amd64_edac.c 92.3 KB
Newer Older
1
#include "amd64_edac.h"
2
#include <asm/amd_nb.h>
3

4
static struct edac_pci_ctl_info *pci_ctl;
5 6 7 8 9 10 11 12 13 14 15

static int report_gart_errors;
module_param(report_gart_errors, int, 0644);

/*
 * Set by command line parameter. If BIOS has enabled the ECC, this override is
 * cleared to prevent re-enabling the hardware by this driver.
 */
static int ecc_enable_override;
module_param(ecc_enable_override, int, 0644);

16
static struct msr __percpu *msrs;
17

18
/* Per-node stuff */
19
static struct ecc_settings **ecc_stngs;
20

21 22 23
/* Number of Unified Memory Controllers */
static u8 num_umcs;

24 25 26 27 28 29 30
/*
 * Valid scrub rates for the K8 hardware memory scrubber. We map the scrubbing
 * bandwidth to a valid bit pattern. The 'set' operation finds the 'matching-
 * or higher value'.
 *
 *FIXME: Produce a better mapping/linearisation.
 */
31
static const struct scrubrate {
32 33 34
       u32 scrubval;           /* bit pattern for scrub rate */
       u32 bandwidth;          /* bandwidth consumed (bytes/sec) */
} scrubrates[] = {
35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59
	{ 0x01, 1600000000UL},
	{ 0x02, 800000000UL},
	{ 0x03, 400000000UL},
	{ 0x04, 200000000UL},
	{ 0x05, 100000000UL},
	{ 0x06, 50000000UL},
	{ 0x07, 25000000UL},
	{ 0x08, 12284069UL},
	{ 0x09, 6274509UL},
	{ 0x0A, 3121951UL},
	{ 0x0B, 1560975UL},
	{ 0x0C, 781440UL},
	{ 0x0D, 390720UL},
	{ 0x0E, 195300UL},
	{ 0x0F, 97650UL},
	{ 0x10, 48854UL},
	{ 0x11, 24427UL},
	{ 0x12, 12213UL},
	{ 0x13, 6101UL},
	{ 0x14, 3051UL},
	{ 0x15, 1523UL},
	{ 0x16, 761UL},
	{ 0x00, 0UL},        /* scrubbing off */
};

60 61
int __amd64_read_pci_cfg_dword(struct pci_dev *pdev, int offset,
			       u32 *val, const char *func)
62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85
{
	int err = 0;

	err = pci_read_config_dword(pdev, offset, val);
	if (err)
		amd64_warn("%s: error reading F%dx%03x.\n",
			   func, PCI_FUNC(pdev->devfn), offset);

	return err;
}

int __amd64_write_pci_cfg_dword(struct pci_dev *pdev, int offset,
				u32 val, const char *func)
{
	int err = 0;

	err = pci_write_config_dword(pdev, offset, val);
	if (err)
		amd64_warn("%s: error writing to F%dx%03x.\n",
			   func, PCI_FUNC(pdev->devfn), offset);

	return err;
}

86 87 88 89 90 91 92 93 94 95 96 97 98
/*
 * Select DCT to which PCI cfg accesses are routed
 */
static void f15h_select_dct(struct amd64_pvt *pvt, u8 dct)
{
	u32 reg = 0;

	amd64_read_pci_cfg(pvt->F1, DCT_CFG_SEL, &reg);
	reg &= (pvt->model == 0x30) ? ~3 : ~1;
	reg |= dct;
	amd64_write_pci_cfg(pvt->F1, DCT_CFG_SEL, reg);
}

99 100 101 102
/*
 *
 * Depending on the family, F2 DCT reads need special handling:
 *
103
 * K8: has a single DCT only and no address offsets >= 0x100
104 105 106 107 108
 *
 * F10h: each DCT has its own set of regs
 *	DCT0 -> F2x040..
 *	DCT1 -> F2x140..
 *
109
 * F16h: has only 1 DCT
110 111
 *
 * F15h: we select which DCT we access using F1x10C[DctCfgSel]
112
 */
113 114
static inline int amd64_read_dct_pci_cfg(struct amd64_pvt *pvt, u8 dct,
					 int offset, u32 *val)
115
{
116 117 118 119 120
	switch (pvt->fam) {
	case 0xf:
		if (dct || offset >= 0x100)
			return -EINVAL;
		break;
121

122 123 124 125 126 127 128 129 130
	case 0x10:
		if (dct) {
			/*
			 * Note: If ganging is enabled, barring the regs
			 * F2x[1,0]98 and F2x[1,0]9C; reads reads to F2x1xx
			 * return 0. (cf. Section 2.8.1 F10h BKDG)
			 */
			if (dct_ganging_enabled(pvt))
				return 0;
131

132 133 134
			offset += 0x100;
		}
		break;
135

136 137 138 139 140 141 142 143
	case 0x15:
		/*
		 * F15h: F2x1xx addresses do not map explicitly to DCT1.
		 * We should select which DCT we access using F1x10C[DctCfgSel]
		 */
		dct = (dct && pvt->model == 0x30) ? 3 : dct;
		f15h_select_dct(pvt, dct);
		break;
144

145 146 147 148
	case 0x16:
		if (dct)
			return -EINVAL;
		break;
149

150 151
	default:
		break;
152
	}
153
	return amd64_read_pci_cfg(pvt->F2, offset, val);
154 155
}

156 157 158 159 160 161 162 163 164 165 166 167 168 169
/*
 * Memory scrubber control interface. For K8, memory scrubbing is handled by
 * hardware and can involve L2 cache, dcache as well as the main memory. With
 * F10, this is extended to L3 cache scrubbing on CPU models sporting that
 * functionality.
 *
 * This causes the "units" for the scrubbing speed to vary from 64 byte blocks
 * (dram) over to cache lines. This is nasty, so we will use bandwidth in
 * bytes/sec for the setting.
 *
 * Currently, we only do dram scrubbing. If the scrubbing is done in software on
 * other archs, we might not have access to the caches directly.
 */

170 171 172 173 174 175 176 177 178 179 180 181 182 183 184
static inline void __f17h_set_scrubval(struct amd64_pvt *pvt, u32 scrubval)
{
	/*
	 * Fam17h supports scrub values between 0x5 and 0x14. Also, the values
	 * are shifted down by 0x5, so scrubval 0x5 is written to the register
	 * as 0x0, scrubval 0x6 as 0x1, etc.
	 */
	if (scrubval >= 0x5 && scrubval <= 0x14) {
		scrubval -= 0x5;
		pci_write_bits32(pvt->F6, F17H_SCR_LIMIT_ADDR, scrubval, 0xF);
		pci_write_bits32(pvt->F6, F17H_SCR_BASE_ADDR, 1, 0x1);
	} else {
		pci_write_bits32(pvt->F6, F17H_SCR_BASE_ADDR, 0, 0x1);
	}
}
185
/*
186
 * Scan the scrub rate mapping table for a close or matching bandwidth value to
187 188
 * issue. If requested is too big, then use last maximum value found.
 */
189
static int __set_scrub_rate(struct amd64_pvt *pvt, u32 new_bw, u32 min_rate)
190 191 192 193 194 195 196 197 198
{
	u32 scrubval;
	int i;

	/*
	 * map the configured rate (new_bw) to a value specific to the AMD64
	 * memory controller and apply to register. Search for the first
	 * bandwidth entry that is greater or equal than the setting requested
	 * and program that. If at last entry, turn off DRAM scrubbing.
199 200 201
	 *
	 * If no suitable bandwidth is found, turn off DRAM scrubbing entirely
	 * by falling back to the last element in scrubrates[].
202
	 */
203
	for (i = 0; i < ARRAY_SIZE(scrubrates) - 1; i++) {
204 205 206 207
		/*
		 * skip scrub rates which aren't recommended
		 * (see F10 BKDG, F3x58)
		 */
208
		if (scrubrates[i].scrubval < min_rate)
209 210 211 212 213 214 215 216
			continue;

		if (scrubrates[i].bandwidth <= new_bw)
			break;
	}

	scrubval = scrubrates[i].scrubval;

217
	if (pvt->fam == 0x17 || pvt->fam == 0x18) {
218 219
		__f17h_set_scrubval(pvt, scrubval);
	} else if (pvt->fam == 0x15 && pvt->model == 0x60) {
220 221 222 223 224 225 226
		f15h_select_dct(pvt, 0);
		pci_write_bits32(pvt->F2, F15H_M60H_SCRCTRL, scrubval, 0x001F);
		f15h_select_dct(pvt, 1);
		pci_write_bits32(pvt->F2, F15H_M60H_SCRCTRL, scrubval, 0x001F);
	} else {
		pci_write_bits32(pvt->F3, SCRCTRL, scrubval, 0x001F);
	}
227

228 229 230
	if (scrubval)
		return scrubrates[i].bandwidth;

231 232 233
	return 0;
}

234
static int set_scrub_rate(struct mem_ctl_info *mci, u32 bw)
235 236
{
	struct amd64_pvt *pvt = mci->pvt_info;
237
	u32 min_scrubrate = 0x5;
238

239
	if (pvt->fam == 0xf)
240 241
		min_scrubrate = 0x0;

242 243 244 245
	if (pvt->fam == 0x15) {
		/* Erratum #505 */
		if (pvt->model < 0x10)
			f15h_select_dct(pvt, 0);
246

247 248 249 250
		if (pvt->model == 0x60)
			min_scrubrate = 0x6;
	}
	return __set_scrub_rate(pvt, bw, min_scrubrate);
251 252
}

253
static int get_scrub_rate(struct mem_ctl_info *mci)
254 255
{
	struct amd64_pvt *pvt = mci->pvt_info;
256
	int i, retval = -EINVAL;
257
	u32 scrubval = 0;
258

259 260
	switch (pvt->fam) {
	case 0x15:
261 262 263
		/* Erratum #505 */
		if (pvt->model < 0x10)
			f15h_select_dct(pvt, 0);
264

265 266
		if (pvt->model == 0x60)
			amd64_read_pci_cfg(pvt->F2, F15H_M60H_SCRCTRL, &scrubval);
267 268 269
		break;

	case 0x17:
270
	case 0x18:
271 272 273 274 275 276 277 278 279 280 281
		amd64_read_pci_cfg(pvt->F6, F17H_SCR_BASE_ADDR, &scrubval);
		if (scrubval & BIT(0)) {
			amd64_read_pci_cfg(pvt->F6, F17H_SCR_LIMIT_ADDR, &scrubval);
			scrubval &= 0xF;
			scrubval += 0x5;
		} else {
			scrubval = 0;
		}
		break;

	default:
282
		amd64_read_pci_cfg(pvt->F3, SCRCTRL, &scrubval);
283 284
		break;
	}
285 286 287

	scrubval = scrubval & 0x001F;

288
	for (i = 0; i < ARRAY_SIZE(scrubrates); i++) {
289
		if (scrubrates[i].scrubval == scrubval) {
290
			retval = scrubrates[i].bandwidth;
291 292 293
			break;
		}
	}
294
	return retval;
295 296
}

297
/*
298 299
 * returns true if the SysAddr given by sys_addr matches the
 * DRAM base/limit associated with node_id
300
 */
301
static bool base_limit_match(struct amd64_pvt *pvt, u64 sys_addr, u8 nid)
302
{
303
	u64 addr;
304 305 306 307 308 309 310 311 312

	/* The K8 treats this as a 40-bit value.  However, bits 63-40 will be
	 * all ones if the most significant implemented address bit is 1.
	 * Here we discard bits 63-40.  See section 3.4.2 of AMD publication
	 * 24592: AMD x86-64 Architecture Programmer's Manual Volume 1
	 * Application Programming.
	 */
	addr = sys_addr & 0x000000ffffffffffull;

313 314
	return ((addr >= get_dram_base(pvt, nid)) &&
		(addr <= get_dram_limit(pvt, nid)));
315 316 317 318 319 320 321 322 323 324 325 326
}

/*
 * Attempt to map a SysAddr to a node. On success, return a pointer to the
 * mem_ctl_info structure for the node that the SysAddr maps to.
 *
 * On failure, return NULL.
 */
static struct mem_ctl_info *find_mc_by_sys_addr(struct mem_ctl_info *mci,
						u64 sys_addr)
{
	struct amd64_pvt *pvt;
327
	u8 node_id;
328 329 330 331 332 333 334 335 336 337 338 339 340
	u32 intlv_en, bits;

	/*
	 * Here we use the DRAM Base (section 3.4.4.1) and DRAM Limit (section
	 * 3.4.4.2) registers to map the SysAddr to a node ID.
	 */
	pvt = mci->pvt_info;

	/*
	 * The value of this field should be the same for all DRAM Base
	 * registers.  Therefore we arbitrarily choose to read it from the
	 * register for node 0.
	 */
341
	intlv_en = dram_intlv_en(pvt, 0);
342 343

	if (intlv_en == 0) {
344
		for (node_id = 0; node_id < DRAM_RANGES; node_id++) {
345
			if (base_limit_match(pvt, sys_addr, node_id))
346
				goto found;
347
		}
348
		goto err_no_match;
349 350
	}

351 352 353
	if (unlikely((intlv_en != 0x01) &&
		     (intlv_en != 0x03) &&
		     (intlv_en != 0x07))) {
354
		amd64_warn("DRAM Base[IntlvEn] junk value: 0x%x, BIOS bug?\n", intlv_en);
355 356 357 358 359 360
		return NULL;
	}

	bits = (((u32) sys_addr) >> 12) & intlv_en;

	for (node_id = 0; ; ) {
361
		if ((dram_intlv_sel(pvt, node_id) & intlv_en) == bits)
362 363
			break;	/* intlv_sel field matches */

364
		if (++node_id >= DRAM_RANGES)
365 366 367 368
			goto err_no_match;
	}

	/* sanity test for sys_addr */
369
	if (unlikely(!base_limit_match(pvt, sys_addr, node_id))) {
370 371 372
		amd64_warn("%s: sys_addr 0x%llx falls outside base/limit address"
			   "range for node %d with node interleaving enabled.\n",
			   __func__, sys_addr, node_id);
373 374 375 376
		return NULL;
	}

found:
377
	return edac_mc_find((int)node_id);
378 379

err_no_match:
380 381
	edac_dbg(2, "sys_addr 0x%lx doesn't match any node\n",
		 (unsigned long)sys_addr);
382 383 384

	return NULL;
}
385 386

/*
387 388
 * compute the CS base address of the @csrow on the DRAM controller @dct.
 * For details see F2x[5C:40] in the processor's BKDG
389
 */
390 391
static void get_cs_base_and_mask(struct amd64_pvt *pvt, int csrow, u8 dct,
				 u64 *base, u64 *mask)
392
{
393 394
	u64 csbase, csmask, base_bits, mask_bits;
	u8 addr_shift;
395

396
	if (pvt->fam == 0xf && pvt->ext_model < K8_REV_F) {
397 398
		csbase		= pvt->csels[dct].csbases[csrow];
		csmask		= pvt->csels[dct].csmasks[csrow];
399 400
		base_bits	= GENMASK_ULL(31, 21) | GENMASK_ULL(15, 9);
		mask_bits	= GENMASK_ULL(29, 21) | GENMASK_ULL(15, 9);
401
		addr_shift	= 4;
402 403

	/*
404 405 406 407 408
	 * F16h and F15h, models 30h and later need two addr_shift values:
	 * 8 for high and 6 for low (cf. F16h BKDG).
	 */
	} else if (pvt->fam == 0x16 ||
		  (pvt->fam == 0x15 && pvt->model >= 0x30)) {
409 410 411
		csbase          = pvt->csels[dct].csbases[csrow];
		csmask          = pvt->csels[dct].csmasks[csrow >> 1];

412 413
		*base  = (csbase & GENMASK_ULL(15,  5)) << 6;
		*base |= (csbase & GENMASK_ULL(30, 19)) << 8;
414 415 416

		*mask = ~0ULL;
		/* poke holes for the csmask */
417 418
		*mask &= ~((GENMASK_ULL(15, 5)  << 6) |
			   (GENMASK_ULL(30, 19) << 8));
419

420 421
		*mask |= (csmask & GENMASK_ULL(15, 5))  << 6;
		*mask |= (csmask & GENMASK_ULL(30, 19)) << 8;
422 423

		return;
424 425 426 427
	} else {
		csbase		= pvt->csels[dct].csbases[csrow];
		csmask		= pvt->csels[dct].csmasks[csrow >> 1];
		addr_shift	= 8;
428

429
		if (pvt->fam == 0x15)
430 431
			base_bits = mask_bits =
				GENMASK_ULL(30,19) | GENMASK_ULL(13,5);
432
		else
433 434
			base_bits = mask_bits =
				GENMASK_ULL(28,19) | GENMASK_ULL(13,5);
435
	}
436

437
	*base  = (csbase & base_bits) << addr_shift;
438

439 440 441 442 443
	*mask  = ~0ULL;
	/* poke holes for the csmask */
	*mask &= ~(mask_bits << addr_shift);
	/* OR them in */
	*mask |= (csmask & mask_bits) << addr_shift;
444 445
}

446 447 448
#define for_each_chip_select(i, dct, pvt) \
	for (i = 0; i < pvt->csels[dct].b_cnt; i++)

449 450 451
#define chip_select_base(i, dct, pvt) \
	pvt->csels[dct].csbases[i]

452 453 454
#define for_each_chip_select_mask(i, dct, pvt) \
	for (i = 0; i < pvt->csels[dct].m_cnt; i++)

455
#define for_each_umc(i) \
456
	for (i = 0; i < num_umcs; i++)
457

458 459 460 461 462 463 464 465 466 467 468 469
/*
 * @input_addr is an InputAddr associated with the node given by mci. Return the
 * csrow that input_addr maps to, or -1 on failure (no csrow claims input_addr).
 */
static int input_addr_to_csrow(struct mem_ctl_info *mci, u64 input_addr)
{
	struct amd64_pvt *pvt;
	int csrow;
	u64 base, mask;

	pvt = mci->pvt_info;

470 471
	for_each_chip_select(csrow, 0, pvt) {
		if (!csrow_enabled(csrow, 0, pvt))
472 473
			continue;

474 475 476
		get_cs_base_and_mask(pvt, csrow, 0, &base, &mask);

		mask = ~mask;
477 478

		if ((input_addr & mask) == (base & mask)) {
479 480 481
			edac_dbg(2, "InputAddr 0x%lx matches csrow %d (node %d)\n",
				 (unsigned long)input_addr, csrow,
				 pvt->mc_node_id);
482 483 484 485

			return csrow;
		}
	}
486 487
	edac_dbg(2, "no matching csrow for InputAddr 0x%lx (MC node %d)\n",
		 (unsigned long)input_addr, pvt->mc_node_id);
488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513

	return -1;
}

/*
 * Obtain info from the DRAM Hole Address Register (section 3.4.8, pub #26094)
 * for the node represented by mci. Info is passed back in *hole_base,
 * *hole_offset, and *hole_size.  Function returns 0 if info is valid or 1 if
 * info is invalid. Info may be invalid for either of the following reasons:
 *
 * - The revision of the node is not E or greater.  In this case, the DRAM Hole
 *   Address Register does not exist.
 *
 * - The DramHoleValid bit is cleared in the DRAM Hole Address Register,
 *   indicating that its contents are not valid.
 *
 * The values passed back in *hole_base, *hole_offset, and *hole_size are
 * complete 32-bit values despite the fact that the bitfields in the DHAR
 * only represent bits 31-24 of the base and offset values.
 */
int amd64_get_dram_hole_info(struct mem_ctl_info *mci, u64 *hole_base,
			     u64 *hole_offset, u64 *hole_size)
{
	struct amd64_pvt *pvt = mci->pvt_info;

	/* only revE and later have the DRAM Hole Address Register */
514
	if (pvt->fam == 0xf && pvt->ext_model < K8_REV_E) {
515 516
		edac_dbg(1, "  revision %d for node %d does not support DHAR\n",
			 pvt->ext_model, pvt->mc_node_id);
517 518 519
		return 1;
	}

520
	/* valid for Fam10h and above */
521
	if (pvt->fam >= 0x10 && !dhar_mem_hoist_valid(pvt)) {
522
		edac_dbg(1, "  Dram Memory Hoisting is DISABLED on this system\n");
523 524 525
		return 1;
	}

526
	if (!dhar_valid(pvt)) {
527 528
		edac_dbg(1, "  Dram Memory Hoisting is DISABLED on this node %d\n",
			 pvt->mc_node_id);
529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549
		return 1;
	}

	/* This node has Memory Hoisting */

	/* +------------------+--------------------+--------------------+-----
	 * | memory           | DRAM hole          | relocated          |
	 * | [0, (x - 1)]     | [x, 0xffffffff]    | addresses from     |
	 * |                  |                    | DRAM hole          |
	 * |                  |                    | [0x100000000,      |
	 * |                  |                    |  (0x100000000+     |
	 * |                  |                    |   (0xffffffff-x))] |
	 * +------------------+--------------------+--------------------+-----
	 *
	 * Above is a diagram of physical memory showing the DRAM hole and the
	 * relocated addresses from the DRAM hole.  As shown, the DRAM hole
	 * starts at address x (the base address) and extends through address
	 * 0xffffffff.  The DRAM Hole Address Register (DHAR) relocates the
	 * addresses in the hole so that they start at 0x100000000.
	 */

550 551
	*hole_base = dhar_base(pvt);
	*hole_size = (1ULL << 32) - *hole_base;
552

553 554
	*hole_offset = (pvt->fam > 0xf) ? f10_dhar_offset(pvt)
					: k8_dhar_offset(pvt);
555

556 557 558
	edac_dbg(1, "  DHAR info for node %d base 0x%lx offset 0x%lx size 0x%lx\n",
		 pvt->mc_node_id, (unsigned long)*hole_base,
		 (unsigned long)*hole_offset, (unsigned long)*hole_size);
559 560 561 562 563

	return 0;
}
EXPORT_SYMBOL_GPL(amd64_get_dram_hole_info);

564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594
/*
 * Return the DramAddr that the SysAddr given by @sys_addr maps to.  It is
 * assumed that sys_addr maps to the node given by mci.
 *
 * The first part of section 3.4.4 (p. 70) shows how the DRAM Base (section
 * 3.4.4.1) and DRAM Limit (section 3.4.4.2) registers are used to translate a
 * SysAddr to a DramAddr. If the DRAM Hole Address Register (DHAR) is enabled,
 * then it is also involved in translating a SysAddr to a DramAddr. Sections
 * 3.4.8 and 3.5.8.2 describe the DHAR and how it is used for memory hoisting.
 * These parts of the documentation are unclear. I interpret them as follows:
 *
 * When node n receives a SysAddr, it processes the SysAddr as follows:
 *
 * 1. It extracts the DRAMBase and DRAMLimit values from the DRAM Base and DRAM
 *    Limit registers for node n. If the SysAddr is not within the range
 *    specified by the base and limit values, then node n ignores the Sysaddr
 *    (since it does not map to node n). Otherwise continue to step 2 below.
 *
 * 2. If the DramHoleValid bit of the DHAR for node n is clear, the DHAR is
 *    disabled so skip to step 3 below. Otherwise see if the SysAddr is within
 *    the range of relocated addresses (starting at 0x100000000) from the DRAM
 *    hole. If not, skip to step 3 below. Else get the value of the
 *    DramHoleOffset field from the DHAR. To obtain the DramAddr, subtract the
 *    offset defined by this value from the SysAddr.
 *
 * 3. Obtain the base address for node n from the DRAMBase field of the DRAM
 *    Base register for node n. To obtain the DramAddr, subtract the base
 *    address from the SysAddr, as shown near the start of section 3.4.4 (p.70).
 */
static u64 sys_addr_to_dram_addr(struct mem_ctl_info *mci, u64 sys_addr)
{
595
	struct amd64_pvt *pvt = mci->pvt_info;
596
	u64 dram_base, hole_base, hole_offset, hole_size, dram_addr;
597
	int ret;
598

599
	dram_base = get_dram_base(pvt, pvt->mc_node_id);
600 601 602 603

	ret = amd64_get_dram_hole_info(mci, &hole_base, &hole_offset,
				      &hole_size);
	if (!ret) {
604 605
		if ((sys_addr >= (1ULL << 32)) &&
		    (sys_addr < ((1ULL << 32) + hole_size))) {
606 607 608
			/* use DHAR to translate SysAddr to DramAddr */
			dram_addr = sys_addr - hole_offset;

609 610 611
			edac_dbg(2, "using DHAR to translate SysAddr 0x%lx to DramAddr 0x%lx\n",
				 (unsigned long)sys_addr,
				 (unsigned long)dram_addr);
612 613 614 615 616 617 618 619 620 621 622 623 624 625

			return dram_addr;
		}
	}

	/*
	 * Translate the SysAddr to a DramAddr as shown near the start of
	 * section 3.4.4 (p. 70).  Although sys_addr is a 64-bit value, the k8
	 * only deals with 40-bit values.  Therefore we discard bits 63-40 of
	 * sys_addr below.  If bit 39 of sys_addr is 1 then the bits we
	 * discard are all 1s.  Otherwise the bits we discard are all 0s.  See
	 * section 3.4.2 of AMD publication 24592: AMD x86-64 Architecture
	 * Programmer's Manual Volume 1 Application Programming.
	 */
626
	dram_addr = (sys_addr & GENMASK_ULL(39, 0)) - dram_base;
627

628 629
	edac_dbg(2, "using DRAM Base register to translate SysAddr 0x%lx to DramAddr 0x%lx\n",
		 (unsigned long)sys_addr, (unsigned long)dram_addr);
630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660
	return dram_addr;
}

/*
 * @intlv_en is the value of the IntlvEn field from a DRAM Base register
 * (section 3.4.4.1).  Return the number of bits from a SysAddr that are used
 * for node interleaving.
 */
static int num_node_interleave_bits(unsigned intlv_en)
{
	static const int intlv_shift_table[] = { 0, 1, 0, 2, 0, 0, 0, 3 };
	int n;

	BUG_ON(intlv_en > 7);
	n = intlv_shift_table[intlv_en];
	return n;
}

/* Translate the DramAddr given by @dram_addr to an InputAddr. */
static u64 dram_addr_to_input_addr(struct mem_ctl_info *mci, u64 dram_addr)
{
	struct amd64_pvt *pvt;
	int intlv_shift;
	u64 input_addr;

	pvt = mci->pvt_info;

	/*
	 * See the start of section 3.4.4 (p. 70, BKDG #26094, K8, revA-E)
	 * concerning translating a DramAddr to an InputAddr.
	 */
661
	intlv_shift = num_node_interleave_bits(dram_intlv_en(pvt, 0));
662
	input_addr = ((dram_addr >> intlv_shift) & GENMASK_ULL(35, 12)) +
663
		      (dram_addr & 0xfff);
664

665 666 667
	edac_dbg(2, "  Intlv Shift=%d DramAddr=0x%lx maps to InputAddr=0x%lx\n",
		 intlv_shift, (unsigned long)dram_addr,
		 (unsigned long)input_addr);
668 669 670 671 672 673 674 675 676 677 678 679 680 681 682

	return input_addr;
}

/*
 * Translate the SysAddr represented by @sys_addr to an InputAddr.  It is
 * assumed that @sys_addr maps to the node given by mci.
 */
static u64 sys_addr_to_input_addr(struct mem_ctl_info *mci, u64 sys_addr)
{
	u64 input_addr;

	input_addr =
	    dram_addr_to_input_addr(mci, sys_addr_to_dram_addr(mci, sys_addr));

M
Masanari Iida 已提交
683
	edac_dbg(2, "SysAddr 0x%lx translates to InputAddr 0x%lx\n",
684
		 (unsigned long)sys_addr, (unsigned long)input_addr);
685 686 687 688 689 690

	return input_addr;
}

/* Map the Error address to a PAGE and PAGE OFFSET. */
static inline void error_address_to_page_and_offset(u64 error_address,
691
						    struct err_info *err)
692
{
693 694
	err->page = (u32) (error_address >> PAGE_SHIFT);
	err->offset = ((u32) error_address) & ~PAGE_MASK;
695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711
}

/*
 * @sys_addr is an error address (a SysAddr) extracted from the MCA NB Address
 * Low (section 3.6.4.5) and MCA NB Address High (section 3.6.4.6) registers
 * of a node that detected an ECC memory error.  mci represents the node that
 * the error address maps to (possibly different from the node that detected
 * the error).  Return the number of the csrow that sys_addr maps to, or -1 on
 * error.
 */
static int sys_addr_to_csrow(struct mem_ctl_info *mci, u64 sys_addr)
{
	int csrow;

	csrow = input_addr_to_csrow(mci, sys_addr_to_input_addr(mci, sys_addr));

	if (csrow == -1)
712 713
		amd64_mc_err(mci, "Failed to translate InputAddr to csrow for "
				  "address 0x%lx\n", (unsigned long)sys_addr);
714 715
	return csrow;
}
716

717
static int get_channel_from_ecc_syndrome(struct mem_ctl_info *, u16);
718 719 720 721 722

/*
 * Determine if the DIMMs have ECC enabled. ECC is enabled ONLY if all the DIMMs
 * are ECC capable.
 */
723
static unsigned long determine_edac_cap(struct amd64_pvt *pvt)
724
{
725
	unsigned long edac_cap = EDAC_FLAG_NONE;
726 727 728 729
	u8 bit;

	if (pvt->umc) {
		u8 i, umc_en_mask = 0, dimm_ecc_en_mask = 0;
730

731
		for_each_umc(i) {
732 733
			if (!(pvt->umc[i].sdp_ctrl & UMC_SDP_INIT))
				continue;
734

735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751
			umc_en_mask |= BIT(i);

			/* UMC Configuration bit 12 (DimmEccEn) */
			if (pvt->umc[i].umc_cfg & BIT(12))
				dimm_ecc_en_mask |= BIT(i);
		}

		if (umc_en_mask == dimm_ecc_en_mask)
			edac_cap = EDAC_FLAG_SECDED;
	} else {
		bit = (pvt->fam > 0xf || pvt->ext_model >= K8_REV_F)
			? 19
			: 17;

		if (pvt->dclr0 & BIT(bit))
			edac_cap = EDAC_FLAG_SECDED;
	}
752 753 754 755

	return edac_cap;
}

756
static void debug_display_dimm_sizes(struct amd64_pvt *, u8);
757

758
static void debug_dump_dramcfg_low(struct amd64_pvt *pvt, u32 dclr, int chan)
759
{
760
	edac_dbg(1, "F2x%d90 (DRAM Cfg Low): 0x%08x\n", chan, dclr);
761

762 763 764 765 766 767 768 769 770 771 772 773 774
	if (pvt->dram_type == MEM_LRDDR3) {
		u32 dcsm = pvt->csels[chan].csmasks[0];
		/*
		 * It's assumed all LRDIMMs in a DCT are going to be of
		 * same 'type' until proven otherwise. So, use a cs
		 * value of '0' here to get dcsm value.
		 */
		edac_dbg(1, " LRDIMM %dx rank multiply\n", (dcsm & 0x3));
	}

	edac_dbg(1, "All DIMMs support ECC:%s\n",
		    (dclr & BIT(19)) ? "yes" : "no");

775

776 777
	edac_dbg(1, "  PAR/ERR parity: %s\n",
		 (dclr & BIT(8)) ?  "enabled" : "disabled");
778

779
	if (pvt->fam == 0x10)
780 781
		edac_dbg(1, "  DCT 128bit mode width: %s\n",
			 (dclr & BIT(11)) ?  "128b" : "64b");
782

783 784 785 786 787
	edac_dbg(1, "  x4 logical DIMMs present: L0: %s L1: %s L2: %s L3: %s\n",
		 (dclr & BIT(12)) ?  "yes" : "no",
		 (dclr & BIT(13)) ?  "yes" : "no",
		 (dclr & BIT(14)) ?  "yes" : "no",
		 (dclr & BIT(15)) ?  "yes" : "no");
788 789
}

790 791 792 793 794 795 796
#define CS_EVEN_PRIMARY		BIT(0)
#define CS_ODD_PRIMARY		BIT(1)

#define CS_EVEN			CS_EVEN_PRIMARY
#define CS_ODD			CS_ODD_PRIMARY

static int f17_get_cs_mode(int dimm, u8 ctrl, struct amd64_pvt *pvt)
797
{
798
	int cs_mode = 0;
799

800 801
	if (csrow_enabled(2 * dimm, ctrl, pvt))
		cs_mode |= CS_EVEN_PRIMARY;
802

803 804 805 806
	if (csrow_enabled(2 * dimm + 1, ctrl, pvt))
		cs_mode |= CS_ODD_PRIMARY;

	return cs_mode;
807 808
}

809 810
static void debug_display_dimm_sizes_df(struct amd64_pvt *pvt, u8 ctrl)
{
811
	int dimm, size0, size1, cs0, cs1, cs_mode;
812 813 814

	edac_printk(KERN_DEBUG, EDAC_MC, "UMC%d chip selects:\n", ctrl);

815
	for (dimm = 0; dimm < 2; dimm++) {
816 817 818
		cs0 = dimm * 2;
		cs1 = dimm * 2 + 1;

819 820 821 822
		cs_mode = f17_get_cs_mode(dimm, ctrl, pvt);

		size0 = pvt->ops->dbam_to_cs(pvt, ctrl, cs_mode, cs0);
		size1 = pvt->ops->dbam_to_cs(pvt, ctrl, cs_mode, cs1);
823 824

		amd64_info(EDAC_MC ": %d: %5dMB %d: %5dMB\n",
825 826
				cs0,	size0,
				cs1,	size1);
827 828 829 830 831 832 833 834
	}
}

static void __dump_misc_regs_df(struct amd64_pvt *pvt)
{
	struct amd64_umc *umc;
	u32 i, tmp, umc_base;

835
	for_each_umc(i) {
836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873
		umc_base = get_umc_base(i);
		umc = &pvt->umc[i];

		edac_dbg(1, "UMC%d DIMM cfg: 0x%x\n", i, umc->dimm_cfg);
		edac_dbg(1, "UMC%d UMC cfg: 0x%x\n", i, umc->umc_cfg);
		edac_dbg(1, "UMC%d SDP ctrl: 0x%x\n", i, umc->sdp_ctrl);
		edac_dbg(1, "UMC%d ECC ctrl: 0x%x\n", i, umc->ecc_ctrl);

		amd_smn_read(pvt->mc_node_id, umc_base + UMCCH_ECC_BAD_SYMBOL, &tmp);
		edac_dbg(1, "UMC%d ECC bad symbol: 0x%x\n", i, tmp);

		amd_smn_read(pvt->mc_node_id, umc_base + UMCCH_UMC_CAP, &tmp);
		edac_dbg(1, "UMC%d UMC cap: 0x%x\n", i, tmp);
		edac_dbg(1, "UMC%d UMC cap high: 0x%x\n", i, umc->umc_cap_hi);

		edac_dbg(1, "UMC%d ECC capable: %s, ChipKill ECC capable: %s\n",
				i, (umc->umc_cap_hi & BIT(30)) ? "yes" : "no",
				    (umc->umc_cap_hi & BIT(31)) ? "yes" : "no");
		edac_dbg(1, "UMC%d All DIMMs support ECC: %s\n",
				i, (umc->umc_cfg & BIT(12)) ? "yes" : "no");
		edac_dbg(1, "UMC%d x4 DIMMs present: %s\n",
				i, (umc->dimm_cfg & BIT(6)) ? "yes" : "no");
		edac_dbg(1, "UMC%d x16 DIMMs present: %s\n",
				i, (umc->dimm_cfg & BIT(7)) ? "yes" : "no");

		if (pvt->dram_type == MEM_LRDDR4) {
			amd_smn_read(pvt->mc_node_id, umc_base + UMCCH_ADDR_CFG, &tmp);
			edac_dbg(1, "UMC%d LRDIMM %dx rank multiply\n",
					i, 1 << ((tmp >> 4) & 0x3));
		}

		debug_display_dimm_sizes_df(pvt, i);
	}

	edac_dbg(1, "F0x104 (DRAM Hole Address): 0x%08x, base: 0x%08x\n",
		 pvt->dhar, dhar_base(pvt));
}

874
/* Display and decode various NB registers for debug purposes. */
875
static void __dump_misc_regs(struct amd64_pvt *pvt)
876
{
877
	edac_dbg(1, "F3xE8 (NB Cap): 0x%08x\n", pvt->nbcap);
878

879 880
	edac_dbg(1, "  NB two channel DRAM capable: %s\n",
		 (pvt->nbcap & NBCAP_DCT_DUAL) ? "yes" : "no");
881

882 883 884
	edac_dbg(1, "  ECC capable: %s, ChipKill ECC capable: %s\n",
		 (pvt->nbcap & NBCAP_SECDED) ? "yes" : "no",
		 (pvt->nbcap & NBCAP_CHIPKILL) ? "yes" : "no");
885

886
	debug_dump_dramcfg_low(pvt, pvt->dclr0, 0);
887

888
	edac_dbg(1, "F3xB0 (Online Spare): 0x%08x\n", pvt->online_spare);
889

890 891
	edac_dbg(1, "F1xF0 (DRAM Hole Address): 0x%08x, base: 0x%08x, offset: 0x%08x\n",
		 pvt->dhar, dhar_base(pvt),
892 893
		 (pvt->fam == 0xf) ? k8_dhar_offset(pvt)
				   : f10_dhar_offset(pvt));
894

895
	debug_display_dimm_sizes(pvt, 0);
896

897
	/* everything below this point is Fam10h and above */
898
	if (pvt->fam == 0xf)
899
		return;
900

901
	debug_display_dimm_sizes(pvt, 1);
902

903
	/* Only if NOT ganged does dclr1 have valid info */
904
	if (!dct_ganging_enabled(pvt))
905
		debug_dump_dramcfg_low(pvt, pvt->dclr1, 1);
906 907
}

908 909 910 911 912 913 914 915 916 917
/* Display and decode various NB registers for debug purposes. */
static void dump_misc_regs(struct amd64_pvt *pvt)
{
	if (pvt->umc)
		__dump_misc_regs_df(pvt);
	else
		__dump_misc_regs(pvt);

	edac_dbg(1, "  DramHoleValid: %s\n", dhar_valid(pvt) ? "yes" : "no");

918
	amd64_info("using x%u syndromes.\n", pvt->ecc_sym_sz);
919 920
}

921
/*
922
 * See BKDG, F2x[1,0][5C:40], F2[1,0][6C:60]
923
 */
924
static void prep_chip_selects(struct amd64_pvt *pvt)
925
{
926
	if (pvt->fam == 0xf && pvt->ext_model < K8_REV_F) {
927 928
		pvt->csels[0].b_cnt = pvt->csels[1].b_cnt = 8;
		pvt->csels[0].m_cnt = pvt->csels[1].m_cnt = 8;
929
	} else if (pvt->fam == 0x15 && pvt->model == 0x30) {
930 931
		pvt->csels[0].b_cnt = pvt->csels[1].b_cnt = 4;
		pvt->csels[0].m_cnt = pvt->csels[1].m_cnt = 2;
932 933 934 935 936 937 938 939
	} else if (pvt->fam >= 0x17) {
		int umc;

		for_each_umc(umc) {
			pvt->csels[umc].b_cnt = 4;
			pvt->csels[umc].m_cnt = 2;
		}

940
	} else {
941 942
		pvt->csels[0].b_cnt = pvt->csels[1].b_cnt = 8;
		pvt->csels[0].m_cnt = pvt->csels[1].m_cnt = 4;
943 944 945
	}
}

946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979
static void read_umc_base_mask(struct amd64_pvt *pvt)
{
	u32 umc_base_reg, umc_mask_reg;
	u32 base_reg, mask_reg;
	u32 *base, *mask;
	int cs, umc;

	for_each_umc(umc) {
		umc_base_reg = get_umc_base(umc) + UMCCH_BASE_ADDR;

		for_each_chip_select(cs, umc, pvt) {
			base = &pvt->csels[umc].csbases[cs];

			base_reg = umc_base_reg + (cs * 4);

			if (!amd_smn_read(pvt->mc_node_id, base_reg, base))
				edac_dbg(0, "  DCSB%d[%d]=0x%08x reg: 0x%x\n",
					 umc, cs, *base, base_reg);
		}

		umc_mask_reg = get_umc_base(umc) + UMCCH_ADDR_MASK;

		for_each_chip_select_mask(cs, umc, pvt) {
			mask = &pvt->csels[umc].csmasks[cs];

			mask_reg = umc_mask_reg + (cs * 4);

			if (!amd_smn_read(pvt->mc_node_id, mask_reg, mask))
				edac_dbg(0, "  DCSM%d[%d]=0x%08x reg: 0x%x\n",
					 umc, cs, *mask, mask_reg);
		}
	}
}

980
/*
981
 * Function 2 Offset F10_DCSB0; read in the DCS Base and DCS Mask registers
982
 */
983
static void read_dct_base_mask(struct amd64_pvt *pvt)
984
{
985
	int cs;
986

987
	prep_chip_selects(pvt);
988

989 990
	if (pvt->umc)
		return read_umc_base_mask(pvt);
991

992
	for_each_chip_select(cs, 0, pvt) {
993 994
		int reg0   = DCSB0 + (cs * 4);
		int reg1   = DCSB1 + (cs * 4);
995 996
		u32 *base0 = &pvt->csels[0].csbases[cs];
		u32 *base1 = &pvt->csels[1].csbases[cs];
997

998 999 1000
		if (!amd64_read_dct_pci_cfg(pvt, 0, reg0, base0))
			edac_dbg(0, "  DCSB0[%d]=0x%08x reg: F2x%x\n",
				 cs, *base0, reg0);
1001

1002 1003
		if (pvt->fam == 0xf)
			continue;
1004

1005 1006 1007 1008
		if (!amd64_read_dct_pci_cfg(pvt, 1, reg0, base1))
			edac_dbg(0, "  DCSB1[%d]=0x%08x reg: F2x%x\n",
				 cs, *base1, (pvt->fam == 0x10) ? reg1
							: reg0);
1009 1010
	}

1011
	for_each_chip_select_mask(cs, 0, pvt) {
1012 1013
		int reg0   = DCSM0 + (cs * 4);
		int reg1   = DCSM1 + (cs * 4);
1014 1015
		u32 *mask0 = &pvt->csels[0].csmasks[cs];
		u32 *mask1 = &pvt->csels[1].csmasks[cs];
1016

1017 1018 1019
		if (!amd64_read_dct_pci_cfg(pvt, 0, reg0, mask0))
			edac_dbg(0, "    DCSM0[%d]=0x%08x reg: F2x%x\n",
				 cs, *mask0, reg0);
1020

1021 1022
		if (pvt->fam == 0xf)
			continue;
1023

1024 1025 1026 1027
		if (!amd64_read_dct_pci_cfg(pvt, 1, reg0, mask1))
			edac_dbg(0, "    DCSM1[%d]=0x%08x reg: F2x%x\n",
				 cs, *mask1, (pvt->fam == 0x10) ? reg1
							: reg0);
1028 1029 1030
	}
}

1031
static void determine_memory_type(struct amd64_pvt *pvt)
1032
{
1033
	u32 dram_ctrl, dcsm;
1034

1035 1036 1037 1038 1039 1040 1041 1042 1043
	switch (pvt->fam) {
	case 0xf:
		if (pvt->ext_model >= K8_REV_F)
			goto ddr3;

		pvt->dram_type = (pvt->dclr0 & BIT(18)) ? MEM_DDR : MEM_RDDR;
		return;

	case 0x10:
1044
		if (pvt->dchr0 & DDR3_MODE)
1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071
			goto ddr3;

		pvt->dram_type = (pvt->dclr0 & BIT(16)) ? MEM_DDR2 : MEM_RDDR2;
		return;

	case 0x15:
		if (pvt->model < 0x60)
			goto ddr3;

		/*
		 * Model 0x60h needs special handling:
		 *
		 * We use a Chip Select value of '0' to obtain dcsm.
		 * Theoretically, it is possible to populate LRDIMMs of different
		 * 'Rank' value on a DCT. But this is not the common case. So,
		 * it's reasonable to assume all DIMMs are going to be of same
		 * 'type' until proven otherwise.
		 */
		amd64_read_dct_pci_cfg(pvt, 0, DRAM_CONTROL, &dram_ctrl);
		dcsm = pvt->csels[0].csmasks[0];

		if (((dram_ctrl >> 8) & 0x7) == 0x2)
			pvt->dram_type = MEM_DDR4;
		else if (pvt->dclr0 & BIT(16))
			pvt->dram_type = MEM_DDR3;
		else if (dcsm & 0x3)
			pvt->dram_type = MEM_LRDDR3;
1072
		else
1073
			pvt->dram_type = MEM_RDDR3;
1074

1075 1076 1077 1078 1079
		return;

	case 0x16:
		goto ddr3;

1080
	case 0x17:
1081
	case 0x18:
1082 1083 1084 1085 1086 1087 1088 1089
		if ((pvt->umc[0].dimm_cfg | pvt->umc[1].dimm_cfg) & BIT(5))
			pvt->dram_type = MEM_LRDDR4;
		else if ((pvt->umc[0].dimm_cfg | pvt->umc[1].dimm_cfg) & BIT(4))
			pvt->dram_type = MEM_RDDR4;
		else
			pvt->dram_type = MEM_DDR4;
		return;

1090 1091 1092 1093 1094
	default:
		WARN(1, KERN_ERR "%s: Family??? 0x%x\n", __func__, pvt->fam);
		pvt->dram_type = MEM_EMPTY;
	}
	return;
1095

1096 1097
ddr3:
	pvt->dram_type = (pvt->dclr0 & BIT(16)) ? MEM_DDR3 : MEM_RDDR3;
1098 1099
}

1100
/* Get the number of DCT channels the memory controller is using. */
1101 1102
static int k8_early_channel_count(struct amd64_pvt *pvt)
{
1103
	int flag;
1104

1105
	if (pvt->ext_model >= K8_REV_F)
1106
		/* RevF (NPT) and later */
1107
		flag = pvt->dclr0 & WIDTH_128;
1108
	else
1109 1110 1111 1112 1113 1114 1115 1116 1117
		/* RevE and earlier */
		flag = pvt->dclr0 & REVE_WIDTH_128;

	/* not used */
	pvt->dclr1 = 0;

	return (flag) ? 2 : 1;
}

1118
/* On F10h and later ErrAddr is MC4_ADDR[47:1] */
1119
static u64 get_error_address(struct amd64_pvt *pvt, struct mce *m)
1120
{
1121 1122
	u16 mce_nid = amd_get_nb_id(m->extcpu);
	struct mem_ctl_info *mci;
1123 1124
	u8 start_bit = 1;
	u8 end_bit   = 47;
1125 1126 1127 1128 1129 1130 1131
	u64 addr;

	mci = edac_mc_find(mce_nid);
	if (!mci)
		return 0;

	pvt = mci->pvt_info;
1132

1133
	if (pvt->fam == 0xf) {
1134 1135 1136 1137
		start_bit = 3;
		end_bit   = 39;
	}

1138
	addr = m->addr & GENMASK_ULL(end_bit, start_bit);
1139 1140 1141 1142

	/*
	 * Erratum 637 workaround
	 */
1143
	if (pvt->fam == 0x15) {
1144 1145
		u64 cc6_base, tmp_addr;
		u32 tmp;
1146
		u8 intlv_en;
1147

1148
		if ((addr & GENMASK_ULL(47, 24)) >> 24 != 0x00fdf7)
1149 1150 1151 1152 1153 1154 1155
			return addr;


		amd64_read_pci_cfg(pvt->F1, DRAM_LOCAL_NODE_LIM, &tmp);
		intlv_en = tmp >> 21 & 0x7;

		/* add [47:27] + 3 trailing bits */
1156
		cc6_base  = (tmp & GENMASK_ULL(20, 0)) << 3;
1157 1158 1159 1160 1161 1162 1163 1164

		/* reverse and add DramIntlvEn */
		cc6_base |= intlv_en ^ 0x7;

		/* pin at [47:24] */
		cc6_base <<= 24;

		if (!intlv_en)
1165
			return cc6_base | (addr & GENMASK_ULL(23, 0));
1166 1167 1168 1169

		amd64_read_pci_cfg(pvt->F1, DRAM_LOCAL_NODE_BASE, &tmp);

							/* faster log2 */
1170
		tmp_addr  = (addr & GENMASK_ULL(23, 12)) << __fls(intlv_en + 1);
1171 1172

		/* OR DramIntlvSel into bits [14:12] */
1173
		tmp_addr |= (tmp & GENMASK_ULL(23, 21)) >> 9;
1174 1175

		/* add remaining [11:0] bits from original MC4_ADDR */
1176
		tmp_addr |= addr & GENMASK_ULL(11, 0);
1177 1178 1179 1180 1181

		return cc6_base | tmp_addr;
	}

	return addr;
1182 1183
}

1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199
static struct pci_dev *pci_get_related_function(unsigned int vendor,
						unsigned int device,
						struct pci_dev *related)
{
	struct pci_dev *dev = NULL;

	while ((dev = pci_get_device(vendor, device, dev))) {
		if (pci_domain_nr(dev->bus) == pci_domain_nr(related->bus) &&
		    (dev->bus->number == related->bus->number) &&
		    (PCI_SLOT(dev->devfn) == PCI_SLOT(related->devfn)))
			break;
	}

	return dev;
}

1200
static void read_dram_base_limit_regs(struct amd64_pvt *pvt, unsigned range)
1201
{
1202
	struct amd_northbridge *nb;
1203 1204
	struct pci_dev *f1 = NULL;
	unsigned int pci_func;
1205
	int off = range << 3;
1206
	u32 llim;
1207

1208 1209
	amd64_read_pci_cfg(pvt->F1, DRAM_BASE_LO + off,  &pvt->ranges[range].base.lo);
	amd64_read_pci_cfg(pvt->F1, DRAM_LIMIT_LO + off, &pvt->ranges[range].lim.lo);
1210

1211
	if (pvt->fam == 0xf)
1212
		return;
1213

1214 1215
	if (!dram_rw(pvt, range))
		return;
1216

1217 1218
	amd64_read_pci_cfg(pvt->F1, DRAM_BASE_HI + off,  &pvt->ranges[range].base.hi);
	amd64_read_pci_cfg(pvt->F1, DRAM_LIMIT_HI + off, &pvt->ranges[range].lim.hi);
1219

1220
	/* F15h: factor in CC6 save area by reading dst node's limit reg */
1221
	if (pvt->fam != 0x15)
1222
		return;
1223

1224 1225 1226
	nb = node_to_amd_nb(dram_dst_node(pvt, range));
	if (WARN_ON(!nb))
		return;
1227

1228 1229 1230 1231 1232 1233
	if (pvt->model == 0x60)
		pci_func = PCI_DEVICE_ID_AMD_15H_M60H_NB_F1;
	else if (pvt->model == 0x30)
		pci_func = PCI_DEVICE_ID_AMD_15H_M30H_NB_F1;
	else
		pci_func = PCI_DEVICE_ID_AMD_15H_NB_F1;
1234 1235

	f1 = pci_get_related_function(nb->misc->vendor, pci_func, nb->misc);
1236 1237
	if (WARN_ON(!f1))
		return;
1238

1239
	amd64_read_pci_cfg(f1, DRAM_LOCAL_NODE_LIM, &llim);
1240

1241
	pvt->ranges[range].lim.lo &= GENMASK_ULL(15, 0);
1242

1243 1244
				    /* {[39:27],111b} */
	pvt->ranges[range].lim.lo |= ((llim & 0x1fff) << 3 | 0x7) << 16;
1245

1246
	pvt->ranges[range].lim.hi &= GENMASK_ULL(7, 0);
1247

1248 1249 1250 1251
				    /* [47:40] */
	pvt->ranges[range].lim.hi |= llim >> 13;

	pci_dev_put(f1);
1252 1253
}

1254
static void k8_map_sysaddr_to_csrow(struct mem_ctl_info *mci, u64 sys_addr,
1255
				    struct err_info *err)
1256
{
1257
	struct amd64_pvt *pvt = mci->pvt_info;
1258

1259
	error_address_to_page_and_offset(sys_addr, err);
1260 1261 1262 1263 1264

	/*
	 * Find out which node the error address belongs to. This may be
	 * different from the node that detected the error.
	 */
1265 1266
	err->src_mci = find_mc_by_sys_addr(mci, sys_addr);
	if (!err->src_mci) {
1267 1268
		amd64_mc_err(mci, "failed to map error addr 0x%lx to a node\n",
			     (unsigned long)sys_addr);
1269
		err->err_code = ERR_NODE;
1270 1271 1272 1273
		return;
	}

	/* Now map the sys_addr to a CSROW */
1274 1275 1276
	err->csrow = sys_addr_to_csrow(err->src_mci, sys_addr);
	if (err->csrow < 0) {
		err->err_code = ERR_CSROW;
1277 1278 1279
		return;
	}

1280
	/* CHIPKILL enabled */
1281
	if (pvt->nbcfg & NBCFG_CHIPKILL) {
1282 1283
		err->channel = get_channel_from_ecc_syndrome(mci, err->syndrome);
		if (err->channel < 0) {
1284 1285 1286 1287 1288
			/*
			 * Syndrome didn't map, so we don't know which of the
			 * 2 DIMMs is in error. So we need to ID 'both' of them
			 * as suspect.
			 */
1289
			amd64_mc_warn(err->src_mci, "unknown syndrome 0x%04x - "
1290
				      "possible error reporting race\n",
1291 1292
				      err->syndrome);
			err->err_code = ERR_CHANNEL;
1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303
			return;
		}
	} else {
		/*
		 * non-chipkill ecc mode
		 *
		 * The k8 documentation is unclear about how to determine the
		 * channel number when using non-chipkill memory.  This method
		 * was obtained from email communication with someone at AMD.
		 * (Wish the email was placed in this comment - norsk)
		 */
1304
		err->channel = ((sys_addr & BIT(3)) != 0);
1305 1306 1307
	}
}

1308
static int ddr2_cs_size(unsigned i, bool dct_width)
1309
{
1310
	unsigned shift = 0;
1311

1312 1313 1314 1315
	if (i <= 2)
		shift = i;
	else if (!(i & 0x1))
		shift = i >> 1;
1316
	else
1317
		shift = (i + 1) >> 1;
1318

1319 1320 1321 1322
	return 128 << (shift + !!dct_width);
}

static int k8_dbam_to_chip_select(struct amd64_pvt *pvt, u8 dct,
1323
				  unsigned cs_mode, int cs_mask_nr)
1324 1325 1326 1327 1328 1329 1330 1331
{
	u32 dclr = dct ? pvt->dclr1 : pvt->dclr0;

	if (pvt->ext_model >= K8_REV_F) {
		WARN_ON(cs_mode > 11);
		return ddr2_cs_size(cs_mode, dclr & WIDTH_128);
	}
	else if (pvt->ext_model >= K8_REV_D) {
1332
		unsigned diff;
1333 1334
		WARN_ON(cs_mode > 10);

1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361
		/*
		 * the below calculation, besides trying to win an obfuscated C
		 * contest, maps cs_mode values to DIMM chip select sizes. The
		 * mappings are:
		 *
		 * cs_mode	CS size (mb)
		 * =======	============
		 * 0		32
		 * 1		64
		 * 2		128
		 * 3		128
		 * 4		256
		 * 5		512
		 * 6		256
		 * 7		512
		 * 8		1024
		 * 9		1024
		 * 10		2048
		 *
		 * Basically, it calculates a value with which to shift the
		 * smallest CS size of 32MB.
		 *
		 * ddr[23]_cs_size have a similar purpose.
		 */
		diff = cs_mode/3 + (unsigned)(cs_mode > 5);

		return 32 << (cs_mode - diff);
1362 1363 1364 1365 1366
	}
	else {
		WARN_ON(cs_mode > 6);
		return 32 << cs_mode;
	}
1367 1368
}

1369 1370 1371 1372 1373 1374 1375 1376
/*
 * Get the number of DCT channels in use.
 *
 * Return:
 *	number of Memory Channels in operation
 * Pass back:
 *	contents of the DCL0_LOW register
 */
1377
static int f1x_early_channel_count(struct amd64_pvt *pvt)
1378
{
1379
	int i, j, channels = 0;
1380

1381
	/* On F10h, if we are in 128 bit mode, then we are using 2 channels */
1382
	if (pvt->fam == 0x10 && (pvt->dclr0 & WIDTH_128))
1383
		return 2;
1384 1385

	/*
1386 1387 1388
	 * Need to check if in unganged mode: In such, there are 2 channels,
	 * but they are not in 128 bit mode and thus the above 'dclr0' status
	 * bit will be OFF.
1389 1390 1391 1392
	 *
	 * Need to check DCT0[0] and DCT1[0] to see if only one of them has
	 * their CSEnable bit on. If so, then SINGLE DIMM case.
	 */
1393
	edac_dbg(0, "Data width is not 128 bits - need more decoding\n");
1394

1395 1396 1397 1398 1399
	/*
	 * Check DRAM Bank Address Mapping values for each DIMM to see if there
	 * is more than just one DIMM present in unganged mode. Need to check
	 * both controllers since DIMMs can be placed in either one.
	 */
1400 1401
	for (i = 0; i < 2; i++) {
		u32 dbam = (i ? pvt->dbam1 : pvt->dbam0);
1402

1403 1404 1405 1406 1407 1408
		for (j = 0; j < 4; j++) {
			if (DBAM_DIMM(j, dbam) > 0) {
				channels++;
				break;
			}
		}
1409 1410
	}

1411 1412 1413
	if (channels > 2)
		channels = 2;

1414
	amd64_info("MCT channel count: %d\n", channels);
1415 1416 1417 1418

	return channels;
}

1419 1420 1421 1422 1423
static int f17_early_channel_count(struct amd64_pvt *pvt)
{
	int i, channels = 0;

	/* SDP Control bit 31 (SdpInit) is clear for unused UMC channels */
1424
	for_each_umc(i)
1425 1426 1427 1428 1429 1430 1431
		channels += !!(pvt->umc[i].sdp_ctrl & UMC_SDP_INIT);

	amd64_info("MCT channel count: %d\n", channels);

	return channels;
}

1432
static int ddr3_cs_size(unsigned i, bool dct_width)
1433
{
1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453
	unsigned shift = 0;
	int cs_size = 0;

	if (i == 0 || i == 3 || i == 4)
		cs_size = -1;
	else if (i <= 2)
		shift = i;
	else if (i == 12)
		shift = 7;
	else if (!(i & 0x1))
		shift = i >> 1;
	else
		shift = (i + 1) >> 1;

	if (cs_size != -1)
		cs_size = (128 * (1 << !!dct_width)) << shift;

	return cs_size;
}

1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488
static int ddr3_lrdimm_cs_size(unsigned i, unsigned rank_multiply)
{
	unsigned shift = 0;
	int cs_size = 0;

	if (i < 4 || i == 6)
		cs_size = -1;
	else if (i == 12)
		shift = 7;
	else if (!(i & 0x1))
		shift = i >> 1;
	else
		shift = (i + 1) >> 1;

	if (cs_size != -1)
		cs_size = rank_multiply * (128 << shift);

	return cs_size;
}

static int ddr4_cs_size(unsigned i)
{
	int cs_size = 0;

	if (i == 0)
		cs_size = -1;
	else if (i == 1)
		cs_size = 1024;
	else
		/* Min cs_size = 1G */
		cs_size = 1024 * (1 << (i >> 1));

	return cs_size;
}

1489
static int f10_dbam_to_chip_select(struct amd64_pvt *pvt, u8 dct,
1490
				   unsigned cs_mode, int cs_mask_nr)
1491 1492 1493 1494
{
	u32 dclr = dct ? pvt->dclr1 : pvt->dclr0;

	WARN_ON(cs_mode > 11);
1495 1496

	if (pvt->dchr0 & DDR3_MODE || pvt->dchr1 & DDR3_MODE)
1497
		return ddr3_cs_size(cs_mode, dclr & WIDTH_128);
1498
	else
1499 1500 1501 1502 1503 1504 1505
		return ddr2_cs_size(cs_mode, dclr & WIDTH_128);
}

/*
 * F15h supports only 64bit DCT interfaces
 */
static int f15_dbam_to_chip_select(struct amd64_pvt *pvt, u8 dct,
1506
				   unsigned cs_mode, int cs_mask_nr)
1507 1508
{
	WARN_ON(cs_mode > 12);
1509

1510
	return ddr3_cs_size(cs_mode, false);
1511 1512
}

1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543
/* F15h M60h supports DDR4 mapping as well.. */
static int f15_m60h_dbam_to_chip_select(struct amd64_pvt *pvt, u8 dct,
					unsigned cs_mode, int cs_mask_nr)
{
	int cs_size;
	u32 dcsm = pvt->csels[dct].csmasks[cs_mask_nr];

	WARN_ON(cs_mode > 12);

	if (pvt->dram_type == MEM_DDR4) {
		if (cs_mode > 9)
			return -1;

		cs_size = ddr4_cs_size(cs_mode);
	} else if (pvt->dram_type == MEM_LRDDR3) {
		unsigned rank_multiply = dcsm & 0xf;

		if (rank_multiply == 3)
			rank_multiply = 4;
		cs_size = ddr3_lrdimm_cs_size(cs_mode, rank_multiply);
	} else {
		/* Minimum cs size is 512mb for F15hM60h*/
		if (cs_mode == 0x1)
			return -1;

		cs_size = ddr3_cs_size(cs_mode, false);
	}

	return cs_size;
}

1544
/*
1545
 * F16h and F15h model 30h have only limited cs_modes.
1546 1547
 */
static int f16_dbam_to_chip_select(struct amd64_pvt *pvt, u8 dct,
1548
				unsigned cs_mode, int cs_mask_nr)
1549 1550 1551 1552 1553 1554 1555 1556 1557 1558
{
	WARN_ON(cs_mode > 12);

	if (cs_mode == 6 || cs_mode == 8 ||
	    cs_mode == 9 || cs_mode == 12)
		return -1;
	else
		return ddr3_cs_size(cs_mode, false);
}

1559
static int f17_addr_mask_to_cs_size(struct amd64_pvt *pvt, u8 umc,
1560 1561
				    unsigned int cs_mode, int csrow_nr)
{
1562 1563 1564
	u32 addr_mask_orig, addr_mask_deinterleaved;
	u32 msb, weight, num_zero_bits;
	int dimm, size = 0;
1565

1566 1567 1568
	/* No Chip Selects are enabled. */
	if (!cs_mode)
		return size;
1569

1570 1571 1572
	/* Requested size of an even CS but none are enabled. */
	if (!(cs_mode & CS_EVEN) && !(csrow_nr & 1))
		return size;
1573

1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607
	/* Requested size of an odd CS but none are enabled. */
	if (!(cs_mode & CS_ODD) && (csrow_nr & 1))
		return size;

	/*
	 * There is one mask per DIMM, and two Chip Selects per DIMM.
	 *	CS0 and CS1 -> DIMM0
	 *	CS2 and CS3 -> DIMM1
	 */
	dimm = csrow_nr >> 1;

	addr_mask_orig = pvt->csels[umc].csmasks[dimm];

	/*
	 * The number of zero bits in the mask is equal to the number of bits
	 * in a full mask minus the number of bits in the current mask.
	 *
	 * The MSB is the number of bits in the full mask because BIT[0] is
	 * always 0.
	 */
	msb = fls(addr_mask_orig) - 1;
	weight = hweight_long(addr_mask_orig);
	num_zero_bits = msb - weight;

	/* Take the number of zero bits off from the top of the mask. */
	addr_mask_deinterleaved = GENMASK_ULL(msb - num_zero_bits, 1);

	edac_dbg(1, "CS%d DIMM%d AddrMasks:\n", csrow_nr, dimm);
	edac_dbg(1, "  Original AddrMask: 0x%x\n", addr_mask_orig);
	edac_dbg(1, "  Deinterleaved AddrMask: 0x%x\n",
		 addr_mask_deinterleaved);

	/* Register [31:1] = Address [39:9]. Size is in kBs here. */
	size = (addr_mask_deinterleaved >> 2) + 1;
1608 1609 1610 1611 1612

	/* Return size in MBs. */
	return size >> 10;
}

1613
static void read_dram_ctl_register(struct amd64_pvt *pvt)
1614 1615
{

1616
	if (pvt->fam == 0xf)
1617 1618
		return;

1619
	if (!amd64_read_pci_cfg(pvt->F2, DCT_SEL_LO, &pvt->dct_sel_lo)) {
1620 1621
		edac_dbg(0, "F2x110 (DCTSelLow): 0x%08x, High range addrs at: 0x%x\n",
			 pvt->dct_sel_lo, dct_sel_baseaddr(pvt));
1622

1623 1624
		edac_dbg(0, "  DCTs operate in %s mode\n",
			 (dct_ganging_enabled(pvt) ? "ganged" : "unganged"));
1625 1626

		if (!dct_ganging_enabled(pvt))
1627 1628
			edac_dbg(0, "  Address range split per DCT: %s\n",
				 (dct_high_range_enabled(pvt) ? "yes" : "no"));
1629

1630 1631 1632
		edac_dbg(0, "  data interleave for ECC: %s, DRAM cleared since last warm reset: %s\n",
			 (dct_data_intlv_enabled(pvt) ? "enabled" : "disabled"),
			 (dct_memory_cleared(pvt) ? "yes" : "no"));
1633

1634 1635 1636 1637
		edac_dbg(0, "  channel interleave: %s, "
			 "interleave bits selector: 0x%x\n",
			 (dct_interleave_enabled(pvt) ? "enabled" : "disabled"),
			 dct_sel_interleave_addr(pvt));
1638 1639
	}

1640
	amd64_read_pci_cfg(pvt->F2, DCT_SEL_HI, &pvt->dct_sel_hi);
1641 1642
}

1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659
/*
 * Determine channel (DCT) based on the interleaving mode (see F15h M30h BKDG,
 * 2.10.12 Memory Interleaving Modes).
 */
static u8 f15_m30h_determine_channel(struct amd64_pvt *pvt, u64 sys_addr,
				     u8 intlv_en, int num_dcts_intlv,
				     u32 dct_sel)
{
	u8 channel = 0;
	u8 select;

	if (!(intlv_en))
		return (u8)(dct_sel);

	if (num_dcts_intlv == 2) {
		select = (sys_addr >> 8) & 0x3;
		channel = select ? 0x3 : 0;
1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670
	} else if (num_dcts_intlv == 4) {
		u8 intlv_addr = dct_sel_interleave_addr(pvt);
		switch (intlv_addr) {
		case 0x4:
			channel = (sys_addr >> 8) & 0x3;
			break;
		case 0x5:
			channel = (sys_addr >> 9) & 0x3;
			break;
		}
	}
1671 1672 1673
	return channel;
}

1674
/*
1675
 * Determine channel (DCT) based on the interleaving mode: F10h BKDG, 2.8.9 Memory
1676 1677
 * Interleaving Modes.
 */
1678
static u8 f1x_determine_channel(struct amd64_pvt *pvt, u64 sys_addr,
1679
				bool hi_range_sel, u8 intlv_en)
1680
{
1681
	u8 dct_sel_high = (pvt->dct_sel_lo >> 1) & 1;
1682 1683

	if (dct_ganging_enabled(pvt))
1684
		return 0;
1685

1686 1687
	if (hi_range_sel)
		return dct_sel_high;
1688

1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700
	/*
	 * see F2x110[DctSelIntLvAddr] - channel interleave mode
	 */
	if (dct_interleave_enabled(pvt)) {
		u8 intlv_addr = dct_sel_interleave_addr(pvt);

		/* return DCT select function: 0=DCT0, 1=DCT1 */
		if (!intlv_addr)
			return sys_addr >> 6 & 1;

		if (intlv_addr & 0x2) {
			u8 shift = intlv_addr & 0x1 ? 9 : 6;
1701
			u32 temp = hweight_long((u32) ((sys_addr >> 16) & 0x1F)) & 1;
1702 1703 1704 1705

			return ((sys_addr >> shift) & 1) ^ temp;
		}

1706 1707 1708 1709 1710 1711
		if (intlv_addr & 0x4) {
			u8 shift = intlv_addr & 0x1 ? 9 : 8;

			return (sys_addr >> shift) & 1;
		}

1712 1713 1714 1715 1716
		return (sys_addr >> (12 + hweight8(intlv_en))) & 1;
	}

	if (dct_high_range_enabled(pvt))
		return ~dct_sel_high & 1;
1717 1718 1719 1720

	return 0;
}

1721
/* Convert the sys_addr to the normalized DCT address */
1722
static u64 f1x_get_norm_dct_addr(struct amd64_pvt *pvt, u8 range,
1723 1724
				 u64 sys_addr, bool hi_rng,
				 u32 dct_sel_base_addr)
1725 1726
{
	u64 chan_off;
1727 1728
	u64 dram_base		= get_dram_base(pvt, range);
	u64 hole_off		= f10_dhar_offset(pvt);
1729
	u64 dct_sel_base_off	= (u64)(pvt->dct_sel_hi & 0xFFFFFC00) << 16;
1730

1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744
	if (hi_rng) {
		/*
		 * if
		 * base address of high range is below 4Gb
		 * (bits [47:27] at [31:11])
		 * DRAM address space on this DCT is hoisted above 4Gb	&&
		 * sys_addr > 4Gb
		 *
		 *	remove hole offset from sys_addr
		 * else
		 *	remove high range offset from sys_addr
		 */
		if ((!(dct_sel_base_addr >> 16) ||
		     dct_sel_base_addr < dhar_base(pvt)) &&
1745
		    dhar_valid(pvt) &&
1746
		    (sys_addr >= BIT_64(32)))
1747
			chan_off = hole_off;
1748 1749 1750
		else
			chan_off = dct_sel_base_off;
	} else {
1751 1752 1753 1754 1755 1756 1757 1758 1759
		/*
		 * if
		 * we have a valid hole		&&
		 * sys_addr > 4Gb
		 *
		 *	remove hole
		 * else
		 *	remove dram base to normalize to DCT address
		 */
1760
		if (dhar_valid(pvt) && (sys_addr >= BIT_64(32)))
1761
			chan_off = hole_off;
1762
		else
1763
			chan_off = dram_base;
1764 1765
	}

1766
	return (sys_addr & GENMASK_ULL(47,6)) - (chan_off & GENMASK_ULL(47,23));
1767 1768 1769 1770 1771 1772
}

/*
 * checks if the csrow passed in is marked as SPARED, if so returns the new
 * spare row
 */
1773
static int f10_process_possible_spare(struct amd64_pvt *pvt, u8 dct, int csrow)
1774
{
1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785
	int tmp_cs;

	if (online_spare_swap_done(pvt, dct) &&
	    csrow == online_spare_bad_dramcs(pvt, dct)) {

		for_each_chip_select(tmp_cs, dct, pvt) {
			if (chip_select_base(tmp_cs, dct, pvt) & 0x2) {
				csrow = tmp_cs;
				break;
			}
		}
1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797
	}
	return csrow;
}

/*
 * Iterate over the DRAM DCT "base" and "mask" registers looking for a
 * SystemAddr match on the specified 'ChannelSelect' and 'NodeID'
 *
 * Return:
 *	-EINVAL:  NOT FOUND
 *	0..csrow = Chip-Select Row
 */
1798
static int f1x_lookup_addr_in_dct(u64 in_addr, u8 nid, u8 dct)
1799 1800 1801
{
	struct mem_ctl_info *mci;
	struct amd64_pvt *pvt;
1802
	u64 cs_base, cs_mask;
1803 1804 1805
	int cs_found = -EINVAL;
	int csrow;

1806
	mci = edac_mc_find(nid);
1807 1808 1809 1810 1811
	if (!mci)
		return cs_found;

	pvt = mci->pvt_info;

1812
	edac_dbg(1, "input addr: 0x%llx, DCT: %d\n", in_addr, dct);
1813

1814 1815
	for_each_chip_select(csrow, dct, pvt) {
		if (!csrow_enabled(csrow, dct, pvt))
1816 1817
			continue;

1818
		get_cs_base_and_mask(pvt, csrow, dct, &cs_base, &cs_mask);
1819

1820 1821
		edac_dbg(1, "    CSROW=%d CSBase=0x%llx CSMask=0x%llx\n",
			 csrow, cs_base, cs_mask);
1822

1823
		cs_mask = ~cs_mask;
1824

1825 1826
		edac_dbg(1, "    (InputAddr & ~CSMask)=0x%llx (CSBase & ~CSMask)=0x%llx\n",
			 (in_addr & cs_mask), (cs_base & cs_mask));
1827

1828
		if ((in_addr & cs_mask) == (cs_base & cs_mask)) {
1829 1830 1831 1832
			if (pvt->fam == 0x15 && pvt->model >= 0x30) {
				cs_found =  csrow;
				break;
			}
1833
			cs_found = f10_process_possible_spare(pvt, dct, csrow);
1834

1835
			edac_dbg(1, " MATCH csrow=%d\n", cs_found);
1836 1837 1838 1839 1840 1841
			break;
		}
	}
	return cs_found;
}

1842 1843 1844 1845 1846
/*
 * See F2x10C. Non-interleaved graphics framebuffer memory under the 16G is
 * swapped with a region located at the bottom of memory so that the GPU can use
 * the interleaved region and thus two channels.
 */
1847
static u64 f1x_swap_interleaved_region(struct amd64_pvt *pvt, u64 sys_addr)
1848 1849 1850
{
	u32 swap_reg, swap_base, swap_limit, rgn_size, tmp_addr;

1851
	if (pvt->fam == 0x10) {
1852
		/* only revC3 and revE have that feature */
1853
		if (pvt->model < 4 || (pvt->model < 0xa && pvt->stepping < 3))
1854 1855 1856
			return sys_addr;
	}

1857
	amd64_read_pci_cfg(pvt->F2, SWAP_INTLV_REG, &swap_reg);
1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875

	if (!(swap_reg & 0x1))
		return sys_addr;

	swap_base	= (swap_reg >> 3) & 0x7f;
	swap_limit	= (swap_reg >> 11) & 0x7f;
	rgn_size	= (swap_reg >> 20) & 0x7f;
	tmp_addr	= sys_addr >> 27;

	if (!(sys_addr >> 34) &&
	    (((tmp_addr >= swap_base) &&
	     (tmp_addr <= swap_limit)) ||
	     (tmp_addr < rgn_size)))
		return sys_addr ^ (u64)swap_base << 27;

	return sys_addr;
}

1876
/* For a given @dram_range, check if @sys_addr falls within it. */
1877
static int f1x_match_to_this_node(struct amd64_pvt *pvt, unsigned range,
1878
				  u64 sys_addr, int *chan_sel)
1879
{
1880
	int cs_found = -EINVAL;
1881
	u64 chan_addr;
1882
	u32 dct_sel_base;
1883
	u8 channel;
1884
	bool high_range = false;
1885

1886
	u8 node_id    = dram_dst_node(pvt, range);
1887
	u8 intlv_en   = dram_intlv_en(pvt, range);
1888
	u32 intlv_sel = dram_intlv_sel(pvt, range);
1889

1890 1891
	edac_dbg(1, "(range %d) SystemAddr= 0x%llx Limit=0x%llx\n",
		 range, sys_addr, get_dram_limit(pvt, range));
1892

1893 1894 1895 1896 1897 1898 1899 1900
	if (dhar_valid(pvt) &&
	    dhar_base(pvt) <= sys_addr &&
	    sys_addr < BIT_64(32)) {
		amd64_warn("Huh? Address is in the MMIO hole: 0x%016llx\n",
			    sys_addr);
		return -EINVAL;
	}

1901
	if (intlv_en && (intlv_sel != ((sys_addr >> 12) & intlv_en)))
1902 1903
		return -EINVAL;

1904
	sys_addr = f1x_swap_interleaved_region(pvt, sys_addr);
1905

1906 1907 1908 1909 1910 1911 1912 1913 1914
	dct_sel_base = dct_sel_baseaddr(pvt);

	/*
	 * check whether addresses >= DctSelBaseAddr[47:27] are to be used to
	 * select between DCT0 and DCT1.
	 */
	if (dct_high_range_enabled(pvt) &&
	   !dct_ganging_enabled(pvt) &&
	   ((sys_addr >> 27) >= (dct_sel_base >> 11)))
1915
		high_range = true;
1916

1917
	channel = f1x_determine_channel(pvt, sys_addr, high_range, intlv_en);
1918

1919
	chan_addr = f1x_get_norm_dct_addr(pvt, range, sys_addr,
1920
					  high_range, dct_sel_base);
1921

1922 1923 1924 1925
	/* Remove node interleaving, see F1x120 */
	if (intlv_en)
		chan_addr = ((chan_addr >> (12 + hweight8(intlv_en))) << 12) |
			    (chan_addr & 0xfff);
1926

1927
	/* remove channel interleave */
1928 1929 1930
	if (dct_interleave_enabled(pvt) &&
	   !dct_high_range_enabled(pvt) &&
	   !dct_ganging_enabled(pvt)) {
1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944

		if (dct_sel_interleave_addr(pvt) != 1) {
			if (dct_sel_interleave_addr(pvt) == 0x3)
				/* hash 9 */
				chan_addr = ((chan_addr >> 10) << 9) |
					     (chan_addr & 0x1ff);
			else
				/* A[6] or hash 6 */
				chan_addr = ((chan_addr >> 7) << 6) |
					     (chan_addr & 0x3f);
		} else
			/* A[12] */
			chan_addr = ((chan_addr >> 13) << 12) |
				     (chan_addr & 0xfff);
1945 1946
	}

1947
	edac_dbg(1, "   Normalized DCT addr: 0x%llx\n", chan_addr);
1948

1949
	cs_found = f1x_lookup_addr_in_dct(chan_addr, node_id, channel);
1950

1951
	if (cs_found >= 0)
1952
		*chan_sel = channel;
1953

1954 1955 1956
	return cs_found;
}

1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993
static int f15_m30h_match_to_this_node(struct amd64_pvt *pvt, unsigned range,
					u64 sys_addr, int *chan_sel)
{
	int cs_found = -EINVAL;
	int num_dcts_intlv = 0;
	u64 chan_addr, chan_offset;
	u64 dct_base, dct_limit;
	u32 dct_cont_base_reg, dct_cont_limit_reg, tmp;
	u8 channel, alias_channel, leg_mmio_hole, dct_sel, dct_offset_en;

	u64 dhar_offset		= f10_dhar_offset(pvt);
	u8 intlv_addr		= dct_sel_interleave_addr(pvt);
	u8 node_id		= dram_dst_node(pvt, range);
	u8 intlv_en		= dram_intlv_en(pvt, range);

	amd64_read_pci_cfg(pvt->F1, DRAM_CONT_BASE, &dct_cont_base_reg);
	amd64_read_pci_cfg(pvt->F1, DRAM_CONT_LIMIT, &dct_cont_limit_reg);

	dct_offset_en		= (u8) ((dct_cont_base_reg >> 3) & BIT(0));
	dct_sel			= (u8) ((dct_cont_base_reg >> 4) & 0x7);

	edac_dbg(1, "(range %d) SystemAddr= 0x%llx Limit=0x%llx\n",
		 range, sys_addr, get_dram_limit(pvt, range));

	if (!(get_dram_base(pvt, range)  <= sys_addr) &&
	    !(get_dram_limit(pvt, range) >= sys_addr))
		return -EINVAL;

	if (dhar_valid(pvt) &&
	    dhar_base(pvt) <= sys_addr &&
	    sys_addr < BIT_64(32)) {
		amd64_warn("Huh? Address is in the MMIO hole: 0x%016llx\n",
			    sys_addr);
		return -EINVAL;
	}

	/* Verify sys_addr is within DCT Range. */
1994 1995
	dct_base = (u64) dct_sel_baseaddr(pvt);
	dct_limit = (dct_cont_limit_reg >> 11) & 0x1FFF;
1996 1997

	if (!(dct_cont_base_reg & BIT(0)) &&
1998 1999
	    !(dct_base <= (sys_addr >> 27) &&
	      dct_limit >= (sys_addr >> 27)))
2000 2001 2002 2003 2004 2005 2006 2007
		return -EINVAL;

	/* Verify number of dct's that participate in channel interleaving. */
	num_dcts_intlv = (int) hweight8(intlv_en);

	if (!(num_dcts_intlv % 2 == 0) || (num_dcts_intlv > 4))
		return -EINVAL;

2008 2009 2010 2011 2012
	if (pvt->model >= 0x60)
		channel = f1x_determine_channel(pvt, sys_addr, false, intlv_en);
	else
		channel = f15_m30h_determine_channel(pvt, sys_addr, intlv_en,
						     num_dcts_intlv, dct_sel);
2013 2014

	/* Verify we stay within the MAX number of channels allowed */
2015
	if (channel > 3)
2016 2017 2018 2019 2020 2021 2022 2023
		return -EINVAL;

	leg_mmio_hole = (u8) (dct_cont_base_reg >> 1 & BIT(0));

	/* Get normalized DCT addr */
	if (leg_mmio_hole && (sys_addr >= BIT_64(32)))
		chan_offset = dhar_offset;
	else
2024
		chan_offset = dct_base << 27;
2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053

	chan_addr = sys_addr - chan_offset;

	/* remove channel interleave */
	if (num_dcts_intlv == 2) {
		if (intlv_addr == 0x4)
			chan_addr = ((chan_addr >> 9) << 8) |
						(chan_addr & 0xff);
		else if (intlv_addr == 0x5)
			chan_addr = ((chan_addr >> 10) << 9) |
						(chan_addr & 0x1ff);
		else
			return -EINVAL;

	} else if (num_dcts_intlv == 4) {
		if (intlv_addr == 0x4)
			chan_addr = ((chan_addr >> 10) << 8) |
							(chan_addr & 0xff);
		else if (intlv_addr == 0x5)
			chan_addr = ((chan_addr >> 11) << 9) |
							(chan_addr & 0x1ff);
		else
			return -EINVAL;
	}

	if (dct_offset_en) {
		amd64_read_pci_cfg(pvt->F1,
				   DRAM_CONT_HIGH_OFF + (int) channel * 4,
				   &tmp);
2054
		chan_addr +=  (u64) ((tmp >> 11) & 0xfff) << 27;
2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081
	}

	f15h_select_dct(pvt, channel);

	edac_dbg(1, "   Normalized DCT addr: 0x%llx\n", chan_addr);

	/*
	 * Find Chip select:
	 * if channel = 3, then alias it to 1. This is because, in F15 M30h,
	 * there is support for 4 DCT's, but only 2 are currently functional.
	 * They are DCT0 and DCT3. But we have read all registers of DCT3 into
	 * pvt->csels[1]. So we need to use '1' here to get correct info.
	 * Refer F15 M30h BKDG Section 2.10 and 2.10.3 for clarifications.
	 */
	alias_channel =  (channel == 3) ? 1 : channel;

	cs_found = f1x_lookup_addr_in_dct(chan_addr, node_id, alias_channel);

	if (cs_found >= 0)
		*chan_sel = alias_channel;

	return cs_found;
}

static int f1x_translate_sysaddr_to_cs(struct amd64_pvt *pvt,
					u64 sys_addr,
					int *chan_sel)
2082
{
2083 2084
	int cs_found = -EINVAL;
	unsigned range;
2085

2086 2087
	for (range = 0; range < DRAM_RANGES; range++) {
		if (!dram_rw(pvt, range))
2088 2089
			continue;

2090 2091 2092 2093
		if (pvt->fam == 0x15 && pvt->model >= 0x30)
			cs_found = f15_m30h_match_to_this_node(pvt, range,
							       sys_addr,
							       chan_sel);
2094

2095 2096
		else if ((get_dram_base(pvt, range)  <= sys_addr) &&
			 (get_dram_limit(pvt, range) >= sys_addr)) {
2097
			cs_found = f1x_match_to_this_node(pvt, range,
2098
							  sys_addr, chan_sel);
2099 2100 2101 2102 2103 2104 2105 2106
			if (cs_found >= 0)
				break;
		}
	}
	return cs_found;
}

/*
2107 2108
 * For reference see "2.8.5 Routing DRAM Requests" in F10 BKDG. This code maps
 * a @sys_addr to NodeID, DCT (channel) and chip select (CSROW).
2109
 *
2110 2111
 * The @sys_addr is usually an error address received from the hardware
 * (MCX_ADDR).
2112
 */
2113
static void f1x_map_sysaddr_to_csrow(struct mem_ctl_info *mci, u64 sys_addr,
2114
				     struct err_info *err)
2115 2116 2117
{
	struct amd64_pvt *pvt = mci->pvt_info;

2118
	error_address_to_page_and_offset(sys_addr, err);
2119

2120 2121 2122
	err->csrow = f1x_translate_sysaddr_to_cs(pvt, sys_addr, &err->channel);
	if (err->csrow < 0) {
		err->err_code = ERR_CSROW;
2123 2124 2125 2126 2127 2128 2129 2130
		return;
	}

	/*
	 * We need the syndromes for channel detection only when we're
	 * ganged. Otherwise @chan should already contain the channel at
	 * this point.
	 */
2131
	if (dct_ganging_enabled(pvt))
2132
		err->channel = get_channel_from_ecc_syndrome(mci, err->syndrome);
2133 2134 2135
}

/*
2136
 * debug routine to display the memory sizes of all logical DIMMs and its
2137
 * CSROWs
2138
 */
2139
static void debug_display_dimm_sizes(struct amd64_pvt *pvt, u8 ctrl)
2140
{
2141
	int dimm, size0, size1;
2142 2143
	u32 *dcsb = ctrl ? pvt->csels[1].csbases : pvt->csels[0].csbases;
	u32 dbam  = ctrl ? pvt->dbam1 : pvt->dbam0;
2144

2145
	if (pvt->fam == 0xf) {
2146
		/* K8 families < revF not supported yet */
2147
	       if (pvt->ext_model < K8_REV_F)
2148 2149 2150 2151 2152
			return;
	       else
		       WARN_ON(ctrl != 0);
	}

2153 2154 2155 2156 2157 2158 2159 2160 2161 2162
	if (pvt->fam == 0x10) {
		dbam = (ctrl && !dct_ganging_enabled(pvt)) ? pvt->dbam1
							   : pvt->dbam0;
		dcsb = (ctrl && !dct_ganging_enabled(pvt)) ?
				 pvt->csels[1].csbases :
				 pvt->csels[0].csbases;
	} else if (ctrl) {
		dbam = pvt->dbam0;
		dcsb = pvt->csels[1].csbases;
	}
2163 2164
	edac_dbg(1, "F2x%d80 (DRAM Bank Address Mapping): 0x%08x\n",
		 ctrl, dbam);
2165

2166 2167
	edac_printk(KERN_DEBUG, EDAC_MC, "DCT%d chip selects:\n", ctrl);

2168 2169 2170 2171
	/* Dump memory sizes for DIMM and its CSROWs */
	for (dimm = 0; dimm < 4; dimm++) {

		size0 = 0;
2172
		if (dcsb[dimm*2] & DCSB_CS_ENABLE)
2173 2174 2175
			/*
			 * For F15m60h, we need multiplier for LRDIMM cs_size
			 * calculation. We pass dimm value to the dbam_to_cs
2176 2177 2178
			 * mapper so we can find the multiplier from the
			 * corresponding DCSM.
			 */
2179
			size0 = pvt->ops->dbam_to_cs(pvt, ctrl,
2180 2181
						     DBAM_DIMM(dimm, dbam),
						     dimm);
2182 2183

		size1 = 0;
2184
		if (dcsb[dimm*2 + 1] & DCSB_CS_ENABLE)
2185
			size1 = pvt->ops->dbam_to_cs(pvt, ctrl,
2186 2187
						     DBAM_DIMM(dimm, dbam),
						     dimm);
2188

2189
		amd64_info(EDAC_MC ": %d: %5dMB %d: %5dMB\n",
2190 2191
				dimm * 2,     size0,
				dimm * 2 + 1, size1);
2192 2193 2194
	}
}

2195
static struct amd64_family_type family_types[] = {
2196
	[K8_CPUS] = {
2197
		.ctl_name = "K8",
2198
		.f1_id = PCI_DEVICE_ID_AMD_K8_NB_ADDRMAP,
2199
		.f2_id = PCI_DEVICE_ID_AMD_K8_NB_MEMCTL,
2200
		.ops = {
2201 2202 2203
			.early_channel_count	= k8_early_channel_count,
			.map_sysaddr_to_csrow	= k8_map_sysaddr_to_csrow,
			.dbam_to_cs		= k8_dbam_to_chip_select,
2204 2205 2206
		}
	},
	[F10_CPUS] = {
2207
		.ctl_name = "F10h",
2208
		.f1_id = PCI_DEVICE_ID_AMD_10H_NB_MAP,
2209
		.f2_id = PCI_DEVICE_ID_AMD_10H_NB_DRAM,
2210
		.ops = {
2211
			.early_channel_count	= f1x_early_channel_count,
2212
			.map_sysaddr_to_csrow	= f1x_map_sysaddr_to_csrow,
2213
			.dbam_to_cs		= f10_dbam_to_chip_select,
2214 2215 2216 2217
		}
	},
	[F15_CPUS] = {
		.ctl_name = "F15h",
2218
		.f1_id = PCI_DEVICE_ID_AMD_15H_NB_F1,
2219
		.f2_id = PCI_DEVICE_ID_AMD_15H_NB_F2,
2220
		.ops = {
2221
			.early_channel_count	= f1x_early_channel_count,
2222
			.map_sysaddr_to_csrow	= f1x_map_sysaddr_to_csrow,
2223
			.dbam_to_cs		= f15_dbam_to_chip_select,
2224 2225
		}
	},
2226 2227 2228
	[F15_M30H_CPUS] = {
		.ctl_name = "F15h_M30h",
		.f1_id = PCI_DEVICE_ID_AMD_15H_M30H_NB_F1,
2229
		.f2_id = PCI_DEVICE_ID_AMD_15H_M30H_NB_F2,
2230 2231 2232 2233 2234 2235
		.ops = {
			.early_channel_count	= f1x_early_channel_count,
			.map_sysaddr_to_csrow	= f1x_map_sysaddr_to_csrow,
			.dbam_to_cs		= f16_dbam_to_chip_select,
		}
	},
2236 2237 2238
	[F15_M60H_CPUS] = {
		.ctl_name = "F15h_M60h",
		.f1_id = PCI_DEVICE_ID_AMD_15H_M60H_NB_F1,
2239
		.f2_id = PCI_DEVICE_ID_AMD_15H_M60H_NB_F2,
2240 2241 2242 2243 2244 2245
		.ops = {
			.early_channel_count	= f1x_early_channel_count,
			.map_sysaddr_to_csrow	= f1x_map_sysaddr_to_csrow,
			.dbam_to_cs		= f15_m60h_dbam_to_chip_select,
		}
	},
2246 2247 2248
	[F16_CPUS] = {
		.ctl_name = "F16h",
		.f1_id = PCI_DEVICE_ID_AMD_16H_NB_F1,
2249
		.f2_id = PCI_DEVICE_ID_AMD_16H_NB_F2,
2250 2251 2252 2253 2254 2255
		.ops = {
			.early_channel_count	= f1x_early_channel_count,
			.map_sysaddr_to_csrow	= f1x_map_sysaddr_to_csrow,
			.dbam_to_cs		= f16_dbam_to_chip_select,
		}
	},
2256 2257 2258
	[F16_M30H_CPUS] = {
		.ctl_name = "F16h_M30h",
		.f1_id = PCI_DEVICE_ID_AMD_16H_M30H_NB_F1,
2259
		.f2_id = PCI_DEVICE_ID_AMD_16H_M30H_NB_F2,
2260 2261 2262 2263 2264 2265
		.ops = {
			.early_channel_count	= f1x_early_channel_count,
			.map_sysaddr_to_csrow	= f1x_map_sysaddr_to_csrow,
			.dbam_to_cs		= f16_dbam_to_chip_select,
		}
	},
2266 2267 2268 2269 2270 2271
	[F17_CPUS] = {
		.ctl_name = "F17h",
		.f0_id = PCI_DEVICE_ID_AMD_17H_DF_F0,
		.f6_id = PCI_DEVICE_ID_AMD_17H_DF_F6,
		.ops = {
			.early_channel_count	= f17_early_channel_count,
2272
			.dbam_to_cs		= f17_addr_mask_to_cs_size,
2273 2274
		}
	},
2275 2276 2277 2278 2279 2280
	[F17_M10H_CPUS] = {
		.ctl_name = "F17h_M10h",
		.f0_id = PCI_DEVICE_ID_AMD_17H_M10H_DF_F0,
		.f6_id = PCI_DEVICE_ID_AMD_17H_M10H_DF_F6,
		.ops = {
			.early_channel_count	= f17_early_channel_count,
2281
			.dbam_to_cs		= f17_addr_mask_to_cs_size,
2282 2283
		}
	},
2284 2285 2286 2287 2288 2289
	[F17_M30H_CPUS] = {
		.ctl_name = "F17h_M30h",
		.f0_id = PCI_DEVICE_ID_AMD_17H_M30H_DF_F0,
		.f6_id = PCI_DEVICE_ID_AMD_17H_M30H_DF_F6,
		.ops = {
			.early_channel_count	= f17_early_channel_count,
2290
			.dbam_to_cs		= f17_addr_mask_to_cs_size,
2291 2292
		}
	},
2293 2294
};

2295
/*
2296 2297 2298
 * These are tables of eigenvectors (one per line) which can be used for the
 * construction of the syndrome tables. The modified syndrome search algorithm
 * uses those to find the symbol in error and thus the DIMM.
2299
 *
2300
 * Algorithm courtesy of Ross LaFetra from AMD.
2301
 */
2302
static const u16 x4_vectors[] = {
2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338
	0x2f57, 0x1afe, 0x66cc, 0xdd88,
	0x11eb, 0x3396, 0x7f4c, 0xeac8,
	0x0001, 0x0002, 0x0004, 0x0008,
	0x1013, 0x3032, 0x4044, 0x8088,
	0x106b, 0x30d6, 0x70fc, 0xe0a8,
	0x4857, 0xc4fe, 0x13cc, 0x3288,
	0x1ac5, 0x2f4a, 0x5394, 0xa1e8,
	0x1f39, 0x251e, 0xbd6c, 0x6bd8,
	0x15c1, 0x2a42, 0x89ac, 0x4758,
	0x2b03, 0x1602, 0x4f0c, 0xca08,
	0x1f07, 0x3a0e, 0x6b04, 0xbd08,
	0x8ba7, 0x465e, 0x244c, 0x1cc8,
	0x2b87, 0x164e, 0x642c, 0xdc18,
	0x40b9, 0x80de, 0x1094, 0x20e8,
	0x27db, 0x1eb6, 0x9dac, 0x7b58,
	0x11c1, 0x2242, 0x84ac, 0x4c58,
	0x1be5, 0x2d7a, 0x5e34, 0xa718,
	0x4b39, 0x8d1e, 0x14b4, 0x28d8,
	0x4c97, 0xc87e, 0x11fc, 0x33a8,
	0x8e97, 0x497e, 0x2ffc, 0x1aa8,
	0x16b3, 0x3d62, 0x4f34, 0x8518,
	0x1e2f, 0x391a, 0x5cac, 0xf858,
	0x1d9f, 0x3b7a, 0x572c, 0xfe18,
	0x15f5, 0x2a5a, 0x5264, 0xa3b8,
	0x1dbb, 0x3b66, 0x715c, 0xe3f8,
	0x4397, 0xc27e, 0x17fc, 0x3ea8,
	0x1617, 0x3d3e, 0x6464, 0xb8b8,
	0x23ff, 0x12aa, 0xab6c, 0x56d8,
	0x2dfb, 0x1ba6, 0x913c, 0x7328,
	0x185d, 0x2ca6, 0x7914, 0x9e28,
	0x171b, 0x3e36, 0x7d7c, 0xebe8,
	0x4199, 0x82ee, 0x19f4, 0x2e58,
	0x4807, 0xc40e, 0x130c, 0x3208,
	0x1905, 0x2e0a, 0x5804, 0xac08,
	0x213f, 0x132a, 0xadfc, 0x5ba8,
	0x19a9, 0x2efe, 0xb5cc, 0x6f88,
2339 2340
};

2341
static const u16 x8_vectors[] = {
2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362
	0x0145, 0x028a, 0x2374, 0x43c8, 0xa1f0, 0x0520, 0x0a40, 0x1480,
	0x0211, 0x0422, 0x0844, 0x1088, 0x01b0, 0x44e0, 0x23c0, 0xed80,
	0x1011, 0x0116, 0x022c, 0x0458, 0x08b0, 0x8c60, 0x2740, 0x4e80,
	0x0411, 0x0822, 0x1044, 0x0158, 0x02b0, 0x2360, 0x46c0, 0xab80,
	0x0811, 0x1022, 0x012c, 0x0258, 0x04b0, 0x4660, 0x8cc0, 0x2780,
	0x2071, 0x40e2, 0xa0c4, 0x0108, 0x0210, 0x0420, 0x0840, 0x1080,
	0x4071, 0x80e2, 0x0104, 0x0208, 0x0410, 0x0820, 0x1040, 0x2080,
	0x8071, 0x0102, 0x0204, 0x0408, 0x0810, 0x1020, 0x2040, 0x4080,
	0x019d, 0x03d6, 0x136c, 0x2198, 0x50b0, 0xb2e0, 0x0740, 0x0e80,
	0x0189, 0x03ea, 0x072c, 0x0e58, 0x1cb0, 0x56e0, 0x37c0, 0xf580,
	0x01fd, 0x0376, 0x06ec, 0x0bb8, 0x1110, 0x2220, 0x4440, 0x8880,
	0x0163, 0x02c6, 0x1104, 0x0758, 0x0eb0, 0x2be0, 0x6140, 0xc280,
	0x02fd, 0x01c6, 0x0b5c, 0x1108, 0x07b0, 0x25a0, 0x8840, 0x6180,
	0x0801, 0x012e, 0x025c, 0x04b8, 0x1370, 0x26e0, 0x57c0, 0xb580,
	0x0401, 0x0802, 0x015c, 0x02b8, 0x22b0, 0x13e0, 0x7140, 0xe280,
	0x0201, 0x0402, 0x0804, 0x01b8, 0x11b0, 0x31a0, 0x8040, 0x7180,
	0x0101, 0x0202, 0x0404, 0x0808, 0x1010, 0x2020, 0x4040, 0x8080,
	0x0001, 0x0002, 0x0004, 0x0008, 0x0010, 0x0020, 0x0040, 0x0080,
	0x0100, 0x0200, 0x0400, 0x0800, 0x1000, 0x2000, 0x4000, 0x8000,
};

2363
static int decode_syndrome(u16 syndrome, const u16 *vectors, unsigned num_vecs,
2364
			   unsigned v_dim)
2365
{
2366 2367 2368 2369
	unsigned int i, err_sym;

	for (err_sym = 0; err_sym < num_vecs / v_dim; err_sym++) {
		u16 s = syndrome;
2370 2371
		unsigned v_idx =  err_sym * v_dim;
		unsigned v_end = (err_sym + 1) * v_dim;
2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383

		/* walk over all 16 bits of the syndrome */
		for (i = 1; i < (1U << 16); i <<= 1) {

			/* if bit is set in that eigenvector... */
			if (v_idx < v_end && vectors[v_idx] & i) {
				u16 ev_comp = vectors[v_idx++];

				/* ... and bit set in the modified syndrome, */
				if (s & i) {
					/* remove it. */
					s ^= ev_comp;
2384

2385 2386 2387
					if (!s)
						return err_sym;
				}
2388

2389 2390 2391 2392
			} else if (s & i)
				/* can't get to zero, move to next symbol */
				break;
		}
2393 2394
	}

2395
	edac_dbg(0, "syndrome(%x) not found\n", syndrome);
2396 2397
	return -1;
}
2398

2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440
static int map_err_sym_to_channel(int err_sym, int sym_size)
{
	if (sym_size == 4)
		switch (err_sym) {
		case 0x20:
		case 0x21:
			return 0;
			break;
		case 0x22:
		case 0x23:
			return 1;
			break;
		default:
			return err_sym >> 4;
			break;
		}
	/* x8 symbols */
	else
		switch (err_sym) {
		/* imaginary bits not in a DIMM */
		case 0x10:
			WARN(1, KERN_ERR "Invalid error symbol: 0x%x\n",
					  err_sym);
			return -1;
			break;

		case 0x11:
			return 0;
			break;
		case 0x12:
			return 1;
			break;
		default:
			return err_sym >> 3;
			break;
		}
	return -1;
}

static int get_channel_from_ecc_syndrome(struct mem_ctl_info *mci, u16 syndrome)
{
	struct amd64_pvt *pvt = mci->pvt_info;
2441 2442
	int err_sym = -1;

2443
	if (pvt->ecc_sym_sz == 8)
2444 2445
		err_sym = decode_syndrome(syndrome, x8_vectors,
					  ARRAY_SIZE(x8_vectors),
2446 2447
					  pvt->ecc_sym_sz);
	else if (pvt->ecc_sym_sz == 4)
2448 2449
		err_sym = decode_syndrome(syndrome, x4_vectors,
					  ARRAY_SIZE(x4_vectors),
2450
					  pvt->ecc_sym_sz);
2451
	else {
2452
		amd64_warn("Illegal syndrome type: %u\n", pvt->ecc_sym_sz);
2453
		return err_sym;
2454
	}
2455

2456
	return map_err_sym_to_channel(err_sym, pvt->ecc_sym_sz);
2457 2458
}

2459
static void __log_ecc_error(struct mem_ctl_info *mci, struct err_info *err,
2460
			    u8 ecc_type)
2461
{
2462 2463
	enum hw_event_mc_err_type err_type;
	const char *string;
2464

2465 2466 2467 2468
	if (ecc_type == 2)
		err_type = HW_EVENT_ERR_CORRECTED;
	else if (ecc_type == 1)
		err_type = HW_EVENT_ERR_UNCORRECTED;
2469 2470
	else if (ecc_type == 3)
		err_type = HW_EVENT_ERR_DEFERRED;
2471 2472
	else {
		WARN(1, "Something is rotten in the state of Denmark.\n");
2473 2474 2475
		return;
	}

2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486
	switch (err->err_code) {
	case DECODE_OK:
		string = "";
		break;
	case ERR_NODE:
		string = "Failed to map error addr to a node";
		break;
	case ERR_CSROW:
		string = "Failed to map error addr to a csrow";
		break;
	case ERR_CHANNEL:
2487 2488 2489 2490 2491 2492 2493
		string = "Unknown syndrome - possible error reporting race";
		break;
	case ERR_SYND:
		string = "MCA_SYND not valid - unknown syndrome and csrow";
		break;
	case ERR_NORM_ADDR:
		string = "Cannot decode normalized address";
2494 2495 2496 2497
		break;
	default:
		string = "WTF error";
		break;
2498
	}
2499 2500 2501 2502 2503

	edac_mc_handle_error(err_type, mci, 1,
			     err->page, err->offset, err->syndrome,
			     err->csrow, err->channel, -1,
			     string, "");
2504 2505
}

2506
static inline void decode_bus_error(int node_id, struct mce *m)
2507
{
2508 2509
	struct mem_ctl_info *mci;
	struct amd64_pvt *pvt;
2510
	u8 ecc_type = (m->status >> 45) & 0x3;
2511 2512
	u8 xec = XEC(m->status, 0x1f);
	u16 ec = EC(m->status);
2513 2514
	u64 sys_addr;
	struct err_info err;
2515

2516 2517 2518 2519 2520 2521
	mci = edac_mc_find(node_id);
	if (!mci)
		return;

	pvt = mci->pvt_info;

2522
	/* Bail out early if this was an 'observed' error */
2523
	if (PP(ec) == NBSL_PP_OBS)
2524
		return;
2525

2526 2527
	/* Do only ECC errors */
	if (xec && xec != F10_NBSL_EXT_ERR_ECC)
2528 2529
		return;

2530 2531
	memset(&err, 0, sizeof(err));

2532
	sys_addr = get_error_address(pvt, m);
2533

2534
	if (ecc_type == 2)
2535 2536 2537 2538
		err.syndrome = extract_syndrome(m->status);

	pvt->ops->map_sysaddr_to_csrow(mci, sys_addr, &err);

2539
	__log_ecc_error(mci, &err, ecc_type);
2540 2541
}

2542 2543 2544 2545
/*
 * To find the UMC channel represented by this bank we need to match on its
 * instance_id. The instance_id of a bank is held in the lower 32 bits of its
 * IPID.
2546 2547 2548 2549
 *
 * Currently, we can derive the channel number by looking at the 6th nibble in
 * the instance_id. For example, instance_id=0xYXXXXX where Y is the channel
 * number.
2550
 */
2551
static int find_umc_channel(struct mce *m)
2552
{
2553
	return (m->ipid & GENMASK(31, 0)) >> 20;
2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574
}

static void decode_umc_error(int node_id, struct mce *m)
{
	u8 ecc_type = (m->status >> 45) & 0x3;
	struct mem_ctl_info *mci;
	struct amd64_pvt *pvt;
	struct err_info err;
	u64 sys_addr;

	mci = edac_mc_find(node_id);
	if (!mci)
		return;

	pvt = mci->pvt_info;

	memset(&err, 0, sizeof(err));

	if (m->status & MCI_STATUS_DEFERRED)
		ecc_type = 3;

2575
	err.channel = find_umc_channel(m);
2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592

	if (!(m->status & MCI_STATUS_SYNDV)) {
		err.err_code = ERR_SYND;
		goto log_error;
	}

	if (ecc_type == 2) {
		u8 length = (m->synd >> 18) & 0x3f;

		if (length)
			err.syndrome = (m->synd >> 32) & GENMASK(length - 1, 0);
		else
			err.err_code = ERR_CHANNEL;
	}

	err.csrow = m->synd & 0x7;

2593 2594 2595 2596 2597 2598 2599
	if (umc_normaddr_to_sysaddr(m->addr, pvt->mc_node_id, err.channel, &sys_addr)) {
		err.err_code = ERR_NORM_ADDR;
		goto log_error;
	}

	error_address_to_page_and_offset(sys_addr, &err);

2600 2601 2602 2603
log_error:
	__log_ecc_error(mci, &err, ecc_type);
}

2604
/*
2605 2606
 * Use pvt->F3 which contains the F3 CPU PCI device to get the related
 * F1 (AddrMap) and F2 (Dct) devices. Return negative value on error.
2607
 * Reserve F0 and F6 on systems with a UMC.
2608
 */
2609 2610 2611 2612 2613 2614
static int
reserve_mc_sibling_devs(struct amd64_pvt *pvt, u16 pci_id1, u16 pci_id2)
{
	if (pvt->umc) {
		pvt->F0 = pci_get_related_function(pvt->F3->vendor, pci_id1, pvt->F3);
		if (!pvt->F0) {
2615
			amd64_err("F0 not found, device 0x%x (broken BIOS?)\n", pci_id1);
2616 2617 2618 2619 2620 2621 2622 2623
			return -ENODEV;
		}

		pvt->F6 = pci_get_related_function(pvt->F3->vendor, pci_id2, pvt->F3);
		if (!pvt->F6) {
			pci_dev_put(pvt->F0);
			pvt->F0 = NULL;

2624
			amd64_err("F6 not found: device 0x%x (broken BIOS?)\n", pci_id2);
2625 2626
			return -ENODEV;
		}
2627

2628 2629 2630 2631 2632 2633 2634
		edac_dbg(1, "F0: %s\n", pci_name(pvt->F0));
		edac_dbg(1, "F3: %s\n", pci_name(pvt->F3));
		edac_dbg(1, "F6: %s\n", pci_name(pvt->F6));

		return 0;
	}

2635
	/* Reserve the ADDRESS MAP Device */
2636
	pvt->F1 = pci_get_related_function(pvt->F3->vendor, pci_id1, pvt->F3);
2637
	if (!pvt->F1) {
2638
		amd64_err("F1 not found: device 0x%x (broken BIOS?)\n", pci_id1);
2639
		return -ENODEV;
2640 2641
	}

2642
	/* Reserve the DCT Device */
2643
	pvt->F2 = pci_get_related_function(pvt->F3->vendor, pci_id2, pvt->F3);
2644
	if (!pvt->F2) {
2645 2646
		pci_dev_put(pvt->F1);
		pvt->F1 = NULL;
2647

2648 2649
		amd64_err("F2 not found: device 0x%x (broken BIOS?)\n", pci_id2);
		return -ENODEV;
2650
	}
2651

2652 2653 2654
	edac_dbg(1, "F1: %s\n", pci_name(pvt->F1));
	edac_dbg(1, "F2: %s\n", pci_name(pvt->F2));
	edac_dbg(1, "F3: %s\n", pci_name(pvt->F3));
2655 2656 2657 2658

	return 0;
}

2659
static void free_mc_sibling_devs(struct amd64_pvt *pvt)
2660
{
2661 2662 2663 2664 2665 2666 2667
	if (pvt->umc) {
		pci_dev_put(pvt->F0);
		pci_dev_put(pvt->F6);
	} else {
		pci_dev_put(pvt->F1);
		pci_dev_put(pvt->F2);
	}
2668 2669
}

2670 2671 2672 2673 2674 2675 2676
static void determine_ecc_sym_sz(struct amd64_pvt *pvt)
{
	pvt->ecc_sym_sz = 4;

	if (pvt->umc) {
		u8 i;

2677
		for_each_umc(i) {
2678
			/* Check enabled channels only: */
2679 2680 2681 2682 2683 2684 2685 2686
			if (pvt->umc[i].sdp_ctrl & UMC_SDP_INIT) {
				if (pvt->umc[i].ecc_ctrl & BIT(9)) {
					pvt->ecc_sym_sz = 16;
					return;
				} else if (pvt->umc[i].ecc_ctrl & BIT(7)) {
					pvt->ecc_sym_sz = 8;
					return;
				}
2687 2688
			}
		}
2689
	} else if (pvt->fam >= 0x10) {
2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712
		u32 tmp;

		amd64_read_pci_cfg(pvt->F3, EXT_NB_MCA_CFG, &tmp);
		/* F16h has only DCT0, so no need to read dbam1. */
		if (pvt->fam != 0x16)
			amd64_read_dct_pci_cfg(pvt, 1, DBAM0, &pvt->dbam1);

		/* F10h, revD and later can do x8 ECC too. */
		if ((pvt->fam > 0x10 || pvt->model > 7) && tmp & BIT(25))
			pvt->ecc_sym_sz = 8;
	}
}

/*
 * Retrieve the hardware registers of the memory controller.
 */
static void __read_mc_regs_df(struct amd64_pvt *pvt)
{
	u8 nid = pvt->mc_node_id;
	struct amd64_umc *umc;
	u32 i, umc_base;

	/* Read registers from each UMC */
2713
	for_each_umc(i) {
2714 2715 2716 2717

		umc_base = get_umc_base(i);
		umc = &pvt->umc[i];

2718 2719
		amd_smn_read(nid, umc_base + UMCCH_DIMM_CFG, &umc->dimm_cfg);
		amd_smn_read(nid, umc_base + UMCCH_UMC_CFG, &umc->umc_cfg);
2720 2721
		amd_smn_read(nid, umc_base + UMCCH_SDP_CTRL, &umc->sdp_ctrl);
		amd_smn_read(nid, umc_base + UMCCH_ECC_CTRL, &umc->ecc_ctrl);
2722
		amd_smn_read(nid, umc_base + UMCCH_UMC_CAP_HI, &umc->umc_cap_hi);
2723 2724 2725
	}
}

2726 2727 2728 2729
/*
 * Retrieve the hardware registers of the memory controller (this includes the
 * 'Address Map' and 'Misc' device regs)
 */
2730
static void read_mc_regs(struct amd64_pvt *pvt)
2731
{
2732
	unsigned int range;
2733 2734 2735 2736
	u64 msr_val;

	/*
	 * Retrieve TOP_MEM and TOP_MEM2; no masking off of reserved bits since
2737
	 * those are Read-As-Zero.
2738
	 */
2739
	rdmsrl(MSR_K8_TOP_MEM1, pvt->top_mem);
2740
	edac_dbg(0, "  TOP_MEM:  0x%016llx\n", pvt->top_mem);
2741

2742
	/* Check first whether TOP_MEM2 is enabled: */
2743
	rdmsrl(MSR_K8_SYSCFG, msr_val);
2744
	if (msr_val & BIT(21)) {
2745
		rdmsrl(MSR_K8_TOP_MEM2, pvt->top_mem2);
2746
		edac_dbg(0, "  TOP_MEM2: 0x%016llx\n", pvt->top_mem2);
2747
	} else {
2748
		edac_dbg(0, "  TOP_MEM2 disabled\n");
2749 2750 2751 2752 2753 2754 2755 2756
	}

	if (pvt->umc) {
		__read_mc_regs_df(pvt);
		amd64_read_pci_cfg(pvt->F0, DF_DHAR, &pvt->dhar);

		goto skip;
	}
2757

2758
	amd64_read_pci_cfg(pvt->F3, NBCAP, &pvt->nbcap);
2759

2760
	read_dram_ctl_register(pvt);
2761

2762 2763
	for (range = 0; range < DRAM_RANGES; range++) {
		u8 rw;
2764

2765 2766 2767 2768 2769 2770 2771
		/* read settings for this DRAM range */
		read_dram_base_limit_regs(pvt, range);

		rw = dram_rw(pvt, range);
		if (!rw)
			continue;

2772 2773 2774 2775
		edac_dbg(1, "  DRAM range[%d], base: 0x%016llx; limit: 0x%016llx\n",
			 range,
			 get_dram_base(pvt, range),
			 get_dram_limit(pvt, range));
2776

2777 2778 2779 2780 2781 2782
		edac_dbg(1, "   IntlvEn=%s; Range access: %s%s IntlvSel=%d DstNode=%d\n",
			 dram_intlv_en(pvt, range) ? "Enabled" : "Disabled",
			 (rw & 0x1) ? "R" : "-",
			 (rw & 0x2) ? "W" : "-",
			 dram_intlv_sel(pvt, range),
			 dram_dst_node(pvt, range));
2783 2784
	}

2785
	amd64_read_pci_cfg(pvt->F1, DHAR, &pvt->dhar);
2786
	amd64_read_dct_pci_cfg(pvt, 0, DBAM0, &pvt->dbam0);
2787

2788
	amd64_read_pci_cfg(pvt->F3, F10_ONLINE_SPARE, &pvt->online_spare);
2789

2790 2791
	amd64_read_dct_pci_cfg(pvt, 0, DCLR0, &pvt->dclr0);
	amd64_read_dct_pci_cfg(pvt, 0, DCHR0, &pvt->dchr0);
2792

2793
	if (!dct_ganging_enabled(pvt)) {
2794 2795
		amd64_read_dct_pci_cfg(pvt, 1, DCLR0, &pvt->dclr1);
		amd64_read_dct_pci_cfg(pvt, 1, DCHR0, &pvt->dchr1);
2796
	}
2797

2798 2799 2800
skip:
	read_dct_base_mask(pvt);

2801 2802
	determine_memory_type(pvt);
	edac_dbg(1, "  DIMM type: %s\n", edac_mem_types[pvt->dram_type]);
2803

2804
	determine_ecc_sym_sz(pvt);
2805

2806
	dump_misc_regs(pvt);
2807 2808 2809 2810 2811 2812
}

/*
 * NOTE: CPU Revision Dependent code
 *
 * Input:
2813
 *	@csrow_nr ChipSelect Row Number (0..NUM_CHIPSELECTS-1)
2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842
 *	k8 private pointer to -->
 *			DRAM Bank Address mapping register
 *			node_id
 *			DCL register where dual_channel_active is
 *
 * The DBAM register consists of 4 sets of 4 bits each definitions:
 *
 * Bits:	CSROWs
 * 0-3		CSROWs 0 and 1
 * 4-7		CSROWs 2 and 3
 * 8-11		CSROWs 4 and 5
 * 12-15	CSROWs 6 and 7
 *
 * Values range from: 0 to 15
 * The meaning of the values depends on CPU revision and dual-channel state,
 * see relevant BKDG more info.
 *
 * The memory controller provides for total of only 8 CSROWs in its current
 * architecture. Each "pair" of CSROWs normally represents just one DIMM in
 * single channel or two (2) DIMMs in dual channel mode.
 *
 * The following code logic collapses the various tables for CSROW based on CPU
 * revision.
 *
 * Returns:
 *	The number of PAGE_SIZE pages on the specified CSROW number it
 *	encompasses
 *
 */
2843
static u32 get_csrow_nr_pages(struct amd64_pvt *pvt, u8 dct, int csrow_nr_orig)
2844
{
2845
	u32 dbam = dct ? pvt->dbam1 : pvt->dbam0;
2846 2847
	int csrow_nr = csrow_nr_orig;
	u32 cs_mode, nr_pages;
2848

2849
	if (!pvt->umc) {
2850
		csrow_nr >>= 1;
2851 2852 2853 2854
		cs_mode = DBAM_DIMM(csrow_nr, dbam);
	} else {
		cs_mode = f17_get_cs_mode(csrow_nr >> 1, dct, pvt);
	}
2855

2856 2857
	nr_pages   = pvt->ops->dbam_to_cs(pvt, dct, cs_mode, csrow_nr);
	nr_pages <<= 20 - PAGE_SHIFT;
2858

2859
	edac_dbg(0, "csrow: %d, channel: %d, DBAM idx: %d\n",
2860
		    csrow_nr_orig, dct,  cs_mode);
2861
	edac_dbg(0, "nr_pages/channel: %u\n", nr_pages);
2862 2863 2864 2865

	return nr_pages;
}

2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908
static int init_csrows_df(struct mem_ctl_info *mci)
{
	struct amd64_pvt *pvt = mci->pvt_info;
	enum edac_type edac_mode = EDAC_NONE;
	enum dev_type dev_type = DEV_UNKNOWN;
	struct dimm_info *dimm;
	int empty = 1;
	u8 umc, cs;

	if (mci->edac_ctl_cap & EDAC_FLAG_S16ECD16ED) {
		edac_mode = EDAC_S16ECD16ED;
		dev_type = DEV_X16;
	} else if (mci->edac_ctl_cap & EDAC_FLAG_S8ECD8ED) {
		edac_mode = EDAC_S8ECD8ED;
		dev_type = DEV_X8;
	} else if (mci->edac_ctl_cap & EDAC_FLAG_S4ECD4ED) {
		edac_mode = EDAC_S4ECD4ED;
		dev_type = DEV_X4;
	} else if (mci->edac_ctl_cap & EDAC_FLAG_SECDED) {
		edac_mode = EDAC_SECDED;
	}

	for_each_umc(umc) {
		for_each_chip_select(cs, umc, pvt) {
			if (!csrow_enabled(cs, umc, pvt))
				continue;

			empty = 0;
			dimm = mci->csrows[cs]->channels[umc]->dimm;

			edac_dbg(1, "MC node: %d, csrow: %d\n",
					pvt->mc_node_id, cs);

			dimm->nr_pages = get_csrow_nr_pages(pvt, umc, cs);
			dimm->mtype = pvt->dram_type;
			dimm->edac_mode = edac_mode;
			dimm->dtype = dev_type;
		}
	}

	return empty;
}

2909 2910 2911 2912
/*
 * Initialize the array of csrow attribute instances, based on the values
 * from pci config hardware registers.
 */
2913
static int init_csrows(struct mem_ctl_info *mci)
2914
{
2915
	struct amd64_pvt *pvt = mci->pvt_info;
2916
	enum edac_type edac_mode = EDAC_NONE;
2917
	struct csrow_info *csrow;
2918
	struct dimm_info *dimm;
2919
	int i, j, empty = 1;
2920
	int nr_pages = 0;
2921
	u32 val;
2922

2923 2924
	if (pvt->umc)
		return init_csrows_df(mci);
2925

2926
	amd64_read_pci_cfg(pvt->F3, NBCFG, &val);
2927

2928 2929 2930 2931 2932
	pvt->nbcfg = val;

	edac_dbg(0, "node %d, NBCFG=0x%08x[ChipKillEccCap: %d|DramEccEn: %d]\n",
		 pvt->mc_node_id, val,
		 !!(val & NBCFG_CHIPKILL), !!(val & NBCFG_ECC_ENABLE));
2933

2934 2935 2936
	/*
	 * We iterate over DCT0 here but we look at DCT1 in parallel, if needed.
	 */
2937
	for_each_chip_select(i, 0, pvt) {
2938 2939
		bool row_dct0 = !!csrow_enabled(i, 0, pvt);
		bool row_dct1 = false;
2940

2941
		if (pvt->fam != 0xf)
2942 2943 2944
			row_dct1 = !!csrow_enabled(i, 1, pvt);

		if (!row_dct0 && !row_dct1)
2945 2946
			continue;

2947
		csrow = mci->csrows[i];
2948
		empty = 0;
2949 2950 2951 2952

		edac_dbg(1, "MC node: %d, csrow: %d\n",
			    pvt->mc_node_id, i);

2953
		if (row_dct0) {
2954
			nr_pages = get_csrow_nr_pages(pvt, 0, i);
2955 2956
			csrow->channels[0]->dimm->nr_pages = nr_pages;
		}
2957

2958
		/* K8 has only one DCT */
2959
		if (pvt->fam != 0xf && row_dct1) {
2960
			int row_dct1_pages = get_csrow_nr_pages(pvt, 1, i);
2961 2962 2963 2964

			csrow->channels[1]->dimm->nr_pages = row_dct1_pages;
			nr_pages += row_dct1_pages;
		}
2965

2966
		edac_dbg(1, "Total csrow%d pages: %u\n", i, nr_pages);
2967

2968
		/* Determine DIMM ECC mode: */
2969
		if (pvt->nbcfg & NBCFG_ECC_ENABLE) {
2970 2971 2972 2973
			edac_mode = (pvt->nbcfg & NBCFG_CHIPKILL)
					? EDAC_S4ECD4ED
					: EDAC_SECDED;
		}
2974 2975

		for (j = 0; j < pvt->channel_count; j++) {
2976
			dimm = csrow->channels[j]->dimm;
2977
			dimm->mtype = pvt->dram_type;
2978
			dimm->edac_mode = edac_mode;
Y
Yazen Ghannam 已提交
2979
			dimm->grain = 64;
2980
		}
2981 2982 2983 2984
	}

	return empty;
}
2985

2986
/* get all cores on this DCT */
2987
static void get_cpus_on_this_dct_cpumask(struct cpumask *mask, u16 nid)
2988 2989 2990 2991 2992 2993 2994 2995 2996
{
	int cpu;

	for_each_online_cpu(cpu)
		if (amd_get_nb_id(cpu) == nid)
			cpumask_set_cpu(cpu, mask);
}

/* check MCG_CTL on all the cpus on this node */
2997
static bool nb_mce_bank_enabled_on_node(u16 nid)
2998 2999
{
	cpumask_var_t mask;
3000
	int cpu, nbe;
3001 3002 3003
	bool ret = false;

	if (!zalloc_cpumask_var(&mask, GFP_KERNEL)) {
3004
		amd64_warn("%s: Error allocating mask\n", __func__);
3005 3006 3007 3008 3009 3010 3011 3012
		return false;
	}

	get_cpus_on_this_dct_cpumask(mask, nid);

	rdmsr_on_cpus(mask, MSR_IA32_MCG_CTL, msrs);

	for_each_cpu(cpu, mask) {
3013
		struct msr *reg = per_cpu_ptr(msrs, cpu);
3014
		nbe = reg->l & MSR_MCGCTL_NBE;
3015

3016 3017 3018
		edac_dbg(0, "core: %u, MCG_CTL: 0x%llx, NB MSR is %s\n",
			 cpu, reg->q,
			 (nbe ? "enabled" : "disabled"));
3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029

		if (!nbe)
			goto out;
	}
	ret = true;

out:
	free_cpumask_var(mask);
	return ret;
}

3030
static int toggle_ecc_err_reporting(struct ecc_settings *s, u16 nid, bool on)
3031 3032
{
	cpumask_var_t cmask;
3033
	int cpu;
3034 3035

	if (!zalloc_cpumask_var(&cmask, GFP_KERNEL)) {
3036
		amd64_warn("%s: error allocating mask\n", __func__);
P
Pan Bian 已提交
3037
		return -ENOMEM;
3038 3039
	}

3040
	get_cpus_on_this_dct_cpumask(cmask, nid);
3041 3042 3043 3044 3045

	rdmsr_on_cpus(cmask, MSR_IA32_MCG_CTL, msrs);

	for_each_cpu(cpu, cmask) {

3046 3047
		struct msr *reg = per_cpu_ptr(msrs, cpu);

3048
		if (on) {
3049
			if (reg->l & MSR_MCGCTL_NBE)
3050
				s->flags.nb_mce_enable = 1;
3051

3052
			reg->l |= MSR_MCGCTL_NBE;
3053 3054
		} else {
			/*
3055
			 * Turn off NB MCE reporting only when it was off before
3056
			 */
3057
			if (!s->flags.nb_mce_enable)
3058
				reg->l &= ~MSR_MCGCTL_NBE;
3059 3060 3061 3062 3063 3064 3065 3066 3067
		}
	}
	wrmsr_on_cpus(cmask, MSR_IA32_MCG_CTL, msrs);

	free_cpumask_var(cmask);

	return 0;
}

3068
static bool enable_ecc_error_reporting(struct ecc_settings *s, u16 nid,
3069
				       struct pci_dev *F3)
3070
{
3071
	bool ret = true;
B
Borislav Petkov 已提交
3072
	u32 value, mask = 0x3;		/* UECC/CECC enable */
3073

3074 3075 3076 3077 3078
	if (toggle_ecc_err_reporting(s, nid, ON)) {
		amd64_warn("Error enabling ECC reporting over MCGCTL!\n");
		return false;
	}

B
Borislav Petkov 已提交
3079
	amd64_read_pci_cfg(F3, NBCTL, &value);
3080

3081 3082
	s->old_nbctl   = value & mask;
	s->nbctl_valid = true;
3083 3084

	value |= mask;
B
Borislav Petkov 已提交
3085
	amd64_write_pci_cfg(F3, NBCTL, value);
3086

3087
	amd64_read_pci_cfg(F3, NBCFG, &value);
3088

3089 3090
	edac_dbg(0, "1: node %d, NBCFG=0x%08x[DramEccEn: %d]\n",
		 nid, value, !!(value & NBCFG_ECC_ENABLE));
3091

3092
	if (!(value & NBCFG_ECC_ENABLE)) {
3093
		amd64_warn("DRAM ECC disabled on this node, enabling...\n");
3094

3095
		s->flags.nb_ecc_prev = 0;
3096

3097
		/* Attempt to turn on DRAM ECC Enable */
3098 3099
		value |= NBCFG_ECC_ENABLE;
		amd64_write_pci_cfg(F3, NBCFG, value);
3100

3101
		amd64_read_pci_cfg(F3, NBCFG, &value);
3102

3103
		if (!(value & NBCFG_ECC_ENABLE)) {
3104 3105
			amd64_warn("Hardware rejected DRAM ECC enable,"
				   "check memory DIMM configuration.\n");
3106
			ret = false;
3107
		} else {
3108
			amd64_info("Hardware accepted DRAM ECC Enable\n");
3109
		}
3110
	} else {
3111
		s->flags.nb_ecc_prev = 1;
3112
	}
3113

3114 3115
	edac_dbg(0, "2: node %d, NBCFG=0x%08x[DramEccEn: %d]\n",
		 nid, value, !!(value & NBCFG_ECC_ENABLE));
3116

3117
	return ret;
3118 3119
}

3120
static void restore_ecc_error_reporting(struct ecc_settings *s, u16 nid,
3121
					struct pci_dev *F3)
3122
{
B
Borislav Petkov 已提交
3123 3124
	u32 value, mask = 0x3;		/* UECC/CECC enable */

3125
	if (!s->nbctl_valid)
3126 3127
		return;

B
Borislav Petkov 已提交
3128
	amd64_read_pci_cfg(F3, NBCTL, &value);
3129
	value &= ~mask;
3130
	value |= s->old_nbctl;
3131

B
Borislav Petkov 已提交
3132
	amd64_write_pci_cfg(F3, NBCTL, value);
3133

3134 3135
	/* restore previous BIOS DRAM ECC "off" setting we force-enabled */
	if (!s->flags.nb_ecc_prev) {
3136 3137 3138
		amd64_read_pci_cfg(F3, NBCFG, &value);
		value &= ~NBCFG_ECC_ENABLE;
		amd64_write_pci_cfg(F3, NBCFG, value);
3139 3140 3141
	}

	/* restore the NB Enable MCGCTL bit */
3142
	if (toggle_ecc_err_reporting(s, nid, OFF))
3143
		amd64_warn("Error restoring NB MCGCTL settings!\n");
3144 3145 3146
}

/*
3147 3148 3149 3150
 * EDAC requires that the BIOS have ECC enabled before
 * taking over the processing of ECC errors. A command line
 * option allows to force-enable hardware ECC later in
 * enable_ecc_error_reporting().
3151
 */
3152 3153 3154 3155 3156
static const char *ecc_msg =
	"ECC disabled in the BIOS or no ECC capability, module will not load.\n"
	" Either enable ECC checking or force module loading by setting "
	"'ecc_enable_override'.\n"
	" (Note that use of the override may cause unknown side effects.)\n";
3157

3158
static bool ecc_enabled(struct pci_dev *F3, u16 nid)
3159
{
3160
	bool nb_mce_en = false;
3161 3162
	u8 ecc_en = 0, i;
	u32 value;
3163

3164 3165
	if (boot_cpu_data.x86 >= 0x17) {
		u8 umc_en_mask = 0, ecc_en_mask = 0;
3166

3167
		for_each_umc(i) {
3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188
			u32 base = get_umc_base(i);

			/* Only check enabled UMCs. */
			if (amd_smn_read(nid, base + UMCCH_SDP_CTRL, &value))
				continue;

			if (!(value & UMC_SDP_INIT))
				continue;

			umc_en_mask |= BIT(i);

			if (amd_smn_read(nid, base + UMCCH_UMC_CAP_HI, &value))
				continue;

			if (value & UMC_ECC_ENABLED)
				ecc_en_mask |= BIT(i);
		}

		/* Check whether at least one UMC is enabled: */
		if (umc_en_mask)
			ecc_en = umc_en_mask == ecc_en_mask;
3189 3190
		else
			edac_dbg(0, "Node %d: No enabled UMCs.\n", nid);
3191 3192 3193 3194 3195

		/* Assume UMC MCA banks are enabled. */
		nb_mce_en = true;
	} else {
		amd64_read_pci_cfg(F3, NBCFG, &value);
3196

3197 3198 3199 3200
		ecc_en = !!(value & NBCFG_ECC_ENABLE);

		nb_mce_en = nb_mce_bank_enabled_on_node(nid);
		if (!nb_mce_en)
3201
			edac_dbg(0, "NB MCE bank disabled, set MSR 0x%08x[4] on node %d to enable.\n",
3202 3203 3204
				     MSR_IA32_MCG_CTL, nid);
	}

3205 3206
	amd64_info("Node %d: DRAM ECC %s.\n",
		   nid, (ecc_en ? "enabled" : "disabled"));
3207

3208
	if (!ecc_en || !nb_mce_en) {
3209
		amd64_info("%s", ecc_msg);
3210 3211 3212
		return false;
	}
	return true;
3213 3214
}

3215 3216 3217
static inline void
f17h_determine_edac_ctl_cap(struct mem_ctl_info *mci, struct amd64_pvt *pvt)
{
3218
	u8 i, ecc_en = 1, cpk_en = 1, dev_x4 = 1, dev_x16 = 1;
3219

3220
	for_each_umc(i) {
3221 3222 3223
		if (pvt->umc[i].sdp_ctrl & UMC_SDP_INIT) {
			ecc_en &= !!(pvt->umc[i].umc_cap_hi & UMC_ECC_ENABLED);
			cpk_en &= !!(pvt->umc[i].umc_cap_hi & UMC_ECC_CHIPKILL_CAP);
3224 3225 3226

			dev_x4  &= !!(pvt->umc[i].dimm_cfg & BIT(6));
			dev_x16 &= !!(pvt->umc[i].dimm_cfg & BIT(7));
3227 3228 3229 3230 3231 3232 3233
		}
	}

	/* Set chipkill only if ECC is enabled: */
	if (ecc_en) {
		mci->edac_ctl_cap |= EDAC_FLAG_SECDED;

3234 3235 3236 3237
		if (!cpk_en)
			return;

		if (dev_x4)
3238
			mci->edac_ctl_cap |= EDAC_FLAG_S4ECD4ED;
3239 3240 3241 3242
		else if (dev_x16)
			mci->edac_ctl_cap |= EDAC_FLAG_S16ECD16ED;
		else
			mci->edac_ctl_cap |= EDAC_FLAG_S8ECD8ED;
3243 3244 3245
	}
}

3246 3247
static void setup_mci_misc_attrs(struct mem_ctl_info *mci,
				 struct amd64_family_type *fam)
3248 3249 3250 3251 3252 3253
{
	struct amd64_pvt *pvt = mci->pvt_info;

	mci->mtype_cap		= MEM_FLAG_DDR2 | MEM_FLAG_RDDR2;
	mci->edac_ctl_cap	= EDAC_FLAG_NONE;

3254 3255 3256 3257 3258
	if (pvt->umc) {
		f17h_determine_edac_ctl_cap(mci, pvt);
	} else {
		if (pvt->nbcap & NBCAP_SECDED)
			mci->edac_ctl_cap |= EDAC_FLAG_SECDED;
3259

3260 3261 3262
		if (pvt->nbcap & NBCAP_CHIPKILL)
			mci->edac_ctl_cap |= EDAC_FLAG_S4ECD4ED;
	}
3263

3264
	mci->edac_cap		= determine_edac_cap(pvt);
3265
	mci->mod_name		= EDAC_MOD_STR;
3266
	mci->ctl_name		= fam->ctl_name;
3267
	mci->dev_name		= pci_name(pvt->F3);
3268 3269 3270
	mci->ctl_page_to_phys	= NULL;

	/* memory scrubber interface */
3271 3272
	mci->set_sdram_scrub_rate = set_scrub_rate;
	mci->get_sdram_scrub_rate = get_scrub_rate;
3273 3274
}

3275 3276 3277
/*
 * returns a pointer to the family descriptor on success, NULL otherwise.
 */
3278
static struct amd64_family_type *per_family_init(struct amd64_pvt *pvt)
3279
{
3280 3281
	struct amd64_family_type *fam_type = NULL;

3282
	pvt->ext_model  = boot_cpu_data.x86_model >> 4;
3283
	pvt->stepping	= boot_cpu_data.x86_stepping;
3284 3285 3286 3287
	pvt->model	= boot_cpu_data.x86_model;
	pvt->fam	= boot_cpu_data.x86;

	switch (pvt->fam) {
3288
	case 0xf:
3289 3290
		fam_type	= &family_types[K8_CPUS];
		pvt->ops	= &family_types[K8_CPUS].ops;
3291
		break;
3292

3293
	case 0x10:
3294 3295
		fam_type	= &family_types[F10_CPUS];
		pvt->ops	= &family_types[F10_CPUS].ops;
3296 3297 3298
		break;

	case 0x15:
3299
		if (pvt->model == 0x30) {
3300 3301
			fam_type = &family_types[F15_M30H_CPUS];
			pvt->ops = &family_types[F15_M30H_CPUS].ops;
3302
			break;
3303 3304 3305 3306
		} else if (pvt->model == 0x60) {
			fam_type = &family_types[F15_M60H_CPUS];
			pvt->ops = &family_types[F15_M60H_CPUS].ops;
			break;
3307 3308
		}

3309 3310
		fam_type	= &family_types[F15_CPUS];
		pvt->ops	= &family_types[F15_CPUS].ops;
3311 3312
		break;

3313
	case 0x16:
3314 3315 3316 3317 3318
		if (pvt->model == 0x30) {
			fam_type = &family_types[F16_M30H_CPUS];
			pvt->ops = &family_types[F16_M30H_CPUS].ops;
			break;
		}
3319 3320
		fam_type	= &family_types[F16_CPUS];
		pvt->ops	= &family_types[F16_CPUS].ops;
3321 3322
		break;

3323
	case 0x17:
3324 3325 3326 3327
		if (pvt->model >= 0x10 && pvt->model <= 0x2f) {
			fam_type = &family_types[F17_M10H_CPUS];
			pvt->ops = &family_types[F17_M10H_CPUS].ops;
			break;
3328 3329 3330 3331
		} else if (pvt->model >= 0x30 && pvt->model <= 0x3f) {
			fam_type = &family_types[F17_M30H_CPUS];
			pvt->ops = &family_types[F17_M30H_CPUS].ops;
			break;
3332
		}
3333 3334
		/* fall through */
	case 0x18:
3335 3336
		fam_type	= &family_types[F17_CPUS];
		pvt->ops	= &family_types[F17_CPUS].ops;
3337 3338 3339

		if (pvt->fam == 0x18)
			family_types[F17_CPUS].ctl_name = "F18h";
3340 3341
		break;

3342
	default:
3343
		amd64_err("Unsupported family!\n");
3344
		return NULL;
3345
	}
3346

3347
	amd64_info("%s %sdetected (node %d).\n", fam_type->ctl_name,
3348
		     (pvt->fam == 0xf ?
3349 3350 3351
				(pvt->ext_model >= K8_REV_F  ? "revF or later "
							     : "revE or earlier ")
				 : ""), pvt->mc_node_id);
3352
	return fam_type;
3353 3354
}

3355 3356 3357 3358 3359 3360 3361 3362 3363 3364
static const struct attribute_group *amd64_edac_attr_groups[] = {
#ifdef CONFIG_EDAC_DEBUG
	&amd64_edac_dbg_group,
#endif
#ifdef CONFIG_EDAC_AMD64_ERROR_INJECTION
	&amd64_edac_inj_group,
#endif
	NULL
};

3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380
/* Set the number of Unified Memory Controllers in the system. */
static void compute_num_umcs(void)
{
	u8 model = boot_cpu_data.x86_model;

	if (boot_cpu_data.x86 < 0x17)
		return;

	if (model >= 0x30 && model <= 0x3f)
		num_umcs = 8;
	else
		num_umcs = 2;

	edac_dbg(1, "Number of UMCs: %x", num_umcs);
}

3381
static int init_one_instance(unsigned int nid)
3382
{
3383
	struct pci_dev *F3 = node_to_amd_nb(nid)->misc;
3384
	struct amd64_family_type *fam_type = NULL;
3385
	struct mem_ctl_info *mci = NULL;
3386
	struct edac_mc_layer layers[2];
3387
	struct amd64_pvt *pvt = NULL;
3388
	u16 pci_id1, pci_id2;
3389 3390 3391 3392 3393
	int err = 0, ret;

	ret = -ENOMEM;
	pvt = kzalloc(sizeof(struct amd64_pvt), GFP_KERNEL);
	if (!pvt)
3394
		goto err_ret;
3395

3396
	pvt->mc_node_id	= nid;
3397
	pvt->F3 = F3;
3398

3399
	ret = -EINVAL;
3400
	fam_type = per_family_init(pvt);
3401
	if (!fam_type)
3402 3403
		goto err_free;

3404
	if (pvt->fam >= 0x17) {
3405
		pvt->umc = kcalloc(num_umcs, sizeof(struct amd64_umc), GFP_KERNEL);
3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418
		if (!pvt->umc) {
			ret = -ENOMEM;
			goto err_free;
		}

		pci_id1 = fam_type->f0_id;
		pci_id2 = fam_type->f6_id;
	} else {
		pci_id1 = fam_type->f1_id;
		pci_id2 = fam_type->f2_id;
	}

	err = reserve_mc_sibling_devs(pvt, pci_id1, pci_id2);
3419
	if (err)
3420
		goto err_post_init;
3421

3422
	read_mc_regs(pvt);
3423 3424 3425 3426

	/*
	 * We need to determine how many memory channels there are. Then use
	 * that information for calculating the size of the dynamic instance
3427
	 * tables in the 'mci' structure.
3428
	 */
3429
	ret = -EINVAL;
3430 3431
	pvt->channel_count = pvt->ops->early_channel_count(pvt);
	if (pvt->channel_count < 0)
3432
		goto err_siblings;
3433 3434

	ret = -ENOMEM;
3435 3436 3437 3438
	layers[0].type = EDAC_MC_LAYER_CHIP_SELECT;
	layers[0].size = pvt->csels[0].b_cnt;
	layers[0].is_virt_csrow = true;
	layers[1].type = EDAC_MC_LAYER_CHANNEL;
3439 3440 3441 3442 3443

	/*
	 * Always allocate two channels since we can have setups with DIMMs on
	 * only one channel. Also, this simplifies handling later for the price
	 * of a couple of KBs tops.
3444 3445 3446
	 *
	 * On Fam17h+, the number of controllers may be greater than two. So set
	 * the size equal to the maximum number of UMCs.
3447
	 */
3448 3449 3450 3451
	if (pvt->fam >= 0x17)
		layers[1].size = num_umcs;
	else
		layers[1].size = 2;
3452
	layers[1].is_virt_csrow = false;
3453

3454
	mci = edac_mc_alloc(nid, ARRAY_SIZE(layers), layers, 0);
3455
	if (!mci)
3456
		goto err_siblings;
3457 3458

	mci->pvt_info = pvt;
3459
	mci->pdev = &pvt->F3->dev;
3460

3461
	setup_mci_misc_attrs(mci, fam_type);
3462 3463

	if (init_csrows(mci))
3464 3465 3466
		mci->edac_cap = EDAC_FLAG_NONE;

	ret = -ENODEV;
3467
	if (edac_mc_add_mc_with_groups(mci, amd64_edac_attr_groups)) {
3468
		edac_dbg(1, "failed edac_mc_add_mc()\n");
3469 3470 3471 3472 3473 3474 3475 3476
		goto err_add_mc;
	}

	return 0;

err_add_mc:
	edac_mc_free(mci);

3477 3478
err_siblings:
	free_mc_sibling_devs(pvt);
3479

3480 3481 3482 3483
err_post_init:
	if (pvt->fam >= 0x17)
		kfree(pvt->umc);

3484 3485
err_free:
	kfree(pvt);
3486

3487
err_ret:
3488 3489 3490
	return ret;
}

3491
static int probe_one_instance(unsigned int nid)
3492
{
3493
	struct pci_dev *F3 = node_to_amd_nb(nid)->misc;
3494
	struct ecc_settings *s;
3495
	int ret;
3496

3497 3498 3499
	ret = -ENOMEM;
	s = kzalloc(sizeof(struct ecc_settings), GFP_KERNEL);
	if (!s)
3500
		goto err_out;
3501 3502 3503

	ecc_stngs[nid] = s;

3504
	if (!ecc_enabled(F3, nid)) {
3505
		ret = 0;
3506 3507 3508 3509

		if (!ecc_enable_override)
			goto err_enable;

3510 3511 3512 3513 3514
		if (boot_cpu_data.x86 >= 0x17) {
			amd64_warn("Forcing ECC on is not recommended on newer systems. Please enable ECC in BIOS.");
			goto err_enable;
		} else
			amd64_warn("Forcing ECC on!\n");
3515 3516 3517 3518 3519

		if (!enable_ecc_error_reporting(s, nid, F3))
			goto err_enable;
	}

3520
	ret = init_one_instance(nid);
3521
	if (ret < 0) {
3522
		amd64_err("Error probing instance: %d\n", nid);
3523 3524 3525

		if (boot_cpu_data.x86 < 0x17)
			restore_ecc_error_reporting(s, nid, F3);
3526 3527

		goto err_enable;
3528
	}
3529 3530

	return ret;
3531 3532 3533 3534 3535 3536 3537

err_enable:
	kfree(s);
	ecc_stngs[nid] = NULL;

err_out:
	return ret;
3538 3539
}

3540
static void remove_one_instance(unsigned int nid)
3541
{
3542 3543
	struct pci_dev *F3 = node_to_amd_nb(nid)->misc;
	struct ecc_settings *s = ecc_stngs[nid];
3544 3545
	struct mem_ctl_info *mci;
	struct amd64_pvt *pvt;
3546

3547
	mci = find_mci_by_dev(&F3->dev);
3548 3549
	WARN_ON(!mci);

3550
	/* Remove from EDAC CORE tracking list */
3551
	mci = edac_mc_del_mc(&F3->dev);
3552 3553 3554 3555 3556
	if (!mci)
		return;

	pvt = mci->pvt_info;

3557
	restore_ecc_error_reporting(s, nid, F3);
3558

3559
	free_mc_sibling_devs(pvt);
3560

3561 3562
	kfree(ecc_stngs[nid]);
	ecc_stngs[nid] = NULL;
3563

3564
	/* Free the EDAC CORE resources */
3565 3566 3567
	mci->pvt_info = NULL;

	kfree(pvt);
3568 3569 3570
	edac_mc_free(mci);
}

3571
static void setup_pci_device(void)
3572 3573 3574 3575
{
	struct mem_ctl_info *mci;
	struct amd64_pvt *pvt;

3576
	if (pci_ctl)
3577 3578
		return;

3579
	mci = edac_mc_find(0);
3580 3581
	if (!mci)
		return;
3582

3583
	pvt = mci->pvt_info;
3584 3585 3586 3587
	if (pvt->umc)
		pci_ctl = edac_pci_create_generic_ctl(&pvt->F0->dev, EDAC_MOD_STR);
	else
		pci_ctl = edac_pci_create_generic_ctl(&pvt->F2->dev, EDAC_MOD_STR);
3588 3589 3590
	if (!pci_ctl) {
		pr_warn("%s(): Unable to create PCI control\n", __func__);
		pr_warn("%s(): PCI error report via EDAC not set\n", __func__);
3591 3592 3593
	}
}

3594 3595 3596 3597 3598
static const struct x86_cpu_id amd64_cpuids[] = {
	{ X86_VENDOR_AMD, 0xF,	X86_MODEL_ANY,	X86_FEATURE_ANY, 0 },
	{ X86_VENDOR_AMD, 0x10, X86_MODEL_ANY,	X86_FEATURE_ANY, 0 },
	{ X86_VENDOR_AMD, 0x15, X86_MODEL_ANY,	X86_FEATURE_ANY, 0 },
	{ X86_VENDOR_AMD, 0x16, X86_MODEL_ANY,	X86_FEATURE_ANY, 0 },
3599
	{ X86_VENDOR_AMD, 0x17, X86_MODEL_ANY,	X86_FEATURE_ANY, 0 },
3600
	{ X86_VENDOR_HYGON, 0x18, X86_MODEL_ANY, X86_FEATURE_ANY, 0 },
3601 3602 3603 3604
	{ }
};
MODULE_DEVICE_TABLE(x86cpu, amd64_cpuids);

3605 3606
static int __init amd64_edac_init(void)
{
3607
	const char *owner;
3608
	int err = -ENODEV;
3609
	int i;
3610

3611 3612 3613 3614
	owner = edac_get_owner();
	if (owner && strncmp(owner, EDAC_MOD_STR, sizeof(EDAC_MOD_STR)))
		return -EBUSY;

3615 3616 3617
	if (!x86_match_cpu(amd64_cpuids))
		return -ENODEV;

3618
	if (amd_cache_northbridges() < 0)
3619
		return -ENODEV;
3620

3621 3622
	opstate_init();

3623
	err = -ENOMEM;
K
Kees Cook 已提交
3624
	ecc_stngs = kcalloc(amd_nb_num(), sizeof(ecc_stngs[0]), GFP_KERNEL);
3625
	if (!ecc_stngs)
3626
		goto err_free;
3627

3628
	msrs = msrs_alloc();
3629
	if (!msrs)
3630
		goto err_free;
3631

3632 3633
	compute_num_umcs();

3634 3635 3636
	for (i = 0; i < amd_nb_num(); i++) {
		err = probe_one_instance(i);
		if (err) {
3637 3638 3639
			/* unwind properly */
			while (--i >= 0)
				remove_one_instance(i);
3640

3641 3642
			goto err_pci;
		}
3643
	}
3644

3645 3646 3647 3648 3649
	if (!edac_has_mcs()) {
		err = -ENODEV;
		goto err_pci;
	}

3650 3651 3652 3653 3654 3655 3656 3657 3658
	/* register stuff with EDAC MCE */
	if (report_gart_errors)
		amd_report_gart_errors(true);

	if (boot_cpu_data.x86 >= 0x17)
		amd_register_ecc_decoder(decode_umc_error);
	else
		amd_register_ecc_decoder(decode_bus_error);

3659
	setup_pci_device();
T
Tomasz Pala 已提交
3660 3661 3662 3663 3664

#ifdef CONFIG_X86_32
	amd64_err("%s on 32-bit is unsupported. USE AT YOUR OWN RISK!\n", EDAC_MOD_STR);
#endif

3665 3666
	printk(KERN_INFO "AMD64 EDAC driver v%s\n", EDAC_AMD64_VERSION);

3667
	return 0;
3668

3669 3670 3671
err_pci:
	msrs_free(msrs);
	msrs = NULL;
3672

3673 3674 3675 3676
err_free:
	kfree(ecc_stngs);
	ecc_stngs = NULL;

3677 3678 3679 3680 3681
	return err;
}

static void __exit amd64_edac_exit(void)
{
3682 3683
	int i;

3684 3685
	if (pci_ctl)
		edac_pci_release_generic_ctl(pci_ctl);
3686

3687 3688 3689 3690 3691 3692 3693 3694
	/* unregister from EDAC MCE */
	amd_report_gart_errors(false);

	if (boot_cpu_data.x86 >= 0x17)
		amd_unregister_ecc_decoder(decode_umc_error);
	else
		amd_unregister_ecc_decoder(decode_bus_error);

3695 3696
	for (i = 0; i < amd_nb_num(); i++)
		remove_one_instance(i);
3697

3698 3699 3700
	kfree(ecc_stngs);
	ecc_stngs = NULL;

3701 3702
	msrs_free(msrs);
	msrs = NULL;
3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715
}

module_init(amd64_edac_init);
module_exit(amd64_edac_exit);

MODULE_LICENSE("GPL");
MODULE_AUTHOR("SoftwareBitMaker: Doug Thompson, "
		"Dave Peterson, Thayne Harbaugh");
MODULE_DESCRIPTION("MC support for AMD64 memory controllers - "
		EDAC_AMD64_VERSION);

module_param(edac_op_state, int, 0444);
MODULE_PARM_DESC(edac_op_state, "EDAC Error Reporting state: 0=Poll,1=NMI");