amd64_edac.c 70.4 KB
Newer Older
1
#include "amd64_edac.h"
2
#include <asm/amd_nb.h>
3 4 5 6 7 8 9 10 11 12 13 14 15

static struct edac_pci_ctl_info *amd64_ctl_pci;

static int report_gart_errors;
module_param(report_gart_errors, int, 0644);

/*
 * Set by command line parameter. If BIOS has enabled the ECC, this override is
 * cleared to prevent re-enabling the hardware by this driver.
 */
static int ecc_enable_override;
module_param(ecc_enable_override, int, 0644);

16
static struct msr __percpu *msrs;
17

18 19 20 21 22
/*
 * count successfully initialized driver instances for setup_pci_device()
 */
static atomic_t drv_instances = ATOMIC_INIT(0);

23 24
/* Per-node driver instances */
static struct mem_ctl_info **mcis;
25
static struct ecc_settings **ecc_stngs;
26

27 28 29 30 31 32 33
/*
 * Valid scrub rates for the K8 hardware memory scrubber. We map the scrubbing
 * bandwidth to a valid bit pattern. The 'set' operation finds the 'matching-
 * or higher value'.
 *
 *FIXME: Produce a better mapping/linearisation.
 */
34 35 36 37
struct scrubrate {
       u32 scrubval;           /* bit pattern for scrub rate */
       u32 bandwidth;          /* bandwidth consumed (bytes/sec) */
} scrubrates[] = {
38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62
	{ 0x01, 1600000000UL},
	{ 0x02, 800000000UL},
	{ 0x03, 400000000UL},
	{ 0x04, 200000000UL},
	{ 0x05, 100000000UL},
	{ 0x06, 50000000UL},
	{ 0x07, 25000000UL},
	{ 0x08, 12284069UL},
	{ 0x09, 6274509UL},
	{ 0x0A, 3121951UL},
	{ 0x0B, 1560975UL},
	{ 0x0C, 781440UL},
	{ 0x0D, 390720UL},
	{ 0x0E, 195300UL},
	{ 0x0F, 97650UL},
	{ 0x10, 48854UL},
	{ 0x11, 24427UL},
	{ 0x12, 12213UL},
	{ 0x13, 6101UL},
	{ 0x14, 3051UL},
	{ 0x15, 1523UL},
	{ 0x16, 761UL},
	{ 0x00, 0UL},        /* scrubbing off */
};

63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135
static int __amd64_read_pci_cfg_dword(struct pci_dev *pdev, int offset,
				      u32 *val, const char *func)
{
	int err = 0;

	err = pci_read_config_dword(pdev, offset, val);
	if (err)
		amd64_warn("%s: error reading F%dx%03x.\n",
			   func, PCI_FUNC(pdev->devfn), offset);

	return err;
}

int __amd64_write_pci_cfg_dword(struct pci_dev *pdev, int offset,
				u32 val, const char *func)
{
	int err = 0;

	err = pci_write_config_dword(pdev, offset, val);
	if (err)
		amd64_warn("%s: error writing to F%dx%03x.\n",
			   func, PCI_FUNC(pdev->devfn), offset);

	return err;
}

/*
 *
 * Depending on the family, F2 DCT reads need special handling:
 *
 * K8: has a single DCT only
 *
 * F10h: each DCT has its own set of regs
 *	DCT0 -> F2x040..
 *	DCT1 -> F2x140..
 *
 * F15h: we select which DCT we access using F1x10C[DctCfgSel]
 *
 */
static int k8_read_dct_pci_cfg(struct amd64_pvt *pvt, int addr, u32 *val,
			       const char *func)
{
	if (addr >= 0x100)
		return -EINVAL;

	return __amd64_read_pci_cfg_dword(pvt->F2, addr, val, func);
}

static int f10_read_dct_pci_cfg(struct amd64_pvt *pvt, int addr, u32 *val,
				 const char *func)
{
	return __amd64_read_pci_cfg_dword(pvt->F2, addr, val, func);
}

static int f15_read_dct_pci_cfg(struct amd64_pvt *pvt, int addr, u32 *val,
				 const char *func)
{
	u32 reg = 0;
	u8 dct  = 0;

	if (addr >= 0x140 && addr <= 0x1a0) {
		dct   = 1;
		addr -= 0x100;
	}

	amd64_read_pci_cfg(pvt->F1, DCT_CFG_SEL, &reg);
	reg &= 0xfffffffe;
	reg |= dct;
	amd64_write_pci_cfg(pvt->F1, DCT_CFG_SEL, reg);

	return __amd64_read_pci_cfg_dword(pvt->F2, addr, val, func);
}

136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153
/*
 * Memory scrubber control interface. For K8, memory scrubbing is handled by
 * hardware and can involve L2 cache, dcache as well as the main memory. With
 * F10, this is extended to L3 cache scrubbing on CPU models sporting that
 * functionality.
 *
 * This causes the "units" for the scrubbing speed to vary from 64 byte blocks
 * (dram) over to cache lines. This is nasty, so we will use bandwidth in
 * bytes/sec for the setting.
 *
 * Currently, we only do dram scrubbing. If the scrubbing is done in software on
 * other archs, we might not have access to the caches directly.
 */

/*
 * scan the scrub rate mapping table for a close or matching bandwidth value to
 * issue. If requested is too big, then use last maximum value found.
 */
154
static int __amd64_set_scrub_rate(struct pci_dev *ctl, u32 new_bw, u32 min_rate)
155 156 157 158 159 160 161 162 163 164 165 166 167 168 169
{
	u32 scrubval;
	int i;

	/*
	 * map the configured rate (new_bw) to a value specific to the AMD64
	 * memory controller and apply to register. Search for the first
	 * bandwidth entry that is greater or equal than the setting requested
	 * and program that. If at last entry, turn off DRAM scrubbing.
	 */
	for (i = 0; i < ARRAY_SIZE(scrubrates); i++) {
		/*
		 * skip scrub rates which aren't recommended
		 * (see F10 BKDG, F3x58)
		 */
170
		if (scrubrates[i].scrubval < min_rate)
171 172 173 174 175 176 177 178 179 180 181 182 183 184
			continue;

		if (scrubrates[i].bandwidth <= new_bw)
			break;

		/*
		 * if no suitable bandwidth found, turn off DRAM scrubbing
		 * entirely by falling back to the last element in the
		 * scrubrates array.
		 */
	}

	scrubval = scrubrates[i].scrubval;

185
	pci_write_bits32(ctl, SCRCTRL, scrubval, 0x001F);
186

187 188 189
	if (scrubval)
		return scrubrates[i].bandwidth;

190 191 192
	return 0;
}

193
static int amd64_set_scrub_rate(struct mem_ctl_info *mci, u32 bw)
194 195
{
	struct amd64_pvt *pvt = mci->pvt_info;
196
	u32 min_scrubrate = 0x5;
197

198 199 200 201
	if (boot_cpu_data.x86 == 0xf)
		min_scrubrate = 0x0;

	return __amd64_set_scrub_rate(pvt->F3, bw, min_scrubrate);
202 203
}

204
static int amd64_get_scrub_rate(struct mem_ctl_info *mci)
205 206 207
{
	struct amd64_pvt *pvt = mci->pvt_info;
	u32 scrubval = 0;
208
	int i, retval = -EINVAL;
209

210
	amd64_read_pci_cfg(pvt->F3, SCRCTRL, &scrubval);
211 212 213

	scrubval = scrubval & 0x001F;

214
	amd64_debug("pci-read, sdram scrub control value: %d\n", scrubval);
215

216
	for (i = 0; i < ARRAY_SIZE(scrubrates); i++) {
217
		if (scrubrates[i].scrubval == scrubval) {
218
			retval = scrubrates[i].bandwidth;
219 220 221
			break;
		}
	}
222
	return retval;
223 224
}

225
/*
226 227
 * returns true if the SysAddr given by sys_addr matches the
 * DRAM base/limit associated with node_id
228
 */
229 230
static bool amd64_base_limit_match(struct amd64_pvt *pvt, u64 sys_addr,
				   unsigned nid)
231
{
232
	u64 addr;
233 234 235 236 237 238 239 240 241

	/* The K8 treats this as a 40-bit value.  However, bits 63-40 will be
	 * all ones if the most significant implemented address bit is 1.
	 * Here we discard bits 63-40.  See section 3.4.2 of AMD publication
	 * 24592: AMD x86-64 Architecture Programmer's Manual Volume 1
	 * Application Programming.
	 */
	addr = sys_addr & 0x000000ffffffffffull;

242 243
	return ((addr >= get_dram_base(pvt, nid)) &&
		(addr <= get_dram_limit(pvt, nid)));
244 245 246 247 248 249 250 251 252 253 254 255
}

/*
 * Attempt to map a SysAddr to a node. On success, return a pointer to the
 * mem_ctl_info structure for the node that the SysAddr maps to.
 *
 * On failure, return NULL.
 */
static struct mem_ctl_info *find_mc_by_sys_addr(struct mem_ctl_info *mci,
						u64 sys_addr)
{
	struct amd64_pvt *pvt;
256
	unsigned node_id;
257 258 259 260 261 262 263 264 265 266 267 268 269
	u32 intlv_en, bits;

	/*
	 * Here we use the DRAM Base (section 3.4.4.1) and DRAM Limit (section
	 * 3.4.4.2) registers to map the SysAddr to a node ID.
	 */
	pvt = mci->pvt_info;

	/*
	 * The value of this field should be the same for all DRAM Base
	 * registers.  Therefore we arbitrarily choose to read it from the
	 * register for node 0.
	 */
270
	intlv_en = dram_intlv_en(pvt, 0);
271 272

	if (intlv_en == 0) {
273
		for (node_id = 0; node_id < DRAM_RANGES; node_id++) {
274
			if (amd64_base_limit_match(pvt, sys_addr, node_id))
275
				goto found;
276
		}
277
		goto err_no_match;
278 279
	}

280 281 282
	if (unlikely((intlv_en != 0x01) &&
		     (intlv_en != 0x03) &&
		     (intlv_en != 0x07))) {
283
		amd64_warn("DRAM Base[IntlvEn] junk value: 0x%x, BIOS bug?\n", intlv_en);
284 285 286 287 288 289
		return NULL;
	}

	bits = (((u32) sys_addr) >> 12) & intlv_en;

	for (node_id = 0; ; ) {
290
		if ((dram_intlv_sel(pvt, node_id) & intlv_en) == bits)
291 292
			break;	/* intlv_sel field matches */

293
		if (++node_id >= DRAM_RANGES)
294 295 296 297 298
			goto err_no_match;
	}

	/* sanity test for sys_addr */
	if (unlikely(!amd64_base_limit_match(pvt, sys_addr, node_id))) {
299 300 301
		amd64_warn("%s: sys_addr 0x%llx falls outside base/limit address"
			   "range for node %d with node interleaving enabled.\n",
			   __func__, sys_addr, node_id);
302 303 304 305
		return NULL;
	}

found:
306
	return edac_mc_find((int)node_id);
307 308 309 310 311 312 313

err_no_match:
	debugf2("sys_addr 0x%lx doesn't match any node\n",
		(unsigned long)sys_addr);

	return NULL;
}
314 315

/*
316 317
 * compute the CS base address of the @csrow on the DRAM controller @dct.
 * For details see F2x[5C:40] in the processor's BKDG
318
 */
319 320
static void get_cs_base_and_mask(struct amd64_pvt *pvt, int csrow, u8 dct,
				 u64 *base, u64 *mask)
321
{
322 323
	u64 csbase, csmask, base_bits, mask_bits;
	u8 addr_shift;
324

325 326 327 328 329 330 331 332 333 334
	if (boot_cpu_data.x86 == 0xf && pvt->ext_model < K8_REV_F) {
		csbase		= pvt->csels[dct].csbases[csrow];
		csmask		= pvt->csels[dct].csmasks[csrow];
		base_bits	= GENMASK(21, 31) | GENMASK(9, 15);
		mask_bits	= GENMASK(21, 29) | GENMASK(9, 15);
		addr_shift	= 4;
	} else {
		csbase		= pvt->csels[dct].csbases[csrow];
		csmask		= pvt->csels[dct].csmasks[csrow >> 1];
		addr_shift	= 8;
335

336 337 338 339 340
		if (boot_cpu_data.x86 == 0x15)
			base_bits = mask_bits = GENMASK(19,30) | GENMASK(5,13);
		else
			base_bits = mask_bits = GENMASK(19,28) | GENMASK(5,13);
	}
341

342
	*base  = (csbase & base_bits) << addr_shift;
343

344 345 346 347 348
	*mask  = ~0ULL;
	/* poke holes for the csmask */
	*mask &= ~(mask_bits << addr_shift);
	/* OR them in */
	*mask |= (csmask & mask_bits) << addr_shift;
349 350
}

351 352 353
#define for_each_chip_select(i, dct, pvt) \
	for (i = 0; i < pvt->csels[dct].b_cnt; i++)

354 355 356
#define chip_select_base(i, dct, pvt) \
	pvt->csels[dct].csbases[i]

357 358 359
#define for_each_chip_select_mask(i, dct, pvt) \
	for (i = 0; i < pvt->csels[dct].m_cnt; i++)

360 361 362 363 364 365 366 367 368 369 370 371
/*
 * @input_addr is an InputAddr associated with the node given by mci. Return the
 * csrow that input_addr maps to, or -1 on failure (no csrow claims input_addr).
 */
static int input_addr_to_csrow(struct mem_ctl_info *mci, u64 input_addr)
{
	struct amd64_pvt *pvt;
	int csrow;
	u64 base, mask;

	pvt = mci->pvt_info;

372 373
	for_each_chip_select(csrow, 0, pvt) {
		if (!csrow_enabled(csrow, 0, pvt))
374 375
			continue;

376 377 378
		get_cs_base_and_mask(pvt, csrow, 0, &base, &mask);

		mask = ~mask;
379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416

		if ((input_addr & mask) == (base & mask)) {
			debugf2("InputAddr 0x%lx matches csrow %d (node %d)\n",
				(unsigned long)input_addr, csrow,
				pvt->mc_node_id);

			return csrow;
		}
	}
	debugf2("no matching csrow for InputAddr 0x%lx (MC node %d)\n",
		(unsigned long)input_addr, pvt->mc_node_id);

	return -1;
}

/*
 * Obtain info from the DRAM Hole Address Register (section 3.4.8, pub #26094)
 * for the node represented by mci. Info is passed back in *hole_base,
 * *hole_offset, and *hole_size.  Function returns 0 if info is valid or 1 if
 * info is invalid. Info may be invalid for either of the following reasons:
 *
 * - The revision of the node is not E or greater.  In this case, the DRAM Hole
 *   Address Register does not exist.
 *
 * - The DramHoleValid bit is cleared in the DRAM Hole Address Register,
 *   indicating that its contents are not valid.
 *
 * The values passed back in *hole_base, *hole_offset, and *hole_size are
 * complete 32-bit values despite the fact that the bitfields in the DHAR
 * only represent bits 31-24 of the base and offset values.
 */
int amd64_get_dram_hole_info(struct mem_ctl_info *mci, u64 *hole_base,
			     u64 *hole_offset, u64 *hole_size)
{
	struct amd64_pvt *pvt = mci->pvt_info;
	u64 base;

	/* only revE and later have the DRAM Hole Address Register */
417
	if (boot_cpu_data.x86 == 0xf && pvt->ext_model < K8_REV_E) {
418 419 420 421 422
		debugf1("  revision %d for node %d does not support DHAR\n",
			pvt->ext_model, pvt->mc_node_id);
		return 1;
	}

423
	/* valid for Fam10h and above */
424
	if (boot_cpu_data.x86 >= 0x10 && !dhar_mem_hoist_valid(pvt)) {
425 426 427 428
		debugf1("  Dram Memory Hoisting is DISABLED on this system\n");
		return 1;
	}

429
	if (!dhar_valid(pvt)) {
430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452
		debugf1("  Dram Memory Hoisting is DISABLED on this node %d\n",
			pvt->mc_node_id);
		return 1;
	}

	/* This node has Memory Hoisting */

	/* +------------------+--------------------+--------------------+-----
	 * | memory           | DRAM hole          | relocated          |
	 * | [0, (x - 1)]     | [x, 0xffffffff]    | addresses from     |
	 * |                  |                    | DRAM hole          |
	 * |                  |                    | [0x100000000,      |
	 * |                  |                    |  (0x100000000+     |
	 * |                  |                    |   (0xffffffff-x))] |
	 * +------------------+--------------------+--------------------+-----
	 *
	 * Above is a diagram of physical memory showing the DRAM hole and the
	 * relocated addresses from the DRAM hole.  As shown, the DRAM hole
	 * starts at address x (the base address) and extends through address
	 * 0xffffffff.  The DRAM Hole Address Register (DHAR) relocates the
	 * addresses in the hole so that they start at 0x100000000.
	 */

453
	base = dhar_base(pvt);
454 455 456 457 458

	*hole_base = base;
	*hole_size = (0x1ull << 32) - base;

	if (boot_cpu_data.x86 > 0xf)
459
		*hole_offset = f10_dhar_offset(pvt);
460
	else
461
		*hole_offset = k8_dhar_offset(pvt);
462 463 464 465 466 467 468 469 470

	debugf1("  DHAR info for node %d base 0x%lx offset 0x%lx size 0x%lx\n",
		pvt->mc_node_id, (unsigned long)*hole_base,
		(unsigned long)*hole_offset, (unsigned long)*hole_size);

	return 0;
}
EXPORT_SYMBOL_GPL(amd64_get_dram_hole_info);

471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501
/*
 * Return the DramAddr that the SysAddr given by @sys_addr maps to.  It is
 * assumed that sys_addr maps to the node given by mci.
 *
 * The first part of section 3.4.4 (p. 70) shows how the DRAM Base (section
 * 3.4.4.1) and DRAM Limit (section 3.4.4.2) registers are used to translate a
 * SysAddr to a DramAddr. If the DRAM Hole Address Register (DHAR) is enabled,
 * then it is also involved in translating a SysAddr to a DramAddr. Sections
 * 3.4.8 and 3.5.8.2 describe the DHAR and how it is used for memory hoisting.
 * These parts of the documentation are unclear. I interpret them as follows:
 *
 * When node n receives a SysAddr, it processes the SysAddr as follows:
 *
 * 1. It extracts the DRAMBase and DRAMLimit values from the DRAM Base and DRAM
 *    Limit registers for node n. If the SysAddr is not within the range
 *    specified by the base and limit values, then node n ignores the Sysaddr
 *    (since it does not map to node n). Otherwise continue to step 2 below.
 *
 * 2. If the DramHoleValid bit of the DHAR for node n is clear, the DHAR is
 *    disabled so skip to step 3 below. Otherwise see if the SysAddr is within
 *    the range of relocated addresses (starting at 0x100000000) from the DRAM
 *    hole. If not, skip to step 3 below. Else get the value of the
 *    DramHoleOffset field from the DHAR. To obtain the DramAddr, subtract the
 *    offset defined by this value from the SysAddr.
 *
 * 3. Obtain the base address for node n from the DRAMBase field of the DRAM
 *    Base register for node n. To obtain the DramAddr, subtract the base
 *    address from the SysAddr, as shown near the start of section 3.4.4 (p.70).
 */
static u64 sys_addr_to_dram_addr(struct mem_ctl_info *mci, u64 sys_addr)
{
502
	struct amd64_pvt *pvt = mci->pvt_info;
503 504 505
	u64 dram_base, hole_base, hole_offset, hole_size, dram_addr;
	int ret = 0;

506
	dram_base = get_dram_base(pvt, pvt->mc_node_id);
507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533

	ret = amd64_get_dram_hole_info(mci, &hole_base, &hole_offset,
				      &hole_size);
	if (!ret) {
		if ((sys_addr >= (1ull << 32)) &&
		    (sys_addr < ((1ull << 32) + hole_size))) {
			/* use DHAR to translate SysAddr to DramAddr */
			dram_addr = sys_addr - hole_offset;

			debugf2("using DHAR to translate SysAddr 0x%lx to "
				"DramAddr 0x%lx\n",
				(unsigned long)sys_addr,
				(unsigned long)dram_addr);

			return dram_addr;
		}
	}

	/*
	 * Translate the SysAddr to a DramAddr as shown near the start of
	 * section 3.4.4 (p. 70).  Although sys_addr is a 64-bit value, the k8
	 * only deals with 40-bit values.  Therefore we discard bits 63-40 of
	 * sys_addr below.  If bit 39 of sys_addr is 1 then the bits we
	 * discard are all 1s.  Otherwise the bits we discard are all 0s.  See
	 * section 3.4.2 of AMD publication 24592: AMD x86-64 Architecture
	 * Programmer's Manual Volume 1 Application Programming.
	 */
534
	dram_addr = (sys_addr & GENMASK(0, 39)) - dram_base;
535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569

	debugf2("using DRAM Base register to translate SysAddr 0x%lx to "
		"DramAddr 0x%lx\n", (unsigned long)sys_addr,
		(unsigned long)dram_addr);
	return dram_addr;
}

/*
 * @intlv_en is the value of the IntlvEn field from a DRAM Base register
 * (section 3.4.4.1).  Return the number of bits from a SysAddr that are used
 * for node interleaving.
 */
static int num_node_interleave_bits(unsigned intlv_en)
{
	static const int intlv_shift_table[] = { 0, 1, 0, 2, 0, 0, 0, 3 };
	int n;

	BUG_ON(intlv_en > 7);
	n = intlv_shift_table[intlv_en];
	return n;
}

/* Translate the DramAddr given by @dram_addr to an InputAddr. */
static u64 dram_addr_to_input_addr(struct mem_ctl_info *mci, u64 dram_addr)
{
	struct amd64_pvt *pvt;
	int intlv_shift;
	u64 input_addr;

	pvt = mci->pvt_info;

	/*
	 * See the start of section 3.4.4 (p. 70, BKDG #26094, K8, revA-E)
	 * concerning translating a DramAddr to an InputAddr.
	 */
570
	intlv_shift = num_node_interleave_bits(dram_intlv_en(pvt, 0));
571 572
	input_addr = ((dram_addr >> intlv_shift) & GENMASK(12, 35)) +
		      (dram_addr & 0xfff);
573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605

	debugf2("  Intlv Shift=%d DramAddr=0x%lx maps to InputAddr=0x%lx\n",
		intlv_shift, (unsigned long)dram_addr,
		(unsigned long)input_addr);

	return input_addr;
}

/*
 * Translate the SysAddr represented by @sys_addr to an InputAddr.  It is
 * assumed that @sys_addr maps to the node given by mci.
 */
static u64 sys_addr_to_input_addr(struct mem_ctl_info *mci, u64 sys_addr)
{
	u64 input_addr;

	input_addr =
	    dram_addr_to_input_addr(mci, sys_addr_to_dram_addr(mci, sys_addr));

	debugf2("SysAdddr 0x%lx translates to InputAddr 0x%lx\n",
		(unsigned long)sys_addr, (unsigned long)input_addr);

	return input_addr;
}


/*
 * @input_addr is an InputAddr associated with the node represented by mci.
 * Translate @input_addr to a DramAddr and return the result.
 */
static u64 input_addr_to_dram_addr(struct mem_ctl_info *mci, u64 input_addr)
{
	struct amd64_pvt *pvt;
606
	unsigned node_id, intlv_shift;
607 608 609 610 611 612 613 614 615 616 617 618 619
	u64 bits, dram_addr;
	u32 intlv_sel;

	/*
	 * Near the start of section 3.4.4 (p. 70, BKDG #26094, K8, revA-E)
	 * shows how to translate a DramAddr to an InputAddr. Here we reverse
	 * this procedure. When translating from a DramAddr to an InputAddr, the
	 * bits used for node interleaving are discarded.  Here we recover these
	 * bits from the IntlvSel field of the DRAM Limit register (section
	 * 3.4.4.2) for the node that input_addr is associated with.
	 */
	pvt = mci->pvt_info;
	node_id = pvt->mc_node_id;
620 621

	BUG_ON(node_id > 7);
622

623
	intlv_shift = num_node_interleave_bits(dram_intlv_en(pvt, 0));
624 625 626 627 628 629 630
	if (intlv_shift == 0) {
		debugf1("    InputAddr 0x%lx translates to DramAddr of "
			"same value\n",	(unsigned long)input_addr);

		return input_addr;
	}

631 632
	bits = ((input_addr & GENMASK(12, 35)) << intlv_shift) +
		(input_addr & 0xfff);
633

634
	intlv_sel = dram_intlv_sel(pvt, node_id) & ((1 << intlv_shift) - 1);
635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650
	dram_addr = bits + (intlv_sel << 12);

	debugf1("InputAddr 0x%lx translates to DramAddr 0x%lx "
		"(%d node interleave bits)\n", (unsigned long)input_addr,
		(unsigned long)dram_addr, intlv_shift);

	return dram_addr;
}

/*
 * @dram_addr is a DramAddr that maps to the node represented by mci. Convert
 * @dram_addr to a SysAddr.
 */
static u64 dram_addr_to_sys_addr(struct mem_ctl_info *mci, u64 dram_addr)
{
	struct amd64_pvt *pvt = mci->pvt_info;
651
	u64 hole_base, hole_offset, hole_size, base, sys_addr;
652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668
	int ret = 0;

	ret = amd64_get_dram_hole_info(mci, &hole_base, &hole_offset,
				      &hole_size);
	if (!ret) {
		if ((dram_addr >= hole_base) &&
		    (dram_addr < (hole_base + hole_size))) {
			sys_addr = dram_addr + hole_offset;

			debugf1("using DHAR to translate DramAddr 0x%lx to "
				"SysAddr 0x%lx\n", (unsigned long)dram_addr,
				(unsigned long)sys_addr);

			return sys_addr;
		}
	}

669
	base     = get_dram_base(pvt, pvt->mc_node_id);
670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713
	sys_addr = dram_addr + base;

	/*
	 * The sys_addr we have computed up to this point is a 40-bit value
	 * because the k8 deals with 40-bit values.  However, the value we are
	 * supposed to return is a full 64-bit physical address.  The AMD
	 * x86-64 architecture specifies that the most significant implemented
	 * address bit through bit 63 of a physical address must be either all
	 * 0s or all 1s.  Therefore we sign-extend the 40-bit sys_addr to a
	 * 64-bit value below.  See section 3.4.2 of AMD publication 24592:
	 * AMD x86-64 Architecture Programmer's Manual Volume 1 Application
	 * Programming.
	 */
	sys_addr |= ~((sys_addr & (1ull << 39)) - 1);

	debugf1("    Node %d, DramAddr 0x%lx to SysAddr 0x%lx\n",
		pvt->mc_node_id, (unsigned long)dram_addr,
		(unsigned long)sys_addr);

	return sys_addr;
}

/*
 * @input_addr is an InputAddr associated with the node given by mci. Translate
 * @input_addr to a SysAddr.
 */
static inline u64 input_addr_to_sys_addr(struct mem_ctl_info *mci,
					 u64 input_addr)
{
	return dram_addr_to_sys_addr(mci,
				     input_addr_to_dram_addr(mci, input_addr));
}

/*
 * Find the minimum and maximum InputAddr values that map to the given @csrow.
 * Pass back these values in *input_addr_min and *input_addr_max.
 */
static void find_csrow_limits(struct mem_ctl_info *mci, int csrow,
			      u64 *input_addr_min, u64 *input_addr_max)
{
	struct amd64_pvt *pvt;
	u64 base, mask;

	pvt = mci->pvt_info;
714
	BUG_ON((csrow < 0) || (csrow >= pvt->csels[0].b_cnt));
715

716
	get_cs_base_and_mask(pvt, csrow, 0, &base, &mask);
717 718

	*input_addr_min = base & ~mask;
719
	*input_addr_max = base | mask;
720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744
}

/* Map the Error address to a PAGE and PAGE OFFSET. */
static inline void error_address_to_page_and_offset(u64 error_address,
						    u32 *page, u32 *offset)
{
	*page = (u32) (error_address >> PAGE_SHIFT);
	*offset = ((u32) error_address) & ~PAGE_MASK;
}

/*
 * @sys_addr is an error address (a SysAddr) extracted from the MCA NB Address
 * Low (section 3.6.4.5) and MCA NB Address High (section 3.6.4.6) registers
 * of a node that detected an ECC memory error.  mci represents the node that
 * the error address maps to (possibly different from the node that detected
 * the error).  Return the number of the csrow that sys_addr maps to, or -1 on
 * error.
 */
static int sys_addr_to_csrow(struct mem_ctl_info *mci, u64 sys_addr)
{
	int csrow;

	csrow = input_addr_to_csrow(mci, sys_addr_to_input_addr(mci, sys_addr));

	if (csrow == -1)
745 746
		amd64_mc_err(mci, "Failed to translate InputAddr to csrow for "
				  "address 0x%lx\n", (unsigned long)sys_addr);
747 748
	return csrow;
}
749

750
static int get_channel_from_ecc_syndrome(struct mem_ctl_info *, u16);
751 752 753 754 755 756 757

/*
 * Determine if the DIMMs have ECC enabled. ECC is enabled ONLY if all the DIMMs
 * are ECC capable.
 */
static enum edac_type amd64_determine_edac_cap(struct amd64_pvt *pvt)
{
758
	u8 bit;
759
	enum dev_type edac_cap = EDAC_FLAG_NONE;
760

761
	bit = (boot_cpu_data.x86 > 0xf || pvt->ext_model >= K8_REV_F)
762 763 764
		? 19
		: 17;

765
	if (pvt->dclr0 & BIT(bit))
766 767 768 769 770 771
		edac_cap = EDAC_FLAG_SECDED;

	return edac_cap;
}


772
static void amd64_debug_display_dimm_sizes(int ctrl, struct amd64_pvt *pvt);
773

774 775 776 777 778 779 780 781 782 783 784
static void amd64_dump_dramcfg_low(u32 dclr, int chan)
{
	debugf1("F2x%d90 (DRAM Cfg Low): 0x%08x\n", chan, dclr);

	debugf1("  DIMM type: %sbuffered; all DIMMs support ECC: %s\n",
		(dclr & BIT(16)) ?  "un" : "",
		(dclr & BIT(19)) ? "yes" : "no");

	debugf1("  PAR/ERR parity: %s\n",
		(dclr & BIT(8)) ?  "enabled" : "disabled");

785 786 787
	if (boot_cpu_data.x86 == 0x10)
		debugf1("  DCT 128bit mode width: %s\n",
			(dclr & BIT(11)) ?  "128b" : "64b");
788 789 790 791 792 793 794 795

	debugf1("  x4 logical DIMMs present: L0: %s L1: %s L2: %s L3: %s\n",
		(dclr & BIT(12)) ?  "yes" : "no",
		(dclr & BIT(13)) ?  "yes" : "no",
		(dclr & BIT(14)) ?  "yes" : "no",
		(dclr & BIT(15)) ?  "yes" : "no");
}

796
/* Display and decode various NB registers for debug purposes. */
797
static void dump_misc_regs(struct amd64_pvt *pvt)
798
{
799 800 801
	debugf1("F3xE8 (NB Cap): 0x%08x\n", pvt->nbcap);

	debugf1("  NB two channel DRAM capable: %s\n",
802
		(pvt->nbcap & NBCAP_DCT_DUAL) ? "yes" : "no");
803

804
	debugf1("  ECC capable: %s, ChipKill ECC capable: %s\n",
805 806
		(pvt->nbcap & NBCAP_SECDED) ? "yes" : "no",
		(pvt->nbcap & NBCAP_CHIPKILL) ? "yes" : "no");
807 808

	amd64_dump_dramcfg_low(pvt->dclr0, 0);
809

810
	debugf1("F3xB0 (Online Spare): 0x%08x\n", pvt->online_spare);
811

812 813
	debugf1("F1xF0 (DRAM Hole Address): 0x%08x, base: 0x%08x, "
			"offset: 0x%08x\n",
814 815 816
			pvt->dhar, dhar_base(pvt),
			(boot_cpu_data.x86 == 0xf) ? k8_dhar_offset(pvt)
						   : f10_dhar_offset(pvt));
817

818
	debugf1("  DramHoleValid: %s\n", dhar_valid(pvt) ? "yes" : "no");
819

820 821
	amd64_debug_display_dimm_sizes(0, pvt);

822
	/* everything below this point is Fam10h and above */
823
	if (boot_cpu_data.x86 == 0xf)
824
		return;
825 826

	amd64_debug_display_dimm_sizes(1, pvt);
827

828
	amd64_info("using %s syndromes.\n", ((pvt->ecc_sym_sz == 8) ? "x8" : "x4"));
829

830
	/* Only if NOT ganged does dclr1 have valid info */
831 832
	if (!dct_ganging_enabled(pvt))
		amd64_dump_dramcfg_low(pvt->dclr1, 1);
833 834
}

835
/*
836
 * see BKDG, F2x[1,0][5C:40], F2[1,0][6C:60]
837
 */
838
static void prep_chip_selects(struct amd64_pvt *pvt)
839
{
840
	if (boot_cpu_data.x86 == 0xf && pvt->ext_model < K8_REV_F) {
841 842
		pvt->csels[0].b_cnt = pvt->csels[1].b_cnt = 8;
		pvt->csels[0].m_cnt = pvt->csels[1].m_cnt = 8;
843
	} else {
844 845
		pvt->csels[0].b_cnt = pvt->csels[1].b_cnt = 8;
		pvt->csels[0].m_cnt = pvt->csels[1].m_cnt = 4;
846 847 848 849
	}
}

/*
850
 * Function 2 Offset F10_DCSB0; read in the DCS Base and DCS Mask registers
851
 */
852
static void read_dct_base_mask(struct amd64_pvt *pvt)
853
{
854
	int cs;
855

856
	prep_chip_selects(pvt);
857

858
	for_each_chip_select(cs, 0, pvt) {
859 860
		int reg0   = DCSB0 + (cs * 4);
		int reg1   = DCSB1 + (cs * 4);
861 862
		u32 *base0 = &pvt->csels[0].csbases[cs];
		u32 *base1 = &pvt->csels[1].csbases[cs];
863

864
		if (!amd64_read_dct_pci_cfg(pvt, reg0, base0))
865
			debugf0("  DCSB0[%d]=0x%08x reg: F2x%x\n",
866
				cs, *base0, reg0);
867

868 869
		if (boot_cpu_data.x86 == 0xf || dct_ganging_enabled(pvt))
			continue;
870

871 872 873
		if (!amd64_read_dct_pci_cfg(pvt, reg1, base1))
			debugf0("  DCSB1[%d]=0x%08x reg: F2x%x\n",
				cs, *base1, reg1);
874 875
	}

876
	for_each_chip_select_mask(cs, 0, pvt) {
877 878
		int reg0   = DCSM0 + (cs * 4);
		int reg1   = DCSM1 + (cs * 4);
879 880
		u32 *mask0 = &pvt->csels[0].csmasks[cs];
		u32 *mask1 = &pvt->csels[1].csmasks[cs];
881

882
		if (!amd64_read_dct_pci_cfg(pvt, reg0, mask0))
883
			debugf0("    DCSM0[%d]=0x%08x reg: F2x%x\n",
884
				cs, *mask0, reg0);
885

886 887
		if (boot_cpu_data.x86 == 0xf || dct_ganging_enabled(pvt))
			continue;
888

889 890 891
		if (!amd64_read_dct_pci_cfg(pvt, reg1, mask1))
			debugf0("    DCSM1[%d]=0x%08x reg: F2x%x\n",
				cs, *mask1, reg1);
892 893 894
	}
}

895
static enum mem_type amd64_determine_memory_type(struct amd64_pvt *pvt, int cs)
896 897 898
{
	enum mem_type type;

899 900 901 902
	/* F15h supports only DDR3 */
	if (boot_cpu_data.x86 >= 0x15)
		type = (pvt->dclr0 & BIT(16)) ?	MEM_DDR3 : MEM_RDDR3;
	else if (boot_cpu_data.x86 == 0x10 || pvt->ext_model >= K8_REV_F) {
903 904 905 906
		if (pvt->dchr0 & DDR3_MODE)
			type = (pvt->dclr0 & BIT(16)) ?	MEM_DDR3 : MEM_RDDR3;
		else
			type = (pvt->dclr0 & BIT(16)) ? MEM_DDR2 : MEM_RDDR2;
907 908 909 910
	} else {
		type = (pvt->dclr0 & BIT(18)) ? MEM_DDR : MEM_RDDR;
	}

911
	amd64_info("CS%d: %s\n", cs, edac_mem_types[type]);
912 913 914 915

	return type;
}

916
/* Get the number of DCT channels the memory controller is using. */
917 918
static int k8_early_channel_count(struct amd64_pvt *pvt)
{
919
	int flag;
920

921
	if (pvt->ext_model >= K8_REV_F)
922
		/* RevF (NPT) and later */
923
		flag = pvt->dclr0 & WIDTH_128;
924
	else
925 926 927 928 929 930 931 932 933
		/* RevE and earlier */
		flag = pvt->dclr0 & REVE_WIDTH_128;

	/* not used */
	pvt->dclr1 = 0;

	return (flag) ? 2 : 1;
}

934 935
/* On F10h and later ErrAddr is MC4_ADDR[47:1] */
static u64 get_error_address(struct mce *m)
936
{
937 938 939 940 941 942 943 944 945
	u8 start_bit = 1;
	u8 end_bit   = 47;

	if (boot_cpu_data.x86 == 0xf) {
		start_bit = 3;
		end_bit   = 39;
	}

	return m->addr & GENMASK(start_bit, end_bit);
946 947
}

948
static void read_dram_base_limit_regs(struct amd64_pvt *pvt, unsigned range)
949
{
950
	int off = range << 3;
951

952 953
	amd64_read_pci_cfg(pvt->F1, DRAM_BASE_LO + off,  &pvt->ranges[range].base.lo);
	amd64_read_pci_cfg(pvt->F1, DRAM_LIMIT_LO + off, &pvt->ranges[range].lim.lo);
954

955 956
	if (boot_cpu_data.x86 == 0xf)
		return;
957

958 959
	if (!dram_rw(pvt, range))
		return;
960

961 962
	amd64_read_pci_cfg(pvt->F1, DRAM_BASE_HI + off,  &pvt->ranges[range].base.hi);
	amd64_read_pci_cfg(pvt->F1, DRAM_LIMIT_HI + off, &pvt->ranges[range].lim.hi);
963 964
}

965 966
static void k8_map_sysaddr_to_csrow(struct mem_ctl_info *mci, u64 sys_addr,
				    u16 syndrome)
967 968
{
	struct mem_ctl_info *src_mci;
969
	struct amd64_pvt *pvt = mci->pvt_info;
970 971 972 973
	int channel, csrow;
	u32 page, offset;

	/* CHIPKILL enabled */
974
	if (pvt->nbcfg & NBCFG_CHIPKILL) {
975
		channel = get_channel_from_ecc_syndrome(mci, syndrome);
976 977 978 979 980 981
		if (channel < 0) {
			/*
			 * Syndrome didn't map, so we don't know which of the
			 * 2 DIMMs is in error. So we need to ID 'both' of them
			 * as suspect.
			 */
982 983
			amd64_mc_warn(mci, "unknown syndrome 0x%04x - possible "
					   "error reporting race\n", syndrome);
984 985 986 987 988 989 990 991 992 993 994 995
			edac_mc_handle_ce_no_info(mci, EDAC_MOD_STR);
			return;
		}
	} else {
		/*
		 * non-chipkill ecc mode
		 *
		 * The k8 documentation is unclear about how to determine the
		 * channel number when using non-chipkill memory.  This method
		 * was obtained from email communication with someone at AMD.
		 * (Wish the email was placed in this comment - norsk)
		 */
996
		channel = ((sys_addr & BIT(3)) != 0);
997 998 999 1000 1001 1002
	}

	/*
	 * Find out which node the error address belongs to. This may be
	 * different from the node that detected the error.
	 */
1003
	src_mci = find_mc_by_sys_addr(mci, sys_addr);
1004
	if (!src_mci) {
1005
		amd64_mc_err(mci, "failed to map error addr 0x%lx to a node\n",
1006
			     (unsigned long)sys_addr);
1007 1008 1009 1010
		edac_mc_handle_ce_no_info(mci, EDAC_MOD_STR);
		return;
	}

1011 1012
	/* Now map the sys_addr to a CSROW */
	csrow = sys_addr_to_csrow(src_mci, sys_addr);
1013 1014 1015
	if (csrow < 0) {
		edac_mc_handle_ce_no_info(src_mci, EDAC_MOD_STR);
	} else {
1016
		error_address_to_page_and_offset(sys_addr, &page, &offset);
1017 1018 1019 1020 1021 1022

		edac_mc_handle_ce(src_mci, page, offset, syndrome, csrow,
				  channel, EDAC_MOD_STR);
	}
}

1023
static int ddr2_cs_size(unsigned i, bool dct_width)
1024
{
1025
	unsigned shift = 0;
1026

1027 1028 1029 1030
	if (i <= 2)
		shift = i;
	else if (!(i & 0x1))
		shift = i >> 1;
1031
	else
1032
		shift = (i + 1) >> 1;
1033

1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057
	return 128 << (shift + !!dct_width);
}

static int k8_dbam_to_chip_select(struct amd64_pvt *pvt, u8 dct,
				  unsigned cs_mode)
{
	u32 dclr = dct ? pvt->dclr1 : pvt->dclr0;

	if (pvt->ext_model >= K8_REV_F) {
		WARN_ON(cs_mode > 11);
		return ddr2_cs_size(cs_mode, dclr & WIDTH_128);
	}
	else if (pvt->ext_model >= K8_REV_D) {
		WARN_ON(cs_mode > 10);

		if (cs_mode == 3 || cs_mode == 8)
			return 32 << (cs_mode - 1);
		else
			return 32 << cs_mode;
	}
	else {
		WARN_ON(cs_mode > 6);
		return 32 << cs_mode;
	}
1058 1059
}

1060 1061 1062 1063 1064 1065 1066 1067
/*
 * Get the number of DCT channels in use.
 *
 * Return:
 *	number of Memory Channels in operation
 * Pass back:
 *	contents of the DCL0_LOW register
 */
1068
static int f1x_early_channel_count(struct amd64_pvt *pvt)
1069
{
1070
	int i, j, channels = 0;
1071

1072
	/* On F10h, if we are in 128 bit mode, then we are using 2 channels */
1073
	if (boot_cpu_data.x86 == 0x10 && (pvt->dclr0 & WIDTH_128))
1074
		return 2;
1075 1076

	/*
1077 1078 1079
	 * Need to check if in unganged mode: In such, there are 2 channels,
	 * but they are not in 128 bit mode and thus the above 'dclr0' status
	 * bit will be OFF.
1080 1081 1082 1083
	 *
	 * Need to check DCT0[0] and DCT1[0] to see if only one of them has
	 * their CSEnable bit on. If so, then SINGLE DIMM case.
	 */
1084
	debugf0("Data width is not 128 bits - need more decoding\n");
1085

1086 1087 1088 1089 1090
	/*
	 * Check DRAM Bank Address Mapping values for each DIMM to see if there
	 * is more than just one DIMM present in unganged mode. Need to check
	 * both controllers since DIMMs can be placed in either one.
	 */
1091 1092
	for (i = 0; i < 2; i++) {
		u32 dbam = (i ? pvt->dbam1 : pvt->dbam0);
1093

1094 1095 1096 1097 1098 1099
		for (j = 0; j < 4; j++) {
			if (DBAM_DIMM(j, dbam) > 0) {
				channels++;
				break;
			}
		}
1100 1101
	}

1102 1103 1104
	if (channels > 2)
		channels = 2;

1105
	amd64_info("MCT channel count: %d\n", channels);
1106 1107 1108 1109

	return channels;
}

1110
static int ddr3_cs_size(unsigned i, bool dct_width)
1111
{
1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137
	unsigned shift = 0;
	int cs_size = 0;

	if (i == 0 || i == 3 || i == 4)
		cs_size = -1;
	else if (i <= 2)
		shift = i;
	else if (i == 12)
		shift = 7;
	else if (!(i & 0x1))
		shift = i >> 1;
	else
		shift = (i + 1) >> 1;

	if (cs_size != -1)
		cs_size = (128 * (1 << !!dct_width)) << shift;

	return cs_size;
}

static int f10_dbam_to_chip_select(struct amd64_pvt *pvt, u8 dct,
				   unsigned cs_mode)
{
	u32 dclr = dct ? pvt->dclr1 : pvt->dclr0;

	WARN_ON(cs_mode > 11);
1138 1139

	if (pvt->dchr0 & DDR3_MODE || pvt->dchr1 & DDR3_MODE)
1140
		return ddr3_cs_size(cs_mode, dclr & WIDTH_128);
1141
	else
1142 1143 1144 1145 1146 1147 1148 1149 1150 1151
		return ddr2_cs_size(cs_mode, dclr & WIDTH_128);
}

/*
 * F15h supports only 64bit DCT interfaces
 */
static int f15_dbam_to_chip_select(struct amd64_pvt *pvt, u8 dct,
				   unsigned cs_mode)
{
	WARN_ON(cs_mode > 12);
1152

1153
	return ddr3_cs_size(cs_mode, false);
1154 1155
}

1156
static void read_dram_ctl_register(struct amd64_pvt *pvt)
1157 1158
{

1159 1160 1161
	if (boot_cpu_data.x86 == 0xf)
		return;

1162 1163 1164
	if (!amd64_read_dct_pci_cfg(pvt, DCT_SEL_LO, &pvt->dct_sel_lo)) {
		debugf0("F2x110 (DCTSelLow): 0x%08x, High range addrs at: 0x%x\n",
			pvt->dct_sel_lo, dct_sel_baseaddr(pvt));
1165

1166 1167
		debugf0("  DCTs operate in %s mode.\n",
			(dct_ganging_enabled(pvt) ? "ganged" : "unganged"));
1168 1169 1170 1171 1172

		if (!dct_ganging_enabled(pvt))
			debugf0("  Address range split per DCT: %s\n",
				(dct_high_range_enabled(pvt) ? "yes" : "no"));

1173
		debugf0("  data interleave for ECC: %s, "
1174 1175 1176 1177
			"DRAM cleared since last warm reset: %s\n",
			(dct_data_intlv_enabled(pvt) ? "enabled" : "disabled"),
			(dct_memory_cleared(pvt) ? "yes" : "no"));

1178 1179
		debugf0("  channel interleave: %s, "
			"interleave bits selector: 0x%x\n",
1180
			(dct_interleave_enabled(pvt) ? "enabled" : "disabled"),
1181 1182 1183
			dct_sel_interleave_addr(pvt));
	}

1184
	amd64_read_dct_pci_cfg(pvt, DCT_SEL_HI, &pvt->dct_sel_hi);
1185 1186
}

1187
/*
1188
 * Determine channel (DCT) based on the interleaving mode: F10h BKDG, 2.8.9 Memory
1189 1190
 * Interleaving Modes.
 */
1191
static u8 f1x_determine_channel(struct amd64_pvt *pvt, u64 sys_addr,
1192
				bool hi_range_sel, u8 intlv_en)
1193
{
1194
	u8 dct_sel_high = (pvt->dct_sel_lo >> 1) & 1;
1195 1196

	if (dct_ganging_enabled(pvt))
1197
		return 0;
1198

1199 1200
	if (hi_range_sel)
		return dct_sel_high;
1201

1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223
	/*
	 * see F2x110[DctSelIntLvAddr] - channel interleave mode
	 */
	if (dct_interleave_enabled(pvt)) {
		u8 intlv_addr = dct_sel_interleave_addr(pvt);

		/* return DCT select function: 0=DCT0, 1=DCT1 */
		if (!intlv_addr)
			return sys_addr >> 6 & 1;

		if (intlv_addr & 0x2) {
			u8 shift = intlv_addr & 0x1 ? 9 : 6;
			u32 temp = hweight_long((u32) ((sys_addr >> 16) & 0x1F)) % 2;

			return ((sys_addr >> shift) & 1) ^ temp;
		}

		return (sys_addr >> (12 + hweight8(intlv_en))) & 1;
	}

	if (dct_high_range_enabled(pvt))
		return ~dct_sel_high & 1;
1224 1225 1226 1227

	return 0;
}

1228
/* Convert the sys_addr to the normalized DCT address */
1229
static u64 f1x_get_norm_dct_addr(struct amd64_pvt *pvt, int range,
1230 1231
				 u64 sys_addr, bool hi_rng,
				 u32 dct_sel_base_addr)
1232 1233
{
	u64 chan_off;
1234 1235 1236
	u64 dram_base		= get_dram_base(pvt, range);
	u64 hole_off		= f10_dhar_offset(pvt);
	u64 dct_sel_base_off	= (pvt->dct_sel_hi & 0xFFFFFC00) << 16;
1237

1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251
	if (hi_rng) {
		/*
		 * if
		 * base address of high range is below 4Gb
		 * (bits [47:27] at [31:11])
		 * DRAM address space on this DCT is hoisted above 4Gb	&&
		 * sys_addr > 4Gb
		 *
		 *	remove hole offset from sys_addr
		 * else
		 *	remove high range offset from sys_addr
		 */
		if ((!(dct_sel_base_addr >> 16) ||
		     dct_sel_base_addr < dhar_base(pvt)) &&
1252
		    dhar_valid(pvt) &&
1253
		    (sys_addr >= BIT_64(32)))
1254
			chan_off = hole_off;
1255 1256 1257
		else
			chan_off = dct_sel_base_off;
	} else {
1258 1259 1260 1261 1262 1263 1264 1265 1266
		/*
		 * if
		 * we have a valid hole		&&
		 * sys_addr > 4Gb
		 *
		 *	remove hole
		 * else
		 *	remove dram base to normalize to DCT address
		 */
1267
		if (dhar_valid(pvt) && (sys_addr >= BIT_64(32)))
1268
			chan_off = hole_off;
1269
		else
1270
			chan_off = dram_base;
1271 1272
	}

1273
	return (sys_addr & GENMASK(6,47)) - (chan_off & GENMASK(23,47));
1274 1275 1276 1277 1278 1279
}

/*
 * checks if the csrow passed in is marked as SPARED, if so returns the new
 * spare row
 */
1280
static int f10_process_possible_spare(struct amd64_pvt *pvt, u8 dct, int csrow)
1281
{
1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292
	int tmp_cs;

	if (online_spare_swap_done(pvt, dct) &&
	    csrow == online_spare_bad_dramcs(pvt, dct)) {

		for_each_chip_select(tmp_cs, dct, pvt) {
			if (chip_select_base(tmp_cs, dct, pvt) & 0x2) {
				csrow = tmp_cs;
				break;
			}
		}
1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304
	}
	return csrow;
}

/*
 * Iterate over the DRAM DCT "base" and "mask" registers looking for a
 * SystemAddr match on the specified 'ChannelSelect' and 'NodeID'
 *
 * Return:
 *	-EINVAL:  NOT FOUND
 *	0..csrow = Chip-Select Row
 */
1305
static int f1x_lookup_addr_in_dct(u64 in_addr, u32 nid, u8 dct)
1306 1307 1308
{
	struct mem_ctl_info *mci;
	struct amd64_pvt *pvt;
1309
	u64 cs_base, cs_mask;
1310 1311 1312
	int cs_found = -EINVAL;
	int csrow;

1313
	mci = mcis[nid];
1314 1315 1316 1317 1318
	if (!mci)
		return cs_found;

	pvt = mci->pvt_info;

1319
	debugf1("input addr: 0x%llx, DCT: %d\n", in_addr, dct);
1320

1321 1322
	for_each_chip_select(csrow, dct, pvt) {
		if (!csrow_enabled(csrow, dct, pvt))
1323 1324
			continue;

1325
		get_cs_base_and_mask(pvt, csrow, dct, &cs_base, &cs_mask);
1326

1327 1328
		debugf1("    CSROW=%d CSBase=0x%llx CSMask=0x%llx\n",
			csrow, cs_base, cs_mask);
1329

1330
		cs_mask = ~cs_mask;
1331

1332 1333 1334
		debugf1("    (InputAddr & ~CSMask)=0x%llx "
			"(CSBase & ~CSMask)=0x%llx\n",
			(in_addr & cs_mask), (cs_base & cs_mask));
1335

1336 1337
		if ((in_addr & cs_mask) == (cs_base & cs_mask)) {
			cs_found = f10_process_possible_spare(pvt, dct, csrow);
1338 1339 1340 1341 1342 1343 1344 1345

			debugf1(" MATCH csrow=%d\n", cs_found);
			break;
		}
	}
	return cs_found;
}

1346 1347 1348 1349 1350
/*
 * See F2x10C. Non-interleaved graphics framebuffer memory under the 16G is
 * swapped with a region located at the bottom of memory so that the GPU can use
 * the interleaved region and thus two channels.
 */
1351
static u64 f1x_swap_interleaved_region(struct amd64_pvt *pvt, u64 sys_addr)
1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381
{
	u32 swap_reg, swap_base, swap_limit, rgn_size, tmp_addr;

	if (boot_cpu_data.x86 == 0x10) {
		/* only revC3 and revE have that feature */
		if (boot_cpu_data.x86_model < 4 ||
		    (boot_cpu_data.x86_model < 0xa &&
		     boot_cpu_data.x86_mask < 3))
			return sys_addr;
	}

	amd64_read_dct_pci_cfg(pvt, SWAP_INTLV_REG, &swap_reg);

	if (!(swap_reg & 0x1))
		return sys_addr;

	swap_base	= (swap_reg >> 3) & 0x7f;
	swap_limit	= (swap_reg >> 11) & 0x7f;
	rgn_size	= (swap_reg >> 20) & 0x7f;
	tmp_addr	= sys_addr >> 27;

	if (!(sys_addr >> 34) &&
	    (((tmp_addr >= swap_base) &&
	     (tmp_addr <= swap_limit)) ||
	     (tmp_addr < rgn_size)))
		return sys_addr ^ (u64)swap_base << 27;

	return sys_addr;
}

1382
/* For a given @dram_range, check if @sys_addr falls within it. */
1383
static int f1x_match_to_this_node(struct amd64_pvt *pvt, int range,
1384 1385
				  u64 sys_addr, int *nid, int *chan_sel)
{
1386
	int cs_found = -EINVAL;
1387
	u64 chan_addr;
1388
	u32 dct_sel_base;
1389
	u8 channel;
1390
	bool high_range = false;
1391

1392
	u8 node_id    = dram_dst_node(pvt, range);
1393
	u8 intlv_en   = dram_intlv_en(pvt, range);
1394
	u32 intlv_sel = dram_intlv_sel(pvt, range);
1395

1396 1397
	debugf1("(range %d) SystemAddr= 0x%llx Limit=0x%llx\n",
		range, sys_addr, get_dram_limit(pvt, range));
1398

1399 1400 1401 1402 1403 1404 1405 1406
	if (dhar_valid(pvt) &&
	    dhar_base(pvt) <= sys_addr &&
	    sys_addr < BIT_64(32)) {
		amd64_warn("Huh? Address is in the MMIO hole: 0x%016llx\n",
			    sys_addr);
		return -EINVAL;
	}

1407
	if (intlv_en &&
1408 1409 1410
	    (intlv_sel != ((sys_addr >> 12) & intlv_en))) {
		amd64_warn("Botched intlv bits, en: 0x%x, sel: 0x%x\n",
			   intlv_en, intlv_sel);
1411
		return -EINVAL;
1412
	}
1413

1414
	sys_addr = f1x_swap_interleaved_region(pvt, sys_addr);
1415

1416 1417 1418 1419 1420 1421 1422 1423 1424
	dct_sel_base = dct_sel_baseaddr(pvt);

	/*
	 * check whether addresses >= DctSelBaseAddr[47:27] are to be used to
	 * select between DCT0 and DCT1.
	 */
	if (dct_high_range_enabled(pvt) &&
	   !dct_ganging_enabled(pvt) &&
	   ((sys_addr >> 27) >= (dct_sel_base >> 11)))
1425
		high_range = true;
1426

1427
	channel = f1x_determine_channel(pvt, sys_addr, high_range, intlv_en);
1428

1429
	chan_addr = f1x_get_norm_dct_addr(pvt, range, sys_addr,
1430
					  high_range, dct_sel_base);
1431

1432 1433 1434 1435
	/* Remove node interleaving, see F1x120 */
	if (intlv_en)
		chan_addr = ((chan_addr >> (12 + hweight8(intlv_en))) << 12) |
			    (chan_addr & 0xfff);
1436

1437
	/* remove channel interleave */
1438 1439 1440
	if (dct_interleave_enabled(pvt) &&
	   !dct_high_range_enabled(pvt) &&
	   !dct_ganging_enabled(pvt)) {
1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454

		if (dct_sel_interleave_addr(pvt) != 1) {
			if (dct_sel_interleave_addr(pvt) == 0x3)
				/* hash 9 */
				chan_addr = ((chan_addr >> 10) << 9) |
					     (chan_addr & 0x1ff);
			else
				/* A[6] or hash 6 */
				chan_addr = ((chan_addr >> 7) << 6) |
					     (chan_addr & 0x3f);
		} else
			/* A[12] */
			chan_addr = ((chan_addr >> 13) << 12) |
				     (chan_addr & 0xfff);
1455 1456
	}

1457
	debugf1("   Normalized DCT addr: 0x%llx\n", chan_addr);
1458

1459
	cs_found = f1x_lookup_addr_in_dct(chan_addr, node_id, channel);
1460 1461 1462 1463 1464 1465 1466 1467

	if (cs_found >= 0) {
		*nid = node_id;
		*chan_sel = channel;
	}
	return cs_found;
}

1468
static int f1x_translate_sysaddr_to_cs(struct amd64_pvt *pvt, u64 sys_addr,
1469 1470
				       int *node, int *chan_sel)
{
1471
	int range, cs_found = -EINVAL;
1472

1473
	for (range = 0; range < DRAM_RANGES; range++) {
1474

1475
		if (!dram_rw(pvt, range))
1476 1477
			continue;

1478 1479
		if ((get_dram_base(pvt, range)  <= sys_addr) &&
		    (get_dram_limit(pvt, range) >= sys_addr)) {
1480

1481
			cs_found = f1x_match_to_this_node(pvt, range,
1482 1483 1484 1485 1486 1487 1488 1489 1490 1491
							  sys_addr, node,
							  chan_sel);
			if (cs_found >= 0)
				break;
		}
	}
	return cs_found;
}

/*
1492 1493
 * For reference see "2.8.5 Routing DRAM Requests" in F10 BKDG. This code maps
 * a @sys_addr to NodeID, DCT (channel) and chip select (CSROW).
1494
 *
1495 1496
 * The @sys_addr is usually an error address received from the hardware
 * (MCX_ADDR).
1497
 */
1498
static void f1x_map_sysaddr_to_csrow(struct mem_ctl_info *mci, u64 sys_addr,
1499
				     u16 syndrome)
1500 1501 1502 1503 1504
{
	struct amd64_pvt *pvt = mci->pvt_info;
	u32 page, offset;
	int nid, csrow, chan = 0;

1505
	csrow = f1x_translate_sysaddr_to_cs(pvt, sys_addr, &nid, &chan);
1506

1507 1508 1509 1510 1511 1512
	if (csrow < 0) {
		edac_mc_handle_ce_no_info(mci, EDAC_MOD_STR);
		return;
	}

	error_address_to_page_and_offset(sys_addr, &page, &offset);
1513

1514 1515 1516 1517 1518
	/*
	 * We need the syndromes for channel detection only when we're
	 * ganged. Otherwise @chan should already contain the channel at
	 * this point.
	 */
1519
	if (dct_ganging_enabled(pvt))
1520
		chan = get_channel_from_ecc_syndrome(mci, syndrome);
1521

1522 1523 1524 1525
	if (chan >= 0)
		edac_mc_handle_ce(mci, page, offset, syndrome, csrow, chan,
				  EDAC_MOD_STR);
	else
1526
		/*
1527
		 * Channel unknown, report all channels on this CSROW as failed.
1528
		 */
1529
		for (chan = 0; chan < mci->csrows[csrow].nr_channels; chan++)
1530
			edac_mc_handle_ce(mci, page, offset, syndrome,
1531
					  csrow, chan, EDAC_MOD_STR);
1532 1533 1534
}

/*
1535
 * debug routine to display the memory sizes of all logical DIMMs and its
1536
 * CSROWs
1537
 */
1538
static void amd64_debug_display_dimm_sizes(int ctrl, struct amd64_pvt *pvt)
1539
{
1540
	int dimm, size0, size1, factor = 0;
1541 1542
	u32 *dcsb = ctrl ? pvt->csels[1].csbases : pvt->csels[0].csbases;
	u32 dbam  = ctrl ? pvt->dbam1 : pvt->dbam0;
1543

1544
	if (boot_cpu_data.x86 == 0xf) {
1545
		if (pvt->dclr0 & WIDTH_128)
1546 1547
			factor = 1;

1548
		/* K8 families < revF not supported yet */
1549
	       if (pvt->ext_model < K8_REV_F)
1550 1551 1552 1553 1554
			return;
	       else
		       WARN_ON(ctrl != 0);
	}

1555
	dbam = (ctrl && !dct_ganging_enabled(pvt)) ? pvt->dbam1 : pvt->dbam0;
1556 1557
	dcsb = (ctrl && !dct_ganging_enabled(pvt)) ? pvt->csels[1].csbases
						   : pvt->csels[0].csbases;
1558

1559
	debugf1("F2x%d80 (DRAM Bank Address Mapping): 0x%08x\n", ctrl, dbam);
1560

1561 1562
	edac_printk(KERN_DEBUG, EDAC_MC, "DCT%d chip selects:\n", ctrl);

1563 1564 1565 1566
	/* Dump memory sizes for DIMM and its CSROWs */
	for (dimm = 0; dimm < 4; dimm++) {

		size0 = 0;
1567
		if (dcsb[dimm*2] & DCSB_CS_ENABLE)
1568 1569
			size0 = pvt->ops->dbam_to_cs(pvt, ctrl,
						     DBAM_DIMM(dimm, dbam));
1570 1571

		size1 = 0;
1572
		if (dcsb[dimm*2 + 1] & DCSB_CS_ENABLE)
1573 1574
			size1 = pvt->ops->dbam_to_cs(pvt, ctrl,
						     DBAM_DIMM(dimm, dbam));
1575

1576 1577 1578
		amd64_info(EDAC_MC ": %d: %5dMB %d: %5dMB\n",
				dimm * 2,     size0 << factor,
				dimm * 2 + 1, size1 << factor);
1579 1580 1581
	}
}

1582 1583
static struct amd64_family_type amd64_family_types[] = {
	[K8_CPUS] = {
1584
		.ctl_name = "K8",
1585 1586
		.f1_id = PCI_DEVICE_ID_AMD_K8_NB_ADDRMAP,
		.f3_id = PCI_DEVICE_ID_AMD_K8_NB_MISC,
1587
		.ops = {
1588 1589 1590
			.early_channel_count	= k8_early_channel_count,
			.map_sysaddr_to_csrow	= k8_map_sysaddr_to_csrow,
			.dbam_to_cs		= k8_dbam_to_chip_select,
1591
			.read_dct_pci_cfg	= k8_read_dct_pci_cfg,
1592 1593 1594
		}
	},
	[F10_CPUS] = {
1595
		.ctl_name = "F10h",
1596 1597
		.f1_id = PCI_DEVICE_ID_AMD_10H_NB_MAP,
		.f3_id = PCI_DEVICE_ID_AMD_10H_NB_MISC,
1598
		.ops = {
1599
			.early_channel_count	= f1x_early_channel_count,
1600
			.map_sysaddr_to_csrow	= f1x_map_sysaddr_to_csrow,
1601
			.dbam_to_cs		= f10_dbam_to_chip_select,
1602 1603 1604 1605 1606
			.read_dct_pci_cfg	= f10_read_dct_pci_cfg,
		}
	},
	[F15_CPUS] = {
		.ctl_name = "F15h",
1607 1608
		.f1_id = PCI_DEVICE_ID_AMD_15H_NB_F1,
		.f3_id = PCI_DEVICE_ID_AMD_15H_NB_F3,
1609
		.ops = {
1610
			.early_channel_count	= f1x_early_channel_count,
1611
			.map_sysaddr_to_csrow	= f1x_map_sysaddr_to_csrow,
1612
			.dbam_to_cs		= f15_dbam_to_chip_select,
1613
			.read_dct_pci_cfg	= f15_read_dct_pci_cfg,
1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634
		}
	},
};

static struct pci_dev *pci_get_related_function(unsigned int vendor,
						unsigned int device,
						struct pci_dev *related)
{
	struct pci_dev *dev = NULL;

	dev = pci_get_device(vendor, device, dev);
	while (dev) {
		if ((dev->bus->number == related->bus->number) &&
		    (PCI_SLOT(dev->devfn) == PCI_SLOT(related->devfn)))
			break;
		dev = pci_get_device(vendor, device, dev);
	}

	return dev;
}

1635
/*
1636 1637 1638
 * These are tables of eigenvectors (one per line) which can be used for the
 * construction of the syndrome tables. The modified syndrome search algorithm
 * uses those to find the symbol in error and thus the DIMM.
1639
 *
1640
 * Algorithm courtesy of Ross LaFetra from AMD.
1641
 */
1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678
static u16 x4_vectors[] = {
	0x2f57, 0x1afe, 0x66cc, 0xdd88,
	0x11eb, 0x3396, 0x7f4c, 0xeac8,
	0x0001, 0x0002, 0x0004, 0x0008,
	0x1013, 0x3032, 0x4044, 0x8088,
	0x106b, 0x30d6, 0x70fc, 0xe0a8,
	0x4857, 0xc4fe, 0x13cc, 0x3288,
	0x1ac5, 0x2f4a, 0x5394, 0xa1e8,
	0x1f39, 0x251e, 0xbd6c, 0x6bd8,
	0x15c1, 0x2a42, 0x89ac, 0x4758,
	0x2b03, 0x1602, 0x4f0c, 0xca08,
	0x1f07, 0x3a0e, 0x6b04, 0xbd08,
	0x8ba7, 0x465e, 0x244c, 0x1cc8,
	0x2b87, 0x164e, 0x642c, 0xdc18,
	0x40b9, 0x80de, 0x1094, 0x20e8,
	0x27db, 0x1eb6, 0x9dac, 0x7b58,
	0x11c1, 0x2242, 0x84ac, 0x4c58,
	0x1be5, 0x2d7a, 0x5e34, 0xa718,
	0x4b39, 0x8d1e, 0x14b4, 0x28d8,
	0x4c97, 0xc87e, 0x11fc, 0x33a8,
	0x8e97, 0x497e, 0x2ffc, 0x1aa8,
	0x16b3, 0x3d62, 0x4f34, 0x8518,
	0x1e2f, 0x391a, 0x5cac, 0xf858,
	0x1d9f, 0x3b7a, 0x572c, 0xfe18,
	0x15f5, 0x2a5a, 0x5264, 0xa3b8,
	0x1dbb, 0x3b66, 0x715c, 0xe3f8,
	0x4397, 0xc27e, 0x17fc, 0x3ea8,
	0x1617, 0x3d3e, 0x6464, 0xb8b8,
	0x23ff, 0x12aa, 0xab6c, 0x56d8,
	0x2dfb, 0x1ba6, 0x913c, 0x7328,
	0x185d, 0x2ca6, 0x7914, 0x9e28,
	0x171b, 0x3e36, 0x7d7c, 0xebe8,
	0x4199, 0x82ee, 0x19f4, 0x2e58,
	0x4807, 0xc40e, 0x130c, 0x3208,
	0x1905, 0x2e0a, 0x5804, 0xac08,
	0x213f, 0x132a, 0xadfc, 0x5ba8,
	0x19a9, 0x2efe, 0xb5cc, 0x6f88,
1679 1680
};

1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703
static u16 x8_vectors[] = {
	0x0145, 0x028a, 0x2374, 0x43c8, 0xa1f0, 0x0520, 0x0a40, 0x1480,
	0x0211, 0x0422, 0x0844, 0x1088, 0x01b0, 0x44e0, 0x23c0, 0xed80,
	0x1011, 0x0116, 0x022c, 0x0458, 0x08b0, 0x8c60, 0x2740, 0x4e80,
	0x0411, 0x0822, 0x1044, 0x0158, 0x02b0, 0x2360, 0x46c0, 0xab80,
	0x0811, 0x1022, 0x012c, 0x0258, 0x04b0, 0x4660, 0x8cc0, 0x2780,
	0x2071, 0x40e2, 0xa0c4, 0x0108, 0x0210, 0x0420, 0x0840, 0x1080,
	0x4071, 0x80e2, 0x0104, 0x0208, 0x0410, 0x0820, 0x1040, 0x2080,
	0x8071, 0x0102, 0x0204, 0x0408, 0x0810, 0x1020, 0x2040, 0x4080,
	0x019d, 0x03d6, 0x136c, 0x2198, 0x50b0, 0xb2e0, 0x0740, 0x0e80,
	0x0189, 0x03ea, 0x072c, 0x0e58, 0x1cb0, 0x56e0, 0x37c0, 0xf580,
	0x01fd, 0x0376, 0x06ec, 0x0bb8, 0x1110, 0x2220, 0x4440, 0x8880,
	0x0163, 0x02c6, 0x1104, 0x0758, 0x0eb0, 0x2be0, 0x6140, 0xc280,
	0x02fd, 0x01c6, 0x0b5c, 0x1108, 0x07b0, 0x25a0, 0x8840, 0x6180,
	0x0801, 0x012e, 0x025c, 0x04b8, 0x1370, 0x26e0, 0x57c0, 0xb580,
	0x0401, 0x0802, 0x015c, 0x02b8, 0x22b0, 0x13e0, 0x7140, 0xe280,
	0x0201, 0x0402, 0x0804, 0x01b8, 0x11b0, 0x31a0, 0x8040, 0x7180,
	0x0101, 0x0202, 0x0404, 0x0808, 0x1010, 0x2020, 0x4040, 0x8080,
	0x0001, 0x0002, 0x0004, 0x0008, 0x0010, 0x0020, 0x0040, 0x0080,
	0x0100, 0x0200, 0x0400, 0x0800, 0x1000, 0x2000, 0x4000, 0x8000,
};

static int decode_syndrome(u16 syndrome, u16 *vectors, int num_vecs,
1704
			   int v_dim)
1705
{
1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723
	unsigned int i, err_sym;

	for (err_sym = 0; err_sym < num_vecs / v_dim; err_sym++) {
		u16 s = syndrome;
		int v_idx =  err_sym * v_dim;
		int v_end = (err_sym + 1) * v_dim;

		/* walk over all 16 bits of the syndrome */
		for (i = 1; i < (1U << 16); i <<= 1) {

			/* if bit is set in that eigenvector... */
			if (v_idx < v_end && vectors[v_idx] & i) {
				u16 ev_comp = vectors[v_idx++];

				/* ... and bit set in the modified syndrome, */
				if (s & i) {
					/* remove it. */
					s ^= ev_comp;
1724

1725 1726 1727
					if (!s)
						return err_sym;
				}
1728

1729 1730 1731 1732
			} else if (s & i)
				/* can't get to zero, move to next symbol */
				break;
		}
1733 1734 1735 1736 1737
	}

	debugf0("syndrome(%x) not found\n", syndrome);
	return -1;
}
1738

1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780
static int map_err_sym_to_channel(int err_sym, int sym_size)
{
	if (sym_size == 4)
		switch (err_sym) {
		case 0x20:
		case 0x21:
			return 0;
			break;
		case 0x22:
		case 0x23:
			return 1;
			break;
		default:
			return err_sym >> 4;
			break;
		}
	/* x8 symbols */
	else
		switch (err_sym) {
		/* imaginary bits not in a DIMM */
		case 0x10:
			WARN(1, KERN_ERR "Invalid error symbol: 0x%x\n",
					  err_sym);
			return -1;
			break;

		case 0x11:
			return 0;
			break;
		case 0x12:
			return 1;
			break;
		default:
			return err_sym >> 3;
			break;
		}
	return -1;
}

static int get_channel_from_ecc_syndrome(struct mem_ctl_info *mci, u16 syndrome)
{
	struct amd64_pvt *pvt = mci->pvt_info;
1781 1782
	int err_sym = -1;

1783
	if (pvt->ecc_sym_sz == 8)
1784 1785
		err_sym = decode_syndrome(syndrome, x8_vectors,
					  ARRAY_SIZE(x8_vectors),
1786 1787
					  pvt->ecc_sym_sz);
	else if (pvt->ecc_sym_sz == 4)
1788 1789
		err_sym = decode_syndrome(syndrome, x4_vectors,
					  ARRAY_SIZE(x4_vectors),
1790
					  pvt->ecc_sym_sz);
1791
	else {
1792
		amd64_warn("Illegal syndrome type: %u\n", pvt->ecc_sym_sz);
1793
		return err_sym;
1794
	}
1795

1796
	return map_err_sym_to_channel(err_sym, pvt->ecc_sym_sz);
1797 1798
}

1799 1800 1801 1802
/*
 * Handle any Correctable Errors (CEs) that have occurred. Check for valid ERROR
 * ADDRESS and process.
 */
1803
static void amd64_handle_ce(struct mem_ctl_info *mci, struct mce *m)
1804 1805
{
	struct amd64_pvt *pvt = mci->pvt_info;
1806
	u64 sys_addr;
1807
	u16 syndrome;
1808 1809

	/* Ensure that the Error Address is VALID */
1810
	if (!(m->status & MCI_STATUS_ADDRV)) {
1811
		amd64_mc_err(mci, "HW has no ERROR_ADDRESS available\n");
1812 1813 1814 1815
		edac_mc_handle_ce_no_info(mci, EDAC_MOD_STR);
		return;
	}

1816
	sys_addr = get_error_address(m);
1817
	syndrome = extract_syndrome(m->status);
1818

1819
	amd64_mc_err(mci, "CE ERROR_ADDRESS= 0x%llx\n", sys_addr);
1820

1821
	pvt->ops->map_sysaddr_to_csrow(mci, sys_addr, syndrome);
1822 1823 1824
}

/* Handle any Un-correctable Errors (UEs) */
1825
static void amd64_handle_ue(struct mem_ctl_info *mci, struct mce *m)
1826
{
1827
	struct mem_ctl_info *log_mci, *src_mci = NULL;
1828
	int csrow;
1829
	u64 sys_addr;
1830 1831 1832 1833
	u32 page, offset;

	log_mci = mci;

1834
	if (!(m->status & MCI_STATUS_ADDRV)) {
1835
		amd64_mc_err(mci, "HW has no ERROR_ADDRESS available\n");
1836 1837 1838 1839
		edac_mc_handle_ue_no_info(log_mci, EDAC_MOD_STR);
		return;
	}

1840
	sys_addr = get_error_address(m);
1841 1842 1843 1844 1845

	/*
	 * Find out which node the error address belongs to. This may be
	 * different from the node that detected the error.
	 */
1846
	src_mci = find_mc_by_sys_addr(mci, sys_addr);
1847
	if (!src_mci) {
1848 1849
		amd64_mc_err(mci, "ERROR ADDRESS (0x%lx) NOT mapped to a MC\n",
				  (unsigned long)sys_addr);
1850 1851 1852 1853 1854 1855
		edac_mc_handle_ue_no_info(log_mci, EDAC_MOD_STR);
		return;
	}

	log_mci = src_mci;

1856
	csrow = sys_addr_to_csrow(log_mci, sys_addr);
1857
	if (csrow < 0) {
1858 1859
		amd64_mc_err(mci, "ERROR_ADDRESS (0x%lx) NOT mapped to CS\n",
				  (unsigned long)sys_addr);
1860 1861
		edac_mc_handle_ue_no_info(log_mci, EDAC_MOD_STR);
	} else {
1862
		error_address_to_page_and_offset(sys_addr, &page, &offset);
1863 1864 1865 1866
		edac_mc_handle_ue(log_mci, page, offset, csrow, EDAC_MOD_STR);
	}
}

1867
static inline void __amd64_decode_bus_error(struct mem_ctl_info *mci,
1868
					    struct mce *m)
1869
{
1870 1871 1872
	u16 ec = EC(m->status);
	u8 xec = XEC(m->status, 0x1f);
	u8 ecc_type = (m->status >> 45) & 0x3;
1873

1874
	/* Bail early out if this was an 'observed' error */
1875
	if (PP(ec) == NBSL_PP_OBS)
1876
		return;
1877

1878 1879
	/* Do only ECC errors */
	if (xec && xec != F10_NBSL_EXT_ERR_ECC)
1880 1881
		return;

1882
	if (ecc_type == 2)
1883
		amd64_handle_ce(mci, m);
1884
	else if (ecc_type == 1)
1885
		amd64_handle_ue(mci, m);
1886 1887
}

1888
void amd64_decode_bus_error(int node_id, struct mce *m, u32 nbcfg)
1889
{
1890
	struct mem_ctl_info *mci = mcis[node_id];
1891

1892
	__amd64_decode_bus_error(mci, m);
1893 1894
}

1895
/*
1896
 * Use pvt->F2 which contains the F2 CPU PCI device to get the related
1897
 * F1 (AddrMap) and F3 (Misc) devices. Return negative value on error.
1898
 */
1899
static int reserve_mc_sibling_devs(struct amd64_pvt *pvt, u16 f1_id, u16 f3_id)
1900 1901
{
	/* Reserve the ADDRESS MAP Device */
1902 1903
	pvt->F1 = pci_get_related_function(pvt->F2->vendor, f1_id, pvt->F2);
	if (!pvt->F1) {
1904 1905 1906
		amd64_err("error address map device not found: "
			  "vendor %x device 0x%x (broken BIOS?)\n",
			  PCI_VENDOR_ID_AMD, f1_id);
1907
		return -ENODEV;
1908 1909 1910
	}

	/* Reserve the MISC Device */
1911 1912 1913 1914
	pvt->F3 = pci_get_related_function(pvt->F2->vendor, f3_id, pvt->F2);
	if (!pvt->F3) {
		pci_dev_put(pvt->F1);
		pvt->F1 = NULL;
1915

1916 1917 1918
		amd64_err("error F3 device not found: "
			  "vendor %x device 0x%x (broken BIOS?)\n",
			  PCI_VENDOR_ID_AMD, f3_id);
1919

1920
		return -ENODEV;
1921
	}
1922 1923 1924
	debugf1("F1: %s\n", pci_name(pvt->F1));
	debugf1("F2: %s\n", pci_name(pvt->F2));
	debugf1("F3: %s\n", pci_name(pvt->F3));
1925 1926 1927 1928

	return 0;
}

1929
static void free_mc_sibling_devs(struct amd64_pvt *pvt)
1930
{
1931 1932
	pci_dev_put(pvt->F1);
	pci_dev_put(pvt->F3);
1933 1934 1935 1936 1937 1938
}

/*
 * Retrieve the hardware registers of the memory controller (this includes the
 * 'Address Map' and 'Misc' device regs)
 */
1939
static void read_mc_regs(struct amd64_pvt *pvt)
1940
{
1941
	struct cpuinfo_x86 *c = &boot_cpu_data;
1942
	u64 msr_val;
1943
	u32 tmp;
1944
	int range;
1945 1946 1947 1948 1949

	/*
	 * Retrieve TOP_MEM and TOP_MEM2; no masking off of reserved bits since
	 * those are Read-As-Zero
	 */
1950 1951
	rdmsrl(MSR_K8_TOP_MEM1, pvt->top_mem);
	debugf0("  TOP_MEM:  0x%016llx\n", pvt->top_mem);
1952 1953 1954 1955

	/* check first whether TOP_MEM2 is enabled */
	rdmsrl(MSR_K8_SYSCFG, msr_val);
	if (msr_val & (1U << 21)) {
1956 1957
		rdmsrl(MSR_K8_TOP_MEM2, pvt->top_mem2);
		debugf0("  TOP_MEM2: 0x%016llx\n", pvt->top_mem2);
1958 1959 1960
	} else
		debugf0("  TOP_MEM2 disabled.\n");

1961
	amd64_read_pci_cfg(pvt->F3, NBCAP, &pvt->nbcap);
1962

1963
	read_dram_ctl_register(pvt);
1964

1965 1966
	for (range = 0; range < DRAM_RANGES; range++) {
		u8 rw;
1967

1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985
		/* read settings for this DRAM range */
		read_dram_base_limit_regs(pvt, range);

		rw = dram_rw(pvt, range);
		if (!rw)
			continue;

		debugf1("  DRAM range[%d], base: 0x%016llx; limit: 0x%016llx\n",
			range,
			get_dram_base(pvt, range),
			get_dram_limit(pvt, range));

		debugf1("   IntlvEn=%s; Range access: %s%s IntlvSel=%d DstNode=%d\n",
			dram_intlv_en(pvt, range) ? "Enabled" : "Disabled",
			(rw & 0x1) ? "R" : "-",
			(rw & 0x2) ? "W" : "-",
			dram_intlv_sel(pvt, range),
			dram_dst_node(pvt, range));
1986 1987
	}

1988
	read_dct_base_mask(pvt);
1989

1990
	amd64_read_pci_cfg(pvt->F1, DHAR, &pvt->dhar);
1991
	amd64_read_dct_pci_cfg(pvt, DBAM0, &pvt->dbam0);
1992

1993
	amd64_read_pci_cfg(pvt->F3, F10_ONLINE_SPARE, &pvt->online_spare);
1994

1995 1996
	amd64_read_dct_pci_cfg(pvt, DCLR0, &pvt->dclr0);
	amd64_read_dct_pci_cfg(pvt, DCHR0, &pvt->dchr0);
1997

1998
	if (!dct_ganging_enabled(pvt)) {
1999 2000
		amd64_read_dct_pci_cfg(pvt, DCLR1, &pvt->dclr1);
		amd64_read_dct_pci_cfg(pvt, DCHR1, &pvt->dchr1);
2001
	}
2002

2003 2004 2005
	pvt->ecc_sym_sz = 4;

	if (c->x86 >= 0x10) {
2006
		amd64_read_pci_cfg(pvt->F3, EXT_NB_MCA_CFG, &tmp);
2007
		amd64_read_dct_pci_cfg(pvt, DBAM1, &pvt->dbam1);
2008

2009 2010 2011 2012
		/* F10h, revD and later can do x8 ECC too */
		if ((c->x86 > 0x10 || c->x86_model > 7) && tmp & BIT(25))
			pvt->ecc_sym_sz = 8;
	}
2013
	dump_misc_regs(pvt);
2014 2015 2016 2017 2018 2019
}

/*
 * NOTE: CPU Revision Dependent code
 *
 * Input:
2020
 *	@csrow_nr ChipSelect Row Number (0..NUM_CHIPSELECTS-1)
2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049
 *	k8 private pointer to -->
 *			DRAM Bank Address mapping register
 *			node_id
 *			DCL register where dual_channel_active is
 *
 * The DBAM register consists of 4 sets of 4 bits each definitions:
 *
 * Bits:	CSROWs
 * 0-3		CSROWs 0 and 1
 * 4-7		CSROWs 2 and 3
 * 8-11		CSROWs 4 and 5
 * 12-15	CSROWs 6 and 7
 *
 * Values range from: 0 to 15
 * The meaning of the values depends on CPU revision and dual-channel state,
 * see relevant BKDG more info.
 *
 * The memory controller provides for total of only 8 CSROWs in its current
 * architecture. Each "pair" of CSROWs normally represents just one DIMM in
 * single channel or two (2) DIMMs in dual channel mode.
 *
 * The following code logic collapses the various tables for CSROW based on CPU
 * revision.
 *
 * Returns:
 *	The number of PAGE_SIZE pages on the specified CSROW number it
 *	encompasses
 *
 */
2050
static u32 amd64_csrow_nr_pages(struct amd64_pvt *pvt, u8 dct, int csrow_nr)
2051
{
2052
	u32 cs_mode, nr_pages;
2053 2054 2055 2056 2057 2058 2059 2060

	/*
	 * The math on this doesn't look right on the surface because x/2*4 can
	 * be simplified to x*2 but this expression makes use of the fact that
	 * it is integral math where 1/2=0. This intermediate value becomes the
	 * number of bits to shift the DBAM register to extract the proper CSROW
	 * field.
	 */
2061
	cs_mode = (pvt->dbam0 >> ((csrow_nr / 2) * 4)) & 0xF;
2062

2063
	nr_pages = pvt->ops->dbam_to_cs(pvt, dct, cs_mode) << (20 - PAGE_SHIFT);
2064 2065 2066 2067 2068 2069 2070

	/*
	 * If dual channel then double the memory size of single channel.
	 * Channel count is 1 or 2
	 */
	nr_pages <<= (pvt->channel_count - 1);

2071
	debugf0("  (csrow=%d) DBAM map index= %d\n", csrow_nr, cs_mode);
2072 2073 2074 2075 2076 2077 2078 2079 2080 2081
	debugf0("    nr_pages= %u  channel-count = %d\n",
		nr_pages, pvt->channel_count);

	return nr_pages;
}

/*
 * Initialize the array of csrow attribute instances, based on the values
 * from pci config hardware registers.
 */
2082
static int init_csrows(struct mem_ctl_info *mci)
2083 2084
{
	struct csrow_info *csrow;
2085
	struct amd64_pvt *pvt = mci->pvt_info;
2086
	u64 input_addr_min, input_addr_max, sys_addr, base, mask;
2087
	u32 val;
2088
	int i, empty = 1;
2089

2090
	amd64_read_pci_cfg(pvt->F3, NBCFG, &val);
2091

2092
	pvt->nbcfg = val;
2093

2094 2095
	debugf0("node %d, NBCFG=0x%08x[ChipKillEccCap: %d|DramEccEn: %d]\n",
		pvt->mc_node_id, val,
2096
		!!(val & NBCFG_CHIPKILL), !!(val & NBCFG_ECC_ENABLE));
2097

2098
	for_each_chip_select(i, 0, pvt) {
2099 2100
		csrow = &mci->csrows[i];

2101
		if (!csrow_enabled(i, 0, pvt)) {
2102 2103 2104 2105 2106 2107 2108 2109 2110
			debugf1("----CSROW %d EMPTY for node %d\n", i,
				pvt->mc_node_id);
			continue;
		}

		debugf1("----CSROW %d VALID for MC node %d\n",
			i, pvt->mc_node_id);

		empty = 0;
2111
		csrow->nr_pages = amd64_csrow_nr_pages(pvt, 0, i);
2112 2113 2114 2115 2116
		find_csrow_limits(mci, i, &input_addr_min, &input_addr_max);
		sys_addr = input_addr_to_sys_addr(mci, input_addr_min);
		csrow->first_page = (u32) (sys_addr >> PAGE_SHIFT);
		sys_addr = input_addr_to_sys_addr(mci, input_addr_max);
		csrow->last_page = (u32) (sys_addr >> PAGE_SHIFT);
2117 2118 2119

		get_cs_base_and_mask(pvt, i, 0, &base, &mask);
		csrow->page_mask = ~mask;
2120 2121
		/* 8 bytes of resolution */

2122
		csrow->mtype = amd64_determine_memory_type(pvt, i);
2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137

		debugf1("  for MC node %d csrow %d:\n", pvt->mc_node_id, i);
		debugf1("    input_addr_min: 0x%lx input_addr_max: 0x%lx\n",
			(unsigned long)input_addr_min,
			(unsigned long)input_addr_max);
		debugf1("    sys_addr: 0x%lx  page_mask: 0x%lx\n",
			(unsigned long)sys_addr, csrow->page_mask);
		debugf1("    nr_pages: %u  first_page: 0x%lx "
			"last_page: 0x%lx\n",
			(unsigned)csrow->nr_pages,
			csrow->first_page, csrow->last_page);

		/*
		 * determine whether CHIPKILL or JUST ECC or NO ECC is operating
		 */
2138
		if (pvt->nbcfg & NBCFG_ECC_ENABLE)
2139
			csrow->edac_mode =
2140
			    (pvt->nbcfg & NBCFG_CHIPKILL) ?
2141 2142 2143 2144 2145 2146 2147
			    EDAC_S4ECD4ED : EDAC_SECDED;
		else
			csrow->edac_mode = EDAC_NONE;
	}

	return empty;
}
2148

2149
/* get all cores on this DCT */
2150
static void get_cpus_on_this_dct_cpumask(struct cpumask *mask, unsigned nid)
2151 2152 2153 2154 2155 2156 2157 2158 2159
{
	int cpu;

	for_each_online_cpu(cpu)
		if (amd_get_nb_id(cpu) == nid)
			cpumask_set_cpu(cpu, mask);
}

/* check MCG_CTL on all the cpus on this node */
2160
static bool amd64_nb_mce_bank_enabled_on_node(unsigned nid)
2161 2162
{
	cpumask_var_t mask;
2163
	int cpu, nbe;
2164 2165 2166
	bool ret = false;

	if (!zalloc_cpumask_var(&mask, GFP_KERNEL)) {
2167
		amd64_warn("%s: Error allocating mask\n", __func__);
2168 2169 2170 2171 2172 2173 2174 2175
		return false;
	}

	get_cpus_on_this_dct_cpumask(mask, nid);

	rdmsr_on_cpus(mask, MSR_IA32_MCG_CTL, msrs);

	for_each_cpu(cpu, mask) {
2176
		struct msr *reg = per_cpu_ptr(msrs, cpu);
2177
		nbe = reg->l & MSR_MCGCTL_NBE;
2178 2179

		debugf0("core: %u, MCG_CTL: 0x%llx, NB MSR is %s\n",
2180
			cpu, reg->q,
2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192
			(nbe ? "enabled" : "disabled"));

		if (!nbe)
			goto out;
	}
	ret = true;

out:
	free_cpumask_var(mask);
	return ret;
}

2193
static int toggle_ecc_err_reporting(struct ecc_settings *s, u8 nid, bool on)
2194 2195
{
	cpumask_var_t cmask;
2196
	int cpu;
2197 2198

	if (!zalloc_cpumask_var(&cmask, GFP_KERNEL)) {
2199
		amd64_warn("%s: error allocating mask\n", __func__);
2200 2201 2202
		return false;
	}

2203
	get_cpus_on_this_dct_cpumask(cmask, nid);
2204 2205 2206 2207 2208

	rdmsr_on_cpus(cmask, MSR_IA32_MCG_CTL, msrs);

	for_each_cpu(cpu, cmask) {

2209 2210
		struct msr *reg = per_cpu_ptr(msrs, cpu);

2211
		if (on) {
2212
			if (reg->l & MSR_MCGCTL_NBE)
2213
				s->flags.nb_mce_enable = 1;
2214

2215
			reg->l |= MSR_MCGCTL_NBE;
2216 2217
		} else {
			/*
2218
			 * Turn off NB MCE reporting only when it was off before
2219
			 */
2220
			if (!s->flags.nb_mce_enable)
2221
				reg->l &= ~MSR_MCGCTL_NBE;
2222 2223 2224 2225 2226 2227 2228 2229 2230
		}
	}
	wrmsr_on_cpus(cmask, MSR_IA32_MCG_CTL, msrs);

	free_cpumask_var(cmask);

	return 0;
}

2231 2232
static bool enable_ecc_error_reporting(struct ecc_settings *s, u8 nid,
				       struct pci_dev *F3)
2233
{
2234
	bool ret = true;
B
Borislav Petkov 已提交
2235
	u32 value, mask = 0x3;		/* UECC/CECC enable */
2236

2237 2238 2239 2240 2241
	if (toggle_ecc_err_reporting(s, nid, ON)) {
		amd64_warn("Error enabling ECC reporting over MCGCTL!\n");
		return false;
	}

B
Borislav Petkov 已提交
2242
	amd64_read_pci_cfg(F3, NBCTL, &value);
2243

2244 2245
	s->old_nbctl   = value & mask;
	s->nbctl_valid = true;
2246 2247

	value |= mask;
B
Borislav Petkov 已提交
2248
	amd64_write_pci_cfg(F3, NBCTL, value);
2249

2250
	amd64_read_pci_cfg(F3, NBCFG, &value);
2251

2252 2253
	debugf0("1: node %d, NBCFG=0x%08x[DramEccEn: %d]\n",
		nid, value, !!(value & NBCFG_ECC_ENABLE));
2254

2255
	if (!(value & NBCFG_ECC_ENABLE)) {
2256
		amd64_warn("DRAM ECC disabled on this node, enabling...\n");
2257

2258
		s->flags.nb_ecc_prev = 0;
2259

2260
		/* Attempt to turn on DRAM ECC Enable */
2261 2262
		value |= NBCFG_ECC_ENABLE;
		amd64_write_pci_cfg(F3, NBCFG, value);
2263

2264
		amd64_read_pci_cfg(F3, NBCFG, &value);
2265

2266
		if (!(value & NBCFG_ECC_ENABLE)) {
2267 2268
			amd64_warn("Hardware rejected DRAM ECC enable,"
				   "check memory DIMM configuration.\n");
2269
			ret = false;
2270
		} else {
2271
			amd64_info("Hardware accepted DRAM ECC Enable\n");
2272
		}
2273
	} else {
2274
		s->flags.nb_ecc_prev = 1;
2275
	}
2276

2277 2278
	debugf0("2: node %d, NBCFG=0x%08x[DramEccEn: %d]\n",
		nid, value, !!(value & NBCFG_ECC_ENABLE));
2279

2280
	return ret;
2281 2282
}

2283 2284
static void restore_ecc_error_reporting(struct ecc_settings *s, u8 nid,
					struct pci_dev *F3)
2285
{
B
Borislav Petkov 已提交
2286 2287
	u32 value, mask = 0x3;		/* UECC/CECC enable */

2288

2289
	if (!s->nbctl_valid)
2290 2291
		return;

B
Borislav Petkov 已提交
2292
	amd64_read_pci_cfg(F3, NBCTL, &value);
2293
	value &= ~mask;
2294
	value |= s->old_nbctl;
2295

B
Borislav Petkov 已提交
2296
	amd64_write_pci_cfg(F3, NBCTL, value);
2297

2298 2299
	/* restore previous BIOS DRAM ECC "off" setting we force-enabled */
	if (!s->flags.nb_ecc_prev) {
2300 2301 2302
		amd64_read_pci_cfg(F3, NBCFG, &value);
		value &= ~NBCFG_ECC_ENABLE;
		amd64_write_pci_cfg(F3, NBCFG, value);
2303 2304 2305
	}

	/* restore the NB Enable MCGCTL bit */
2306
	if (toggle_ecc_err_reporting(s, nid, OFF))
2307
		amd64_warn("Error restoring NB MCGCTL settings!\n");
2308 2309 2310
}

/*
2311 2312 2313 2314
 * EDAC requires that the BIOS have ECC enabled before
 * taking over the processing of ECC errors. A command line
 * option allows to force-enable hardware ECC later in
 * enable_ecc_error_reporting().
2315
 */
2316 2317 2318 2319 2320
static const char *ecc_msg =
	"ECC disabled in the BIOS or no ECC capability, module will not load.\n"
	" Either enable ECC checking or force module loading by setting "
	"'ecc_enable_override'.\n"
	" (Note that use of the override may cause unknown side effects.)\n";
2321

2322
static bool ecc_enabled(struct pci_dev *F3, u8 nid)
2323 2324
{
	u32 value;
2325
	u8 ecc_en = 0;
2326
	bool nb_mce_en = false;
2327

2328
	amd64_read_pci_cfg(F3, NBCFG, &value);
2329

2330
	ecc_en = !!(value & NBCFG_ECC_ENABLE);
2331
	amd64_info("DRAM ECC %s.\n", (ecc_en ? "enabled" : "disabled"));
2332

2333
	nb_mce_en = amd64_nb_mce_bank_enabled_on_node(nid);
2334
	if (!nb_mce_en)
2335 2336 2337
		amd64_notice("NB MCE bank disabled, set MSR "
			     "0x%08x[4] on node %d to enable.\n",
			     MSR_IA32_MCG_CTL, nid);
2338

2339 2340 2341 2342 2343
	if (!ecc_en || !nb_mce_en) {
		amd64_notice("%s", ecc_msg);
		return false;
	}
	return true;
2344 2345
}

2346 2347 2348 2349 2350 2351
struct mcidev_sysfs_attribute sysfs_attrs[ARRAY_SIZE(amd64_dbg_attrs) +
					  ARRAY_SIZE(amd64_inj_attrs) +
					  1];

struct mcidev_sysfs_attribute terminator = { .attr = { .name = NULL } };

2352
static void set_mc_sysfs_attrs(struct mem_ctl_info *mci)
2353 2354 2355 2356 2357 2358
{
	unsigned int i = 0, j = 0;

	for (; i < ARRAY_SIZE(amd64_dbg_attrs); i++)
		sysfs_attrs[i] = amd64_dbg_attrs[i];

2359 2360 2361
	if (boot_cpu_data.x86 >= 0x10)
		for (j = 0; j < ARRAY_SIZE(amd64_inj_attrs); j++, i++)
			sysfs_attrs[i] = amd64_inj_attrs[j];
2362 2363 2364 2365 2366 2367

	sysfs_attrs[i] = terminator;

	mci->mc_driver_sysfs_attributes = sysfs_attrs;
}

2368 2369
static void setup_mci_misc_attrs(struct mem_ctl_info *mci,
				 struct amd64_family_type *fam)
2370 2371 2372 2373 2374 2375
{
	struct amd64_pvt *pvt = mci->pvt_info;

	mci->mtype_cap		= MEM_FLAG_DDR2 | MEM_FLAG_RDDR2;
	mci->edac_ctl_cap	= EDAC_FLAG_NONE;

2376
	if (pvt->nbcap & NBCAP_SECDED)
2377 2378
		mci->edac_ctl_cap |= EDAC_FLAG_SECDED;

2379
	if (pvt->nbcap & NBCAP_CHIPKILL)
2380 2381 2382 2383 2384
		mci->edac_ctl_cap |= EDAC_FLAG_S4ECD4ED;

	mci->edac_cap		= amd64_determine_edac_cap(pvt);
	mci->mod_name		= EDAC_MOD_STR;
	mci->mod_ver		= EDAC_AMD64_VERSION;
2385
	mci->ctl_name		= fam->ctl_name;
2386
	mci->dev_name		= pci_name(pvt->F2);
2387 2388 2389 2390 2391 2392 2393
	mci->ctl_page_to_phys	= NULL;

	/* memory scrubber interface */
	mci->set_sdram_scrub_rate = amd64_set_scrub_rate;
	mci->get_sdram_scrub_rate = amd64_get_scrub_rate;
}

2394 2395 2396 2397
/*
 * returns a pointer to the family descriptor on success, NULL otherwise.
 */
static struct amd64_family_type *amd64_per_family_init(struct amd64_pvt *pvt)
2398
{
2399 2400 2401 2402
	u8 fam = boot_cpu_data.x86;
	struct amd64_family_type *fam_type = NULL;

	switch (fam) {
2403
	case 0xf:
2404
		fam_type		= &amd64_family_types[K8_CPUS];
2405
		pvt->ops		= &amd64_family_types[K8_CPUS].ops;
2406
		break;
2407

2408
	case 0x10:
2409
		fam_type		= &amd64_family_types[F10_CPUS];
2410
		pvt->ops		= &amd64_family_types[F10_CPUS].ops;
2411 2412 2413 2414 2415
		break;

	case 0x15:
		fam_type		= &amd64_family_types[F15_CPUS];
		pvt->ops		= &amd64_family_types[F15_CPUS].ops;
2416 2417 2418
		break;

	default:
2419
		amd64_err("Unsupported family!\n");
2420
		return NULL;
2421
	}
2422

2423 2424
	pvt->ext_model = boot_cpu_data.x86_model >> 4;

2425
	amd64_info("%s %sdetected (node %d).\n", fam_type->ctl_name,
2426
		     (fam == 0xf ?
2427 2428 2429
				(pvt->ext_model >= K8_REV_F  ? "revF or later "
							     : "revE or earlier ")
				 : ""), pvt->mc_node_id);
2430
	return fam_type;
2431 2432
}

2433
static int amd64_init_one_instance(struct pci_dev *F2)
2434 2435
{
	struct amd64_pvt *pvt = NULL;
2436
	struct amd64_family_type *fam_type = NULL;
2437
	struct mem_ctl_info *mci = NULL;
2438
	int err = 0, ret;
2439
	u8 nid = get_node_id(F2);
2440 2441 2442 2443

	ret = -ENOMEM;
	pvt = kzalloc(sizeof(struct amd64_pvt), GFP_KERNEL);
	if (!pvt)
2444
		goto err_ret;
2445

2446
	pvt->mc_node_id	= nid;
2447
	pvt->F2 = F2;
2448

2449
	ret = -EINVAL;
2450 2451
	fam_type = amd64_per_family_init(pvt);
	if (!fam_type)
2452 2453
		goto err_free;

2454
	ret = -ENODEV;
2455
	err = reserve_mc_sibling_devs(pvt, fam_type->f1_id, fam_type->f3_id);
2456 2457 2458
	if (err)
		goto err_free;

2459
	read_mc_regs(pvt);
2460 2461 2462 2463

	/*
	 * We need to determine how many memory channels there are. Then use
	 * that information for calculating the size of the dynamic instance
2464
	 * tables in the 'mci' structure.
2465
	 */
2466
	ret = -EINVAL;
2467 2468
	pvt->channel_count = pvt->ops->early_channel_count(pvt);
	if (pvt->channel_count < 0)
2469
		goto err_siblings;
2470 2471

	ret = -ENOMEM;
2472
	mci = edac_mc_alloc(0, pvt->csels[0].b_cnt, pvt->channel_count, nid);
2473
	if (!mci)
2474
		goto err_siblings;
2475 2476

	mci->pvt_info = pvt;
2477
	mci->dev = &pvt->F2->dev;
2478

2479
	setup_mci_misc_attrs(mci, fam_type);
2480 2481

	if (init_csrows(mci))
2482 2483
		mci->edac_cap = EDAC_FLAG_NONE;

2484
	set_mc_sysfs_attrs(mci);
2485 2486 2487 2488 2489 2490 2491

	ret = -ENODEV;
	if (edac_mc_add_mc(mci)) {
		debugf1("failed edac_mc_add_mc()\n");
		goto err_add_mc;
	}

2492 2493 2494 2495 2496 2497
	/* register stuff with EDAC MCE */
	if (report_gart_errors)
		amd_report_gart_errors(true);

	amd_register_ecc_decoder(amd64_decode_bus_error);

2498 2499 2500 2501
	mcis[nid] = mci;

	atomic_inc(&drv_instances);

2502 2503 2504 2505 2506
	return 0;

err_add_mc:
	edac_mc_free(mci);

2507 2508
err_siblings:
	free_mc_sibling_devs(pvt);
2509

2510 2511
err_free:
	kfree(pvt);
2512

2513
err_ret:
2514 2515 2516
	return ret;
}

2517
static int __devinit amd64_probe_one_instance(struct pci_dev *pdev,
2518
					     const struct pci_device_id *mc_type)
2519
{
2520
	u8 nid = get_node_id(pdev);
2521
	struct pci_dev *F3 = node_to_amd_nb(nid)->misc;
2522
	struct ecc_settings *s;
2523
	int ret = 0;
2524 2525

	ret = pci_enable_device(pdev);
2526 2527 2528 2529
	if (ret < 0) {
		debugf0("ret=%d\n", ret);
		return -EIO;
	}
2530

2531 2532 2533
	ret = -ENOMEM;
	s = kzalloc(sizeof(struct ecc_settings), GFP_KERNEL);
	if (!s)
2534
		goto err_out;
2535 2536 2537

	ecc_stngs[nid] = s;

2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550
	if (!ecc_enabled(F3, nid)) {
		ret = -ENODEV;

		if (!ecc_enable_override)
			goto err_enable;

		amd64_warn("Forcing ECC on!\n");

		if (!enable_ecc_error_reporting(s, nid, F3))
			goto err_enable;
	}

	ret = amd64_init_one_instance(pdev);
2551
	if (ret < 0) {
2552
		amd64_err("Error probing instance: %d\n", nid);
2553 2554
		restore_ecc_error_reporting(s, nid, F3);
	}
2555 2556

	return ret;
2557 2558 2559 2560 2561 2562 2563

err_enable:
	kfree(s);
	ecc_stngs[nid] = NULL;

err_out:
	return ret;
2564 2565 2566 2567 2568 2569
}

static void __devexit amd64_remove_one_instance(struct pci_dev *pdev)
{
	struct mem_ctl_info *mci;
	struct amd64_pvt *pvt;
2570 2571 2572
	u8 nid = get_node_id(pdev);
	struct pci_dev *F3 = node_to_amd_nb(nid)->misc;
	struct ecc_settings *s = ecc_stngs[nid];
2573 2574 2575 2576 2577 2578 2579 2580

	/* Remove from EDAC CORE tracking list */
	mci = edac_mc_del_mc(&pdev->dev);
	if (!mci)
		return;

	pvt = mci->pvt_info;

2581
	restore_ecc_error_reporting(s, nid, F3);
2582

2583
	free_mc_sibling_devs(pvt);
2584

2585 2586 2587 2588
	/* unregister from EDAC MCE */
	amd_report_gart_errors(false);
	amd_unregister_ecc_decoder(amd64_decode_bus_error);

2589 2590
	kfree(ecc_stngs[nid]);
	ecc_stngs[nid] = NULL;
2591

2592
	/* Free the EDAC CORE resources */
2593
	mci->pvt_info = NULL;
2594
	mcis[nid] = NULL;
2595 2596

	kfree(pvt);
2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621
	edac_mc_free(mci);
}

/*
 * This table is part of the interface for loading drivers for PCI devices. The
 * PCI core identifies what devices are on a system during boot, and then
 * inquiry this table to see if this driver is for a given device found.
 */
static const struct pci_device_id amd64_pci_table[] __devinitdata = {
	{
		.vendor		= PCI_VENDOR_ID_AMD,
		.device		= PCI_DEVICE_ID_AMD_K8_NB_MEMCTL,
		.subvendor	= PCI_ANY_ID,
		.subdevice	= PCI_ANY_ID,
		.class		= 0,
		.class_mask	= 0,
	},
	{
		.vendor		= PCI_VENDOR_ID_AMD,
		.device		= PCI_DEVICE_ID_AMD_10H_NB_DRAM,
		.subvendor	= PCI_ANY_ID,
		.subdevice	= PCI_ANY_ID,
		.class		= 0,
		.class_mask	= 0,
	},
2622 2623 2624 2625 2626 2627 2628 2629 2630
	{
		.vendor		= PCI_VENDOR_ID_AMD,
		.device		= PCI_DEVICE_ID_AMD_15H_NB_F2,
		.subvendor	= PCI_ANY_ID,
		.subdevice	= PCI_ANY_ID,
		.class		= 0,
		.class_mask	= 0,
	},

2631 2632 2633 2634 2635 2636
	{0, }
};
MODULE_DEVICE_TABLE(pci, amd64_pci_table);

static struct pci_driver amd64_pci_driver = {
	.name		= EDAC_MOD_STR,
2637
	.probe		= amd64_probe_one_instance,
2638 2639 2640 2641
	.remove		= __devexit_p(amd64_remove_one_instance),
	.id_table	= amd64_pci_table,
};

2642
static void setup_pci_device(void)
2643 2644 2645 2646 2647 2648 2649
{
	struct mem_ctl_info *mci;
	struct amd64_pvt *pvt;

	if (amd64_ctl_pci)
		return;

2650
	mci = mcis[0];
2651 2652 2653 2654
	if (mci) {

		pvt = mci->pvt_info;
		amd64_ctl_pci =
2655
			edac_pci_create_generic_ctl(&pvt->F2->dev, EDAC_MOD_STR);
2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668

		if (!amd64_ctl_pci) {
			pr_warning("%s(): Unable to create PCI control\n",
				   __func__);

			pr_warning("%s(): PCI error report via EDAC not set\n",
				   __func__);
			}
	}
}

static int __init amd64_edac_init(void)
{
2669
	int err = -ENODEV;
2670

2671
	printk(KERN_INFO "AMD64 EDAC driver v%s\n", EDAC_AMD64_VERSION);
2672 2673 2674

	opstate_init();

2675
	if (amd_cache_northbridges() < 0)
2676
		goto err_ret;
2677

2678
	err = -ENOMEM;
2679 2680
	mcis	  = kzalloc(amd_nb_num() * sizeof(mcis[0]), GFP_KERNEL);
	ecc_stngs = kzalloc(amd_nb_num() * sizeof(ecc_stngs[0]), GFP_KERNEL);
2681
	if (!(mcis && ecc_stngs))
2682 2683
		goto err_ret;

2684
	msrs = msrs_alloc();
2685
	if (!msrs)
2686
		goto err_free;
2687

2688 2689
	err = pci_register_driver(&amd64_pci_driver);
	if (err)
2690
		goto err_pci;
2691

2692
	err = -ENODEV;
2693 2694
	if (!atomic_read(&drv_instances))
		goto err_no_instances;
2695

2696 2697
	setup_pci_device();
	return 0;
2698

2699
err_no_instances:
2700
	pci_unregister_driver(&amd64_pci_driver);
2701

2702 2703 2704
err_pci:
	msrs_free(msrs);
	msrs = NULL;
2705

2706 2707 2708 2709 2710 2711 2712
err_free:
	kfree(mcis);
	mcis = NULL;

	kfree(ecc_stngs);
	ecc_stngs = NULL;

2713
err_ret:
2714 2715 2716 2717 2718 2719 2720 2721 2722
	return err;
}

static void __exit amd64_edac_exit(void)
{
	if (amd64_ctl_pci)
		edac_pci_release_generic_ctl(amd64_ctl_pci);

	pci_unregister_driver(&amd64_pci_driver);
2723

2724 2725 2726
	kfree(ecc_stngs);
	ecc_stngs = NULL;

2727 2728 2729
	kfree(mcis);
	mcis = NULL;

2730 2731
	msrs_free(msrs);
	msrs = NULL;
2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744
}

module_init(amd64_edac_init);
module_exit(amd64_edac_exit);

MODULE_LICENSE("GPL");
MODULE_AUTHOR("SoftwareBitMaker: Doug Thompson, "
		"Dave Peterson, Thayne Harbaugh");
MODULE_DESCRIPTION("MC support for AMD64 memory controllers - "
		EDAC_AMD64_VERSION);

module_param(edac_op_state, int, 0444);
MODULE_PARM_DESC(edac_op_state, "EDAC Error Reporting state: 0=Poll,1=NMI");