amd64_edac.c 70.1 KB
Newer Older
1
#include "amd64_edac.h"
2
#include <asm/amd_nb.h>
3 4 5 6 7 8 9 10 11 12 13 14 15

static struct edac_pci_ctl_info *amd64_ctl_pci;

static int report_gart_errors;
module_param(report_gart_errors, int, 0644);

/*
 * Set by command line parameter. If BIOS has enabled the ECC, this override is
 * cleared to prevent re-enabling the hardware by this driver.
 */
static int ecc_enable_override;
module_param(ecc_enable_override, int, 0644);

16
static struct msr __percpu *msrs;
17

18 19 20 21 22
/*
 * count successfully initialized driver instances for setup_pci_device()
 */
static atomic_t drv_instances = ATOMIC_INIT(0);

23 24
/* Per-node driver instances */
static struct mem_ctl_info **mcis;
25
static struct ecc_settings **ecc_stngs;
26

27 28 29 30 31 32 33
/*
 * Valid scrub rates for the K8 hardware memory scrubber. We map the scrubbing
 * bandwidth to a valid bit pattern. The 'set' operation finds the 'matching-
 * or higher value'.
 *
 *FIXME: Produce a better mapping/linearisation.
 */
34 35 36 37
struct scrubrate {
       u32 scrubval;           /* bit pattern for scrub rate */
       u32 bandwidth;          /* bandwidth consumed (bytes/sec) */
} scrubrates[] = {
38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62
	{ 0x01, 1600000000UL},
	{ 0x02, 800000000UL},
	{ 0x03, 400000000UL},
	{ 0x04, 200000000UL},
	{ 0x05, 100000000UL},
	{ 0x06, 50000000UL},
	{ 0x07, 25000000UL},
	{ 0x08, 12284069UL},
	{ 0x09, 6274509UL},
	{ 0x0A, 3121951UL},
	{ 0x0B, 1560975UL},
	{ 0x0C, 781440UL},
	{ 0x0D, 390720UL},
	{ 0x0E, 195300UL},
	{ 0x0F, 97650UL},
	{ 0x10, 48854UL},
	{ 0x11, 24427UL},
	{ 0x12, 12213UL},
	{ 0x13, 6101UL},
	{ 0x14, 3051UL},
	{ 0x15, 1523UL},
	{ 0x16, 761UL},
	{ 0x00, 0UL},        /* scrubbing off */
};

63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135
static int __amd64_read_pci_cfg_dword(struct pci_dev *pdev, int offset,
				      u32 *val, const char *func)
{
	int err = 0;

	err = pci_read_config_dword(pdev, offset, val);
	if (err)
		amd64_warn("%s: error reading F%dx%03x.\n",
			   func, PCI_FUNC(pdev->devfn), offset);

	return err;
}

int __amd64_write_pci_cfg_dword(struct pci_dev *pdev, int offset,
				u32 val, const char *func)
{
	int err = 0;

	err = pci_write_config_dword(pdev, offset, val);
	if (err)
		amd64_warn("%s: error writing to F%dx%03x.\n",
			   func, PCI_FUNC(pdev->devfn), offset);

	return err;
}

/*
 *
 * Depending on the family, F2 DCT reads need special handling:
 *
 * K8: has a single DCT only
 *
 * F10h: each DCT has its own set of regs
 *	DCT0 -> F2x040..
 *	DCT1 -> F2x140..
 *
 * F15h: we select which DCT we access using F1x10C[DctCfgSel]
 *
 */
static int k8_read_dct_pci_cfg(struct amd64_pvt *pvt, int addr, u32 *val,
			       const char *func)
{
	if (addr >= 0x100)
		return -EINVAL;

	return __amd64_read_pci_cfg_dword(pvt->F2, addr, val, func);
}

static int f10_read_dct_pci_cfg(struct amd64_pvt *pvt, int addr, u32 *val,
				 const char *func)
{
	return __amd64_read_pci_cfg_dword(pvt->F2, addr, val, func);
}

static int f15_read_dct_pci_cfg(struct amd64_pvt *pvt, int addr, u32 *val,
				 const char *func)
{
	u32 reg = 0;
	u8 dct  = 0;

	if (addr >= 0x140 && addr <= 0x1a0) {
		dct   = 1;
		addr -= 0x100;
	}

	amd64_read_pci_cfg(pvt->F1, DCT_CFG_SEL, &reg);
	reg &= 0xfffffffe;
	reg |= dct;
	amd64_write_pci_cfg(pvt->F1, DCT_CFG_SEL, reg);

	return __amd64_read_pci_cfg_dword(pvt->F2, addr, val, func);
}

136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153
/*
 * Memory scrubber control interface. For K8, memory scrubbing is handled by
 * hardware and can involve L2 cache, dcache as well as the main memory. With
 * F10, this is extended to L3 cache scrubbing on CPU models sporting that
 * functionality.
 *
 * This causes the "units" for the scrubbing speed to vary from 64 byte blocks
 * (dram) over to cache lines. This is nasty, so we will use bandwidth in
 * bytes/sec for the setting.
 *
 * Currently, we only do dram scrubbing. If the scrubbing is done in software on
 * other archs, we might not have access to the caches directly.
 */

/*
 * scan the scrub rate mapping table for a close or matching bandwidth value to
 * issue. If requested is too big, then use last maximum value found.
 */
154
static int __amd64_set_scrub_rate(struct pci_dev *ctl, u32 new_bw, u32 min_rate)
155 156 157 158 159 160 161 162 163 164 165 166 167 168 169
{
	u32 scrubval;
	int i;

	/*
	 * map the configured rate (new_bw) to a value specific to the AMD64
	 * memory controller and apply to register. Search for the first
	 * bandwidth entry that is greater or equal than the setting requested
	 * and program that. If at last entry, turn off DRAM scrubbing.
	 */
	for (i = 0; i < ARRAY_SIZE(scrubrates); i++) {
		/*
		 * skip scrub rates which aren't recommended
		 * (see F10 BKDG, F3x58)
		 */
170
		if (scrubrates[i].scrubval < min_rate)
171 172 173 174 175 176 177 178 179 180 181 182 183 184
			continue;

		if (scrubrates[i].bandwidth <= new_bw)
			break;

		/*
		 * if no suitable bandwidth found, turn off DRAM scrubbing
		 * entirely by falling back to the last element in the
		 * scrubrates array.
		 */
	}

	scrubval = scrubrates[i].scrubval;

185
	pci_write_bits32(ctl, SCRCTRL, scrubval, 0x001F);
186

187 188 189
	if (scrubval)
		return scrubrates[i].bandwidth;

190 191 192
	return 0;
}

193
static int amd64_set_scrub_rate(struct mem_ctl_info *mci, u32 bw)
194 195
{
	struct amd64_pvt *pvt = mci->pvt_info;
196
	u32 min_scrubrate = 0x5;
197

198 199 200 201
	if (boot_cpu_data.x86 == 0xf)
		min_scrubrate = 0x0;

	return __amd64_set_scrub_rate(pvt->F3, bw, min_scrubrate);
202 203
}

204
static int amd64_get_scrub_rate(struct mem_ctl_info *mci)
205 206 207
{
	struct amd64_pvt *pvt = mci->pvt_info;
	u32 scrubval = 0;
208
	int i, retval = -EINVAL;
209

210
	amd64_read_pci_cfg(pvt->F3, SCRCTRL, &scrubval);
211 212 213

	scrubval = scrubval & 0x001F;

214
	amd64_debug("pci-read, sdram scrub control value: %d\n", scrubval);
215

216
	for (i = 0; i < ARRAY_SIZE(scrubrates); i++) {
217
		if (scrubrates[i].scrubval == scrubval) {
218
			retval = scrubrates[i].bandwidth;
219 220 221
			break;
		}
	}
222
	return retval;
223 224
}

225
/*
226 227
 * returns true if the SysAddr given by sys_addr matches the
 * DRAM base/limit associated with node_id
228
 */
229
static bool amd64_base_limit_match(struct amd64_pvt *pvt, u64 sys_addr, int nid)
230
{
231
	u64 addr;
232 233 234 235 236 237 238 239 240

	/* The K8 treats this as a 40-bit value.  However, bits 63-40 will be
	 * all ones if the most significant implemented address bit is 1.
	 * Here we discard bits 63-40.  See section 3.4.2 of AMD publication
	 * 24592: AMD x86-64 Architecture Programmer's Manual Volume 1
	 * Application Programming.
	 */
	addr = sys_addr & 0x000000ffffffffffull;

241 242
	return ((addr >= get_dram_base(pvt, nid)) &&
		(addr <= get_dram_limit(pvt, nid)));
243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268
}

/*
 * Attempt to map a SysAddr to a node. On success, return a pointer to the
 * mem_ctl_info structure for the node that the SysAddr maps to.
 *
 * On failure, return NULL.
 */
static struct mem_ctl_info *find_mc_by_sys_addr(struct mem_ctl_info *mci,
						u64 sys_addr)
{
	struct amd64_pvt *pvt;
	int node_id;
	u32 intlv_en, bits;

	/*
	 * Here we use the DRAM Base (section 3.4.4.1) and DRAM Limit (section
	 * 3.4.4.2) registers to map the SysAddr to a node ID.
	 */
	pvt = mci->pvt_info;

	/*
	 * The value of this field should be the same for all DRAM Base
	 * registers.  Therefore we arbitrarily choose to read it from the
	 * register for node 0.
	 */
269
	intlv_en = dram_intlv_en(pvt, 0);
270 271

	if (intlv_en == 0) {
272
		for (node_id = 0; node_id < DRAM_RANGES; node_id++) {
273
			if (amd64_base_limit_match(pvt, sys_addr, node_id))
274
				goto found;
275
		}
276
		goto err_no_match;
277 278
	}

279 280 281
	if (unlikely((intlv_en != 0x01) &&
		     (intlv_en != 0x03) &&
		     (intlv_en != 0x07))) {
282
		amd64_warn("DRAM Base[IntlvEn] junk value: 0x%x, BIOS bug?\n", intlv_en);
283 284 285 286 287 288
		return NULL;
	}

	bits = (((u32) sys_addr) >> 12) & intlv_en;

	for (node_id = 0; ; ) {
289
		if ((dram_intlv_sel(pvt, node_id) & intlv_en) == bits)
290 291
			break;	/* intlv_sel field matches */

292
		if (++node_id >= DRAM_RANGES)
293 294 295 296 297
			goto err_no_match;
	}

	/* sanity test for sys_addr */
	if (unlikely(!amd64_base_limit_match(pvt, sys_addr, node_id))) {
298 299 300
		amd64_warn("%s: sys_addr 0x%llx falls outside base/limit address"
			   "range for node %d with node interleaving enabled.\n",
			   __func__, sys_addr, node_id);
301 302 303 304 305 306 307 308 309 310 311 312
		return NULL;
	}

found:
	return edac_mc_find(node_id);

err_no_match:
	debugf2("sys_addr 0x%lx doesn't match any node\n",
		(unsigned long)sys_addr);

	return NULL;
}
313 314

/*
315 316
 * compute the CS base address of the @csrow on the DRAM controller @dct.
 * For details see F2x[5C:40] in the processor's BKDG
317
 */
318 319
static void get_cs_base_and_mask(struct amd64_pvt *pvt, int csrow, u8 dct,
				 u64 *base, u64 *mask)
320
{
321 322
	u64 csbase, csmask, base_bits, mask_bits;
	u8 addr_shift;
323

324 325 326 327 328 329 330 331 332 333
	if (boot_cpu_data.x86 == 0xf && pvt->ext_model < K8_REV_F) {
		csbase		= pvt->csels[dct].csbases[csrow];
		csmask		= pvt->csels[dct].csmasks[csrow];
		base_bits	= GENMASK(21, 31) | GENMASK(9, 15);
		mask_bits	= GENMASK(21, 29) | GENMASK(9, 15);
		addr_shift	= 4;
	} else {
		csbase		= pvt->csels[dct].csbases[csrow];
		csmask		= pvt->csels[dct].csmasks[csrow >> 1];
		addr_shift	= 8;
334

335 336 337 338 339
		if (boot_cpu_data.x86 == 0x15)
			base_bits = mask_bits = GENMASK(19,30) | GENMASK(5,13);
		else
			base_bits = mask_bits = GENMASK(19,28) | GENMASK(5,13);
	}
340

341
	*base  = (csbase & base_bits) << addr_shift;
342

343 344 345 346 347
	*mask  = ~0ULL;
	/* poke holes for the csmask */
	*mask &= ~(mask_bits << addr_shift);
	/* OR them in */
	*mask |= (csmask & mask_bits) << addr_shift;
348 349
}

350 351 352
#define for_each_chip_select(i, dct, pvt) \
	for (i = 0; i < pvt->csels[dct].b_cnt; i++)

353 354 355
#define chip_select_base(i, dct, pvt) \
	pvt->csels[dct].csbases[i]

356 357 358
#define for_each_chip_select_mask(i, dct, pvt) \
	for (i = 0; i < pvt->csels[dct].m_cnt; i++)

359 360 361 362 363 364 365 366 367 368 369 370
/*
 * @input_addr is an InputAddr associated with the node given by mci. Return the
 * csrow that input_addr maps to, or -1 on failure (no csrow claims input_addr).
 */
static int input_addr_to_csrow(struct mem_ctl_info *mci, u64 input_addr)
{
	struct amd64_pvt *pvt;
	int csrow;
	u64 base, mask;

	pvt = mci->pvt_info;

371 372
	for_each_chip_select(csrow, 0, pvt) {
		if (!csrow_enabled(csrow, 0, pvt))
373 374
			continue;

375 376 377
		get_cs_base_and_mask(pvt, csrow, 0, &base, &mask);

		mask = ~mask;
378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415

		if ((input_addr & mask) == (base & mask)) {
			debugf2("InputAddr 0x%lx matches csrow %d (node %d)\n",
				(unsigned long)input_addr, csrow,
				pvt->mc_node_id);

			return csrow;
		}
	}
	debugf2("no matching csrow for InputAddr 0x%lx (MC node %d)\n",
		(unsigned long)input_addr, pvt->mc_node_id);

	return -1;
}

/*
 * Obtain info from the DRAM Hole Address Register (section 3.4.8, pub #26094)
 * for the node represented by mci. Info is passed back in *hole_base,
 * *hole_offset, and *hole_size.  Function returns 0 if info is valid or 1 if
 * info is invalid. Info may be invalid for either of the following reasons:
 *
 * - The revision of the node is not E or greater.  In this case, the DRAM Hole
 *   Address Register does not exist.
 *
 * - The DramHoleValid bit is cleared in the DRAM Hole Address Register,
 *   indicating that its contents are not valid.
 *
 * The values passed back in *hole_base, *hole_offset, and *hole_size are
 * complete 32-bit values despite the fact that the bitfields in the DHAR
 * only represent bits 31-24 of the base and offset values.
 */
int amd64_get_dram_hole_info(struct mem_ctl_info *mci, u64 *hole_base,
			     u64 *hole_offset, u64 *hole_size)
{
	struct amd64_pvt *pvt = mci->pvt_info;
	u64 base;

	/* only revE and later have the DRAM Hole Address Register */
416
	if (boot_cpu_data.x86 == 0xf && pvt->ext_model < K8_REV_E) {
417 418 419 420 421
		debugf1("  revision %d for node %d does not support DHAR\n",
			pvt->ext_model, pvt->mc_node_id);
		return 1;
	}

422
	/* valid for Fam10h and above */
423
	if (boot_cpu_data.x86 >= 0x10 && !dhar_mem_hoist_valid(pvt)) {
424 425 426 427
		debugf1("  Dram Memory Hoisting is DISABLED on this system\n");
		return 1;
	}

428
	if (!dhar_valid(pvt)) {
429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451
		debugf1("  Dram Memory Hoisting is DISABLED on this node %d\n",
			pvt->mc_node_id);
		return 1;
	}

	/* This node has Memory Hoisting */

	/* +------------------+--------------------+--------------------+-----
	 * | memory           | DRAM hole          | relocated          |
	 * | [0, (x - 1)]     | [x, 0xffffffff]    | addresses from     |
	 * |                  |                    | DRAM hole          |
	 * |                  |                    | [0x100000000,      |
	 * |                  |                    |  (0x100000000+     |
	 * |                  |                    |   (0xffffffff-x))] |
	 * +------------------+--------------------+--------------------+-----
	 *
	 * Above is a diagram of physical memory showing the DRAM hole and the
	 * relocated addresses from the DRAM hole.  As shown, the DRAM hole
	 * starts at address x (the base address) and extends through address
	 * 0xffffffff.  The DRAM Hole Address Register (DHAR) relocates the
	 * addresses in the hole so that they start at 0x100000000.
	 */

452
	base = dhar_base(pvt);
453 454 455 456 457

	*hole_base = base;
	*hole_size = (0x1ull << 32) - base;

	if (boot_cpu_data.x86 > 0xf)
458
		*hole_offset = f10_dhar_offset(pvt);
459
	else
460
		*hole_offset = k8_dhar_offset(pvt);
461 462 463 464 465 466 467 468 469

	debugf1("  DHAR info for node %d base 0x%lx offset 0x%lx size 0x%lx\n",
		pvt->mc_node_id, (unsigned long)*hole_base,
		(unsigned long)*hole_offset, (unsigned long)*hole_size);

	return 0;
}
EXPORT_SYMBOL_GPL(amd64_get_dram_hole_info);

470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500
/*
 * Return the DramAddr that the SysAddr given by @sys_addr maps to.  It is
 * assumed that sys_addr maps to the node given by mci.
 *
 * The first part of section 3.4.4 (p. 70) shows how the DRAM Base (section
 * 3.4.4.1) and DRAM Limit (section 3.4.4.2) registers are used to translate a
 * SysAddr to a DramAddr. If the DRAM Hole Address Register (DHAR) is enabled,
 * then it is also involved in translating a SysAddr to a DramAddr. Sections
 * 3.4.8 and 3.5.8.2 describe the DHAR and how it is used for memory hoisting.
 * These parts of the documentation are unclear. I interpret them as follows:
 *
 * When node n receives a SysAddr, it processes the SysAddr as follows:
 *
 * 1. It extracts the DRAMBase and DRAMLimit values from the DRAM Base and DRAM
 *    Limit registers for node n. If the SysAddr is not within the range
 *    specified by the base and limit values, then node n ignores the Sysaddr
 *    (since it does not map to node n). Otherwise continue to step 2 below.
 *
 * 2. If the DramHoleValid bit of the DHAR for node n is clear, the DHAR is
 *    disabled so skip to step 3 below. Otherwise see if the SysAddr is within
 *    the range of relocated addresses (starting at 0x100000000) from the DRAM
 *    hole. If not, skip to step 3 below. Else get the value of the
 *    DramHoleOffset field from the DHAR. To obtain the DramAddr, subtract the
 *    offset defined by this value from the SysAddr.
 *
 * 3. Obtain the base address for node n from the DRAMBase field of the DRAM
 *    Base register for node n. To obtain the DramAddr, subtract the base
 *    address from the SysAddr, as shown near the start of section 3.4.4 (p.70).
 */
static u64 sys_addr_to_dram_addr(struct mem_ctl_info *mci, u64 sys_addr)
{
501
	struct amd64_pvt *pvt = mci->pvt_info;
502 503 504
	u64 dram_base, hole_base, hole_offset, hole_size, dram_addr;
	int ret = 0;

505
	dram_base = get_dram_base(pvt, pvt->mc_node_id);
506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532

	ret = amd64_get_dram_hole_info(mci, &hole_base, &hole_offset,
				      &hole_size);
	if (!ret) {
		if ((sys_addr >= (1ull << 32)) &&
		    (sys_addr < ((1ull << 32) + hole_size))) {
			/* use DHAR to translate SysAddr to DramAddr */
			dram_addr = sys_addr - hole_offset;

			debugf2("using DHAR to translate SysAddr 0x%lx to "
				"DramAddr 0x%lx\n",
				(unsigned long)sys_addr,
				(unsigned long)dram_addr);

			return dram_addr;
		}
	}

	/*
	 * Translate the SysAddr to a DramAddr as shown near the start of
	 * section 3.4.4 (p. 70).  Although sys_addr is a 64-bit value, the k8
	 * only deals with 40-bit values.  Therefore we discard bits 63-40 of
	 * sys_addr below.  If bit 39 of sys_addr is 1 then the bits we
	 * discard are all 1s.  Otherwise the bits we discard are all 0s.  See
	 * section 3.4.2 of AMD publication 24592: AMD x86-64 Architecture
	 * Programmer's Manual Volume 1 Application Programming.
	 */
533
	dram_addr = (sys_addr & GENMASK(0, 39)) - dram_base;
534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568

	debugf2("using DRAM Base register to translate SysAddr 0x%lx to "
		"DramAddr 0x%lx\n", (unsigned long)sys_addr,
		(unsigned long)dram_addr);
	return dram_addr;
}

/*
 * @intlv_en is the value of the IntlvEn field from a DRAM Base register
 * (section 3.4.4.1).  Return the number of bits from a SysAddr that are used
 * for node interleaving.
 */
static int num_node_interleave_bits(unsigned intlv_en)
{
	static const int intlv_shift_table[] = { 0, 1, 0, 2, 0, 0, 0, 3 };
	int n;

	BUG_ON(intlv_en > 7);
	n = intlv_shift_table[intlv_en];
	return n;
}

/* Translate the DramAddr given by @dram_addr to an InputAddr. */
static u64 dram_addr_to_input_addr(struct mem_ctl_info *mci, u64 dram_addr)
{
	struct amd64_pvt *pvt;
	int intlv_shift;
	u64 input_addr;

	pvt = mci->pvt_info;

	/*
	 * See the start of section 3.4.4 (p. 70, BKDG #26094, K8, revA-E)
	 * concerning translating a DramAddr to an InputAddr.
	 */
569
	intlv_shift = num_node_interleave_bits(dram_intlv_en(pvt, 0));
570 571
	input_addr = ((dram_addr >> intlv_shift) & GENMASK(12, 35)) +
		      (dram_addr & 0xfff);
572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620

	debugf2("  Intlv Shift=%d DramAddr=0x%lx maps to InputAddr=0x%lx\n",
		intlv_shift, (unsigned long)dram_addr,
		(unsigned long)input_addr);

	return input_addr;
}

/*
 * Translate the SysAddr represented by @sys_addr to an InputAddr.  It is
 * assumed that @sys_addr maps to the node given by mci.
 */
static u64 sys_addr_to_input_addr(struct mem_ctl_info *mci, u64 sys_addr)
{
	u64 input_addr;

	input_addr =
	    dram_addr_to_input_addr(mci, sys_addr_to_dram_addr(mci, sys_addr));

	debugf2("SysAdddr 0x%lx translates to InputAddr 0x%lx\n",
		(unsigned long)sys_addr, (unsigned long)input_addr);

	return input_addr;
}


/*
 * @input_addr is an InputAddr associated with the node represented by mci.
 * Translate @input_addr to a DramAddr and return the result.
 */
static u64 input_addr_to_dram_addr(struct mem_ctl_info *mci, u64 input_addr)
{
	struct amd64_pvt *pvt;
	int node_id, intlv_shift;
	u64 bits, dram_addr;
	u32 intlv_sel;

	/*
	 * Near the start of section 3.4.4 (p. 70, BKDG #26094, K8, revA-E)
	 * shows how to translate a DramAddr to an InputAddr. Here we reverse
	 * this procedure. When translating from a DramAddr to an InputAddr, the
	 * bits used for node interleaving are discarded.  Here we recover these
	 * bits from the IntlvSel field of the DRAM Limit register (section
	 * 3.4.4.2) for the node that input_addr is associated with.
	 */
	pvt = mci->pvt_info;
	node_id = pvt->mc_node_id;
	BUG_ON((node_id < 0) || (node_id > 7));

621
	intlv_shift = num_node_interleave_bits(dram_intlv_en(pvt, 0));
622 623 624 625 626 627 628 629

	if (intlv_shift == 0) {
		debugf1("    InputAddr 0x%lx translates to DramAddr of "
			"same value\n",	(unsigned long)input_addr);

		return input_addr;
	}

630 631
	bits = ((input_addr & GENMASK(12, 35)) << intlv_shift) +
		(input_addr & 0xfff);
632

633
	intlv_sel = dram_intlv_sel(pvt, node_id) & ((1 << intlv_shift) - 1);
634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649
	dram_addr = bits + (intlv_sel << 12);

	debugf1("InputAddr 0x%lx translates to DramAddr 0x%lx "
		"(%d node interleave bits)\n", (unsigned long)input_addr,
		(unsigned long)dram_addr, intlv_shift);

	return dram_addr;
}

/*
 * @dram_addr is a DramAddr that maps to the node represented by mci. Convert
 * @dram_addr to a SysAddr.
 */
static u64 dram_addr_to_sys_addr(struct mem_ctl_info *mci, u64 dram_addr)
{
	struct amd64_pvt *pvt = mci->pvt_info;
650
	u64 hole_base, hole_offset, hole_size, base, sys_addr;
651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667
	int ret = 0;

	ret = amd64_get_dram_hole_info(mci, &hole_base, &hole_offset,
				      &hole_size);
	if (!ret) {
		if ((dram_addr >= hole_base) &&
		    (dram_addr < (hole_base + hole_size))) {
			sys_addr = dram_addr + hole_offset;

			debugf1("using DHAR to translate DramAddr 0x%lx to "
				"SysAddr 0x%lx\n", (unsigned long)dram_addr,
				(unsigned long)sys_addr);

			return sys_addr;
		}
	}

668
	base     = get_dram_base(pvt, pvt->mc_node_id);
669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712
	sys_addr = dram_addr + base;

	/*
	 * The sys_addr we have computed up to this point is a 40-bit value
	 * because the k8 deals with 40-bit values.  However, the value we are
	 * supposed to return is a full 64-bit physical address.  The AMD
	 * x86-64 architecture specifies that the most significant implemented
	 * address bit through bit 63 of a physical address must be either all
	 * 0s or all 1s.  Therefore we sign-extend the 40-bit sys_addr to a
	 * 64-bit value below.  See section 3.4.2 of AMD publication 24592:
	 * AMD x86-64 Architecture Programmer's Manual Volume 1 Application
	 * Programming.
	 */
	sys_addr |= ~((sys_addr & (1ull << 39)) - 1);

	debugf1("    Node %d, DramAddr 0x%lx to SysAddr 0x%lx\n",
		pvt->mc_node_id, (unsigned long)dram_addr,
		(unsigned long)sys_addr);

	return sys_addr;
}

/*
 * @input_addr is an InputAddr associated with the node given by mci. Translate
 * @input_addr to a SysAddr.
 */
static inline u64 input_addr_to_sys_addr(struct mem_ctl_info *mci,
					 u64 input_addr)
{
	return dram_addr_to_sys_addr(mci,
				     input_addr_to_dram_addr(mci, input_addr));
}

/*
 * Find the minimum and maximum InputAddr values that map to the given @csrow.
 * Pass back these values in *input_addr_min and *input_addr_max.
 */
static void find_csrow_limits(struct mem_ctl_info *mci, int csrow,
			      u64 *input_addr_min, u64 *input_addr_max)
{
	struct amd64_pvt *pvt;
	u64 base, mask;

	pvt = mci->pvt_info;
713
	BUG_ON((csrow < 0) || (csrow >= pvt->csels[0].b_cnt));
714

715
	get_cs_base_and_mask(pvt, csrow, 0, &base, &mask);
716 717

	*input_addr_min = base & ~mask;
718
	*input_addr_max = base | mask;
719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743
}

/* Map the Error address to a PAGE and PAGE OFFSET. */
static inline void error_address_to_page_and_offset(u64 error_address,
						    u32 *page, u32 *offset)
{
	*page = (u32) (error_address >> PAGE_SHIFT);
	*offset = ((u32) error_address) & ~PAGE_MASK;
}

/*
 * @sys_addr is an error address (a SysAddr) extracted from the MCA NB Address
 * Low (section 3.6.4.5) and MCA NB Address High (section 3.6.4.6) registers
 * of a node that detected an ECC memory error.  mci represents the node that
 * the error address maps to (possibly different from the node that detected
 * the error).  Return the number of the csrow that sys_addr maps to, or -1 on
 * error.
 */
static int sys_addr_to_csrow(struct mem_ctl_info *mci, u64 sys_addr)
{
	int csrow;

	csrow = input_addr_to_csrow(mci, sys_addr_to_input_addr(mci, sys_addr));

	if (csrow == -1)
744 745
		amd64_mc_err(mci, "Failed to translate InputAddr to csrow for "
				  "address 0x%lx\n", (unsigned long)sys_addr);
746 747
	return csrow;
}
748

749
static int get_channel_from_ecc_syndrome(struct mem_ctl_info *, u16);
750 751 752 753 754 755 756

/*
 * Determine if the DIMMs have ECC enabled. ECC is enabled ONLY if all the DIMMs
 * are ECC capable.
 */
static enum edac_type amd64_determine_edac_cap(struct amd64_pvt *pvt)
{
757
	u8 bit;
758
	enum dev_type edac_cap = EDAC_FLAG_NONE;
759

760
	bit = (boot_cpu_data.x86 > 0xf || pvt->ext_model >= K8_REV_F)
761 762 763
		? 19
		: 17;

764
	if (pvt->dclr0 & BIT(bit))
765 766 767 768 769 770
		edac_cap = EDAC_FLAG_SECDED;

	return edac_cap;
}


771
static void amd64_debug_display_dimm_sizes(int ctrl, struct amd64_pvt *pvt);
772

773 774 775 776 777 778 779 780 781 782 783
static void amd64_dump_dramcfg_low(u32 dclr, int chan)
{
	debugf1("F2x%d90 (DRAM Cfg Low): 0x%08x\n", chan, dclr);

	debugf1("  DIMM type: %sbuffered; all DIMMs support ECC: %s\n",
		(dclr & BIT(16)) ?  "un" : "",
		(dclr & BIT(19)) ? "yes" : "no");

	debugf1("  PAR/ERR parity: %s\n",
		(dclr & BIT(8)) ?  "enabled" : "disabled");

784 785 786
	if (boot_cpu_data.x86 == 0x10)
		debugf1("  DCT 128bit mode width: %s\n",
			(dclr & BIT(11)) ?  "128b" : "64b");
787 788 789 790 791 792 793 794

	debugf1("  x4 logical DIMMs present: L0: %s L1: %s L2: %s L3: %s\n",
		(dclr & BIT(12)) ?  "yes" : "no",
		(dclr & BIT(13)) ?  "yes" : "no",
		(dclr & BIT(14)) ?  "yes" : "no",
		(dclr & BIT(15)) ?  "yes" : "no");
}

795
/* Display and decode various NB registers for debug purposes. */
796
static void dump_misc_regs(struct amd64_pvt *pvt)
797
{
798 799 800
	debugf1("F3xE8 (NB Cap): 0x%08x\n", pvt->nbcap);

	debugf1("  NB two channel DRAM capable: %s\n",
801
		(pvt->nbcap & NBCAP_DCT_DUAL) ? "yes" : "no");
802

803
	debugf1("  ECC capable: %s, ChipKill ECC capable: %s\n",
804 805
		(pvt->nbcap & NBCAP_SECDED) ? "yes" : "no",
		(pvt->nbcap & NBCAP_CHIPKILL) ? "yes" : "no");
806 807

	amd64_dump_dramcfg_low(pvt->dclr0, 0);
808

809
	debugf1("F3xB0 (Online Spare): 0x%08x\n", pvt->online_spare);
810

811 812
	debugf1("F1xF0 (DRAM Hole Address): 0x%08x, base: 0x%08x, "
			"offset: 0x%08x\n",
813 814 815
			pvt->dhar, dhar_base(pvt),
			(boot_cpu_data.x86 == 0xf) ? k8_dhar_offset(pvt)
						   : f10_dhar_offset(pvt));
816

817
	debugf1("  DramHoleValid: %s\n", dhar_valid(pvt) ? "yes" : "no");
818

819 820
	amd64_debug_display_dimm_sizes(0, pvt);

821
	/* everything below this point is Fam10h and above */
822
	if (boot_cpu_data.x86 == 0xf)
823
		return;
824 825

	amd64_debug_display_dimm_sizes(1, pvt);
826

827
	amd64_info("using %s syndromes.\n", ((pvt->syn_type == 8) ? "x8" : "x4"));
828

829
	/* Only if NOT ganged does dclr1 have valid info */
830 831
	if (!dct_ganging_enabled(pvt))
		amd64_dump_dramcfg_low(pvt->dclr1, 1);
832 833
}

834
/*
835
 * see BKDG, F2x[1,0][5C:40], F2[1,0][6C:60]
836
 */
837
static void prep_chip_selects(struct amd64_pvt *pvt)
838
{
839
	if (boot_cpu_data.x86 == 0xf && pvt->ext_model < K8_REV_F) {
840 841
		pvt->csels[0].b_cnt = pvt->csels[1].b_cnt = 8;
		pvt->csels[0].m_cnt = pvt->csels[1].m_cnt = 8;
842
	} else {
843 844
		pvt->csels[0].b_cnt = pvt->csels[1].b_cnt = 8;
		pvt->csels[0].m_cnt = pvt->csels[1].m_cnt = 4;
845 846 847 848
	}
}

/*
849
 * Function 2 Offset F10_DCSB0; read in the DCS Base and DCS Mask registers
850
 */
851
static void read_dct_base_mask(struct amd64_pvt *pvt)
852
{
853
	int cs;
854

855
	prep_chip_selects(pvt);
856

857 858 859 860 861
	for_each_chip_select(cs, 0, pvt) {
		u32 reg0   = DCSB0 + (cs * 4);
		u32 reg1   = DCSB1 + (cs * 4);
		u32 *base0 = &pvt->csels[0].csbases[cs];
		u32 *base1 = &pvt->csels[1].csbases[cs];
862

863
		if (!amd64_read_dct_pci_cfg(pvt, reg0, base0))
864
			debugf0("  DCSB0[%d]=0x%08x reg: F2x%x\n",
865
				cs, *base0, reg0);
866

867 868
		if (boot_cpu_data.x86 == 0xf || dct_ganging_enabled(pvt))
			continue;
869

870 871 872
		if (!amd64_read_dct_pci_cfg(pvt, reg1, base1))
			debugf0("  DCSB1[%d]=0x%08x reg: F2x%x\n",
				cs, *base1, reg1);
873 874
	}

875 876 877 878 879
	for_each_chip_select_mask(cs, 0, pvt) {
		u32 reg0   = DCSM0 + (cs * 4);
		u32 reg1   = DCSM1 + (cs * 4);
		u32 *mask0 = &pvt->csels[0].csmasks[cs];
		u32 *mask1 = &pvt->csels[1].csmasks[cs];
880

881
		if (!amd64_read_dct_pci_cfg(pvt, reg0, mask0))
882
			debugf0("    DCSM0[%d]=0x%08x reg: F2x%x\n",
883
				cs, *mask0, reg0);
884

885 886
		if (boot_cpu_data.x86 == 0xf || dct_ganging_enabled(pvt))
			continue;
887

888 889 890
		if (!amd64_read_dct_pci_cfg(pvt, reg1, mask1))
			debugf0("    DCSM1[%d]=0x%08x reg: F2x%x\n",
				cs, *mask1, reg1);
891 892 893
	}
}

894
static enum mem_type amd64_determine_memory_type(struct amd64_pvt *pvt, int cs)
895 896 897
{
	enum mem_type type;

898 899 900 901
	/* F15h supports only DDR3 */
	if (boot_cpu_data.x86 >= 0x15)
		type = (pvt->dclr0 & BIT(16)) ?	MEM_DDR3 : MEM_RDDR3;
	else if (boot_cpu_data.x86 == 0x10 || pvt->ext_model >= K8_REV_F) {
902 903 904 905
		if (pvt->dchr0 & DDR3_MODE)
			type = (pvt->dclr0 & BIT(16)) ?	MEM_DDR3 : MEM_RDDR3;
		else
			type = (pvt->dclr0 & BIT(16)) ? MEM_DDR2 : MEM_RDDR2;
906 907 908 909
	} else {
		type = (pvt->dclr0 & BIT(18)) ? MEM_DDR : MEM_RDDR;
	}

910
	amd64_info("CS%d: %s\n", cs, edac_mem_types[type]);
911 912 913 914

	return type;
}

915
/* Get the number of DCT channels the memory controller is using. */
916 917
static int k8_early_channel_count(struct amd64_pvt *pvt)
{
918
	int flag;
919

920
	if (pvt->ext_model >= K8_REV_F)
921
		/* RevF (NPT) and later */
922
		flag = pvt->dclr0 & WIDTH_128;
923
	else
924 925 926 927 928 929 930 931 932
		/* RevE and earlier */
		flag = pvt->dclr0 & REVE_WIDTH_128;

	/* not used */
	pvt->dclr1 = 0;

	return (flag) ? 2 : 1;
}

933 934
/* On F10h and later ErrAddr is MC4_ADDR[47:1] */
static u64 get_error_address(struct mce *m)
935
{
936 937 938 939 940 941 942 943 944
	u8 start_bit = 1;
	u8 end_bit   = 47;

	if (boot_cpu_data.x86 == 0xf) {
		start_bit = 3;
		end_bit   = 39;
	}

	return m->addr & GENMASK(start_bit, end_bit);
945 946
}

947
static void read_dram_base_limit_regs(struct amd64_pvt *pvt, unsigned range)
948
{
949
	u32 off = range << 3;
950

951 952
	amd64_read_pci_cfg(pvt->F1, DRAM_BASE_LO + off,  &pvt->ranges[range].base.lo);
	amd64_read_pci_cfg(pvt->F1, DRAM_LIMIT_LO + off, &pvt->ranges[range].lim.lo);
953

954 955
	if (boot_cpu_data.x86 == 0xf)
		return;
956

957 958
	if (!dram_rw(pvt, range))
		return;
959

960 961
	amd64_read_pci_cfg(pvt->F1, DRAM_BASE_HI + off,  &pvt->ranges[range].base.hi);
	amd64_read_pci_cfg(pvt->F1, DRAM_LIMIT_HI + off, &pvt->ranges[range].lim.hi);
962 963
}

964 965
static void k8_map_sysaddr_to_csrow(struct mem_ctl_info *mci, u64 sys_addr,
				    u16 syndrome)
966 967
{
	struct mem_ctl_info *src_mci;
968
	struct amd64_pvt *pvt = mci->pvt_info;
969 970 971 972
	int channel, csrow;
	u32 page, offset;

	/* CHIPKILL enabled */
973
	if (pvt->nbcfg & NBCFG_CHIPKILL) {
974
		channel = get_channel_from_ecc_syndrome(mci, syndrome);
975 976 977 978 979 980
		if (channel < 0) {
			/*
			 * Syndrome didn't map, so we don't know which of the
			 * 2 DIMMs is in error. So we need to ID 'both' of them
			 * as suspect.
			 */
981 982
			amd64_mc_warn(mci, "unknown syndrome 0x%04x - possible "
					   "error reporting race\n", syndrome);
983 984 985 986 987 988 989 990 991 992 993 994
			edac_mc_handle_ce_no_info(mci, EDAC_MOD_STR);
			return;
		}
	} else {
		/*
		 * non-chipkill ecc mode
		 *
		 * The k8 documentation is unclear about how to determine the
		 * channel number when using non-chipkill memory.  This method
		 * was obtained from email communication with someone at AMD.
		 * (Wish the email was placed in this comment - norsk)
		 */
995
		channel = ((sys_addr & BIT(3)) != 0);
996 997 998 999 1000 1001
	}

	/*
	 * Find out which node the error address belongs to. This may be
	 * different from the node that detected the error.
	 */
1002
	src_mci = find_mc_by_sys_addr(mci, sys_addr);
1003
	if (!src_mci) {
1004
		amd64_mc_err(mci, "failed to map error addr 0x%lx to a node\n",
1005
			     (unsigned long)sys_addr);
1006 1007 1008 1009
		edac_mc_handle_ce_no_info(mci, EDAC_MOD_STR);
		return;
	}

1010 1011
	/* Now map the sys_addr to a CSROW */
	csrow = sys_addr_to_csrow(src_mci, sys_addr);
1012 1013 1014
	if (csrow < 0) {
		edac_mc_handle_ce_no_info(src_mci, EDAC_MOD_STR);
	} else {
1015
		error_address_to_page_and_offset(sys_addr, &page, &offset);
1016 1017 1018 1019 1020 1021

		edac_mc_handle_ce(src_mci, page, offset, syndrome, csrow,
				  channel, EDAC_MOD_STR);
	}
}

1022
static int ddr2_cs_size(unsigned i, bool dct_width)
1023
{
1024
	unsigned shift = 0;
1025

1026 1027 1028 1029
	if (i <= 2)
		shift = i;
	else if (!(i & 0x1))
		shift = i >> 1;
1030
	else
1031
		shift = (i + 1) >> 1;
1032

1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056
	return 128 << (shift + !!dct_width);
}

static int k8_dbam_to_chip_select(struct amd64_pvt *pvt, u8 dct,
				  unsigned cs_mode)
{
	u32 dclr = dct ? pvt->dclr1 : pvt->dclr0;

	if (pvt->ext_model >= K8_REV_F) {
		WARN_ON(cs_mode > 11);
		return ddr2_cs_size(cs_mode, dclr & WIDTH_128);
	}
	else if (pvt->ext_model >= K8_REV_D) {
		WARN_ON(cs_mode > 10);

		if (cs_mode == 3 || cs_mode == 8)
			return 32 << (cs_mode - 1);
		else
			return 32 << cs_mode;
	}
	else {
		WARN_ON(cs_mode > 6);
		return 32 << cs_mode;
	}
1057 1058
}

1059 1060 1061 1062 1063 1064 1065 1066
/*
 * Get the number of DCT channels in use.
 *
 * Return:
 *	number of Memory Channels in operation
 * Pass back:
 *	contents of the DCL0_LOW register
 */
1067
static int f1x_early_channel_count(struct amd64_pvt *pvt)
1068
{
1069
	int i, j, channels = 0;
1070

1071
	/* On F10h, if we are in 128 bit mode, then we are using 2 channels */
1072
	if (boot_cpu_data.x86 == 0x10 && (pvt->dclr0 & WIDTH_128))
1073
		return 2;
1074 1075

	/*
1076 1077 1078
	 * Need to check if in unganged mode: In such, there are 2 channels,
	 * but they are not in 128 bit mode and thus the above 'dclr0' status
	 * bit will be OFF.
1079 1080 1081 1082
	 *
	 * Need to check DCT0[0] and DCT1[0] to see if only one of them has
	 * their CSEnable bit on. If so, then SINGLE DIMM case.
	 */
1083
	debugf0("Data width is not 128 bits - need more decoding\n");
1084

1085 1086 1087 1088 1089
	/*
	 * Check DRAM Bank Address Mapping values for each DIMM to see if there
	 * is more than just one DIMM present in unganged mode. Need to check
	 * both controllers since DIMMs can be placed in either one.
	 */
1090 1091
	for (i = 0; i < 2; i++) {
		u32 dbam = (i ? pvt->dbam1 : pvt->dbam0);
1092

1093 1094 1095 1096 1097 1098
		for (j = 0; j < 4; j++) {
			if (DBAM_DIMM(j, dbam) > 0) {
				channels++;
				break;
			}
		}
1099 1100
	}

1101 1102 1103
	if (channels > 2)
		channels = 2;

1104
	amd64_info("MCT channel count: %d\n", channels);
1105 1106 1107 1108

	return channels;
}

1109
static int ddr3_cs_size(unsigned i, bool dct_width)
1110
{
1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136
	unsigned shift = 0;
	int cs_size = 0;

	if (i == 0 || i == 3 || i == 4)
		cs_size = -1;
	else if (i <= 2)
		shift = i;
	else if (i == 12)
		shift = 7;
	else if (!(i & 0x1))
		shift = i >> 1;
	else
		shift = (i + 1) >> 1;

	if (cs_size != -1)
		cs_size = (128 * (1 << !!dct_width)) << shift;

	return cs_size;
}

static int f10_dbam_to_chip_select(struct amd64_pvt *pvt, u8 dct,
				   unsigned cs_mode)
{
	u32 dclr = dct ? pvt->dclr1 : pvt->dclr0;

	WARN_ON(cs_mode > 11);
1137 1138

	if (pvt->dchr0 & DDR3_MODE || pvt->dchr1 & DDR3_MODE)
1139
		return ddr3_cs_size(cs_mode, dclr & WIDTH_128);
1140
	else
1141 1142 1143 1144 1145 1146 1147 1148 1149 1150
		return ddr2_cs_size(cs_mode, dclr & WIDTH_128);
}

/*
 * F15h supports only 64bit DCT interfaces
 */
static int f15_dbam_to_chip_select(struct amd64_pvt *pvt, u8 dct,
				   unsigned cs_mode)
{
	WARN_ON(cs_mode > 12);
1151

1152
	return ddr3_cs_size(cs_mode, false);
1153 1154
}

1155
static void read_dram_ctl_register(struct amd64_pvt *pvt)
1156 1157
{

1158 1159 1160
	if (boot_cpu_data.x86 == 0xf)
		return;

1161 1162 1163
	if (!amd64_read_dct_pci_cfg(pvt, DCT_SEL_LO, &pvt->dct_sel_lo)) {
		debugf0("F2x110 (DCTSelLow): 0x%08x, High range addrs at: 0x%x\n",
			pvt->dct_sel_lo, dct_sel_baseaddr(pvt));
1164

1165 1166
		debugf0("  DCTs operate in %s mode.\n",
			(dct_ganging_enabled(pvt) ? "ganged" : "unganged"));
1167 1168 1169 1170 1171

		if (!dct_ganging_enabled(pvt))
			debugf0("  Address range split per DCT: %s\n",
				(dct_high_range_enabled(pvt) ? "yes" : "no"));

1172
		debugf0("  data interleave for ECC: %s, "
1173 1174 1175 1176
			"DRAM cleared since last warm reset: %s\n",
			(dct_data_intlv_enabled(pvt) ? "enabled" : "disabled"),
			(dct_memory_cleared(pvt) ? "yes" : "no"));

1177 1178
		debugf0("  channel interleave: %s, "
			"interleave bits selector: 0x%x\n",
1179
			(dct_interleave_enabled(pvt) ? "enabled" : "disabled"),
1180 1181 1182
			dct_sel_interleave_addr(pvt));
	}

1183
	amd64_read_dct_pci_cfg(pvt, DCT_SEL_HI, &pvt->dct_sel_hi);
1184 1185
}

1186
/*
1187
 * Determine channel (DCT) based on the interleaving mode: F10h BKDG, 2.8.9 Memory
1188 1189
 * Interleaving Modes.
 */
1190
static u8 f1x_determine_channel(struct amd64_pvt *pvt, u64 sys_addr,
1191
				bool hi_range_sel, u8 intlv_en)
1192
{
1193
	u32 dct_sel_high = (pvt->dct_sel_lo >> 1) & 1;
1194 1195

	if (dct_ganging_enabled(pvt))
1196
		return 0;
1197

1198 1199
	if (hi_range_sel)
		return dct_sel_high;
1200

1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222
	/*
	 * see F2x110[DctSelIntLvAddr] - channel interleave mode
	 */
	if (dct_interleave_enabled(pvt)) {
		u8 intlv_addr = dct_sel_interleave_addr(pvt);

		/* return DCT select function: 0=DCT0, 1=DCT1 */
		if (!intlv_addr)
			return sys_addr >> 6 & 1;

		if (intlv_addr & 0x2) {
			u8 shift = intlv_addr & 0x1 ? 9 : 6;
			u32 temp = hweight_long((u32) ((sys_addr >> 16) & 0x1F)) % 2;

			return ((sys_addr >> shift) & 1) ^ temp;
		}

		return (sys_addr >> (12 + hweight8(intlv_en))) & 1;
	}

	if (dct_high_range_enabled(pvt))
		return ~dct_sel_high & 1;
1223 1224 1225 1226

	return 0;
}

1227
/* Convert the sys_addr to the normalized DCT address */
1228
static u64 f1x_get_norm_dct_addr(struct amd64_pvt *pvt, int range,
1229 1230
				 u64 sys_addr, bool hi_rng,
				 u32 dct_sel_base_addr)
1231 1232
{
	u64 chan_off;
1233 1234 1235 1236
	u64 dram_base		= get_dram_base(pvt, range);
	u64 hole_off		= f10_dhar_offset(pvt);
	u32 hole_valid		= dhar_valid(pvt);
	u64 dct_sel_base_off	= (pvt->dct_sel_hi & 0xFFFFFC00) << 16;
1237

1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253
	if (hi_rng) {
		/*
		 * if
		 * base address of high range is below 4Gb
		 * (bits [47:27] at [31:11])
		 * DRAM address space on this DCT is hoisted above 4Gb	&&
		 * sys_addr > 4Gb
		 *
		 *	remove hole offset from sys_addr
		 * else
		 *	remove high range offset from sys_addr
		 */
		if ((!(dct_sel_base_addr >> 16) ||
		     dct_sel_base_addr < dhar_base(pvt)) &&
		    hole_valid &&
		    (sys_addr >= BIT_64(32)))
1254
			chan_off = hole_off;
1255 1256 1257
		else
			chan_off = dct_sel_base_off;
	} else {
1258 1259 1260 1261 1262 1263 1264 1265 1266 1267
		/*
		 * if
		 * we have a valid hole		&&
		 * sys_addr > 4Gb
		 *
		 *	remove hole
		 * else
		 *	remove dram base to normalize to DCT address
		 */
		if (hole_valid && (sys_addr >= BIT_64(32)))
1268
			chan_off = hole_off;
1269
		else
1270
			chan_off = dram_base;
1271 1272
	}

1273
	return (sys_addr & GENMASK(6,47)) - (chan_off & GENMASK(23,47));
1274 1275 1276 1277 1278 1279
}

/*
 * checks if the csrow passed in is marked as SPARED, if so returns the new
 * spare row
 */
1280
static int f10_process_possible_spare(struct amd64_pvt *pvt, u8 dct, int csrow)
1281
{
1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292
	int tmp_cs;

	if (online_spare_swap_done(pvt, dct) &&
	    csrow == online_spare_bad_dramcs(pvt, dct)) {

		for_each_chip_select(tmp_cs, dct, pvt) {
			if (chip_select_base(tmp_cs, dct, pvt) & 0x2) {
				csrow = tmp_cs;
				break;
			}
		}
1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304
	}
	return csrow;
}

/*
 * Iterate over the DRAM DCT "base" and "mask" registers looking for a
 * SystemAddr match on the specified 'ChannelSelect' and 'NodeID'
 *
 * Return:
 *	-EINVAL:  NOT FOUND
 *	0..csrow = Chip-Select Row
 */
1305
static int f1x_lookup_addr_in_dct(u64 in_addr, u32 nid, u8 dct)
1306 1307 1308
{
	struct mem_ctl_info *mci;
	struct amd64_pvt *pvt;
1309
	u64 cs_base, cs_mask;
1310 1311 1312
	int cs_found = -EINVAL;
	int csrow;

1313
	mci = mcis[nid];
1314 1315 1316 1317 1318
	if (!mci)
		return cs_found;

	pvt = mci->pvt_info;

1319
	debugf1("input addr: 0x%llx, DCT: %d\n", in_addr, dct);
1320

1321 1322
	for_each_chip_select(csrow, dct, pvt) {
		if (!csrow_enabled(csrow, dct, pvt))
1323 1324
			continue;

1325
		get_cs_base_and_mask(pvt, csrow, dct, &cs_base, &cs_mask);
1326

1327 1328
		debugf1("    CSROW=%d CSBase=0x%llx CSMask=0x%llx\n",
			csrow, cs_base, cs_mask);
1329

1330
		cs_mask = ~cs_mask;
1331

1332 1333 1334
		debugf1("    (InputAddr & ~CSMask)=0x%llx "
			"(CSBase & ~CSMask)=0x%llx\n",
			(in_addr & cs_mask), (cs_base & cs_mask));
1335

1336 1337
		if ((in_addr & cs_mask) == (cs_base & cs_mask)) {
			cs_found = f10_process_possible_spare(pvt, dct, csrow);
1338 1339 1340 1341 1342 1343 1344 1345

			debugf1(" MATCH csrow=%d\n", cs_found);
			break;
		}
	}
	return cs_found;
}

1346 1347 1348 1349 1350
/*
 * See F2x10C. Non-interleaved graphics framebuffer memory under the 16G is
 * swapped with a region located at the bottom of memory so that the GPU can use
 * the interleaved region and thus two channels.
 */
1351
static u64 f1x_swap_interleaved_region(struct amd64_pvt *pvt, u64 sys_addr)
1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381
{
	u32 swap_reg, swap_base, swap_limit, rgn_size, tmp_addr;

	if (boot_cpu_data.x86 == 0x10) {
		/* only revC3 and revE have that feature */
		if (boot_cpu_data.x86_model < 4 ||
		    (boot_cpu_data.x86_model < 0xa &&
		     boot_cpu_data.x86_mask < 3))
			return sys_addr;
	}

	amd64_read_dct_pci_cfg(pvt, SWAP_INTLV_REG, &swap_reg);

	if (!(swap_reg & 0x1))
		return sys_addr;

	swap_base	= (swap_reg >> 3) & 0x7f;
	swap_limit	= (swap_reg >> 11) & 0x7f;
	rgn_size	= (swap_reg >> 20) & 0x7f;
	tmp_addr	= sys_addr >> 27;

	if (!(sys_addr >> 34) &&
	    (((tmp_addr >= swap_base) &&
	     (tmp_addr <= swap_limit)) ||
	     (tmp_addr < rgn_size)))
		return sys_addr ^ (u64)swap_base << 27;

	return sys_addr;
}

1382
/* For a given @dram_range, check if @sys_addr falls within it. */
1383
static int f1x_match_to_this_node(struct amd64_pvt *pvt, int range,
1384 1385
				  u64 sys_addr, int *nid, int *chan_sel)
{
1386
	int cs_found = -EINVAL;
1387
	u64 chan_addr;
1388
	u32 dct_sel_base;
1389
	u8 channel;
1390
	bool high_range = false;
1391

1392
	u8 node_id    = dram_dst_node(pvt, range);
1393
	u8 intlv_en   = dram_intlv_en(pvt, range);
1394
	u32 intlv_sel = dram_intlv_sel(pvt, range);
1395

1396 1397
	debugf1("(range %d) SystemAddr= 0x%llx Limit=0x%llx\n",
		range, sys_addr, get_dram_limit(pvt, range));
1398

1399 1400 1401 1402 1403 1404 1405 1406
	if (dhar_valid(pvt) &&
	    dhar_base(pvt) <= sys_addr &&
	    sys_addr < BIT_64(32)) {
		amd64_warn("Huh? Address is in the MMIO hole: 0x%016llx\n",
			    sys_addr);
		return -EINVAL;
	}

1407
	if (intlv_en &&
1408 1409 1410
	    (intlv_sel != ((sys_addr >> 12) & intlv_en))) {
		amd64_warn("Botched intlv bits, en: 0x%x, sel: 0x%x\n",
			   intlv_en, intlv_sel);
1411
		return -EINVAL;
1412
	}
1413

1414
	sys_addr = f1x_swap_interleaved_region(pvt, sys_addr);
1415

1416 1417 1418 1419 1420 1421 1422 1423 1424
	dct_sel_base = dct_sel_baseaddr(pvt);

	/*
	 * check whether addresses >= DctSelBaseAddr[47:27] are to be used to
	 * select between DCT0 and DCT1.
	 */
	if (dct_high_range_enabled(pvt) &&
	   !dct_ganging_enabled(pvt) &&
	   ((sys_addr >> 27) >= (dct_sel_base >> 11)))
1425
		high_range = true;
1426

1427
	channel = f1x_determine_channel(pvt, sys_addr, high_range, intlv_en);
1428

1429
	chan_addr = f1x_get_norm_dct_addr(pvt, range, sys_addr,
1430
					  high_range, dct_sel_base);
1431

1432 1433 1434 1435
	/* Remove node interleaving, see F1x120 */
	if (intlv_en)
		chan_addr = ((chan_addr >> (12 + hweight8(intlv_en))) << 12) |
			    (chan_addr & 0xfff);
1436

1437
	/* remove channel interleave */
1438 1439 1440
	if (dct_interleave_enabled(pvt) &&
	   !dct_high_range_enabled(pvt) &&
	   !dct_ganging_enabled(pvt)) {
1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454

		if (dct_sel_interleave_addr(pvt) != 1) {
			if (dct_sel_interleave_addr(pvt) == 0x3)
				/* hash 9 */
				chan_addr = ((chan_addr >> 10) << 9) |
					     (chan_addr & 0x1ff);
			else
				/* A[6] or hash 6 */
				chan_addr = ((chan_addr >> 7) << 6) |
					     (chan_addr & 0x3f);
		} else
			/* A[12] */
			chan_addr = ((chan_addr >> 13) << 12) |
				     (chan_addr & 0xfff);
1455 1456
	}

1457
	debugf1("   Normalized DCT addr: 0x%llx\n", chan_addr);
1458

1459
	cs_found = f1x_lookup_addr_in_dct(chan_addr, node_id, channel);
1460 1461 1462 1463 1464 1465 1466 1467

	if (cs_found >= 0) {
		*nid = node_id;
		*chan_sel = channel;
	}
	return cs_found;
}

1468
static int f1x_translate_sysaddr_to_cs(struct amd64_pvt *pvt, u64 sys_addr,
1469 1470
				       int *node, int *chan_sel)
{
1471
	int range, cs_found = -EINVAL;
1472

1473
	for (range = 0; range < DRAM_RANGES; range++) {
1474

1475
		if (!dram_rw(pvt, range))
1476 1477
			continue;

1478 1479
		if ((get_dram_base(pvt, range)  <= sys_addr) &&
		    (get_dram_limit(pvt, range) >= sys_addr)) {
1480

1481
			cs_found = f1x_match_to_this_node(pvt, range,
1482 1483 1484 1485 1486 1487 1488 1489 1490 1491
							  sys_addr, node,
							  chan_sel);
			if (cs_found >= 0)
				break;
		}
	}
	return cs_found;
}

/*
1492 1493
 * For reference see "2.8.5 Routing DRAM Requests" in F10 BKDG. This code maps
 * a @sys_addr to NodeID, DCT (channel) and chip select (CSROW).
1494
 *
1495 1496
 * The @sys_addr is usually an error address received from the hardware
 * (MCX_ADDR).
1497
 */
1498
static void f1x_map_sysaddr_to_csrow(struct mem_ctl_info *mci, u64 sys_addr,
1499
				     u16 syndrome)
1500 1501 1502 1503 1504
{
	struct amd64_pvt *pvt = mci->pvt_info;
	u32 page, offset;
	int nid, csrow, chan = 0;

1505
	csrow = f1x_translate_sysaddr_to_cs(pvt, sys_addr, &nid, &chan);
1506

1507 1508 1509 1510 1511 1512
	if (csrow < 0) {
		edac_mc_handle_ce_no_info(mci, EDAC_MOD_STR);
		return;
	}

	error_address_to_page_and_offset(sys_addr, &page, &offset);
1513

1514 1515 1516 1517 1518
	/*
	 * We need the syndromes for channel detection only when we're
	 * ganged. Otherwise @chan should already contain the channel at
	 * this point.
	 */
1519
	if (dct_ganging_enabled(pvt))
1520
		chan = get_channel_from_ecc_syndrome(mci, syndrome);
1521

1522 1523 1524 1525
	if (chan >= 0)
		edac_mc_handle_ce(mci, page, offset, syndrome, csrow, chan,
				  EDAC_MOD_STR);
	else
1526
		/*
1527
		 * Channel unknown, report all channels on this CSROW as failed.
1528
		 */
1529
		for (chan = 0; chan < mci->csrows[csrow].nr_channels; chan++)
1530
			edac_mc_handle_ce(mci, page, offset, syndrome,
1531
					  csrow, chan, EDAC_MOD_STR);
1532 1533 1534
}

/*
1535
 * debug routine to display the memory sizes of all logical DIMMs and its
1536
 * CSROWs
1537
 */
1538
static void amd64_debug_display_dimm_sizes(int ctrl, struct amd64_pvt *pvt)
1539
{
1540
	int dimm, size0, size1, factor = 0;
1541 1542
	u32 *dcsb = ctrl ? pvt->csels[1].csbases : pvt->csels[0].csbases;
	u32 dbam  = ctrl ? pvt->dbam1 : pvt->dbam0;
1543

1544
	if (boot_cpu_data.x86 == 0xf) {
1545
		if (pvt->dclr0 & WIDTH_128)
1546 1547
			factor = 1;

1548
		/* K8 families < revF not supported yet */
1549
	       if (pvt->ext_model < K8_REV_F)
1550 1551 1552 1553 1554
			return;
	       else
		       WARN_ON(ctrl != 0);
	}

1555
	dbam = (ctrl && !dct_ganging_enabled(pvt)) ? pvt->dbam1 : pvt->dbam0;
1556 1557
	dcsb = (ctrl && !dct_ganging_enabled(pvt)) ? pvt->csels[1].csbases
						   : pvt->csels[0].csbases;
1558

1559
	debugf1("F2x%d80 (DRAM Bank Address Mapping): 0x%08x\n", ctrl, dbam);
1560

1561 1562
	edac_printk(KERN_DEBUG, EDAC_MC, "DCT%d chip selects:\n", ctrl);

1563 1564 1565 1566
	/* Dump memory sizes for DIMM and its CSROWs */
	for (dimm = 0; dimm < 4; dimm++) {

		size0 = 0;
1567
		if (dcsb[dimm*2] & DCSB_CS_ENABLE)
1568 1569
			size0 = pvt->ops->dbam_to_cs(pvt, ctrl,
						     DBAM_DIMM(dimm, dbam));
1570 1571

		size1 = 0;
1572
		if (dcsb[dimm*2 + 1] & DCSB_CS_ENABLE)
1573 1574
			size1 = pvt->ops->dbam_to_cs(pvt, ctrl,
						     DBAM_DIMM(dimm, dbam));
1575

1576 1577 1578
		amd64_info(EDAC_MC ": %d: %5dMB %d: %5dMB\n",
				dimm * 2,     size0 << factor,
				dimm * 2 + 1, size1 << factor);
1579 1580 1581
	}
}

1582 1583
static struct amd64_family_type amd64_family_types[] = {
	[K8_CPUS] = {
1584
		.ctl_name = "K8",
1585 1586
		.f1_id = PCI_DEVICE_ID_AMD_K8_NB_ADDRMAP,
		.f3_id = PCI_DEVICE_ID_AMD_K8_NB_MISC,
1587
		.ops = {
1588 1589 1590
			.early_channel_count	= k8_early_channel_count,
			.map_sysaddr_to_csrow	= k8_map_sysaddr_to_csrow,
			.dbam_to_cs		= k8_dbam_to_chip_select,
1591
			.read_dct_pci_cfg	= k8_read_dct_pci_cfg,
1592 1593 1594
		}
	},
	[F10_CPUS] = {
1595
		.ctl_name = "F10h",
1596 1597
		.f1_id = PCI_DEVICE_ID_AMD_10H_NB_MAP,
		.f3_id = PCI_DEVICE_ID_AMD_10H_NB_MISC,
1598
		.ops = {
1599
			.early_channel_count	= f1x_early_channel_count,
1600
			.map_sysaddr_to_csrow	= f1x_map_sysaddr_to_csrow,
1601
			.dbam_to_cs		= f10_dbam_to_chip_select,
1602 1603 1604 1605 1606 1607
			.read_dct_pci_cfg	= f10_read_dct_pci_cfg,
		}
	},
	[F15_CPUS] = {
		.ctl_name = "F15h",
		.ops = {
1608
			.early_channel_count	= f1x_early_channel_count,
1609
			.map_sysaddr_to_csrow	= f1x_map_sysaddr_to_csrow,
1610
			.dbam_to_cs		= f15_dbam_to_chip_select,
1611
			.read_dct_pci_cfg	= f15_read_dct_pci_cfg,
1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632
		}
	},
};

static struct pci_dev *pci_get_related_function(unsigned int vendor,
						unsigned int device,
						struct pci_dev *related)
{
	struct pci_dev *dev = NULL;

	dev = pci_get_device(vendor, device, dev);
	while (dev) {
		if ((dev->bus->number == related->bus->number) &&
		    (PCI_SLOT(dev->devfn) == PCI_SLOT(related->devfn)))
			break;
		dev = pci_get_device(vendor, device, dev);
	}

	return dev;
}

1633
/*
1634 1635 1636
 * These are tables of eigenvectors (one per line) which can be used for the
 * construction of the syndrome tables. The modified syndrome search algorithm
 * uses those to find the symbol in error and thus the DIMM.
1637
 *
1638
 * Algorithm courtesy of Ross LaFetra from AMD.
1639
 */
1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676
static u16 x4_vectors[] = {
	0x2f57, 0x1afe, 0x66cc, 0xdd88,
	0x11eb, 0x3396, 0x7f4c, 0xeac8,
	0x0001, 0x0002, 0x0004, 0x0008,
	0x1013, 0x3032, 0x4044, 0x8088,
	0x106b, 0x30d6, 0x70fc, 0xe0a8,
	0x4857, 0xc4fe, 0x13cc, 0x3288,
	0x1ac5, 0x2f4a, 0x5394, 0xa1e8,
	0x1f39, 0x251e, 0xbd6c, 0x6bd8,
	0x15c1, 0x2a42, 0x89ac, 0x4758,
	0x2b03, 0x1602, 0x4f0c, 0xca08,
	0x1f07, 0x3a0e, 0x6b04, 0xbd08,
	0x8ba7, 0x465e, 0x244c, 0x1cc8,
	0x2b87, 0x164e, 0x642c, 0xdc18,
	0x40b9, 0x80de, 0x1094, 0x20e8,
	0x27db, 0x1eb6, 0x9dac, 0x7b58,
	0x11c1, 0x2242, 0x84ac, 0x4c58,
	0x1be5, 0x2d7a, 0x5e34, 0xa718,
	0x4b39, 0x8d1e, 0x14b4, 0x28d8,
	0x4c97, 0xc87e, 0x11fc, 0x33a8,
	0x8e97, 0x497e, 0x2ffc, 0x1aa8,
	0x16b3, 0x3d62, 0x4f34, 0x8518,
	0x1e2f, 0x391a, 0x5cac, 0xf858,
	0x1d9f, 0x3b7a, 0x572c, 0xfe18,
	0x15f5, 0x2a5a, 0x5264, 0xa3b8,
	0x1dbb, 0x3b66, 0x715c, 0xe3f8,
	0x4397, 0xc27e, 0x17fc, 0x3ea8,
	0x1617, 0x3d3e, 0x6464, 0xb8b8,
	0x23ff, 0x12aa, 0xab6c, 0x56d8,
	0x2dfb, 0x1ba6, 0x913c, 0x7328,
	0x185d, 0x2ca6, 0x7914, 0x9e28,
	0x171b, 0x3e36, 0x7d7c, 0xebe8,
	0x4199, 0x82ee, 0x19f4, 0x2e58,
	0x4807, 0xc40e, 0x130c, 0x3208,
	0x1905, 0x2e0a, 0x5804, 0xac08,
	0x213f, 0x132a, 0xadfc, 0x5ba8,
	0x19a9, 0x2efe, 0xb5cc, 0x6f88,
1677 1678
};

1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701
static u16 x8_vectors[] = {
	0x0145, 0x028a, 0x2374, 0x43c8, 0xa1f0, 0x0520, 0x0a40, 0x1480,
	0x0211, 0x0422, 0x0844, 0x1088, 0x01b0, 0x44e0, 0x23c0, 0xed80,
	0x1011, 0x0116, 0x022c, 0x0458, 0x08b0, 0x8c60, 0x2740, 0x4e80,
	0x0411, 0x0822, 0x1044, 0x0158, 0x02b0, 0x2360, 0x46c0, 0xab80,
	0x0811, 0x1022, 0x012c, 0x0258, 0x04b0, 0x4660, 0x8cc0, 0x2780,
	0x2071, 0x40e2, 0xa0c4, 0x0108, 0x0210, 0x0420, 0x0840, 0x1080,
	0x4071, 0x80e2, 0x0104, 0x0208, 0x0410, 0x0820, 0x1040, 0x2080,
	0x8071, 0x0102, 0x0204, 0x0408, 0x0810, 0x1020, 0x2040, 0x4080,
	0x019d, 0x03d6, 0x136c, 0x2198, 0x50b0, 0xb2e0, 0x0740, 0x0e80,
	0x0189, 0x03ea, 0x072c, 0x0e58, 0x1cb0, 0x56e0, 0x37c0, 0xf580,
	0x01fd, 0x0376, 0x06ec, 0x0bb8, 0x1110, 0x2220, 0x4440, 0x8880,
	0x0163, 0x02c6, 0x1104, 0x0758, 0x0eb0, 0x2be0, 0x6140, 0xc280,
	0x02fd, 0x01c6, 0x0b5c, 0x1108, 0x07b0, 0x25a0, 0x8840, 0x6180,
	0x0801, 0x012e, 0x025c, 0x04b8, 0x1370, 0x26e0, 0x57c0, 0xb580,
	0x0401, 0x0802, 0x015c, 0x02b8, 0x22b0, 0x13e0, 0x7140, 0xe280,
	0x0201, 0x0402, 0x0804, 0x01b8, 0x11b0, 0x31a0, 0x8040, 0x7180,
	0x0101, 0x0202, 0x0404, 0x0808, 0x1010, 0x2020, 0x4040, 0x8080,
	0x0001, 0x0002, 0x0004, 0x0008, 0x0010, 0x0020, 0x0040, 0x0080,
	0x0100, 0x0200, 0x0400, 0x0800, 0x1000, 0x2000, 0x4000, 0x8000,
};

static int decode_syndrome(u16 syndrome, u16 *vectors, int num_vecs,
1702
			   int v_dim)
1703
{
1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721
	unsigned int i, err_sym;

	for (err_sym = 0; err_sym < num_vecs / v_dim; err_sym++) {
		u16 s = syndrome;
		int v_idx =  err_sym * v_dim;
		int v_end = (err_sym + 1) * v_dim;

		/* walk over all 16 bits of the syndrome */
		for (i = 1; i < (1U << 16); i <<= 1) {

			/* if bit is set in that eigenvector... */
			if (v_idx < v_end && vectors[v_idx] & i) {
				u16 ev_comp = vectors[v_idx++];

				/* ... and bit set in the modified syndrome, */
				if (s & i) {
					/* remove it. */
					s ^= ev_comp;
1722

1723 1724 1725
					if (!s)
						return err_sym;
				}
1726

1727 1728 1729 1730
			} else if (s & i)
				/* can't get to zero, move to next symbol */
				break;
		}
1731 1732 1733 1734 1735
	}

	debugf0("syndrome(%x) not found\n", syndrome);
	return -1;
}
1736

1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778
static int map_err_sym_to_channel(int err_sym, int sym_size)
{
	if (sym_size == 4)
		switch (err_sym) {
		case 0x20:
		case 0x21:
			return 0;
			break;
		case 0x22:
		case 0x23:
			return 1;
			break;
		default:
			return err_sym >> 4;
			break;
		}
	/* x8 symbols */
	else
		switch (err_sym) {
		/* imaginary bits not in a DIMM */
		case 0x10:
			WARN(1, KERN_ERR "Invalid error symbol: 0x%x\n",
					  err_sym);
			return -1;
			break;

		case 0x11:
			return 0;
			break;
		case 0x12:
			return 1;
			break;
		default:
			return err_sym >> 3;
			break;
		}
	return -1;
}

static int get_channel_from_ecc_syndrome(struct mem_ctl_info *mci, u16 syndrome)
{
	struct amd64_pvt *pvt = mci->pvt_info;
1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789
	int err_sym = -1;

	if (pvt->syn_type == 8)
		err_sym = decode_syndrome(syndrome, x8_vectors,
					  ARRAY_SIZE(x8_vectors),
					  pvt->syn_type);
	else if (pvt->syn_type == 4)
		err_sym = decode_syndrome(syndrome, x4_vectors,
					  ARRAY_SIZE(x4_vectors),
					  pvt->syn_type);
	else {
1790
		amd64_warn("Illegal syndrome type: %u\n", pvt->syn_type);
1791
		return err_sym;
1792
	}
1793 1794

	return map_err_sym_to_channel(err_sym, pvt->syn_type);
1795 1796
}

1797 1798 1799 1800
/*
 * Handle any Correctable Errors (CEs) that have occurred. Check for valid ERROR
 * ADDRESS and process.
 */
1801
static void amd64_handle_ce(struct mem_ctl_info *mci, struct mce *m)
1802 1803
{
	struct amd64_pvt *pvt = mci->pvt_info;
1804
	u64 sys_addr;
1805
	u16 syndrome;
1806 1807

	/* Ensure that the Error Address is VALID */
1808
	if (!(m->status & MCI_STATUS_ADDRV)) {
1809
		amd64_mc_err(mci, "HW has no ERROR_ADDRESS available\n");
1810 1811 1812 1813
		edac_mc_handle_ce_no_info(mci, EDAC_MOD_STR);
		return;
	}

1814
	sys_addr = get_error_address(m);
1815
	syndrome = extract_syndrome(m->status);
1816

1817
	amd64_mc_err(mci, "CE ERROR_ADDRESS= 0x%llx\n", sys_addr);
1818

1819
	pvt->ops->map_sysaddr_to_csrow(mci, sys_addr, syndrome);
1820 1821 1822
}

/* Handle any Un-correctable Errors (UEs) */
1823
static void amd64_handle_ue(struct mem_ctl_info *mci, struct mce *m)
1824
{
1825
	struct mem_ctl_info *log_mci, *src_mci = NULL;
1826
	int csrow;
1827
	u64 sys_addr;
1828 1829 1830 1831
	u32 page, offset;

	log_mci = mci;

1832
	if (!(m->status & MCI_STATUS_ADDRV)) {
1833
		amd64_mc_err(mci, "HW has no ERROR_ADDRESS available\n");
1834 1835 1836 1837
		edac_mc_handle_ue_no_info(log_mci, EDAC_MOD_STR);
		return;
	}

1838
	sys_addr = get_error_address(m);
1839 1840 1841 1842 1843

	/*
	 * Find out which node the error address belongs to. This may be
	 * different from the node that detected the error.
	 */
1844
	src_mci = find_mc_by_sys_addr(mci, sys_addr);
1845
	if (!src_mci) {
1846 1847
		amd64_mc_err(mci, "ERROR ADDRESS (0x%lx) NOT mapped to a MC\n",
				  (unsigned long)sys_addr);
1848 1849 1850 1851 1852 1853
		edac_mc_handle_ue_no_info(log_mci, EDAC_MOD_STR);
		return;
	}

	log_mci = src_mci;

1854
	csrow = sys_addr_to_csrow(log_mci, sys_addr);
1855
	if (csrow < 0) {
1856 1857
		amd64_mc_err(mci, "ERROR_ADDRESS (0x%lx) NOT mapped to CS\n",
				  (unsigned long)sys_addr);
1858 1859
		edac_mc_handle_ue_no_info(log_mci, EDAC_MOD_STR);
	} else {
1860
		error_address_to_page_and_offset(sys_addr, &page, &offset);
1861 1862 1863 1864
		edac_mc_handle_ue(log_mci, page, offset, csrow, EDAC_MOD_STR);
	}
}

1865
static inline void __amd64_decode_bus_error(struct mem_ctl_info *mci,
1866
					    struct mce *m)
1867
{
1868 1869 1870
	u16 ec = EC(m->status);
	u8 xec = XEC(m->status, 0x1f);
	u8 ecc_type = (m->status >> 45) & 0x3;
1871

1872
	/* Bail early out if this was an 'observed' error */
1873
	if (PP(ec) == NBSL_PP_OBS)
1874
		return;
1875

1876 1877
	/* Do only ECC errors */
	if (xec && xec != F10_NBSL_EXT_ERR_ECC)
1878 1879
		return;

1880
	if (ecc_type == 2)
1881
		amd64_handle_ce(mci, m);
1882
	else if (ecc_type == 1)
1883
		amd64_handle_ue(mci, m);
1884 1885
}

1886
void amd64_decode_bus_error(int node_id, struct mce *m, u32 nbcfg)
1887
{
1888
	struct mem_ctl_info *mci = mcis[node_id];
1889

1890
	__amd64_decode_bus_error(mci, m);
1891 1892
}

1893
/*
1894
 * Use pvt->F2 which contains the F2 CPU PCI device to get the related
1895
 * F1 (AddrMap) and F3 (Misc) devices. Return negative value on error.
1896
 */
1897
static int reserve_mc_sibling_devs(struct amd64_pvt *pvt, u16 f1_id, u16 f3_id)
1898 1899
{
	/* Reserve the ADDRESS MAP Device */
1900 1901
	pvt->F1 = pci_get_related_function(pvt->F2->vendor, f1_id, pvt->F2);
	if (!pvt->F1) {
1902 1903 1904
		amd64_err("error address map device not found: "
			  "vendor %x device 0x%x (broken BIOS?)\n",
			  PCI_VENDOR_ID_AMD, f1_id);
1905
		return -ENODEV;
1906 1907 1908
	}

	/* Reserve the MISC Device */
1909 1910 1911 1912
	pvt->F3 = pci_get_related_function(pvt->F2->vendor, f3_id, pvt->F2);
	if (!pvt->F3) {
		pci_dev_put(pvt->F1);
		pvt->F1 = NULL;
1913

1914 1915 1916
		amd64_err("error F3 device not found: "
			  "vendor %x device 0x%x (broken BIOS?)\n",
			  PCI_VENDOR_ID_AMD, f3_id);
1917

1918
		return -ENODEV;
1919
	}
1920 1921 1922
	debugf1("F1: %s\n", pci_name(pvt->F1));
	debugf1("F2: %s\n", pci_name(pvt->F2));
	debugf1("F3: %s\n", pci_name(pvt->F3));
1923 1924 1925 1926

	return 0;
}

1927
static void free_mc_sibling_devs(struct amd64_pvt *pvt)
1928
{
1929 1930
	pci_dev_put(pvt->F1);
	pci_dev_put(pvt->F3);
1931 1932 1933 1934 1935 1936
}

/*
 * Retrieve the hardware registers of the memory controller (this includes the
 * 'Address Map' and 'Misc' device regs)
 */
1937
static void read_mc_regs(struct amd64_pvt *pvt)
1938 1939
{
	u64 msr_val;
1940
	u32 tmp;
1941
	int range;
1942 1943 1944 1945 1946

	/*
	 * Retrieve TOP_MEM and TOP_MEM2; no masking off of reserved bits since
	 * those are Read-As-Zero
	 */
1947 1948
	rdmsrl(MSR_K8_TOP_MEM1, pvt->top_mem);
	debugf0("  TOP_MEM:  0x%016llx\n", pvt->top_mem);
1949 1950 1951 1952

	/* check first whether TOP_MEM2 is enabled */
	rdmsrl(MSR_K8_SYSCFG, msr_val);
	if (msr_val & (1U << 21)) {
1953 1954
		rdmsrl(MSR_K8_TOP_MEM2, pvt->top_mem2);
		debugf0("  TOP_MEM2: 0x%016llx\n", pvt->top_mem2);
1955 1956 1957
	} else
		debugf0("  TOP_MEM2 disabled.\n");

1958
	amd64_read_pci_cfg(pvt->F3, NBCAP, &pvt->nbcap);
1959

1960
	read_dram_ctl_register(pvt);
1961

1962 1963
	for (range = 0; range < DRAM_RANGES; range++) {
		u8 rw;
1964

1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982
		/* read settings for this DRAM range */
		read_dram_base_limit_regs(pvt, range);

		rw = dram_rw(pvt, range);
		if (!rw)
			continue;

		debugf1("  DRAM range[%d], base: 0x%016llx; limit: 0x%016llx\n",
			range,
			get_dram_base(pvt, range),
			get_dram_limit(pvt, range));

		debugf1("   IntlvEn=%s; Range access: %s%s IntlvSel=%d DstNode=%d\n",
			dram_intlv_en(pvt, range) ? "Enabled" : "Disabled",
			(rw & 0x1) ? "R" : "-",
			(rw & 0x2) ? "W" : "-",
			dram_intlv_sel(pvt, range),
			dram_dst_node(pvt, range));
1983 1984
	}

1985
	read_dct_base_mask(pvt);
1986

1987
	amd64_read_pci_cfg(pvt->F1, DHAR, &pvt->dhar);
1988
	amd64_read_dct_pci_cfg(pvt, DBAM0, &pvt->dbam0);
1989

1990
	amd64_read_pci_cfg(pvt->F3, F10_ONLINE_SPARE, &pvt->online_spare);
1991

1992 1993
	amd64_read_dct_pci_cfg(pvt, DCLR0, &pvt->dclr0);
	amd64_read_dct_pci_cfg(pvt, DCHR0, &pvt->dchr0);
1994

1995
	if (!dct_ganging_enabled(pvt)) {
1996 1997
		amd64_read_dct_pci_cfg(pvt, DCLR1, &pvt->dclr1);
		amd64_read_dct_pci_cfg(pvt, DCHR1, &pvt->dchr1);
1998
	}
1999

2000
	if (boot_cpu_data.x86 >= 0x10) {
2001
		amd64_read_pci_cfg(pvt->F3, EXT_NB_MCA_CFG, &tmp);
2002 2003
		amd64_read_dct_pci_cfg(pvt, DBAM1, &pvt->dbam1);
	}
2004

2005 2006 2007 2008 2009 2010 2011 2012
	if (boot_cpu_data.x86 == 0x10 &&
	    boot_cpu_data.x86_model > 7 &&
	    /* F3x180[EccSymbolSize]=1 => x8 symbols */
	    tmp & BIT(25))
		pvt->syn_type = 8;
	else
		pvt->syn_type = 4;

2013
	dump_misc_regs(pvt);
2014 2015 2016 2017 2018 2019
}

/*
 * NOTE: CPU Revision Dependent code
 *
 * Input:
2020
 *	@csrow_nr ChipSelect Row Number (0..NUM_CHIPSELECTS-1)
2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049
 *	k8 private pointer to -->
 *			DRAM Bank Address mapping register
 *			node_id
 *			DCL register where dual_channel_active is
 *
 * The DBAM register consists of 4 sets of 4 bits each definitions:
 *
 * Bits:	CSROWs
 * 0-3		CSROWs 0 and 1
 * 4-7		CSROWs 2 and 3
 * 8-11		CSROWs 4 and 5
 * 12-15	CSROWs 6 and 7
 *
 * Values range from: 0 to 15
 * The meaning of the values depends on CPU revision and dual-channel state,
 * see relevant BKDG more info.
 *
 * The memory controller provides for total of only 8 CSROWs in its current
 * architecture. Each "pair" of CSROWs normally represents just one DIMM in
 * single channel or two (2) DIMMs in dual channel mode.
 *
 * The following code logic collapses the various tables for CSROW based on CPU
 * revision.
 *
 * Returns:
 *	The number of PAGE_SIZE pages on the specified CSROW number it
 *	encompasses
 *
 */
2050
static u32 amd64_csrow_nr_pages(struct amd64_pvt *pvt, u8 dct, int csrow_nr)
2051
{
2052
	u32 cs_mode, nr_pages;
2053 2054 2055 2056 2057 2058 2059 2060

	/*
	 * The math on this doesn't look right on the surface because x/2*4 can
	 * be simplified to x*2 but this expression makes use of the fact that
	 * it is integral math where 1/2=0. This intermediate value becomes the
	 * number of bits to shift the DBAM register to extract the proper CSROW
	 * field.
	 */
2061
	cs_mode = (pvt->dbam0 >> ((csrow_nr / 2) * 4)) & 0xF;
2062

2063
	nr_pages = pvt->ops->dbam_to_cs(pvt, dct, cs_mode) << (20 - PAGE_SHIFT);
2064 2065 2066 2067 2068 2069 2070

	/*
	 * If dual channel then double the memory size of single channel.
	 * Channel count is 1 or 2
	 */
	nr_pages <<= (pvt->channel_count - 1);

2071
	debugf0("  (csrow=%d) DBAM map index= %d\n", csrow_nr, cs_mode);
2072 2073 2074 2075 2076 2077 2078 2079 2080 2081
	debugf0("    nr_pages= %u  channel-count = %d\n",
		nr_pages, pvt->channel_count);

	return nr_pages;
}

/*
 * Initialize the array of csrow attribute instances, based on the values
 * from pci config hardware registers.
 */
2082
static int init_csrows(struct mem_ctl_info *mci)
2083 2084
{
	struct csrow_info *csrow;
2085
	struct amd64_pvt *pvt = mci->pvt_info;
2086
	u64 input_addr_min, input_addr_max, sys_addr, base, mask;
2087
	u32 val;
2088
	int i, empty = 1;
2089

2090
	amd64_read_pci_cfg(pvt->F3, NBCFG, &val);
2091

2092
	pvt->nbcfg = val;
2093

2094 2095
	debugf0("node %d, NBCFG=0x%08x[ChipKillEccCap: %d|DramEccEn: %d]\n",
		pvt->mc_node_id, val,
2096
		!!(val & NBCFG_CHIPKILL), !!(val & NBCFG_ECC_ENABLE));
2097

2098
	for_each_chip_select(i, 0, pvt) {
2099 2100
		csrow = &mci->csrows[i];

2101
		if (!csrow_enabled(i, 0, pvt)) {
2102 2103 2104 2105 2106 2107 2108 2109 2110
			debugf1("----CSROW %d EMPTY for node %d\n", i,
				pvt->mc_node_id);
			continue;
		}

		debugf1("----CSROW %d VALID for MC node %d\n",
			i, pvt->mc_node_id);

		empty = 0;
2111
		csrow->nr_pages = amd64_csrow_nr_pages(pvt, 0, i);
2112 2113 2114 2115 2116
		find_csrow_limits(mci, i, &input_addr_min, &input_addr_max);
		sys_addr = input_addr_to_sys_addr(mci, input_addr_min);
		csrow->first_page = (u32) (sys_addr >> PAGE_SHIFT);
		sys_addr = input_addr_to_sys_addr(mci, input_addr_max);
		csrow->last_page = (u32) (sys_addr >> PAGE_SHIFT);
2117 2118 2119

		get_cs_base_and_mask(pvt, i, 0, &base, &mask);
		csrow->page_mask = ~mask;
2120 2121
		/* 8 bytes of resolution */

2122
		csrow->mtype = amd64_determine_memory_type(pvt, i);
2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137

		debugf1("  for MC node %d csrow %d:\n", pvt->mc_node_id, i);
		debugf1("    input_addr_min: 0x%lx input_addr_max: 0x%lx\n",
			(unsigned long)input_addr_min,
			(unsigned long)input_addr_max);
		debugf1("    sys_addr: 0x%lx  page_mask: 0x%lx\n",
			(unsigned long)sys_addr, csrow->page_mask);
		debugf1("    nr_pages: %u  first_page: 0x%lx "
			"last_page: 0x%lx\n",
			(unsigned)csrow->nr_pages,
			csrow->first_page, csrow->last_page);

		/*
		 * determine whether CHIPKILL or JUST ECC or NO ECC is operating
		 */
2138
		if (pvt->nbcfg & NBCFG_ECC_ENABLE)
2139
			csrow->edac_mode =
2140
			    (pvt->nbcfg & NBCFG_CHIPKILL) ?
2141 2142 2143 2144 2145 2146 2147
			    EDAC_S4ECD4ED : EDAC_SECDED;
		else
			csrow->edac_mode = EDAC_NONE;
	}

	return empty;
}
2148

2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162
/* get all cores on this DCT */
static void get_cpus_on_this_dct_cpumask(struct cpumask *mask, int nid)
{
	int cpu;

	for_each_online_cpu(cpu)
		if (amd_get_nb_id(cpu) == nid)
			cpumask_set_cpu(cpu, mask);
}

/* check MCG_CTL on all the cpus on this node */
static bool amd64_nb_mce_bank_enabled_on_node(int nid)
{
	cpumask_var_t mask;
2163
	int cpu, nbe;
2164 2165 2166
	bool ret = false;

	if (!zalloc_cpumask_var(&mask, GFP_KERNEL)) {
2167
		amd64_warn("%s: Error allocating mask\n", __func__);
2168 2169 2170 2171 2172 2173 2174 2175
		return false;
	}

	get_cpus_on_this_dct_cpumask(mask, nid);

	rdmsr_on_cpus(mask, MSR_IA32_MCG_CTL, msrs);

	for_each_cpu(cpu, mask) {
2176
		struct msr *reg = per_cpu_ptr(msrs, cpu);
2177
		nbe = reg->l & MSR_MCGCTL_NBE;
2178 2179

		debugf0("core: %u, MCG_CTL: 0x%llx, NB MSR is %s\n",
2180
			cpu, reg->q,
2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192
			(nbe ? "enabled" : "disabled"));

		if (!nbe)
			goto out;
	}
	ret = true;

out:
	free_cpumask_var(mask);
	return ret;
}

2193
static int toggle_ecc_err_reporting(struct ecc_settings *s, u8 nid, bool on)
2194 2195
{
	cpumask_var_t cmask;
2196
	int cpu;
2197 2198

	if (!zalloc_cpumask_var(&cmask, GFP_KERNEL)) {
2199
		amd64_warn("%s: error allocating mask\n", __func__);
2200 2201 2202
		return false;
	}

2203
	get_cpus_on_this_dct_cpumask(cmask, nid);
2204 2205 2206 2207 2208

	rdmsr_on_cpus(cmask, MSR_IA32_MCG_CTL, msrs);

	for_each_cpu(cpu, cmask) {

2209 2210
		struct msr *reg = per_cpu_ptr(msrs, cpu);

2211
		if (on) {
2212
			if (reg->l & MSR_MCGCTL_NBE)
2213
				s->flags.nb_mce_enable = 1;
2214

2215
			reg->l |= MSR_MCGCTL_NBE;
2216 2217
		} else {
			/*
2218
			 * Turn off NB MCE reporting only when it was off before
2219
			 */
2220
			if (!s->flags.nb_mce_enable)
2221
				reg->l &= ~MSR_MCGCTL_NBE;
2222 2223 2224 2225 2226 2227 2228 2229 2230
		}
	}
	wrmsr_on_cpus(cmask, MSR_IA32_MCG_CTL, msrs);

	free_cpumask_var(cmask);

	return 0;
}

2231 2232
static bool enable_ecc_error_reporting(struct ecc_settings *s, u8 nid,
				       struct pci_dev *F3)
2233
{
2234
	bool ret = true;
B
Borislav Petkov 已提交
2235
	u32 value, mask = 0x3;		/* UECC/CECC enable */
2236

2237 2238 2239 2240 2241
	if (toggle_ecc_err_reporting(s, nid, ON)) {
		amd64_warn("Error enabling ECC reporting over MCGCTL!\n");
		return false;
	}

B
Borislav Petkov 已提交
2242
	amd64_read_pci_cfg(F3, NBCTL, &value);
2243

2244 2245
	s->old_nbctl   = value & mask;
	s->nbctl_valid = true;
2246 2247

	value |= mask;
B
Borislav Petkov 已提交
2248
	amd64_write_pci_cfg(F3, NBCTL, value);
2249

2250
	amd64_read_pci_cfg(F3, NBCFG, &value);
2251

2252 2253
	debugf0("1: node %d, NBCFG=0x%08x[DramEccEn: %d]\n",
		nid, value, !!(value & NBCFG_ECC_ENABLE));
2254

2255
	if (!(value & NBCFG_ECC_ENABLE)) {
2256
		amd64_warn("DRAM ECC disabled on this node, enabling...\n");
2257

2258
		s->flags.nb_ecc_prev = 0;
2259

2260
		/* Attempt to turn on DRAM ECC Enable */
2261 2262
		value |= NBCFG_ECC_ENABLE;
		amd64_write_pci_cfg(F3, NBCFG, value);
2263

2264
		amd64_read_pci_cfg(F3, NBCFG, &value);
2265

2266
		if (!(value & NBCFG_ECC_ENABLE)) {
2267 2268
			amd64_warn("Hardware rejected DRAM ECC enable,"
				   "check memory DIMM configuration.\n");
2269
			ret = false;
2270
		} else {
2271
			amd64_info("Hardware accepted DRAM ECC Enable\n");
2272
		}
2273
	} else {
2274
		s->flags.nb_ecc_prev = 1;
2275
	}
2276

2277 2278
	debugf0("2: node %d, NBCFG=0x%08x[DramEccEn: %d]\n",
		nid, value, !!(value & NBCFG_ECC_ENABLE));
2279

2280
	return ret;
2281 2282
}

2283 2284
static void restore_ecc_error_reporting(struct ecc_settings *s, u8 nid,
					struct pci_dev *F3)
2285
{
B
Borislav Petkov 已提交
2286 2287
	u32 value, mask = 0x3;		/* UECC/CECC enable */

2288

2289
	if (!s->nbctl_valid)
2290 2291
		return;

B
Borislav Petkov 已提交
2292
	amd64_read_pci_cfg(F3, NBCTL, &value);
2293
	value &= ~mask;
2294
	value |= s->old_nbctl;
2295

B
Borislav Petkov 已提交
2296
	amd64_write_pci_cfg(F3, NBCTL, value);
2297

2298 2299
	/* restore previous BIOS DRAM ECC "off" setting we force-enabled */
	if (!s->flags.nb_ecc_prev) {
2300 2301 2302
		amd64_read_pci_cfg(F3, NBCFG, &value);
		value &= ~NBCFG_ECC_ENABLE;
		amd64_write_pci_cfg(F3, NBCFG, value);
2303 2304 2305
	}

	/* restore the NB Enable MCGCTL bit */
2306
	if (toggle_ecc_err_reporting(s, nid, OFF))
2307
		amd64_warn("Error restoring NB MCGCTL settings!\n");
2308 2309 2310
}

/*
2311 2312 2313 2314
 * EDAC requires that the BIOS have ECC enabled before
 * taking over the processing of ECC errors. A command line
 * option allows to force-enable hardware ECC later in
 * enable_ecc_error_reporting().
2315
 */
2316 2317 2318 2319 2320
static const char *ecc_msg =
	"ECC disabled in the BIOS or no ECC capability, module will not load.\n"
	" Either enable ECC checking or force module loading by setting "
	"'ecc_enable_override'.\n"
	" (Note that use of the override may cause unknown side effects.)\n";
2321

2322
static bool ecc_enabled(struct pci_dev *F3, u8 nid)
2323 2324
{
	u32 value;
2325
	u8 ecc_en = 0;
2326
	bool nb_mce_en = false;
2327

2328
	amd64_read_pci_cfg(F3, NBCFG, &value);
2329

2330
	ecc_en = !!(value & NBCFG_ECC_ENABLE);
2331
	amd64_info("DRAM ECC %s.\n", (ecc_en ? "enabled" : "disabled"));
2332

2333
	nb_mce_en = amd64_nb_mce_bank_enabled_on_node(nid);
2334
	if (!nb_mce_en)
2335 2336 2337
		amd64_notice("NB MCE bank disabled, set MSR "
			     "0x%08x[4] on node %d to enable.\n",
			     MSR_IA32_MCG_CTL, nid);
2338

2339 2340 2341 2342 2343
	if (!ecc_en || !nb_mce_en) {
		amd64_notice("%s", ecc_msg);
		return false;
	}
	return true;
2344 2345
}

2346 2347 2348 2349 2350 2351
struct mcidev_sysfs_attribute sysfs_attrs[ARRAY_SIZE(amd64_dbg_attrs) +
					  ARRAY_SIZE(amd64_inj_attrs) +
					  1];

struct mcidev_sysfs_attribute terminator = { .attr = { .name = NULL } };

2352
static void set_mc_sysfs_attrs(struct mem_ctl_info *mci)
2353 2354 2355 2356 2357 2358
{
	unsigned int i = 0, j = 0;

	for (; i < ARRAY_SIZE(amd64_dbg_attrs); i++)
		sysfs_attrs[i] = amd64_dbg_attrs[i];

2359 2360 2361
	if (boot_cpu_data.x86 >= 0x10)
		for (j = 0; j < ARRAY_SIZE(amd64_inj_attrs); j++, i++)
			sysfs_attrs[i] = amd64_inj_attrs[j];
2362 2363 2364 2365 2366 2367

	sysfs_attrs[i] = terminator;

	mci->mc_driver_sysfs_attributes = sysfs_attrs;
}

2368
static void setup_mci_misc_attrs(struct mem_ctl_info *mci)
2369 2370 2371 2372 2373 2374
{
	struct amd64_pvt *pvt = mci->pvt_info;

	mci->mtype_cap		= MEM_FLAG_DDR2 | MEM_FLAG_RDDR2;
	mci->edac_ctl_cap	= EDAC_FLAG_NONE;

2375
	if (pvt->nbcap & NBCAP_SECDED)
2376 2377
		mci->edac_ctl_cap |= EDAC_FLAG_SECDED;

2378
	if (pvt->nbcap & NBCAP_CHIPKILL)
2379 2380 2381 2382 2383
		mci->edac_ctl_cap |= EDAC_FLAG_S4ECD4ED;

	mci->edac_cap		= amd64_determine_edac_cap(pvt);
	mci->mod_name		= EDAC_MOD_STR;
	mci->mod_ver		= EDAC_AMD64_VERSION;
2384
	mci->ctl_name		= pvt->ctl_name;
2385
	mci->dev_name		= pci_name(pvt->F2);
2386 2387 2388 2389 2390 2391 2392
	mci->ctl_page_to_phys	= NULL;

	/* memory scrubber interface */
	mci->set_sdram_scrub_rate = amd64_set_scrub_rate;
	mci->get_sdram_scrub_rate = amd64_get_scrub_rate;
}

2393 2394 2395 2396
/*
 * returns a pointer to the family descriptor on success, NULL otherwise.
 */
static struct amd64_family_type *amd64_per_family_init(struct amd64_pvt *pvt)
2397
{
2398 2399 2400 2401
	u8 fam = boot_cpu_data.x86;
	struct amd64_family_type *fam_type = NULL;

	switch (fam) {
2402
	case 0xf:
2403
		fam_type		= &amd64_family_types[K8_CPUS];
2404
		pvt->ops		= &amd64_family_types[K8_CPUS].ops;
2405
		pvt->ctl_name		= fam_type->ctl_name;
2406 2407
		break;
	case 0x10:
2408
		fam_type		= &amd64_family_types[F10_CPUS];
2409
		pvt->ops		= &amd64_family_types[F10_CPUS].ops;
2410
		pvt->ctl_name		= fam_type->ctl_name;
2411 2412 2413
		break;

	default:
2414
		amd64_err("Unsupported family!\n");
2415
		return NULL;
2416
	}
2417

2418 2419
	pvt->ext_model = boot_cpu_data.x86_model >> 4;

2420
	amd64_info("%s %sdetected (node %d).\n", pvt->ctl_name,
2421
		     (fam == 0xf ?
2422 2423 2424
				(pvt->ext_model >= K8_REV_F  ? "revF or later "
							     : "revE or earlier ")
				 : ""), pvt->mc_node_id);
2425
	return fam_type;
2426 2427
}

2428
static int amd64_init_one_instance(struct pci_dev *F2)
2429 2430
{
	struct amd64_pvt *pvt = NULL;
2431
	struct amd64_family_type *fam_type = NULL;
2432
	struct mem_ctl_info *mci = NULL;
2433
	int err = 0, ret;
2434
	u8 nid = get_node_id(F2);
2435 2436 2437 2438

	ret = -ENOMEM;
	pvt = kzalloc(sizeof(struct amd64_pvt), GFP_KERNEL);
	if (!pvt)
2439
		goto err_ret;
2440

2441
	pvt->mc_node_id	= nid;
2442
	pvt->F2 = F2;
2443

2444
	ret = -EINVAL;
2445 2446
	fam_type = amd64_per_family_init(pvt);
	if (!fam_type)
2447 2448
		goto err_free;

2449
	ret = -ENODEV;
2450
	err = reserve_mc_sibling_devs(pvt, fam_type->f1_id, fam_type->f3_id);
2451 2452 2453
	if (err)
		goto err_free;

2454
	read_mc_regs(pvt);
2455 2456 2457 2458

	/*
	 * We need to determine how many memory channels there are. Then use
	 * that information for calculating the size of the dynamic instance
2459
	 * tables in the 'mci' structure.
2460
	 */
2461
	ret = -EINVAL;
2462 2463
	pvt->channel_count = pvt->ops->early_channel_count(pvt);
	if (pvt->channel_count < 0)
2464
		goto err_siblings;
2465 2466

	ret = -ENOMEM;
2467
	mci = edac_mc_alloc(0, pvt->csels[0].b_cnt, pvt->channel_count, nid);
2468
	if (!mci)
2469
		goto err_siblings;
2470 2471

	mci->pvt_info = pvt;
2472
	mci->dev = &pvt->F2->dev;
2473

2474 2475 2476
	setup_mci_misc_attrs(mci);

	if (init_csrows(mci))
2477 2478
		mci->edac_cap = EDAC_FLAG_NONE;

2479
	set_mc_sysfs_attrs(mci);
2480 2481 2482 2483 2484 2485 2486

	ret = -ENODEV;
	if (edac_mc_add_mc(mci)) {
		debugf1("failed edac_mc_add_mc()\n");
		goto err_add_mc;
	}

2487 2488 2489 2490 2491 2492
	/* register stuff with EDAC MCE */
	if (report_gart_errors)
		amd_report_gart_errors(true);

	amd_register_ecc_decoder(amd64_decode_bus_error);

2493 2494 2495 2496
	mcis[nid] = mci;

	atomic_inc(&drv_instances);

2497 2498 2499 2500 2501
	return 0;

err_add_mc:
	edac_mc_free(mci);

2502 2503
err_siblings:
	free_mc_sibling_devs(pvt);
2504

2505 2506
err_free:
	kfree(pvt);
2507

2508
err_ret:
2509 2510 2511
	return ret;
}

2512
static int __devinit amd64_probe_one_instance(struct pci_dev *pdev,
2513
					     const struct pci_device_id *mc_type)
2514
{
2515
	u8 nid = get_node_id(pdev);
2516
	struct pci_dev *F3 = node_to_amd_nb(nid)->misc;
2517
	struct ecc_settings *s;
2518
	int ret = 0;
2519 2520

	ret = pci_enable_device(pdev);
2521 2522 2523 2524
	if (ret < 0) {
		debugf0("ret=%d\n", ret);
		return -EIO;
	}
2525

2526 2527 2528
	ret = -ENOMEM;
	s = kzalloc(sizeof(struct ecc_settings), GFP_KERNEL);
	if (!s)
2529
		goto err_out;
2530 2531 2532

	ecc_stngs[nid] = s;

2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545
	if (!ecc_enabled(F3, nid)) {
		ret = -ENODEV;

		if (!ecc_enable_override)
			goto err_enable;

		amd64_warn("Forcing ECC on!\n");

		if (!enable_ecc_error_reporting(s, nid, F3))
			goto err_enable;
	}

	ret = amd64_init_one_instance(pdev);
2546
	if (ret < 0) {
2547
		amd64_err("Error probing instance: %d\n", nid);
2548 2549
		restore_ecc_error_reporting(s, nid, F3);
	}
2550 2551

	return ret;
2552 2553 2554 2555 2556 2557 2558

err_enable:
	kfree(s);
	ecc_stngs[nid] = NULL;

err_out:
	return ret;
2559 2560 2561 2562 2563 2564
}

static void __devexit amd64_remove_one_instance(struct pci_dev *pdev)
{
	struct mem_ctl_info *mci;
	struct amd64_pvt *pvt;
2565 2566 2567
	u8 nid = get_node_id(pdev);
	struct pci_dev *F3 = node_to_amd_nb(nid)->misc;
	struct ecc_settings *s = ecc_stngs[nid];
2568 2569 2570 2571 2572 2573 2574 2575

	/* Remove from EDAC CORE tracking list */
	mci = edac_mc_del_mc(&pdev->dev);
	if (!mci)
		return;

	pvt = mci->pvt_info;

2576
	restore_ecc_error_reporting(s, nid, F3);
2577

2578
	free_mc_sibling_devs(pvt);
2579

2580 2581 2582 2583
	/* unregister from EDAC MCE */
	amd_report_gart_errors(false);
	amd_unregister_ecc_decoder(amd64_decode_bus_error);

2584 2585
	kfree(ecc_stngs[nid]);
	ecc_stngs[nid] = NULL;
2586

2587
	/* Free the EDAC CORE resources */
2588
	mci->pvt_info = NULL;
2589
	mcis[nid] = NULL;
2590 2591

	kfree(pvt);
2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622
	edac_mc_free(mci);
}

/*
 * This table is part of the interface for loading drivers for PCI devices. The
 * PCI core identifies what devices are on a system during boot, and then
 * inquiry this table to see if this driver is for a given device found.
 */
static const struct pci_device_id amd64_pci_table[] __devinitdata = {
	{
		.vendor		= PCI_VENDOR_ID_AMD,
		.device		= PCI_DEVICE_ID_AMD_K8_NB_MEMCTL,
		.subvendor	= PCI_ANY_ID,
		.subdevice	= PCI_ANY_ID,
		.class		= 0,
		.class_mask	= 0,
	},
	{
		.vendor		= PCI_VENDOR_ID_AMD,
		.device		= PCI_DEVICE_ID_AMD_10H_NB_DRAM,
		.subvendor	= PCI_ANY_ID,
		.subdevice	= PCI_ANY_ID,
		.class		= 0,
		.class_mask	= 0,
	},
	{0, }
};
MODULE_DEVICE_TABLE(pci, amd64_pci_table);

static struct pci_driver amd64_pci_driver = {
	.name		= EDAC_MOD_STR,
2623
	.probe		= amd64_probe_one_instance,
2624 2625 2626 2627
	.remove		= __devexit_p(amd64_remove_one_instance),
	.id_table	= amd64_pci_table,
};

2628
static void setup_pci_device(void)
2629 2630 2631 2632 2633 2634 2635
{
	struct mem_ctl_info *mci;
	struct amd64_pvt *pvt;

	if (amd64_ctl_pci)
		return;

2636
	mci = mcis[0];
2637 2638 2639 2640
	if (mci) {

		pvt = mci->pvt_info;
		amd64_ctl_pci =
2641
			edac_pci_create_generic_ctl(&pvt->F2->dev, EDAC_MOD_STR);
2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654

		if (!amd64_ctl_pci) {
			pr_warning("%s(): Unable to create PCI control\n",
				   __func__);

			pr_warning("%s(): PCI error report via EDAC not set\n",
				   __func__);
			}
	}
}

static int __init amd64_edac_init(void)
{
2655
	int err = -ENODEV;
2656 2657 2658 2659 2660

	edac_printk(KERN_INFO, EDAC_MOD_STR, EDAC_AMD64_VERSION "\n");

	opstate_init();

2661
	if (amd_cache_northbridges() < 0)
2662
		goto err_ret;
2663

2664
	err = -ENOMEM;
2665 2666
	mcis	  = kzalloc(amd_nb_num() * sizeof(mcis[0]), GFP_KERNEL);
	ecc_stngs = kzalloc(amd_nb_num() * sizeof(ecc_stngs[0]), GFP_KERNEL);
2667
	if (!(mcis && ecc_stngs))
2668 2669
		goto err_ret;

2670
	msrs = msrs_alloc();
2671
	if (!msrs)
2672
		goto err_free;
2673

2674 2675
	err = pci_register_driver(&amd64_pci_driver);
	if (err)
2676
		goto err_pci;
2677

2678
	err = -ENODEV;
2679 2680
	if (!atomic_read(&drv_instances))
		goto err_no_instances;
2681

2682 2683
	setup_pci_device();
	return 0;
2684

2685
err_no_instances:
2686
	pci_unregister_driver(&amd64_pci_driver);
2687

2688 2689 2690
err_pci:
	msrs_free(msrs);
	msrs = NULL;
2691

2692 2693 2694 2695 2696 2697 2698
err_free:
	kfree(mcis);
	mcis = NULL;

	kfree(ecc_stngs);
	ecc_stngs = NULL;

2699
err_ret:
2700 2701 2702 2703 2704 2705 2706 2707 2708
	return err;
}

static void __exit amd64_edac_exit(void)
{
	if (amd64_ctl_pci)
		edac_pci_release_generic_ctl(amd64_ctl_pci);

	pci_unregister_driver(&amd64_pci_driver);
2709

2710 2711 2712
	kfree(ecc_stngs);
	ecc_stngs = NULL;

2713 2714 2715
	kfree(mcis);
	mcis = NULL;

2716 2717
	msrs_free(msrs);
	msrs = NULL;
2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730
}

module_init(amd64_edac_init);
module_exit(amd64_edac_exit);

MODULE_LICENSE("GPL");
MODULE_AUTHOR("SoftwareBitMaker: Doug Thompson, "
		"Dave Peterson, Thayne Harbaugh");
MODULE_DESCRIPTION("MC support for AMD64 memory controllers - "
		EDAC_AMD64_VERSION);

module_param(edac_op_state, int, 0444);
MODULE_PARM_DESC(edac_op_state, "EDAC Error Reporting state: 0=Poll,1=NMI");