ntp.c 25.6 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0
2 3 4 5 6 7 8
/*
 * NTP state machine interfaces and logic.
 *
 * This code was mainly moved from kernel/timer.c and kernel/time.c
 * Please see those files for relevant copyright info and historical
 * changelogs.
 */
A
Alexey Dobriyan 已提交
9
#include <linux/capability.h>
R
Roman Zippel 已提交
10
#include <linux/clocksource.h>
11
#include <linux/workqueue.h>
12 13 14 15 16 17
#include <linux/hrtimer.h>
#include <linux/jiffies.h>
#include <linux/math64.h>
#include <linux/timex.h>
#include <linux/time.h>
#include <linux/mm.h>
18
#include <linux/module.h>
19
#include <linux/rtc.h>
20
#include <linux/math64.h>
21

22
#include "ntp_internal.h"
23 24
#include "timekeeping_internal.h"

25

26
/*
27
 * NTP timekeeping variables:
28 29
 *
 * Note: All of the NTP state is protected by the timekeeping locks.
30 31
 */

32

33
/* USER_HZ period (usecs): */
34
unsigned long			tick_usec = USER_TICK_USEC;
35

36
/* SHIFTED_HZ period (nsecs): */
37
unsigned long			tick_nsec;
R
Roman Zippel 已提交
38

39
static u64			tick_length;
40 41
static u64			tick_length_base;

42
#define SECS_PER_DAY		86400
43
#define MAX_TICKADJ		500LL		/* usecs */
44
#define MAX_TICKADJ_SCALED \
45
	(((MAX_TICKADJ * NSEC_PER_USEC) << NTP_SCALE_SHIFT) / NTP_INTERVAL_FREQ)
46 47 48 49

/*
 * phase-lock loop variables
 */
50 51 52 53 54 55 56 57 58

/*
 * clock synchronization status
 *
 * (TIME_ERROR prevents overwriting the CMOS clock)
 */
static int			time_state = TIME_OK;

/* clock status bits:							*/
J
John Stultz 已提交
59
static int			time_status = STA_UNSYNC;
60 61 62 63 64 65 66 67

/* time adjustment (nsecs):						*/
static s64			time_offset;

/* pll time constant:							*/
static long			time_constant = 2;

/* maximum error (usecs):						*/
68
static long			time_maxerror = NTP_PHASE_LIMIT;
69 70

/* estimated error (usecs):						*/
71
static long			time_esterror = NTP_PHASE_LIMIT;
72 73 74 75 76

/* frequency offset (scaled nsecs/secs):				*/
static s64			time_freq;

/* time at last adjustment (secs):					*/
77
static time64_t		time_reftime;
78

J
John Stultz 已提交
79
static long			time_adjust;
80

81 82
/* constant (boot-param configurable) NTP tick adjustment (upscaled)	*/
static s64			ntp_tick_adj;
83

84 85 86
/* second value of the next pending leapsecond, or TIME64_MAX if no leap */
static time64_t			ntp_next_leap_sec = TIME64_MAX;

87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105
#ifdef CONFIG_NTP_PPS

/*
 * The following variables are used when a pulse-per-second (PPS) signal
 * is available. They establish the engineering parameters of the clock
 * discipline loop when controlled by the PPS signal.
 */
#define PPS_VALID	10	/* PPS signal watchdog max (s) */
#define PPS_POPCORN	4	/* popcorn spike threshold (shift) */
#define PPS_INTMIN	2	/* min freq interval (s) (shift) */
#define PPS_INTMAX	8	/* max freq interval (s) (shift) */
#define PPS_INTCOUNT	4	/* number of consecutive good intervals to
				   increase pps_shift or consecutive bad
				   intervals to decrease it */
#define PPS_MAXWANDER	100000	/* max PPS freq wander (ns/s) */

static int pps_valid;		/* signal watchdog counter */
static long pps_tf[3];		/* phase median filter */
static long pps_jitter;		/* current jitter (ns) */
106
static struct timespec64 pps_fbase; /* beginning of the last freq interval */
107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174
static int pps_shift;		/* current interval duration (s) (shift) */
static int pps_intcnt;		/* interval counter */
static s64 pps_freq;		/* frequency offset (scaled ns/s) */
static long pps_stabil;		/* current stability (scaled ns/s) */

/*
 * PPS signal quality monitors
 */
static long pps_calcnt;		/* calibration intervals */
static long pps_jitcnt;		/* jitter limit exceeded */
static long pps_stbcnt;		/* stability limit exceeded */
static long pps_errcnt;		/* calibration errors */


/* PPS kernel consumer compensates the whole phase error immediately.
 * Otherwise, reduce the offset by a fixed factor times the time constant.
 */
static inline s64 ntp_offset_chunk(s64 offset)
{
	if (time_status & STA_PPSTIME && time_status & STA_PPSSIGNAL)
		return offset;
	else
		return shift_right(offset, SHIFT_PLL + time_constant);
}

static inline void pps_reset_freq_interval(void)
{
	/* the PPS calibration interval may end
	   surprisingly early */
	pps_shift = PPS_INTMIN;
	pps_intcnt = 0;
}

/**
 * pps_clear - Clears the PPS state variables
 */
static inline void pps_clear(void)
{
	pps_reset_freq_interval();
	pps_tf[0] = 0;
	pps_tf[1] = 0;
	pps_tf[2] = 0;
	pps_fbase.tv_sec = pps_fbase.tv_nsec = 0;
	pps_freq = 0;
}

/* Decrease pps_valid to indicate that another second has passed since
 * the last PPS signal. When it reaches 0, indicate that PPS signal is
 * missing.
 */
static inline void pps_dec_valid(void)
{
	if (pps_valid > 0)
		pps_valid--;
	else {
		time_status &= ~(STA_PPSSIGNAL | STA_PPSJITTER |
				 STA_PPSWANDER | STA_PPSERROR);
		pps_clear();
	}
}

static inline void pps_set_freq(s64 freq)
{
	pps_freq = freq;
}

static inline int is_error_status(int status)
{
175
	return (status & (STA_UNSYNC|STA_CLOCKERR))
176 177 178
		/* PPS signal lost when either PPS time or
		 * PPS frequency synchronization requested
		 */
179 180
		|| ((status & (STA_PPSFREQ|STA_PPSTIME))
			&& !(status & STA_PPSSIGNAL))
181 182
		/* PPS jitter exceeded when
		 * PPS time synchronization requested */
183
		|| ((status & (STA_PPSTIME|STA_PPSJITTER))
184 185 186 187
			== (STA_PPSTIME|STA_PPSJITTER))
		/* PPS wander exceeded or calibration error when
		 * PPS frequency synchronization requested
		 */
188 189
		|| ((status & STA_PPSFREQ)
			&& (status & (STA_PPSWANDER|STA_PPSERROR)));
190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238
}

static inline void pps_fill_timex(struct timex *txc)
{
	txc->ppsfreq	   = shift_right((pps_freq >> PPM_SCALE_INV_SHIFT) *
					 PPM_SCALE_INV, NTP_SCALE_SHIFT);
	txc->jitter	   = pps_jitter;
	if (!(time_status & STA_NANO))
		txc->jitter /= NSEC_PER_USEC;
	txc->shift	   = pps_shift;
	txc->stabil	   = pps_stabil;
	txc->jitcnt	   = pps_jitcnt;
	txc->calcnt	   = pps_calcnt;
	txc->errcnt	   = pps_errcnt;
	txc->stbcnt	   = pps_stbcnt;
}

#else /* !CONFIG_NTP_PPS */

static inline s64 ntp_offset_chunk(s64 offset)
{
	return shift_right(offset, SHIFT_PLL + time_constant);
}

static inline void pps_reset_freq_interval(void) {}
static inline void pps_clear(void) {}
static inline void pps_dec_valid(void) {}
static inline void pps_set_freq(s64 freq) {}

static inline int is_error_status(int status)
{
	return status & (STA_UNSYNC|STA_CLOCKERR);
}

static inline void pps_fill_timex(struct timex *txc)
{
	/* PPS is not implemented, so these are zero */
	txc->ppsfreq	   = 0;
	txc->jitter	   = 0;
	txc->shift	   = 0;
	txc->stabil	   = 0;
	txc->jitcnt	   = 0;
	txc->calcnt	   = 0;
	txc->errcnt	   = 0;
	txc->stbcnt	   = 0;
}

#endif /* CONFIG_NTP_PPS */

J
John Stultz 已提交
239 240 241 242 243 244 245 246 247 248 249

/**
 * ntp_synced - Returns 1 if the NTP status is not UNSYNC
 *
 */
static inline int ntp_synced(void)
{
	return !(time_status & STA_UNSYNC);
}


250 251 252
/*
 * NTP methods:
 */
253

254 255 256 257
/*
 * Update (tick_length, tick_length_base, tick_nsec), based
 * on (tick_usec, ntp_tick_adj, time_freq):
 */
258 259
static void ntp_update_frequency(void)
{
260
	u64 second_length;
261
	u64 new_base;
262 263 264 265

	second_length		 = (u64)(tick_usec * NSEC_PER_USEC * USER_HZ)
						<< NTP_SCALE_SHIFT;

266
	second_length		+= ntp_tick_adj;
267
	second_length		+= time_freq;
268

269
	tick_nsec		 = div_u64(second_length, HZ) >> NTP_SCALE_SHIFT;
270
	new_base		 = div_u64(second_length, NTP_INTERVAL_FREQ);
271 272 273

	/*
	 * Don't wait for the next second_overflow, apply
274
	 * the change to the tick length immediately:
275
	 */
276 277
	tick_length		+= new_base - tick_length_base;
	tick_length_base	 = new_base;
278 279
}

280
static inline s64 ntp_update_offset_fll(s64 offset64, long secs)
281 282 283 284
{
	time_status &= ~STA_MODE;

	if (secs < MINSEC)
285
		return 0;
286 287

	if (!(time_status & STA_FLL) && (secs <= MAXSEC))
288
		return 0;
289 290 291

	time_status |= STA_MODE;

292
	return div64_long(offset64 << (NTP_SCALE_SHIFT - SHIFT_FLL), secs);
293 294
}

R
Roman Zippel 已提交
295 296 297
static void ntp_update_offset(long offset)
{
	s64 freq_adj;
298 299
	s64 offset64;
	long secs;
R
Roman Zippel 已提交
300 301 302 303

	if (!(time_status & STA_PLL))
		return;

304 305 306
	if (!(time_status & STA_NANO)) {
		/* Make sure the multiplication below won't overflow */
		offset = clamp(offset, -USEC_PER_SEC, USEC_PER_SEC);
307
		offset *= NSEC_PER_USEC;
308
	}
R
Roman Zippel 已提交
309 310 311 312 313

	/*
	 * Scale the phase adjustment and
	 * clamp to the operating range.
	 */
314
	offset = clamp(offset, -MAXPHASE, MAXPHASE);
R
Roman Zippel 已提交
315 316 317 318 319

	/*
	 * Select how the frequency is to be controlled
	 * and in which mode (PLL or FLL).
	 */
320
	secs = (long)(__ktime_get_real_seconds() - time_reftime);
321
	if (unlikely(time_status & STA_FREQHOLD))
322 323
		secs = 0;

324
	time_reftime = __ktime_get_real_seconds();
R
Roman Zippel 已提交
325

326
	offset64    = offset;
327
	freq_adj    = ntp_update_offset_fll(offset64, secs);
328

329 330 331 332 333 334 335 336 337 338
	/*
	 * Clamp update interval to reduce PLL gain with low
	 * sampling rate (e.g. intermittent network connection)
	 * to avoid instability.
	 */
	if (unlikely(secs > 1 << (SHIFT_PLL + 1 + time_constant)))
		secs = 1 << (SHIFT_PLL + 1 + time_constant);

	freq_adj    += (offset64 * secs) <<
			(NTP_SCALE_SHIFT - 2 * (SHIFT_PLL + 2 + time_constant));
339 340 341 342 343 344

	freq_adj    = min(freq_adj + time_freq, MAXFREQ_SCALED);

	time_freq   = max(freq_adj, -MAXFREQ_SCALED);

	time_offset = div_s64(offset64 << NTP_SCALE_SHIFT, NTP_INTERVAL_FREQ);
R
Roman Zippel 已提交
345 346
}

347 348 349 350 351
/**
 * ntp_clear - Clears the NTP state variables
 */
void ntp_clear(void)
{
352 353 354 355
	time_adjust	= 0;		/* stop active adjtime() */
	time_status	|= STA_UNSYNC;
	time_maxerror	= NTP_PHASE_LIMIT;
	time_esterror	= NTP_PHASE_LIMIT;
356 357 358

	ntp_update_frequency();

359 360
	tick_length	= tick_length_base;
	time_offset	= 0;
361

362
	ntp_next_leap_sec = TIME64_MAX;
363 364
	/* Clear PPS state variables */
	pps_clear();
365 366
}

367 368 369

u64 ntp_tick_length(void)
{
370
	return tick_length;
371 372
}

373 374 375 376 377 378 379 380 381 382 383 384
/**
 * ntp_get_next_leap - Returns the next leapsecond in CLOCK_REALTIME ktime_t
 *
 * Provides the time of the next leapsecond against CLOCK_REALTIME in
 * a ktime_t format. Returns KTIME_MAX if no leapsecond is pending.
 */
ktime_t ntp_get_next_leap(void)
{
	ktime_t ret;

	if ((time_state == TIME_INS) && (time_status & STA_INS))
		return ktime_set(ntp_next_leap_sec, 0);
T
Thomas Gleixner 已提交
385
	ret = KTIME_MAX;
386 387
	return ret;
}
388

389
/*
390 391 392 393 394 395 396 397
 * this routine handles the overflow of the microsecond field
 *
 * The tricky bits of code to handle the accurate clock support
 * were provided by Dave Mills (Mills@UDEL.EDU) of NTP fame.
 * They were originally developed for SUN and DEC kernels.
 * All the kudos should go to Dave for this stuff.
 *
 * Also handles leap second processing, and returns leap offset
398
 */
399
int second_overflow(time64_t secs)
400
{
401
	s64 delta;
402
	int leap = 0;
403
	s32 rem;
404 405 406 407 408 409

	/*
	 * Leap second processing. If in leap-insert state at the end of the
	 * day, the system clock is set back one second; if in leap-delete
	 * state, the system clock is set ahead one second.
	 */
410 411
	switch (time_state) {
	case TIME_OK:
412
		if (time_status & STA_INS) {
413
			time_state = TIME_INS;
414 415
			div_s64_rem(secs, SECS_PER_DAY, &rem);
			ntp_next_leap_sec = secs + SECS_PER_DAY - rem;
416
		} else if (time_status & STA_DEL) {
417
			time_state = TIME_DEL;
418 419
			div_s64_rem(secs + 1, SECS_PER_DAY, &rem);
			ntp_next_leap_sec = secs + SECS_PER_DAY - rem;
420
		}
421 422
		break;
	case TIME_INS:
423 424
		if (!(time_status & STA_INS)) {
			ntp_next_leap_sec = TIME64_MAX;
J
John Stultz 已提交
425
			time_state = TIME_OK;
426
		} else if (secs == ntp_next_leap_sec) {
427 428 429 430 431
			leap = -1;
			time_state = TIME_OOP;
			printk(KERN_NOTICE
				"Clock: inserting leap second 23:59:60 UTC\n");
		}
432 433
		break;
	case TIME_DEL:
434 435
		if (!(time_status & STA_DEL)) {
			ntp_next_leap_sec = TIME64_MAX;
J
John Stultz 已提交
436
			time_state = TIME_OK;
437
		} else if (secs == ntp_next_leap_sec) {
438
			leap = 1;
439
			ntp_next_leap_sec = TIME64_MAX;
440 441 442 443
			time_state = TIME_WAIT;
			printk(KERN_NOTICE
				"Clock: deleting leap second 23:59:59 UTC\n");
		}
444 445
		break;
	case TIME_OOP:
446
		ntp_next_leap_sec = TIME64_MAX;
447
		time_state = TIME_WAIT;
448
		break;
449 450
	case TIME_WAIT:
		if (!(time_status & (STA_INS | STA_DEL)))
R
Roman Zippel 已提交
451
			time_state = TIME_OK;
R
Roman Zippel 已提交
452 453
		break;
	}
454

R
Roman Zippel 已提交
455 456 457 458 459 460

	/* Bump the maxerror field */
	time_maxerror += MAXFREQ / NSEC_PER_USEC;
	if (time_maxerror > NTP_PHASE_LIMIT) {
		time_maxerror = NTP_PHASE_LIMIT;
		time_status |= STA_UNSYNC;
461 462
	}

463
	/* Compute the phase adjustment for the next second */
464 465
	tick_length	 = tick_length_base;

466
	delta		 = ntp_offset_chunk(time_offset);
467 468
	time_offset	-= delta;
	tick_length	+= delta;
469

470 471 472
	/* Check PPS signal */
	pps_dec_valid();

473
	if (!time_adjust)
474
		goto out;
475 476 477 478

	if (time_adjust > MAX_TICKADJ) {
		time_adjust -= MAX_TICKADJ;
		tick_length += MAX_TICKADJ_SCALED;
479
		goto out;
480
	}
481 482 483 484

	if (time_adjust < -MAX_TICKADJ) {
		time_adjust += MAX_TICKADJ;
		tick_length -= MAX_TICKADJ_SCALED;
485
		goto out;
486 487 488 489 490
	}

	tick_length += (s64)(time_adjust * NSEC_PER_USEC / NTP_INTERVAL_FREQ)
							 << NTP_SCALE_SHIFT;
	time_adjust = 0;
491

492
out:
493
	return leap;
494 495
}

496 497 498 499 500 501 502 503 504
static void sync_hw_clock(struct work_struct *work);
static DECLARE_DELAYED_WORK(sync_work, sync_hw_clock);

static void sched_sync_hw_clock(struct timespec64 now,
				unsigned long target_nsec, bool fail)

{
	struct timespec64 next;

505
	ktime_get_real_ts64(&next);
506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539
	if (!fail)
		next.tv_sec = 659;
	else {
		/*
		 * Try again as soon as possible. Delaying long periods
		 * decreases the accuracy of the work queue timer. Due to this
		 * the algorithm is very likely to require a short-sleep retry
		 * after the above long sleep to synchronize ts_nsec.
		 */
		next.tv_sec = 0;
	}

	/* Compute the needed delay that will get to tv_nsec == target_nsec */
	next.tv_nsec = target_nsec - next.tv_nsec;
	if (next.tv_nsec <= 0)
		next.tv_nsec += NSEC_PER_SEC;
	if (next.tv_nsec >= NSEC_PER_SEC) {
		next.tv_sec++;
		next.tv_nsec -= NSEC_PER_SEC;
	}

	queue_delayed_work(system_power_efficient_wq, &sync_work,
			   timespec64_to_jiffies(&next));
}

static void sync_rtc_clock(void)
{
	unsigned long target_nsec;
	struct timespec64 adjust, now;
	int rc;

	if (!IS_ENABLED(CONFIG_RTC_SYSTOHC))
		return;

540
	ktime_get_real_ts64(&now);
541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556

	adjust = now;
	if (persistent_clock_is_local)
		adjust.tv_sec -= (sys_tz.tz_minuteswest * 60);

	/*
	 * The current RTC in use will provide the target_nsec it wants to be
	 * called at, and does rtc_tv_nsec_ok internally.
	 */
	rc = rtc_set_ntp_time(adjust, &target_nsec);
	if (rc == -ENODEV)
		return;

	sched_sync_hw_clock(now, target_nsec, rc);
}

557
#ifdef CONFIG_GENERIC_CMOS_UPDATE
558 559 560 561 562
int __weak update_persistent_clock(struct timespec now)
{
	return -ENODEV;
}

563 564 565 566 567 568 569 570 571
int __weak update_persistent_clock64(struct timespec64 now64)
{
	struct timespec now;

	now = timespec64_to_timespec(now64);
	return update_persistent_clock(now);
}
#endif

572
static bool sync_cmos_clock(void)
573
{
574
	static bool no_cmos;
575
	struct timespec64 now;
576 577 578 579 580 581 582 583 584
	struct timespec64 adjust;
	int rc = -EPROTO;
	long target_nsec = NSEC_PER_SEC / 2;

	if (!IS_ENABLED(CONFIG_GENERIC_CMOS_UPDATE))
		return false;

	if (no_cmos)
		return false;
585 586

	/*
587 588 589 590 591 592
	 * Historically update_persistent_clock64() has followed x86
	 * semantics, which match the MC146818A/etc RTC. This RTC will store
	 * 'adjust' and then in .5s it will advance once second.
	 *
	 * Architectures are strongly encouraged to use rtclib and not
	 * implement this legacy API.
593
	 */
594
	ktime_get_real_ts64(&now);
595
	if (rtc_tv_nsec_ok(-1 * target_nsec, &adjust, &now)) {
596 597
		if (persistent_clock_is_local)
			adjust.tv_sec -= (sys_tz.tz_minuteswest * 60);
598 599 600 601 602 603 604 605 606
		rc = update_persistent_clock64(adjust);
		/*
		 * The machine does not support update_persistent_clock64 even
		 * though it defines CONFIG_GENERIC_CMOS_UPDATE.
		 */
		if (rc == -ENODEV) {
			no_cmos = true;
			return false;
		}
607
	}
608

609 610 611
	sched_sync_hw_clock(now, target_nsec, rc);
	return true;
}
612

613 614 615 616 617 618 619 620 621 622 623 624
/*
 * If we have an externally synchronized Linux clock, then update RTC clock
 * accordingly every ~11 minutes. Generally RTCs can only store second
 * precision, but many RTCs will adjust the phase of their second tick to
 * match the moment of update. This infrastructure arranges to call to the RTC
 * set at the correct moment to phase synchronize the RTC second tick over
 * with the kernel clock.
 */
static void sync_hw_clock(struct work_struct *work)
{
	if (!ntp_synced())
		return;
625

626 627 628 629
	if (sync_cmos_clock())
		return;

	sync_rtc_clock();
630 631
}

632
void ntp_notify_cmos_timer(void)
633
{
634 635
	if (!ntp_synced())
		return;
636

637 638 639 640
	if (IS_ENABLED(CONFIG_GENERIC_CMOS_UPDATE) ||
	    IS_ENABLED(CONFIG_RTC_SYSTOHC))
		queue_delayed_work(system_power_efficient_wq, &sync_work, 0);
}
I
Ingo Molnar 已提交
641 642 643 644

/*
 * Propagate a new txc->status value into the NTP state:
 */
645
static inline void process_adj_status(const struct timex *txc)
I
Ingo Molnar 已提交
646 647 648 649
{
	if ((time_status & STA_PLL) && !(txc->status & STA_PLL)) {
		time_state = TIME_OK;
		time_status = STA_UNSYNC;
650
		ntp_next_leap_sec = TIME64_MAX;
651 652
		/* restart PPS frequency calibration */
		pps_reset_freq_interval();
I
Ingo Molnar 已提交
653 654 655 656 657 658 659
	}

	/*
	 * If we turn on PLL adjustments then reset the
	 * reference time to current time.
	 */
	if (!(time_status & STA_PLL) && (txc->status & STA_PLL))
660
		time_reftime = __ktime_get_real_seconds();
I
Ingo Molnar 已提交
661

662 663
	/* only set allowed bits */
	time_status &= STA_RONLY;
I
Ingo Molnar 已提交
664 665
	time_status |= txc->status & ~STA_RONLY;
}
666

667

668
static inline void process_adjtimex_modes(const struct timex *txc, s32 *time_tai)
I
Ingo Molnar 已提交
669 670
{
	if (txc->modes & ADJ_STATUS)
671
		process_adj_status(txc);
I
Ingo Molnar 已提交
672 673 674

	if (txc->modes & ADJ_NANO)
		time_status |= STA_NANO;
675

I
Ingo Molnar 已提交
676 677 678 679
	if (txc->modes & ADJ_MICRO)
		time_status &= ~STA_NANO;

	if (txc->modes & ADJ_FREQUENCY) {
680
		time_freq = txc->freq * PPM_SCALE;
I
Ingo Molnar 已提交
681 682
		time_freq = min(time_freq, MAXFREQ_SCALED);
		time_freq = max(time_freq, -MAXFREQ_SCALED);
683 684
		/* update pps_freq */
		pps_set_freq(time_freq);
I
Ingo Molnar 已提交
685 686 687 688
	}

	if (txc->modes & ADJ_MAXERROR)
		time_maxerror = txc->maxerror;
689

I
Ingo Molnar 已提交
690 691 692 693 694 695 696 697 698 699 700 701
	if (txc->modes & ADJ_ESTERROR)
		time_esterror = txc->esterror;

	if (txc->modes & ADJ_TIMECONST) {
		time_constant = txc->constant;
		if (!(time_status & STA_NANO))
			time_constant += 4;
		time_constant = min(time_constant, (long)MAXTC);
		time_constant = max(time_constant, 0l);
	}

	if (txc->modes & ADJ_TAI && txc->constant > 0)
702
		*time_tai = txc->constant;
I
Ingo Molnar 已提交
703 704 705

	if (txc->modes & ADJ_OFFSET)
		ntp_update_offset(txc->offset);
706

I
Ingo Molnar 已提交
707 708 709 710 711 712 713
	if (txc->modes & ADJ_TICK)
		tick_usec = txc->tick;

	if (txc->modes & (ADJ_TICK|ADJ_FREQUENCY|ADJ_OFFSET))
		ntp_update_frequency();
}

714 715 716 717 718

/*
 * adjtimex mainly allows reading (and writing, if superuser) of
 * kernel time-keeping variables. used by xntpd.
 */
719
int __do_adjtimex(struct timex *txc, const struct timespec64 *ts, s32 *time_tai)
720 721 722
{
	int result;

723 724 725 726 727 728 729 730 731
	if (txc->modes & ADJ_ADJTIME) {
		long save_adjust = time_adjust;

		if (!(txc->modes & ADJ_OFFSET_READONLY)) {
			/* adjtime() is independent from ntp_adjtime() */
			time_adjust = txc->offset;
			ntp_update_frequency();
		}
		txc->offset = save_adjust;
732
	} else {
R
Roman Zippel 已提交
733

734 735
		/* If there are input parameters, then process them: */
		if (txc->modes)
736
			process_adjtimex_modes(txc, time_tai);
R
Roman Zippel 已提交
737

738
		txc->offset = shift_right(time_offset * NTP_INTERVAL_FREQ,
739
				  NTP_SCALE_SHIFT);
740 741 742
		if (!(time_status & STA_NANO))
			txc->offset /= NSEC_PER_USEC;
	}
743

R
Roman Zippel 已提交
744
	result = time_state;	/* mostly `TIME_OK' */
745 746
	/* check for errors */
	if (is_error_status(time_status))
747 748
		result = TIME_ERROR;

749
	txc->freq	   = shift_right((time_freq >> PPM_SCALE_INV_SHIFT) *
750
					 PPM_SCALE_INV, NTP_SCALE_SHIFT);
751 752 753 754
	txc->maxerror	   = time_maxerror;
	txc->esterror	   = time_esterror;
	txc->status	   = time_status;
	txc->constant	   = time_constant;
755
	txc->precision	   = 1;
756
	txc->tolerance	   = MAXFREQ_SCALED / PPM_SCALE;
757
	txc->tick	   = tick_usec;
758
	txc->tai	   = *time_tai;
759

760 761
	/* fill PPS status fields */
	pps_fill_timex(txc);
762

763
	txc->time.tv_sec = (time_t)ts->tv_sec;
764
	txc->time.tv_usec = ts->tv_nsec;
R
Roman Zippel 已提交
765 766
	if (!(time_status & STA_NANO))
		txc->time.tv_usec /= NSEC_PER_USEC;
R
Roman Zippel 已提交
767

768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785
	/* Handle leapsec adjustments */
	if (unlikely(ts->tv_sec >= ntp_next_leap_sec)) {
		if ((time_state == TIME_INS) && (time_status & STA_INS)) {
			result = TIME_OOP;
			txc->tai++;
			txc->time.tv_sec--;
		}
		if ((time_state == TIME_DEL) && (time_status & STA_DEL)) {
			result = TIME_WAIT;
			txc->tai--;
			txc->time.tv_sec++;
		}
		if ((time_state == TIME_OOP) &&
					(ts->tv_sec == ntp_next_leap_sec)) {
			result = TIME_WAIT;
		}
	}

R
Roman Zippel 已提交
786
	return result;
787
}
788

789 790 791 792 793 794 795
#ifdef	CONFIG_NTP_PPS

/* actually struct pps_normtime is good old struct timespec, but it is
 * semantically different (and it is the reason why it was invented):
 * pps_normtime.nsec has a range of ( -NSEC_PER_SEC / 2, NSEC_PER_SEC / 2 ]
 * while timespec.tv_nsec has a range of [0, NSEC_PER_SEC) */
struct pps_normtime {
796
	s64		sec;	/* seconds */
797 798 799 800 801
	long		nsec;	/* nanoseconds */
};

/* normalize the timestamp so that nsec is in the
   ( -NSEC_PER_SEC / 2, NSEC_PER_SEC / 2 ] interval */
802
static inline struct pps_normtime pps_normalize_ts(struct timespec64 ts)
803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882
{
	struct pps_normtime norm = {
		.sec = ts.tv_sec,
		.nsec = ts.tv_nsec
	};

	if (norm.nsec > (NSEC_PER_SEC >> 1)) {
		norm.nsec -= NSEC_PER_SEC;
		norm.sec++;
	}

	return norm;
}

/* get current phase correction and jitter */
static inline long pps_phase_filter_get(long *jitter)
{
	*jitter = pps_tf[0] - pps_tf[1];
	if (*jitter < 0)
		*jitter = -*jitter;

	/* TODO: test various filters */
	return pps_tf[0];
}

/* add the sample to the phase filter */
static inline void pps_phase_filter_add(long err)
{
	pps_tf[2] = pps_tf[1];
	pps_tf[1] = pps_tf[0];
	pps_tf[0] = err;
}

/* decrease frequency calibration interval length.
 * It is halved after four consecutive unstable intervals.
 */
static inline void pps_dec_freq_interval(void)
{
	if (--pps_intcnt <= -PPS_INTCOUNT) {
		pps_intcnt = -PPS_INTCOUNT;
		if (pps_shift > PPS_INTMIN) {
			pps_shift--;
			pps_intcnt = 0;
		}
	}
}

/* increase frequency calibration interval length.
 * It is doubled after four consecutive stable intervals.
 */
static inline void pps_inc_freq_interval(void)
{
	if (++pps_intcnt >= PPS_INTCOUNT) {
		pps_intcnt = PPS_INTCOUNT;
		if (pps_shift < PPS_INTMAX) {
			pps_shift++;
			pps_intcnt = 0;
		}
	}
}

/* update clock frequency based on MONOTONIC_RAW clock PPS signal
 * timestamps
 *
 * At the end of the calibration interval the difference between the
 * first and last MONOTONIC_RAW clock timestamps divided by the length
 * of the interval becomes the frequency update. If the interval was
 * too long, the data are discarded.
 * Returns the difference between old and new frequency values.
 */
static long hardpps_update_freq(struct pps_normtime freq_norm)
{
	long delta, delta_mod;
	s64 ftemp;

	/* check if the frequency interval was too long */
	if (freq_norm.sec > (2 << pps_shift)) {
		time_status |= STA_PPSERROR;
		pps_errcnt++;
		pps_dec_freq_interval();
883
		printk_deferred(KERN_ERR
884
			"hardpps: PPSERROR: interval too long - %lld s\n",
885
			freq_norm.sec);
886 887 888 889 890 891 892 893 894 895 896 897
		return 0;
	}

	/* here the raw frequency offset and wander (stability) is
	 * calculated. If the wander is less than the wander threshold
	 * the interval is increased; otherwise it is decreased.
	 */
	ftemp = div_s64(((s64)(-freq_norm.nsec)) << NTP_SCALE_SHIFT,
			freq_norm.sec);
	delta = shift_right(ftemp - pps_freq, NTP_SCALE_SHIFT);
	pps_freq = ftemp;
	if (delta > PPS_MAXWANDER || delta < -PPS_MAXWANDER) {
898 899
		printk_deferred(KERN_WARNING
				"hardpps: PPSWANDER: change=%ld\n", delta);
900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942
		time_status |= STA_PPSWANDER;
		pps_stbcnt++;
		pps_dec_freq_interval();
	} else {	/* good sample */
		pps_inc_freq_interval();
	}

	/* the stability metric is calculated as the average of recent
	 * frequency changes, but is used only for performance
	 * monitoring
	 */
	delta_mod = delta;
	if (delta_mod < 0)
		delta_mod = -delta_mod;
	pps_stabil += (div_s64(((s64)delta_mod) <<
				(NTP_SCALE_SHIFT - SHIFT_USEC),
				NSEC_PER_USEC) - pps_stabil) >> PPS_INTMIN;

	/* if enabled, the system clock frequency is updated */
	if ((time_status & STA_PPSFREQ) != 0 &&
	    (time_status & STA_FREQHOLD) == 0) {
		time_freq = pps_freq;
		ntp_update_frequency();
	}

	return delta;
}

/* correct REALTIME clock phase error against PPS signal */
static void hardpps_update_phase(long error)
{
	long correction = -error;
	long jitter;

	/* add the sample to the median filter */
	pps_phase_filter_add(correction);
	correction = pps_phase_filter_get(&jitter);

	/* Nominal jitter is due to PPS signal noise. If it exceeds the
	 * threshold, the sample is discarded; otherwise, if so enabled,
	 * the time offset is updated.
	 */
	if (jitter > (pps_jitter << PPS_POPCORN)) {
943 944 945
		printk_deferred(KERN_WARNING
				"hardpps: PPSJITTER: jitter=%ld, limit=%ld\n",
				jitter, (pps_jitter << PPS_POPCORN));
946 947 948 949 950 951 952 953 954 955 956 957 958 959
		time_status |= STA_PPSJITTER;
		pps_jitcnt++;
	} else if (time_status & STA_PPSTIME) {
		/* correct the time using the phase offset */
		time_offset = div_s64(((s64)correction) << NTP_SCALE_SHIFT,
				NTP_INTERVAL_FREQ);
		/* cancel running adjtime() */
		time_adjust = 0;
	}
	/* update jitter */
	pps_jitter += (jitter - pps_jitter) >> PPS_INTMIN;
}

/*
960
 * __hardpps() - discipline CPU clock oscillator to external PPS signal
961 962 963 964 965 966 967 968 969 970
 *
 * This routine is called at each PPS signal arrival in order to
 * discipline the CPU clock oscillator to the PPS signal. It takes two
 * parameters: REALTIME and MONOTONIC_RAW clock timestamps. The former
 * is used to correct clock phase error and the latter is used to
 * correct the frequency.
 *
 * This code is based on David Mills's reference nanokernel
 * implementation. It was mostly rewritten but keeps the same idea.
 */
971
void __hardpps(const struct timespec64 *phase_ts, const struct timespec64 *raw_ts)
972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991
{
	struct pps_normtime pts_norm, freq_norm;

	pts_norm = pps_normalize_ts(*phase_ts);

	/* clear the error bits, they will be set again if needed */
	time_status &= ~(STA_PPSJITTER | STA_PPSWANDER | STA_PPSERROR);

	/* indicate signal presence */
	time_status |= STA_PPSSIGNAL;
	pps_valid = PPS_VALID;

	/* when called for the first time,
	 * just start the frequency interval */
	if (unlikely(pps_fbase.tv_sec == 0)) {
		pps_fbase = *raw_ts;
		return;
	}

	/* ok, now we have a base for frequency calculation */
992
	freq_norm = pps_normalize_ts(timespec64_sub(*raw_ts, pps_fbase));
993 994 995 996 997 998 999 1000 1001

	/* check that the signal is in the range
	 * [1s - MAXFREQ us, 1s + MAXFREQ us], otherwise reject it */
	if ((freq_norm.sec == 0) ||
			(freq_norm.nsec > MAXFREQ * freq_norm.sec) ||
			(freq_norm.nsec < -MAXFREQ * freq_norm.sec)) {
		time_status |= STA_PPSJITTER;
		/* restart the frequency calibration interval */
		pps_fbase = *raw_ts;
1002
		printk_deferred(KERN_ERR "hardpps: PPSJITTER: bad pulse\n");
1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020
		return;
	}

	/* signal is ok */

	/* check if the current frequency interval is finished */
	if (freq_norm.sec >= (1 << pps_shift)) {
		pps_calcnt++;
		/* restart the frequency calibration interval */
		pps_fbase = *raw_ts;
		hardpps_update_freq(freq_norm);
	}

	hardpps_update_phase(pts_norm.nsec);

}
#endif	/* CONFIG_NTP_PPS */

1021 1022
static int __init ntp_tick_adj_setup(char *str)
{
1023
	int rc = kstrtos64(str, 0, &ntp_tick_adj);
1024 1025
	if (rc)
		return rc;
1026

1027
	ntp_tick_adj <<= NTP_SCALE_SHIFT;
1028 1029 1030 1031
	return 1;
}

__setup("ntp_tick_adj=", ntp_tick_adj_setup);
R
Roman Zippel 已提交
1032 1033 1034 1035 1036

void __init ntp_init(void)
{
	ntp_clear();
}