstra 已提交
713
perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags)
714
{
715
	struct perf_event_context *ctx;
716 717

	rcu_read_lock();
P
Peter Zijlstra 已提交
718
retry:
P
Peter Zijlstra 已提交
719
	ctx = rcu_dereference(task->perf_event_ctxp[ctxn]);
720 721 722 723
	if (ctx) {
		/*
		 * If this context is a clone of another, it might
		 * get swapped for another underneath us by
724
		 * perf_event_task_sched_out, though the
725 726 727 728 729 730
		 * rcu_read_lock() protects us from any context
		 * getting freed.  Lock the context and check if it
		 * got swapped before we could get the lock, and retry
		 * if so.  If we locked the right context, then it
		 * can't get swapped on us any more.
		 */
731
		raw_spin_lock_irqsave(&ctx->lock, *flags);
P
Peter Zijlstra 已提交
732
		if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) {
733
			raw_spin_unlock_irqrestore(&ctx->lock, *flags);
734 735
			goto retry;
		}
736 737

		if (!atomic_inc_not_zero(&ctx->refcount)) {
738
			raw_spin_unlock_irqrestore(&ctx->lock, *flags);
739 740
			ctx = NULL;
		}
741 742 743 744 745 746 747 748 749 750
	}
	rcu_read_unlock();
	return ctx;
}

/*
 * Get the context for a task and increment its pin_count so it
 * can't get swapped to another task.  This also increments its
 * reference count so that the context can't get freed.
 */
P
Peter Zijlstra 已提交
751 752
static struct perf_event_context *
perf_pin_task_context(struct task_struct *task, int ctxn)
753
{
754
	struct perf_event_context *ctx;
755 756
	unsigned long flags;

P
Peter Zijlstra 已提交
757
	ctx = perf_lock_task_context(task, ctxn, &flags);
758 759
	if (ctx) {
		++ctx->pin_count;
760
		raw_spin_unlock_irqrestore(&ctx->lock, flags);
761 762 763 764
	}
	return ctx;
}

765
static void perf_unpin_context(struct perf_event_context *ctx)
766 767 768
{
	unsigned long flags;

769
	raw_spin_lock_irqsave(&ctx->lock, flags);
770
	--ctx->pin_count;
771
	raw_spin_unlock_irqrestore(&ctx->lock, flags);
772 773
}

774 775 776 777 778 779 780 781 782 783 784
/*
 * Update the record of the current time in a context.
 */
static void update_context_time(struct perf_event_context *ctx)
{
	u64 now = perf_clock();

	ctx->time += now - ctx->timestamp;
	ctx->timestamp = now;
}

785 786 787
static u64 perf_event_time(struct perf_event *event)
{
	struct perf_event_context *ctx = event->ctx;
S
Stephane Eranian 已提交
788 789 790 791

	if (is_cgroup_event(event))
		return perf_cgroup_event_time(event);

792 793 794
	return ctx ? ctx->time : 0;
}

795 796
/*
 * Update the total_time_enabled and total_time_running fields for a event.
797
 * The caller of this function needs to hold the ctx->lock.
798 799 800 801 802 803 804 805 806
 */
static void update_event_times(struct perf_event *event)
{
	struct perf_event_context *ctx = event->ctx;
	u64 run_end;

	if (event->state < PERF_EVENT_STATE_INACTIVE ||
	    event->group_leader->state < PERF_EVENT_STATE_INACTIVE)
		return;
S
Stephane Eranian 已提交
807 808 809 810 811 812 813 814 815 816 817
	/*
	 * in cgroup mode, time_enabled represents
	 * the time the event was enabled AND active
	 * tasks were in the monitored cgroup. This is
	 * independent of the activity of the context as
	 * there may be a mix of cgroup and non-cgroup events.
	 *
	 * That is why we treat cgroup events differently
	 * here.
	 */
	if (is_cgroup_event(event))
818
		run_end = perf_event_time(event);
S
Stephane Eranian 已提交
819 820
	else if (ctx->is_active)
		run_end = ctx->time;
821 822 823 824
	else
		run_end = event->tstamp_stopped;

	event->total_time_enabled = run_end - event->tstamp_enabled;
825 826 827 828

	if (event->state == PERF_EVENT_STATE_INACTIVE)
		run_end = event->tstamp_stopped;
	else
829
		run_end = perf_event_time(event);
830 831

	event->total_time_running = run_end - event->tstamp_running;
S
Stephane Eranian 已提交
832

833 834
}

835 836 837 838 839 840 841 842 843 844 845 846
/*
 * Update total_time_enabled and total_time_running for all events in a group.
 */
static void update_group_times(struct perf_event *leader)
{
	struct perf_event *event;

	update_event_times(leader);
	list_for_each_entry(event, &leader->sibling_list, group_entry)
		update_event_times(event);
}

847 848 849 850 851 852 853 854 855
static struct list_head *
ctx_group_list(struct perf_event *event, struct perf_event_context *ctx)
{
	if (event->attr.pinned)
		return &ctx->pinned_groups;
	else
		return &ctx->flexible_groups;
}

856
/*
857
 * Add a event from the lists for its context.
858 859
 * Must be called with ctx->mutex and ctx->lock held.
 */
860
static void
861
list_add_event(struct perf_event *event, struct perf_event_context *ctx)
862
{
863 864
	WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
	event->attach_state |= PERF_ATTACH_CONTEXT;
865 866

	/*
867 868 869
	 * If we're a stand alone event or group leader, we go to the context
	 * list, group events are kept attached to the group so that
	 * perf_group_detach can, at all times, locate all siblings.
870
	 */
871
	if (event->group_leader == event) {
872 873
		struct list_head *list;

874 875 876
		if (is_software_event(event))
			event->group_flags |= PERF_GROUP_SOFTWARE;

877 878
		list = ctx_group_list(event, ctx);
		list_add_tail(&event->group_entry, list);
P
Peter Zijlstra 已提交
879
	}
P
Peter Zijlstra 已提交
880

881
	if (is_cgroup_event(event))
S
Stephane Eranian 已提交
882 883
		ctx->nr_cgroups++;

884
	list_add_rcu(&event->event_entry, &ctx->event_list);
885
	if (!ctx->nr_events)
P
Peter Zijlstra 已提交
886
		perf_pmu_rotate_start(ctx->pmu);
887 888
	ctx->nr_events++;
	if (event->attr.inherit_stat)
889
		ctx->nr_stat++;
890 891
}

892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930
/*
 * Called at perf_event creation and when events are attached/detached from a
 * group.
 */
static void perf_event__read_size(struct perf_event *event)
{
	int entry = sizeof(u64); /* value */
	int size = 0;
	int nr = 1;

	if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
		size += sizeof(u64);

	if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
		size += sizeof(u64);

	if (event->attr.read_format & PERF_FORMAT_ID)
		entry += sizeof(u64);

	if (event->attr.read_format & PERF_FORMAT_GROUP) {
		nr += event->group_leader->nr_siblings;
		size += sizeof(u64);
	}

	size += entry * nr;
	event->read_size = size;
}

static void perf_event__header_size(struct perf_event *event)
{
	struct perf_sample_data *data;
	u64 sample_type = event->attr.sample_type;
	u16 size = 0;

	perf_event__read_size(event);

	if (sample_type & PERF_SAMPLE_IP)
		size += sizeof(data->ip);

931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948
	if (sample_type & PERF_SAMPLE_ADDR)
		size += sizeof(data->addr);

	if (sample_type & PERF_SAMPLE_PERIOD)
		size += sizeof(data->period);

	if (sample_type & PERF_SAMPLE_READ)
		size += event->read_size;

	event->header_size = size;
}

static void perf_event__id_header_size(struct perf_event *event)
{
	struct perf_sample_data *data;
	u64 sample_type = event->attr.sample_type;
	u16 size = 0;

949 950 951 952 953 954 955 956 957 958 959 960 961 962 963
	if (sample_type & PERF_SAMPLE_TID)
		size += sizeof(data->tid_entry);

	if (sample_type & PERF_SAMPLE_TIME)
		size += sizeof(data->time);

	if (sample_type & PERF_SAMPLE_ID)
		size += sizeof(data->id);

	if (sample_type & PERF_SAMPLE_STREAM_ID)
		size += sizeof(data->stream_id);

	if (sample_type & PERF_SAMPLE_CPU)
		size += sizeof(data->cpu_entry);

964
	event->id_header_size = size;
965 966
}

967 968
static void perf_group_attach(struct perf_event *event)
{
969
	struct perf_event *group_leader = event->group_leader, *pos;
970

P
Peter Zijlstra 已提交
971 972 973 974 975 976
	/*
	 * We can have double attach due to group movement in perf_event_open.
	 */
	if (event->attach_state & PERF_ATTACH_GROUP)
		return;

977 978 979 980 981 982 983 984 985 986 987
	event->attach_state |= PERF_ATTACH_GROUP;

	if (group_leader == event)
		return;

	if (group_leader->group_flags & PERF_GROUP_SOFTWARE &&
			!is_software_event(event))
		group_leader->group_flags &= ~PERF_GROUP_SOFTWARE;

	list_add_tail(&event->group_entry, &group_leader->sibling_list);
	group_leader->nr_siblings++;
988 989 990 991 992

	perf_event__header_size(group_leader);

	list_for_each_entry(pos, &group_leader->sibling_list, group_entry)
		perf_event__header_size(pos);
993 994
}

995
/*
996
 * Remove a event from the lists for its context.
997
 * Must be called with ctx->mutex and ctx->lock held.
998
 */
999
static void
1000
list_del_event(struct perf_event *event, struct perf_event_context *ctx)
1001
{
1002
	struct perf_cpu_context *cpuctx;
1003 1004 1005 1006
	/*
	 * We can have double detach due to exit/hot-unplug + close.
	 */
	if (!(event->attach_state & PERF_ATTACH_CONTEXT))
1007
		return;
1008 1009 1010

	event->attach_state &= ~PERF_ATTACH_CONTEXT;

1011
	if (is_cgroup_event(event)) {
S
Stephane Eranian 已提交
1012
		ctx->nr_cgroups--;
1013 1014 1015 1016 1017 1018 1019 1020 1021
		cpuctx = __get_cpu_context(ctx);
		/*
		 * if there are no more cgroup events
		 * then cler cgrp to avoid stale pointer
		 * in update_cgrp_time_from_cpuctx()
		 */
		if (!ctx->nr_cgroups)
			cpuctx->cgrp = NULL;
	}
S
Stephane Eranian 已提交
1022

1023 1024
	ctx->nr_events--;
	if (event->attr.inherit_stat)
1025
		ctx->nr_stat--;
1026

1027
	list_del_rcu(&event->event_entry);
1028

1029 1030
	if (event->group_leader == event)
		list_del_init(&event->group_entry);
P
Peter Zijlstra 已提交
1031

1032
	update_group_times(event);
1033 1034 1035 1036 1037 1038 1039 1040 1041 1042

	/*
	 * If event was in error state, then keep it
	 * that way, otherwise bogus counts will be
	 * returned on read(). The only way to get out
	 * of error state is by explicit re-enabling
	 * of the event
	 */
	if (event->state > PERF_EVENT_STATE_OFF)
		event->state = PERF_EVENT_STATE_OFF;
1043 1044
}

1045
static void perf_group_detach(struct perf_event *event)
1046 1047
{
	struct perf_event *sibling, *tmp;
1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063
	struct list_head *list = NULL;

	/*
	 * We can have double detach due to exit/hot-unplug + close.
	 */
	if (!(event->attach_state & PERF_ATTACH_GROUP))
		return;

	event->attach_state &= ~PERF_ATTACH_GROUP;

	/*
	 * If this is a sibling, remove it from its group.
	 */
	if (event->group_leader != event) {
		list_del_init(&event->group_entry);
		event->group_leader->nr_siblings--;
1064
		goto out;
1065 1066 1067 1068
	}

	if (!list_empty(&event->group_entry))
		list = &event->group_entry;
1069

1070
	/*
1071 1072
	 * If this was a group event with sibling events then
	 * upgrade the siblings to singleton events by adding them
1073
	 * to whatever list we are on.
1074
	 */
1075
	list_for_each_entry_safe(sibling, tmp, &event->sibling_list, group_entry) {
1076 1077
		if (list)
			list_move_tail(&sibling->group_entry, list);
1078
		sibling->group_leader = sibling;
1079 1080 1081

		/* Inherit group flags from the previous leader */
		sibling->group_flags = event->group_flags;
1082
	}
1083 1084 1085 1086 1087 1088

out:
	perf_event__header_size(event->group_leader);

	list_for_each_entry(tmp, &event->group_leader->sibling_list, group_entry)
		perf_event__header_size(tmp);
1089 1090
}

1091 1092 1093
static inline int
event_filter_match(struct perf_event *event)
{
S
Stephane Eranian 已提交
1094 1095
	return (event->cpu == -1 || event->cpu == smp_processor_id())
	    && perf_cgroup_match(event);
1096 1097
}

1098 1099
static void
event_sched_out(struct perf_event *event,
1100
		  struct perf_cpu_context *cpuctx,
1101
		  struct perf_event_context *ctx)
1102
{
1103
	u64 tstamp = perf_event_time(event);
1104 1105 1106 1107 1108 1109 1110 1111 1112
	u64 delta;
	/*
	 * An event which could not be activated because of
	 * filter mismatch still needs to have its timings
	 * maintained, otherwise bogus information is return
	 * via read() for time_enabled, time_running:
	 */
	if (event->state == PERF_EVENT_STATE_INACTIVE
	    && !event_filter_match(event)) {
S
Stephane Eranian 已提交
1113
		delta = tstamp - event->tstamp_stopped;
1114
		event->tstamp_running += delta;
1115
		event->tstamp_stopped = tstamp;
1116 1117
	}

1118
	if (event->state != PERF_EVENT_STATE_ACTIVE)
1119
		return;
1120

1121 1122 1123 1124
	event->state = PERF_EVENT_STATE_INACTIVE;
	if (event->pending_disable) {
		event->pending_disable = 0;
		event->state = PERF_EVENT_STATE_OFF;
1125
	}
1126
	event->tstamp_stopped = tstamp;
P
Peter Zijlstra 已提交
1127
	event->pmu->del(event, 0);
1128
	event->oncpu = -1;
1129

1130
	if (!is_software_event(event))
1131 1132
		cpuctx->active_oncpu--;
	ctx->nr_active--;
1133
	if (event->attr.exclusive || !cpuctx->active_oncpu)
1134 1135 1136
		cpuctx->exclusive = 0;
}

1137
static void
1138
group_sched_out(struct perf_event *group_event,
1139
		struct perf_cpu_context *cpuctx,
1140
		struct perf_event_context *ctx)
1141
{
1142
	struct perf_event *event;
1143
	int state = group_event->state;
1144

1145
	event_sched_out(group_event, cpuctx, ctx);
1146 1147 1148 1149

	/*
	 * Schedule out siblings (if any):
	 */
1150 1151
	list_for_each_entry(event, &group_event->sibling_list, group_entry)
		event_sched_out(event, cpuctx, ctx);
1152

1153
	if (state == PERF_EVENT_STATE_ACTIVE && group_event->attr.exclusive)
1154 1155 1156
		cpuctx->exclusive = 0;
}

T
Thomas Gleixner 已提交
1157
/*
1158
 * Cross CPU call to remove a performance event
T
Thomas Gleixner 已提交
1159
 *
1160
 * We disable the event on the hardware level first. After that we
T
Thomas Gleixner 已提交
1161 1162
 * remove it from the context list.
 */
1163
static int __perf_remove_from_context(void *info)
T
Thomas Gleixner 已提交
1164
{
1165 1166
	struct perf_event *event = info;
	struct perf_event_context *ctx = event->ctx;
P
Peter Zijlstra 已提交
1167
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
T
Thomas Gleixner 已提交
1168

1169
	raw_spin_lock(&ctx->lock);
1170 1171
	event_sched_out(event, cpuctx, ctx);
	list_del_event(event, ctx);
1172 1173 1174 1175
	if (!ctx->nr_events && cpuctx->task_ctx == ctx) {
		ctx->is_active = 0;
		cpuctx->task_ctx = NULL;
	}
1176
	raw_spin_unlock(&ctx->lock);
1177 1178

	return 0;
T
Thomas Gleixner 已提交
1179 1180 1181 1182
}


/*
1183
 * Remove the event from a task's (or a CPU's) list of events.
T
Thomas Gleixner 已提交
1184
 *
1185
 * CPU events are removed with a smp call. For task events we only
T
Thomas Gleixner 已提交
1186
 * call when the task is on a CPU.
1187
 *
1188 1189
 * If event->ctx is a cloned context, callers must make sure that
 * every task struct that event->ctx->task could possibly point to
1190 1191
 * remains valid.  This is OK when called from perf_release since
 * that only calls us on the top-level context, which can't be a clone.
1192
 * When called from perf_event_exit_task, it's OK because the
1193
 * context has been detached from its task.
T
Thomas Gleixner 已提交
1194
 */
1195
static void perf_remove_from_context(struct perf_event *event)
T
Thomas Gleixner 已提交
1196
{
1197
	struct perf_event_context *ctx = event->ctx;
T
Thomas Gleixner 已提交
1198 1199
	struct task_struct *task = ctx->task;

1200 1201
	lockdep_assert_held(&ctx->mutex);

T
Thomas Gleixner 已提交
1202 1203
	if (!task) {
		/*
1204
		 * Per cpu events are removed via an smp call and
1205
		 * the removal is always successful.
T
Thomas Gleixner 已提交
1206
		 */
1207
		cpu_function_call(event->cpu, __perf_remove_from_context, event);
T
Thomas Gleixner 已提交
1208 1209 1210 1211
		return;
	}

retry:
1212 1213
	if (!task_function_call(task, __perf_remove_from_context, event))
		return;
T
Thomas Gleixner 已提交
1214

1215
	raw_spin_lock_irq(&ctx->lock);
T
Thomas Gleixner 已提交
1216
	/*
1217 1218
	 * If we failed to find a running task, but find the context active now
	 * that we've acquired the ctx->lock, retry.
T
Thomas Gleixner 已提交
1219
	 */
1220
	if (ctx->is_active) {
1221
		raw_spin_unlock_irq(&ctx->lock);
T
Thomas Gleixner 已提交
1222 1223 1224 1225
		goto retry;
	}

	/*
1226 1227
	 * Since the task isn't running, its safe to remove the event, us
	 * holding the ctx->lock ensures the task won't get scheduled in.
T
Thomas Gleixner 已提交
1228
	 */
1229
	list_del_event(event, ctx);
1230
	raw_spin_unlock_irq(&ctx->lock);
T
Thomas Gleixner 已提交
1231 1232
}

1233
/*
1234
 * Cross CPU call to disable a performance event
1235
 */
1236
static int __perf_event_disable(void *info)
1237
{
1238 1239
	struct perf_event *event = info;
	struct perf_event_context *ctx = event->ctx;
P
Peter Zijlstra 已提交
1240
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1241 1242

	/*
1243 1244
	 * If this is a per-task event, need to check whether this
	 * event's task is the current task on this cpu.
1245 1246 1247
	 *
	 * Can trigger due to concurrent perf_event_context_sched_out()
	 * flipping contexts around.
1248
	 */
1249
	if (ctx->task && cpuctx->task_ctx != ctx)
1250
		return -EINVAL;
1251

1252
	raw_spin_lock(&ctx->lock);
1253 1254

	/*
1255
	 * If the event is on, turn it off.
1256 1257
	 * If it is in error state, leave it in error state.
	 */
1258
	if (event->state >= PERF_EVENT_STATE_INACTIVE) {
1259
		update_context_time(ctx);
S
Stephane Eranian 已提交
1260
		update_cgrp_time_from_event(event);
1261 1262 1263
		update_group_times(event);
		if (event == event->group_leader)
			group_sched_out(event, cpuctx, ctx);
1264
		else
1265 1266
			event_sched_out(event, cpuctx, ctx);
		event->state = PERF_EVENT_STATE_OFF;
1267 1268
	}

1269
	raw_spin_unlock(&ctx->lock);
1270 1271

	return 0;
1272 1273 1274
}

/*
1275
 * Disable a event.
1276
 *
1277 1278
 * If event->ctx is a cloned context, callers must make sure that
 * every task struct that event->ctx->task could possibly point to
1279
 * remains valid.  This condition is satisifed when called through
1280 1281 1282 1283
 * perf_event_for_each_child or perf_event_for_each because they
 * hold the top-level event's child_mutex, so any descendant that
 * goes to exit will block in sync_child_event.
 * When called from perf_pending_event it's OK because event->ctx
1284
 * is the current context on this CPU and preemption is disabled,
1285
 * hence we can't get into perf_event_task_sched_out for this context.
1286
 */
1287
void perf_event_disable(struct perf_event *event)
1288
{
1289
	struct perf_event_context *ctx = event->ctx;
1290 1291 1292 1293
	struct task_struct *task = ctx->task;

	if (!task) {
		/*
1294
		 * Disable the event on the cpu that it's on
1295
		 */
1296
		cpu_function_call(event->cpu, __perf_event_disable, event);
1297 1298 1299
		return;
	}

P
Peter Zijlstra 已提交
1300
retry:
1301 1302
	if (!task_function_call(task, __perf_event_disable, event))
		return;
1303

1304
	raw_spin_lock_irq(&ctx->lock);
1305
	/*
1306
	 * If the event is still active, we need to retry the cross-call.
1307
	 */
1308
	if (event->state == PERF_EVENT_STATE_ACTIVE) {
1309
		raw_spin_unlock_irq(&ctx->lock);
1310 1311 1312 1313 1314
		/*
		 * Reload the task pointer, it might have been changed by
		 * a concurrent perf_event_context_sched_out().
		 */
		task = ctx->task;
1315 1316 1317 1318 1319 1320 1321
		goto retry;
	}

	/*
	 * Since we have the lock this context can't be scheduled
	 * in, so we can change the state safely.
	 */
1322 1323 1324
	if (event->state == PERF_EVENT_STATE_INACTIVE) {
		update_group_times(event);
		event->state = PERF_EVENT_STATE_OFF;
1325
	}
1326
	raw_spin_unlock_irq(&ctx->lock);
1327 1328
}

S
Stephane Eranian 已提交
1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363
static void perf_set_shadow_time(struct perf_event *event,
				 struct perf_event_context *ctx,
				 u64 tstamp)
{
	/*
	 * use the correct time source for the time snapshot
	 *
	 * We could get by without this by leveraging the
	 * fact that to get to this function, the caller
	 * has most likely already called update_context_time()
	 * and update_cgrp_time_xx() and thus both timestamp
	 * are identical (or very close). Given that tstamp is,
	 * already adjusted for cgroup, we could say that:
	 *    tstamp - ctx->timestamp
	 * is equivalent to
	 *    tstamp - cgrp->timestamp.
	 *
	 * Then, in perf_output_read(), the calculation would
	 * work with no changes because:
	 * - event is guaranteed scheduled in
	 * - no scheduled out in between
	 * - thus the timestamp would be the same
	 *
	 * But this is a bit hairy.
	 *
	 * So instead, we have an explicit cgroup call to remain
	 * within the time time source all along. We believe it
	 * is cleaner and simpler to understand.
	 */
	if (is_cgroup_event(event))
		perf_cgroup_set_shadow_time(event, tstamp);
	else
		event->shadow_ctx_time = tstamp - ctx->timestamp;
}

P
Peter Zijlstra 已提交
1364 1365 1366 1367
#define MAX_INTERRUPTS (~0ULL)

static void perf_log_throttle(struct perf_event *event, int enable);

1368
static int
1369
event_sched_in(struct perf_event *event,
1370
		 struct perf_cpu_context *cpuctx,
1371
		 struct perf_event_context *ctx)
1372
{
1373 1374
	u64 tstamp = perf_event_time(event);

1375
	if (event->state <= PERF_EVENT_STATE_OFF)
1376 1377
		return 0;

1378
	event->state = PERF_EVENT_STATE_ACTIVE;
1379
	event->oncpu = smp_processor_id();
P
Peter Zijlstra 已提交
1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390

	/*
	 * Unthrottle events, since we scheduled we might have missed several
	 * ticks already, also for a heavily scheduling task there is little
	 * guarantee it'll get a tick in a timely manner.
	 */
	if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) {
		perf_log_throttle(event, 1);
		event->hw.interrupts = 0;
	}

1391 1392 1393 1394 1395
	/*
	 * The new state must be visible before we turn it on in the hardware:
	 */
	smp_wmb();

P
Peter Zijlstra 已提交
1396
	if (event->pmu->add(event, PERF_EF_START)) {
1397 1398
		event->state = PERF_EVENT_STATE_INACTIVE;
		event->oncpu = -1;
1399 1400 1401
		return -EAGAIN;
	}

1402
	event->tstamp_running += tstamp - event->tstamp_stopped;
1403

S
Stephane Eranian 已提交
1404
	perf_set_shadow_time(event, ctx, tstamp);
1405

1406
	if (!is_software_event(event))
1407
		cpuctx->active_oncpu++;
1408 1409
	ctx->nr_active++;

1410
	if (event->attr.exclusive)
1411 1412
		cpuctx->exclusive = 1;

1413 1414 1415
	return 0;
}

1416
static int
1417
group_sched_in(struct perf_event *group_event,
1418
	       struct perf_cpu_context *cpuctx,
1419
	       struct perf_event_context *ctx)
1420
{
1421
	struct perf_event *event, *partial_group = NULL;
P
Peter Zijlstra 已提交
1422
	struct pmu *pmu = group_event->pmu;
1423 1424
	u64 now = ctx->time;
	bool simulate = false;
1425

1426
	if (group_event->state == PERF_EVENT_STATE_OFF)
1427 1428
		return 0;

P
Peter Zijlstra 已提交
1429
	pmu->start_txn(pmu);
1430

1431
	if (event_sched_in(group_event, cpuctx, ctx)) {
P
Peter Zijlstra 已提交
1432
		pmu->cancel_txn(pmu);
1433
		return -EAGAIN;
1434
	}
1435 1436 1437 1438

	/*
	 * Schedule in siblings as one group (if any):
	 */
1439
	list_for_each_entry(event, &group_event->sibling_list, group_entry) {
1440
		if (event_sched_in(event, cpuctx, ctx)) {
1441
			partial_group = event;
1442 1443 1444 1445
			goto group_error;
		}
	}

1446
	if (!pmu->commit_txn(pmu))
1447
		return 0;
1448

1449 1450 1451 1452
group_error:
	/*
	 * Groups can be scheduled in as one unit only, so undo any
	 * partial group before returning:
1453 1454 1455 1456 1457 1458 1459 1460 1461 1462
	 * The events up to the failed event are scheduled out normally,
	 * tstamp_stopped will be updated.
	 *
	 * The failed events and the remaining siblings need to have
	 * their timings updated as if they had gone thru event_sched_in()
	 * and event_sched_out(). This is required to get consistent timings
	 * across the group. This also takes care of the case where the group
	 * could never be scheduled by ensuring tstamp_stopped is set to mark
	 * the time the event was actually stopped, such that time delta
	 * calculation in update_event_times() is correct.
1463
	 */
1464 1465
	list_for_each_entry(event, &group_event->sibling_list, group_entry) {
		if (event == partial_group)
1466 1467 1468 1469 1470 1471 1472 1473
			simulate = true;

		if (simulate) {
			event->tstamp_running += now - event->tstamp_stopped;
			event->tstamp_stopped = now;
		} else {
			event_sched_out(event, cpuctx, ctx);
		}
1474
	}
1475
	event_sched_out(group_event, cpuctx, ctx);
1476

P
Peter Zijlstra 已提交
1477
	pmu->cancel_txn(pmu);
1478

1479 1480 1481
	return -EAGAIN;
}

1482
/*
1483
 * Work out whether we can put this event group on the CPU now.
1484
 */
1485
static int group_can_go_on(struct perf_event *event,
1486 1487 1488 1489
			   struct perf_cpu_context *cpuctx,
			   int can_add_hw)
{
	/*
1490
	 * Groups consisting entirely of software events can always go on.
1491
	 */
1492
	if (event->group_flags & PERF_GROUP_SOFTWARE)
1493 1494 1495
		return 1;
	/*
	 * If an exclusive group is already on, no other hardware
1496
	 * events can go on.
1497 1498 1499 1500 1501
	 */
	if (cpuctx->exclusive)
		return 0;
	/*
	 * If this group is exclusive and there are already
1502
	 * events on the CPU, it can't go on.
1503
	 */
1504
	if (event->attr.exclusive && cpuctx->active_oncpu)
1505 1506 1507 1508 1509 1510 1511 1512
		return 0;
	/*
	 * Otherwise, try to add it if all previous groups were able
	 * to go on.
	 */
	return can_add_hw;
}

1513 1514
static void add_event_to_ctx(struct perf_event *event,
			       struct perf_event_context *ctx)
1515
{
1516 1517
	u64 tstamp = perf_event_time(event);

1518
	list_add_event(event, ctx);
1519
	perf_group_attach(event);
1520 1521 1522
	event->tstamp_enabled = tstamp;
	event->tstamp_running = tstamp;
	event->tstamp_stopped = tstamp;
1523 1524
}

1525 1526 1527 1528 1529 1530
static void task_ctx_sched_out(struct perf_event_context *ctx);
static void
ctx_sched_in(struct perf_event_context *ctx,
	     struct perf_cpu_context *cpuctx,
	     enum event_type_t event_type,
	     struct task_struct *task);
1531

1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543
static void perf_event_sched_in(struct perf_cpu_context *cpuctx,
				struct perf_event_context *ctx,
				struct task_struct *task)
{
	cpu_ctx_sched_in(cpuctx, EVENT_PINNED, task);
	if (ctx)
		ctx_sched_in(ctx, cpuctx, EVENT_PINNED, task);
	cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE, task);
	if (ctx)
		ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE, task);
}

T
Thomas Gleixner 已提交
1544
/*
1545
 * Cross CPU call to install and enable a performance event
1546 1547
 *
 * Must be called with ctx->mutex held
T
Thomas Gleixner 已提交
1548
 */
1549
static int  __perf_install_in_context(void *info)
T
Thomas Gleixner 已提交
1550
{
1551 1552
	struct perf_event *event = info;
	struct perf_event_context *ctx = event->ctx;
P
Peter Zijlstra 已提交
1553
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1554 1555 1556
	struct perf_event_context *task_ctx = cpuctx->task_ctx;
	struct task_struct *task = current;

1557
	perf_ctx_lock(cpuctx, task_ctx);
1558
	perf_pmu_disable(cpuctx->ctx.pmu);
T
Thomas Gleixner 已提交
1559 1560

	/*
1561
	 * If there was an active task_ctx schedule it out.
T
Thomas Gleixner 已提交
1562
	 */
1563
	if (task_ctx)
1564
		task_ctx_sched_out(task_ctx);
1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578

	/*
	 * If the context we're installing events in is not the
	 * active task_ctx, flip them.
	 */
	if (ctx->task && task_ctx != ctx) {
		if (task_ctx)
			raw_spin_unlock(&task_ctx->lock);
		raw_spin_lock(&ctx->lock);
		task_ctx = ctx;
	}

	if (task_ctx) {
		cpuctx->task_ctx = task_ctx;
1579 1580
		task = task_ctx->task;
	}
1581

1582
	cpu_ctx_sched_out(cpuctx, EVENT_ALL);
T
Thomas Gleixner 已提交
1583

1584
	update_context_time(ctx);
S
Stephane Eranian 已提交
1585 1586 1587 1588 1589 1590
	/*
	 * update cgrp time only if current cgrp
	 * matches event->cgrp. Must be done before
	 * calling add_event_to_ctx()
	 */
	update_cgrp_time_from_event(event);
T
Thomas Gleixner 已提交
1591

1592
	add_event_to_ctx(event, ctx);
T
Thomas Gleixner 已提交
1593

1594
	/*
1595
	 * Schedule everything back in
1596
	 */
1597
	perf_event_sched_in(cpuctx, task_ctx, task);
1598 1599 1600

	perf_pmu_enable(cpuctx->ctx.pmu);
	perf_ctx_unlock(cpuctx, task_ctx);
1601 1602

	return 0;
T
Thomas Gleixner 已提交
1603 1604 1605
}

/*
1606
 * Attach a performance event to a context
T
Thomas Gleixner 已提交
1607
 *
1608 1609
 * First we add the event to the list with the hardware enable bit
 * in event->hw_config cleared.
T
Thomas Gleixner 已提交
1610
 *
1611
 * If the event is attached to a task which is on a CPU we use a smp
T
Thomas Gleixner 已提交
1612 1613 1614 1615
 * call to enable it in the task context. The task might have been
 * scheduled away, but we check this in the smp call again.
 */
static void
1616 1617
perf_install_in_context(struct perf_event_context *ctx,
			struct perf_event *event,
T
Thomas Gleixner 已提交
1618 1619 1620 1621
			int cpu)
{
	struct task_struct *task = ctx->task;

1622 1623
	lockdep_assert_held(&ctx->mutex);

1624 1625
	event->ctx = ctx;

T
Thomas Gleixner 已提交
1626 1627
	if (!task) {
		/*
1628
		 * Per cpu events are installed via an smp call and
1629
		 * the install is always successful.
T
Thomas Gleixner 已提交
1630
		 */
1631
		cpu_function_call(cpu, __perf_install_in_context, event);
T
Thomas Gleixner 已提交
1632 1633 1634 1635
		return;
	}

retry:
1636 1637
	if (!task_function_call(task, __perf_install_in_context, event))
		return;
T
Thomas Gleixner 已提交
1638

1639
	raw_spin_lock_irq(&ctx->lock);
T
Thomas Gleixner 已提交
1640
	/*
1641 1642
	 * If we failed to find a running task, but find the context active now
	 * that we've acquired the ctx->lock, retry.
T
Thomas Gleixner 已提交
1643
	 */
1644
	if (ctx->is_active) {
1645
		raw_spin_unlock_irq(&ctx->lock);
T
Thomas Gleixner 已提交
1646 1647 1648 1649
		goto retry;
	}

	/*
1650 1651
	 * Since the task isn't running, its safe to add the event, us holding
	 * the ctx->lock ensures the task won't get scheduled in.
T
Thomas Gleixner 已提交
1652
	 */
1653
	add_event_to_ctx(event, ctx);
1654
	raw_spin_unlock_irq(&ctx->lock);
T
Thomas Gleixner 已提交
1655 1656
}

1657
/*
1658
 * Put a event into inactive state and update time fields.
1659 1660 1661 1662 1663 1664
 * Enabling the leader of a group effectively enables all
 * the group members that aren't explicitly disabled, so we
 * have to update their ->tstamp_enabled also.
 * Note: this works for group members as well as group leaders
 * since the non-leader members' sibling_lists will be empty.
 */
1665 1666
static void __perf_event_mark_enabled(struct perf_event *event,
					struct perf_event_context *ctx)
1667
{
1668
	struct perf_event *sub;
1669
	u64 tstamp = perf_event_time(event);
1670

1671
	event->state = PERF_EVENT_STATE_INACTIVE;
1672
	event->tstamp_enabled = tstamp - event->total_time_enabled;
P
Peter Zijlstra 已提交
1673
	list_for_each_entry(sub, &event->sibling_list, group_entry) {
1674 1675
		if (sub->state >= PERF_EVENT_STATE_INACTIVE)
			sub->tstamp_enabled = tstamp - sub->total_time_enabled;
P
Peter Zijlstra 已提交
1676
	}
1677 1678
}

1679
/*
1680
 * Cross CPU call to enable a performance event
1681
 */
1682
static int __perf_event_enable(void *info)
1683
{
1684 1685 1686
	struct perf_event *event = info;
	struct perf_event_context *ctx = event->ctx;
	struct perf_event *leader = event->group_leader;
P
Peter Zijlstra 已提交
1687
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1688
	int err;
1689

1690 1691
	if (WARN_ON_ONCE(!ctx->is_active))
		return -EINVAL;
1692

1693
	raw_spin_lock(&ctx->lock);
1694
	update_context_time(ctx);
1695

1696
	if (event->state >= PERF_EVENT_STATE_INACTIVE)
1697
		goto unlock;
S
Stephane Eranian 已提交
1698 1699 1700 1701

	/*
	 * set current task's cgroup time reference point
	 */
1702
	perf_cgroup_set_timestamp(current, ctx);
S
Stephane Eranian 已提交
1703

1704
	__perf_event_mark_enabled(event, ctx);
1705

S
Stephane Eranian 已提交
1706 1707 1708
	if (!event_filter_match(event)) {
		if (is_cgroup_event(event))
			perf_cgroup_defer_enabled(event);
1709
		goto unlock;
S
Stephane Eranian 已提交
1710
	}
1711

1712
	/*
1713
	 * If the event is in a group and isn't the group leader,
1714
	 * then don't put it on unless the group is on.
1715
	 */
1716
	if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE)
1717
		goto unlock;
1718

1719
	if (!group_can_go_on(event, cpuctx, 1)) {
1720
		err = -EEXIST;
1721
	} else {
1722
		if (event == leader)
1723
			err = group_sched_in(event, cpuctx, ctx);
1724
		else
1725
			err = event_sched_in(event, cpuctx, ctx);
1726
	}
1727 1728 1729

	if (err) {
		/*
1730
		 * If this event can't go on and it's part of a
1731 1732
		 * group, then the whole group has to come off.
		 */
1733
		if (leader != event)
1734
			group_sched_out(leader, cpuctx, ctx);
1735
		if (leader->attr.pinned) {
1736
			update_group_times(leader);
1737
			leader->state = PERF_EVENT_STATE_ERROR;
1738
		}
1739 1740
	}

P
Peter Zijlstra 已提交
1741
unlock:
1742
	raw_spin_unlock(&ctx->lock);
1743 1744

	return 0;
1745 1746 1747
}

/*
1748
 * Enable a event.
1749
 *
1750 1751
 * If event->ctx is a cloned context, callers must make sure that
 * every task struct that event->ctx->task could possibly point to
1752
 * remains valid.  This condition is satisfied when called through
1753 1754
 * perf_event_for_each_child or perf_event_for_each as described
 * for perf_event_disable.
1755
 */
1756
void perf_event_enable(struct perf_event *event)
1757
{
1758
	struct perf_event_context *ctx = event->ctx;
1759 1760 1761 1762
	struct task_struct *task = ctx->task;

	if (!task) {
		/*
1763
		 * Enable the event on the cpu that it's on
1764
		 */
1765
		cpu_function_call(event->cpu, __perf_event_enable, event);
1766 1767 1768
		return;
	}

1769
	raw_spin_lock_irq(&ctx->lock);
1770
	if (event->state >= PERF_EVENT_STATE_INACTIVE)
1771 1772 1773
		goto out;

	/*
1774 1775
	 * If the event is in error state, clear that first.
	 * That way, if we see the event in error state below, we
1776 1777 1778 1779
	 * know that it has gone back into error state, as distinct
	 * from the task having been scheduled away before the
	 * cross-call arrived.
	 */
1780 1781
	if (event->state == PERF_EVENT_STATE_ERROR)
		event->state = PERF_EVENT_STATE_OFF;
1782

P
Peter Zijlstra 已提交
1783
retry:
1784 1785 1786 1787 1788
	if (!ctx->is_active) {
		__perf_event_mark_enabled(event, ctx);
		goto out;
	}

1789
	raw_spin_unlock_irq(&ctx->lock);
1790 1791 1792

	if (!task_function_call(task, __perf_event_enable, event))
		return;
1793

1794
	raw_spin_lock_irq(&ctx->lock);
1795 1796

	/*
1797
	 * If the context is active and the event is still off,
1798 1799
	 * we need to retry the cross-call.
	 */
1800 1801 1802 1803 1804 1805
	if (ctx->is_active && event->state == PERF_EVENT_STATE_OFF) {
		/*
		 * task could have been flipped by a concurrent
		 * perf_event_context_sched_out()
		 */
		task = ctx->task;
1806
		goto retry;
1807
	}
1808

P
Peter Zijlstra 已提交
1809
out:
1810
	raw_spin_unlock_irq(&ctx->lock);
1811 1812
}

1813
int perf_event_refresh(struct perf_event *event, int refresh)
1814
{
1815
	/*
1816
	 * not supported on inherited events
1817
	 */
1818
	if (event->attr.inherit || !is_sampling_event(event))
1819 1820
		return -EINVAL;

1821 1822
	atomic_add(refresh, &event->event_limit);
	perf_event_enable(event);
1823 1824

	return 0;
1825
}
1826
EXPORT_SYMBOL_GPL(perf_event_refresh);
1827

1828 1829 1830
static void ctx_sched_out(struct perf_event_context *ctx,
			  struct perf_cpu_context *cpuctx,
			  enum event_type_t event_type)
1831
{
1832
	struct perf_event *event;
1833
	int is_active = ctx->is_active;
1834

1835
	ctx->is_active &= ~event_type;
1836
	if (likely(!ctx->nr_events))
1837 1838
		return;

1839
	update_context_time(ctx);
S
Stephane Eranian 已提交
1840
	update_cgrp_time_from_cpuctx(cpuctx);
1841
	if (!ctx->nr_active)
1842
		return;
1843

P
Peter Zijlstra 已提交
1844
	perf_pmu_disable(ctx->pmu);
1845
	if ((is_active & EVENT_PINNED) && (event_type & EVENT_PINNED)) {
1846 1847
		list_for_each_entry(event, &ctx->pinned_groups, group_entry)
			group_sched_out(event, cpuctx, ctx);
P
Peter Zijlstra 已提交
1848
	}
1849

1850
	if ((is_active & EVENT_FLEXIBLE) && (event_type & EVENT_FLEXIBLE)) {
1851
		list_for_each_entry(event, &ctx->flexible_groups, group_entry)
1852
			group_sched_out(event, cpuctx, ctx);
P
Peter Zijlstra 已提交
1853
	}
P
Peter Zijlstra 已提交
1854
	perf_pmu_enable(ctx->pmu);
1855 1856
}

1857 1858 1859
/*
 * Test whether two contexts are equivalent, i.e. whether they
 * have both been cloned from the same version of the same context
1860 1861 1862 1863
 * and they both have the same number of enabled events.
 * If the number of enabled events is the same, then the set
 * of enabled events should be the same, because these are both
 * inherited contexts, therefore we can't access individual events
1864
 * in them directly with an fd; we can only enable/disable all
1865
 * events via prctl, or enable/disable all events in a family
1866 1867
 * via ioctl, which will have the same effect on both contexts.
 */
1868 1869
static int context_equiv(struct perf_event_context *ctx1,
			 struct perf_event_context *ctx2)
1870 1871
{
	return ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx
1872
		&& ctx1->parent_gen == ctx2->parent_gen
1873
		&& !ctx1->pin_count && !ctx2->pin_count;
1874 1875
}

1876 1877
static void __perf_event_sync_stat(struct perf_event *event,
				     struct perf_event *next_event)
1878 1879 1880
{
	u64 value;

1881
	if (!event->attr.inherit_stat)
1882 1883 1884
		return;

	/*
1885
	 * Update the event value, we cannot use perf_event_read()
1886 1887
	 * because we're in the middle of a context switch and have IRQs
	 * disabled, which upsets smp_call_function_single(), however
1888
	 * we know the event must be on the current CPU, therefore we
1889 1890
	 * don't need to use it.
	 */
1891 1892
	switch (event->state) {
	case PERF_EVENT_STATE_ACTIVE:
1893 1894
		event->pmu->read(event);
		/* fall-through */
1895

1896 1897
	case PERF_EVENT_STATE_INACTIVE:
		update_event_times(event);
1898 1899 1900 1901 1902 1903 1904
		break;

	default:
		break;
	}

	/*
1905
	 * In order to keep per-task stats reliable we need to flip the event
1906 1907
	 * values when we flip the contexts.
	 */
1908 1909 1910
	value = local64_read(&next_event->count);
	value = local64_xchg(&event->count, value);
	local64_set(&next_event->count, value);
1911

1912 1913
	swap(event->total_time_enabled, next_event->total_time_enabled);
	swap(event->total_time_running, next_event->total_time_running);
1914

1915
	/*
1916
	 * Since we swizzled the values, update the user visible data too.
1917
	 */
1918 1919
	perf_event_update_userpage(event);
	perf_event_update_userpage(next_event);
1920 1921 1922 1923 1924
}

#define list_next_entry(pos, member) \
	list_entry(pos->member.next, typeof(*pos), member)

1925 1926
static void perf_event_sync_stat(struct perf_event_context *ctx,
				   struct perf_event_context *next_ctx)
1927
{
1928
	struct perf_event *event, *next_event;
1929 1930 1931 1932

	if (!ctx->nr_stat)
		return;

1933 1934
	update_context_time(ctx);

1935 1936
	event = list_first_entry(&ctx->event_list,
				   struct perf_event, event_entry);
1937

1938 1939
	next_event = list_first_entry(&next_ctx->event_list,
					struct perf_event, event_entry);
1940

1941 1942
	while (&event->event_entry != &ctx->event_list &&
	       &next_event->event_entry != &next_ctx->event_list) {
1943

1944
		__perf_event_sync_stat(event, next_event);
1945

1946 1947
		event = list_next_entry(event, event_entry);
		next_event = list_next_entry(next_event, event_entry);
1948 1949 1950
	}
}

1951 1952
static void perf_event_context_sched_out(struct task_struct *task, int ctxn,
					 struct task_struct *next)
T
Thomas Gleixner 已提交
1953
{
P
Peter Zijlstra 已提交
1954
	struct perf_event_context *ctx = task->perf_event_ctxp[ctxn];
1955 1956
	struct perf_event_context *next_ctx;
	struct perf_event_context *parent;
P
Peter Zijlstra 已提交
1957
	struct perf_cpu_context *cpuctx;
1958
	int do_switch = 1;
T
Thomas Gleixner 已提交
1959

P
Peter Zijlstra 已提交
1960 1961
	if (likely(!ctx))
		return;
1962

P
Peter Zijlstra 已提交
1963 1964
	cpuctx = __get_cpu_context(ctx);
	if (!cpuctx->task_ctx)
T
Thomas Gleixner 已提交
1965 1966
		return;

1967 1968
	rcu_read_lock();
	parent = rcu_dereference(ctx->parent_ctx);
P
Peter Zijlstra 已提交
1969
	next_ctx = next->perf_event_ctxp[ctxn];
1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980
	if (parent && next_ctx &&
	    rcu_dereference(next_ctx->parent_ctx) == parent) {
		/*
		 * Looks like the two contexts are clones, so we might be
		 * able to optimize the context switch.  We lock both
		 * contexts and check that they are clones under the
		 * lock (including re-checking that neither has been
		 * uncloned in the meantime).  It doesn't matter which
		 * order we take the locks because no other cpu could
		 * be trying to lock both of these tasks.
		 */
1981 1982
		raw_spin_lock(&ctx->lock);
		raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
1983
		if (context_equiv(ctx, next_ctx)) {
1984 1985
			/*
			 * XXX do we need a memory barrier of sorts
1986
			 * wrt to rcu_dereference() of perf_event_ctxp
1987
			 */
P
Peter Zijlstra 已提交
1988 1989
			task->perf_event_ctxp[ctxn] = next_ctx;
			next->perf_event_ctxp[ctxn] = ctx;
1990 1991 1992
			ctx->task = next;
			next_ctx->task = task;
			do_switch = 0;
1993

1994
			perf_event_sync_stat(ctx, next_ctx);
1995
		}
1996 1997
		raw_spin_unlock(&next_ctx->lock);
		raw_spin_unlock(&ctx->lock);
1998
	}
1999
	rcu_read_unlock();
2000

2001
	if (do_switch) {
2002
		raw_spin_lock(&ctx->lock);
2003
		ctx_sched_out(ctx, cpuctx, EVENT_ALL);
2004
		cpuctx->task_ctx = NULL;
2005
		raw_spin_unlock(&ctx->lock);
2006
	}
T
Thomas Gleixner 已提交
2007 2008
}

P
Peter Zijlstra 已提交
2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022
#define for_each_task_context_nr(ctxn)					\
	for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++)

/*
 * Called from scheduler to remove the events of the current task,
 * with interrupts disabled.
 *
 * We stop each event and update the event value in event->count.
 *
 * This does not protect us against NMI, but disable()
 * sets the disabled bit in the control field of event _before_
 * accessing the event control register. If a NMI hits, then it will
 * not restart the event.
 */
2023 2024
void __perf_event_task_sched_out(struct task_struct *task,
				 struct task_struct *next)
P
Peter Zijlstra 已提交
2025 2026 2027 2028 2029
{
	int ctxn;

	for_each_task_context_nr(ctxn)
		perf_event_context_sched_out(task, ctxn, next);
S
Stephane Eranian 已提交
2030 2031 2032 2033 2034 2035 2036

	/*
	 * if cgroup events exist on this CPU, then we need
	 * to check if we have to switch out PMU state.
	 * cgroup event are system-wide mode only
	 */
	if (atomic_read(&__get_cpu_var(perf_cgroup_events)))
2037
		perf_cgroup_sched_out(task, next);
P
Peter Zijlstra 已提交
2038 2039
}

2040
static void task_ctx_sched_out(struct perf_event_context *ctx)
2041
{
P
Peter Zijlstra 已提交
2042
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2043

2044 2045
	if (!cpuctx->task_ctx)
		return;
2046 2047 2048 2049

	if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
		return;

2050
	ctx_sched_out(ctx, cpuctx, EVENT_ALL);
2051 2052 2053
	cpuctx->task_ctx = NULL;
}

2054 2055 2056 2057 2058 2059 2060
/*
 * Called with IRQs disabled
 */
static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
			      enum event_type_t event_type)
{
	ctx_sched_out(&cpuctx->ctx, cpuctx, event_type);
2061 2062
}

2063
static void
2064
ctx_pinned_sched_in(struct perf_event_context *ctx,
2065
		    struct perf_cpu_context *cpuctx)
T
Thomas Gleixner 已提交
2066
{
2067
	struct perf_event *event;
T
Thomas Gleixner 已提交
2068

2069 2070
	list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
		if (event->state <= PERF_EVENT_STATE_OFF)
2071
			continue;
2072
		if (!event_filter_match(event))
2073 2074
			continue;

S
Stephane Eranian 已提交
2075 2076 2077 2078
		/* may need to reset tstamp_enabled */
		if (is_cgroup_event(event))
			perf_cgroup_mark_enabled(event, ctx);

2079
		if (group_can_go_on(event, cpuctx, 1))
2080
			group_sched_in(event, cpuctx, ctx);
2081 2082 2083 2084 2085

		/*
		 * If this pinned group hasn't been scheduled,
		 * put it in error state.
		 */
2086 2087 2088
		if (event->state == PERF_EVENT_STATE_INACTIVE) {
			update_group_times(event);
			event->state = PERF_EVENT_STATE_ERROR;
2089
		}
2090
	}
2091 2092 2093 2094
}

static void
ctx_flexible_sched_in(struct perf_event_context *ctx,
2095
		      struct perf_cpu_context *cpuctx)
2096 2097 2098
{
	struct perf_event *event;
	int can_add_hw = 1;
2099

2100 2101 2102
	list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
		/* Ignore events in OFF or ERROR state */
		if (event->state <= PERF_EVENT_STATE_OFF)
2103
			continue;
2104 2105
		/*
		 * Listen to the 'cpu' scheduling filter constraint
2106
		 * of events:
2107
		 */
2108
		if (!event_filter_match(event))
T
Thomas Gleixner 已提交
2109 2110
			continue;

S
Stephane Eranian 已提交
2111 2112 2113 2114
		/* may need to reset tstamp_enabled */
		if (is_cgroup_event(event))
			perf_cgroup_mark_enabled(event, ctx);

P
Peter Zijlstra 已提交
2115
		if (group_can_go_on(event, cpuctx, can_add_hw)) {
2116
			if (group_sched_in(event, cpuctx, ctx))
2117
				can_add_hw = 0;
P
Peter Zijlstra 已提交
2118
		}
T
Thomas Gleixner 已提交
2119
	}
2120 2121 2122 2123 2124
}

static void
ctx_sched_in(struct perf_event_context *ctx,
	     struct perf_cpu_context *cpuctx,
S
Stephane Eranian 已提交
2125 2126
	     enum event_type_t event_type,
	     struct task_struct *task)
2127
{
S
Stephane Eranian 已提交
2128
	u64 now;
2129
	int is_active = ctx->is_active;
S
Stephane Eranian 已提交
2130

2131
	ctx->is_active |= event_type;
2132
	if (likely(!ctx->nr_events))
2133
		return;
2134

S
Stephane Eranian 已提交
2135 2136
	now = perf_clock();
	ctx->timestamp = now;
2137
	perf_cgroup_set_timestamp(task, ctx);
2138 2139 2140 2141
	/*
	 * First go through the list and put on any pinned groups
	 * in order to give them the best chance of going on.
	 */
2142
	if (!(is_active & EVENT_PINNED) && (event_type & EVENT_PINNED))
2143
		ctx_pinned_sched_in(ctx, cpuctx);
2144 2145

	/* Then walk through the lower prio flexible groups */
2146
	if (!(is_active & EVENT_FLEXIBLE) && (event_type & EVENT_FLEXIBLE))
2147
		ctx_flexible_sched_in(ctx, cpuctx);
2148 2149
}

2150
static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
S
Stephane Eranian 已提交
2151 2152
			     enum event_type_t event_type,
			     struct task_struct *task)
2153 2154 2155
{
	struct perf_event_context *ctx = &cpuctx->ctx;

S
Stephane Eranian 已提交
2156
	ctx_sched_in(ctx, cpuctx, event_type, task);
2157 2158
}

S
Stephane Eranian 已提交
2159 2160
static void perf_event_context_sched_in(struct perf_event_context *ctx,
					struct task_struct *task)
2161
{
P
Peter Zijlstra 已提交
2162
	struct perf_cpu_context *cpuctx;
2163

P
Peter Zijlstra 已提交
2164
	cpuctx = __get_cpu_context(ctx);
2165 2166 2167
	if (cpuctx->task_ctx == ctx)
		return;

2168
	perf_ctx_lock(cpuctx, ctx);
P
Peter Zijlstra 已提交
2169
	perf_pmu_disable(ctx->pmu);
2170 2171 2172 2173 2174 2175 2176
	/*
	 * We want to keep the following priority order:
	 * cpu pinned (that don't need to move), task pinned,
	 * cpu flexible, task flexible.
	 */
	cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);

2177
	perf_event_sched_in(cpuctx, ctx, task);
2178

2179 2180
	if (ctx->nr_events)
		cpuctx->task_ctx = ctx;
2181

2182 2183 2184
	perf_pmu_enable(ctx->pmu);
	perf_ctx_unlock(cpuctx, ctx);

2185 2186 2187 2188
	/*
	 * Since these rotations are per-cpu, we need to ensure the
	 * cpu-context we got scheduled on is actually rotating.
	 */
P
Peter Zijlstra 已提交
2189
	perf_pmu_rotate_start(ctx->pmu);
2190 2191
}

P
Peter Zijlstra 已提交
2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202
/*
 * Called from scheduler to add the events of the current task
 * with interrupts disabled.
 *
 * We restore the event value and then enable it.
 *
 * This does not protect us against NMI, but enable()
 * sets the enabled bit in the control field of event _before_
 * accessing the event control register. If a NMI hits, then it will
 * keep the event running.
 */
2203 2204
void __perf_event_task_sched_in(struct task_struct *prev,
				struct task_struct *task)
P
Peter Zijlstra 已提交
2205 2206 2207 2208 2209 2210 2211 2212 2213
{
	struct perf_event_context *ctx;
	int ctxn;

	for_each_task_context_nr(ctxn) {
		ctx = task->perf_event_ctxp[ctxn];
		if (likely(!ctx))
			continue;

S
Stephane Eranian 已提交
2214
		perf_event_context_sched_in(ctx, task);
P
Peter Zijlstra 已提交
2215
	}
S
Stephane Eranian 已提交
2216 2217 2218 2219 2220 2221
	/*
	 * if cgroup events exist on this CPU, then we need
	 * to check if we have to switch in PMU state.
	 * cgroup event are system-wide mode only
	 */
	if (atomic_read(&__get_cpu_var(perf_cgroup_events)))
2222
		perf_cgroup_sched_in(prev, task);
2223 2224
}

2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251
static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
{
	u64 frequency = event->attr.sample_freq;
	u64 sec = NSEC_PER_SEC;
	u64 divisor, dividend;

	int count_fls, nsec_fls, frequency_fls, sec_fls;

	count_fls = fls64(count);
	nsec_fls = fls64(nsec);
	frequency_fls = fls64(frequency);
	sec_fls = 30;

	/*
	 * We got @count in @nsec, with a target of sample_freq HZ
	 * the target period becomes:
	 *
	 *             @count * 10^9
	 * period = -------------------
	 *          @nsec * sample_freq
	 *
	 */

	/*
	 * Reduce accuracy by one bit such that @a and @b converge
	 * to a similar magnitude.
	 */
2252
#define REDUCE_FLS(a, b)		\
2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291
do {					\
	if (a##_fls > b##_fls) {	\
		a >>= 1;		\
		a##_fls--;		\
	} else {			\
		b >>= 1;		\
		b##_fls--;		\
	}				\
} while (0)

	/*
	 * Reduce accuracy until either term fits in a u64, then proceed with
	 * the other, so that finally we can do a u64/u64 division.
	 */
	while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
		REDUCE_FLS(nsec, frequency);
		REDUCE_FLS(sec, count);
	}

	if (count_fls + sec_fls > 64) {
		divisor = nsec * frequency;

		while (count_fls + sec_fls > 64) {
			REDUCE_FLS(count, sec);
			divisor >>= 1;
		}

		dividend = count * sec;
	} else {
		dividend = count * sec;

		while (nsec_fls + frequency_fls > 64) {
			REDUCE_FLS(nsec, frequency);
			dividend >>= 1;
		}

		divisor = nsec * frequency;
	}

2292 2293 2294
	if (!divisor)
		return dividend;

2295 2296 2297 2298
	return div64_u64(dividend, divisor);
}

static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count)
2299
{
2300
	struct hw_perf_event *hwc = &event->hw;
2301
	s64 period, sample_period;
2302 2303
	s64 delta;

2304
	period = perf_calculate_period(event, nsec, count);
2305 2306 2307 2308 2309 2310 2311 2312 2313 2314

	delta = (s64)(period - hwc->sample_period);
	delta = (delta + 7) / 8; /* low pass filter */

	sample_period = hwc->sample_period + delta;

	if (!sample_period)
		sample_period = 1;

	hwc->sample_period = sample_period;
2315

2316
	if (local64_read(&hwc->period_left) > 8*sample_period) {
P
Peter Zijlstra 已提交
2317
		event->pmu->stop(event, PERF_EF_UPDATE);
2318
		local64_set(&hwc->period_left, 0);
P
Peter Zijlstra 已提交
2319
		event->pmu->start(event, PERF_EF_RELOAD);
2320
	}
2321 2322
}

2323
static void perf_ctx_adjust_freq(struct perf_event_context *ctx, u64 period)
2324
{
2325 2326
	struct perf_event *event;
	struct hw_perf_event *hwc;
2327 2328
	u64 interrupts, now;
	s64 delta;
2329

2330
	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
2331
		if (event->state != PERF_EVENT_STATE_ACTIVE)
2332 2333
			continue;

2334
		if (!event_filter_match(event))
2335 2336
			continue;

2337
		hwc = &event->hw;
2338 2339 2340

		interrupts = hwc->interrupts;
		hwc->interrupts = 0;
2341

2342
		/*
2343
		 * unthrottle events on the tick
2344
		 */
2345
		if (interrupts == MAX_INTERRUPTS) {
2346
			perf_log_throttle(event, 1);
P
Peter Zijlstra 已提交
2347
			event->pmu->start(event, 0);
2348 2349
		}

2350
		if (!event->attr.freq || !event->attr.sample_freq)
2351 2352
			continue;

2353
		event->pmu->read(event);
2354
		now = local64_read(&event->count);
2355 2356
		delta = now - hwc->freq_count_stamp;
		hwc->freq_count_stamp = now;
2357

2358
		if (delta > 0)
2359
			perf_adjust_period(event, period, delta);
2360 2361 2362
	}
}

2363
/*
2364
 * Round-robin a context's events:
2365
 */
2366
static void rotate_ctx(struct perf_event_context *ctx)
T
Thomas Gleixner 已提交
2367
{
2368 2369 2370 2371 2372 2373
	/*
	 * Rotate the first entry last of non-pinned groups. Rotation might be
	 * disabled by the inheritance code.
	 */
	if (!ctx->rotate_disable)
		list_rotate_left(&ctx->flexible_groups);
2374 2375
}

2376
/*
2377 2378 2379
 * perf_pmu_rotate_start() and perf_rotate_context() are fully serialized
 * because they're strictly cpu affine and rotate_start is called with IRQs
 * disabled, while rotate_context is called from IRQ context.
2380
 */
2381
static void perf_rotate_context(struct perf_cpu_context *cpuctx)
2382
{
2383
	u64 interval = (u64)cpuctx->jiffies_interval * TICK_NSEC;
P
Peter Zijlstra 已提交
2384
	struct perf_event_context *ctx = NULL;
2385
	int rotate = 0, remove = 1;
2386

2387
	if (cpuctx->ctx.nr_events) {
2388
		remove = 0;
2389 2390 2391
		if (cpuctx->ctx.nr_events != cpuctx->ctx.nr_active)
			rotate = 1;
	}
2392

P
Peter Zijlstra 已提交
2393
	ctx = cpuctx->task_ctx;
2394
	if (ctx && ctx->nr_events) {
2395
		remove = 0;
2396 2397 2398
		if (ctx->nr_events != ctx->nr_active)
			rotate = 1;
	}
2399

2400
	perf_ctx_lock(cpuctx, cpuctx->task_ctx);
P
Peter Zijlstra 已提交
2401
	perf_pmu_disable(cpuctx->ctx.pmu);
2402
	perf_ctx_adjust_freq(&cpuctx->ctx, interval);
2403
	if (ctx)
2404
		perf_ctx_adjust_freq(ctx, interval);
2405

2406
	if (!rotate)
2407
		goto done;
2408

2409
	cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
2410
	if (ctx)
2411
		ctx_sched_out(ctx, cpuctx, EVENT_FLEXIBLE);
T
Thomas Gleixner 已提交
2412

2413
	rotate_ctx(&cpuctx->ctx);
2414 2415
	if (ctx)
		rotate_ctx(ctx);
2416

2417
	perf_event_sched_in(cpuctx, ctx, current);
2418 2419

done:
2420 2421 2422
	if (remove)
		list_del_init(&cpuctx->rotation_list);

P
Peter Zijlstra 已提交
2423
	perf_pmu_enable(cpuctx->ctx.pmu);
2424
	perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
2425 2426 2427 2428 2429 2430
}

void perf_event_task_tick(void)
{
	struct list_head *head = &__get_cpu_var(rotation_list);
	struct perf_cpu_context *cpuctx, *tmp;
2431

2432 2433 2434 2435 2436 2437 2438
	WARN_ON(!irqs_disabled());

	list_for_each_entry_safe(cpuctx, tmp, head, rotation_list) {
		if (cpuctx->jiffies_interval == 1 ||
				!(jiffies % cpuctx->jiffies_interval))
			perf_rotate_context(cpuctx);
	}
T
Thomas Gleixner 已提交
2439 2440
}

2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455
static int event_enable_on_exec(struct perf_event *event,
				struct perf_event_context *ctx)
{
	if (!event->attr.enable_on_exec)
		return 0;

	event->attr.enable_on_exec = 0;
	if (event->state >= PERF_EVENT_STATE_INACTIVE)
		return 0;

	__perf_event_mark_enabled(event, ctx);

	return 1;
}

2456
/*
2457
 * Enable all of a task's events that have been marked enable-on-exec.
2458 2459
 * This expects task == current.
 */
P
Peter Zijlstra 已提交
2460
static void perf_event_enable_on_exec(struct perf_event_context *ctx)
2461
{
2462
	struct perf_event *event;
2463 2464
	unsigned long flags;
	int enabled = 0;
2465
	int ret;
2466 2467

	local_irq_save(flags);
2468
	if (!ctx || !ctx->nr_events)
2469 2470
		goto out;

2471 2472 2473 2474 2475 2476 2477
	/*
	 * We must ctxsw out cgroup events to avoid conflict
	 * when invoking perf_task_event_sched_in() later on
	 * in this function. Otherwise we end up trying to
	 * ctxswin cgroup events which are already scheduled
	 * in.
	 */
2478
	perf_cgroup_sched_out(current, NULL);
2479

2480
	raw_spin_lock(&ctx->lock);
2481
	task_ctx_sched_out(ctx);
2482

2483 2484 2485 2486 2487 2488 2489 2490 2491 2492
	list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
		ret = event_enable_on_exec(event, ctx);
		if (ret)
			enabled = 1;
	}

	list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
		ret = event_enable_on_exec(event, ctx);
		if (ret)
			enabled = 1;
2493 2494 2495
	}

	/*
2496
	 * Unclone this context if we enabled any event.
2497
	 */
2498 2499
	if (enabled)
		unclone_ctx(ctx);
2500

2501
	raw_spin_unlock(&ctx->lock);
2502

2503 2504 2505
	/*
	 * Also calls ctxswin for cgroup events, if any:
	 */
S
Stephane Eranian 已提交
2506
	perf_event_context_sched_in(ctx, ctx->task);
P
Peter Zijlstra 已提交
2507
out:
2508 2509 2510
	local_irq_restore(flags);
}

T
Thomas Gleixner 已提交
2511
/*
2512
 * Cross CPU call to read the hardware event
T
Thomas Gleixner 已提交
2513
 */
2514
static void __perf_event_read(void *info)
T
Thomas Gleixner 已提交
2515
{
2516 2517
	struct perf_event *event = info;
	struct perf_event_context *ctx = event->ctx;
P
Peter Zijlstra 已提交
2518
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
I
Ingo Molnar 已提交
2519

2520 2521 2522 2523
	/*
	 * If this is a task context, we need to check whether it is
	 * the current task context of this cpu.  If not it has been
	 * scheduled out before the smp call arrived.  In that case
2524 2525
	 * event->count would have been updated to a recent sample
	 * when the event was scheduled out.
2526 2527 2528 2529
	 */
	if (ctx->task && cpuctx->task_ctx != ctx)
		return;

2530
	raw_spin_lock(&ctx->lock);
S
Stephane Eranian 已提交
2531
	if (ctx->is_active) {
2532
		update_context_time(ctx);
S
Stephane Eranian 已提交
2533 2534
		update_cgrp_time_from_event(event);
	}
2535
	update_event_times(event);
2536 2537
	if (event->state == PERF_EVENT_STATE_ACTIVE)
		event->pmu->read(event);
2538
	raw_spin_unlock(&ctx->lock);
T
Thomas Gleixner 已提交
2539 2540
}

P
Peter Zijlstra 已提交
2541 2542
static inline u64 perf_event_count(struct perf_event *event)
{
2543
	return local64_read(&event->count) + atomic64_read(&event->child_count);
P
Peter Zijlstra 已提交
2544 2545
}

2546
static u64 perf_event_read(struct perf_event *event)
T
Thomas Gleixner 已提交
2547 2548
{
	/*
2549 2550
	 * If event is enabled and currently active on a CPU, update the
	 * value in the event structure:
T
Thomas Gleixner 已提交
2551
	 */
2552 2553 2554 2555
	if (event->state == PERF_EVENT_STATE_ACTIVE) {
		smp_call_function_single(event->oncpu,
					 __perf_event_read, event, 1);
	} else if (event->state == PERF_EVENT_STATE_INACTIVE) {
P
Peter Zijlstra 已提交
2556 2557 2558
		struct perf_event_context *ctx = event->ctx;
		unsigned long flags;

2559
		raw_spin_lock_irqsave(&ctx->lock, flags);
2560 2561 2562 2563 2564
		/*
		 * may read while context is not active
		 * (e.g., thread is blocked), in that case
		 * we cannot update context time
		 */
S
Stephane Eranian 已提交
2565
		if (ctx->is_active) {
2566
			update_context_time(ctx);
S
Stephane Eranian 已提交
2567 2568
			update_cgrp_time_from_event(event);
		}
2569
		update_event_times(event);
2570
		raw_spin_unlock_irqrestore(&ctx->lock, flags);
T
Thomas Gleixner 已提交
2571 2572
	}

P
Peter Zijlstra 已提交
2573
	return perf_event_count(event);
T
Thomas Gleixner 已提交
2574 2575
}

2576
/*
2577
 * Callchain support
2578
 */
2579 2580 2581 2582 2583 2584

struct callchain_cpus_entries {
	struct rcu_head			rcu_head;
	struct perf_callchain_entry	*cpu_entries[0];
};

2585
static DEFINE_PER_CPU(int, callchain_recursion[PERF_NR_CONTEXTS]);
2586 2587 2588 2589 2590 2591 2592
static atomic_t nr_callchain_events;
static DEFINE_MUTEX(callchain_mutex);
struct callchain_cpus_entries *callchain_cpus_entries;


__weak void perf_callchain_kernel(struct perf_callchain_entry *entry,
				  struct pt_regs *regs)
2593 2594 2595
{
}

2596 2597
__weak void perf_callchain_user(struct perf_callchain_entry *entry,
				struct pt_regs *regs)
T
Thomas Gleixner 已提交
2598
{
2599
}
T
Thomas Gleixner 已提交
2600

2601 2602 2603 2604
static void release_callchain_buffers_rcu(struct rcu_head *head)
{
	struct callchain_cpus_entries *entries;
	int cpu;
T
Thomas Gleixner 已提交
2605

2606
	entries = container_of(head, struct callchain_cpus_entries, rcu_head);
T
Thomas Gleixner 已提交
2607

2608 2609
	for_each_possible_cpu(cpu)
		kfree(entries->cpu_entries[cpu]);
T
Thomas Gleixner 已提交
2610

2611 2612
	kfree(entries);
}
T
Thomas Gleixner 已提交
2613

2614 2615 2616
static void release_callchain_buffers(void)
{
	struct callchain_cpus_entries *entries;
T
Thomas Gleixner 已提交
2617

2618 2619 2620 2621
	entries = callchain_cpus_entries;
	rcu_assign_pointer(callchain_cpus_entries, NULL);
	call_rcu(&entries->rcu_head, release_callchain_buffers_rcu);
}
T
Thomas Gleixner 已提交
2622

2623 2624 2625 2626 2627
static int alloc_callchain_buffers(void)
{
	int cpu;
	int size;
	struct callchain_cpus_entries *entries;
T
Thomas Gleixner 已提交
2628

2629
	/*
2630 2631 2632
	 * We can't use the percpu allocation API for data that can be
	 * accessed from NMI. Use a temporary manual per cpu allocation
	 * until that gets sorted out.
2633
	 */
2634
	size = offsetof(struct callchain_cpus_entries, cpu_entries[nr_cpu_ids]);
2635

2636 2637 2638
	entries = kzalloc(size, GFP_KERNEL);
	if (!entries)
		return -ENOMEM;
2639

2640
	size = sizeof(struct perf_callchain_entry) * PERF_NR_CONTEXTS;
T
Thomas Gleixner 已提交
2641

2642 2643 2644 2645 2646
	for_each_possible_cpu(cpu) {
		entries->cpu_entries[cpu] = kmalloc_node(size, GFP_KERNEL,
							 cpu_to_node(cpu));
		if (!entries->cpu_entries[cpu])
			goto fail;
2647 2648
	}

2649
	rcu_assign_pointer(callchain_cpus_entries, entries);
T
Thomas Gleixner 已提交
2650

2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784
	return 0;

fail:
	for_each_possible_cpu(cpu)
		kfree(entries->cpu_entries[cpu]);
	kfree(entries);

	return -ENOMEM;
}

static int get_callchain_buffers(void)
{
	int err = 0;
	int count;

	mutex_lock(&callchain_mutex);

	count = atomic_inc_return(&nr_callchain_events);
	if (WARN_ON_ONCE(count < 1)) {
		err = -EINVAL;
		goto exit;
	}

	if (count > 1) {
		/* If the allocation failed, give up */
		if (!callchain_cpus_entries)
			err = -ENOMEM;
		goto exit;
	}

	err = alloc_callchain_buffers();
	if (err)
		release_callchain_buffers();
exit:
	mutex_unlock(&callchain_mutex);

	return err;
}

static void put_callchain_buffers(void)
{
	if (atomic_dec_and_mutex_lock(&nr_callchain_events, &callchain_mutex)) {
		release_callchain_buffers();
		mutex_unlock(&callchain_mutex);
	}
}

static int get_recursion_context(int *recursion)
{
	int rctx;

	if (in_nmi())
		rctx = 3;
	else if (in_irq())
		rctx = 2;
	else if (in_softirq())
		rctx = 1;
	else
		rctx = 0;

	if (recursion[rctx])
		return -1;

	recursion[rctx]++;
	barrier();

	return rctx;
}

static inline void put_recursion_context(int *recursion, int rctx)
{
	barrier();
	recursion[rctx]--;
}

static struct perf_callchain_entry *get_callchain_entry(int *rctx)
{
	int cpu;
	struct callchain_cpus_entries *entries;

	*rctx = get_recursion_context(__get_cpu_var(callchain_recursion));
	if (*rctx == -1)
		return NULL;

	entries = rcu_dereference(callchain_cpus_entries);
	if (!entries)
		return NULL;

	cpu = smp_processor_id();

	return &entries->cpu_entries[cpu][*rctx];
}

static void
put_callchain_entry(int rctx)
{
	put_recursion_context(__get_cpu_var(callchain_recursion), rctx);
}

static struct perf_callchain_entry *perf_callchain(struct pt_regs *regs)
{
	int rctx;
	struct perf_callchain_entry *entry;


	entry = get_callchain_entry(&rctx);
	if (rctx == -1)
		return NULL;

	if (!entry)
		goto exit_put;

	entry->nr = 0;

	if (!user_mode(regs)) {
		perf_callchain_store(entry, PERF_CONTEXT_KERNEL);
		perf_callchain_kernel(entry, regs);
		if (current->mm)
			regs = task_pt_regs(current);
		else
			regs = NULL;
	}

	if (regs) {
		perf_callchain_store(entry, PERF_CONTEXT_USER);
		perf_callchain_user(entry, regs);
	}

exit_put:
	put_callchain_entry(rctx);

	return entry;
}

2785
/*
2786
 * Initialize the perf_event context in a task_struct:
2787
 */
2788
static void __perf_event_init_context(struct perf_event_context *ctx)
2789
{
2790
	raw_spin_lock_init(&ctx->lock);
2791
	mutex_init(&ctx->mutex);
2792 2793
	INIT_LIST_HEAD(&ctx->pinned_groups);
	INIT_LIST_HEAD(&ctx->flexible_groups);
2794 2795
	INIT_LIST_HEAD(&ctx->event_list);
	atomic_set(&ctx->refcount, 1);
2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810
}

static struct perf_event_context *
alloc_perf_context(struct pmu *pmu, struct task_struct *task)
{
	struct perf_event_context *ctx;

	ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
	if (!ctx)
		return NULL;

	__perf_event_init_context(ctx);
	if (task) {
		ctx->task = task;
		get_task_struct(task);
T
Thomas Gleixner 已提交
2811
	}
2812 2813 2814
	ctx->pmu = pmu;

	return ctx;
2815 2816
}

2817 2818 2819 2820 2821
static struct task_struct *
find_lively_task_by_vpid(pid_t vpid)
{
	struct task_struct *task;
	int err;
T
Thomas Gleixner 已提交
2822 2823

	rcu_read_lock();
2824
	if (!vpid)
T
Thomas Gleixner 已提交
2825 2826
		task = current;
	else
2827
		task = find_task_by_vpid(vpid);
T
Thomas Gleixner 已提交
2828 2829 2830 2831 2832 2833 2834 2835
	if (task)
		get_task_struct(task);
	rcu_read_unlock();

	if (!task)
		return ERR_PTR(-ESRCH);

	/* Reuse ptrace permission checks for now. */
2836 2837 2838 2839
	err = -EACCES;
	if (!ptrace_may_access(task, PTRACE_MODE_READ))
		goto errout;

2840 2841 2842 2843 2844 2845 2846
	return task;
errout:
	put_task_struct(task);
	return ERR_PTR(err);

}

2847 2848 2849
/*
 * Returns a matching context with refcount and pincount.
 */
P
Peter Zijlstra 已提交
2850
static struct perf_event_context *
M
Matt Helsley 已提交
2851
find_get_context(struct pmu *pmu, struct task_struct *task, int cpu)
T
Thomas Gleixner 已提交
2852
{
2853
	struct perf_event_context *ctx;
2854
	struct perf_cpu_context *cpuctx;
2855
	unsigned long flags;
P
Peter Zijlstra 已提交
2856
	int ctxn, err;
T
Thomas Gleixner 已提交
2857

2858
	if (!task) {
2859
		/* Must be root to operate on a CPU event: */
2860
		if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
T
Thomas Gleixner 已提交
2861 2862 2863
			return ERR_PTR(-EACCES);

		/*
2864
		 * We could be clever and allow to attach a event to an
T
Thomas Gleixner 已提交
2865 2866 2867
		 * offline CPU and activate it when the CPU comes up, but
		 * that's for later.
		 */
2868
		if (!cpu_online(cpu))
T
Thomas Gleixner 已提交
2869 2870
			return ERR_PTR(-ENODEV);

P
Peter Zijlstra 已提交
2871
		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
T
Thomas Gleixner 已提交
2872
		ctx = &cpuctx->ctx;
2873
		get_ctx(ctx);
2874
		++ctx->pin_count;
T
Thomas Gleixner 已提交
2875 2876 2877 2878

		return ctx;
	}

P
Peter Zijlstra 已提交
2879 2880 2881 2882 2883
	err = -EINVAL;
	ctxn = pmu->task_ctx_nr;
	if (ctxn < 0)
		goto errout;

P
Peter Zijlstra 已提交
2884
retry:
P
Peter Zijlstra 已提交
2885
	ctx = perf_lock_task_context(task, ctxn, &flags);
2886
	if (ctx) {
2887
		unclone_ctx(ctx);
2888
		++ctx->pin_count;
2889
		raw_spin_unlock_irqrestore(&ctx->lock, flags);
2890
	} else {
2891
		ctx = alloc_perf_context(pmu, task);
2892 2893 2894
		err = -ENOMEM;
		if (!ctx)
			goto errout;
2895

2896 2897 2898 2899 2900 2901 2902 2903 2904 2905
		err = 0;
		mutex_lock(&task->perf_event_mutex);
		/*
		 * If it has already passed perf_event_exit_task().
		 * we must see PF_EXITING, it takes this mutex too.
		 */
		if (task->flags & PF_EXITING)
			err = -ESRCH;
		else if (task->perf_event_ctxp[ctxn])
			err = -EAGAIN;
2906
		else {
2907
			get_ctx(ctx);
2908
			++ctx->pin_count;
2909
			rcu_assign_pointer(task->perf_event_ctxp[ctxn], ctx);
2910
		}
2911 2912 2913
		mutex_unlock(&task->perf_event_mutex);

		if (unlikely(err)) {
2914
			put_ctx(ctx);
2915 2916 2917 2918

			if (err == -EAGAIN)
				goto retry;
			goto errout;
2919 2920 2921
		}
	}

T
Thomas Gleixner 已提交
2922
	return ctx;
2923

P
Peter Zijlstra 已提交
2924
errout:
2925
	return ERR_PTR(err);
T
Thomas Gleixner 已提交
2926 2927
}

L
Li Zefan 已提交
2928 2929
static void perf_event_free_filter(struct perf_event *event);

2930
static void free_event_rcu(struct rcu_head *head)
P
Peter Zijlstra 已提交
2931
{
2932
	struct perf_event *event;
P
Peter Zijlstra 已提交
2933

2934 2935 2936
	event = container_of(head, struct perf_event, rcu_head);
	if (event->ns)
		put_pid_ns(event->ns);
L
Li Zefan 已提交
2937
	perf_event_free_filter(event);
2938
	kfree(event);
P
Peter Zijlstra 已提交
2939 2940
}

2941
static void ring_buffer_put(struct ring_buffer *rb);
2942

2943
static void free_event(struct perf_event *event)
2944
{
2945
	irq_work_sync(&event->pending);
2946

2947
	if (!event->parent) {
2948
		if (event->attach_state & PERF_ATTACH_TASK)
S
Stephane Eranian 已提交
2949
			jump_label_dec(&perf_sched_events);
2950
		if (event->attr.mmap || event->attr.mmap_data)
2951 2952 2953 2954 2955
			atomic_dec(&nr_mmap_events);
		if (event->attr.comm)
			atomic_dec(&nr_comm_events);
		if (event->attr.task)
			atomic_dec(&nr_task_events);
2956 2957
		if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
			put_callchain_buffers();
2958 2959 2960 2961
		if (is_cgroup_event(event)) {
			atomic_dec(&per_cpu(perf_cgroup_events, event->cpu));
			jump_label_dec(&perf_sched_events);
		}
2962
	}
2963

2964 2965 2966
	if (event->rb) {
		ring_buffer_put(event->rb);
		event->rb = NULL;
2967 2968
	}

S
Stephane Eranian 已提交
2969 2970 2971
	if (is_cgroup_event(event))
		perf_detach_cgroup(event);

2972 2973
	if (event->destroy)
		event->destroy(event);
2974

P
Peter Zijlstra 已提交
2975 2976 2977
	if (event->ctx)
		put_ctx(event->ctx);

2978
	call_rcu(&event->rcu_head, free_event_rcu);
2979 2980
}

2981
int perf_event_release_kernel(struct perf_event *event)
T
Thomas Gleixner 已提交
2982
{
2983
	struct perf_event_context *ctx = event->ctx;
T
Thomas Gleixner 已提交
2984

2985
	WARN_ON_ONCE(ctx->parent_ctx);
2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998
	/*
	 * There are two ways this annotation is useful:
	 *
	 *  1) there is a lock recursion from perf_event_exit_task
	 *     see the comment there.
	 *
	 *  2) there is a lock-inversion with mmap_sem through
	 *     perf_event_read_group(), which takes faults while
	 *     holding ctx->mutex, however this is called after
	 *     the last filedesc died, so there is no possibility
	 *     to trigger the AB-BA case.
	 */
	mutex_lock_nested(&ctx->mutex, SINGLE_DEPTH_NESTING);
2999
	raw_spin_lock_irq(&ctx->lock);
3000
	perf_group_detach(event);
3001
	raw_spin_unlock_irq(&ctx->lock);
3002
	perf_remove_from_context(event);
3003
	mutex_unlock(&ctx->mutex);
T
Thomas Gleixner 已提交
3004

3005
	free_event(event);
T
Thomas Gleixner 已提交
3006 3007 3008

	return 0;
}
3009
EXPORT_SYMBOL_GPL(perf_event_release_kernel);
T
Thomas Gleixner 已提交
3010

3011 3012 3013 3014
/*
 * Called when the last reference to the file is gone.
 */
static int perf_release(struct inode *inode, struct file *file)
3015
{
3016
	struct perf_event *event = file->private_data;
P
Peter Zijlstra 已提交
3017
	struct task_struct *owner;
3018

3019
	file->private_data = NULL;
3020

P
Peter Zijlstra 已提交
3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053
	rcu_read_lock();
	owner = ACCESS_ONCE(event->owner);
	/*
	 * Matches the smp_wmb() in perf_event_exit_task(). If we observe
	 * !owner it means the list deletion is complete and we can indeed
	 * free this event, otherwise we need to serialize on
	 * owner->perf_event_mutex.
	 */
	smp_read_barrier_depends();
	if (owner) {
		/*
		 * Since delayed_put_task_struct() also drops the last
		 * task reference we can safely take a new reference
		 * while holding the rcu_read_lock().
		 */
		get_task_struct(owner);
	}
	rcu_read_unlock();

	if (owner) {
		mutex_lock(&owner->perf_event_mutex);
		/*
		 * We have to re-check the event->owner field, if it is cleared
		 * we raced with perf_event_exit_task(), acquiring the mutex
		 * ensured they're done, and we can proceed with freeing the
		 * event.
		 */
		if (event->owner)
			list_del_init(&event->owner_entry);
		mutex_unlock(&owner->perf_event_mutex);
		put_task_struct(owner);
	}

3054
	return perf_event_release_kernel(event);
3055 3056
}

3057
u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
3058
{
3059
	struct perf_event *child;
3060 3061
	u64 total = 0;

3062 3063 3064
	*enabled = 0;
	*running = 0;

3065
	mutex_lock(&event->child_mutex);
3066
	total += perf_event_read(event);
3067 3068 3069 3070 3071 3072
	*enabled += event->total_time_enabled +
			atomic64_read(&event->child_total_time_enabled);
	*running += event->total_time_running +
			atomic64_read(&event->child_total_time_running);

	list_for_each_entry(child, &event->child_list, child_list) {
3073
		total += perf_event_read(child);
3074 3075 3076
		*enabled += child->total_time_enabled;
		*running += child->total_time_running;
	}
3077
	mutex_unlock(&event->child_mutex);
3078 3079 3080

	return total;
}
3081
EXPORT_SYMBOL_GPL(perf_event_read_value);
3082

3083
static int perf_event_read_group(struct perf_event *event,
3084 3085
				   u64 read_format, char __user *buf)
{
3086
	struct perf_event *leader = event->group_leader, *sub;
3087 3088
	int n = 0, size = 0, ret = -EFAULT;
	struct perf_event_context *ctx = leader->ctx;
3089
	u64 values[5];
3090
	u64 count, enabled, running;
3091

3092
	mutex_lock(&ctx->mutex);
3093
	count = perf_event_read_value(leader, &enabled, &running);
3094 3095

	values[n++] = 1 + leader->nr_siblings;
3096 3097 3098 3099
	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
		values[n++] = enabled;
	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
		values[n++] = running;
3100 3101 3102
	values[n++] = count;
	if (read_format & PERF_FORMAT_ID)
		values[n++] = primary_event_id(leader);
3103 3104 3105 3106

	size = n * sizeof(u64);

	if (copy_to_user(buf, values, size))
3107
		goto unlock;
3108

3109
	ret = size;
3110

3111
	list_for_each_entry(sub, &leader->sibling_list, group_entry) {
3112
		n = 0;
3113

3114
		values[n++] = perf_event_read_value(sub, &enabled, &running);
3115 3116 3117 3118 3119
		if (read_format & PERF_FORMAT_ID)
			values[n++] = primary_event_id(sub);

		size = n * sizeof(u64);

3120
		if (copy_to_user(buf + ret, values, size)) {
3121 3122 3123
			ret = -EFAULT;
			goto unlock;
		}
3124 3125

		ret += size;
3126
	}
3127 3128
unlock:
	mutex_unlock(&ctx->mutex);
3129

3130
	return ret;
3131 3132
}

3133
static int perf_event_read_one(struct perf_event *event,
3134 3135
				 u64 read_format, char __user *buf)
{
3136
	u64 enabled, running;
3137 3138 3139
	u64 values[4];
	int n = 0;

3140 3141 3142 3143 3144
	values[n++] = perf_event_read_value(event, &enabled, &running);
	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
		values[n++] = enabled;
	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
		values[n++] = running;
3145
	if (read_format & PERF_FORMAT_ID)
3146
		values[n++] = primary_event_id(event);
3147 3148 3149 3150 3151 3152 3153

	if (copy_to_user(buf, values, n * sizeof(u64)))
		return -EFAULT;

	return n * sizeof(u64);
}

T
Thomas Gleixner 已提交
3154
/*
3155
 * Read the performance event - simple non blocking version for now
T
Thomas Gleixner 已提交
3156 3157
 */
static ssize_t
3158
perf_read_hw(struct perf_event *event, char __user *buf, size_t count)
T
Thomas Gleixner 已提交
3159
{
3160
	u64 read_format = event->attr.read_format;
3161
	int ret;
T
Thomas Gleixner 已提交
3162

3163
	/*
3164
	 * Return end-of-file for a read on a event that is in
3165 3166 3167
	 * error state (i.e. because it was pinned but it couldn't be
	 * scheduled on to the CPU at some point).
	 */
3168
	if (event->state == PERF_EVENT_STATE_ERROR)
3169 3170
		return 0;

3171
	if (count < event->read_size)
3172 3173
		return -ENOSPC;

3174
	WARN_ON_ONCE(event->ctx->parent_ctx);
3175
	if (read_format & PERF_FORMAT_GROUP)
3176
		ret = perf_event_read_group(event, read_format, buf);
3177
	else
3178
		ret = perf_event_read_one(event, read_format, buf);
T
Thomas Gleixner 已提交
3179

3180
	return ret;
T
Thomas Gleixner 已提交
3181 3182 3183 3184 3185
}

static ssize_t
perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
{
3186
	struct perf_event *event = file->private_data;
T
Thomas Gleixner 已提交
3187

3188
	return perf_read_hw(event, buf, count);
T
Thomas Gleixner 已提交
3189 3190 3191 3192
}

static unsigned int perf_poll(struct file *file, poll_table *wait)
{
3193
	struct perf_event *event = file->private_data;
3194
	struct ring_buffer *rb;
3195
	unsigned int events = POLL_HUP;
P
Peter Zijlstra 已提交
3196

3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213
	/*
	 * Race between perf_event_set_output() and perf_poll(): perf_poll()
	 * grabs the rb reference but perf_event_set_output() overrides it.
	 * Here is the timeline for two threads T1, T2:
	 * t0: T1, rb = rcu_dereference(event->rb)
	 * t1: T2, old_rb = event->rb
	 * t2: T2, event->rb = new rb
	 * t3: T2, ring_buffer_detach(old_rb)
	 * t4: T1, ring_buffer_attach(rb1)
	 * t5: T1, poll_wait(event->waitq)
	 *
	 * To avoid this problem, we grab mmap_mutex in perf_poll()
	 * thereby ensuring that the assignment of the new ring buffer
	 * and the detachment of the old buffer appear atomic to perf_poll()
	 */
	mutex_lock(&event->mmap_mutex);

P
Peter Zijlstra 已提交
3214
	rcu_read_lock();
3215
	rb = rcu_dereference(event->rb);
3216 3217
	if (rb) {
		ring_buffer_attach(event, rb);
3218
		events = atomic_xchg(&rb->poll, 0);
3219
	}
P
Peter Zijlstra 已提交
3220
	rcu_read_unlock();
T
Thomas Gleixner 已提交
3221

3222 3223
	mutex_unlock(&event->mmap_mutex);

3224
	poll_wait(file, &event->waitq, wait);
T
Thomas Gleixner 已提交
3225 3226 3227 3228

	return events;
}

3229
static void perf_event_reset(struct perf_event *event)
3230
{
3231
	(void)perf_event_read(event);
3232
	local64_set(&event->count, 0);
3233
	perf_event_update_userpage(event);
P
Peter Zijlstra 已提交
3234 3235
}

3236
/*
3237 3238 3239 3240
 * Holding the top-level event's child_mutex means that any
 * descendant process that has inherited this event will block
 * in sync_child_event if it goes to exit, thus satisfying the
 * task existence requirements of perf_event_enable/disable.
3241
 */
3242 3243
static void perf_event_for_each_child(struct perf_event *event,
					void (*func)(struct perf_event *))
P
Peter Zijlstra 已提交
3244
{
3245
	struct perf_event *child;
P
Peter Zijlstra 已提交
3246

3247 3248 3249 3250
	WARN_ON_ONCE(event->ctx->parent_ctx);
	mutex_lock(&event->child_mutex);
	func(event);
	list_for_each_entry(child, &event->child_list, child_list)
P
Peter Zijlstra 已提交
3251
		func(child);
3252
	mutex_unlock(&event->child_mutex);
P
Peter Zijlstra 已提交
3253 3254
}

3255 3256
static void perf_event_for_each(struct perf_event *event,
				  void (*func)(struct perf_event *))
P
Peter Zijlstra 已提交
3257
{
3258 3259
	struct perf_event_context *ctx = event->ctx;
	struct perf_event *sibling;
P
Peter Zijlstra 已提交
3260

3261 3262
	WARN_ON_ONCE(ctx->parent_ctx);
	mutex_lock(&ctx->mutex);
3263
	event = event->group_leader;
3264

3265 3266 3267 3268
	perf_event_for_each_child(event, func);
	func(event);
	list_for_each_entry(sibling, &event->sibling_list, group_entry)
		perf_event_for_each_child(event, func);
3269
	mutex_unlock(&ctx->mutex);
3270 3271
}

3272
static int perf_event_period(struct perf_event *event, u64 __user *arg)
3273
{
3274
	struct perf_event_context *ctx = event->ctx;
3275 3276 3277
	int ret = 0;
	u64 value;

3278
	if (!is_sampling_event(event))
3279 3280
		return -EINVAL;

3281
	if (copy_from_user(&value, arg, sizeof(value)))
3282 3283 3284 3285 3286
		return -EFAULT;

	if (!value)
		return -EINVAL;

3287
	raw_spin_lock_irq(&ctx->lock);
3288 3289
	if (event->attr.freq) {
		if (value > sysctl_perf_event_sample_rate) {
3290 3291 3292 3293
			ret = -EINVAL;
			goto unlock;
		}

3294
		event->attr.sample_freq = value;
3295
	} else {
3296 3297
		event->attr.sample_period = value;
		event->hw.sample_period = value;
3298 3299
	}
unlock:
3300
	raw_spin_unlock_irq(&ctx->lock);
3301 3302 3303 3304

	return ret;
}

3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325
static const struct file_operations perf_fops;

static struct perf_event *perf_fget_light(int fd, int *fput_needed)
{
	struct file *file;

	file = fget_light(fd, fput_needed);
	if (!file)
		return ERR_PTR(-EBADF);

	if (file->f_op != &perf_fops) {
		fput_light(file, *fput_needed);
		*fput_needed = 0;
		return ERR_PTR(-EBADF);
	}

	return file->private_data;
}

static int perf_event_set_output(struct perf_event *event,
				 struct perf_event *output_event);
L
Li Zefan 已提交
3326
static int perf_event_set_filter(struct perf_event *event, void __user *arg);
3327

3328 3329
static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
{
3330 3331
	struct perf_event *event = file->private_data;
	void (*func)(struct perf_event *);
P
Peter Zijlstra 已提交
3332
	u32 flags = arg;
3333 3334

	switch (cmd) {
3335 3336
	case PERF_EVENT_IOC_ENABLE:
		func = perf_event_enable;
3337
		break;
3338 3339
	case PERF_EVENT_IOC_DISABLE:
		func = perf_event_disable;
3340
		break;
3341 3342
	case PERF_EVENT_IOC_RESET:
		func = perf_event_reset;
3343
		break;
P
Peter Zijlstra 已提交
3344

3345 3346
	case PERF_EVENT_IOC_REFRESH:
		return perf_event_refresh(event, arg);
3347

3348 3349
	case PERF_EVENT_IOC_PERIOD:
		return perf_event_period(event, (u64 __user *)arg);
3350

3351
	case PERF_EVENT_IOC_SET_OUTPUT:
3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368
	{
		struct perf_event *output_event = NULL;
		int fput_needed = 0;
		int ret;

		if (arg != -1) {
			output_event = perf_fget_light(arg, &fput_needed);
			if (IS_ERR(output_event))
				return PTR_ERR(output_event);
		}

		ret = perf_event_set_output(event, output_event);
		if (output_event)
			fput_light(output_event->filp, fput_needed);

		return ret;
	}
3369

L
Li Zefan 已提交
3370 3371 3372
	case PERF_EVENT_IOC_SET_FILTER:
		return perf_event_set_filter(event, (void __user *)arg);

3373
	default:
P
Peter Zijlstra 已提交
3374
		return -ENOTTY;
3375
	}
P
Peter Zijlstra 已提交
3376 3377

	if (flags & PERF_IOC_FLAG_GROUP)
3378
		perf_event_for_each(event, func);
P
Peter Zijlstra 已提交
3379
	else
3380
		perf_event_for_each_child(event, func);
P
Peter Zijlstra 已提交
3381 3382

	return 0;
3383 3384
}

3385
int perf_event_task_enable(void)
3386
{
3387
	struct perf_event *event;
3388

3389 3390 3391 3392
	mutex_lock(&current->perf_event_mutex);
	list_for_each_entry(event, &current->perf_event_list, owner_entry)
		perf_event_for_each_child(event, perf_event_enable);
	mutex_unlock(&current->perf_event_mutex);
3393 3394 3395 3396

	return 0;
}

3397
int perf_event_task_disable(void)
3398
{
3399
	struct perf_event *event;
3400

3401 3402 3403 3404
	mutex_lock(&current->perf_event_mutex);
	list_for_each_entry(event, &current->perf_event_list, owner_entry)
		perf_event_for_each_child(event, perf_event_disable);
	mutex_unlock(&current->perf_event_mutex);
3405 3406 3407 3408

	return 0;
}

3409 3410
#ifndef PERF_EVENT_INDEX_OFFSET
# define PERF_EVENT_INDEX_OFFSET 0
I
Ingo Molnar 已提交
3411 3412
#endif

3413
static int perf_event_index(struct perf_event *event)
3414
{
P
Peter Zijlstra 已提交
3415 3416 3417
	if (event->hw.state & PERF_HES_STOPPED)
		return 0;

3418
	if (event->state != PERF_EVENT_STATE_ACTIVE)
3419 3420
		return 0;

3421
	return event->hw.idx + 1 - PERF_EVENT_INDEX_OFFSET;
3422 3423
}

3424
static void calc_timer_values(struct perf_event *event,
3425 3426
				u64 *enabled,
				u64 *running)
3427 3428 3429 3430 3431 3432 3433 3434 3435
{
	u64 now, ctx_time;

	now = perf_clock();
	ctx_time = event->shadow_ctx_time + now;
	*enabled = ctx_time - event->tstamp_enabled;
	*running = ctx_time - event->tstamp_running;
}

3436 3437 3438 3439 3440
/*
 * Callers need to ensure there can be no nesting of this function, otherwise
 * the seqlock logic goes bad. We can not serialize this because the arch
 * code calls this from NMI context.
 */
3441
void perf_event_update_userpage(struct perf_event *event)
3442
{
3443
	struct perf_event_mmap_page *userpg;
3444
	struct ring_buffer *rb;
3445
	u64 enabled, running;
3446 3447

	rcu_read_lock();
3448 3449 3450 3451 3452 3453 3454 3455 3456 3457
	/*
	 * compute total_time_enabled, total_time_running
	 * based on snapshot values taken when the event
	 * was last scheduled in.
	 *
	 * we cannot simply called update_context_time()
	 * because of locking issue as we can be called in
	 * NMI context
	 */
	calc_timer_values(event, &enabled, &running);
3458 3459
	rb = rcu_dereference(event->rb);
	if (!rb)
3460 3461
		goto unlock;

3462
	userpg = rb->user_page;
3463

3464 3465 3466 3467 3468
	/*
	 * Disable preemption so as to not let the corresponding user-space
	 * spin too long if we get preempted.
	 */
	preempt_disable();
3469
	++userpg->lock;
3470
	barrier();
3471
	userpg->index = perf_event_index(event);
P
Peter Zijlstra 已提交
3472
	userpg->offset = perf_event_count(event);
3473
	if (event->state == PERF_EVENT_STATE_ACTIVE)
3474
		userpg->offset -= local64_read(&event->hw.prev_count);
3475

3476
	userpg->time_enabled = enabled +
3477
			atomic64_read(&event->child_total_time_enabled);
3478

3479
	userpg->time_running = running +
3480
			atomic64_read(&event->child_total_time_running);
3481

3482
	barrier();
3483
	++userpg->lock;
3484
	preempt_enable();
3485
unlock:
3486
	rcu_read_unlock();
3487 3488
}

3489 3490 3491
static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
{
	struct perf_event *event = vma->vm_file->private_data;
3492
	struct ring_buffer *rb;
3493 3494 3495 3496 3497 3498 3499 3500 3501
	int ret = VM_FAULT_SIGBUS;

	if (vmf->flags & FAULT_FLAG_MKWRITE) {
		if (vmf->pgoff == 0)
			ret = 0;
		return ret;
	}

	rcu_read_lock();
3502 3503
	rb = rcu_dereference(event->rb);
	if (!rb)
3504 3505 3506 3507 3508
		goto unlock;

	if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
		goto unlock;

3509
	vmf->page = perf_mmap_to_page(rb, vmf->pgoff);
3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523
	if (!vmf->page)
		goto unlock;

	get_page(vmf->page);
	vmf->page->mapping = vma->vm_file->f_mapping;
	vmf->page->index   = vmf->pgoff;

	ret = 0;
unlock:
	rcu_read_unlock();

	return ret;
}

3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566
static void ring_buffer_attach(struct perf_event *event,
			       struct ring_buffer *rb)
{
	unsigned long flags;

	if (!list_empty(&event->rb_entry))
		return;

	spin_lock_irqsave(&rb->event_lock, flags);
	if (!list_empty(&event->rb_entry))
		goto unlock;

	list_add(&event->rb_entry, &rb->event_list);
unlock:
	spin_unlock_irqrestore(&rb->event_lock, flags);
}

static void ring_buffer_detach(struct perf_event *event,
			       struct ring_buffer *rb)
{
	unsigned long flags;

	if (list_empty(&event->rb_entry))
		return;

	spin_lock_irqsave(&rb->event_lock, flags);
	list_del_init(&event->rb_entry);
	wake_up_all(&event->waitq);
	spin_unlock_irqrestore(&rb->event_lock, flags);
}

static void ring_buffer_wakeup(struct perf_event *event)
{
	struct ring_buffer *rb;

	rcu_read_lock();
	rb = rcu_dereference(event->rb);
	list_for_each_entry_rcu(event, &rb->event_list, rb_entry) {
		wake_up_all(&event->waitq);
	}
	rcu_read_unlock();
}

3567
static void rb_free_rcu(struct rcu_head *rcu_head)
3568
{
3569
	struct ring_buffer *rb;
3570

3571 3572
	rb = container_of(rcu_head, struct ring_buffer, rcu_head);
	rb_free(rb);
3573 3574
}

3575
static struct ring_buffer *ring_buffer_get(struct perf_event *event)
3576
{
3577
	struct ring_buffer *rb;
3578

3579
	rcu_read_lock();
3580 3581 3582 3583
	rb = rcu_dereference(event->rb);
	if (rb) {
		if (!atomic_inc_not_zero(&rb->refcount))
			rb = NULL;
3584 3585 3586
	}
	rcu_read_unlock();

3587
	return rb;
3588 3589
}

3590
static void ring_buffer_put(struct ring_buffer *rb)
3591
{
3592 3593 3594
	struct perf_event *event, *n;
	unsigned long flags;

3595
	if (!atomic_dec_and_test(&rb->refcount))
3596
		return;
3597

3598 3599 3600 3601 3602 3603 3604
	spin_lock_irqsave(&rb->event_lock, flags);
	list_for_each_entry_safe(event, n, &rb->event_list, rb_entry) {
		list_del_init(&event->rb_entry);
		wake_up_all(&event->waitq);
	}
	spin_unlock_irqrestore(&rb->event_lock, flags);

3605
	call_rcu(&rb->rcu_head, rb_free_rcu);
3606 3607 3608 3609
}

static void perf_mmap_open(struct vm_area_struct *vma)
{
3610
	struct perf_event *event = vma->vm_file->private_data;
3611

3612
	atomic_inc(&event->mmap_count);
3613 3614 3615 3616
}

static void perf_mmap_close(struct vm_area_struct *vma)
{
3617
	struct perf_event *event = vma->vm_file->private_data;
3618

3619
	if (atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex)) {
3620
		unsigned long size = perf_data_size(event->rb);
3621
		struct user_struct *user = event->mmap_user;
3622
		struct ring_buffer *rb = event->rb;
3623

3624
		atomic_long_sub((size >> PAGE_SHIFT) + 1, &user->locked_vm);
3625
		vma->vm_mm->pinned_vm -= event->mmap_locked;
3626
		rcu_assign_pointer(event->rb, NULL);
3627
		ring_buffer_detach(event, rb);
3628
		mutex_unlock(&event->mmap_mutex);
3629

3630
		ring_buffer_put(rb);
3631
		free_uid(user);
3632
	}
3633 3634
}

3635
static const struct vm_operations_struct perf_mmap_vmops = {
3636 3637 3638 3639
	.open		= perf_mmap_open,
	.close		= perf_mmap_close,
	.fault		= perf_mmap_fault,
	.page_mkwrite	= perf_mmap_fault,
3640 3641 3642 3643
};

static int perf_mmap(struct file *file, struct vm_area_struct *vma)
{
3644
	struct perf_event *event = file->private_data;
3645
	unsigned long user_locked, user_lock_limit;
3646
	struct user_struct *user = current_user();
3647
	unsigned long locked, lock_limit;
3648
	struct ring_buffer *rb;
3649 3650
	unsigned long vma_size;
	unsigned long nr_pages;
3651
	long user_extra, extra;
3652
	int ret = 0, flags = 0;
3653

3654 3655 3656
	/*
	 * Don't allow mmap() of inherited per-task counters. This would
	 * create a performance issue due to all children writing to the
3657
	 * same rb.
3658 3659 3660 3661
	 */
	if (event->cpu == -1 && event->attr.inherit)
		return -EINVAL;

3662
	if (!(vma->vm_flags & VM_SHARED))
3663
		return -EINVAL;
3664 3665 3666 3667

	vma_size = vma->vm_end - vma->vm_start;
	nr_pages = (vma_size / PAGE_SIZE) - 1;

3668
	/*
3669
	 * If we have rb pages ensure they're a power-of-two number, so we
3670 3671 3672
	 * can do bitmasks instead of modulo.
	 */
	if (nr_pages != 0 && !is_power_of_2(nr_pages))
3673 3674
		return -EINVAL;

3675
	if (vma_size != PAGE_SIZE * (1 + nr_pages))
3676 3677
		return -EINVAL;

3678 3679
	if (vma->vm_pgoff != 0)
		return -EINVAL;
3680

3681 3682
	WARN_ON_ONCE(event->ctx->parent_ctx);
	mutex_lock(&event->mmap_mutex);
3683 3684 3685
	if (event->rb) {
		if (event->rb->nr_pages == nr_pages)
			atomic_inc(&event->rb->refcount);
3686
		else
3687 3688 3689 3690
			ret = -EINVAL;
		goto unlock;
	}

3691
	user_extra = nr_pages + 1;
3692
	user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
I
Ingo Molnar 已提交
3693 3694 3695 3696 3697 3698

	/*
	 * Increase the limit linearly with more CPUs:
	 */
	user_lock_limit *= num_online_cpus();

3699
	user_locked = atomic_long_read(&user->locked_vm) + user_extra;
3700

3701 3702 3703
	extra = 0;
	if (user_locked > user_lock_limit)
		extra = user_locked - user_lock_limit;
3704

3705
	lock_limit = rlimit(RLIMIT_MEMLOCK);
3706
	lock_limit >>= PAGE_SHIFT;
3707
	locked = vma->vm_mm->pinned_vm + extra;
3708

3709 3710
	if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() &&
		!capable(CAP_IPC_LOCK)) {
3711 3712 3713
		ret = -EPERM;
		goto unlock;
	}
3714

3715
	WARN_ON(event->rb);
3716

3717
	if (vma->vm_flags & VM_WRITE)
3718
		flags |= RING_BUFFER_WRITABLE;
3719

3720 3721 3722 3723
	rb = rb_alloc(nr_pages, 
		event->attr.watermark ? event->attr.wakeup_watermark : 0,
		event->cpu, flags);

3724
	if (!rb) {
3725
		ret = -ENOMEM;
3726
		goto unlock;
3727
	}
3728
	rcu_assign_pointer(event->rb, rb);
3729

3730 3731 3732
	atomic_long_add(user_extra, &user->locked_vm);
	event->mmap_locked = extra;
	event->mmap_user = get_current_user();
3733
	vma->vm_mm->pinned_vm += event->mmap_locked;
3734

3735
unlock:
3736 3737
	if (!ret)
		atomic_inc(&event->mmap_count);
3738
	mutex_unlock(&event->mmap_mutex);
3739 3740 3741

	vma->vm_flags |= VM_RESERVED;
	vma->vm_ops = &perf_mmap_vmops;
3742 3743

	return ret;
3744 3745
}

P
Peter Zijlstra 已提交
3746 3747 3748
static int perf_fasync(int fd, struct file *filp, int on)
{
	struct inode *inode = filp->f_path.dentry->d_inode;
3749
	struct perf_event *event = filp->private_data;
P
Peter Zijlstra 已提交
3750 3751 3752
	int retval;

	mutex_lock(&inode->i_mutex);
3753
	retval = fasync_helper(fd, filp, on, &event->fasync);
P
Peter Zijlstra 已提交
3754 3755 3756 3757 3758 3759 3760 3761
	mutex_unlock(&inode->i_mutex);

	if (retval < 0)
		return retval;

	return 0;
}

T
Thomas Gleixner 已提交
3762
static const struct file_operations perf_fops = {
3763
	.llseek			= no_llseek,
T
Thomas Gleixner 已提交
3764 3765 3766
	.release		= perf_release,
	.read			= perf_read,
	.poll			= perf_poll,
3767 3768
	.unlocked_ioctl		= perf_ioctl,
	.compat_ioctl		= perf_ioctl,
3769
	.mmap			= perf_mmap,
P
Peter Zijlstra 已提交
3770
	.fasync			= perf_fasync,
T
Thomas Gleixner 已提交
3771 3772
};

3773
/*
3774
 * Perf event wakeup
3775 3776 3777 3778 3779
 *
 * If there's data, ensure we set the poll() state and publish everything
 * to user-space before waking everybody up.
 */

3780
void perf_event_wakeup(struct perf_event *event)
3781
{
3782
	ring_buffer_wakeup(event);
3783

3784 3785 3786
	if (event->pending_kill) {
		kill_fasync(&event->fasync, SIGIO, event->pending_kill);
		event->pending_kill = 0;
3787
	}
3788 3789
}

3790
static void perf_pending_event(struct irq_work *entry)
3791
{
3792 3793
	struct perf_event *event = container_of(entry,
			struct perf_event, pending);
3794

3795 3796 3797
	if (event->pending_disable) {
		event->pending_disable = 0;
		__perf_event_disable(event);
3798 3799
	}

3800 3801 3802
	if (event->pending_wakeup) {
		event->pending_wakeup = 0;
		perf_event_wakeup(event);
3803 3804 3805
	}
}

3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826
/*
 * We assume there is only KVM supporting the callbacks.
 * Later on, we might change it to a list if there is
 * another virtualization implementation supporting the callbacks.
 */
struct perf_guest_info_callbacks *perf_guest_cbs;

int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
{
	perf_guest_cbs = cbs;
	return 0;
}
EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);

int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
{
	perf_guest_cbs = NULL;
	return 0;
}
EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);

3827 3828 3829
static void __perf_event_header__init_id(struct perf_event_header *header,
					 struct perf_sample_data *data,
					 struct perf_event *event)
3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856
{
	u64 sample_type = event->attr.sample_type;

	data->type = sample_type;
	header->size += event->id_header_size;

	if (sample_type & PERF_SAMPLE_TID) {
		/* namespace issues */
		data->tid_entry.pid = perf_event_pid(event, current);
		data->tid_entry.tid = perf_event_tid(event, current);
	}

	if (sample_type & PERF_SAMPLE_TIME)
		data->time = perf_clock();

	if (sample_type & PERF_SAMPLE_ID)
		data->id = primary_event_id(event);

	if (sample_type & PERF_SAMPLE_STREAM_ID)
		data->stream_id = event->id;

	if (sample_type & PERF_SAMPLE_CPU) {
		data->cpu_entry.cpu	 = raw_smp_processor_id();
		data->cpu_entry.reserved = 0;
	}
}

3857 3858 3859
void perf_event_header__init_id(struct perf_event_header *header,
				struct perf_sample_data *data,
				struct perf_event *event)
3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885
{
	if (event->attr.sample_id_all)
		__perf_event_header__init_id(header, data, event);
}

static void __perf_event__output_id_sample(struct perf_output_handle *handle,
					   struct perf_sample_data *data)
{
	u64 sample_type = data->type;

	if (sample_type & PERF_SAMPLE_TID)
		perf_output_put(handle, data->tid_entry);

	if (sample_type & PERF_SAMPLE_TIME)
		perf_output_put(handle, data->time);

	if (sample_type & PERF_SAMPLE_ID)
		perf_output_put(handle, data->id);

	if (sample_type & PERF_SAMPLE_STREAM_ID)
		perf_output_put(handle, data->stream_id);

	if (sample_type & PERF_SAMPLE_CPU)
		perf_output_put(handle, data->cpu_entry);
}

3886 3887 3888
void perf_event__output_id_sample(struct perf_event *event,
				  struct perf_output_handle *handle,
				  struct perf_sample_data *sample)
3889 3890 3891 3892 3893
{
	if (event->attr.sample_id_all)
		__perf_event__output_id_sample(handle, sample);
}

3894
static void perf_output_read_one(struct perf_output_handle *handle,
3895 3896
				 struct perf_event *event,
				 u64 enabled, u64 running)
3897
{
3898
	u64 read_format = event->attr.read_format;
3899 3900 3901
	u64 values[4];
	int n = 0;

P
Peter Zijlstra 已提交
3902
	values[n++] = perf_event_count(event);
3903
	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
3904
		values[n++] = enabled +
3905
			atomic64_read(&event->child_total_time_enabled);
3906 3907
	}
	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
3908
		values[n++] = running +
3909
			atomic64_read(&event->child_total_time_running);
3910 3911
	}
	if (read_format & PERF_FORMAT_ID)
3912
		values[n++] = primary_event_id(event);
3913

3914
	__output_copy(handle, values, n * sizeof(u64));
3915 3916 3917
}

/*
3918
 * XXX PERF_FORMAT_GROUP vs inherited events seems difficult.
3919 3920
 */
static void perf_output_read_group(struct perf_output_handle *handle,
3921 3922
			    struct perf_event *event,
			    u64 enabled, u64 running)
3923
{
3924 3925
	struct perf_event *leader = event->group_leader, *sub;
	u64 read_format = event->attr.read_format;
3926 3927 3928 3929 3930 3931
	u64 values[5];
	int n = 0;

	values[n++] = 1 + leader->nr_siblings;

	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
3932
		values[n++] = enabled;
3933 3934

	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
3935
		values[n++] = running;
3936

3937
	if (leader != event)
3938 3939
		leader->pmu->read(leader);

P
Peter Zijlstra 已提交
3940
	values[n++] = perf_event_count(leader);
3941
	if (read_format & PERF_FORMAT_ID)
3942
		values[n++] = primary_event_id(leader);
3943

3944
	__output_copy(handle, values, n * sizeof(u64));
3945

3946
	list_for_each_entry(sub, &leader->sibling_list, group_entry) {
3947 3948
		n = 0;

3949
		if (sub != event)
3950 3951
			sub->pmu->read(sub);

P
Peter Zijlstra 已提交
3952
		values[n++] = perf_event_count(sub);
3953
		if (read_format & PERF_FORMAT_ID)
3954
			values[n++] = primary_event_id(sub);
3955

3956
		__output_copy(handle, values, n * sizeof(u64));
3957 3958 3959
	}
}

3960 3961 3962
#define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\
				 PERF_FORMAT_TOTAL_TIME_RUNNING)

3963
static void perf_output_read(struct perf_output_handle *handle,
3964
			     struct perf_event *event)
3965
{
3966
	u64 enabled = 0, running = 0;
3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977
	u64 read_format = event->attr.read_format;

	/*
	 * compute total_time_enabled, total_time_running
	 * based on snapshot values taken when the event
	 * was last scheduled in.
	 *
	 * we cannot simply called update_context_time()
	 * because of locking issue as we are called in
	 * NMI context
	 */
3978 3979
	if (read_format & PERF_FORMAT_TOTAL_TIMES)
		calc_timer_values(event, &enabled, &running);
3980

3981
	if (event->attr.read_format & PERF_FORMAT_GROUP)
3982
		perf_output_read_group(handle, event, enabled, running);
3983
	else
3984
		perf_output_read_one(handle, event, enabled, running);
3985 3986
}

3987 3988 3989
void perf_output_sample(struct perf_output_handle *handle,
			struct perf_event_header *header,
			struct perf_sample_data *data,
3990
			struct perf_event *event)
3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020
{
	u64 sample_type = data->type;

	perf_output_put(handle, *header);

	if (sample_type & PERF_SAMPLE_IP)
		perf_output_put(handle, data->ip);

	if (sample_type & PERF_SAMPLE_TID)
		perf_output_put(handle, data->tid_entry);

	if (sample_type & PERF_SAMPLE_TIME)
		perf_output_put(handle, data->time);

	if (sample_type & PERF_SAMPLE_ADDR)
		perf_output_put(handle, data->addr);

	if (sample_type & PERF_SAMPLE_ID)
		perf_output_put(handle, data->id);

	if (sample_type & PERF_SAMPLE_STREAM_ID)
		perf_output_put(handle, data->stream_id);

	if (sample_type & PERF_SAMPLE_CPU)
		perf_output_put(handle, data->cpu_entry);

	if (sample_type & PERF_SAMPLE_PERIOD)
		perf_output_put(handle, data->period);

	if (sample_type & PERF_SAMPLE_READ)
4021
		perf_output_read(handle, event);
4022 4023 4024 4025 4026 4027 4028 4029 4030 4031

	if (sample_type & PERF_SAMPLE_CALLCHAIN) {
		if (data->callchain) {
			int size = 1;

			if (data->callchain)
				size += data->callchain->nr;

			size *= sizeof(u64);

4032
			__output_copy(handle, data->callchain, size);
4033 4034 4035 4036 4037 4038 4039 4040 4041
		} else {
			u64 nr = 0;
			perf_output_put(handle, nr);
		}
	}

	if (sample_type & PERF_SAMPLE_RAW) {
		if (data->raw) {
			perf_output_put(handle, data->raw->size);
4042 4043
			__output_copy(handle, data->raw->data,
					   data->raw->size);
4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054
		} else {
			struct {
				u32	size;
				u32	data;
			} raw = {
				.size = sizeof(u32),
				.data = 0,
			};
			perf_output_put(handle, raw);
		}
	}
4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068

	if (!event->attr.watermark) {
		int wakeup_events = event->attr.wakeup_events;

		if (wakeup_events) {
			struct ring_buffer *rb = handle->rb;
			int events = local_inc_return(&rb->events);

			if (events >= wakeup_events) {
				local_sub(wakeup_events, &rb->events);
				local_inc(&rb->wakeup);
			}
		}
	}
4069 4070 4071 4072
}

void perf_prepare_sample(struct perf_event_header *header,
			 struct perf_sample_data *data,
4073
			 struct perf_event *event,
4074
			 struct pt_regs *regs)
4075
{
4076
	u64 sample_type = event->attr.sample_type;
4077

4078
	header->type = PERF_RECORD_SAMPLE;
4079
	header->size = sizeof(*header) + event->header_size;
4080 4081 4082

	header->misc = 0;
	header->misc |= perf_misc_flags(regs);
4083

4084
	__perf_event_header__init_id(header, data, event);
4085

4086
	if (sample_type & PERF_SAMPLE_IP)
4087 4088
		data->ip = perf_instruction_pointer(regs);

4089
	if (sample_type & PERF_SAMPLE_CALLCHAIN) {
4090
		int size = 1;
4091

4092 4093 4094 4095 4096 4097
		data->callchain = perf_callchain(regs);

		if (data->callchain)
			size += data->callchain->nr;

		header->size += size * sizeof(u64);
4098 4099
	}

4100
	if (sample_type & PERF_SAMPLE_RAW) {
4101 4102 4103 4104 4105 4106 4107 4108
		int size = sizeof(u32);

		if (data->raw)
			size += data->raw->size;
		else
			size += sizeof(u32);

		WARN_ON_ONCE(size & (sizeof(u64)-1));
4109
		header->size += size;
4110
	}
4111
}
4112

4113
static void perf_event_output(struct perf_event *event,
4114 4115 4116 4117 4118
				struct perf_sample_data *data,
				struct pt_regs *regs)
{
	struct perf_output_handle handle;
	struct perf_event_header header;
4119

4120 4121 4122
	/* protect the callchain buffers */
	rcu_read_lock();

4123
	perf_prepare_sample(&header, data, event, regs);
P
Peter Zijlstra 已提交
4124

4125
	if (perf_output_begin(&handle, event, header.size))
4126
		goto exit;
4127

4128
	perf_output_sample(&handle, &header, data, event);
4129

4130
	perf_output_end(&handle);
4131 4132 4133

exit:
	rcu_read_unlock();
4134 4135
}

4136
/*
4137
 * read event_id
4138 4139 4140 4141 4142 4143 4144 4145 4146 4147
 */

struct perf_read_event {
	struct perf_event_header	header;

	u32				pid;
	u32				tid;
};

static void
4148
perf_event_read_event(struct perf_event *event,
4149 4150 4151
			struct task_struct *task)
{
	struct perf_output_handle handle;
4152
	struct perf_sample_data sample;
4153
	struct perf_read_event read_event = {
4154
		.header = {
4155
			.type = PERF_RECORD_READ,
4156
			.misc = 0,
4157
			.size = sizeof(read_event) + event->read_size,
4158
		},
4159 4160
		.pid = perf_event_pid(event, task),
		.tid = perf_event_tid(event, task),
4161
	};
4162
	int ret;
4163

4164
	perf_event_header__init_id(&read_event.header, &sample, event);
4165
	ret = perf_output_begin(&handle, event, read_event.header.size);
4166 4167 4168
	if (ret)
		return;

4169
	perf_output_put(&handle, read_event);
4170
	perf_output_read(&handle, event);
4171
	perf_event__output_id_sample(event, &handle, &sample);
4172

4173 4174 4175
	perf_output_end(&handle);
}

P
Peter Zijlstra 已提交
4176
/*
P
Peter Zijlstra 已提交
4177 4178
 * task tracking -- fork/exit
 *
4179
 * enabled by: attr.comm | attr.mmap | attr.mmap_data | attr.task
P
Peter Zijlstra 已提交
4180 4181
 */

P
Peter Zijlstra 已提交
4182
struct perf_task_event {
4183
	struct task_struct		*task;
4184
	struct perf_event_context	*task_ctx;
P
Peter Zijlstra 已提交
4185 4186 4187 4188 4189 4190

	struct {
		struct perf_event_header	header;

		u32				pid;
		u32				ppid;
P
Peter Zijlstra 已提交
4191 4192
		u32				tid;
		u32				ptid;
4193
		u64				time;
4194
	} event_id;
P
Peter Zijlstra 已提交
4195 4196
};

4197
static void perf_event_task_output(struct perf_event *event,
P
Peter Zijlstra 已提交
4198
				     struct perf_task_event *task_event)
P
Peter Zijlstra 已提交
4199 4200
{
	struct perf_output_handle handle;
4201
	struct perf_sample_data	sample;
P
Peter Zijlstra 已提交
4202
	struct task_struct *task = task_event->task;
4203
	int ret, size = task_event->event_id.header.size;
4204

4205
	perf_event_header__init_id(&task_event->event_id.header, &sample, event);
P
Peter Zijlstra 已提交
4206

4207
	ret = perf_output_begin(&handle, event,
4208
				task_event->event_id.header.size);
4209
	if (ret)
4210
		goto out;
P
Peter Zijlstra 已提交
4211

4212 4213
	task_event->event_id.pid = perf_event_pid(event, task);
	task_event->event_id.ppid = perf_event_pid(event, current);
P
Peter Zijlstra 已提交
4214

4215 4216
	task_event->event_id.tid = perf_event_tid(event, task);
	task_event->event_id.ptid = perf_event_tid(event, current);
P
Peter Zijlstra 已提交
4217

4218
	perf_output_put(&handle, task_event->event_id);
4219

4220 4221
	perf_event__output_id_sample(event, &handle, &sample);

P
Peter Zijlstra 已提交
4222
	perf_output_end(&handle);
4223 4224
out:
	task_event->event_id.header.size = size;
P
Peter Zijlstra 已提交
4225 4226
}

4227
static int perf_event_task_match(struct perf_event *event)
P
Peter Zijlstra 已提交
4228
{
P
Peter Zijlstra 已提交
4229
	if (event->state < PERF_EVENT_STATE_INACTIVE)
4230 4231
		return 0;

4232
	if (!event_filter_match(event))
4233 4234
		return 0;

4235 4236
	if (event->attr.comm || event->attr.mmap ||
	    event->attr.mmap_data || event->attr.task)
P
Peter Zijlstra 已提交
4237 4238 4239 4240 4241
		return 1;

	return 0;
}

4242
static void perf_event_task_ctx(struct perf_event_context *ctx,
P
Peter Zijlstra 已提交
4243
				  struct perf_task_event *task_event)
P
Peter Zijlstra 已提交
4244
{
4245
	struct perf_event *event;
P
Peter Zijlstra 已提交
4246

4247 4248 4249
	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
		if (perf_event_task_match(event))
			perf_event_task_output(event, task_event);
P
Peter Zijlstra 已提交
4250 4251 4252
	}
}

4253
static void perf_event_task_event(struct perf_task_event *task_event)
P
Peter Zijlstra 已提交
4254 4255
{
	struct perf_cpu_context *cpuctx;
P
Peter Zijlstra 已提交
4256
	struct perf_event_context *ctx;
P
Peter Zijlstra 已提交
4257
	struct pmu *pmu;
P
Peter Zijlstra 已提交
4258
	int ctxn;
P
Peter Zijlstra 已提交
4259

4260
	rcu_read_lock();
P
Peter Zijlstra 已提交
4261
	list_for_each_entry_rcu(pmu, &pmus, entry) {
4262
		cpuctx = get_cpu_ptr(pmu->pmu_cpu_context);
4263 4264
		if (cpuctx->active_pmu != pmu)
			goto next;
P
Peter Zijlstra 已提交
4265
		perf_event_task_ctx(&cpuctx->ctx, task_event);
P
Peter Zijlstra 已提交
4266 4267 4268 4269 4270

		ctx = task_event->task_ctx;
		if (!ctx) {
			ctxn = pmu->task_ctx_nr;
			if (ctxn < 0)
4271
				goto next;
P
Peter Zijlstra 已提交
4272 4273 4274 4275
			ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
		}
		if (ctx)
			perf_event_task_ctx(ctx, task_event);
4276 4277
next:
		put_cpu_ptr(pmu->pmu_cpu_context);
P
Peter Zijlstra 已提交
4278
	}
P
Peter Zijlstra 已提交
4279 4280 4281
	rcu_read_unlock();
}

4282 4283
static void perf_event_task(struct task_struct *task,
			      struct perf_event_context *task_ctx,
4284
			      int new)
P
Peter Zijlstra 已提交
4285
{
P
Peter Zijlstra 已提交
4286
	struct perf_task_event task_event;
P
Peter Zijlstra 已提交
4287

4288 4289 4290
	if (!atomic_read(&nr_comm_events) &&
	    !atomic_read(&nr_mmap_events) &&
	    !atomic_read(&nr_task_events))
P
Peter Zijlstra 已提交
4291 4292
		return;

P
Peter Zijlstra 已提交
4293
	task_event = (struct perf_task_event){
4294 4295
		.task	  = task,
		.task_ctx = task_ctx,
4296
		.event_id    = {
P
Peter Zijlstra 已提交
4297
			.header = {
4298
				.type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
4299
				.misc = 0,
4300
				.size = sizeof(task_event.event_id),
P
Peter Zijlstra 已提交
4301
			},
4302 4303
			/* .pid  */
			/* .ppid */
P
Peter Zijlstra 已提交
4304 4305
			/* .tid  */
			/* .ptid */
P
Peter Zijlstra 已提交
4306
			.time = perf_clock(),
P
Peter Zijlstra 已提交
4307 4308 4309
		},
	};

4310
	perf_event_task_event(&task_event);
P
Peter Zijlstra 已提交
4311 4312
}

4313
void perf_event_fork(struct task_struct *task)
P
Peter Zijlstra 已提交
4314
{
4315
	perf_event_task(task, NULL, 1);
P
Peter Zijlstra 已提交
4316 4317
}

4318 4319 4320 4321 4322
/*
 * comm tracking
 */

struct perf_comm_event {
4323 4324
	struct task_struct	*task;
	char			*comm;
4325 4326 4327 4328 4329 4330 4331
	int			comm_size;

	struct {
		struct perf_event_header	header;

		u32				pid;
		u32				tid;
4332
	} event_id;
4333 4334
};

4335
static void perf_event_comm_output(struct perf_event *event,
4336 4337 4338
				     struct perf_comm_event *comm_event)
{
	struct perf_output_handle handle;
4339
	struct perf_sample_data sample;
4340
	int size = comm_event->event_id.header.size;
4341 4342 4343 4344
	int ret;

	perf_event_header__init_id(&comm_event->event_id.header, &sample, event);
	ret = perf_output_begin(&handle, event,
4345
				comm_event->event_id.header.size);
4346 4347

	if (ret)
4348
		goto out;
4349

4350 4351
	comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
	comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
4352

4353
	perf_output_put(&handle, comm_event->event_id);
4354
	__output_copy(&handle, comm_event->comm,
4355
				   comm_event->comm_size);
4356 4357 4358

	perf_event__output_id_sample(event, &handle, &sample);

4359
	perf_output_end(&handle);
4360 4361
out:
	comm_event->event_id.header.size = size;
4362 4363
}

4364
static int perf_event_comm_match(struct perf_event *event)
4365
{
P
Peter Zijlstra 已提交
4366
	if (event->state < PERF_EVENT_STATE_INACTIVE)
4367 4368
		return 0;

4369
	if (!event_filter_match(event))
4370 4371
		return 0;

4372
	if (event->attr.comm)
4373 4374 4375 4376 4377
		return 1;

	return 0;
}

4378
static void perf_event_comm_ctx(struct perf_event_context *ctx,
4379 4380
				  struct perf_comm_event *comm_event)
{
4381
	struct perf_event *event;
4382

4383 4384 4385
	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
		if (perf_event_comm_match(event))
			perf_event_comm_output(event, comm_event);
4386 4387 4388
	}
}

4389
static void perf_event_comm_event(struct perf_comm_event *comm_event)
4390 4391
{
	struct perf_cpu_context *cpuctx;
4392
	struct perf_event_context *ctx;
4393
	char comm[TASK_COMM_LEN];
4394
	unsigned int size;
P
Peter Zijlstra 已提交
4395
	struct pmu *pmu;
P
Peter Zijlstra 已提交
4396
	int ctxn;
4397

4398
	memset(comm, 0, sizeof(comm));
4399
	strlcpy(comm, comm_event->task->comm, sizeof(comm));
4400
	size = ALIGN(strlen(comm)+1, sizeof(u64));
4401 4402 4403 4404

	comm_event->comm = comm;
	comm_event->comm_size = size;

4405
	comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
4406
	rcu_read_lock();
P
Peter Zijlstra 已提交
4407
	list_for_each_entry_rcu(pmu, &pmus, entry) {
4408
		cpuctx = get_cpu_ptr(pmu->pmu_cpu_context);
4409 4410
		if (cpuctx->active_pmu != pmu)
			goto next;
P
Peter Zijlstra 已提交
4411
		perf_event_comm_ctx(&cpuctx->ctx, comm_event);
P
Peter Zijlstra 已提交
4412 4413 4414

		ctxn = pmu->task_ctx_nr;
		if (ctxn < 0)
4415
			goto next;
P
Peter Zijlstra 已提交
4416 4417 4418 4419

		ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
		if (ctx)
			perf_event_comm_ctx(ctx, comm_event);
4420 4421
next:
		put_cpu_ptr(pmu->pmu_cpu_context);
P
Peter Zijlstra 已提交
4422
	}
4423
	rcu_read_unlock();
4424 4425
}

4426
void perf_event_comm(struct task_struct *task)
4427
{
4428
	struct perf_comm_event comm_event;
P
Peter Zijlstra 已提交
4429 4430
	struct perf_event_context *ctx;
	int ctxn;
4431

P
Peter Zijlstra 已提交
4432 4433 4434 4435
	for_each_task_context_nr(ctxn) {
		ctx = task->perf_event_ctxp[ctxn];
		if (!ctx)
			continue;
4436

P
Peter Zijlstra 已提交
4437 4438
		perf_event_enable_on_exec(ctx);
	}
4439

4440
	if (!atomic_read(&nr_comm_events))
4441
		return;
4442

4443
	comm_event = (struct perf_comm_event){
4444
		.task	= task,
4445 4446
		/* .comm      */
		/* .comm_size */
4447
		.event_id  = {
4448
			.header = {
4449
				.type = PERF_RECORD_COMM,
4450 4451 4452 4453 4454
				.misc = 0,
				/* .size */
			},
			/* .pid */
			/* .tid */
4455 4456 4457
		},
	};

4458
	perf_event_comm_event(&comm_event);
4459 4460
}

4461 4462 4463 4464 4465
/*
 * mmap tracking
 */

struct perf_mmap_event {
4466 4467 4468 4469
	struct vm_area_struct	*vma;

	const char		*file_name;
	int			file_size;
4470 4471 4472 4473 4474 4475 4476 4477 4478

	struct {
		struct perf_event_header	header;

		u32				pid;
		u32				tid;
		u64				start;
		u64				len;
		u64				pgoff;
4479
	} event_id;
4480 4481
};

4482
static void perf_event_mmap_output(struct perf_event *event,
4483 4484 4485
				     struct perf_mmap_event *mmap_event)
{
	struct perf_output_handle handle;
4486
	struct perf_sample_data sample;
4487
	int size = mmap_event->event_id.header.size;
4488
	int ret;
4489

4490 4491
	perf_event_header__init_id(&mmap_event->event_id.header, &sample, event);
	ret = perf_output_begin(&handle, event,
4492
				mmap_event->event_id.header.size);
4493
	if (ret)
4494
		goto out;
4495

4496 4497
	mmap_event->event_id.pid = perf_event_pid(event, current);
	mmap_event->event_id.tid = perf_event_tid(event, current);
4498

4499
	perf_output_put(&handle, mmap_event->event_id);
4500
	__output_copy(&handle, mmap_event->file_name,
4501
				   mmap_event->file_size);
4502 4503 4504

	perf_event__output_id_sample(event, &handle, &sample);

4505
	perf_output_end(&handle);
4506 4507
out:
	mmap_event->event_id.header.size = size;
4508 4509
}

4510
static int perf_event_mmap_match(struct perf_event *event,
4511 4512
				   struct perf_mmap_event *mmap_event,
				   int executable)
4513
{
P
Peter Zijlstra 已提交
4514
	if (event->state < PERF_EVENT_STATE_INACTIVE)
4515 4516
		return 0;

4517
	if (!event_filter_match(event))
4518 4519
		return 0;

4520 4521
	if ((!executable && event->attr.mmap_data) ||
	    (executable && event->attr.mmap))
4522 4523 4524 4525 4526
		return 1;

	return 0;
}

4527
static void perf_event_mmap_ctx(struct perf_event_context *ctx,
4528 4529
				  struct perf_mmap_event *mmap_event,
				  int executable)
4530
{
4531
	struct perf_event *event;
4532

4533
	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
4534
		if (perf_event_mmap_match(event, mmap_event, executable))
4535
			perf_event_mmap_output(event, mmap_event);
4536 4537 4538
	}
}

4539
static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
4540 4541
{
	struct perf_cpu_context *cpuctx;
4542
	struct perf_event_context *ctx;
4543 4544
	struct vm_area_struct *vma = mmap_event->vma;
	struct file *file = vma->vm_file;
4545 4546 4547
	unsigned int size;
	char tmp[16];
	char *buf = NULL;
4548
	const char *name;
P
Peter Zijlstra 已提交
4549
	struct pmu *pmu;
P
Peter Zijlstra 已提交
4550
	int ctxn;
4551

4552 4553
	memset(tmp, 0, sizeof(tmp));

4554
	if (file) {
4555
		/*
4556
		 * d_path works from the end of the rb backwards, so we
4557 4558 4559 4560
		 * need to add enough zero bytes after the string to handle
		 * the 64bit alignment we do later.
		 */
		buf = kzalloc(PATH_MAX + sizeof(u64), GFP_KERNEL);
4561 4562 4563 4564
		if (!buf) {
			name = strncpy(tmp, "//enomem", sizeof(tmp));
			goto got_name;
		}
4565
		name = d_path(&file->f_path, buf, PATH_MAX);
4566 4567 4568 4569 4570
		if (IS_ERR(name)) {
			name = strncpy(tmp, "//toolong", sizeof(tmp));
			goto got_name;
		}
	} else {
4571 4572 4573
		if (arch_vma_name(mmap_event->vma)) {
			name = strncpy(tmp, arch_vma_name(mmap_event->vma),
				       sizeof(tmp));
4574
			goto got_name;
4575
		}
4576 4577 4578 4579

		if (!vma->vm_mm) {
			name = strncpy(tmp, "[vdso]", sizeof(tmp));
			goto got_name;
4580 4581 4582 4583 4584 4585 4586 4587
		} else if (vma->vm_start <= vma->vm_mm->start_brk &&
				vma->vm_end >= vma->vm_mm->brk) {
			name = strncpy(tmp, "[heap]", sizeof(tmp));
			goto got_name;
		} else if (vma->vm_start <= vma->vm_mm->start_stack &&
				vma->vm_end >= vma->vm_mm->start_stack) {
			name = strncpy(tmp, "[stack]", sizeof(tmp));
			goto got_name;
4588 4589
		}

4590 4591 4592 4593 4594
		name = strncpy(tmp, "//anon", sizeof(tmp));
		goto got_name;
	}

got_name:
4595
	size = ALIGN(strlen(name)+1, sizeof(u64));
4596 4597 4598 4599

	mmap_event->file_name = name;
	mmap_event->file_size = size;

4600
	mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
4601

4602
	rcu_read_lock();
P
Peter Zijlstra 已提交
4603
	list_for_each_entry_rcu(pmu, &pmus, entry) {
4604
		cpuctx = get_cpu_ptr(pmu->pmu_cpu_context);
4605 4606
		if (cpuctx->active_pmu != pmu)
			goto next;
P
Peter Zijlstra 已提交
4607 4608
		perf_event_mmap_ctx(&cpuctx->ctx, mmap_event,
					vma->vm_flags & VM_EXEC);
P
Peter Zijlstra 已提交
4609 4610 4611

		ctxn = pmu->task_ctx_nr;
		if (ctxn < 0)
4612
			goto next;
P
Peter Zijlstra 已提交
4613 4614 4615 4616 4617 4618

		ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
		if (ctx) {
			perf_event_mmap_ctx(ctx, mmap_event,
					vma->vm_flags & VM_EXEC);
		}
4619 4620
next:
		put_cpu_ptr(pmu->pmu_cpu_context);
P
Peter Zijlstra 已提交
4621
	}
4622 4623
	rcu_read_unlock();

4624 4625 4626
	kfree(buf);
}

4627
void perf_event_mmap(struct vm_area_struct *vma)
4628
{
4629 4630
	struct perf_mmap_event mmap_event;

4631
	if (!atomic_read(&nr_mmap_events))
4632 4633 4634
		return;

	mmap_event = (struct perf_mmap_event){
4635
		.vma	= vma,
4636 4637
		/* .file_name */
		/* .file_size */
4638
		.event_id  = {
4639
			.header = {
4640
				.type = PERF_RECORD_MMAP,
4641
				.misc = PERF_RECORD_MISC_USER,
4642 4643 4644 4645
				/* .size */
			},
			/* .pid */
			/* .tid */
4646 4647
			.start  = vma->vm_start,
			.len    = vma->vm_end - vma->vm_start,
4648
			.pgoff  = (u64)vma->vm_pgoff << PAGE_SHIFT,
4649 4650 4651
		},
	};

4652
	perf_event_mmap_event(&mmap_event);
4653 4654
}

4655 4656 4657 4658
/*
 * IRQ throttle logging
 */

4659
static void perf_log_throttle(struct perf_event *event, int enable)
4660 4661
{
	struct perf_output_handle handle;
4662
	struct perf_sample_data sample;
4663 4664 4665 4666 4667
	int ret;

	struct {
		struct perf_event_header	header;
		u64				time;
4668
		u64				id;
4669
		u64				stream_id;
4670 4671
	} throttle_event = {
		.header = {
4672
			.type = PERF_RECORD_THROTTLE,
4673 4674 4675
			.misc = 0,
			.size = sizeof(throttle_event),
		},
P
Peter Zijlstra 已提交
4676
		.time		= perf_clock(),
4677 4678
		.id		= primary_event_id(event),
		.stream_id	= event->id,
4679 4680
	};

4681
	if (enable)
4682
		throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
4683

4684 4685 4686
	perf_event_header__init_id(&throttle_event.header, &sample, event);

	ret = perf_output_begin(&handle, event,
4687
				throttle_event.header.size);
4688 4689 4690 4691
	if (ret)
		return;

	perf_output_put(&handle, throttle_event);
4692
	perf_event__output_id_sample(event, &handle, &sample);
4693 4694 4695
	perf_output_end(&handle);
}

4696
/*
4697
 * Generic event overflow handling, sampling.
4698 4699
 */

4700
static int __perf_event_overflow(struct perf_event *event,
4701 4702
				   int throttle, struct perf_sample_data *data,
				   struct pt_regs *regs)
4703
{
4704 4705
	int events = atomic_read(&event->event_limit);
	struct hw_perf_event *hwc = &event->hw;
4706 4707
	int ret = 0;

4708 4709 4710 4711 4712 4713 4714
	/*
	 * Non-sampling counters might still use the PMI to fold short
	 * hardware counters, ignore those.
	 */
	if (unlikely(!is_sampling_event(event)))
		return 0;

P
Peter Zijlstra 已提交
4715 4716 4717 4718
	if (unlikely(hwc->interrupts >= max_samples_per_tick)) {
		if (throttle) {
			hwc->interrupts = MAX_INTERRUPTS;
			perf_log_throttle(event, 0);
4719 4720
			ret = 1;
		}
P
Peter Zijlstra 已提交
4721 4722
	} else
		hwc->interrupts++;
4723

4724
	if (event->attr.freq) {
P
Peter Zijlstra 已提交
4725
		u64 now = perf_clock();
4726
		s64 delta = now - hwc->freq_time_stamp;
4727

4728
		hwc->freq_time_stamp = now;
4729

4730 4731
		if (delta > 0 && delta < 2*TICK_NSEC)
			perf_adjust_period(event, delta, hwc->last_period);
4732 4733
	}

4734 4735
	/*
	 * XXX event_limit might not quite work as expected on inherited
4736
	 * events
4737 4738
	 */

4739 4740
	event->pending_kill = POLL_IN;
	if (events && atomic_dec_and_test(&event->event_limit)) {
4741
		ret = 1;
4742
		event->pending_kill = POLL_HUP;
4743 4744
		event->pending_disable = 1;
		irq_work_queue(&event->pending);
4745 4746
	}

4747
	if (event->overflow_handler)
4748
		event->overflow_handler(event, data, regs);
4749
	else
4750
		perf_event_output(event, data, regs);
4751

P
Peter Zijlstra 已提交
4752
	if (event->fasync && event->pending_kill) {
4753 4754
		event->pending_wakeup = 1;
		irq_work_queue(&event->pending);
P
Peter Zijlstra 已提交
4755 4756
	}

4757
	return ret;
4758 4759
}

4760
int perf_event_overflow(struct perf_event *event,
4761 4762
			  struct perf_sample_data *data,
			  struct pt_regs *regs)
4763
{
4764
	return __perf_event_overflow(event, 1, data, regs);
4765 4766
}

4767
/*
4768
 * Generic software event infrastructure
4769 4770
 */

4771 4772 4773 4774 4775 4776 4777 4778 4779 4780 4781
struct swevent_htable {
	struct swevent_hlist		*swevent_hlist;
	struct mutex			hlist_mutex;
	int				hlist_refcount;

	/* Recursion avoidance in each contexts */
	int				recursion[PERF_NR_CONTEXTS];
};

static DEFINE_PER_CPU(struct swevent_htable, swevent_htable);

4782
/*
4783 4784
 * We directly increment event->count and keep a second value in
 * event->hw.period_left to count intervals. This period event
4785 4786 4787 4788
 * is kept in the range [-sample_period, 0] so that we can use the
 * sign as trigger.
 */

4789
static u64 perf_swevent_set_period(struct perf_event *event)
4790
{
4791
	struct hw_perf_event *hwc = &event->hw;
4792 4793 4794 4795 4796
	u64 period = hwc->last_period;
	u64 nr, offset;
	s64 old, val;

	hwc->last_period = hwc->sample_period;
4797 4798

again:
4799
	old = val = local64_read(&hwc->period_left);
4800 4801
	if (val < 0)
		return 0;
4802

4803 4804 4805
	nr = div64_u64(period + val, period);
	offset = nr * period;
	val -= offset;
4806
	if (local64_cmpxchg(&hwc->period_left, old, val) != old)
4807
		goto again;
4808

4809
	return nr;
4810 4811
}

4812
static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
4813
				    struct perf_sample_data *data,
4814
				    struct pt_regs *regs)
4815
{
4816
	struct hw_perf_event *hwc = &event->hw;
4817
	int throttle = 0;
4818

4819
	data->period = event->hw.last_period;
4820 4821
	if (!overflow)
		overflow = perf_swevent_set_period(event);
4822

4823 4824
	if (hwc->interrupts == MAX_INTERRUPTS)
		return;
4825

4826
	for (; overflow; overflow--) {
4827
		if (__perf_event_overflow(event, throttle,
4828
					    data, regs)) {
4829 4830 4831 4832 4833 4834
			/*
			 * We inhibit the overflow from happening when
			 * hwc->interrupts == MAX_INTERRUPTS.
			 */
			break;
		}
4835
		throttle = 1;
4836
	}
4837 4838
}

P
Peter Zijlstra 已提交
4839
static void perf_swevent_event(struct perf_event *event, u64 nr,
4840
			       struct perf_sample_data *data,
4841
			       struct pt_regs *regs)
4842
{
4843
	struct hw_perf_event *hwc = &event->hw;
4844

4845
	local64_add(nr, &event->count);
4846

4847 4848 4849
	if (!regs)
		return;

4850
	if (!is_sampling_event(event))
4851
		return;
4852

4853
	if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
4854
		return perf_swevent_overflow(event, 1, data, regs);
4855

4856
	if (local64_add_negative(nr, &hwc->period_left))
4857
		return;
4858

4859
	perf_swevent_overflow(event, 0, data, regs);
4860 4861
}

4862 4863 4864
static int perf_exclude_event(struct perf_event *event,
			      struct pt_regs *regs)
{
P
Peter Zijlstra 已提交
4865
	if (event->hw.state & PERF_HES_STOPPED)
4866
		return 1;
P
Peter Zijlstra 已提交
4867

4868 4869 4870 4871 4872 4873 4874 4875 4876 4877 4878
	if (regs) {
		if (event->attr.exclude_user && user_mode(regs))
			return 1;

		if (event->attr.exclude_kernel && !user_mode(regs))
			return 1;
	}

	return 0;
}

4879
static int perf_swevent_match(struct perf_event *event,
P
Peter Zijlstra 已提交
4880
				enum perf_type_id type,
L
Li Zefan 已提交
4881 4882 4883
				u32 event_id,
				struct perf_sample_data *data,
				struct pt_regs *regs)
4884
{
4885
	if (event->attr.type != type)
4886
		return 0;
4887

4888
	if (event->attr.config != event_id)
4889 4890
		return 0;

4891 4892
	if (perf_exclude_event(event, regs))
		return 0;
4893 4894 4895 4896

	return 1;
}

4897 4898 4899 4900 4901 4902 4903
static inline u64 swevent_hash(u64 type, u32 event_id)
{
	u64 val = event_id | (type << 32);

	return hash_64(val, SWEVENT_HLIST_BITS);
}

4904 4905
static inline struct hlist_head *
__find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
4906
{
4907 4908 4909 4910
	u64 hash = swevent_hash(type, event_id);

	return &hlist->heads[hash];
}
4911

4912 4913
/* For the read side: events when they trigger */
static inline struct hlist_head *
4914
find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id)
4915 4916
{
	struct swevent_hlist *hlist;
4917

4918
	hlist = rcu_dereference(swhash->swevent_hlist);
4919 4920 4921
	if (!hlist)
		return NULL;

4922 4923 4924 4925 4926
	return __find_swevent_head(hlist, type, event_id);
}

/* For the event head insertion and removal in the hlist */
static inline struct hlist_head *
4927
find_swevent_head(struct swevent_htable *swhash, struct perf_event *event)
4928 4929 4930 4931 4932 4933 4934 4935 4936 4937
{
	struct swevent_hlist *hlist;
	u32 event_id = event->attr.config;
	u64 type = event->attr.type;

	/*
	 * Event scheduling is always serialized against hlist allocation
	 * and release. Which makes the protected version suitable here.
	 * The context lock guarantees that.
	 */
4938
	hlist = rcu_dereference_protected(swhash->swevent_hlist,
4939 4940 4941 4942 4943
					  lockdep_is_held(&event->ctx->lock));
	if (!hlist)
		return NULL;

	return __find_swevent_head(hlist, type, event_id);
4944 4945 4946
}

static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
4947
				    u64 nr,
4948 4949
				    struct perf_sample_data *data,
				    struct pt_regs *regs)
4950
{
4951
	struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
4952
	struct perf_event *event;
4953 4954
	struct hlist_node *node;
	struct hlist_head *head;
4955

4956
	rcu_read_lock();
4957
	head = find_swevent_head_rcu(swhash, type, event_id);
4958 4959 4960 4961
	if (!head)
		goto end;

	hlist_for_each_entry_rcu(event, node, head, hlist_entry) {
L
Li Zefan 已提交
4962
		if (perf_swevent_match(event, type, event_id, data, regs))
4963
			perf_swevent_event(event, nr, data, regs);
4964
	}
4965 4966
end:
	rcu_read_unlock();
4967 4968
}

4969
int perf_swevent_get_recursion_context(void)
P
Peter Zijlstra 已提交
4970
{
4971
	struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
P
Peter Zijlstra 已提交
4972

4973
	return get_recursion_context(swhash->recursion);
P
Peter Zijlstra 已提交
4974
}
I
Ingo Molnar 已提交
4975
EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
P
Peter Zijlstra 已提交
4976

4977
inline void perf_swevent_put_recursion_context(int rctx)
4978
{
4979
	struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
4980

4981
	put_recursion_context(swhash->recursion, rctx);
4982
}
4983

4984
void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
4985
{
4986
	struct perf_sample_data data;
4987 4988
	int rctx;

4989
	preempt_disable_notrace();
4990 4991 4992
	rctx = perf_swevent_get_recursion_context();
	if (rctx < 0)
		return;
4993

4994
	perf_sample_data_init(&data, addr);
4995

4996
	do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs);
4997 4998

	perf_swevent_put_recursion_context(rctx);
4999
	preempt_enable_notrace();
5000 5001
}

5002
static void perf_swevent_read(struct perf_event *event)
5003 5004 5005
{
}

P
Peter Zijlstra 已提交
5006
static int perf_swevent_add(struct perf_event *event, int flags)
5007
{
5008
	struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
5009
	struct hw_perf_event *hwc = &event->hw;
5010 5011
	struct hlist_head *head;

5012
	if (is_sampling_event(event)) {
5013
		hwc->last_period = hwc->sample_period;
5014
		perf_swevent_set_period(event);
5015
	}
5016

P
Peter Zijlstra 已提交
5017 5018
	hwc->state = !(flags & PERF_EF_START);

5019
	head = find_swevent_head(swhash, event);
5020 5021 5022 5023 5024
	if (WARN_ON_ONCE(!head))
		return -EINVAL;

	hlist_add_head_rcu(&event->hlist_entry, head);

5025 5026 5027
	return 0;
}

P
Peter Zijlstra 已提交
5028
static void perf_swevent_del(struct perf_event *event, int flags)
5029
{
5030
	hlist_del_rcu(&event->hlist_entry);
5031 5032
}

P
Peter Zijlstra 已提交
5033
static void perf_swevent_start(struct perf_event *event, int flags)
5034
{
P
Peter Zijlstra 已提交
5035
	event->hw.state = 0;
5036
}
I
Ingo Molnar 已提交
5037

P
Peter Zijlstra 已提交
5038
static void perf_swevent_stop(struct perf_event *event, int flags)
5039
{
P
Peter Zijlstra 已提交
5040
	event->hw.state = PERF_HES_STOPPED;
5041 5042
}

5043 5044
/* Deref the hlist from the update side */
static inline struct swevent_hlist *
5045
swevent_hlist_deref(struct swevent_htable *swhash)
5046
{
5047 5048
	return rcu_dereference_protected(swhash->swevent_hlist,
					 lockdep_is_held(&swhash->hlist_mutex));
5049 5050
}

5051
static void swevent_hlist_release(struct swevent_htable *swhash)
5052
{
5053
	struct swevent_hlist *hlist = swevent_hlist_deref(swhash);
5054

5055
	if (!hlist)
5056 5057
		return;

5058
	rcu_assign_pointer(swhash->swevent_hlist, NULL);
5059
	kfree_rcu(hlist, rcu_head);
5060 5061 5062 5063
}

static void swevent_hlist_put_cpu(struct perf_event *event, int cpu)
{
5064
	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
5065

5066
	mutex_lock(&swhash->hlist_mutex);
5067

5068 5069
	if (!--swhash->hlist_refcount)
		swevent_hlist_release(swhash);
5070

5071
	mutex_unlock(&swhash->hlist_mutex);
5072 5073 5074 5075 5076 5077 5078 5079 5080 5081 5082 5083 5084 5085 5086 5087 5088
}

static void swevent_hlist_put(struct perf_event *event)
{
	int cpu;

	if (event->cpu != -1) {
		swevent_hlist_put_cpu(event, event->cpu);
		return;
	}

	for_each_possible_cpu(cpu)
		swevent_hlist_put_cpu(event, cpu);
}

static int swevent_hlist_get_cpu(struct perf_event *event, int cpu)
{
5089
	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
5090 5091
	int err = 0;

5092
	mutex_lock(&swhash->hlist_mutex);
5093

5094
	if (!swevent_hlist_deref(swhash) && cpu_online(cpu)) {
5095 5096 5097 5098 5099 5100 5101
		struct swevent_hlist *hlist;

		hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
		if (!hlist) {
			err = -ENOMEM;
			goto exit;
		}
5102
		rcu_assign_pointer(swhash->swevent_hlist, hlist);
5103
	}
5104
	swhash->hlist_refcount++;
P
Peter Zijlstra 已提交
5105
exit:
5106
	mutex_unlock(&swhash->hlist_mutex);
5107 5108 5109 5110 5111 5112 5113 5114 5115 5116 5117 5118 5119 5120 5121 5122 5123 5124 5125 5126 5127 5128 5129

	return err;
}

static int swevent_hlist_get(struct perf_event *event)
{
	int err;
	int cpu, failed_cpu;

	if (event->cpu != -1)
		return swevent_hlist_get_cpu(event, event->cpu);

	get_online_cpus();
	for_each_possible_cpu(cpu) {
		err = swevent_hlist_get_cpu(event, cpu);
		if (err) {
			failed_cpu = cpu;
			goto fail;
		}
	}
	put_online_cpus();

	return 0;
P
Peter Zijlstra 已提交
5130
fail:
5131 5132 5133 5134 5135 5136 5137 5138 5139 5140
	for_each_possible_cpu(cpu) {
		if (cpu == failed_cpu)
			break;
		swevent_hlist_put_cpu(event, cpu);
	}

	put_online_cpus();
	return err;
}

5141
struct jump_label_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
5142

5143 5144 5145
static void sw_perf_event_destroy(struct perf_event *event)
{
	u64 event_id = event->attr.config;
5146

5147 5148
	WARN_ON(event->parent);

P
Peter Zijlstra 已提交
5149
	jump_label_dec(&perf_swevent_enabled[event_id]);
5150 5151 5152 5153 5154 5155 5156 5157 5158 5159 5160 5161 5162 5163 5164 5165 5166 5167 5168
	swevent_hlist_put(event);
}

static int perf_swevent_init(struct perf_event *event)
{
	int event_id = event->attr.config;

	if (event->attr.type != PERF_TYPE_SOFTWARE)
		return -ENOENT;

	switch (event_id) {
	case PERF_COUNT_SW_CPU_CLOCK:
	case PERF_COUNT_SW_TASK_CLOCK:
		return -ENOENT;

	default:
		break;
	}

5169
	if (event_id >= PERF_COUNT_SW_MAX)
5170 5171 5172 5173 5174 5175 5176 5177 5178
		return -ENOENT;

	if (!event->parent) {
		int err;

		err = swevent_hlist_get(event);
		if (err)
			return err;

P
Peter Zijlstra 已提交
5179
		jump_label_inc(&perf_swevent_enabled[event_id]);
5180 5181 5182 5183 5184 5185 5186
		event->destroy = sw_perf_event_destroy;
	}

	return 0;
}

static struct pmu perf_swevent = {
5187
	.task_ctx_nr	= perf_sw_context,
5188

5189
	.event_init	= perf_swevent_init,
P
Peter Zijlstra 已提交
5190 5191 5192 5193
	.add		= perf_swevent_add,
	.del		= perf_swevent_del,
	.start		= perf_swevent_start,
	.stop		= perf_swevent_stop,
5194 5195 5196
	.read		= perf_swevent_read,
};

5197 5198
#ifdef CONFIG_EVENT_TRACING

5199 5200 5201 5202 5203 5204 5205 5206 5207 5208 5209 5210 5211 5212
static int perf_tp_filter_match(struct perf_event *event,
				struct perf_sample_data *data)
{
	void *record = data->raw->data;

	if (likely(!event->filter) || filter_match_preds(event->filter, record))
		return 1;
	return 0;
}

static int perf_tp_event_match(struct perf_event *event,
				struct perf_sample_data *data,
				struct pt_regs *regs)
{
5213 5214
	if (event->hw.state & PERF_HES_STOPPED)
		return 0;
5215 5216 5217 5218
	/*
	 * All tracepoints are from kernel-space.
	 */
	if (event->attr.exclude_kernel)
5219 5220 5221 5222 5223 5224 5225 5226 5227
		return 0;

	if (!perf_tp_filter_match(event, data))
		return 0;

	return 1;
}

void perf_tp_event(u64 addr, u64 count, void *record, int entry_size,
5228
		   struct pt_regs *regs, struct hlist_head *head, int rctx)
5229 5230
{
	struct perf_sample_data data;
5231 5232 5233
	struct perf_event *event;
	struct hlist_node *node;

5234 5235 5236 5237 5238 5239 5240 5241
	struct perf_raw_record raw = {
		.size = entry_size,
		.data = record,
	};

	perf_sample_data_init(&data, addr);
	data.raw = &raw;

5242 5243
	hlist_for_each_entry_rcu(event, node, head, hlist_entry) {
		if (perf_tp_event_match(event, &data, regs))
5244
			perf_swevent_event(event, count, &data, regs);
5245
	}
5246 5247

	perf_swevent_put_recursion_context(rctx);
5248 5249 5250
}
EXPORT_SYMBOL_GPL(perf_tp_event);

5251
static void tp_perf_event_destroy(struct perf_event *event)
5252
{
5253
	perf_trace_destroy(event);
5254 5255
}

5256
static int perf_tp_event_init(struct perf_event *event)
5257
{
5258 5259
	int err;

5260 5261 5262
	if (event->attr.type != PERF_TYPE_TRACEPOINT)
		return -ENOENT;

5263 5264
	err = perf_trace_init(event);
	if (err)
5265
		return err;
5266

5267
	event->destroy = tp_perf_event_destroy;
5268

5269 5270 5271 5272
	return 0;
}

static struct pmu perf_tracepoint = {
5273 5274
	.task_ctx_nr	= perf_sw_context,

5275
	.event_init	= perf_tp_event_init,
P
Peter Zijlstra 已提交
5276 5277 5278 5279
	.add		= perf_trace_add,
	.del		= perf_trace_del,
	.start		= perf_swevent_start,
	.stop		= perf_swevent_stop,
5280 5281 5282 5283 5284
	.read		= perf_swevent_read,
};

static inline void perf_tp_register(void)
{
P
Peter Zijlstra 已提交
5285
	perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT);
5286
}
L
Li Zefan 已提交
5287 5288 5289 5290 5291 5292 5293 5294 5295 5296 5297 5298 5299 5300 5301 5302 5303 5304 5305 5306 5307 5308 5309 5310

static int perf_event_set_filter(struct perf_event *event, void __user *arg)
{
	char *filter_str;
	int ret;

	if (event->attr.type != PERF_TYPE_TRACEPOINT)
		return -EINVAL;

	filter_str = strndup_user(arg, PAGE_SIZE);
	if (IS_ERR(filter_str))
		return PTR_ERR(filter_str);

	ret = ftrace_profile_set_filter(event, event->attr.config, filter_str);

	kfree(filter_str);
	return ret;
}

static void perf_event_free_filter(struct perf_event *event)
{
	ftrace_profile_free_filter(event);
}

5311
#else
L
Li Zefan 已提交
5312

5313
static inline void perf_tp_register(void)
5314 5315
{
}
L
Li Zefan 已提交
5316 5317 5318 5319 5320 5321 5322 5323 5324 5325

static int perf_event_set_filter(struct perf_event *event, void __user *arg)
{
	return -ENOENT;
}

static void perf_event_free_filter(struct perf_event *event)
{
}

5326
#endif /* CONFIG_EVENT_TRACING */
5327

5328
#ifdef CONFIG_HAVE_HW_BREAKPOINT
5329
void perf_bp_event(struct perf_event *bp, void *data)
5330
{
5331 5332 5333
	struct perf_sample_data sample;
	struct pt_regs *regs = data;

5334
	perf_sample_data_init(&sample, bp->attr.bp_addr);
5335

P
Peter Zijlstra 已提交
5336
	if (!bp->hw.state && !perf_exclude_event(bp, regs))
5337
		perf_swevent_event(bp, 1, &sample, regs);
5338 5339 5340
}
#endif

5341 5342 5343
/*
 * hrtimer based swevent callback
 */
5344

5345
static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
5346
{
5347 5348 5349 5350 5351
	enum hrtimer_restart ret = HRTIMER_RESTART;
	struct perf_sample_data data;
	struct pt_regs *regs;
	struct perf_event *event;
	u64 period;
5352

5353
	event = container_of(hrtimer, struct perf_event, hw.hrtimer);
P
Peter Zijlstra 已提交
5354 5355 5356 5357

	if (event->state != PERF_EVENT_STATE_ACTIVE)
		return HRTIMER_NORESTART;

5358
	event->pmu->read(event);
5359

5360 5361 5362 5363 5364 5365
	perf_sample_data_init(&data, 0);
	data.period = event->hw.last_period;
	regs = get_irq_regs();

	if (regs && !perf_exclude_event(event, regs)) {
		if (!(event->attr.exclude_idle && current->pid == 0))
5366
			if (perf_event_overflow(event, &data, regs))
5367 5368
				ret = HRTIMER_NORESTART;
	}
5369

5370 5371
	period = max_t(u64, 10000, event->hw.sample_period);
	hrtimer_forward_now(hrtimer, ns_to_ktime(period));
5372

5373
	return ret;
5374 5375
}

5376
static void perf_swevent_start_hrtimer(struct perf_event *event)
5377
{
5378
	struct hw_perf_event *hwc = &event->hw;
5379 5380 5381 5382
	s64 period;

	if (!is_sampling_event(event))
		return;
5383

5384 5385 5386 5387
	period = local64_read(&hwc->period_left);
	if (period) {
		if (period < 0)
			period = 10000;
P
Peter Zijlstra 已提交
5388

5389 5390 5391 5392 5393
		local64_set(&hwc->period_left, 0);
	} else {
		period = max_t(u64, 10000, hwc->sample_period);
	}
	__hrtimer_start_range_ns(&hwc->hrtimer,
5394
				ns_to_ktime(period), 0,
5395
				HRTIMER_MODE_REL_PINNED, 0);
5396
}
5397 5398

static void perf_swevent_cancel_hrtimer(struct perf_event *event)
5399
{
5400 5401
	struct hw_perf_event *hwc = &event->hw;

5402
	if (is_sampling_event(event)) {
5403
		ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
P
Peter Zijlstra 已提交
5404
		local64_set(&hwc->period_left, ktime_to_ns(remaining));
5405 5406 5407

		hrtimer_cancel(&hwc->hrtimer);
	}
5408 5409
}

P
Peter Zijlstra 已提交
5410 5411 5412 5413 5414 5415 5416 5417 5418 5419 5420 5421 5422 5423 5424 5425 5426 5427 5428 5429 5430 5431 5432 5433
static void perf_swevent_init_hrtimer(struct perf_event *event)
{
	struct hw_perf_event *hwc = &event->hw;

	if (!is_sampling_event(event))
		return;

	hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
	hwc->hrtimer.function = perf_swevent_hrtimer;

	/*
	 * Since hrtimers have a fixed rate, we can do a static freq->period
	 * mapping and avoid the whole period adjust feedback stuff.
	 */
	if (event->attr.freq) {
		long freq = event->attr.sample_freq;

		event->attr.sample_period = NSEC_PER_SEC / freq;
		hwc->sample_period = event->attr.sample_period;
		local64_set(&hwc->period_left, hwc->sample_period);
		event->attr.freq = 0;
	}
}

5434 5435 5436 5437 5438
/*
 * Software event: cpu wall time clock
 */

static void cpu_clock_event_update(struct perf_event *event)
5439
{
5440 5441 5442
	s64 prev;
	u64 now;

P
Peter Zijlstra 已提交
5443
	now = local_clock();
5444 5445
	prev = local64_xchg(&event->hw.prev_count, now);
	local64_add(now - prev, &event->count);
5446 5447
}

P
Peter Zijlstra 已提交
5448
static void cpu_clock_event_start(struct perf_event *event, int flags)
5449
{
P
Peter Zijlstra 已提交
5450
	local64_set(&event->hw.prev_count, local_clock());
5451 5452 5453
	perf_swevent_start_hrtimer(event);
}

P
Peter Zijlstra 已提交
5454
static void cpu_clock_event_stop(struct perf_event *event, int flags)
5455
{
5456 5457 5458
	perf_swevent_cancel_hrtimer(event);
	cpu_clock_event_update(event);
}
5459

P
Peter Zijlstra 已提交
5460 5461 5462 5463 5464 5465 5466 5467 5468 5469 5470 5471 5472
static int cpu_clock_event_add(struct perf_event *event, int flags)
{
	if (flags & PERF_EF_START)
		cpu_clock_event_start(event, flags);

	return 0;
}

static void cpu_clock_event_del(struct perf_event *event, int flags)
{
	cpu_clock_event_stop(event, flags);
}

5473 5474 5475 5476
static void cpu_clock_event_read(struct perf_event *event)
{
	cpu_clock_event_update(event);
}
5477

5478 5479 5480 5481 5482 5483 5484 5485
static int cpu_clock_event_init(struct perf_event *event)
{
	if (event->attr.type != PERF_TYPE_SOFTWARE)
		return -ENOENT;

	if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK)
		return -ENOENT;

P
Peter Zijlstra 已提交
5486 5487
	perf_swevent_init_hrtimer(event);

5488
	return 0;
5489 5490
}

5491
static struct pmu perf_cpu_clock = {
5492 5493
	.task_ctx_nr	= perf_sw_context,

5494
	.event_init	= cpu_clock_event_init,
P
Peter Zijlstra 已提交
5495 5496 5497 5498
	.add		= cpu_clock_event_add,
	.del		= cpu_clock_event_del,
	.start		= cpu_clock_event_start,
	.stop		= cpu_clock_event_stop,
5499 5500 5501 5502 5503 5504 5505 5506
	.read		= cpu_clock_event_read,
};

/*
 * Software event: task time clock
 */

static void task_clock_event_update(struct perf_event *event, u64 now)
5507
{
5508 5509
	u64 prev;
	s64 delta;
5510

5511 5512 5513 5514
	prev = local64_xchg(&event->hw.prev_count, now);
	delta = now - prev;
	local64_add(delta, &event->count);
}
5515

P
Peter Zijlstra 已提交
5516
static void task_clock_event_start(struct perf_event *event, int flags)
5517
{
P
Peter Zijlstra 已提交
5518
	local64_set(&event->hw.prev_count, event->ctx->time);
5519 5520 5521
	perf_swevent_start_hrtimer(event);
}

P
Peter Zijlstra 已提交
5522
static void task_clock_event_stop(struct perf_event *event, int flags)
5523 5524 5525
{
	perf_swevent_cancel_hrtimer(event);
	task_clock_event_update(event, event->ctx->time);
P
Peter Zijlstra 已提交
5526 5527 5528 5529 5530 5531
}

static int task_clock_event_add(struct perf_event *event, int flags)
{
	if (flags & PERF_EF_START)
		task_clock_event_start(event, flags);
5532

P
Peter Zijlstra 已提交
5533 5534 5535 5536 5537 5538
	return 0;
}

static void task_clock_event_del(struct perf_event *event, int flags)
{
	task_clock_event_stop(event, PERF_EF_UPDATE);
5539 5540 5541 5542
}

static void task_clock_event_read(struct perf_event *event)
{
5543 5544 5545
	u64 now = perf_clock();
	u64 delta = now - event->ctx->timestamp;
	u64 time = event->ctx->time + delta;
5546 5547 5548 5549 5550

	task_clock_event_update(event, time);
}

static int task_clock_event_init(struct perf_event *event)
L
Li Zefan 已提交
5551
{
5552 5553 5554 5555 5556 5557
	if (event->attr.type != PERF_TYPE_SOFTWARE)
		return -ENOENT;

	if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK)
		return -ENOENT;

P
Peter Zijlstra 已提交
5558 5559
	perf_swevent_init_hrtimer(event);

5560
	return 0;
L
Li Zefan 已提交
5561 5562
}

5563
static struct pmu perf_task_clock = {
5564 5565
	.task_ctx_nr	= perf_sw_context,

5566
	.event_init	= task_clock_event_init,
P
Peter Zijlstra 已提交
5567 5568 5569 5570
	.add		= task_clock_event_add,
	.del		= task_clock_event_del,
	.start		= task_clock_event_start,
	.stop		= task_clock_event_stop,
5571 5572
	.read		= task_clock_event_read,
};
L
Li Zefan 已提交
5573

P
Peter Zijlstra 已提交
5574
static void perf_pmu_nop_void(struct pmu *pmu)
5575 5576
{
}
L
Li Zefan 已提交
5577

P
Peter Zijlstra 已提交
5578
static int perf_pmu_nop_int(struct pmu *pmu)
L
Li Zefan 已提交
5579
{
P
Peter Zijlstra 已提交
5580
	return 0;
L
Li Zefan 已提交
5581 5582
}

P
Peter Zijlstra 已提交
5583
static void perf_pmu_start_txn(struct pmu *pmu)
L
Li Zefan 已提交
5584
{
P
Peter Zijlstra 已提交
5585
	perf_pmu_disable(pmu);
L
Li Zefan 已提交
5586 5587
}

P
Peter Zijlstra 已提交
5588 5589 5590 5591 5592
static int perf_pmu_commit_txn(struct pmu *pmu)
{
	perf_pmu_enable(pmu);
	return 0;
}
5593

P
Peter Zijlstra 已提交
5594
static void perf_pmu_cancel_txn(struct pmu *pmu)
5595
{
P
Peter Zijlstra 已提交
5596
	perf_pmu_enable(pmu);
5597 5598
}

P
Peter Zijlstra 已提交
5599 5600 5601 5602 5603
/*
 * Ensures all contexts with the same task_ctx_nr have the same
 * pmu_cpu_context too.
 */
static void *find_pmu_context(int ctxn)
5604
{
P
Peter Zijlstra 已提交
5605
	struct pmu *pmu;
5606

P
Peter Zijlstra 已提交
5607 5608
	if (ctxn < 0)
		return NULL;
5609

P
Peter Zijlstra 已提交
5610 5611 5612 5613
	list_for_each_entry(pmu, &pmus, entry) {
		if (pmu->task_ctx_nr == ctxn)
			return pmu->pmu_cpu_context;
	}
5614

P
Peter Zijlstra 已提交
5615
	return NULL;
5616 5617
}

5618
static void update_pmu_context(struct pmu *pmu, struct pmu *old_pmu)
5619
{
5620 5621 5622 5623 5624 5625 5626 5627 5628 5629 5630 5631 5632 5633 5634
	int cpu;

	for_each_possible_cpu(cpu) {
		struct perf_cpu_context *cpuctx;

		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);

		if (cpuctx->active_pmu == old_pmu)
			cpuctx->active_pmu = pmu;
	}
}

static void free_pmu_context(struct pmu *pmu)
{
	struct pmu *i;
5635

P
Peter Zijlstra 已提交
5636
	mutex_lock(&pmus_lock);
5637
	/*
P
Peter Zijlstra 已提交
5638
	 * Like a real lame refcount.
5639
	 */
5640 5641 5642
	list_for_each_entry(i, &pmus, entry) {
		if (i->pmu_cpu_context == pmu->pmu_cpu_context) {
			update_pmu_context(i, pmu);
P
Peter Zijlstra 已提交
5643
			goto out;
5644
		}
P
Peter Zijlstra 已提交
5645
	}
5646

5647
	free_percpu(pmu->pmu_cpu_context);
P
Peter Zijlstra 已提交
5648 5649
out:
	mutex_unlock(&pmus_lock);
5650
}
P
Peter Zijlstra 已提交
5651
static struct idr pmu_idr;
5652

P
Peter Zijlstra 已提交
5653 5654 5655 5656 5657 5658 5659 5660 5661 5662 5663 5664 5665 5666 5667 5668 5669 5670 5671 5672 5673 5674 5675 5676 5677 5678 5679 5680 5681 5682 5683 5684 5685 5686 5687 5688 5689 5690 5691 5692 5693 5694 5695 5696 5697 5698 5699 5700 5701 5702 5703 5704
static ssize_t
type_show(struct device *dev, struct device_attribute *attr, char *page)
{
	struct pmu *pmu = dev_get_drvdata(dev);

	return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->type);
}

static struct device_attribute pmu_dev_attrs[] = {
       __ATTR_RO(type),
       __ATTR_NULL,
};

static int pmu_bus_running;
static struct bus_type pmu_bus = {
	.name		= "event_source",
	.dev_attrs	= pmu_dev_attrs,
};

static void pmu_dev_release(struct device *dev)
{
	kfree(dev);
}

static int pmu_dev_alloc(struct pmu *pmu)
{
	int ret = -ENOMEM;

	pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL);
	if (!pmu->dev)
		goto out;

	device_initialize(pmu->dev);
	ret = dev_set_name(pmu->dev, "%s", pmu->name);
	if (ret)
		goto free_dev;

	dev_set_drvdata(pmu->dev, pmu);
	pmu->dev->bus = &pmu_bus;
	pmu->dev->release = pmu_dev_release;
	ret = device_add(pmu->dev);
	if (ret)
		goto free_dev;

out:
	return ret;

free_dev:
	put_device(pmu->dev);
	goto out;
}

5705
static struct lock_class_key cpuctx_mutex;
5706
static struct lock_class_key cpuctx_lock;
5707

P
Peter Zijlstra 已提交
5708
int perf_pmu_register(struct pmu *pmu, char *name, int type)
5709
{
P
Peter Zijlstra 已提交
5710
	int cpu, ret;
5711

5712
	mutex_lock(&pmus_lock);
P
Peter Zijlstra 已提交
5713 5714 5715 5716
	ret = -ENOMEM;
	pmu->pmu_disable_count = alloc_percpu(int);
	if (!pmu->pmu_disable_count)
		goto unlock;
5717

P
Peter Zijlstra 已提交
5718 5719 5720 5721 5722 5723 5724 5725 5726 5727 5728 5729 5730 5731 5732 5733 5734 5735
	pmu->type = -1;
	if (!name)
		goto skip_type;
	pmu->name = name;

	if (type < 0) {
		int err = idr_pre_get(&pmu_idr, GFP_KERNEL);
		if (!err)
			goto free_pdc;

		err = idr_get_new_above(&pmu_idr, pmu, PERF_TYPE_MAX, &type);
		if (err) {
			ret = err;
			goto free_pdc;
		}
	}
	pmu->type = type;

P
Peter Zijlstra 已提交
5736 5737 5738 5739 5740 5741
	if (pmu_bus_running) {
		ret = pmu_dev_alloc(pmu);
		if (ret)
			goto free_idr;
	}

P
Peter Zijlstra 已提交
5742
skip_type:
P
Peter Zijlstra 已提交
5743 5744 5745
	pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr);
	if (pmu->pmu_cpu_context)
		goto got_cpu_context;
5746

P
Peter Zijlstra 已提交
5747 5748
	pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context);
	if (!pmu->pmu_cpu_context)
P
Peter Zijlstra 已提交
5749
		goto free_dev;
5750

P
Peter Zijlstra 已提交
5751 5752 5753 5754
	for_each_possible_cpu(cpu) {
		struct perf_cpu_context *cpuctx;

		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
5755
		__perf_event_init_context(&cpuctx->ctx);
5756
		lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex);
5757
		lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock);
5758
		cpuctx->ctx.type = cpu_context;
P
Peter Zijlstra 已提交
5759
		cpuctx->ctx.pmu = pmu;
5760 5761
		cpuctx->jiffies_interval = 1;
		INIT_LIST_HEAD(&cpuctx->rotation_list);
5762
		cpuctx->active_pmu = pmu;
P
Peter Zijlstra 已提交
5763
	}
5764

P
Peter Zijlstra 已提交
5765
got_cpu_context:
P
Peter Zijlstra 已提交
5766 5767 5768 5769 5770 5771 5772 5773 5774 5775 5776 5777 5778 5779
	if (!pmu->start_txn) {
		if (pmu->pmu_enable) {
			/*
			 * If we have pmu_enable/pmu_disable calls, install
			 * transaction stubs that use that to try and batch
			 * hardware accesses.
			 */
			pmu->start_txn  = perf_pmu_start_txn;
			pmu->commit_txn = perf_pmu_commit_txn;
			pmu->cancel_txn = perf_pmu_cancel_txn;
		} else {
			pmu->start_txn  = perf_pmu_nop_void;
			pmu->commit_txn = perf_pmu_nop_int;
			pmu->cancel_txn = perf_pmu_nop_void;
5780
		}
5781
	}
5782

P
Peter Zijlstra 已提交
5783 5784 5785 5786 5787
	if (!pmu->pmu_enable) {
		pmu->pmu_enable  = perf_pmu_nop_void;
		pmu->pmu_disable = perf_pmu_nop_void;
	}

5788
	list_add_rcu(&pmu->entry, &pmus);
P
Peter Zijlstra 已提交
5789 5790
	ret = 0;
unlock:
5791 5792
	mutex_unlock(&pmus_lock);

P
Peter Zijlstra 已提交
5793
	return ret;
P
Peter Zijlstra 已提交
5794

P
Peter Zijlstra 已提交
5795 5796 5797 5798
free_dev:
	device_del(pmu->dev);
	put_device(pmu->dev);

P
Peter Zijlstra 已提交
5799 5800 5801 5802
free_idr:
	if (pmu->type >= PERF_TYPE_MAX)
		idr_remove(&pmu_idr, pmu->type);

P
Peter Zijlstra 已提交
5803 5804 5805
free_pdc:
	free_percpu(pmu->pmu_disable_count);
	goto unlock;
5806 5807
}

5808
void perf_pmu_unregister(struct pmu *pmu)
5809
{
5810 5811 5812
	mutex_lock(&pmus_lock);
	list_del_rcu(&pmu->entry);
	mutex_unlock(&pmus_lock);
5813

5814
	/*
P
Peter Zijlstra 已提交
5815 5816
	 * We dereference the pmu list under both SRCU and regular RCU, so
	 * synchronize against both of those.
5817
	 */
5818
	synchronize_srcu(&pmus_srcu);
P
Peter Zijlstra 已提交
5819
	synchronize_rcu();
5820

P
Peter Zijlstra 已提交
5821
	free_percpu(pmu->pmu_disable_count);
P
Peter Zijlstra 已提交
5822 5823
	if (pmu->type >= PERF_TYPE_MAX)
		idr_remove(&pmu_idr, pmu->type);
P
Peter Zijlstra 已提交
5824 5825
	device_del(pmu->dev);
	put_device(pmu->dev);
5826
	free_pmu_context(pmu);
5827
}
5828

5829 5830 5831 5832
struct pmu *perf_init_event(struct perf_event *event)
{
	struct pmu *pmu = NULL;
	int idx;
5833
	int ret;
5834 5835

	idx = srcu_read_lock(&pmus_srcu);
P
Peter Zijlstra 已提交
5836 5837 5838 5839

	rcu_read_lock();
	pmu = idr_find(&pmu_idr, event->attr.type);
	rcu_read_unlock();
5840
	if (pmu) {
5841
		event->pmu = pmu;
5842 5843 5844
		ret = pmu->event_init(event);
		if (ret)
			pmu = ERR_PTR(ret);
P
Peter Zijlstra 已提交
5845
		goto unlock;
5846
	}
P
Peter Zijlstra 已提交
5847

5848
	list_for_each_entry_rcu(pmu, &pmus, entry) {
5849
		event->pmu = pmu;
5850
		ret = pmu->event_init(event);
5851
		if (!ret)
P
Peter Zijlstra 已提交
5852
			goto unlock;
5853

5854 5855
		if (ret != -ENOENT) {
			pmu = ERR_PTR(ret);
P
Peter Zijlstra 已提交
5856
			goto unlock;
5857
		}
5858
	}
P
Peter Zijlstra 已提交
5859 5860
	pmu = ERR_PTR(-ENOENT);
unlock:
5861
	srcu_read_unlock(&pmus_srcu, idx);
5862

5863
	return pmu;
5864 5865
}

T
Thomas Gleixner 已提交
5866
/*
5867
 * Allocate and initialize a event structure
T
Thomas Gleixner 已提交
5868
 */
5869
static struct perf_event *
5870
perf_event_alloc(struct perf_event_attr *attr, int cpu,
5871 5872 5873
		 struct task_struct *task,
		 struct perf_event *group_leader,
		 struct perf_event *parent_event,
5874 5875
		 perf_overflow_handler_t overflow_handler,
		 void *context)
T
Thomas Gleixner 已提交
5876
{
P
Peter Zijlstra 已提交
5877
	struct pmu *pmu;
5878 5879
	struct perf_event *event;
	struct hw_perf_event *hwc;
5880
	long err;
T
Thomas Gleixner 已提交
5881

5882 5883 5884 5885 5886
	if ((unsigned)cpu >= nr_cpu_ids) {
		if (!task || cpu != -1)
			return ERR_PTR(-EINVAL);
	}

5887
	event = kzalloc(sizeof(*event), GFP_KERNEL);
5888
	if (!event)
5889
		return ERR_PTR(-ENOMEM);
T
Thomas Gleixner 已提交
5890

5891
	/*
5892
	 * Single events are their own group leaders, with an
5893 5894 5895
	 * empty sibling list:
	 */
	if (!group_leader)
5896
		group_leader = event;
5897

5898 5899
	mutex_init(&event->child_mutex);
	INIT_LIST_HEAD(&event->child_list);
5900

5901 5902 5903
	INIT_LIST_HEAD(&event->group_entry);
	INIT_LIST_HEAD(&event->event_entry);
	INIT_LIST_HEAD(&event->sibling_list);
5904 5905
	INIT_LIST_HEAD(&event->rb_entry);

5906
	init_waitqueue_head(&event->waitq);
5907
	init_irq_work(&event->pending, perf_pending_event);
T
Thomas Gleixner 已提交
5908

5909
	mutex_init(&event->mmap_mutex);
5910

5911 5912 5913 5914 5915
	event->cpu		= cpu;
	event->attr		= *attr;
	event->group_leader	= group_leader;
	event->pmu		= NULL;
	event->oncpu		= -1;
5916

5917
	event->parent		= parent_event;
5918

5919 5920
	event->ns		= get_pid_ns(current->nsproxy->pid_ns);
	event->id		= atomic64_inc_return(&perf_event_id);
5921

5922
	event->state		= PERF_EVENT_STATE_INACTIVE;
5923

5924 5925 5926 5927 5928 5929 5930 5931 5932 5933 5934
	if (task) {
		event->attach_state = PERF_ATTACH_TASK;
#ifdef CONFIG_HAVE_HW_BREAKPOINT
		/*
		 * hw_breakpoint is a bit difficult here..
		 */
		if (attr->type == PERF_TYPE_BREAKPOINT)
			event->hw.bp_target = task;
#endif
	}

5935
	if (!overflow_handler && parent_event) {
5936
		overflow_handler = parent_event->overflow_handler;
5937 5938
		context = parent_event->overflow_handler_context;
	}
5939

5940
	event->overflow_handler	= overflow_handler;
5941
	event->overflow_handler_context = context;
5942

5943
	if (attr->disabled)
5944
		event->state = PERF_EVENT_STATE_OFF;
5945

5946
	pmu = NULL;
5947

5948
	hwc = &event->hw;
5949
	hwc->sample_period = attr->sample_period;
5950
	if (attr->freq && attr->sample_freq)
5951
		hwc->sample_period = 1;
5952
	hwc->last_period = hwc->sample_period;
5953

5954
	local64_set(&hwc->period_left, hwc->sample_period);
5955

5956
	/*
5957
	 * we currently do not support PERF_FORMAT_GROUP on inherited events
5958
	 */
5959
	if (attr->inherit && (attr->read_format & PERF_FORMAT_GROUP))
5960 5961
		goto done;

5962
	pmu = perf_init_event(event);
5963

5964 5965
done:
	err = 0;
5966
	if (!pmu)
5967
		err = -EINVAL;
5968 5969
	else if (IS_ERR(pmu))
		err = PTR_ERR(pmu);
5970

5971
	if (err) {
5972 5973 5974
		if (event->ns)
			put_pid_ns(event->ns);
		kfree(event);
5975
		return ERR_PTR(err);
I
Ingo Molnar 已提交
5976
	}
5977

5978
	if (!event->parent) {
5979
		if (event->attach_state & PERF_ATTACH_TASK)
S
Stephane Eranian 已提交
5980
			jump_label_inc(&perf_sched_events);
5981
		if (event->attr.mmap || event->attr.mmap_data)
5982 5983 5984 5985 5986
			atomic_inc(&nr_mmap_events);
		if (event->attr.comm)
			atomic_inc(&nr_comm_events);
		if (event->attr.task)
			atomic_inc(&nr_task_events);
5987 5988 5989 5990 5991 5992 5993
		if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) {
			err = get_callchain_buffers();
			if (err) {
				free_event(event);
				return ERR_PTR(err);
			}
		}
5994
	}
5995

5996
	return event;
T
Thomas Gleixner 已提交
5997 5998
}

5999 6000
static int perf_copy_attr(struct perf_event_attr __user *uattr,
			  struct perf_event_attr *attr)
6001 6002
{
	u32 size;
6003
	int ret;
6004 6005 6006 6007 6008 6009 6010 6011 6012 6013 6014 6015 6016 6017 6018 6019 6020 6021 6022 6023 6024 6025 6026 6027

	if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0))
		return -EFAULT;

	/*
	 * zero the full structure, so that a short copy will be nice.
	 */
	memset(attr, 0, sizeof(*attr));

	ret = get_user(size, &uattr->size);
	if (ret)
		return ret;

	if (size > PAGE_SIZE)	/* silly large */
		goto err_size;

	if (!size)		/* abi compat */
		size = PERF_ATTR_SIZE_VER0;

	if (size < PERF_ATTR_SIZE_VER0)
		goto err_size;

	/*
	 * If we're handed a bigger struct than we know of,
6028 6029 6030
	 * ensure all the unknown bits are 0 - i.e. new
	 * user-space does not rely on any kernel feature
	 * extensions we dont know about yet.
6031 6032
	 */
	if (size > sizeof(*attr)) {
6033 6034 6035
		unsigned char __user *addr;
		unsigned char __user *end;
		unsigned char val;
6036

6037 6038
		addr = (void __user *)uattr + sizeof(*attr);
		end  = (void __user *)uattr + size;
6039

6040
		for (; addr < end; addr++) {
6041 6042 6043 6044 6045 6046
			ret = get_user(val, addr);
			if (ret)
				return ret;
			if (val)
				goto err_size;
		}
6047
		size = sizeof(*attr);
6048 6049 6050 6051 6052 6053
	}

	ret = copy_from_user(attr, uattr, size);
	if (ret)
		return -EFAULT;

6054
	if (attr->__reserved_1)
6055 6056 6057 6058 6059 6060 6061 6062 6063 6064 6065 6066 6067 6068 6069 6070 6071
		return -EINVAL;

	if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
		return -EINVAL;

	if (attr->read_format & ~(PERF_FORMAT_MAX-1))
		return -EINVAL;

out:
	return ret;

err_size:
	put_user(sizeof(*attr), &uattr->size);
	ret = -E2BIG;
	goto out;
}

6072 6073
static int
perf_event_set_output(struct perf_event *event, struct perf_event *output_event)
6074
{
6075
	struct ring_buffer *rb = NULL, *old_rb = NULL;
6076 6077
	int ret = -EINVAL;

6078
	if (!output_event)
6079 6080
		goto set;

6081 6082
	/* don't allow circular references */
	if (event == output_event)
6083 6084
		goto out;

6085 6086 6087 6088 6089 6090 6091
	/*
	 * Don't allow cross-cpu buffers
	 */
	if (output_event->cpu != event->cpu)
		goto out;

	/*
6092
	 * If its not a per-cpu rb, it must be the same task.
6093 6094 6095 6096
	 */
	if (output_event->cpu == -1 && output_event->ctx != event->ctx)
		goto out;

6097
set:
6098
	mutex_lock(&event->mmap_mutex);
6099 6100 6101
	/* Can't redirect output if we've got an active mmap() */
	if (atomic_read(&event->mmap_count))
		goto unlock;
6102

6103
	if (output_event) {
6104 6105 6106
		/* get the rb we want to redirect to */
		rb = ring_buffer_get(output_event);
		if (!rb)
6107
			goto unlock;
6108 6109
	}

6110 6111
	old_rb = event->rb;
	rcu_assign_pointer(event->rb, rb);
6112 6113
	if (old_rb)
		ring_buffer_detach(event, old_rb);
6114
	ret = 0;
6115 6116 6117
unlock:
	mutex_unlock(&event->mmap_mutex);

6118 6119
	if (old_rb)
		ring_buffer_put(old_rb);
6120 6121 6122 6123
out:
	return ret;
}

T
Thomas Gleixner 已提交
6124
/**
6125
 * sys_perf_event_open - open a performance event, associate it to a task/cpu
I
Ingo Molnar 已提交
6126
 *
6127
 * @attr_uptr:	event_id type attributes for monitoring/sampling
T
Thomas Gleixner 已提交
6128
 * @pid:		target pid
I
Ingo Molnar 已提交
6129
 * @cpu:		target cpu
6130
 * @group_fd:		group leader event fd
T
Thomas Gleixner 已提交
6131
 */
6132 6133
SYSCALL_DEFINE5(perf_event_open,
		struct perf_event_attr __user *, attr_uptr,
6134
		pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
T
Thomas Gleixner 已提交
6135
{
6136 6137
	struct perf_event *group_leader = NULL, *output_event = NULL;
	struct perf_event *event, *sibling;
6138 6139 6140
	struct perf_event_attr attr;
	struct perf_event_context *ctx;
	struct file *event_file = NULL;
6141
	struct file *group_file = NULL;
M
Matt Helsley 已提交
6142
	struct task_struct *task = NULL;
6143
	struct pmu *pmu;
6144
	int event_fd;
6145
	int move_group = 0;
6146
	int fput_needed = 0;
6147
	int err;
T
Thomas Gleixner 已提交
6148

6149
	/* for future expandability... */
S
Stephane Eranian 已提交
6150
	if (flags & ~PERF_FLAG_ALL)
6151 6152
		return -EINVAL;

6153 6154 6155
	err = perf_copy_attr(attr_uptr, &attr);
	if (err)
		return err;
6156

6157 6158 6159 6160 6161
	if (!attr.exclude_kernel) {
		if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
			return -EACCES;
	}

6162
	if (attr.freq) {
6163
		if (attr.sample_freq > sysctl_perf_event_sample_rate)
6164 6165 6166
			return -EINVAL;
	}

S
Stephane Eranian 已提交
6167 6168 6169 6170 6171 6172 6173 6174 6175
	/*
	 * In cgroup mode, the pid argument is used to pass the fd
	 * opened to the cgroup directory in cgroupfs. The cpu argument
	 * designates the cpu on which to monitor threads from that
	 * cgroup.
	 */
	if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1))
		return -EINVAL;

6176 6177 6178 6179
	event_fd = get_unused_fd_flags(O_RDWR);
	if (event_fd < 0)
		return event_fd;

6180 6181 6182 6183
	if (group_fd != -1) {
		group_leader = perf_fget_light(group_fd, &fput_needed);
		if (IS_ERR(group_leader)) {
			err = PTR_ERR(group_leader);
6184
			goto err_fd;
6185 6186 6187 6188 6189 6190 6191 6192
		}
		group_file = group_leader->filp;
		if (flags & PERF_FLAG_FD_OUTPUT)
			output_event = group_leader;
		if (flags & PERF_FLAG_FD_NO_GROUP)
			group_leader = NULL;
	}

S
Stephane Eranian 已提交
6193
	if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) {
6194 6195 6196 6197 6198 6199 6200
		task = find_lively_task_by_vpid(pid);
		if (IS_ERR(task)) {
			err = PTR_ERR(task);
			goto err_group_fd;
		}
	}

6201 6202
	event = perf_event_alloc(&attr, cpu, task, group_leader, NULL,
				 NULL, NULL);
6203 6204
	if (IS_ERR(event)) {
		err = PTR_ERR(event);
6205
		goto err_task;
6206 6207
	}

S
Stephane Eranian 已提交
6208 6209 6210 6211
	if (flags & PERF_FLAG_PID_CGROUP) {
		err = perf_cgroup_connect(pid, event, &attr, group_leader);
		if (err)
			goto err_alloc;
6212 6213 6214 6215 6216 6217 6218
		/*
		 * one more event:
		 * - that has cgroup constraint on event->cpu
		 * - that may need work on context switch
		 */
		atomic_inc(&per_cpu(perf_cgroup_events, event->cpu));
		jump_label_inc(&perf_sched_events);
S
Stephane Eranian 已提交
6219 6220
	}

6221 6222 6223 6224 6225
	/*
	 * Special case software events and allow them to be part of
	 * any hardware group.
	 */
	pmu = event->pmu;
6226 6227 6228 6229 6230 6231 6232 6233 6234 6235 6236 6237 6238 6239 6240 6241 6242 6243 6244 6245 6246 6247 6248

	if (group_leader &&
	    (is_software_event(event) != is_software_event(group_leader))) {
		if (is_software_event(event)) {
			/*
			 * If event and group_leader are not both a software
			 * event, and event is, then group leader is not.
			 *
			 * Allow the addition of software events to !software
			 * groups, this is safe because software events never
			 * fail to schedule.
			 */
			pmu = group_leader->pmu;
		} else if (is_software_event(group_leader) &&
			   (group_leader->group_flags & PERF_GROUP_SOFTWARE)) {
			/*
			 * In case the group is a pure software group, and we
			 * try to add a hardware event, move the whole group to
			 * the hardware context.
			 */
			move_group = 1;
		}
	}
6249 6250 6251 6252

	/*
	 * Get the target context (task or percpu):
	 */
M
Matt Helsley 已提交
6253
	ctx = find_get_context(pmu, task, cpu);
6254 6255
	if (IS_ERR(ctx)) {
		err = PTR_ERR(ctx);
6256
		goto err_alloc;
6257 6258
	}

6259 6260 6261 6262 6263
	if (task) {
		put_task_struct(task);
		task = NULL;
	}

I
Ingo Molnar 已提交
6264
	/*
6265
	 * Look up the group leader (we will attach this event to it):
6266
	 */
6267
	if (group_leader) {
6268
		err = -EINVAL;
6269 6270

		/*
I
Ingo Molnar 已提交
6271 6272 6273 6274
		 * Do not allow a recursive hierarchy (this new sibling
		 * becoming part of another group-sibling):
		 */
		if (group_leader->group_leader != group_leader)
6275
			goto err_context;
I
Ingo Molnar 已提交
6276 6277 6278
		/*
		 * Do not allow to attach to a group in a different
		 * task or CPU context:
6279
		 */
6280 6281 6282 6283 6284 6285 6286 6287
		if (move_group) {
			if (group_leader->ctx->type != ctx->type)
				goto err_context;
		} else {
			if (group_leader->ctx != ctx)
				goto err_context;
		}

6288 6289 6290
		/*
		 * Only a group leader can be exclusive or pinned
		 */
6291
		if (attr.exclusive || attr.pinned)
6292
			goto err_context;
6293 6294 6295 6296 6297
	}

	if (output_event) {
		err = perf_event_set_output(event, output_event);
		if (err)
6298
			goto err_context;
6299
	}
T
Thomas Gleixner 已提交
6300

6301 6302 6303
	event_file = anon_inode_getfile("[perf_event]", &perf_fops, event, O_RDWR);
	if (IS_ERR(event_file)) {
		err = PTR_ERR(event_file);
6304
		goto err_context;
6305
	}
6306

6307 6308 6309 6310
	if (move_group) {
		struct perf_event_context *gctx = group_leader->ctx;

		mutex_lock(&gctx->mutex);
6311
		perf_remove_from_context(group_leader);
6312 6313
		list_for_each_entry(sibling, &group_leader->sibling_list,
				    group_entry) {
6314
			perf_remove_from_context(sibling);
6315 6316 6317 6318
			put_ctx(gctx);
		}
		mutex_unlock(&gctx->mutex);
		put_ctx(gctx);
6319
	}
6320

6321
	event->filp = event_file;
6322
	WARN_ON_ONCE(ctx->parent_ctx);
6323
	mutex_lock(&ctx->mutex);
6324 6325 6326 6327 6328 6329 6330 6331 6332 6333 6334

	if (move_group) {
		perf_install_in_context(ctx, group_leader, cpu);
		get_ctx(ctx);
		list_for_each_entry(sibling, &group_leader->sibling_list,
				    group_entry) {
			perf_install_in_context(ctx, sibling, cpu);
			get_ctx(ctx);
		}
	}

6335
	perf_install_in_context(ctx, event, cpu);
6336
	++ctx->generation;
6337
	perf_unpin_context(ctx);
6338
	mutex_unlock(&ctx->mutex);
6339

6340
	event->owner = current;
P
Peter Zijlstra 已提交
6341

6342 6343 6344
	mutex_lock(&current->perf_event_mutex);
	list_add_tail(&event->owner_entry, &current->perf_event_list);
	mutex_unlock(&current->perf_event_mutex);
6345

6346 6347 6348 6349
	/*
	 * Precalculate sample_data sizes
	 */
	perf_event__header_size(event);
6350
	perf_event__id_header_size(event);
6351

6352 6353 6354 6355 6356 6357
	/*
	 * Drop the reference on the group_event after placing the
	 * new event on the sibling_list. This ensures destruction
	 * of the group leader will find the pointer to itself in
	 * perf_group_detach().
	 */
6358 6359 6360
	fput_light(group_file, fput_needed);
	fd_install(event_fd, event_file);
	return event_fd;
T
Thomas Gleixner 已提交
6361

6362
err_context:
6363
	perf_unpin_context(ctx);
6364
	put_ctx(ctx);
6365
err_alloc:
6366
	free_event(event);
P
Peter Zijlstra 已提交
6367 6368 6369
err_task:
	if (task)
		put_task_struct(task);
6370
err_group_fd:
6371
	fput_light(group_file, fput_needed);
6372 6373
err_fd:
	put_unused_fd(event_fd);
6374
	return err;
T
Thomas Gleixner 已提交
6375 6376
}

6377 6378 6379 6380 6381
/**
 * perf_event_create_kernel_counter
 *
 * @attr: attributes of the counter to create
 * @cpu: cpu in which the counter is bound
M
Matt Helsley 已提交
6382
 * @task: task to profile (NULL for percpu)
6383 6384 6385
 */
struct perf_event *
perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
M
Matt Helsley 已提交
6386
				 struct task_struct *task,
6387 6388
				 perf_overflow_handler_t overflow_handler,
				 void *context)
6389 6390
{
	struct perf_event_context *ctx;
6391
	struct perf_event *event;
6392
	int err;
6393

6394 6395 6396
	/*
	 * Get the target context (task or percpu):
	 */
6397

6398 6399
	event = perf_event_alloc(attr, cpu, task, NULL, NULL,
				 overflow_handler, context);
6400 6401 6402 6403
	if (IS_ERR(event)) {
		err = PTR_ERR(event);
		goto err;
	}
6404

M
Matt Helsley 已提交
6405
	ctx = find_get_context(event->pmu, task, cpu);
6406 6407
	if (IS_ERR(ctx)) {
		err = PTR_ERR(ctx);
6408
		goto err_free;
6409
	}
6410 6411 6412 6413 6414 6415

	event->filp = NULL;
	WARN_ON_ONCE(ctx->parent_ctx);
	mutex_lock(&ctx->mutex);
	perf_install_in_context(ctx, event, cpu);
	++ctx->generation;
6416
	perf_unpin_context(ctx);
6417 6418 6419 6420
	mutex_unlock(&ctx->mutex);

	return event;

6421 6422 6423
err_free:
	free_event(event);
err:
6424
	return ERR_PTR(err);
6425
}
6426
EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
6427

6428
static void sync_child_event(struct perf_event *child_event,
6429
			       struct task_struct *child)
6430
{
6431
	struct perf_event *parent_event = child_event->parent;
6432
	u64 child_val;
6433

6434 6435
	if (child_event->attr.inherit_stat)
		perf_event_read_event(child_event, child);
6436

P
Peter Zijlstra 已提交
6437
	child_val = perf_event_count(child_event);
6438 6439 6440 6441

	/*
	 * Add back the child's count to the parent's count:
	 */
6442
	atomic64_add(child_val, &parent_event->child_count);
6443 6444 6445 6446
	atomic64_add(child_event->total_time_enabled,
		     &parent_event->child_total_time_enabled);
	atomic64_add(child_event->total_time_running,
		     &parent_event->child_total_time_running);
6447 6448

	/*
6449
	 * Remove this event from the parent's list
6450
	 */
6451 6452 6453 6454
	WARN_ON_ONCE(parent_event->ctx->parent_ctx);
	mutex_lock(&parent_event->child_mutex);
	list_del_init(&child_event->child_list);
	mutex_unlock(&parent_event->child_mutex);
6455 6456

	/*
6457
	 * Release the parent event, if this was the last
6458 6459
	 * reference to it.
	 */
6460
	fput(parent_event->filp);
6461 6462
}

6463
static void
6464 6465
__perf_event_exit_task(struct perf_event *child_event,
			 struct perf_event_context *child_ctx,
6466
			 struct task_struct *child)
6467
{
6468 6469 6470 6471 6472
	if (child_event->parent) {
		raw_spin_lock_irq(&child_ctx->lock);
		perf_group_detach(child_event);
		raw_spin_unlock_irq(&child_ctx->lock);
	}
6473

6474
	perf_remove_from_context(child_event);
6475

6476
	/*
6477
	 * It can happen that the parent exits first, and has events
6478
	 * that are still around due to the child reference. These
6479
	 * events need to be zapped.
6480
	 */
6481
	if (child_event->parent) {
6482 6483
		sync_child_event(child_event, child);
		free_event(child_event);
6484
	}
6485 6486
}

P
Peter Zijlstra 已提交
6487
static void perf_event_exit_task_context(struct task_struct *child, int ctxn)
6488
{
6489 6490
	struct perf_event *child_event, *tmp;
	struct perf_event_context *child_ctx;
6491
	unsigned long flags;
6492

P
Peter Zijlstra 已提交
6493
	if (likely(!child->perf_event_ctxp[ctxn])) {
6494
		perf_event_task(child, NULL, 0);
6495
		return;
P
Peter Zijlstra 已提交
6496
	}
6497

6498
	local_irq_save(flags);
6499 6500 6501 6502 6503 6504
	/*
	 * We can't reschedule here because interrupts are disabled,
	 * and either child is current or it is a task that can't be
	 * scheduled, so we are now safe from rescheduling changing
	 * our context.
	 */
6505
	child_ctx = rcu_dereference_raw(child->perf_event_ctxp[ctxn]);
6506 6507 6508

	/*
	 * Take the context lock here so that if find_get_context is
6509
	 * reading child->perf_event_ctxp, we wait until it has
6510 6511
	 * incremented the context's refcount before we do put_ctx below.
	 */
6512
	raw_spin_lock(&child_ctx->lock);
6513
	task_ctx_sched_out(child_ctx);
P
Peter Zijlstra 已提交
6514
	child->perf_event_ctxp[ctxn] = NULL;
6515 6516 6517
	/*
	 * If this context is a clone; unclone it so it can't get
	 * swapped to another process while we're removing all
6518
	 * the events from it.
6519 6520
	 */
	unclone_ctx(child_ctx);
6521
	update_context_time(child_ctx);
6522
	raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
P
Peter Zijlstra 已提交
6523 6524

	/*
6525 6526 6527
	 * Report the task dead after unscheduling the events so that we
	 * won't get any samples after PERF_RECORD_EXIT. We can however still
	 * get a few PERF_RECORD_READ events.
P
Peter Zijlstra 已提交
6528
	 */
6529
	perf_event_task(child, child_ctx, 0);
6530

6531 6532 6533
	/*
	 * We can recurse on the same lock type through:
	 *
6534 6535 6536
	 *   __perf_event_exit_task()
	 *     sync_child_event()
	 *       fput(parent_event->filp)
6537 6538 6539 6540 6541
	 *         perf_release()
	 *           mutex_lock(&ctx->mutex)
	 *
	 * But since its the parent context it won't be the same instance.
	 */
6542
	mutex_lock(&child_ctx->mutex);
6543

6544
again:
6545 6546 6547 6548 6549
	list_for_each_entry_safe(child_event, tmp, &child_ctx->pinned_groups,
				 group_entry)
		__perf_event_exit_task(child_event, child_ctx, child);

	list_for_each_entry_safe(child_event, tmp, &child_ctx->flexible_groups,
6550
				 group_entry)
6551
		__perf_event_exit_task(child_event, child_ctx, child);
6552 6553

	/*
6554
	 * If the last event was a group event, it will have appended all
6555 6556 6557
	 * its siblings to the list, but we obtained 'tmp' before that which
	 * will still point to the list head terminating the iteration.
	 */
6558 6559
	if (!list_empty(&child_ctx->pinned_groups) ||
	    !list_empty(&child_ctx->flexible_groups))
6560
		goto again;
6561 6562 6563 6564

	mutex_unlock(&child_ctx->mutex);

	put_ctx(child_ctx);
6565 6566
}

P
Peter Zijlstra 已提交
6567 6568 6569 6570 6571
/*
 * When a child task exits, feed back event values to parent events.
 */
void perf_event_exit_task(struct task_struct *child)
{
P
Peter Zijlstra 已提交
6572
	struct perf_event *event, *tmp;
P
Peter Zijlstra 已提交
6573 6574
	int ctxn;

P
Peter Zijlstra 已提交
6575 6576 6577 6578 6579 6580 6581 6582 6583 6584 6585 6586 6587 6588 6589
	mutex_lock(&child->perf_event_mutex);
	list_for_each_entry_safe(event, tmp, &child->perf_event_list,
				 owner_entry) {
		list_del_init(&event->owner_entry);

		/*
		 * Ensure the list deletion is visible before we clear
		 * the owner, closes a race against perf_release() where
		 * we need to serialize on the owner->perf_event_mutex.
		 */
		smp_wmb();
		event->owner = NULL;
	}
	mutex_unlock(&child->perf_event_mutex);

P
Peter Zijlstra 已提交
6590 6591 6592 6593
	for_each_task_context_nr(ctxn)
		perf_event_exit_task_context(child, ctxn);
}

6594 6595 6596 6597 6598 6599 6600 6601 6602 6603 6604 6605 6606 6607
static void perf_free_event(struct perf_event *event,
			    struct perf_event_context *ctx)
{
	struct perf_event *parent = event->parent;

	if (WARN_ON_ONCE(!parent))
		return;

	mutex_lock(&parent->child_mutex);
	list_del_init(&event->child_list);
	mutex_unlock(&parent->child_mutex);

	fput(parent->filp);

6608
	perf_group_detach(event);
6609 6610 6611 6612
	list_del_event(event, ctx);
	free_event(event);
}

6613 6614
/*
 * free an unexposed, unused context as created by inheritance by
P
Peter Zijlstra 已提交
6615
 * perf_event_init_task below, used by fork() in case of fail.
6616
 */
6617
void perf_event_free_task(struct task_struct *task)
6618
{
P
Peter Zijlstra 已提交
6619
	struct perf_event_context *ctx;
6620
	struct perf_event *event, *tmp;
P
Peter Zijlstra 已提交
6621
	int ctxn;
6622

P
Peter Zijlstra 已提交
6623 6624 6625 6626
	for_each_task_context_nr(ctxn) {
		ctx = task->perf_event_ctxp[ctxn];
		if (!ctx)
			continue;
6627

P
Peter Zijlstra 已提交
6628
		mutex_lock(&ctx->mutex);
6629
again:
P
Peter Zijlstra 已提交
6630 6631 6632
		list_for_each_entry_safe(event, tmp, &ctx->pinned_groups,
				group_entry)
			perf_free_event(event, ctx);
6633

P
Peter Zijlstra 已提交
6634 6635 6636
		list_for_each_entry_safe(event, tmp, &ctx->flexible_groups,
				group_entry)
			perf_free_event(event, ctx);
6637

P
Peter Zijlstra 已提交
6638 6639 6640
		if (!list_empty(&ctx->pinned_groups) ||
				!list_empty(&ctx->flexible_groups))
			goto again;
6641

P
Peter Zijlstra 已提交
6642
		mutex_unlock(&ctx->mutex);
6643

P
Peter Zijlstra 已提交
6644 6645
		put_ctx(ctx);
	}
6646 6647
}

6648 6649 6650 6651 6652 6653 6654 6655
void perf_event_delayed_put(struct task_struct *task)
{
	int ctxn;

	for_each_task_context_nr(ctxn)
		WARN_ON_ONCE(task->perf_event_ctxp[ctxn]);
}

P
Peter Zijlstra 已提交
6656 6657 6658 6659 6660 6661 6662 6663 6664 6665 6666 6667
/*
 * inherit a event from parent task to child task:
 */
static struct perf_event *
inherit_event(struct perf_event *parent_event,
	      struct task_struct *parent,
	      struct perf_event_context *parent_ctx,
	      struct task_struct *child,
	      struct perf_event *group_leader,
	      struct perf_event_context *child_ctx)
{
	struct perf_event *child_event;
6668
	unsigned long flags;
P
Peter Zijlstra 已提交
6669 6670 6671 6672 6673 6674 6675 6676 6677 6678 6679 6680

	/*
	 * Instead of creating recursive hierarchies of events,
	 * we link inherited events back to the original parent,
	 * which has a filp for sure, which we use as the reference
	 * count:
	 */
	if (parent_event->parent)
		parent_event = parent_event->parent;

	child_event = perf_event_alloc(&parent_event->attr,
					   parent_event->cpu,
6681
					   child,
P
Peter Zijlstra 已提交
6682
					   group_leader, parent_event,
6683
				           NULL, NULL);
P
Peter Zijlstra 已提交
6684 6685 6686 6687 6688 6689 6690 6691 6692 6693 6694 6695 6696 6697 6698 6699 6700 6701 6702 6703 6704 6705 6706 6707 6708 6709
	if (IS_ERR(child_event))
		return child_event;
	get_ctx(child_ctx);

	/*
	 * Make the child state follow the state of the parent event,
	 * not its attr.disabled bit.  We hold the parent's mutex,
	 * so we won't race with perf_event_{en, dis}able_family.
	 */
	if (parent_event->state >= PERF_EVENT_STATE_INACTIVE)
		child_event->state = PERF_EVENT_STATE_INACTIVE;
	else
		child_event->state = PERF_EVENT_STATE_OFF;

	if (parent_event->attr.freq) {
		u64 sample_period = parent_event->hw.sample_period;
		struct hw_perf_event *hwc = &child_event->hw;

		hwc->sample_period = sample_period;
		hwc->last_period   = sample_period;

		local64_set(&hwc->period_left, sample_period);
	}

	child_event->ctx = child_ctx;
	child_event->overflow_handler = parent_event->overflow_handler;
6710 6711
	child_event->overflow_handler_context
		= parent_event->overflow_handler_context;
P
Peter Zijlstra 已提交
6712

6713 6714 6715 6716
	/*
	 * Precalculate sample_data sizes
	 */
	perf_event__header_size(child_event);
6717
	perf_event__id_header_size(child_event);
6718

P
Peter Zijlstra 已提交
6719 6720 6721
	/*
	 * Link it up in the child's context:
	 */
6722
	raw_spin_lock_irqsave(&child_ctx->lock, flags);
P
Peter Zijlstra 已提交
6723
	add_event_to_ctx(child_event, child_ctx);
6724
	raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
P
Peter Zijlstra 已提交
6725 6726 6727 6728 6729 6730 6731 6732 6733 6734 6735 6736 6737 6738 6739 6740 6741 6742 6743 6744 6745 6746 6747 6748 6749 6750 6751 6752 6753 6754 6755 6756 6757 6758 6759 6760 6761 6762 6763 6764 6765

	/*
	 * Get a reference to the parent filp - we will fput it
	 * when the child event exits. This is safe to do because
	 * we are in the parent and we know that the filp still
	 * exists and has a nonzero count:
	 */
	atomic_long_inc(&parent_event->filp->f_count);

	/*
	 * Link this into the parent event's child list
	 */
	WARN_ON_ONCE(parent_event->ctx->parent_ctx);
	mutex_lock(&parent_event->child_mutex);
	list_add_tail(&child_event->child_list, &parent_event->child_list);
	mutex_unlock(&parent_event->child_mutex);

	return child_event;
}

static int inherit_group(struct perf_event *parent_event,
	      struct task_struct *parent,
	      struct perf_event_context *parent_ctx,
	      struct task_struct *child,
	      struct perf_event_context *child_ctx)
{
	struct perf_event *leader;
	struct perf_event *sub;
	struct perf_event *child_ctr;

	leader = inherit_event(parent_event, parent, parent_ctx,
				 child, NULL, child_ctx);
	if (IS_ERR(leader))
		return PTR_ERR(leader);
	list_for_each_entry(sub, &parent_event->sibling_list, group_entry) {
		child_ctr = inherit_event(sub, parent, parent_ctx,
					    child, leader, child_ctx);
		if (IS_ERR(child_ctr))
			return PTR_ERR(child_ctr);
	}
	return 0;
6766 6767 6768 6769 6770
}

static int
inherit_task_group(struct perf_event *event, struct task_struct *parent,
		   struct perf_event_context *parent_ctx,
P
Peter Zijlstra 已提交
6771
		   struct task_struct *child, int ctxn,
6772 6773 6774
		   int *inherited_all)
{
	int ret;
P
Peter Zijlstra 已提交
6775
	struct perf_event_context *child_ctx;
6776 6777 6778 6779

	if (!event->attr.inherit) {
		*inherited_all = 0;
		return 0;
6780 6781
	}

6782
	child_ctx = child->perf_event_ctxp[ctxn];
6783 6784 6785 6786 6787 6788 6789
	if (!child_ctx) {
		/*
		 * This is executed from the parent task context, so
		 * inherit events that have been marked for cloning.
		 * First allocate and initialize a context for the
		 * child.
		 */
6790

6791
		child_ctx = alloc_perf_context(event->pmu, child);
6792 6793
		if (!child_ctx)
			return -ENOMEM;
6794

P
Peter Zijlstra 已提交
6795
		child->perf_event_ctxp[ctxn] = child_ctx;
6796 6797 6798 6799 6800 6801 6802 6803 6804
	}

	ret = inherit_group(event, parent, parent_ctx,
			    child, child_ctx);

	if (ret)
		*inherited_all = 0;

	return ret;
6805 6806
}

6807
/*
6808
 * Initialize the perf_event context in task_struct
6809
 */
P
Peter Zijlstra 已提交
6810
int perf_event_init_context(struct task_struct *child, int ctxn)
6811
{
6812
	struct perf_event_context *child_ctx, *parent_ctx;
6813 6814
	struct perf_event_context *cloned_ctx;
	struct perf_event *event;
6815
	struct task_struct *parent = current;
6816
	int inherited_all = 1;
6817
	unsigned long flags;
6818
	int ret = 0;
6819

P
Peter Zijlstra 已提交
6820
	if (likely(!parent->perf_event_ctxp[ctxn]))
6821 6822
		return 0;

6823
	/*
6824 6825
	 * If the parent's context is a clone, pin it so it won't get
	 * swapped under us.
6826
	 */
P
Peter Zijlstra 已提交
6827
	parent_ctx = perf_pin_task_context(parent, ctxn);
6828

6829 6830 6831 6832 6833 6834 6835
	/*
	 * No need to check if parent_ctx != NULL here; since we saw
	 * it non-NULL earlier, the only reason for it to become NULL
	 * is if we exit, and since we're currently in the middle of
	 * a fork we can't be exiting at the same time.
	 */

6836 6837 6838 6839
	/*
	 * Lock the parent list. No need to lock the child - not PID
	 * hashed yet and not running, so nobody can access it.
	 */
6840
	mutex_lock(&parent_ctx->mutex);
6841 6842 6843 6844 6845

	/*
	 * We dont have to disable NMIs - we are only looking at
	 * the list, not manipulating it:
	 */
6846
	list_for_each_entry(event, &parent_ctx->pinned_groups, group_entry) {
P
Peter Zijlstra 已提交
6847 6848
		ret = inherit_task_group(event, parent, parent_ctx,
					 child, ctxn, &inherited_all);
6849 6850 6851
		if (ret)
			break;
	}
6852

6853 6854 6855 6856 6857 6858 6859 6860 6861
	/*
	 * We can't hold ctx->lock when iterating the ->flexible_group list due
	 * to allocations, but we need to prevent rotation because
	 * rotate_ctx() will change the list from interrupt context.
	 */
	raw_spin_lock_irqsave(&parent_ctx->lock, flags);
	parent_ctx->rotate_disable = 1;
	raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);

6862
	list_for_each_entry(event, &parent_ctx->flexible_groups, group_entry) {
P
Peter Zijlstra 已提交
6863 6864
		ret = inherit_task_group(event, parent, parent_ctx,
					 child, ctxn, &inherited_all);
6865
		if (ret)
6866
			break;
6867 6868
	}

6869 6870 6871
	raw_spin_lock_irqsave(&parent_ctx->lock, flags);
	parent_ctx->rotate_disable = 0;

P
Peter Zijlstra 已提交
6872
	child_ctx = child->perf_event_ctxp[ctxn];
6873

6874
	if (child_ctx && inherited_all) {
6875 6876 6877
		/*
		 * Mark the child context as a clone of the parent
		 * context, or of whatever the parent is a clone of.
P
Peter Zijlstra 已提交
6878 6879 6880
		 *
		 * Note that if the parent is a clone, the holding of
		 * parent_ctx->lock avoids it from being uncloned.
6881
		 */
P
Peter Zijlstra 已提交
6882
		cloned_ctx = parent_ctx->parent_ctx;
6883 6884
		if (cloned_ctx) {
			child_ctx->parent_ctx = cloned_ctx;
6885
			child_ctx->parent_gen = parent_ctx->parent_gen;
6886 6887 6888 6889 6890
		} else {
			child_ctx->parent_ctx = parent_ctx;
			child_ctx->parent_gen = parent_ctx->generation;
		}
		get_ctx(child_ctx->parent_ctx);
6891 6892
	}

P
Peter Zijlstra 已提交
6893
	raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
6894
	mutex_unlock(&parent_ctx->mutex);
6895

6896
	perf_unpin_context(parent_ctx);
6897
	put_ctx(parent_ctx);
6898

6899
	return ret;
6900 6901
}

P
Peter Zijlstra 已提交
6902 6903 6904 6905 6906 6907 6908
/*
 * Initialize the perf_event context in task_struct
 */
int perf_event_init_task(struct task_struct *child)
{
	int ctxn, ret;

6909 6910 6911 6912
	memset(child->perf_event_ctxp, 0, sizeof(child->perf_event_ctxp));
	mutex_init(&child->perf_event_mutex);
	INIT_LIST_HEAD(&child->perf_event_list);

P
Peter Zijlstra 已提交
6913 6914 6915 6916 6917 6918 6919 6920 6921
	for_each_task_context_nr(ctxn) {
		ret = perf_event_init_context(child, ctxn);
		if (ret)
			return ret;
	}

	return 0;
}

6922 6923
static void __init perf_event_init_all_cpus(void)
{
6924
	struct swevent_htable *swhash;
6925 6926 6927
	int cpu;

	for_each_possible_cpu(cpu) {
6928 6929
		swhash = &per_cpu(swevent_htable, cpu);
		mutex_init(&swhash->hlist_mutex);
6930
		INIT_LIST_HEAD(&per_cpu(rotation_list, cpu));
6931 6932 6933
	}
}

6934
static void __cpuinit perf_event_init_cpu(int cpu)
T
Thomas Gleixner 已提交
6935
{
P
Peter Zijlstra 已提交
6936
	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
T
Thomas Gleixner 已提交
6937

6938
	mutex_lock(&swhash->hlist_mutex);
6939
	if (swhash->hlist_refcount > 0) {
6940 6941
		struct swevent_hlist *hlist;

6942 6943 6944
		hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu));
		WARN_ON(!hlist);
		rcu_assign_pointer(swhash->swevent_hlist, hlist);
6945
	}
6946
	mutex_unlock(&swhash->hlist_mutex);
T
Thomas Gleixner 已提交
6947 6948
}

P
Peter Zijlstra 已提交
6949
#if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC
6950
static void perf_pmu_rotate_stop(struct pmu *pmu)
T
Thomas Gleixner 已提交
6951
{
6952 6953 6954 6955 6956 6957 6958
	struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);

	WARN_ON(!irqs_disabled());

	list_del_init(&cpuctx->rotation_list);
}

P
Peter Zijlstra 已提交
6959
static void __perf_event_exit_context(void *__info)
T
Thomas Gleixner 已提交
6960
{
P
Peter Zijlstra 已提交
6961
	struct perf_event_context *ctx = __info;
6962
	struct perf_event *event, *tmp;
T
Thomas Gleixner 已提交
6963

P
Peter Zijlstra 已提交
6964
	perf_pmu_rotate_stop(ctx->pmu);
6965

6966
	list_for_each_entry_safe(event, tmp, &ctx->pinned_groups, group_entry)
6967
		__perf_remove_from_context(event);
6968
	list_for_each_entry_safe(event, tmp, &ctx->flexible_groups, group_entry)
6969
		__perf_remove_from_context(event);
T
Thomas Gleixner 已提交
6970
}
P
Peter Zijlstra 已提交
6971 6972 6973 6974 6975 6976 6977 6978 6979

static void perf_event_exit_cpu_context(int cpu)
{
	struct perf_event_context *ctx;
	struct pmu *pmu;
	int idx;

	idx = srcu_read_lock(&pmus_srcu);
	list_for_each_entry_rcu(pmu, &pmus, entry) {
6980
		ctx = &per_cpu_ptr(pmu->pmu_cpu_context, cpu)->ctx;
P
Peter Zijlstra 已提交
6981 6982 6983 6984 6985 6986 6987 6988

		mutex_lock(&ctx->mutex);
		smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1);
		mutex_unlock(&ctx->mutex);
	}
	srcu_read_unlock(&pmus_srcu, idx);
}

6989
static void perf_event_exit_cpu(int cpu)
T
Thomas Gleixner 已提交
6990
{
6991
	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
6992

6993 6994 6995
	mutex_lock(&swhash->hlist_mutex);
	swevent_hlist_release(swhash);
	mutex_unlock(&swhash->hlist_mutex);
6996

P
Peter Zijlstra 已提交
6997
	perf_event_exit_cpu_context(cpu);
T
Thomas Gleixner 已提交
6998 6999
}
#else
7000
static inline void perf_event_exit_cpu(int cpu) { }
T
Thomas Gleixner 已提交
7001 7002
#endif

P
Peter Zijlstra 已提交
7003 7004 7005 7006 7007 7008 7009 7010 7011 7012 7013 7014 7015 7016 7017 7018 7019 7020 7021 7022
static int
perf_reboot(struct notifier_block *notifier, unsigned long val, void *v)
{
	int cpu;

	for_each_online_cpu(cpu)
		perf_event_exit_cpu(cpu);

	return NOTIFY_OK;
}

/*
 * Run the perf reboot notifier at the very last possible moment so that
 * the generic watchdog code runs as long as possible.
 */
static struct notifier_block perf_reboot_notifier = {
	.notifier_call = perf_reboot,
	.priority = INT_MIN,
};

T
Thomas Gleixner 已提交
7023 7024 7025 7026 7027
static int __cpuinit
perf_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu)
{
	unsigned int cpu = (long)hcpu;

7028
	switch (action & ~CPU_TASKS_FROZEN) {
T
Thomas Gleixner 已提交
7029 7030

	case CPU_UP_PREPARE:
P
Peter Zijlstra 已提交
7031
	case CPU_DOWN_FAILED:
7032
		perf_event_init_cpu(cpu);
T
Thomas Gleixner 已提交
7033 7034
		break;

P
Peter Zijlstra 已提交
7035
	case CPU_UP_CANCELED:
T
Thomas Gleixner 已提交
7036
	case CPU_DOWN_PREPARE:
7037
		perf_event_exit_cpu(cpu);
T
Thomas Gleixner 已提交
7038 7039 7040 7041 7042 7043 7044 7045 7046
		break;

	default:
		break;
	}

	return NOTIFY_OK;
}

7047
void __init perf_event_init(void)
T
Thomas Gleixner 已提交
7048
{
7049 7050
	int ret;

P
Peter Zijlstra 已提交
7051 7052
	idr_init(&pmu_idr);

7053
	perf_event_init_all_cpus();
7054
	init_srcu_struct(&pmus_srcu);
P
Peter Zijlstra 已提交
7055 7056 7057
	perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE);
	perf_pmu_register(&perf_cpu_clock, NULL, -1);
	perf_pmu_register(&perf_task_clock, NULL, -1);
7058 7059
	perf_tp_register();
	perf_cpu_notifier(perf_cpu_notify);
P
Peter Zijlstra 已提交
7060
	register_reboot_notifier(&perf_reboot_notifier);
7061 7062 7063

	ret = init_hw_breakpoint();
	WARN(ret, "hw_breakpoint initialization failed with: %d", ret);
T
Thomas Gleixner 已提交
7064
}
P
Peter Zijlstra 已提交
7065 7066 7067 7068 7069 7070 7071 7072 7073 7074 7075 7076 7077 7078 7079 7080 7081 7082 7083 7084 7085 7086 7087 7088 7089 7090 7091 7092

static int __init perf_event_sysfs_init(void)
{
	struct pmu *pmu;
	int ret;

	mutex_lock(&pmus_lock);

	ret = bus_register(&pmu_bus);
	if (ret)
		goto unlock;

	list_for_each_entry(pmu, &pmus, entry) {
		if (!pmu->name || pmu->type < 0)
			continue;

		ret = pmu_dev_alloc(pmu);
		WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret);
	}
	pmu_bus_running = 1;
	ret = 0;

unlock:
	mutex_unlock(&pmus_lock);

	return ret;
}
device_initcall(perf_event_sysfs_init);
S
Stephane Eranian 已提交
7093 7094 7095 7096 7097 7098 7099

#ifdef CONFIG_CGROUP_PERF
static struct cgroup_subsys_state *perf_cgroup_create(
	struct cgroup_subsys *ss, struct cgroup *cont)
{
	struct perf_cgroup *jc;

7100
	jc = kzalloc(sizeof(*jc), GFP_KERNEL);
S
Stephane Eranian 已提交
7101 7102 7103 7104 7105 7106 7107 7108 7109 7110 7111 7112 7113 7114 7115 7116 7117 7118 7119 7120 7121 7122 7123 7124 7125 7126 7127 7128 7129
	if (!jc)
		return ERR_PTR(-ENOMEM);

	jc->info = alloc_percpu(struct perf_cgroup_info);
	if (!jc->info) {
		kfree(jc);
		return ERR_PTR(-ENOMEM);
	}

	return &jc->css;
}

static void perf_cgroup_destroy(struct cgroup_subsys *ss,
				struct cgroup *cont)
{
	struct perf_cgroup *jc;
	jc = container_of(cgroup_subsys_state(cont, perf_subsys_id),
			  struct perf_cgroup, css);
	free_percpu(jc->info);
	kfree(jc);
}

static int __perf_cgroup_move(void *info)
{
	struct task_struct *task = info;
	perf_cgroup_switch(task, PERF_CGROUP_SWOUT | PERF_CGROUP_SWIN);
	return 0;
}

7130 7131
static void
perf_cgroup_attach_task(struct cgroup *cgrp, struct task_struct *task)
S
Stephane Eranian 已提交
7132 7133 7134 7135 7136 7137 7138 7139 7140 7141 7142 7143 7144 7145 7146
{
	task_function_call(task, __perf_cgroup_move, task);
}

static void perf_cgroup_exit(struct cgroup_subsys *ss, struct cgroup *cgrp,
		struct cgroup *old_cgrp, struct task_struct *task)
{
	/*
	 * cgroup_exit() is called in the copy_process() failure path.
	 * Ignore this case since the task hasn't ran yet, this avoids
	 * trying to poke a half freed task state from generic code.
	 */
	if (!(task->flags & PF_EXITING))
		return;

7147
	perf_cgroup_attach_task(cgrp, task);
S
Stephane Eranian 已提交
7148 7149 7150
}

struct cgroup_subsys perf_subsys = {
7151 7152 7153 7154 7155
	.name		= "perf_event",
	.subsys_id	= perf_subsys_id,
	.create		= perf_cgroup_create,
	.destroy	= perf_cgroup_destroy,
	.exit		= perf_cgroup_exit,
7156
	.attach_task	= perf_cgroup_attach_task,
S
Stephane Eranian 已提交
7157 7158
};
#endif /* CONFIG_CGROUP_PERF */