amd64_edac.c 91.8 KB
Newer Older
1
#include "amd64_edac.h"
2
#include <asm/amd_nb.h>
3

4
static struct edac_pci_ctl_info *pci_ctl;
5 6 7 8 9 10 11 12 13 14 15

static int report_gart_errors;
module_param(report_gart_errors, int, 0644);

/*
 * Set by command line parameter. If BIOS has enabled the ECC, this override is
 * cleared to prevent re-enabling the hardware by this driver.
 */
static int ecc_enable_override;
module_param(ecc_enable_override, int, 0644);

16
static struct msr __percpu *msrs;
17

18
/* Per-node stuff */
19
static struct ecc_settings **ecc_stngs;
20

21 22 23
/* Number of Unified Memory Controllers */
static u8 num_umcs;

24 25 26 27 28 29 30
/*
 * Valid scrub rates for the K8 hardware memory scrubber. We map the scrubbing
 * bandwidth to a valid bit pattern. The 'set' operation finds the 'matching-
 * or higher value'.
 *
 *FIXME: Produce a better mapping/linearisation.
 */
31
static const struct scrubrate {
32 33 34
       u32 scrubval;           /* bit pattern for scrub rate */
       u32 bandwidth;          /* bandwidth consumed (bytes/sec) */
} scrubrates[] = {
35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59
	{ 0x01, 1600000000UL},
	{ 0x02, 800000000UL},
	{ 0x03, 400000000UL},
	{ 0x04, 200000000UL},
	{ 0x05, 100000000UL},
	{ 0x06, 50000000UL},
	{ 0x07, 25000000UL},
	{ 0x08, 12284069UL},
	{ 0x09, 6274509UL},
	{ 0x0A, 3121951UL},
	{ 0x0B, 1560975UL},
	{ 0x0C, 781440UL},
	{ 0x0D, 390720UL},
	{ 0x0E, 195300UL},
	{ 0x0F, 97650UL},
	{ 0x10, 48854UL},
	{ 0x11, 24427UL},
	{ 0x12, 12213UL},
	{ 0x13, 6101UL},
	{ 0x14, 3051UL},
	{ 0x15, 1523UL},
	{ 0x16, 761UL},
	{ 0x00, 0UL},        /* scrubbing off */
};

60 61
int __amd64_read_pci_cfg_dword(struct pci_dev *pdev, int offset,
			       u32 *val, const char *func)
62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85
{
	int err = 0;

	err = pci_read_config_dword(pdev, offset, val);
	if (err)
		amd64_warn("%s: error reading F%dx%03x.\n",
			   func, PCI_FUNC(pdev->devfn), offset);

	return err;
}

int __amd64_write_pci_cfg_dword(struct pci_dev *pdev, int offset,
				u32 val, const char *func)
{
	int err = 0;

	err = pci_write_config_dword(pdev, offset, val);
	if (err)
		amd64_warn("%s: error writing to F%dx%03x.\n",
			   func, PCI_FUNC(pdev->devfn), offset);

	return err;
}

86 87 88 89 90 91 92 93 94 95 96 97 98
/*
 * Select DCT to which PCI cfg accesses are routed
 */
static void f15h_select_dct(struct amd64_pvt *pvt, u8 dct)
{
	u32 reg = 0;

	amd64_read_pci_cfg(pvt->F1, DCT_CFG_SEL, &reg);
	reg &= (pvt->model == 0x30) ? ~3 : ~1;
	reg |= dct;
	amd64_write_pci_cfg(pvt->F1, DCT_CFG_SEL, reg);
}

99 100 101 102
/*
 *
 * Depending on the family, F2 DCT reads need special handling:
 *
103
 * K8: has a single DCT only and no address offsets >= 0x100
104 105 106 107 108
 *
 * F10h: each DCT has its own set of regs
 *	DCT0 -> F2x040..
 *	DCT1 -> F2x140..
 *
109
 * F16h: has only 1 DCT
110 111
 *
 * F15h: we select which DCT we access using F1x10C[DctCfgSel]
112
 */
113 114
static inline int amd64_read_dct_pci_cfg(struct amd64_pvt *pvt, u8 dct,
					 int offset, u32 *val)
115
{
116 117 118 119 120
	switch (pvt->fam) {
	case 0xf:
		if (dct || offset >= 0x100)
			return -EINVAL;
		break;
121

122 123 124 125 126 127 128 129 130
	case 0x10:
		if (dct) {
			/*
			 * Note: If ganging is enabled, barring the regs
			 * F2x[1,0]98 and F2x[1,0]9C; reads reads to F2x1xx
			 * return 0. (cf. Section 2.8.1 F10h BKDG)
			 */
			if (dct_ganging_enabled(pvt))
				return 0;
131

132 133 134
			offset += 0x100;
		}
		break;
135

136 137 138 139 140 141 142 143
	case 0x15:
		/*
		 * F15h: F2x1xx addresses do not map explicitly to DCT1.
		 * We should select which DCT we access using F1x10C[DctCfgSel]
		 */
		dct = (dct && pvt->model == 0x30) ? 3 : dct;
		f15h_select_dct(pvt, dct);
		break;
144

145 146 147 148
	case 0x16:
		if (dct)
			return -EINVAL;
		break;
149

150 151
	default:
		break;
152
	}
153
	return amd64_read_pci_cfg(pvt->F2, offset, val);
154 155
}

156 157 158 159 160 161 162 163 164 165 166 167 168 169
/*
 * Memory scrubber control interface. For K8, memory scrubbing is handled by
 * hardware and can involve L2 cache, dcache as well as the main memory. With
 * F10, this is extended to L3 cache scrubbing on CPU models sporting that
 * functionality.
 *
 * This causes the "units" for the scrubbing speed to vary from 64 byte blocks
 * (dram) over to cache lines. This is nasty, so we will use bandwidth in
 * bytes/sec for the setting.
 *
 * Currently, we only do dram scrubbing. If the scrubbing is done in software on
 * other archs, we might not have access to the caches directly.
 */

170 171 172 173 174 175 176 177 178 179 180 181 182 183 184
static inline void __f17h_set_scrubval(struct amd64_pvt *pvt, u32 scrubval)
{
	/*
	 * Fam17h supports scrub values between 0x5 and 0x14. Also, the values
	 * are shifted down by 0x5, so scrubval 0x5 is written to the register
	 * as 0x0, scrubval 0x6 as 0x1, etc.
	 */
	if (scrubval >= 0x5 && scrubval <= 0x14) {
		scrubval -= 0x5;
		pci_write_bits32(pvt->F6, F17H_SCR_LIMIT_ADDR, scrubval, 0xF);
		pci_write_bits32(pvt->F6, F17H_SCR_BASE_ADDR, 1, 0x1);
	} else {
		pci_write_bits32(pvt->F6, F17H_SCR_BASE_ADDR, 0, 0x1);
	}
}
185
/*
186
 * Scan the scrub rate mapping table for a close or matching bandwidth value to
187 188
 * issue. If requested is too big, then use last maximum value found.
 */
189
static int __set_scrub_rate(struct amd64_pvt *pvt, u32 new_bw, u32 min_rate)
190 191 192 193 194 195 196 197 198
{
	u32 scrubval;
	int i;

	/*
	 * map the configured rate (new_bw) to a value specific to the AMD64
	 * memory controller and apply to register. Search for the first
	 * bandwidth entry that is greater or equal than the setting requested
	 * and program that. If at last entry, turn off DRAM scrubbing.
199 200 201
	 *
	 * If no suitable bandwidth is found, turn off DRAM scrubbing entirely
	 * by falling back to the last element in scrubrates[].
202
	 */
203
	for (i = 0; i < ARRAY_SIZE(scrubrates) - 1; i++) {
204 205 206 207
		/*
		 * skip scrub rates which aren't recommended
		 * (see F10 BKDG, F3x58)
		 */
208
		if (scrubrates[i].scrubval < min_rate)
209 210 211 212 213 214 215 216
			continue;

		if (scrubrates[i].bandwidth <= new_bw)
			break;
	}

	scrubval = scrubrates[i].scrubval;

217
	if (pvt->fam == 0x17 || pvt->fam == 0x18) {
218 219
		__f17h_set_scrubval(pvt, scrubval);
	} else if (pvt->fam == 0x15 && pvt->model == 0x60) {
220 221 222 223 224 225 226
		f15h_select_dct(pvt, 0);
		pci_write_bits32(pvt->F2, F15H_M60H_SCRCTRL, scrubval, 0x001F);
		f15h_select_dct(pvt, 1);
		pci_write_bits32(pvt->F2, F15H_M60H_SCRCTRL, scrubval, 0x001F);
	} else {
		pci_write_bits32(pvt->F3, SCRCTRL, scrubval, 0x001F);
	}
227

228 229 230
	if (scrubval)
		return scrubrates[i].bandwidth;

231 232 233
	return 0;
}

234
static int set_scrub_rate(struct mem_ctl_info *mci, u32 bw)
235 236
{
	struct amd64_pvt *pvt = mci->pvt_info;
237
	u32 min_scrubrate = 0x5;
238

239
	if (pvt->fam == 0xf)
240 241
		min_scrubrate = 0x0;

242 243 244 245
	if (pvt->fam == 0x15) {
		/* Erratum #505 */
		if (pvt->model < 0x10)
			f15h_select_dct(pvt, 0);
246

247 248 249 250
		if (pvt->model == 0x60)
			min_scrubrate = 0x6;
	}
	return __set_scrub_rate(pvt, bw, min_scrubrate);
251 252
}

253
static int get_scrub_rate(struct mem_ctl_info *mci)
254 255
{
	struct amd64_pvt *pvt = mci->pvt_info;
256
	int i, retval = -EINVAL;
257
	u32 scrubval = 0;
258

259 260
	switch (pvt->fam) {
	case 0x15:
261 262 263
		/* Erratum #505 */
		if (pvt->model < 0x10)
			f15h_select_dct(pvt, 0);
264

265 266
		if (pvt->model == 0x60)
			amd64_read_pci_cfg(pvt->F2, F15H_M60H_SCRCTRL, &scrubval);
267 268 269
		break;

	case 0x17:
270
	case 0x18:
271 272 273 274 275 276 277 278 279 280 281
		amd64_read_pci_cfg(pvt->F6, F17H_SCR_BASE_ADDR, &scrubval);
		if (scrubval & BIT(0)) {
			amd64_read_pci_cfg(pvt->F6, F17H_SCR_LIMIT_ADDR, &scrubval);
			scrubval &= 0xF;
			scrubval += 0x5;
		} else {
			scrubval = 0;
		}
		break;

	default:
282
		amd64_read_pci_cfg(pvt->F3, SCRCTRL, &scrubval);
283 284
		break;
	}
285 286 287

	scrubval = scrubval & 0x001F;

288
	for (i = 0; i < ARRAY_SIZE(scrubrates); i++) {
289
		if (scrubrates[i].scrubval == scrubval) {
290
			retval = scrubrates[i].bandwidth;
291 292 293
			break;
		}
	}
294
	return retval;
295 296
}

297
/*
298 299
 * returns true if the SysAddr given by sys_addr matches the
 * DRAM base/limit associated with node_id
300
 */
301
static bool base_limit_match(struct amd64_pvt *pvt, u64 sys_addr, u8 nid)
302
{
303
	u64 addr;
304 305 306 307 308 309 310 311 312

	/* The K8 treats this as a 40-bit value.  However, bits 63-40 will be
	 * all ones if the most significant implemented address bit is 1.
	 * Here we discard bits 63-40.  See section 3.4.2 of AMD publication
	 * 24592: AMD x86-64 Architecture Programmer's Manual Volume 1
	 * Application Programming.
	 */
	addr = sys_addr & 0x000000ffffffffffull;

313 314
	return ((addr >= get_dram_base(pvt, nid)) &&
		(addr <= get_dram_limit(pvt, nid)));
315 316 317 318 319 320 321 322 323 324 325 326
}

/*
 * Attempt to map a SysAddr to a node. On success, return a pointer to the
 * mem_ctl_info structure for the node that the SysAddr maps to.
 *
 * On failure, return NULL.
 */
static struct mem_ctl_info *find_mc_by_sys_addr(struct mem_ctl_info *mci,
						u64 sys_addr)
{
	struct amd64_pvt *pvt;
327
	u8 node_id;
328 329 330 331 332 333 334 335 336 337 338 339 340
	u32 intlv_en, bits;

	/*
	 * Here we use the DRAM Base (section 3.4.4.1) and DRAM Limit (section
	 * 3.4.4.2) registers to map the SysAddr to a node ID.
	 */
	pvt = mci->pvt_info;

	/*
	 * The value of this field should be the same for all DRAM Base
	 * registers.  Therefore we arbitrarily choose to read it from the
	 * register for node 0.
	 */
341
	intlv_en = dram_intlv_en(pvt, 0);
342 343

	if (intlv_en == 0) {
344
		for (node_id = 0; node_id < DRAM_RANGES; node_id++) {
345
			if (base_limit_match(pvt, sys_addr, node_id))
346
				goto found;
347
		}
348
		goto err_no_match;
349 350
	}

351 352 353
	if (unlikely((intlv_en != 0x01) &&
		     (intlv_en != 0x03) &&
		     (intlv_en != 0x07))) {
354
		amd64_warn("DRAM Base[IntlvEn] junk value: 0x%x, BIOS bug?\n", intlv_en);
355 356 357 358 359 360
		return NULL;
	}

	bits = (((u32) sys_addr) >> 12) & intlv_en;

	for (node_id = 0; ; ) {
361
		if ((dram_intlv_sel(pvt, node_id) & intlv_en) == bits)
362 363
			break;	/* intlv_sel field matches */

364
		if (++node_id >= DRAM_RANGES)
365 366 367 368
			goto err_no_match;
	}

	/* sanity test for sys_addr */
369
	if (unlikely(!base_limit_match(pvt, sys_addr, node_id))) {
370 371 372
		amd64_warn("%s: sys_addr 0x%llx falls outside base/limit address"
			   "range for node %d with node interleaving enabled.\n",
			   __func__, sys_addr, node_id);
373 374 375 376
		return NULL;
	}

found:
377
	return edac_mc_find((int)node_id);
378 379

err_no_match:
380 381
	edac_dbg(2, "sys_addr 0x%lx doesn't match any node\n",
		 (unsigned long)sys_addr);
382 383 384

	return NULL;
}
385 386

/*
387 388
 * compute the CS base address of the @csrow on the DRAM controller @dct.
 * For details see F2x[5C:40] in the processor's BKDG
389
 */
390 391
static void get_cs_base_and_mask(struct amd64_pvt *pvt, int csrow, u8 dct,
				 u64 *base, u64 *mask)
392
{
393 394
	u64 csbase, csmask, base_bits, mask_bits;
	u8 addr_shift;
395

396
	if (pvt->fam == 0xf && pvt->ext_model < K8_REV_F) {
397 398
		csbase		= pvt->csels[dct].csbases[csrow];
		csmask		= pvt->csels[dct].csmasks[csrow];
399 400
		base_bits	= GENMASK_ULL(31, 21) | GENMASK_ULL(15, 9);
		mask_bits	= GENMASK_ULL(29, 21) | GENMASK_ULL(15, 9);
401
		addr_shift	= 4;
402 403

	/*
404 405 406 407 408
	 * F16h and F15h, models 30h and later need two addr_shift values:
	 * 8 for high and 6 for low (cf. F16h BKDG).
	 */
	} else if (pvt->fam == 0x16 ||
		  (pvt->fam == 0x15 && pvt->model >= 0x30)) {
409 410 411
		csbase          = pvt->csels[dct].csbases[csrow];
		csmask          = pvt->csels[dct].csmasks[csrow >> 1];

412 413
		*base  = (csbase & GENMASK_ULL(15,  5)) << 6;
		*base |= (csbase & GENMASK_ULL(30, 19)) << 8;
414 415 416

		*mask = ~0ULL;
		/* poke holes for the csmask */
417 418
		*mask &= ~((GENMASK_ULL(15, 5)  << 6) |
			   (GENMASK_ULL(30, 19) << 8));
419

420 421
		*mask |= (csmask & GENMASK_ULL(15, 5))  << 6;
		*mask |= (csmask & GENMASK_ULL(30, 19)) << 8;
422 423

		return;
424 425 426 427
	} else {
		csbase		= pvt->csels[dct].csbases[csrow];
		csmask		= pvt->csels[dct].csmasks[csrow >> 1];
		addr_shift	= 8;
428

429
		if (pvt->fam == 0x15)
430 431
			base_bits = mask_bits =
				GENMASK_ULL(30,19) | GENMASK_ULL(13,5);
432
		else
433 434
			base_bits = mask_bits =
				GENMASK_ULL(28,19) | GENMASK_ULL(13,5);
435
	}
436

437
	*base  = (csbase & base_bits) << addr_shift;
438

439 440 441 442 443
	*mask  = ~0ULL;
	/* poke holes for the csmask */
	*mask &= ~(mask_bits << addr_shift);
	/* OR them in */
	*mask |= (csmask & mask_bits) << addr_shift;
444 445
}

446 447 448
#define for_each_chip_select(i, dct, pvt) \
	for (i = 0; i < pvt->csels[dct].b_cnt; i++)

449 450 451
#define chip_select_base(i, dct, pvt) \
	pvt->csels[dct].csbases[i]

452 453 454
#define for_each_chip_select_mask(i, dct, pvt) \
	for (i = 0; i < pvt->csels[dct].m_cnt; i++)

455
#define for_each_umc(i) \
456
	for (i = 0; i < num_umcs; i++)
457

458 459 460 461 462 463 464 465 466 467 468 469
/*
 * @input_addr is an InputAddr associated with the node given by mci. Return the
 * csrow that input_addr maps to, or -1 on failure (no csrow claims input_addr).
 */
static int input_addr_to_csrow(struct mem_ctl_info *mci, u64 input_addr)
{
	struct amd64_pvt *pvt;
	int csrow;
	u64 base, mask;

	pvt = mci->pvt_info;

470 471
	for_each_chip_select(csrow, 0, pvt) {
		if (!csrow_enabled(csrow, 0, pvt))
472 473
			continue;

474 475 476
		get_cs_base_and_mask(pvt, csrow, 0, &base, &mask);

		mask = ~mask;
477 478

		if ((input_addr & mask) == (base & mask)) {
479 480 481
			edac_dbg(2, "InputAddr 0x%lx matches csrow %d (node %d)\n",
				 (unsigned long)input_addr, csrow,
				 pvt->mc_node_id);
482 483 484 485

			return csrow;
		}
	}
486 487
	edac_dbg(2, "no matching csrow for InputAddr 0x%lx (MC node %d)\n",
		 (unsigned long)input_addr, pvt->mc_node_id);
488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513

	return -1;
}

/*
 * Obtain info from the DRAM Hole Address Register (section 3.4.8, pub #26094)
 * for the node represented by mci. Info is passed back in *hole_base,
 * *hole_offset, and *hole_size.  Function returns 0 if info is valid or 1 if
 * info is invalid. Info may be invalid for either of the following reasons:
 *
 * - The revision of the node is not E or greater.  In this case, the DRAM Hole
 *   Address Register does not exist.
 *
 * - The DramHoleValid bit is cleared in the DRAM Hole Address Register,
 *   indicating that its contents are not valid.
 *
 * The values passed back in *hole_base, *hole_offset, and *hole_size are
 * complete 32-bit values despite the fact that the bitfields in the DHAR
 * only represent bits 31-24 of the base and offset values.
 */
int amd64_get_dram_hole_info(struct mem_ctl_info *mci, u64 *hole_base,
			     u64 *hole_offset, u64 *hole_size)
{
	struct amd64_pvt *pvt = mci->pvt_info;

	/* only revE and later have the DRAM Hole Address Register */
514
	if (pvt->fam == 0xf && pvt->ext_model < K8_REV_E) {
515 516
		edac_dbg(1, "  revision %d for node %d does not support DHAR\n",
			 pvt->ext_model, pvt->mc_node_id);
517 518 519
		return 1;
	}

520
	/* valid for Fam10h and above */
521
	if (pvt->fam >= 0x10 && !dhar_mem_hoist_valid(pvt)) {
522
		edac_dbg(1, "  Dram Memory Hoisting is DISABLED on this system\n");
523 524 525
		return 1;
	}

526
	if (!dhar_valid(pvt)) {
527 528
		edac_dbg(1, "  Dram Memory Hoisting is DISABLED on this node %d\n",
			 pvt->mc_node_id);
529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549
		return 1;
	}

	/* This node has Memory Hoisting */

	/* +------------------+--------------------+--------------------+-----
	 * | memory           | DRAM hole          | relocated          |
	 * | [0, (x - 1)]     | [x, 0xffffffff]    | addresses from     |
	 * |                  |                    | DRAM hole          |
	 * |                  |                    | [0x100000000,      |
	 * |                  |                    |  (0x100000000+     |
	 * |                  |                    |   (0xffffffff-x))] |
	 * +------------------+--------------------+--------------------+-----
	 *
	 * Above is a diagram of physical memory showing the DRAM hole and the
	 * relocated addresses from the DRAM hole.  As shown, the DRAM hole
	 * starts at address x (the base address) and extends through address
	 * 0xffffffff.  The DRAM Hole Address Register (DHAR) relocates the
	 * addresses in the hole so that they start at 0x100000000.
	 */

550 551
	*hole_base = dhar_base(pvt);
	*hole_size = (1ULL << 32) - *hole_base;
552

553 554
	*hole_offset = (pvt->fam > 0xf) ? f10_dhar_offset(pvt)
					: k8_dhar_offset(pvt);
555

556 557 558
	edac_dbg(1, "  DHAR info for node %d base 0x%lx offset 0x%lx size 0x%lx\n",
		 pvt->mc_node_id, (unsigned long)*hole_base,
		 (unsigned long)*hole_offset, (unsigned long)*hole_size);
559 560 561 562 563

	return 0;
}
EXPORT_SYMBOL_GPL(amd64_get_dram_hole_info);

564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594
/*
 * Return the DramAddr that the SysAddr given by @sys_addr maps to.  It is
 * assumed that sys_addr maps to the node given by mci.
 *
 * The first part of section 3.4.4 (p. 70) shows how the DRAM Base (section
 * 3.4.4.1) and DRAM Limit (section 3.4.4.2) registers are used to translate a
 * SysAddr to a DramAddr. If the DRAM Hole Address Register (DHAR) is enabled,
 * then it is also involved in translating a SysAddr to a DramAddr. Sections
 * 3.4.8 and 3.5.8.2 describe the DHAR and how it is used for memory hoisting.
 * These parts of the documentation are unclear. I interpret them as follows:
 *
 * When node n receives a SysAddr, it processes the SysAddr as follows:
 *
 * 1. It extracts the DRAMBase and DRAMLimit values from the DRAM Base and DRAM
 *    Limit registers for node n. If the SysAddr is not within the range
 *    specified by the base and limit values, then node n ignores the Sysaddr
 *    (since it does not map to node n). Otherwise continue to step 2 below.
 *
 * 2. If the DramHoleValid bit of the DHAR for node n is clear, the DHAR is
 *    disabled so skip to step 3 below. Otherwise see if the SysAddr is within
 *    the range of relocated addresses (starting at 0x100000000) from the DRAM
 *    hole. If not, skip to step 3 below. Else get the value of the
 *    DramHoleOffset field from the DHAR. To obtain the DramAddr, subtract the
 *    offset defined by this value from the SysAddr.
 *
 * 3. Obtain the base address for node n from the DRAMBase field of the DRAM
 *    Base register for node n. To obtain the DramAddr, subtract the base
 *    address from the SysAddr, as shown near the start of section 3.4.4 (p.70).
 */
static u64 sys_addr_to_dram_addr(struct mem_ctl_info *mci, u64 sys_addr)
{
595
	struct amd64_pvt *pvt = mci->pvt_info;
596
	u64 dram_base, hole_base, hole_offset, hole_size, dram_addr;
597
	int ret;
598

599
	dram_base = get_dram_base(pvt, pvt->mc_node_id);
600 601 602 603

	ret = amd64_get_dram_hole_info(mci, &hole_base, &hole_offset,
				      &hole_size);
	if (!ret) {
604 605
		if ((sys_addr >= (1ULL << 32)) &&
		    (sys_addr < ((1ULL << 32) + hole_size))) {
606 607 608
			/* use DHAR to translate SysAddr to DramAddr */
			dram_addr = sys_addr - hole_offset;

609 610 611
			edac_dbg(2, "using DHAR to translate SysAddr 0x%lx to DramAddr 0x%lx\n",
				 (unsigned long)sys_addr,
				 (unsigned long)dram_addr);
612 613 614 615 616 617 618 619 620 621 622 623 624 625

			return dram_addr;
		}
	}

	/*
	 * Translate the SysAddr to a DramAddr as shown near the start of
	 * section 3.4.4 (p. 70).  Although sys_addr is a 64-bit value, the k8
	 * only deals with 40-bit values.  Therefore we discard bits 63-40 of
	 * sys_addr below.  If bit 39 of sys_addr is 1 then the bits we
	 * discard are all 1s.  Otherwise the bits we discard are all 0s.  See
	 * section 3.4.2 of AMD publication 24592: AMD x86-64 Architecture
	 * Programmer's Manual Volume 1 Application Programming.
	 */
626
	dram_addr = (sys_addr & GENMASK_ULL(39, 0)) - dram_base;
627

628 629
	edac_dbg(2, "using DRAM Base register to translate SysAddr 0x%lx to DramAddr 0x%lx\n",
		 (unsigned long)sys_addr, (unsigned long)dram_addr);
630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660
	return dram_addr;
}

/*
 * @intlv_en is the value of the IntlvEn field from a DRAM Base register
 * (section 3.4.4.1).  Return the number of bits from a SysAddr that are used
 * for node interleaving.
 */
static int num_node_interleave_bits(unsigned intlv_en)
{
	static const int intlv_shift_table[] = { 0, 1, 0, 2, 0, 0, 0, 3 };
	int n;

	BUG_ON(intlv_en > 7);
	n = intlv_shift_table[intlv_en];
	return n;
}

/* Translate the DramAddr given by @dram_addr to an InputAddr. */
static u64 dram_addr_to_input_addr(struct mem_ctl_info *mci, u64 dram_addr)
{
	struct amd64_pvt *pvt;
	int intlv_shift;
	u64 input_addr;

	pvt = mci->pvt_info;

	/*
	 * See the start of section 3.4.4 (p. 70, BKDG #26094, K8, revA-E)
	 * concerning translating a DramAddr to an InputAddr.
	 */
661
	intlv_shift = num_node_interleave_bits(dram_intlv_en(pvt, 0));
662
	input_addr = ((dram_addr >> intlv_shift) & GENMASK_ULL(35, 12)) +
663
		      (dram_addr & 0xfff);
664

665 666 667
	edac_dbg(2, "  Intlv Shift=%d DramAddr=0x%lx maps to InputAddr=0x%lx\n",
		 intlv_shift, (unsigned long)dram_addr,
		 (unsigned long)input_addr);
668 669 670 671 672 673 674 675 676 677 678 679 680 681 682

	return input_addr;
}

/*
 * Translate the SysAddr represented by @sys_addr to an InputAddr.  It is
 * assumed that @sys_addr maps to the node given by mci.
 */
static u64 sys_addr_to_input_addr(struct mem_ctl_info *mci, u64 sys_addr)
{
	u64 input_addr;

	input_addr =
	    dram_addr_to_input_addr(mci, sys_addr_to_dram_addr(mci, sys_addr));

M
Masanari Iida 已提交
683
	edac_dbg(2, "SysAddr 0x%lx translates to InputAddr 0x%lx\n",
684
		 (unsigned long)sys_addr, (unsigned long)input_addr);
685 686 687 688 689 690

	return input_addr;
}

/* Map the Error address to a PAGE and PAGE OFFSET. */
static inline void error_address_to_page_and_offset(u64 error_address,
691
						    struct err_info *err)
692
{
693 694
	err->page = (u32) (error_address >> PAGE_SHIFT);
	err->offset = ((u32) error_address) & ~PAGE_MASK;
695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711
}

/*
 * @sys_addr is an error address (a SysAddr) extracted from the MCA NB Address
 * Low (section 3.6.4.5) and MCA NB Address High (section 3.6.4.6) registers
 * of a node that detected an ECC memory error.  mci represents the node that
 * the error address maps to (possibly different from the node that detected
 * the error).  Return the number of the csrow that sys_addr maps to, or -1 on
 * error.
 */
static int sys_addr_to_csrow(struct mem_ctl_info *mci, u64 sys_addr)
{
	int csrow;

	csrow = input_addr_to_csrow(mci, sys_addr_to_input_addr(mci, sys_addr));

	if (csrow == -1)
712 713
		amd64_mc_err(mci, "Failed to translate InputAddr to csrow for "
				  "address 0x%lx\n", (unsigned long)sys_addr);
714 715
	return csrow;
}
716

717
static int get_channel_from_ecc_syndrome(struct mem_ctl_info *, u16);
718 719 720 721 722

/*
 * Determine if the DIMMs have ECC enabled. ECC is enabled ONLY if all the DIMMs
 * are ECC capable.
 */
723
static unsigned long determine_edac_cap(struct amd64_pvt *pvt)
724
{
725
	unsigned long edac_cap = EDAC_FLAG_NONE;
726 727 728 729
	u8 bit;

	if (pvt->umc) {
		u8 i, umc_en_mask = 0, dimm_ecc_en_mask = 0;
730

731
		for_each_umc(i) {
732 733
			if (!(pvt->umc[i].sdp_ctrl & UMC_SDP_INIT))
				continue;
734

735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751
			umc_en_mask |= BIT(i);

			/* UMC Configuration bit 12 (DimmEccEn) */
			if (pvt->umc[i].umc_cfg & BIT(12))
				dimm_ecc_en_mask |= BIT(i);
		}

		if (umc_en_mask == dimm_ecc_en_mask)
			edac_cap = EDAC_FLAG_SECDED;
	} else {
		bit = (pvt->fam > 0xf || pvt->ext_model >= K8_REV_F)
			? 19
			: 17;

		if (pvt->dclr0 & BIT(bit))
			edac_cap = EDAC_FLAG_SECDED;
	}
752 753 754 755

	return edac_cap;
}

756
static void debug_display_dimm_sizes(struct amd64_pvt *, u8);
757

758
static void debug_dump_dramcfg_low(struct amd64_pvt *pvt, u32 dclr, int chan)
759
{
760
	edac_dbg(1, "F2x%d90 (DRAM Cfg Low): 0x%08x\n", chan, dclr);
761

762 763 764 765 766 767 768 769 770 771 772 773 774
	if (pvt->dram_type == MEM_LRDDR3) {
		u32 dcsm = pvt->csels[chan].csmasks[0];
		/*
		 * It's assumed all LRDIMMs in a DCT are going to be of
		 * same 'type' until proven otherwise. So, use a cs
		 * value of '0' here to get dcsm value.
		 */
		edac_dbg(1, " LRDIMM %dx rank multiply\n", (dcsm & 0x3));
	}

	edac_dbg(1, "All DIMMs support ECC:%s\n",
		    (dclr & BIT(19)) ? "yes" : "no");

775

776 777
	edac_dbg(1, "  PAR/ERR parity: %s\n",
		 (dclr & BIT(8)) ?  "enabled" : "disabled");
778

779
	if (pvt->fam == 0x10)
780 781
		edac_dbg(1, "  DCT 128bit mode width: %s\n",
			 (dclr & BIT(11)) ?  "128b" : "64b");
782

783 784 785 786 787
	edac_dbg(1, "  x4 logical DIMMs present: L0: %s L1: %s L2: %s L3: %s\n",
		 (dclr & BIT(12)) ?  "yes" : "no",
		 (dclr & BIT(13)) ?  "yes" : "no",
		 (dclr & BIT(14)) ?  "yes" : "no",
		 (dclr & BIT(15)) ?  "yes" : "no");
788 789
}

790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805
/*
 * The Address Mask should be a contiguous set of bits in the non-interleaved
 * case. So to check for CS interleaving, find the most- and least-significant
 * bits of the mask, generate a contiguous bitmask, and compare the two.
 */
static bool f17_cs_interleaved(struct amd64_pvt *pvt, u8 ctrl, int cs)
{
	u32 mask = pvt->csels[ctrl].csmasks[cs >> 1];
	u32 msb = fls(mask) - 1, lsb = ffs(mask) - 1;
	u32 test_mask = GENMASK(msb, lsb);

	edac_dbg(1, "mask=0x%08x test_mask=0x%08x\n", mask, test_mask);

	return mask ^ test_mask;
}

806 807
static void debug_display_dimm_sizes_df(struct amd64_pvt *pvt, u8 ctrl)
{
808
	int dimm, size0, size1, cs0, cs1;
809 810 811

	edac_printk(KERN_DEBUG, EDAC_MC, "UMC%d chip selects:\n", ctrl);

812
	for (dimm = 0; dimm < 2; dimm++) {
813
		size0 = 0;
814
		cs0 = dimm * 2;
815

816 817
		if (csrow_enabled(cs0, ctrl, pvt))
			size0 = pvt->ops->dbam_to_cs(pvt, ctrl, 0, cs0);
818 819

		size1 = 0;
820 821
		cs1 = dimm * 2 + 1;

822 823 824 825 826 827 828 829 830 831 832 833 834
		if (csrow_enabled(cs1, ctrl, pvt)) {
			/*
			 * CS interleaving is only supported if both CSes have
			 * the same amount of memory. Because they are
			 * interleaved, it will look like both CSes have the
			 * full amount of memory. Save the size for both as
			 * half the amount we found on CS0, if interleaved.
			 */
			if (f17_cs_interleaved(pvt, ctrl, cs1))
				size1 = size0 = (size0 >> 1);
			else
				size1 = pvt->ops->dbam_to_cs(pvt, ctrl, 0, cs1);
		}
835 836

		amd64_info(EDAC_MC ": %d: %5dMB %d: %5dMB\n",
837 838
				cs0,	size0,
				cs1,	size1);
839 840 841 842 843 844 845 846
	}
}

static void __dump_misc_regs_df(struct amd64_pvt *pvt)
{
	struct amd64_umc *umc;
	u32 i, tmp, umc_base;

847
	for_each_umc(i) {
848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885
		umc_base = get_umc_base(i);
		umc = &pvt->umc[i];

		edac_dbg(1, "UMC%d DIMM cfg: 0x%x\n", i, umc->dimm_cfg);
		edac_dbg(1, "UMC%d UMC cfg: 0x%x\n", i, umc->umc_cfg);
		edac_dbg(1, "UMC%d SDP ctrl: 0x%x\n", i, umc->sdp_ctrl);
		edac_dbg(1, "UMC%d ECC ctrl: 0x%x\n", i, umc->ecc_ctrl);

		amd_smn_read(pvt->mc_node_id, umc_base + UMCCH_ECC_BAD_SYMBOL, &tmp);
		edac_dbg(1, "UMC%d ECC bad symbol: 0x%x\n", i, tmp);

		amd_smn_read(pvt->mc_node_id, umc_base + UMCCH_UMC_CAP, &tmp);
		edac_dbg(1, "UMC%d UMC cap: 0x%x\n", i, tmp);
		edac_dbg(1, "UMC%d UMC cap high: 0x%x\n", i, umc->umc_cap_hi);

		edac_dbg(1, "UMC%d ECC capable: %s, ChipKill ECC capable: %s\n",
				i, (umc->umc_cap_hi & BIT(30)) ? "yes" : "no",
				    (umc->umc_cap_hi & BIT(31)) ? "yes" : "no");
		edac_dbg(1, "UMC%d All DIMMs support ECC: %s\n",
				i, (umc->umc_cfg & BIT(12)) ? "yes" : "no");
		edac_dbg(1, "UMC%d x4 DIMMs present: %s\n",
				i, (umc->dimm_cfg & BIT(6)) ? "yes" : "no");
		edac_dbg(1, "UMC%d x16 DIMMs present: %s\n",
				i, (umc->dimm_cfg & BIT(7)) ? "yes" : "no");

		if (pvt->dram_type == MEM_LRDDR4) {
			amd_smn_read(pvt->mc_node_id, umc_base + UMCCH_ADDR_CFG, &tmp);
			edac_dbg(1, "UMC%d LRDIMM %dx rank multiply\n",
					i, 1 << ((tmp >> 4) & 0x3));
		}

		debug_display_dimm_sizes_df(pvt, i);
	}

	edac_dbg(1, "F0x104 (DRAM Hole Address): 0x%08x, base: 0x%08x\n",
		 pvt->dhar, dhar_base(pvt));
}

886
/* Display and decode various NB registers for debug purposes. */
887
static void __dump_misc_regs(struct amd64_pvt *pvt)
888
{
889
	edac_dbg(1, "F3xE8 (NB Cap): 0x%08x\n", pvt->nbcap);
890

891 892
	edac_dbg(1, "  NB two channel DRAM capable: %s\n",
		 (pvt->nbcap & NBCAP_DCT_DUAL) ? "yes" : "no");
893

894 895 896
	edac_dbg(1, "  ECC capable: %s, ChipKill ECC capable: %s\n",
		 (pvt->nbcap & NBCAP_SECDED) ? "yes" : "no",
		 (pvt->nbcap & NBCAP_CHIPKILL) ? "yes" : "no");
897

898
	debug_dump_dramcfg_low(pvt, pvt->dclr0, 0);
899

900
	edac_dbg(1, "F3xB0 (Online Spare): 0x%08x\n", pvt->online_spare);
901

902 903
	edac_dbg(1, "F1xF0 (DRAM Hole Address): 0x%08x, base: 0x%08x, offset: 0x%08x\n",
		 pvt->dhar, dhar_base(pvt),
904 905
		 (pvt->fam == 0xf) ? k8_dhar_offset(pvt)
				   : f10_dhar_offset(pvt));
906

907
	debug_display_dimm_sizes(pvt, 0);
908

909
	/* everything below this point is Fam10h and above */
910
	if (pvt->fam == 0xf)
911
		return;
912

913
	debug_display_dimm_sizes(pvt, 1);
914

915
	/* Only if NOT ganged does dclr1 have valid info */
916
	if (!dct_ganging_enabled(pvt))
917
		debug_dump_dramcfg_low(pvt, pvt->dclr1, 1);
918 919
}

920 921 922 923 924 925 926 927 928 929
/* Display and decode various NB registers for debug purposes. */
static void dump_misc_regs(struct amd64_pvt *pvt)
{
	if (pvt->umc)
		__dump_misc_regs_df(pvt);
	else
		__dump_misc_regs(pvt);

	edac_dbg(1, "  DramHoleValid: %s\n", dhar_valid(pvt) ? "yes" : "no");

930
	amd64_info("using x%u syndromes.\n", pvt->ecc_sym_sz);
931 932
}

933
/*
934
 * See BKDG, F2x[1,0][5C:40], F2[1,0][6C:60]
935
 */
936
static void prep_chip_selects(struct amd64_pvt *pvt)
937
{
938
	if (pvt->fam == 0xf && pvt->ext_model < K8_REV_F) {
939 940
		pvt->csels[0].b_cnt = pvt->csels[1].b_cnt = 8;
		pvt->csels[0].m_cnt = pvt->csels[1].m_cnt = 8;
941
	} else if (pvt->fam == 0x15 && pvt->model == 0x30) {
942 943
		pvt->csels[0].b_cnt = pvt->csels[1].b_cnt = 4;
		pvt->csels[0].m_cnt = pvt->csels[1].m_cnt = 2;
944 945 946 947 948 949 950 951
	} else if (pvt->fam >= 0x17) {
		int umc;

		for_each_umc(umc) {
			pvt->csels[umc].b_cnt = 4;
			pvt->csels[umc].m_cnt = 2;
		}

952
	} else {
953 954
		pvt->csels[0].b_cnt = pvt->csels[1].b_cnt = 8;
		pvt->csels[0].m_cnt = pvt->csels[1].m_cnt = 4;
955 956 957
	}
}

958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991
static void read_umc_base_mask(struct amd64_pvt *pvt)
{
	u32 umc_base_reg, umc_mask_reg;
	u32 base_reg, mask_reg;
	u32 *base, *mask;
	int cs, umc;

	for_each_umc(umc) {
		umc_base_reg = get_umc_base(umc) + UMCCH_BASE_ADDR;

		for_each_chip_select(cs, umc, pvt) {
			base = &pvt->csels[umc].csbases[cs];

			base_reg = umc_base_reg + (cs * 4);

			if (!amd_smn_read(pvt->mc_node_id, base_reg, base))
				edac_dbg(0, "  DCSB%d[%d]=0x%08x reg: 0x%x\n",
					 umc, cs, *base, base_reg);
		}

		umc_mask_reg = get_umc_base(umc) + UMCCH_ADDR_MASK;

		for_each_chip_select_mask(cs, umc, pvt) {
			mask = &pvt->csels[umc].csmasks[cs];

			mask_reg = umc_mask_reg + (cs * 4);

			if (!amd_smn_read(pvt->mc_node_id, mask_reg, mask))
				edac_dbg(0, "  DCSM%d[%d]=0x%08x reg: 0x%x\n",
					 umc, cs, *mask, mask_reg);
		}
	}
}

992
/*
993
 * Function 2 Offset F10_DCSB0; read in the DCS Base and DCS Mask registers
994
 */
995
static void read_dct_base_mask(struct amd64_pvt *pvt)
996
{
997
	int cs;
998

999
	prep_chip_selects(pvt);
1000

1001 1002
	if (pvt->umc)
		return read_umc_base_mask(pvt);
1003

1004
	for_each_chip_select(cs, 0, pvt) {
1005 1006
		int reg0   = DCSB0 + (cs * 4);
		int reg1   = DCSB1 + (cs * 4);
1007 1008
		u32 *base0 = &pvt->csels[0].csbases[cs];
		u32 *base1 = &pvt->csels[1].csbases[cs];
1009

1010 1011 1012
		if (!amd64_read_dct_pci_cfg(pvt, 0, reg0, base0))
			edac_dbg(0, "  DCSB0[%d]=0x%08x reg: F2x%x\n",
				 cs, *base0, reg0);
1013

1014 1015
		if (pvt->fam == 0xf)
			continue;
1016

1017 1018 1019 1020
		if (!amd64_read_dct_pci_cfg(pvt, 1, reg0, base1))
			edac_dbg(0, "  DCSB1[%d]=0x%08x reg: F2x%x\n",
				 cs, *base1, (pvt->fam == 0x10) ? reg1
							: reg0);
1021 1022
	}

1023
	for_each_chip_select_mask(cs, 0, pvt) {
1024 1025
		int reg0   = DCSM0 + (cs * 4);
		int reg1   = DCSM1 + (cs * 4);
1026 1027
		u32 *mask0 = &pvt->csels[0].csmasks[cs];
		u32 *mask1 = &pvt->csels[1].csmasks[cs];
1028

1029 1030 1031
		if (!amd64_read_dct_pci_cfg(pvt, 0, reg0, mask0))
			edac_dbg(0, "    DCSM0[%d]=0x%08x reg: F2x%x\n",
				 cs, *mask0, reg0);
1032

1033 1034
		if (pvt->fam == 0xf)
			continue;
1035

1036 1037 1038 1039
		if (!amd64_read_dct_pci_cfg(pvt, 1, reg0, mask1))
			edac_dbg(0, "    DCSM1[%d]=0x%08x reg: F2x%x\n",
				 cs, *mask1, (pvt->fam == 0x10) ? reg1
							: reg0);
1040 1041 1042
	}
}

1043
static void determine_memory_type(struct amd64_pvt *pvt)
1044
{
1045
	u32 dram_ctrl, dcsm;
1046

1047 1048 1049 1050 1051 1052 1053 1054 1055
	switch (pvt->fam) {
	case 0xf:
		if (pvt->ext_model >= K8_REV_F)
			goto ddr3;

		pvt->dram_type = (pvt->dclr0 & BIT(18)) ? MEM_DDR : MEM_RDDR;
		return;

	case 0x10:
1056
		if (pvt->dchr0 & DDR3_MODE)
1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083
			goto ddr3;

		pvt->dram_type = (pvt->dclr0 & BIT(16)) ? MEM_DDR2 : MEM_RDDR2;
		return;

	case 0x15:
		if (pvt->model < 0x60)
			goto ddr3;

		/*
		 * Model 0x60h needs special handling:
		 *
		 * We use a Chip Select value of '0' to obtain dcsm.
		 * Theoretically, it is possible to populate LRDIMMs of different
		 * 'Rank' value on a DCT. But this is not the common case. So,
		 * it's reasonable to assume all DIMMs are going to be of same
		 * 'type' until proven otherwise.
		 */
		amd64_read_dct_pci_cfg(pvt, 0, DRAM_CONTROL, &dram_ctrl);
		dcsm = pvt->csels[0].csmasks[0];

		if (((dram_ctrl >> 8) & 0x7) == 0x2)
			pvt->dram_type = MEM_DDR4;
		else if (pvt->dclr0 & BIT(16))
			pvt->dram_type = MEM_DDR3;
		else if (dcsm & 0x3)
			pvt->dram_type = MEM_LRDDR3;
1084
		else
1085
			pvt->dram_type = MEM_RDDR3;
1086

1087 1088 1089 1090 1091
		return;

	case 0x16:
		goto ddr3;

1092
	case 0x17:
1093
	case 0x18:
1094 1095 1096 1097 1098 1099 1100 1101
		if ((pvt->umc[0].dimm_cfg | pvt->umc[1].dimm_cfg) & BIT(5))
			pvt->dram_type = MEM_LRDDR4;
		else if ((pvt->umc[0].dimm_cfg | pvt->umc[1].dimm_cfg) & BIT(4))
			pvt->dram_type = MEM_RDDR4;
		else
			pvt->dram_type = MEM_DDR4;
		return;

1102 1103 1104 1105 1106
	default:
		WARN(1, KERN_ERR "%s: Family??? 0x%x\n", __func__, pvt->fam);
		pvt->dram_type = MEM_EMPTY;
	}
	return;
1107

1108 1109
ddr3:
	pvt->dram_type = (pvt->dclr0 & BIT(16)) ? MEM_DDR3 : MEM_RDDR3;
1110 1111
}

1112
/* Get the number of DCT channels the memory controller is using. */
1113 1114
static int k8_early_channel_count(struct amd64_pvt *pvt)
{
1115
	int flag;
1116

1117
	if (pvt->ext_model >= K8_REV_F)
1118
		/* RevF (NPT) and later */
1119
		flag = pvt->dclr0 & WIDTH_128;
1120
	else
1121 1122 1123 1124 1125 1126 1127 1128 1129
		/* RevE and earlier */
		flag = pvt->dclr0 & REVE_WIDTH_128;

	/* not used */
	pvt->dclr1 = 0;

	return (flag) ? 2 : 1;
}

1130
/* On F10h and later ErrAddr is MC4_ADDR[47:1] */
1131
static u64 get_error_address(struct amd64_pvt *pvt, struct mce *m)
1132
{
1133 1134
	u16 mce_nid = amd_get_nb_id(m->extcpu);
	struct mem_ctl_info *mci;
1135 1136
	u8 start_bit = 1;
	u8 end_bit   = 47;
1137 1138 1139 1140 1141 1142 1143
	u64 addr;

	mci = edac_mc_find(mce_nid);
	if (!mci)
		return 0;

	pvt = mci->pvt_info;
1144

1145
	if (pvt->fam == 0xf) {
1146 1147 1148 1149
		start_bit = 3;
		end_bit   = 39;
	}

1150
	addr = m->addr & GENMASK_ULL(end_bit, start_bit);
1151 1152 1153 1154

	/*
	 * Erratum 637 workaround
	 */
1155
	if (pvt->fam == 0x15) {
1156 1157
		u64 cc6_base, tmp_addr;
		u32 tmp;
1158
		u8 intlv_en;
1159

1160
		if ((addr & GENMASK_ULL(47, 24)) >> 24 != 0x00fdf7)
1161 1162 1163 1164 1165 1166 1167
			return addr;


		amd64_read_pci_cfg(pvt->F1, DRAM_LOCAL_NODE_LIM, &tmp);
		intlv_en = tmp >> 21 & 0x7;

		/* add [47:27] + 3 trailing bits */
1168
		cc6_base  = (tmp & GENMASK_ULL(20, 0)) << 3;
1169 1170 1171 1172 1173 1174 1175 1176

		/* reverse and add DramIntlvEn */
		cc6_base |= intlv_en ^ 0x7;

		/* pin at [47:24] */
		cc6_base <<= 24;

		if (!intlv_en)
1177
			return cc6_base | (addr & GENMASK_ULL(23, 0));
1178 1179 1180 1181

		amd64_read_pci_cfg(pvt->F1, DRAM_LOCAL_NODE_BASE, &tmp);

							/* faster log2 */
1182
		tmp_addr  = (addr & GENMASK_ULL(23, 12)) << __fls(intlv_en + 1);
1183 1184

		/* OR DramIntlvSel into bits [14:12] */
1185
		tmp_addr |= (tmp & GENMASK_ULL(23, 21)) >> 9;
1186 1187

		/* add remaining [11:0] bits from original MC4_ADDR */
1188
		tmp_addr |= addr & GENMASK_ULL(11, 0);
1189 1190 1191 1192 1193

		return cc6_base | tmp_addr;
	}

	return addr;
1194 1195
}

1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211
static struct pci_dev *pci_get_related_function(unsigned int vendor,
						unsigned int device,
						struct pci_dev *related)
{
	struct pci_dev *dev = NULL;

	while ((dev = pci_get_device(vendor, device, dev))) {
		if (pci_domain_nr(dev->bus) == pci_domain_nr(related->bus) &&
		    (dev->bus->number == related->bus->number) &&
		    (PCI_SLOT(dev->devfn) == PCI_SLOT(related->devfn)))
			break;
	}

	return dev;
}

1212
static void read_dram_base_limit_regs(struct amd64_pvt *pvt, unsigned range)
1213
{
1214
	struct amd_northbridge *nb;
1215 1216
	struct pci_dev *f1 = NULL;
	unsigned int pci_func;
1217
	int off = range << 3;
1218
	u32 llim;
1219

1220 1221
	amd64_read_pci_cfg(pvt->F1, DRAM_BASE_LO + off,  &pvt->ranges[range].base.lo);
	amd64_read_pci_cfg(pvt->F1, DRAM_LIMIT_LO + off, &pvt->ranges[range].lim.lo);
1222

1223
	if (pvt->fam == 0xf)
1224
		return;
1225

1226 1227
	if (!dram_rw(pvt, range))
		return;
1228

1229 1230
	amd64_read_pci_cfg(pvt->F1, DRAM_BASE_HI + off,  &pvt->ranges[range].base.hi);
	amd64_read_pci_cfg(pvt->F1, DRAM_LIMIT_HI + off, &pvt->ranges[range].lim.hi);
1231

1232
	/* F15h: factor in CC6 save area by reading dst node's limit reg */
1233
	if (pvt->fam != 0x15)
1234
		return;
1235

1236 1237 1238
	nb = node_to_amd_nb(dram_dst_node(pvt, range));
	if (WARN_ON(!nb))
		return;
1239

1240 1241 1242 1243 1244 1245
	if (pvt->model == 0x60)
		pci_func = PCI_DEVICE_ID_AMD_15H_M60H_NB_F1;
	else if (pvt->model == 0x30)
		pci_func = PCI_DEVICE_ID_AMD_15H_M30H_NB_F1;
	else
		pci_func = PCI_DEVICE_ID_AMD_15H_NB_F1;
1246 1247

	f1 = pci_get_related_function(nb->misc->vendor, pci_func, nb->misc);
1248 1249
	if (WARN_ON(!f1))
		return;
1250

1251
	amd64_read_pci_cfg(f1, DRAM_LOCAL_NODE_LIM, &llim);
1252

1253
	pvt->ranges[range].lim.lo &= GENMASK_ULL(15, 0);
1254

1255 1256
				    /* {[39:27],111b} */
	pvt->ranges[range].lim.lo |= ((llim & 0x1fff) << 3 | 0x7) << 16;
1257

1258
	pvt->ranges[range].lim.hi &= GENMASK_ULL(7, 0);
1259

1260 1261 1262 1263
				    /* [47:40] */
	pvt->ranges[range].lim.hi |= llim >> 13;

	pci_dev_put(f1);
1264 1265
}

1266
static void k8_map_sysaddr_to_csrow(struct mem_ctl_info *mci, u64 sys_addr,
1267
				    struct err_info *err)
1268
{
1269
	struct amd64_pvt *pvt = mci->pvt_info;
1270

1271
	error_address_to_page_and_offset(sys_addr, err);
1272 1273 1274 1275 1276

	/*
	 * Find out which node the error address belongs to. This may be
	 * different from the node that detected the error.
	 */
1277 1278
	err->src_mci = find_mc_by_sys_addr(mci, sys_addr);
	if (!err->src_mci) {
1279 1280
		amd64_mc_err(mci, "failed to map error addr 0x%lx to a node\n",
			     (unsigned long)sys_addr);
1281
		err->err_code = ERR_NODE;
1282 1283 1284 1285
		return;
	}

	/* Now map the sys_addr to a CSROW */
1286 1287 1288
	err->csrow = sys_addr_to_csrow(err->src_mci, sys_addr);
	if (err->csrow < 0) {
		err->err_code = ERR_CSROW;
1289 1290 1291
		return;
	}

1292
	/* CHIPKILL enabled */
1293
	if (pvt->nbcfg & NBCFG_CHIPKILL) {
1294 1295
		err->channel = get_channel_from_ecc_syndrome(mci, err->syndrome);
		if (err->channel < 0) {
1296 1297 1298 1299 1300
			/*
			 * Syndrome didn't map, so we don't know which of the
			 * 2 DIMMs is in error. So we need to ID 'both' of them
			 * as suspect.
			 */
1301
			amd64_mc_warn(err->src_mci, "unknown syndrome 0x%04x - "
1302
				      "possible error reporting race\n",
1303 1304
				      err->syndrome);
			err->err_code = ERR_CHANNEL;
1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315
			return;
		}
	} else {
		/*
		 * non-chipkill ecc mode
		 *
		 * The k8 documentation is unclear about how to determine the
		 * channel number when using non-chipkill memory.  This method
		 * was obtained from email communication with someone at AMD.
		 * (Wish the email was placed in this comment - norsk)
		 */
1316
		err->channel = ((sys_addr & BIT(3)) != 0);
1317 1318 1319
	}
}

1320
static int ddr2_cs_size(unsigned i, bool dct_width)
1321
{
1322
	unsigned shift = 0;
1323

1324 1325 1326 1327
	if (i <= 2)
		shift = i;
	else if (!(i & 0x1))
		shift = i >> 1;
1328
	else
1329
		shift = (i + 1) >> 1;
1330

1331 1332 1333 1334
	return 128 << (shift + !!dct_width);
}

static int k8_dbam_to_chip_select(struct amd64_pvt *pvt, u8 dct,
1335
				  unsigned cs_mode, int cs_mask_nr)
1336 1337 1338 1339 1340 1341 1342 1343
{
	u32 dclr = dct ? pvt->dclr1 : pvt->dclr0;

	if (pvt->ext_model >= K8_REV_F) {
		WARN_ON(cs_mode > 11);
		return ddr2_cs_size(cs_mode, dclr & WIDTH_128);
	}
	else if (pvt->ext_model >= K8_REV_D) {
1344
		unsigned diff;
1345 1346
		WARN_ON(cs_mode > 10);

1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373
		/*
		 * the below calculation, besides trying to win an obfuscated C
		 * contest, maps cs_mode values to DIMM chip select sizes. The
		 * mappings are:
		 *
		 * cs_mode	CS size (mb)
		 * =======	============
		 * 0		32
		 * 1		64
		 * 2		128
		 * 3		128
		 * 4		256
		 * 5		512
		 * 6		256
		 * 7		512
		 * 8		1024
		 * 9		1024
		 * 10		2048
		 *
		 * Basically, it calculates a value with which to shift the
		 * smallest CS size of 32MB.
		 *
		 * ddr[23]_cs_size have a similar purpose.
		 */
		diff = cs_mode/3 + (unsigned)(cs_mode > 5);

		return 32 << (cs_mode - diff);
1374 1375 1376 1377 1378
	}
	else {
		WARN_ON(cs_mode > 6);
		return 32 << cs_mode;
	}
1379 1380
}

1381 1382 1383 1384 1385 1386 1387 1388
/*
 * Get the number of DCT channels in use.
 *
 * Return:
 *	number of Memory Channels in operation
 * Pass back:
 *	contents of the DCL0_LOW register
 */
1389
static int f1x_early_channel_count(struct amd64_pvt *pvt)
1390
{
1391
	int i, j, channels = 0;
1392

1393
	/* On F10h, if we are in 128 bit mode, then we are using 2 channels */
1394
	if (pvt->fam == 0x10 && (pvt->dclr0 & WIDTH_128))
1395
		return 2;
1396 1397

	/*
1398 1399 1400
	 * Need to check if in unganged mode: In such, there are 2 channels,
	 * but they are not in 128 bit mode and thus the above 'dclr0' status
	 * bit will be OFF.
1401 1402 1403 1404
	 *
	 * Need to check DCT0[0] and DCT1[0] to see if only one of them has
	 * their CSEnable bit on. If so, then SINGLE DIMM case.
	 */
1405
	edac_dbg(0, "Data width is not 128 bits - need more decoding\n");
1406

1407 1408 1409 1410 1411
	/*
	 * Check DRAM Bank Address Mapping values for each DIMM to see if there
	 * is more than just one DIMM present in unganged mode. Need to check
	 * both controllers since DIMMs can be placed in either one.
	 */
1412 1413
	for (i = 0; i < 2; i++) {
		u32 dbam = (i ? pvt->dbam1 : pvt->dbam0);
1414

1415 1416 1417 1418 1419 1420
		for (j = 0; j < 4; j++) {
			if (DBAM_DIMM(j, dbam) > 0) {
				channels++;
				break;
			}
		}
1421 1422
	}

1423 1424 1425
	if (channels > 2)
		channels = 2;

1426
	amd64_info("MCT channel count: %d\n", channels);
1427 1428 1429 1430

	return channels;
}

1431 1432 1433 1434 1435
static int f17_early_channel_count(struct amd64_pvt *pvt)
{
	int i, channels = 0;

	/* SDP Control bit 31 (SdpInit) is clear for unused UMC channels */
1436
	for_each_umc(i)
1437 1438 1439 1440 1441 1442 1443
		channels += !!(pvt->umc[i].sdp_ctrl & UMC_SDP_INIT);

	amd64_info("MCT channel count: %d\n", channels);

	return channels;
}

1444
static int ddr3_cs_size(unsigned i, bool dct_width)
1445
{
1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465
	unsigned shift = 0;
	int cs_size = 0;

	if (i == 0 || i == 3 || i == 4)
		cs_size = -1;
	else if (i <= 2)
		shift = i;
	else if (i == 12)
		shift = 7;
	else if (!(i & 0x1))
		shift = i >> 1;
	else
		shift = (i + 1) >> 1;

	if (cs_size != -1)
		cs_size = (128 * (1 << !!dct_width)) << shift;

	return cs_size;
}

1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500
static int ddr3_lrdimm_cs_size(unsigned i, unsigned rank_multiply)
{
	unsigned shift = 0;
	int cs_size = 0;

	if (i < 4 || i == 6)
		cs_size = -1;
	else if (i == 12)
		shift = 7;
	else if (!(i & 0x1))
		shift = i >> 1;
	else
		shift = (i + 1) >> 1;

	if (cs_size != -1)
		cs_size = rank_multiply * (128 << shift);

	return cs_size;
}

static int ddr4_cs_size(unsigned i)
{
	int cs_size = 0;

	if (i == 0)
		cs_size = -1;
	else if (i == 1)
		cs_size = 1024;
	else
		/* Min cs_size = 1G */
		cs_size = 1024 * (1 << (i >> 1));

	return cs_size;
}

1501
static int f10_dbam_to_chip_select(struct amd64_pvt *pvt, u8 dct,
1502
				   unsigned cs_mode, int cs_mask_nr)
1503 1504 1505 1506
{
	u32 dclr = dct ? pvt->dclr1 : pvt->dclr0;

	WARN_ON(cs_mode > 11);
1507 1508

	if (pvt->dchr0 & DDR3_MODE || pvt->dchr1 & DDR3_MODE)
1509
		return ddr3_cs_size(cs_mode, dclr & WIDTH_128);
1510
	else
1511 1512 1513 1514 1515 1516 1517
		return ddr2_cs_size(cs_mode, dclr & WIDTH_128);
}

/*
 * F15h supports only 64bit DCT interfaces
 */
static int f15_dbam_to_chip_select(struct amd64_pvt *pvt, u8 dct,
1518
				   unsigned cs_mode, int cs_mask_nr)
1519 1520
{
	WARN_ON(cs_mode > 12);
1521

1522
	return ddr3_cs_size(cs_mode, false);
1523 1524
}

1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555
/* F15h M60h supports DDR4 mapping as well.. */
static int f15_m60h_dbam_to_chip_select(struct amd64_pvt *pvt, u8 dct,
					unsigned cs_mode, int cs_mask_nr)
{
	int cs_size;
	u32 dcsm = pvt->csels[dct].csmasks[cs_mask_nr];

	WARN_ON(cs_mode > 12);

	if (pvt->dram_type == MEM_DDR4) {
		if (cs_mode > 9)
			return -1;

		cs_size = ddr4_cs_size(cs_mode);
	} else if (pvt->dram_type == MEM_LRDDR3) {
		unsigned rank_multiply = dcsm & 0xf;

		if (rank_multiply == 3)
			rank_multiply = 4;
		cs_size = ddr3_lrdimm_cs_size(cs_mode, rank_multiply);
	} else {
		/* Minimum cs size is 512mb for F15hM60h*/
		if (cs_mode == 0x1)
			return -1;

		cs_size = ddr3_cs_size(cs_mode, false);
	}

	return cs_size;
}

1556
/*
1557
 * F16h and F15h model 30h have only limited cs_modes.
1558 1559
 */
static int f16_dbam_to_chip_select(struct amd64_pvt *pvt, u8 dct,
1560
				unsigned cs_mode, int cs_mask_nr)
1561 1562 1563 1564 1565 1566 1567 1568 1569 1570
{
	WARN_ON(cs_mode > 12);

	if (cs_mode == 6 || cs_mode == 8 ||
	    cs_mode == 9 || cs_mode == 12)
		return -1;
	else
		return ddr3_cs_size(cs_mode, false);
}

1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587
static int f17_base_addr_to_cs_size(struct amd64_pvt *pvt, u8 umc,
				    unsigned int cs_mode, int csrow_nr)
{
	u32 base_addr = pvt->csels[umc].csbases[csrow_nr];

	/*  Each mask is used for every two base addresses. */
	u32 addr_mask = pvt->csels[umc].csmasks[csrow_nr >> 1];

	/*  Register [31:1] = Address [39:9]. Size is in kBs here. */
	u32 size = ((addr_mask >> 1) - (base_addr >> 1) + 1) >> 1;

	edac_dbg(1, "BaseAddr: 0x%x, AddrMask: 0x%x\n", base_addr, addr_mask);

	/* Return size in MBs. */
	return size >> 10;
}

1588
static void read_dram_ctl_register(struct amd64_pvt *pvt)
1589 1590
{

1591
	if (pvt->fam == 0xf)
1592 1593
		return;

1594
	if (!amd64_read_pci_cfg(pvt->F2, DCT_SEL_LO, &pvt->dct_sel_lo)) {
1595 1596
		edac_dbg(0, "F2x110 (DCTSelLow): 0x%08x, High range addrs at: 0x%x\n",
			 pvt->dct_sel_lo, dct_sel_baseaddr(pvt));
1597

1598 1599
		edac_dbg(0, "  DCTs operate in %s mode\n",
			 (dct_ganging_enabled(pvt) ? "ganged" : "unganged"));
1600 1601

		if (!dct_ganging_enabled(pvt))
1602 1603
			edac_dbg(0, "  Address range split per DCT: %s\n",
				 (dct_high_range_enabled(pvt) ? "yes" : "no"));
1604

1605 1606 1607
		edac_dbg(0, "  data interleave for ECC: %s, DRAM cleared since last warm reset: %s\n",
			 (dct_data_intlv_enabled(pvt) ? "enabled" : "disabled"),
			 (dct_memory_cleared(pvt) ? "yes" : "no"));
1608

1609 1610 1611 1612
		edac_dbg(0, "  channel interleave: %s, "
			 "interleave bits selector: 0x%x\n",
			 (dct_interleave_enabled(pvt) ? "enabled" : "disabled"),
			 dct_sel_interleave_addr(pvt));
1613 1614
	}

1615
	amd64_read_pci_cfg(pvt->F2, DCT_SEL_HI, &pvt->dct_sel_hi);
1616 1617
}

1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634
/*
 * Determine channel (DCT) based on the interleaving mode (see F15h M30h BKDG,
 * 2.10.12 Memory Interleaving Modes).
 */
static u8 f15_m30h_determine_channel(struct amd64_pvt *pvt, u64 sys_addr,
				     u8 intlv_en, int num_dcts_intlv,
				     u32 dct_sel)
{
	u8 channel = 0;
	u8 select;

	if (!(intlv_en))
		return (u8)(dct_sel);

	if (num_dcts_intlv == 2) {
		select = (sys_addr >> 8) & 0x3;
		channel = select ? 0x3 : 0;
1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645
	} else if (num_dcts_intlv == 4) {
		u8 intlv_addr = dct_sel_interleave_addr(pvt);
		switch (intlv_addr) {
		case 0x4:
			channel = (sys_addr >> 8) & 0x3;
			break;
		case 0x5:
			channel = (sys_addr >> 9) & 0x3;
			break;
		}
	}
1646 1647 1648
	return channel;
}

1649
/*
1650
 * Determine channel (DCT) based on the interleaving mode: F10h BKDG, 2.8.9 Memory
1651 1652
 * Interleaving Modes.
 */
1653
static u8 f1x_determine_channel(struct amd64_pvt *pvt, u64 sys_addr,
1654
				bool hi_range_sel, u8 intlv_en)
1655
{
1656
	u8 dct_sel_high = (pvt->dct_sel_lo >> 1) & 1;
1657 1658

	if (dct_ganging_enabled(pvt))
1659
		return 0;
1660

1661 1662
	if (hi_range_sel)
		return dct_sel_high;
1663

1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675
	/*
	 * see F2x110[DctSelIntLvAddr] - channel interleave mode
	 */
	if (dct_interleave_enabled(pvt)) {
		u8 intlv_addr = dct_sel_interleave_addr(pvt);

		/* return DCT select function: 0=DCT0, 1=DCT1 */
		if (!intlv_addr)
			return sys_addr >> 6 & 1;

		if (intlv_addr & 0x2) {
			u8 shift = intlv_addr & 0x1 ? 9 : 6;
1676
			u32 temp = hweight_long((u32) ((sys_addr >> 16) & 0x1F)) & 1;
1677 1678 1679 1680

			return ((sys_addr >> shift) & 1) ^ temp;
		}

1681 1682 1683 1684 1685 1686
		if (intlv_addr & 0x4) {
			u8 shift = intlv_addr & 0x1 ? 9 : 8;

			return (sys_addr >> shift) & 1;
		}

1687 1688 1689 1690 1691
		return (sys_addr >> (12 + hweight8(intlv_en))) & 1;
	}

	if (dct_high_range_enabled(pvt))
		return ~dct_sel_high & 1;
1692 1693 1694 1695

	return 0;
}

1696
/* Convert the sys_addr to the normalized DCT address */
1697
static u64 f1x_get_norm_dct_addr(struct amd64_pvt *pvt, u8 range,
1698 1699
				 u64 sys_addr, bool hi_rng,
				 u32 dct_sel_base_addr)
1700 1701
{
	u64 chan_off;
1702 1703
	u64 dram_base		= get_dram_base(pvt, range);
	u64 hole_off		= f10_dhar_offset(pvt);
1704
	u64 dct_sel_base_off	= (u64)(pvt->dct_sel_hi & 0xFFFFFC00) << 16;
1705

1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719
	if (hi_rng) {
		/*
		 * if
		 * base address of high range is below 4Gb
		 * (bits [47:27] at [31:11])
		 * DRAM address space on this DCT is hoisted above 4Gb	&&
		 * sys_addr > 4Gb
		 *
		 *	remove hole offset from sys_addr
		 * else
		 *	remove high range offset from sys_addr
		 */
		if ((!(dct_sel_base_addr >> 16) ||
		     dct_sel_base_addr < dhar_base(pvt)) &&
1720
		    dhar_valid(pvt) &&
1721
		    (sys_addr >= BIT_64(32)))
1722
			chan_off = hole_off;
1723 1724 1725
		else
			chan_off = dct_sel_base_off;
	} else {
1726 1727 1728 1729 1730 1731 1732 1733 1734
		/*
		 * if
		 * we have a valid hole		&&
		 * sys_addr > 4Gb
		 *
		 *	remove hole
		 * else
		 *	remove dram base to normalize to DCT address
		 */
1735
		if (dhar_valid(pvt) && (sys_addr >= BIT_64(32)))
1736
			chan_off = hole_off;
1737
		else
1738
			chan_off = dram_base;
1739 1740
	}

1741
	return (sys_addr & GENMASK_ULL(47,6)) - (chan_off & GENMASK_ULL(47,23));
1742 1743 1744 1745 1746 1747
}

/*
 * checks if the csrow passed in is marked as SPARED, if so returns the new
 * spare row
 */
1748
static int f10_process_possible_spare(struct amd64_pvt *pvt, u8 dct, int csrow)
1749
{
1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760
	int tmp_cs;

	if (online_spare_swap_done(pvt, dct) &&
	    csrow == online_spare_bad_dramcs(pvt, dct)) {

		for_each_chip_select(tmp_cs, dct, pvt) {
			if (chip_select_base(tmp_cs, dct, pvt) & 0x2) {
				csrow = tmp_cs;
				break;
			}
		}
1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772
	}
	return csrow;
}

/*
 * Iterate over the DRAM DCT "base" and "mask" registers looking for a
 * SystemAddr match on the specified 'ChannelSelect' and 'NodeID'
 *
 * Return:
 *	-EINVAL:  NOT FOUND
 *	0..csrow = Chip-Select Row
 */
1773
static int f1x_lookup_addr_in_dct(u64 in_addr, u8 nid, u8 dct)
1774 1775 1776
{
	struct mem_ctl_info *mci;
	struct amd64_pvt *pvt;
1777
	u64 cs_base, cs_mask;
1778 1779 1780
	int cs_found = -EINVAL;
	int csrow;

1781
	mci = edac_mc_find(nid);
1782 1783 1784 1785 1786
	if (!mci)
		return cs_found;

	pvt = mci->pvt_info;

1787
	edac_dbg(1, "input addr: 0x%llx, DCT: %d\n", in_addr, dct);
1788

1789 1790
	for_each_chip_select(csrow, dct, pvt) {
		if (!csrow_enabled(csrow, dct, pvt))
1791 1792
			continue;

1793
		get_cs_base_and_mask(pvt, csrow, dct, &cs_base, &cs_mask);
1794

1795 1796
		edac_dbg(1, "    CSROW=%d CSBase=0x%llx CSMask=0x%llx\n",
			 csrow, cs_base, cs_mask);
1797

1798
		cs_mask = ~cs_mask;
1799

1800 1801
		edac_dbg(1, "    (InputAddr & ~CSMask)=0x%llx (CSBase & ~CSMask)=0x%llx\n",
			 (in_addr & cs_mask), (cs_base & cs_mask));
1802

1803
		if ((in_addr & cs_mask) == (cs_base & cs_mask)) {
1804 1805 1806 1807
			if (pvt->fam == 0x15 && pvt->model >= 0x30) {
				cs_found =  csrow;
				break;
			}
1808
			cs_found = f10_process_possible_spare(pvt, dct, csrow);
1809

1810
			edac_dbg(1, " MATCH csrow=%d\n", cs_found);
1811 1812 1813 1814 1815 1816
			break;
		}
	}
	return cs_found;
}

1817 1818 1819 1820 1821
/*
 * See F2x10C. Non-interleaved graphics framebuffer memory under the 16G is
 * swapped with a region located at the bottom of memory so that the GPU can use
 * the interleaved region and thus two channels.
 */
1822
static u64 f1x_swap_interleaved_region(struct amd64_pvt *pvt, u64 sys_addr)
1823 1824 1825
{
	u32 swap_reg, swap_base, swap_limit, rgn_size, tmp_addr;

1826
	if (pvt->fam == 0x10) {
1827
		/* only revC3 and revE have that feature */
1828
		if (pvt->model < 4 || (pvt->model < 0xa && pvt->stepping < 3))
1829 1830 1831
			return sys_addr;
	}

1832
	amd64_read_pci_cfg(pvt->F2, SWAP_INTLV_REG, &swap_reg);
1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850

	if (!(swap_reg & 0x1))
		return sys_addr;

	swap_base	= (swap_reg >> 3) & 0x7f;
	swap_limit	= (swap_reg >> 11) & 0x7f;
	rgn_size	= (swap_reg >> 20) & 0x7f;
	tmp_addr	= sys_addr >> 27;

	if (!(sys_addr >> 34) &&
	    (((tmp_addr >= swap_base) &&
	     (tmp_addr <= swap_limit)) ||
	     (tmp_addr < rgn_size)))
		return sys_addr ^ (u64)swap_base << 27;

	return sys_addr;
}

1851
/* For a given @dram_range, check if @sys_addr falls within it. */
1852
static int f1x_match_to_this_node(struct amd64_pvt *pvt, unsigned range,
1853
				  u64 sys_addr, int *chan_sel)
1854
{
1855
	int cs_found = -EINVAL;
1856
	u64 chan_addr;
1857
	u32 dct_sel_base;
1858
	u8 channel;
1859
	bool high_range = false;
1860

1861
	u8 node_id    = dram_dst_node(pvt, range);
1862
	u8 intlv_en   = dram_intlv_en(pvt, range);
1863
	u32 intlv_sel = dram_intlv_sel(pvt, range);
1864

1865 1866
	edac_dbg(1, "(range %d) SystemAddr= 0x%llx Limit=0x%llx\n",
		 range, sys_addr, get_dram_limit(pvt, range));
1867

1868 1869 1870 1871 1872 1873 1874 1875
	if (dhar_valid(pvt) &&
	    dhar_base(pvt) <= sys_addr &&
	    sys_addr < BIT_64(32)) {
		amd64_warn("Huh? Address is in the MMIO hole: 0x%016llx\n",
			    sys_addr);
		return -EINVAL;
	}

1876
	if (intlv_en && (intlv_sel != ((sys_addr >> 12) & intlv_en)))
1877 1878
		return -EINVAL;

1879
	sys_addr = f1x_swap_interleaved_region(pvt, sys_addr);
1880

1881 1882 1883 1884 1885 1886 1887 1888 1889
	dct_sel_base = dct_sel_baseaddr(pvt);

	/*
	 * check whether addresses >= DctSelBaseAddr[47:27] are to be used to
	 * select between DCT0 and DCT1.
	 */
	if (dct_high_range_enabled(pvt) &&
	   !dct_ganging_enabled(pvt) &&
	   ((sys_addr >> 27) >= (dct_sel_base >> 11)))
1890
		high_range = true;
1891

1892
	channel = f1x_determine_channel(pvt, sys_addr, high_range, intlv_en);
1893

1894
	chan_addr = f1x_get_norm_dct_addr(pvt, range, sys_addr,
1895
					  high_range, dct_sel_base);
1896

1897 1898 1899 1900
	/* Remove node interleaving, see F1x120 */
	if (intlv_en)
		chan_addr = ((chan_addr >> (12 + hweight8(intlv_en))) << 12) |
			    (chan_addr & 0xfff);
1901

1902
	/* remove channel interleave */
1903 1904 1905
	if (dct_interleave_enabled(pvt) &&
	   !dct_high_range_enabled(pvt) &&
	   !dct_ganging_enabled(pvt)) {
1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919

		if (dct_sel_interleave_addr(pvt) != 1) {
			if (dct_sel_interleave_addr(pvt) == 0x3)
				/* hash 9 */
				chan_addr = ((chan_addr >> 10) << 9) |
					     (chan_addr & 0x1ff);
			else
				/* A[6] or hash 6 */
				chan_addr = ((chan_addr >> 7) << 6) |
					     (chan_addr & 0x3f);
		} else
			/* A[12] */
			chan_addr = ((chan_addr >> 13) << 12) |
				     (chan_addr & 0xfff);
1920 1921
	}

1922
	edac_dbg(1, "   Normalized DCT addr: 0x%llx\n", chan_addr);
1923

1924
	cs_found = f1x_lookup_addr_in_dct(chan_addr, node_id, channel);
1925

1926
	if (cs_found >= 0)
1927
		*chan_sel = channel;
1928

1929 1930 1931
	return cs_found;
}

1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968
static int f15_m30h_match_to_this_node(struct amd64_pvt *pvt, unsigned range,
					u64 sys_addr, int *chan_sel)
{
	int cs_found = -EINVAL;
	int num_dcts_intlv = 0;
	u64 chan_addr, chan_offset;
	u64 dct_base, dct_limit;
	u32 dct_cont_base_reg, dct_cont_limit_reg, tmp;
	u8 channel, alias_channel, leg_mmio_hole, dct_sel, dct_offset_en;

	u64 dhar_offset		= f10_dhar_offset(pvt);
	u8 intlv_addr		= dct_sel_interleave_addr(pvt);
	u8 node_id		= dram_dst_node(pvt, range);
	u8 intlv_en		= dram_intlv_en(pvt, range);

	amd64_read_pci_cfg(pvt->F1, DRAM_CONT_BASE, &dct_cont_base_reg);
	amd64_read_pci_cfg(pvt->F1, DRAM_CONT_LIMIT, &dct_cont_limit_reg);

	dct_offset_en		= (u8) ((dct_cont_base_reg >> 3) & BIT(0));
	dct_sel			= (u8) ((dct_cont_base_reg >> 4) & 0x7);

	edac_dbg(1, "(range %d) SystemAddr= 0x%llx Limit=0x%llx\n",
		 range, sys_addr, get_dram_limit(pvt, range));

	if (!(get_dram_base(pvt, range)  <= sys_addr) &&
	    !(get_dram_limit(pvt, range) >= sys_addr))
		return -EINVAL;

	if (dhar_valid(pvt) &&
	    dhar_base(pvt) <= sys_addr &&
	    sys_addr < BIT_64(32)) {
		amd64_warn("Huh? Address is in the MMIO hole: 0x%016llx\n",
			    sys_addr);
		return -EINVAL;
	}

	/* Verify sys_addr is within DCT Range. */
1969 1970
	dct_base = (u64) dct_sel_baseaddr(pvt);
	dct_limit = (dct_cont_limit_reg >> 11) & 0x1FFF;
1971 1972

	if (!(dct_cont_base_reg & BIT(0)) &&
1973 1974
	    !(dct_base <= (sys_addr >> 27) &&
	      dct_limit >= (sys_addr >> 27)))
1975 1976 1977 1978 1979 1980 1981 1982
		return -EINVAL;

	/* Verify number of dct's that participate in channel interleaving. */
	num_dcts_intlv = (int) hweight8(intlv_en);

	if (!(num_dcts_intlv % 2 == 0) || (num_dcts_intlv > 4))
		return -EINVAL;

1983 1984 1985 1986 1987
	if (pvt->model >= 0x60)
		channel = f1x_determine_channel(pvt, sys_addr, false, intlv_en);
	else
		channel = f15_m30h_determine_channel(pvt, sys_addr, intlv_en,
						     num_dcts_intlv, dct_sel);
1988 1989

	/* Verify we stay within the MAX number of channels allowed */
1990
	if (channel > 3)
1991 1992 1993 1994 1995 1996 1997 1998
		return -EINVAL;

	leg_mmio_hole = (u8) (dct_cont_base_reg >> 1 & BIT(0));

	/* Get normalized DCT addr */
	if (leg_mmio_hole && (sys_addr >= BIT_64(32)))
		chan_offset = dhar_offset;
	else
1999
		chan_offset = dct_base << 27;
2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028

	chan_addr = sys_addr - chan_offset;

	/* remove channel interleave */
	if (num_dcts_intlv == 2) {
		if (intlv_addr == 0x4)
			chan_addr = ((chan_addr >> 9) << 8) |
						(chan_addr & 0xff);
		else if (intlv_addr == 0x5)
			chan_addr = ((chan_addr >> 10) << 9) |
						(chan_addr & 0x1ff);
		else
			return -EINVAL;

	} else if (num_dcts_intlv == 4) {
		if (intlv_addr == 0x4)
			chan_addr = ((chan_addr >> 10) << 8) |
							(chan_addr & 0xff);
		else if (intlv_addr == 0x5)
			chan_addr = ((chan_addr >> 11) << 9) |
							(chan_addr & 0x1ff);
		else
			return -EINVAL;
	}

	if (dct_offset_en) {
		amd64_read_pci_cfg(pvt->F1,
				   DRAM_CONT_HIGH_OFF + (int) channel * 4,
				   &tmp);
2029
		chan_addr +=  (u64) ((tmp >> 11) & 0xfff) << 27;
2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056
	}

	f15h_select_dct(pvt, channel);

	edac_dbg(1, "   Normalized DCT addr: 0x%llx\n", chan_addr);

	/*
	 * Find Chip select:
	 * if channel = 3, then alias it to 1. This is because, in F15 M30h,
	 * there is support for 4 DCT's, but only 2 are currently functional.
	 * They are DCT0 and DCT3. But we have read all registers of DCT3 into
	 * pvt->csels[1]. So we need to use '1' here to get correct info.
	 * Refer F15 M30h BKDG Section 2.10 and 2.10.3 for clarifications.
	 */
	alias_channel =  (channel == 3) ? 1 : channel;

	cs_found = f1x_lookup_addr_in_dct(chan_addr, node_id, alias_channel);

	if (cs_found >= 0)
		*chan_sel = alias_channel;

	return cs_found;
}

static int f1x_translate_sysaddr_to_cs(struct amd64_pvt *pvt,
					u64 sys_addr,
					int *chan_sel)
2057
{
2058 2059
	int cs_found = -EINVAL;
	unsigned range;
2060

2061 2062
	for (range = 0; range < DRAM_RANGES; range++) {
		if (!dram_rw(pvt, range))
2063 2064
			continue;

2065 2066 2067 2068
		if (pvt->fam == 0x15 && pvt->model >= 0x30)
			cs_found = f15_m30h_match_to_this_node(pvt, range,
							       sys_addr,
							       chan_sel);
2069

2070 2071
		else if ((get_dram_base(pvt, range)  <= sys_addr) &&
			 (get_dram_limit(pvt, range) >= sys_addr)) {
2072
			cs_found = f1x_match_to_this_node(pvt, range,
2073
							  sys_addr, chan_sel);
2074 2075 2076 2077 2078 2079 2080 2081
			if (cs_found >= 0)
				break;
		}
	}
	return cs_found;
}

/*
2082 2083
 * For reference see "2.8.5 Routing DRAM Requests" in F10 BKDG. This code maps
 * a @sys_addr to NodeID, DCT (channel) and chip select (CSROW).
2084
 *
2085 2086
 * The @sys_addr is usually an error address received from the hardware
 * (MCX_ADDR).
2087
 */
2088
static void f1x_map_sysaddr_to_csrow(struct mem_ctl_info *mci, u64 sys_addr,
2089
				     struct err_info *err)
2090 2091 2092
{
	struct amd64_pvt *pvt = mci->pvt_info;

2093
	error_address_to_page_and_offset(sys_addr, err);
2094

2095 2096 2097
	err->csrow = f1x_translate_sysaddr_to_cs(pvt, sys_addr, &err->channel);
	if (err->csrow < 0) {
		err->err_code = ERR_CSROW;
2098 2099 2100 2101 2102 2103 2104 2105
		return;
	}

	/*
	 * We need the syndromes for channel detection only when we're
	 * ganged. Otherwise @chan should already contain the channel at
	 * this point.
	 */
2106
	if (dct_ganging_enabled(pvt))
2107
		err->channel = get_channel_from_ecc_syndrome(mci, err->syndrome);
2108 2109 2110
}

/*
2111
 * debug routine to display the memory sizes of all logical DIMMs and its
2112
 * CSROWs
2113
 */
2114
static void debug_display_dimm_sizes(struct amd64_pvt *pvt, u8 ctrl)
2115
{
2116
	int dimm, size0, size1;
2117 2118
	u32 *dcsb = ctrl ? pvt->csels[1].csbases : pvt->csels[0].csbases;
	u32 dbam  = ctrl ? pvt->dbam1 : pvt->dbam0;
2119

2120
	if (pvt->fam == 0xf) {
2121
		/* K8 families < revF not supported yet */
2122
	       if (pvt->ext_model < K8_REV_F)
2123 2124 2125 2126 2127
			return;
	       else
		       WARN_ON(ctrl != 0);
	}

2128 2129 2130 2131 2132 2133 2134 2135 2136 2137
	if (pvt->fam == 0x10) {
		dbam = (ctrl && !dct_ganging_enabled(pvt)) ? pvt->dbam1
							   : pvt->dbam0;
		dcsb = (ctrl && !dct_ganging_enabled(pvt)) ?
				 pvt->csels[1].csbases :
				 pvt->csels[0].csbases;
	} else if (ctrl) {
		dbam = pvt->dbam0;
		dcsb = pvt->csels[1].csbases;
	}
2138 2139
	edac_dbg(1, "F2x%d80 (DRAM Bank Address Mapping): 0x%08x\n",
		 ctrl, dbam);
2140

2141 2142
	edac_printk(KERN_DEBUG, EDAC_MC, "DCT%d chip selects:\n", ctrl);

2143 2144 2145 2146
	/* Dump memory sizes for DIMM and its CSROWs */
	for (dimm = 0; dimm < 4; dimm++) {

		size0 = 0;
2147
		if (dcsb[dimm*2] & DCSB_CS_ENABLE)
2148 2149 2150
			/*
			 * For F15m60h, we need multiplier for LRDIMM cs_size
			 * calculation. We pass dimm value to the dbam_to_cs
2151 2152 2153
			 * mapper so we can find the multiplier from the
			 * corresponding DCSM.
			 */
2154
			size0 = pvt->ops->dbam_to_cs(pvt, ctrl,
2155 2156
						     DBAM_DIMM(dimm, dbam),
						     dimm);
2157 2158

		size1 = 0;
2159
		if (dcsb[dimm*2 + 1] & DCSB_CS_ENABLE)
2160
			size1 = pvt->ops->dbam_to_cs(pvt, ctrl,
2161 2162
						     DBAM_DIMM(dimm, dbam),
						     dimm);
2163

2164
		amd64_info(EDAC_MC ": %d: %5dMB %d: %5dMB\n",
2165 2166
				dimm * 2,     size0,
				dimm * 2 + 1, size1);
2167 2168 2169
	}
}

2170
static struct amd64_family_type family_types[] = {
2171
	[K8_CPUS] = {
2172
		.ctl_name = "K8",
2173
		.f1_id = PCI_DEVICE_ID_AMD_K8_NB_ADDRMAP,
2174
		.f2_id = PCI_DEVICE_ID_AMD_K8_NB_MEMCTL,
2175
		.ops = {
2176 2177 2178
			.early_channel_count	= k8_early_channel_count,
			.map_sysaddr_to_csrow	= k8_map_sysaddr_to_csrow,
			.dbam_to_cs		= k8_dbam_to_chip_select,
2179 2180 2181
		}
	},
	[F10_CPUS] = {
2182
		.ctl_name = "F10h",
2183
		.f1_id = PCI_DEVICE_ID_AMD_10H_NB_MAP,
2184
		.f2_id = PCI_DEVICE_ID_AMD_10H_NB_DRAM,
2185
		.ops = {
2186
			.early_channel_count	= f1x_early_channel_count,
2187
			.map_sysaddr_to_csrow	= f1x_map_sysaddr_to_csrow,
2188
			.dbam_to_cs		= f10_dbam_to_chip_select,
2189 2190 2191 2192
		}
	},
	[F15_CPUS] = {
		.ctl_name = "F15h",
2193
		.f1_id = PCI_DEVICE_ID_AMD_15H_NB_F1,
2194
		.f2_id = PCI_DEVICE_ID_AMD_15H_NB_F2,
2195
		.ops = {
2196
			.early_channel_count	= f1x_early_channel_count,
2197
			.map_sysaddr_to_csrow	= f1x_map_sysaddr_to_csrow,
2198
			.dbam_to_cs		= f15_dbam_to_chip_select,
2199 2200
		}
	},
2201 2202 2203
	[F15_M30H_CPUS] = {
		.ctl_name = "F15h_M30h",
		.f1_id = PCI_DEVICE_ID_AMD_15H_M30H_NB_F1,
2204
		.f2_id = PCI_DEVICE_ID_AMD_15H_M30H_NB_F2,
2205 2206 2207 2208 2209 2210
		.ops = {
			.early_channel_count	= f1x_early_channel_count,
			.map_sysaddr_to_csrow	= f1x_map_sysaddr_to_csrow,
			.dbam_to_cs		= f16_dbam_to_chip_select,
		}
	},
2211 2212 2213
	[F15_M60H_CPUS] = {
		.ctl_name = "F15h_M60h",
		.f1_id = PCI_DEVICE_ID_AMD_15H_M60H_NB_F1,
2214
		.f2_id = PCI_DEVICE_ID_AMD_15H_M60H_NB_F2,
2215 2216 2217 2218 2219 2220
		.ops = {
			.early_channel_count	= f1x_early_channel_count,
			.map_sysaddr_to_csrow	= f1x_map_sysaddr_to_csrow,
			.dbam_to_cs		= f15_m60h_dbam_to_chip_select,
		}
	},
2221 2222 2223
	[F16_CPUS] = {
		.ctl_name = "F16h",
		.f1_id = PCI_DEVICE_ID_AMD_16H_NB_F1,
2224
		.f2_id = PCI_DEVICE_ID_AMD_16H_NB_F2,
2225 2226 2227 2228 2229 2230
		.ops = {
			.early_channel_count	= f1x_early_channel_count,
			.map_sysaddr_to_csrow	= f1x_map_sysaddr_to_csrow,
			.dbam_to_cs		= f16_dbam_to_chip_select,
		}
	},
2231 2232 2233
	[F16_M30H_CPUS] = {
		.ctl_name = "F16h_M30h",
		.f1_id = PCI_DEVICE_ID_AMD_16H_M30H_NB_F1,
2234
		.f2_id = PCI_DEVICE_ID_AMD_16H_M30H_NB_F2,
2235 2236 2237 2238 2239 2240
		.ops = {
			.early_channel_count	= f1x_early_channel_count,
			.map_sysaddr_to_csrow	= f1x_map_sysaddr_to_csrow,
			.dbam_to_cs		= f16_dbam_to_chip_select,
		}
	},
2241 2242 2243 2244 2245 2246 2247 2248 2249
	[F17_CPUS] = {
		.ctl_name = "F17h",
		.f0_id = PCI_DEVICE_ID_AMD_17H_DF_F0,
		.f6_id = PCI_DEVICE_ID_AMD_17H_DF_F6,
		.ops = {
			.early_channel_count	= f17_early_channel_count,
			.dbam_to_cs		= f17_base_addr_to_cs_size,
		}
	},
2250 2251 2252 2253 2254 2255 2256 2257 2258
	[F17_M10H_CPUS] = {
		.ctl_name = "F17h_M10h",
		.f0_id = PCI_DEVICE_ID_AMD_17H_M10H_DF_F0,
		.f6_id = PCI_DEVICE_ID_AMD_17H_M10H_DF_F6,
		.ops = {
			.early_channel_count	= f17_early_channel_count,
			.dbam_to_cs		= f17_base_addr_to_cs_size,
		}
	},
2259 2260 2261 2262 2263 2264 2265 2266 2267
	[F17_M30H_CPUS] = {
		.ctl_name = "F17h_M30h",
		.f0_id = PCI_DEVICE_ID_AMD_17H_M30H_DF_F0,
		.f6_id = PCI_DEVICE_ID_AMD_17H_M30H_DF_F6,
		.ops = {
			.early_channel_count	= f17_early_channel_count,
			.dbam_to_cs		= f17_base_addr_to_cs_size,
		}
	},
2268 2269
};

2270
/*
2271 2272 2273
 * These are tables of eigenvectors (one per line) which can be used for the
 * construction of the syndrome tables. The modified syndrome search algorithm
 * uses those to find the symbol in error and thus the DIMM.
2274
 *
2275
 * Algorithm courtesy of Ross LaFetra from AMD.
2276
 */
2277
static const u16 x4_vectors[] = {
2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313
	0x2f57, 0x1afe, 0x66cc, 0xdd88,
	0x11eb, 0x3396, 0x7f4c, 0xeac8,
	0x0001, 0x0002, 0x0004, 0x0008,
	0x1013, 0x3032, 0x4044, 0x8088,
	0x106b, 0x30d6, 0x70fc, 0xe0a8,
	0x4857, 0xc4fe, 0x13cc, 0x3288,
	0x1ac5, 0x2f4a, 0x5394, 0xa1e8,
	0x1f39, 0x251e, 0xbd6c, 0x6bd8,
	0x15c1, 0x2a42, 0x89ac, 0x4758,
	0x2b03, 0x1602, 0x4f0c, 0xca08,
	0x1f07, 0x3a0e, 0x6b04, 0xbd08,
	0x8ba7, 0x465e, 0x244c, 0x1cc8,
	0x2b87, 0x164e, 0x642c, 0xdc18,
	0x40b9, 0x80de, 0x1094, 0x20e8,
	0x27db, 0x1eb6, 0x9dac, 0x7b58,
	0x11c1, 0x2242, 0x84ac, 0x4c58,
	0x1be5, 0x2d7a, 0x5e34, 0xa718,
	0x4b39, 0x8d1e, 0x14b4, 0x28d8,
	0x4c97, 0xc87e, 0x11fc, 0x33a8,
	0x8e97, 0x497e, 0x2ffc, 0x1aa8,
	0x16b3, 0x3d62, 0x4f34, 0x8518,
	0x1e2f, 0x391a, 0x5cac, 0xf858,
	0x1d9f, 0x3b7a, 0x572c, 0xfe18,
	0x15f5, 0x2a5a, 0x5264, 0xa3b8,
	0x1dbb, 0x3b66, 0x715c, 0xe3f8,
	0x4397, 0xc27e, 0x17fc, 0x3ea8,
	0x1617, 0x3d3e, 0x6464, 0xb8b8,
	0x23ff, 0x12aa, 0xab6c, 0x56d8,
	0x2dfb, 0x1ba6, 0x913c, 0x7328,
	0x185d, 0x2ca6, 0x7914, 0x9e28,
	0x171b, 0x3e36, 0x7d7c, 0xebe8,
	0x4199, 0x82ee, 0x19f4, 0x2e58,
	0x4807, 0xc40e, 0x130c, 0x3208,
	0x1905, 0x2e0a, 0x5804, 0xac08,
	0x213f, 0x132a, 0xadfc, 0x5ba8,
	0x19a9, 0x2efe, 0xb5cc, 0x6f88,
2314 2315
};

2316
static const u16 x8_vectors[] = {
2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337
	0x0145, 0x028a, 0x2374, 0x43c8, 0xa1f0, 0x0520, 0x0a40, 0x1480,
	0x0211, 0x0422, 0x0844, 0x1088, 0x01b0, 0x44e0, 0x23c0, 0xed80,
	0x1011, 0x0116, 0x022c, 0x0458, 0x08b0, 0x8c60, 0x2740, 0x4e80,
	0x0411, 0x0822, 0x1044, 0x0158, 0x02b0, 0x2360, 0x46c0, 0xab80,
	0x0811, 0x1022, 0x012c, 0x0258, 0x04b0, 0x4660, 0x8cc0, 0x2780,
	0x2071, 0x40e2, 0xa0c4, 0x0108, 0x0210, 0x0420, 0x0840, 0x1080,
	0x4071, 0x80e2, 0x0104, 0x0208, 0x0410, 0x0820, 0x1040, 0x2080,
	0x8071, 0x0102, 0x0204, 0x0408, 0x0810, 0x1020, 0x2040, 0x4080,
	0x019d, 0x03d6, 0x136c, 0x2198, 0x50b0, 0xb2e0, 0x0740, 0x0e80,
	0x0189, 0x03ea, 0x072c, 0x0e58, 0x1cb0, 0x56e0, 0x37c0, 0xf580,
	0x01fd, 0x0376, 0x06ec, 0x0bb8, 0x1110, 0x2220, 0x4440, 0x8880,
	0x0163, 0x02c6, 0x1104, 0x0758, 0x0eb0, 0x2be0, 0x6140, 0xc280,
	0x02fd, 0x01c6, 0x0b5c, 0x1108, 0x07b0, 0x25a0, 0x8840, 0x6180,
	0x0801, 0x012e, 0x025c, 0x04b8, 0x1370, 0x26e0, 0x57c0, 0xb580,
	0x0401, 0x0802, 0x015c, 0x02b8, 0x22b0, 0x13e0, 0x7140, 0xe280,
	0x0201, 0x0402, 0x0804, 0x01b8, 0x11b0, 0x31a0, 0x8040, 0x7180,
	0x0101, 0x0202, 0x0404, 0x0808, 0x1010, 0x2020, 0x4040, 0x8080,
	0x0001, 0x0002, 0x0004, 0x0008, 0x0010, 0x0020, 0x0040, 0x0080,
	0x0100, 0x0200, 0x0400, 0x0800, 0x1000, 0x2000, 0x4000, 0x8000,
};

2338
static int decode_syndrome(u16 syndrome, const u16 *vectors, unsigned num_vecs,
2339
			   unsigned v_dim)
2340
{
2341 2342 2343 2344
	unsigned int i, err_sym;

	for (err_sym = 0; err_sym < num_vecs / v_dim; err_sym++) {
		u16 s = syndrome;
2345 2346
		unsigned v_idx =  err_sym * v_dim;
		unsigned v_end = (err_sym + 1) * v_dim;
2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358

		/* walk over all 16 bits of the syndrome */
		for (i = 1; i < (1U << 16); i <<= 1) {

			/* if bit is set in that eigenvector... */
			if (v_idx < v_end && vectors[v_idx] & i) {
				u16 ev_comp = vectors[v_idx++];

				/* ... and bit set in the modified syndrome, */
				if (s & i) {
					/* remove it. */
					s ^= ev_comp;
2359

2360 2361 2362
					if (!s)
						return err_sym;
				}
2363

2364 2365 2366 2367
			} else if (s & i)
				/* can't get to zero, move to next symbol */
				break;
		}
2368 2369
	}

2370
	edac_dbg(0, "syndrome(%x) not found\n", syndrome);
2371 2372
	return -1;
}
2373

2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415
static int map_err_sym_to_channel(int err_sym, int sym_size)
{
	if (sym_size == 4)
		switch (err_sym) {
		case 0x20:
		case 0x21:
			return 0;
			break;
		case 0x22:
		case 0x23:
			return 1;
			break;
		default:
			return err_sym >> 4;
			break;
		}
	/* x8 symbols */
	else
		switch (err_sym) {
		/* imaginary bits not in a DIMM */
		case 0x10:
			WARN(1, KERN_ERR "Invalid error symbol: 0x%x\n",
					  err_sym);
			return -1;
			break;

		case 0x11:
			return 0;
			break;
		case 0x12:
			return 1;
			break;
		default:
			return err_sym >> 3;
			break;
		}
	return -1;
}

static int get_channel_from_ecc_syndrome(struct mem_ctl_info *mci, u16 syndrome)
{
	struct amd64_pvt *pvt = mci->pvt_info;
2416 2417
	int err_sym = -1;

2418
	if (pvt->ecc_sym_sz == 8)
2419 2420
		err_sym = decode_syndrome(syndrome, x8_vectors,
					  ARRAY_SIZE(x8_vectors),
2421 2422
					  pvt->ecc_sym_sz);
	else if (pvt->ecc_sym_sz == 4)
2423 2424
		err_sym = decode_syndrome(syndrome, x4_vectors,
					  ARRAY_SIZE(x4_vectors),
2425
					  pvt->ecc_sym_sz);
2426
	else {
2427
		amd64_warn("Illegal syndrome type: %u\n", pvt->ecc_sym_sz);
2428
		return err_sym;
2429
	}
2430

2431
	return map_err_sym_to_channel(err_sym, pvt->ecc_sym_sz);
2432 2433
}

2434
static void __log_ecc_error(struct mem_ctl_info *mci, struct err_info *err,
2435
			    u8 ecc_type)
2436
{
2437 2438
	enum hw_event_mc_err_type err_type;
	const char *string;
2439

2440 2441 2442 2443
	if (ecc_type == 2)
		err_type = HW_EVENT_ERR_CORRECTED;
	else if (ecc_type == 1)
		err_type = HW_EVENT_ERR_UNCORRECTED;
2444 2445
	else if (ecc_type == 3)
		err_type = HW_EVENT_ERR_DEFERRED;
2446 2447
	else {
		WARN(1, "Something is rotten in the state of Denmark.\n");
2448 2449 2450
		return;
	}

2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461
	switch (err->err_code) {
	case DECODE_OK:
		string = "";
		break;
	case ERR_NODE:
		string = "Failed to map error addr to a node";
		break;
	case ERR_CSROW:
		string = "Failed to map error addr to a csrow";
		break;
	case ERR_CHANNEL:
2462 2463 2464 2465 2466 2467 2468
		string = "Unknown syndrome - possible error reporting race";
		break;
	case ERR_SYND:
		string = "MCA_SYND not valid - unknown syndrome and csrow";
		break;
	case ERR_NORM_ADDR:
		string = "Cannot decode normalized address";
2469 2470 2471 2472
		break;
	default:
		string = "WTF error";
		break;
2473
	}
2474 2475 2476 2477 2478

	edac_mc_handle_error(err_type, mci, 1,
			     err->page, err->offset, err->syndrome,
			     err->csrow, err->channel, -1,
			     string, "");
2479 2480
}

2481
static inline void decode_bus_error(int node_id, struct mce *m)
2482
{
2483 2484
	struct mem_ctl_info *mci;
	struct amd64_pvt *pvt;
2485
	u8 ecc_type = (m->status >> 45) & 0x3;
2486 2487
	u8 xec = XEC(m->status, 0x1f);
	u16 ec = EC(m->status);
2488 2489
	u64 sys_addr;
	struct err_info err;
2490

2491 2492 2493 2494 2495 2496
	mci = edac_mc_find(node_id);
	if (!mci)
		return;

	pvt = mci->pvt_info;

2497
	/* Bail out early if this was an 'observed' error */
2498
	if (PP(ec) == NBSL_PP_OBS)
2499
		return;
2500

2501 2502
	/* Do only ECC errors */
	if (xec && xec != F10_NBSL_EXT_ERR_ECC)
2503 2504
		return;

2505 2506
	memset(&err, 0, sizeof(err));

2507
	sys_addr = get_error_address(pvt, m);
2508

2509
	if (ecc_type == 2)
2510 2511 2512 2513
		err.syndrome = extract_syndrome(m->status);

	pvt->ops->map_sysaddr_to_csrow(mci, sys_addr, &err);

2514
	__log_ecc_error(mci, &err, ecc_type);
2515 2516
}

2517 2518 2519 2520
/*
 * To find the UMC channel represented by this bank we need to match on its
 * instance_id. The instance_id of a bank is held in the lower 32 bits of its
 * IPID.
2521 2522 2523 2524
 *
 * Currently, we can derive the channel number by looking at the 6th nibble in
 * the instance_id. For example, instance_id=0xYXXXXX where Y is the channel
 * number.
2525
 */
2526
static int find_umc_channel(struct mce *m)
2527
{
2528
	return (m->ipid & GENMASK(31, 0)) >> 20;
2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549
}

static void decode_umc_error(int node_id, struct mce *m)
{
	u8 ecc_type = (m->status >> 45) & 0x3;
	struct mem_ctl_info *mci;
	struct amd64_pvt *pvt;
	struct err_info err;
	u64 sys_addr;

	mci = edac_mc_find(node_id);
	if (!mci)
		return;

	pvt = mci->pvt_info;

	memset(&err, 0, sizeof(err));

	if (m->status & MCI_STATUS_DEFERRED)
		ecc_type = 3;

2550
	err.channel = find_umc_channel(m);
2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567

	if (!(m->status & MCI_STATUS_SYNDV)) {
		err.err_code = ERR_SYND;
		goto log_error;
	}

	if (ecc_type == 2) {
		u8 length = (m->synd >> 18) & 0x3f;

		if (length)
			err.syndrome = (m->synd >> 32) & GENMASK(length - 1, 0);
		else
			err.err_code = ERR_CHANNEL;
	}

	err.csrow = m->synd & 0x7;

2568 2569 2570 2571 2572 2573 2574
	if (umc_normaddr_to_sysaddr(m->addr, pvt->mc_node_id, err.channel, &sys_addr)) {
		err.err_code = ERR_NORM_ADDR;
		goto log_error;
	}

	error_address_to_page_and_offset(sys_addr, &err);

2575 2576 2577 2578
log_error:
	__log_ecc_error(mci, &err, ecc_type);
}

2579
/*
2580 2581
 * Use pvt->F3 which contains the F3 CPU PCI device to get the related
 * F1 (AddrMap) and F2 (Dct) devices. Return negative value on error.
2582
 * Reserve F0 and F6 on systems with a UMC.
2583
 */
2584 2585 2586 2587 2588 2589
static int
reserve_mc_sibling_devs(struct amd64_pvt *pvt, u16 pci_id1, u16 pci_id2)
{
	if (pvt->umc) {
		pvt->F0 = pci_get_related_function(pvt->F3->vendor, pci_id1, pvt->F3);
		if (!pvt->F0) {
2590
			amd64_err("F0 not found, device 0x%x (broken BIOS?)\n", pci_id1);
2591 2592 2593 2594 2595 2596 2597 2598
			return -ENODEV;
		}

		pvt->F6 = pci_get_related_function(pvt->F3->vendor, pci_id2, pvt->F3);
		if (!pvt->F6) {
			pci_dev_put(pvt->F0);
			pvt->F0 = NULL;

2599
			amd64_err("F6 not found: device 0x%x (broken BIOS?)\n", pci_id2);
2600 2601
			return -ENODEV;
		}
2602

2603 2604 2605 2606 2607 2608 2609
		edac_dbg(1, "F0: %s\n", pci_name(pvt->F0));
		edac_dbg(1, "F3: %s\n", pci_name(pvt->F3));
		edac_dbg(1, "F6: %s\n", pci_name(pvt->F6));

		return 0;
	}

2610
	/* Reserve the ADDRESS MAP Device */
2611
	pvt->F1 = pci_get_related_function(pvt->F3->vendor, pci_id1, pvt->F3);
2612
	if (!pvt->F1) {
2613
		amd64_err("F1 not found: device 0x%x (broken BIOS?)\n", pci_id1);
2614
		return -ENODEV;
2615 2616
	}

2617
	/* Reserve the DCT Device */
2618
	pvt->F2 = pci_get_related_function(pvt->F3->vendor, pci_id2, pvt->F3);
2619
	if (!pvt->F2) {
2620 2621
		pci_dev_put(pvt->F1);
		pvt->F1 = NULL;
2622

2623 2624
		amd64_err("F2 not found: device 0x%x (broken BIOS?)\n", pci_id2);
		return -ENODEV;
2625
	}
2626

2627 2628 2629
	edac_dbg(1, "F1: %s\n", pci_name(pvt->F1));
	edac_dbg(1, "F2: %s\n", pci_name(pvt->F2));
	edac_dbg(1, "F3: %s\n", pci_name(pvt->F3));
2630 2631 2632 2633

	return 0;
}

2634
static void free_mc_sibling_devs(struct amd64_pvt *pvt)
2635
{
2636 2637 2638 2639 2640 2641 2642
	if (pvt->umc) {
		pci_dev_put(pvt->F0);
		pci_dev_put(pvt->F6);
	} else {
		pci_dev_put(pvt->F1);
		pci_dev_put(pvt->F2);
	}
2643 2644
}

2645 2646 2647 2648 2649 2650 2651
static void determine_ecc_sym_sz(struct amd64_pvt *pvt)
{
	pvt->ecc_sym_sz = 4;

	if (pvt->umc) {
		u8 i;

2652
		for_each_umc(i) {
2653
			/* Check enabled channels only: */
2654 2655 2656 2657 2658 2659 2660 2661
			if (pvt->umc[i].sdp_ctrl & UMC_SDP_INIT) {
				if (pvt->umc[i].ecc_ctrl & BIT(9)) {
					pvt->ecc_sym_sz = 16;
					return;
				} else if (pvt->umc[i].ecc_ctrl & BIT(7)) {
					pvt->ecc_sym_sz = 8;
					return;
				}
2662 2663
			}
		}
2664
	} else if (pvt->fam >= 0x10) {
2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687
		u32 tmp;

		amd64_read_pci_cfg(pvt->F3, EXT_NB_MCA_CFG, &tmp);
		/* F16h has only DCT0, so no need to read dbam1. */
		if (pvt->fam != 0x16)
			amd64_read_dct_pci_cfg(pvt, 1, DBAM0, &pvt->dbam1);

		/* F10h, revD and later can do x8 ECC too. */
		if ((pvt->fam > 0x10 || pvt->model > 7) && tmp & BIT(25))
			pvt->ecc_sym_sz = 8;
	}
}

/*
 * Retrieve the hardware registers of the memory controller.
 */
static void __read_mc_regs_df(struct amd64_pvt *pvt)
{
	u8 nid = pvt->mc_node_id;
	struct amd64_umc *umc;
	u32 i, umc_base;

	/* Read registers from each UMC */
2688
	for_each_umc(i) {
2689 2690 2691 2692

		umc_base = get_umc_base(i);
		umc = &pvt->umc[i];

2693 2694
		amd_smn_read(nid, umc_base + UMCCH_DIMM_CFG, &umc->dimm_cfg);
		amd_smn_read(nid, umc_base + UMCCH_UMC_CFG, &umc->umc_cfg);
2695 2696
		amd_smn_read(nid, umc_base + UMCCH_SDP_CTRL, &umc->sdp_ctrl);
		amd_smn_read(nid, umc_base + UMCCH_ECC_CTRL, &umc->ecc_ctrl);
2697
		amd_smn_read(nid, umc_base + UMCCH_UMC_CAP_HI, &umc->umc_cap_hi);
2698 2699 2700
	}
}

2701 2702 2703 2704
/*
 * Retrieve the hardware registers of the memory controller (this includes the
 * 'Address Map' and 'Misc' device regs)
 */
2705
static void read_mc_regs(struct amd64_pvt *pvt)
2706
{
2707
	unsigned int range;
2708 2709 2710 2711
	u64 msr_val;

	/*
	 * Retrieve TOP_MEM and TOP_MEM2; no masking off of reserved bits since
2712
	 * those are Read-As-Zero.
2713
	 */
2714
	rdmsrl(MSR_K8_TOP_MEM1, pvt->top_mem);
2715
	edac_dbg(0, "  TOP_MEM:  0x%016llx\n", pvt->top_mem);
2716

2717
	/* Check first whether TOP_MEM2 is enabled: */
2718
	rdmsrl(MSR_K8_SYSCFG, msr_val);
2719
	if (msr_val & BIT(21)) {
2720
		rdmsrl(MSR_K8_TOP_MEM2, pvt->top_mem2);
2721
		edac_dbg(0, "  TOP_MEM2: 0x%016llx\n", pvt->top_mem2);
2722
	} else {
2723
		edac_dbg(0, "  TOP_MEM2 disabled\n");
2724 2725 2726 2727 2728 2729 2730 2731
	}

	if (pvt->umc) {
		__read_mc_regs_df(pvt);
		amd64_read_pci_cfg(pvt->F0, DF_DHAR, &pvt->dhar);

		goto skip;
	}
2732

2733
	amd64_read_pci_cfg(pvt->F3, NBCAP, &pvt->nbcap);
2734

2735
	read_dram_ctl_register(pvt);
2736

2737 2738
	for (range = 0; range < DRAM_RANGES; range++) {
		u8 rw;
2739

2740 2741 2742 2743 2744 2745 2746
		/* read settings for this DRAM range */
		read_dram_base_limit_regs(pvt, range);

		rw = dram_rw(pvt, range);
		if (!rw)
			continue;

2747 2748 2749 2750
		edac_dbg(1, "  DRAM range[%d], base: 0x%016llx; limit: 0x%016llx\n",
			 range,
			 get_dram_base(pvt, range),
			 get_dram_limit(pvt, range));
2751

2752 2753 2754 2755 2756 2757
		edac_dbg(1, "   IntlvEn=%s; Range access: %s%s IntlvSel=%d DstNode=%d\n",
			 dram_intlv_en(pvt, range) ? "Enabled" : "Disabled",
			 (rw & 0x1) ? "R" : "-",
			 (rw & 0x2) ? "W" : "-",
			 dram_intlv_sel(pvt, range),
			 dram_dst_node(pvt, range));
2758 2759
	}

2760
	amd64_read_pci_cfg(pvt->F1, DHAR, &pvt->dhar);
2761
	amd64_read_dct_pci_cfg(pvt, 0, DBAM0, &pvt->dbam0);
2762

2763
	amd64_read_pci_cfg(pvt->F3, F10_ONLINE_SPARE, &pvt->online_spare);
2764

2765 2766
	amd64_read_dct_pci_cfg(pvt, 0, DCLR0, &pvt->dclr0);
	amd64_read_dct_pci_cfg(pvt, 0, DCHR0, &pvt->dchr0);
2767

2768
	if (!dct_ganging_enabled(pvt)) {
2769 2770
		amd64_read_dct_pci_cfg(pvt, 1, DCLR0, &pvt->dclr1);
		amd64_read_dct_pci_cfg(pvt, 1, DCHR0, &pvt->dchr1);
2771
	}
2772

2773 2774 2775
skip:
	read_dct_base_mask(pvt);

2776 2777
	determine_memory_type(pvt);
	edac_dbg(1, "  DIMM type: %s\n", edac_mem_types[pvt->dram_type]);
2778

2779
	determine_ecc_sym_sz(pvt);
2780

2781
	dump_misc_regs(pvt);
2782 2783 2784 2785 2786 2787
}

/*
 * NOTE: CPU Revision Dependent code
 *
 * Input:
2788
 *	@csrow_nr ChipSelect Row Number (0..NUM_CHIPSELECTS-1)
2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817
 *	k8 private pointer to -->
 *			DRAM Bank Address mapping register
 *			node_id
 *			DCL register where dual_channel_active is
 *
 * The DBAM register consists of 4 sets of 4 bits each definitions:
 *
 * Bits:	CSROWs
 * 0-3		CSROWs 0 and 1
 * 4-7		CSROWs 2 and 3
 * 8-11		CSROWs 4 and 5
 * 12-15	CSROWs 6 and 7
 *
 * Values range from: 0 to 15
 * The meaning of the values depends on CPU revision and dual-channel state,
 * see relevant BKDG more info.
 *
 * The memory controller provides for total of only 8 CSROWs in its current
 * architecture. Each "pair" of CSROWs normally represents just one DIMM in
 * single channel or two (2) DIMMs in dual channel mode.
 *
 * The following code logic collapses the various tables for CSROW based on CPU
 * revision.
 *
 * Returns:
 *	The number of PAGE_SIZE pages on the specified CSROW number it
 *	encompasses
 *
 */
2818
static u32 get_csrow_nr_pages(struct amd64_pvt *pvt, u8 dct, int csrow_nr_orig)
2819
{
2820
	u32 dbam = dct ? pvt->dbam1 : pvt->dbam0;
2821 2822
	int csrow_nr = csrow_nr_orig;
	u32 cs_mode, nr_pages;
2823

2824 2825
	if (!pvt->umc)
		csrow_nr >>= 1;
2826

2827
	cs_mode = DBAM_DIMM(csrow_nr, dbam);
2828

2829 2830
	nr_pages   = pvt->ops->dbam_to_cs(pvt, dct, cs_mode, csrow_nr);
	nr_pages <<= 20 - PAGE_SHIFT;
2831

2832
	edac_dbg(0, "csrow: %d, channel: %d, DBAM idx: %d\n",
2833
		    csrow_nr_orig, dct,  cs_mode);
2834
	edac_dbg(0, "nr_pages/channel: %u\n", nr_pages);
2835 2836 2837 2838

	return nr_pages;
}

2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881
static int init_csrows_df(struct mem_ctl_info *mci)
{
	struct amd64_pvt *pvt = mci->pvt_info;
	enum edac_type edac_mode = EDAC_NONE;
	enum dev_type dev_type = DEV_UNKNOWN;
	struct dimm_info *dimm;
	int empty = 1;
	u8 umc, cs;

	if (mci->edac_ctl_cap & EDAC_FLAG_S16ECD16ED) {
		edac_mode = EDAC_S16ECD16ED;
		dev_type = DEV_X16;
	} else if (mci->edac_ctl_cap & EDAC_FLAG_S8ECD8ED) {
		edac_mode = EDAC_S8ECD8ED;
		dev_type = DEV_X8;
	} else if (mci->edac_ctl_cap & EDAC_FLAG_S4ECD4ED) {
		edac_mode = EDAC_S4ECD4ED;
		dev_type = DEV_X4;
	} else if (mci->edac_ctl_cap & EDAC_FLAG_SECDED) {
		edac_mode = EDAC_SECDED;
	}

	for_each_umc(umc) {
		for_each_chip_select(cs, umc, pvt) {
			if (!csrow_enabled(cs, umc, pvt))
				continue;

			empty = 0;
			dimm = mci->csrows[cs]->channels[umc]->dimm;

			edac_dbg(1, "MC node: %d, csrow: %d\n",
					pvt->mc_node_id, cs);

			dimm->nr_pages = get_csrow_nr_pages(pvt, umc, cs);
			dimm->mtype = pvt->dram_type;
			dimm->edac_mode = edac_mode;
			dimm->dtype = dev_type;
		}
	}

	return empty;
}

2882 2883 2884 2885
/*
 * Initialize the array of csrow attribute instances, based on the values
 * from pci config hardware registers.
 */
2886
static int init_csrows(struct mem_ctl_info *mci)
2887
{
2888
	struct amd64_pvt *pvt = mci->pvt_info;
2889
	enum edac_type edac_mode = EDAC_NONE;
2890
	struct csrow_info *csrow;
2891
	struct dimm_info *dimm;
2892
	int i, j, empty = 1;
2893
	int nr_pages = 0;
2894
	u32 val;
2895

2896 2897
	if (pvt->umc)
		return init_csrows_df(mci);
2898

2899
	amd64_read_pci_cfg(pvt->F3, NBCFG, &val);
2900

2901 2902 2903 2904 2905
	pvt->nbcfg = val;

	edac_dbg(0, "node %d, NBCFG=0x%08x[ChipKillEccCap: %d|DramEccEn: %d]\n",
		 pvt->mc_node_id, val,
		 !!(val & NBCFG_CHIPKILL), !!(val & NBCFG_ECC_ENABLE));
2906

2907 2908 2909
	/*
	 * We iterate over DCT0 here but we look at DCT1 in parallel, if needed.
	 */
2910
	for_each_chip_select(i, 0, pvt) {
2911 2912
		bool row_dct0 = !!csrow_enabled(i, 0, pvt);
		bool row_dct1 = false;
2913

2914
		if (pvt->fam != 0xf)
2915 2916 2917
			row_dct1 = !!csrow_enabled(i, 1, pvt);

		if (!row_dct0 && !row_dct1)
2918 2919
			continue;

2920
		csrow = mci->csrows[i];
2921
		empty = 0;
2922 2923 2924 2925

		edac_dbg(1, "MC node: %d, csrow: %d\n",
			    pvt->mc_node_id, i);

2926
		if (row_dct0) {
2927
			nr_pages = get_csrow_nr_pages(pvt, 0, i);
2928 2929
			csrow->channels[0]->dimm->nr_pages = nr_pages;
		}
2930

2931
		/* K8 has only one DCT */
2932
		if (pvt->fam != 0xf && row_dct1) {
2933
			int row_dct1_pages = get_csrow_nr_pages(pvt, 1, i);
2934 2935 2936 2937

			csrow->channels[1]->dimm->nr_pages = row_dct1_pages;
			nr_pages += row_dct1_pages;
		}
2938

2939
		edac_dbg(1, "Total csrow%d pages: %u\n", i, nr_pages);
2940

2941
		/* Determine DIMM ECC mode: */
2942
		if (pvt->nbcfg & NBCFG_ECC_ENABLE) {
2943 2944 2945 2946
			edac_mode = (pvt->nbcfg & NBCFG_CHIPKILL)
					? EDAC_S4ECD4ED
					: EDAC_SECDED;
		}
2947 2948

		for (j = 0; j < pvt->channel_count; j++) {
2949
			dimm = csrow->channels[j]->dimm;
2950
			dimm->mtype = pvt->dram_type;
2951
			dimm->edac_mode = edac_mode;
2952
		}
2953 2954 2955 2956
	}

	return empty;
}
2957

2958
/* get all cores on this DCT */
2959
static void get_cpus_on_this_dct_cpumask(struct cpumask *mask, u16 nid)
2960 2961 2962 2963 2964 2965 2966 2967 2968
{
	int cpu;

	for_each_online_cpu(cpu)
		if (amd_get_nb_id(cpu) == nid)
			cpumask_set_cpu(cpu, mask);
}

/* check MCG_CTL on all the cpus on this node */
2969
static bool nb_mce_bank_enabled_on_node(u16 nid)
2970 2971
{
	cpumask_var_t mask;
2972
	int cpu, nbe;
2973 2974 2975
	bool ret = false;

	if (!zalloc_cpumask_var(&mask, GFP_KERNEL)) {
2976
		amd64_warn("%s: Error allocating mask\n", __func__);
2977 2978 2979 2980 2981 2982 2983 2984
		return false;
	}

	get_cpus_on_this_dct_cpumask(mask, nid);

	rdmsr_on_cpus(mask, MSR_IA32_MCG_CTL, msrs);

	for_each_cpu(cpu, mask) {
2985
		struct msr *reg = per_cpu_ptr(msrs, cpu);
2986
		nbe = reg->l & MSR_MCGCTL_NBE;
2987

2988 2989 2990
		edac_dbg(0, "core: %u, MCG_CTL: 0x%llx, NB MSR is %s\n",
			 cpu, reg->q,
			 (nbe ? "enabled" : "disabled"));
2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001

		if (!nbe)
			goto out;
	}
	ret = true;

out:
	free_cpumask_var(mask);
	return ret;
}

3002
static int toggle_ecc_err_reporting(struct ecc_settings *s, u16 nid, bool on)
3003 3004
{
	cpumask_var_t cmask;
3005
	int cpu;
3006 3007

	if (!zalloc_cpumask_var(&cmask, GFP_KERNEL)) {
3008
		amd64_warn("%s: error allocating mask\n", __func__);
P
Pan Bian 已提交
3009
		return -ENOMEM;
3010 3011
	}

3012
	get_cpus_on_this_dct_cpumask(cmask, nid);
3013 3014 3015 3016 3017

	rdmsr_on_cpus(cmask, MSR_IA32_MCG_CTL, msrs);

	for_each_cpu(cpu, cmask) {

3018 3019
		struct msr *reg = per_cpu_ptr(msrs, cpu);

3020
		if (on) {
3021
			if (reg->l & MSR_MCGCTL_NBE)
3022
				s->flags.nb_mce_enable = 1;
3023

3024
			reg->l |= MSR_MCGCTL_NBE;
3025 3026
		} else {
			/*
3027
			 * Turn off NB MCE reporting only when it was off before
3028
			 */
3029
			if (!s->flags.nb_mce_enable)
3030
				reg->l &= ~MSR_MCGCTL_NBE;
3031 3032 3033 3034 3035 3036 3037 3038 3039
		}
	}
	wrmsr_on_cpus(cmask, MSR_IA32_MCG_CTL, msrs);

	free_cpumask_var(cmask);

	return 0;
}

3040
static bool enable_ecc_error_reporting(struct ecc_settings *s, u16 nid,
3041
				       struct pci_dev *F3)
3042
{
3043
	bool ret = true;
B
Borislav Petkov 已提交
3044
	u32 value, mask = 0x3;		/* UECC/CECC enable */
3045

3046 3047 3048 3049 3050
	if (toggle_ecc_err_reporting(s, nid, ON)) {
		amd64_warn("Error enabling ECC reporting over MCGCTL!\n");
		return false;
	}

B
Borislav Petkov 已提交
3051
	amd64_read_pci_cfg(F3, NBCTL, &value);
3052

3053 3054
	s->old_nbctl   = value & mask;
	s->nbctl_valid = true;
3055 3056

	value |= mask;
B
Borislav Petkov 已提交
3057
	amd64_write_pci_cfg(F3, NBCTL, value);
3058

3059
	amd64_read_pci_cfg(F3, NBCFG, &value);
3060

3061 3062
	edac_dbg(0, "1: node %d, NBCFG=0x%08x[DramEccEn: %d]\n",
		 nid, value, !!(value & NBCFG_ECC_ENABLE));
3063

3064
	if (!(value & NBCFG_ECC_ENABLE)) {
3065
		amd64_warn("DRAM ECC disabled on this node, enabling...\n");
3066

3067
		s->flags.nb_ecc_prev = 0;
3068

3069
		/* Attempt to turn on DRAM ECC Enable */
3070 3071
		value |= NBCFG_ECC_ENABLE;
		amd64_write_pci_cfg(F3, NBCFG, value);
3072

3073
		amd64_read_pci_cfg(F3, NBCFG, &value);
3074

3075
		if (!(value & NBCFG_ECC_ENABLE)) {
3076 3077
			amd64_warn("Hardware rejected DRAM ECC enable,"
				   "check memory DIMM configuration.\n");
3078
			ret = false;
3079
		} else {
3080
			amd64_info("Hardware accepted DRAM ECC Enable\n");
3081
		}
3082
	} else {
3083
		s->flags.nb_ecc_prev = 1;
3084
	}
3085

3086 3087
	edac_dbg(0, "2: node %d, NBCFG=0x%08x[DramEccEn: %d]\n",
		 nid, value, !!(value & NBCFG_ECC_ENABLE));
3088

3089
	return ret;
3090 3091
}

3092
static void restore_ecc_error_reporting(struct ecc_settings *s, u16 nid,
3093
					struct pci_dev *F3)
3094
{
B
Borislav Petkov 已提交
3095 3096
	u32 value, mask = 0x3;		/* UECC/CECC enable */

3097
	if (!s->nbctl_valid)
3098 3099
		return;

B
Borislav Petkov 已提交
3100
	amd64_read_pci_cfg(F3, NBCTL, &value);
3101
	value &= ~mask;
3102
	value |= s->old_nbctl;
3103

B
Borislav Petkov 已提交
3104
	amd64_write_pci_cfg(F3, NBCTL, value);
3105

3106 3107
	/* restore previous BIOS DRAM ECC "off" setting we force-enabled */
	if (!s->flags.nb_ecc_prev) {
3108 3109 3110
		amd64_read_pci_cfg(F3, NBCFG, &value);
		value &= ~NBCFG_ECC_ENABLE;
		amd64_write_pci_cfg(F3, NBCFG, value);
3111 3112 3113
	}

	/* restore the NB Enable MCGCTL bit */
3114
	if (toggle_ecc_err_reporting(s, nid, OFF))
3115
		amd64_warn("Error restoring NB MCGCTL settings!\n");
3116 3117 3118
}

/*
3119 3120 3121 3122
 * EDAC requires that the BIOS have ECC enabled before
 * taking over the processing of ECC errors. A command line
 * option allows to force-enable hardware ECC later in
 * enable_ecc_error_reporting().
3123
 */
3124 3125 3126 3127 3128
static const char *ecc_msg =
	"ECC disabled in the BIOS or no ECC capability, module will not load.\n"
	" Either enable ECC checking or force module loading by setting "
	"'ecc_enable_override'.\n"
	" (Note that use of the override may cause unknown side effects.)\n";
3129

3130
static bool ecc_enabled(struct pci_dev *F3, u16 nid)
3131
{
3132
	bool nb_mce_en = false;
3133 3134
	u8 ecc_en = 0, i;
	u32 value;
3135

3136 3137
	if (boot_cpu_data.x86 >= 0x17) {
		u8 umc_en_mask = 0, ecc_en_mask = 0;
3138

3139
		for_each_umc(i) {
3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160
			u32 base = get_umc_base(i);

			/* Only check enabled UMCs. */
			if (amd_smn_read(nid, base + UMCCH_SDP_CTRL, &value))
				continue;

			if (!(value & UMC_SDP_INIT))
				continue;

			umc_en_mask |= BIT(i);

			if (amd_smn_read(nid, base + UMCCH_UMC_CAP_HI, &value))
				continue;

			if (value & UMC_ECC_ENABLED)
				ecc_en_mask |= BIT(i);
		}

		/* Check whether at least one UMC is enabled: */
		if (umc_en_mask)
			ecc_en = umc_en_mask == ecc_en_mask;
3161 3162
		else
			edac_dbg(0, "Node %d: No enabled UMCs.\n", nid);
3163 3164 3165 3166 3167

		/* Assume UMC MCA banks are enabled. */
		nb_mce_en = true;
	} else {
		amd64_read_pci_cfg(F3, NBCFG, &value);
3168

3169 3170 3171 3172
		ecc_en = !!(value & NBCFG_ECC_ENABLE);

		nb_mce_en = nb_mce_bank_enabled_on_node(nid);
		if (!nb_mce_en)
3173
			edac_dbg(0, "NB MCE bank disabled, set MSR 0x%08x[4] on node %d to enable.\n",
3174 3175 3176
				     MSR_IA32_MCG_CTL, nid);
	}

3177 3178
	amd64_info("Node %d: DRAM ECC %s.\n",
		   nid, (ecc_en ? "enabled" : "disabled"));
3179

3180
	if (!ecc_en || !nb_mce_en) {
3181
		amd64_info("%s", ecc_msg);
3182 3183 3184
		return false;
	}
	return true;
3185 3186
}

3187 3188 3189
static inline void
f17h_determine_edac_ctl_cap(struct mem_ctl_info *mci, struct amd64_pvt *pvt)
{
3190
	u8 i, ecc_en = 1, cpk_en = 1, dev_x4 = 1, dev_x16 = 1;
3191

3192
	for_each_umc(i) {
3193 3194 3195
		if (pvt->umc[i].sdp_ctrl & UMC_SDP_INIT) {
			ecc_en &= !!(pvt->umc[i].umc_cap_hi & UMC_ECC_ENABLED);
			cpk_en &= !!(pvt->umc[i].umc_cap_hi & UMC_ECC_CHIPKILL_CAP);
3196 3197 3198

			dev_x4  &= !!(pvt->umc[i].dimm_cfg & BIT(6));
			dev_x16 &= !!(pvt->umc[i].dimm_cfg & BIT(7));
3199 3200 3201 3202 3203 3204 3205
		}
	}

	/* Set chipkill only if ECC is enabled: */
	if (ecc_en) {
		mci->edac_ctl_cap |= EDAC_FLAG_SECDED;

3206 3207 3208 3209
		if (!cpk_en)
			return;

		if (dev_x4)
3210
			mci->edac_ctl_cap |= EDAC_FLAG_S4ECD4ED;
3211 3212 3213 3214
		else if (dev_x16)
			mci->edac_ctl_cap |= EDAC_FLAG_S16ECD16ED;
		else
			mci->edac_ctl_cap |= EDAC_FLAG_S8ECD8ED;
3215 3216 3217
	}
}

3218 3219
static void setup_mci_misc_attrs(struct mem_ctl_info *mci,
				 struct amd64_family_type *fam)
3220 3221 3222 3223 3224 3225
{
	struct amd64_pvt *pvt = mci->pvt_info;

	mci->mtype_cap		= MEM_FLAG_DDR2 | MEM_FLAG_RDDR2;
	mci->edac_ctl_cap	= EDAC_FLAG_NONE;

3226 3227 3228 3229 3230
	if (pvt->umc) {
		f17h_determine_edac_ctl_cap(mci, pvt);
	} else {
		if (pvt->nbcap & NBCAP_SECDED)
			mci->edac_ctl_cap |= EDAC_FLAG_SECDED;
3231

3232 3233 3234
		if (pvt->nbcap & NBCAP_CHIPKILL)
			mci->edac_ctl_cap |= EDAC_FLAG_S4ECD4ED;
	}
3235

3236
	mci->edac_cap		= determine_edac_cap(pvt);
3237
	mci->mod_name		= EDAC_MOD_STR;
3238
	mci->ctl_name		= fam->ctl_name;
3239
	mci->dev_name		= pci_name(pvt->F3);
3240 3241 3242
	mci->ctl_page_to_phys	= NULL;

	/* memory scrubber interface */
3243 3244
	mci->set_sdram_scrub_rate = set_scrub_rate;
	mci->get_sdram_scrub_rate = get_scrub_rate;
3245 3246
}

3247 3248 3249
/*
 * returns a pointer to the family descriptor on success, NULL otherwise.
 */
3250
static struct amd64_family_type *per_family_init(struct amd64_pvt *pvt)
3251
{
3252 3253
	struct amd64_family_type *fam_type = NULL;

3254
	pvt->ext_model  = boot_cpu_data.x86_model >> 4;
3255
	pvt->stepping	= boot_cpu_data.x86_stepping;
3256 3257 3258 3259
	pvt->model	= boot_cpu_data.x86_model;
	pvt->fam	= boot_cpu_data.x86;

	switch (pvt->fam) {
3260
	case 0xf:
3261 3262
		fam_type	= &family_types[K8_CPUS];
		pvt->ops	= &family_types[K8_CPUS].ops;
3263
		break;
3264

3265
	case 0x10:
3266 3267
		fam_type	= &family_types[F10_CPUS];
		pvt->ops	= &family_types[F10_CPUS].ops;
3268 3269 3270
		break;

	case 0x15:
3271
		if (pvt->model == 0x30) {
3272 3273
			fam_type = &family_types[F15_M30H_CPUS];
			pvt->ops = &family_types[F15_M30H_CPUS].ops;
3274
			break;
3275 3276 3277 3278
		} else if (pvt->model == 0x60) {
			fam_type = &family_types[F15_M60H_CPUS];
			pvt->ops = &family_types[F15_M60H_CPUS].ops;
			break;
3279 3280
		}

3281 3282
		fam_type	= &family_types[F15_CPUS];
		pvt->ops	= &family_types[F15_CPUS].ops;
3283 3284
		break;

3285
	case 0x16:
3286 3287 3288 3289 3290
		if (pvt->model == 0x30) {
			fam_type = &family_types[F16_M30H_CPUS];
			pvt->ops = &family_types[F16_M30H_CPUS].ops;
			break;
		}
3291 3292
		fam_type	= &family_types[F16_CPUS];
		pvt->ops	= &family_types[F16_CPUS].ops;
3293 3294
		break;

3295
	case 0x17:
3296 3297 3298 3299
		if (pvt->model >= 0x10 && pvt->model <= 0x2f) {
			fam_type = &family_types[F17_M10H_CPUS];
			pvt->ops = &family_types[F17_M10H_CPUS].ops;
			break;
3300 3301 3302 3303
		} else if (pvt->model >= 0x30 && pvt->model <= 0x3f) {
			fam_type = &family_types[F17_M30H_CPUS];
			pvt->ops = &family_types[F17_M30H_CPUS].ops;
			break;
3304
		}
3305 3306
		/* fall through */
	case 0x18:
3307 3308
		fam_type	= &family_types[F17_CPUS];
		pvt->ops	= &family_types[F17_CPUS].ops;
3309 3310 3311

		if (pvt->fam == 0x18)
			family_types[F17_CPUS].ctl_name = "F18h";
3312 3313
		break;

3314
	default:
3315
		amd64_err("Unsupported family!\n");
3316
		return NULL;
3317
	}
3318

3319
	amd64_info("%s %sdetected (node %d).\n", fam_type->ctl_name,
3320
		     (pvt->fam == 0xf ?
3321 3322 3323
				(pvt->ext_model >= K8_REV_F  ? "revF or later "
							     : "revE or earlier ")
				 : ""), pvt->mc_node_id);
3324
	return fam_type;
3325 3326
}

3327 3328 3329 3330 3331 3332 3333 3334 3335 3336
static const struct attribute_group *amd64_edac_attr_groups[] = {
#ifdef CONFIG_EDAC_DEBUG
	&amd64_edac_dbg_group,
#endif
#ifdef CONFIG_EDAC_AMD64_ERROR_INJECTION
	&amd64_edac_inj_group,
#endif
	NULL
};

3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352
/* Set the number of Unified Memory Controllers in the system. */
static void compute_num_umcs(void)
{
	u8 model = boot_cpu_data.x86_model;

	if (boot_cpu_data.x86 < 0x17)
		return;

	if (model >= 0x30 && model <= 0x3f)
		num_umcs = 8;
	else
		num_umcs = 2;

	edac_dbg(1, "Number of UMCs: %x", num_umcs);
}

3353
static int init_one_instance(unsigned int nid)
3354
{
3355
	struct pci_dev *F3 = node_to_amd_nb(nid)->misc;
3356
	struct amd64_family_type *fam_type = NULL;
3357
	struct mem_ctl_info *mci = NULL;
3358
	struct edac_mc_layer layers[2];
3359
	struct amd64_pvt *pvt = NULL;
3360
	u16 pci_id1, pci_id2;
3361 3362 3363 3364 3365
	int err = 0, ret;

	ret = -ENOMEM;
	pvt = kzalloc(sizeof(struct amd64_pvt), GFP_KERNEL);
	if (!pvt)
3366
		goto err_ret;
3367

3368
	pvt->mc_node_id	= nid;
3369
	pvt->F3 = F3;
3370

3371
	ret = -EINVAL;
3372
	fam_type = per_family_init(pvt);
3373
	if (!fam_type)
3374 3375
		goto err_free;

3376
	if (pvt->fam >= 0x17) {
3377
		pvt->umc = kcalloc(num_umcs, sizeof(struct amd64_umc), GFP_KERNEL);
3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390
		if (!pvt->umc) {
			ret = -ENOMEM;
			goto err_free;
		}

		pci_id1 = fam_type->f0_id;
		pci_id2 = fam_type->f6_id;
	} else {
		pci_id1 = fam_type->f1_id;
		pci_id2 = fam_type->f2_id;
	}

	err = reserve_mc_sibling_devs(pvt, pci_id1, pci_id2);
3391
	if (err)
3392
		goto err_post_init;
3393

3394
	read_mc_regs(pvt);
3395 3396 3397 3398

	/*
	 * We need to determine how many memory channels there are. Then use
	 * that information for calculating the size of the dynamic instance
3399
	 * tables in the 'mci' structure.
3400
	 */
3401
	ret = -EINVAL;
3402 3403
	pvt->channel_count = pvt->ops->early_channel_count(pvt);
	if (pvt->channel_count < 0)
3404
		goto err_siblings;
3405 3406

	ret = -ENOMEM;
3407 3408 3409 3410
	layers[0].type = EDAC_MC_LAYER_CHIP_SELECT;
	layers[0].size = pvt->csels[0].b_cnt;
	layers[0].is_virt_csrow = true;
	layers[1].type = EDAC_MC_LAYER_CHANNEL;
3411 3412 3413 3414 3415

	/*
	 * Always allocate two channels since we can have setups with DIMMs on
	 * only one channel. Also, this simplifies handling later for the price
	 * of a couple of KBs tops.
3416 3417 3418
	 *
	 * On Fam17h+, the number of controllers may be greater than two. So set
	 * the size equal to the maximum number of UMCs.
3419
	 */
3420 3421 3422 3423
	if (pvt->fam >= 0x17)
		layers[1].size = num_umcs;
	else
		layers[1].size = 2;
3424
	layers[1].is_virt_csrow = false;
3425

3426
	mci = edac_mc_alloc(nid, ARRAY_SIZE(layers), layers, 0);
3427
	if (!mci)
3428
		goto err_siblings;
3429 3430

	mci->pvt_info = pvt;
3431
	mci->pdev = &pvt->F3->dev;
3432

3433
	setup_mci_misc_attrs(mci, fam_type);
3434 3435

	if (init_csrows(mci))
3436 3437 3438
		mci->edac_cap = EDAC_FLAG_NONE;

	ret = -ENODEV;
3439
	if (edac_mc_add_mc_with_groups(mci, amd64_edac_attr_groups)) {
3440
		edac_dbg(1, "failed edac_mc_add_mc()\n");
3441 3442 3443 3444 3445 3446 3447 3448
		goto err_add_mc;
	}

	return 0;

err_add_mc:
	edac_mc_free(mci);

3449 3450
err_siblings:
	free_mc_sibling_devs(pvt);
3451

3452 3453 3454 3455
err_post_init:
	if (pvt->fam >= 0x17)
		kfree(pvt->umc);

3456 3457
err_free:
	kfree(pvt);
3458

3459
err_ret:
3460 3461 3462
	return ret;
}

3463
static int probe_one_instance(unsigned int nid)
3464
{
3465
	struct pci_dev *F3 = node_to_amd_nb(nid)->misc;
3466
	struct ecc_settings *s;
3467
	int ret;
3468

3469 3470 3471
	ret = -ENOMEM;
	s = kzalloc(sizeof(struct ecc_settings), GFP_KERNEL);
	if (!s)
3472
		goto err_out;
3473 3474 3475

	ecc_stngs[nid] = s;

3476
	if (!ecc_enabled(F3, nid)) {
3477
		ret = 0;
3478 3479 3480 3481

		if (!ecc_enable_override)
			goto err_enable;

3482 3483 3484 3485 3486
		if (boot_cpu_data.x86 >= 0x17) {
			amd64_warn("Forcing ECC on is not recommended on newer systems. Please enable ECC in BIOS.");
			goto err_enable;
		} else
			amd64_warn("Forcing ECC on!\n");
3487 3488 3489 3490 3491

		if (!enable_ecc_error_reporting(s, nid, F3))
			goto err_enable;
	}

3492
	ret = init_one_instance(nid);
3493
	if (ret < 0) {
3494
		amd64_err("Error probing instance: %d\n", nid);
3495 3496 3497

		if (boot_cpu_data.x86 < 0x17)
			restore_ecc_error_reporting(s, nid, F3);
3498 3499

		goto err_enable;
3500
	}
3501 3502

	return ret;
3503 3504 3505 3506 3507 3508 3509

err_enable:
	kfree(s);
	ecc_stngs[nid] = NULL;

err_out:
	return ret;
3510 3511
}

3512
static void remove_one_instance(unsigned int nid)
3513
{
3514 3515
	struct pci_dev *F3 = node_to_amd_nb(nid)->misc;
	struct ecc_settings *s = ecc_stngs[nid];
3516 3517
	struct mem_ctl_info *mci;
	struct amd64_pvt *pvt;
3518

3519
	mci = find_mci_by_dev(&F3->dev);
3520 3521
	WARN_ON(!mci);

3522
	/* Remove from EDAC CORE tracking list */
3523
	mci = edac_mc_del_mc(&F3->dev);
3524 3525 3526 3527 3528
	if (!mci)
		return;

	pvt = mci->pvt_info;

3529
	restore_ecc_error_reporting(s, nid, F3);
3530

3531
	free_mc_sibling_devs(pvt);
3532

3533 3534
	kfree(ecc_stngs[nid]);
	ecc_stngs[nid] = NULL;
3535

3536
	/* Free the EDAC CORE resources */
3537 3538 3539
	mci->pvt_info = NULL;

	kfree(pvt);
3540 3541 3542
	edac_mc_free(mci);
}

3543
static void setup_pci_device(void)
3544 3545 3546 3547
{
	struct mem_ctl_info *mci;
	struct amd64_pvt *pvt;

3548
	if (pci_ctl)
3549 3550
		return;

3551
	mci = edac_mc_find(0);
3552 3553
	if (!mci)
		return;
3554

3555
	pvt = mci->pvt_info;
3556 3557 3558 3559
	if (pvt->umc)
		pci_ctl = edac_pci_create_generic_ctl(&pvt->F0->dev, EDAC_MOD_STR);
	else
		pci_ctl = edac_pci_create_generic_ctl(&pvt->F2->dev, EDAC_MOD_STR);
3560 3561 3562
	if (!pci_ctl) {
		pr_warn("%s(): Unable to create PCI control\n", __func__);
		pr_warn("%s(): PCI error report via EDAC not set\n", __func__);
3563 3564 3565
	}
}

3566 3567 3568 3569 3570
static const struct x86_cpu_id amd64_cpuids[] = {
	{ X86_VENDOR_AMD, 0xF,	X86_MODEL_ANY,	X86_FEATURE_ANY, 0 },
	{ X86_VENDOR_AMD, 0x10, X86_MODEL_ANY,	X86_FEATURE_ANY, 0 },
	{ X86_VENDOR_AMD, 0x15, X86_MODEL_ANY,	X86_FEATURE_ANY, 0 },
	{ X86_VENDOR_AMD, 0x16, X86_MODEL_ANY,	X86_FEATURE_ANY, 0 },
3571
	{ X86_VENDOR_AMD, 0x17, X86_MODEL_ANY,	X86_FEATURE_ANY, 0 },
3572
	{ X86_VENDOR_HYGON, 0x18, X86_MODEL_ANY, X86_FEATURE_ANY, 0 },
3573 3574 3575 3576
	{ }
};
MODULE_DEVICE_TABLE(x86cpu, amd64_cpuids);

3577 3578
static int __init amd64_edac_init(void)
{
3579
	const char *owner;
3580
	int err = -ENODEV;
3581
	int i;
3582

3583 3584 3585 3586
	owner = edac_get_owner();
	if (owner && strncmp(owner, EDAC_MOD_STR, sizeof(EDAC_MOD_STR)))
		return -EBUSY;

3587 3588 3589
	if (!x86_match_cpu(amd64_cpuids))
		return -ENODEV;

3590
	if (amd_cache_northbridges() < 0)
3591
		return -ENODEV;
3592

3593 3594
	opstate_init();

3595
	err = -ENOMEM;
K
Kees Cook 已提交
3596
	ecc_stngs = kcalloc(amd_nb_num(), sizeof(ecc_stngs[0]), GFP_KERNEL);
3597
	if (!ecc_stngs)
3598
		goto err_free;
3599

3600
	msrs = msrs_alloc();
3601
	if (!msrs)
3602
		goto err_free;
3603

3604 3605
	compute_num_umcs();

3606 3607 3608
	for (i = 0; i < amd_nb_num(); i++) {
		err = probe_one_instance(i);
		if (err) {
3609 3610 3611
			/* unwind properly */
			while (--i >= 0)
				remove_one_instance(i);
3612

3613 3614
			goto err_pci;
		}
3615
	}
3616

3617 3618 3619 3620 3621
	if (!edac_has_mcs()) {
		err = -ENODEV;
		goto err_pci;
	}

3622 3623 3624 3625 3626 3627 3628 3629 3630
	/* register stuff with EDAC MCE */
	if (report_gart_errors)
		amd_report_gart_errors(true);

	if (boot_cpu_data.x86 >= 0x17)
		amd_register_ecc_decoder(decode_umc_error);
	else
		amd_register_ecc_decoder(decode_bus_error);

3631
	setup_pci_device();
T
Tomasz Pala 已提交
3632 3633 3634 3635 3636

#ifdef CONFIG_X86_32
	amd64_err("%s on 32-bit is unsupported. USE AT YOUR OWN RISK!\n", EDAC_MOD_STR);
#endif

3637 3638
	printk(KERN_INFO "AMD64 EDAC driver v%s\n", EDAC_AMD64_VERSION);

3639
	return 0;
3640

3641 3642 3643
err_pci:
	msrs_free(msrs);
	msrs = NULL;
3644

3645 3646 3647 3648
err_free:
	kfree(ecc_stngs);
	ecc_stngs = NULL;

3649 3650 3651 3652 3653
	return err;
}

static void __exit amd64_edac_exit(void)
{
3654 3655
	int i;

3656 3657
	if (pci_ctl)
		edac_pci_release_generic_ctl(pci_ctl);
3658

3659 3660 3661 3662 3663 3664 3665 3666
	/* unregister from EDAC MCE */
	amd_report_gart_errors(false);

	if (boot_cpu_data.x86 >= 0x17)
		amd_unregister_ecc_decoder(decode_umc_error);
	else
		amd_unregister_ecc_decoder(decode_bus_error);

3667 3668
	for (i = 0; i < amd_nb_num(); i++)
		remove_one_instance(i);
3669

3670 3671 3672
	kfree(ecc_stngs);
	ecc_stngs = NULL;

3673 3674
	msrs_free(msrs);
	msrs = NULL;
3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687
}

module_init(amd64_edac_init);
module_exit(amd64_edac_exit);

MODULE_LICENSE("GPL");
MODULE_AUTHOR("SoftwareBitMaker: Doug Thompson, "
		"Dave Peterson, Thayne Harbaugh");
MODULE_DESCRIPTION("MC support for AMD64 memory controllers - "
		EDAC_AMD64_VERSION);

module_param(edac_op_state, int, 0444);
MODULE_PARM_DESC(edac_op_state, "EDAC Error Reporting state: 0=Poll,1=NMI");