ntp.c 25.0 KB
Newer Older
1 2 3 4 5 6 7
/*
 * NTP state machine interfaces and logic.
 *
 * This code was mainly moved from kernel/timer.c and kernel/time.c
 * Please see those files for relevant copyright info and historical
 * changelogs.
 */
A
Alexey Dobriyan 已提交
8
#include <linux/capability.h>
R
Roman Zippel 已提交
9
#include <linux/clocksource.h>
10
#include <linux/workqueue.h>
11 12 13 14 15 16
#include <linux/hrtimer.h>
#include <linux/jiffies.h>
#include <linux/math64.h>
#include <linux/timex.h>
#include <linux/time.h>
#include <linux/mm.h>
17
#include <linux/module.h>
18
#include <linux/rtc.h>
19

20
#include "ntp_internal.h"
21

22
/*
23
 * NTP timekeeping variables:
24 25
 *
 * Note: All of the NTP state is protected by the timekeeping locks.
26 27
 */

28

29 30 31
/* USER_HZ period (usecs): */
unsigned long			tick_usec = TICK_USEC;

32
/* SHIFTED_HZ period (nsecs): */
33
unsigned long			tick_nsec;
R
Roman Zippel 已提交
34

35
static u64			tick_length;
36 37
static u64			tick_length_base;

38
#define SECS_PER_DAY		86400
39
#define MAX_TICKADJ		500LL		/* usecs */
40
#define MAX_TICKADJ_SCALED \
41
	(((MAX_TICKADJ * NSEC_PER_USEC) << NTP_SCALE_SHIFT) / NTP_INTERVAL_FREQ)
42 43 44 45

/*
 * phase-lock loop variables
 */
46 47 48 49 50 51 52 53 54

/*
 * clock synchronization status
 *
 * (TIME_ERROR prevents overwriting the CMOS clock)
 */
static int			time_state = TIME_OK;

/* clock status bits:							*/
J
John Stultz 已提交
55
static int			time_status = STA_UNSYNC;
56 57 58 59 60 61 62 63

/* time adjustment (nsecs):						*/
static s64			time_offset;

/* pll time constant:							*/
static long			time_constant = 2;

/* maximum error (usecs):						*/
64
static long			time_maxerror = NTP_PHASE_LIMIT;
65 66

/* estimated error (usecs):						*/
67
static long			time_esterror = NTP_PHASE_LIMIT;
68 69 70 71 72 73 74

/* frequency offset (scaled nsecs/secs):				*/
static s64			time_freq;

/* time at last adjustment (secs):					*/
static long			time_reftime;

J
John Stultz 已提交
75
static long			time_adjust;
76

77 78
/* constant (boot-param configurable) NTP tick adjustment (upscaled)	*/
static s64			ntp_tick_adj;
79

80 81 82
/* second value of the next pending leapsecond, or TIME64_MAX if no leap */
static time64_t			ntp_next_leap_sec = TIME64_MAX;

83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170
#ifdef CONFIG_NTP_PPS

/*
 * The following variables are used when a pulse-per-second (PPS) signal
 * is available. They establish the engineering parameters of the clock
 * discipline loop when controlled by the PPS signal.
 */
#define PPS_VALID	10	/* PPS signal watchdog max (s) */
#define PPS_POPCORN	4	/* popcorn spike threshold (shift) */
#define PPS_INTMIN	2	/* min freq interval (s) (shift) */
#define PPS_INTMAX	8	/* max freq interval (s) (shift) */
#define PPS_INTCOUNT	4	/* number of consecutive good intervals to
				   increase pps_shift or consecutive bad
				   intervals to decrease it */
#define PPS_MAXWANDER	100000	/* max PPS freq wander (ns/s) */

static int pps_valid;		/* signal watchdog counter */
static long pps_tf[3];		/* phase median filter */
static long pps_jitter;		/* current jitter (ns) */
static struct timespec pps_fbase; /* beginning of the last freq interval */
static int pps_shift;		/* current interval duration (s) (shift) */
static int pps_intcnt;		/* interval counter */
static s64 pps_freq;		/* frequency offset (scaled ns/s) */
static long pps_stabil;		/* current stability (scaled ns/s) */

/*
 * PPS signal quality monitors
 */
static long pps_calcnt;		/* calibration intervals */
static long pps_jitcnt;		/* jitter limit exceeded */
static long pps_stbcnt;		/* stability limit exceeded */
static long pps_errcnt;		/* calibration errors */


/* PPS kernel consumer compensates the whole phase error immediately.
 * Otherwise, reduce the offset by a fixed factor times the time constant.
 */
static inline s64 ntp_offset_chunk(s64 offset)
{
	if (time_status & STA_PPSTIME && time_status & STA_PPSSIGNAL)
		return offset;
	else
		return shift_right(offset, SHIFT_PLL + time_constant);
}

static inline void pps_reset_freq_interval(void)
{
	/* the PPS calibration interval may end
	   surprisingly early */
	pps_shift = PPS_INTMIN;
	pps_intcnt = 0;
}

/**
 * pps_clear - Clears the PPS state variables
 */
static inline void pps_clear(void)
{
	pps_reset_freq_interval();
	pps_tf[0] = 0;
	pps_tf[1] = 0;
	pps_tf[2] = 0;
	pps_fbase.tv_sec = pps_fbase.tv_nsec = 0;
	pps_freq = 0;
}

/* Decrease pps_valid to indicate that another second has passed since
 * the last PPS signal. When it reaches 0, indicate that PPS signal is
 * missing.
 */
static inline void pps_dec_valid(void)
{
	if (pps_valid > 0)
		pps_valid--;
	else {
		time_status &= ~(STA_PPSSIGNAL | STA_PPSJITTER |
				 STA_PPSWANDER | STA_PPSERROR);
		pps_clear();
	}
}

static inline void pps_set_freq(s64 freq)
{
	pps_freq = freq;
}

static inline int is_error_status(int status)
{
171
	return (status & (STA_UNSYNC|STA_CLOCKERR))
172 173 174
		/* PPS signal lost when either PPS time or
		 * PPS frequency synchronization requested
		 */
175 176
		|| ((status & (STA_PPSFREQ|STA_PPSTIME))
			&& !(status & STA_PPSSIGNAL))
177 178
		/* PPS jitter exceeded when
		 * PPS time synchronization requested */
179
		|| ((status & (STA_PPSTIME|STA_PPSJITTER))
180 181 182 183
			== (STA_PPSTIME|STA_PPSJITTER))
		/* PPS wander exceeded or calibration error when
		 * PPS frequency synchronization requested
		 */
184 185
		|| ((status & STA_PPSFREQ)
			&& (status & (STA_PPSWANDER|STA_PPSERROR)));
186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234
}

static inline void pps_fill_timex(struct timex *txc)
{
	txc->ppsfreq	   = shift_right((pps_freq >> PPM_SCALE_INV_SHIFT) *
					 PPM_SCALE_INV, NTP_SCALE_SHIFT);
	txc->jitter	   = pps_jitter;
	if (!(time_status & STA_NANO))
		txc->jitter /= NSEC_PER_USEC;
	txc->shift	   = pps_shift;
	txc->stabil	   = pps_stabil;
	txc->jitcnt	   = pps_jitcnt;
	txc->calcnt	   = pps_calcnt;
	txc->errcnt	   = pps_errcnt;
	txc->stbcnt	   = pps_stbcnt;
}

#else /* !CONFIG_NTP_PPS */

static inline s64 ntp_offset_chunk(s64 offset)
{
	return shift_right(offset, SHIFT_PLL + time_constant);
}

static inline void pps_reset_freq_interval(void) {}
static inline void pps_clear(void) {}
static inline void pps_dec_valid(void) {}
static inline void pps_set_freq(s64 freq) {}

static inline int is_error_status(int status)
{
	return status & (STA_UNSYNC|STA_CLOCKERR);
}

static inline void pps_fill_timex(struct timex *txc)
{
	/* PPS is not implemented, so these are zero */
	txc->ppsfreq	   = 0;
	txc->jitter	   = 0;
	txc->shift	   = 0;
	txc->stabil	   = 0;
	txc->jitcnt	   = 0;
	txc->calcnt	   = 0;
	txc->errcnt	   = 0;
	txc->stbcnt	   = 0;
}

#endif /* CONFIG_NTP_PPS */

J
John Stultz 已提交
235 236 237 238 239 240 241 242 243 244 245

/**
 * ntp_synced - Returns 1 if the NTP status is not UNSYNC
 *
 */
static inline int ntp_synced(void)
{
	return !(time_status & STA_UNSYNC);
}


246 247 248
/*
 * NTP methods:
 */
249

250 251 252 253
/*
 * Update (tick_length, tick_length_base, tick_nsec), based
 * on (tick_usec, ntp_tick_adj, time_freq):
 */
254 255
static void ntp_update_frequency(void)
{
256
	u64 second_length;
257
	u64 new_base;
258 259 260 261

	second_length		 = (u64)(tick_usec * NSEC_PER_USEC * USER_HZ)
						<< NTP_SCALE_SHIFT;

262
	second_length		+= ntp_tick_adj;
263
	second_length		+= time_freq;
264

265
	tick_nsec		 = div_u64(second_length, HZ) >> NTP_SCALE_SHIFT;
266
	new_base		 = div_u64(second_length, NTP_INTERVAL_FREQ);
267 268 269

	/*
	 * Don't wait for the next second_overflow, apply
270
	 * the change to the tick length immediately:
271
	 */
272 273
	tick_length		+= new_base - tick_length_base;
	tick_length_base	 = new_base;
274 275
}

276
static inline s64 ntp_update_offset_fll(s64 offset64, long secs)
277 278 279 280
{
	time_status &= ~STA_MODE;

	if (secs < MINSEC)
281
		return 0;
282 283

	if (!(time_status & STA_FLL) && (secs <= MAXSEC))
284
		return 0;
285 286 287

	time_status |= STA_MODE;

288
	return div64_long(offset64 << (NTP_SCALE_SHIFT - SHIFT_FLL), secs);
289 290
}

R
Roman Zippel 已提交
291 292 293
static void ntp_update_offset(long offset)
{
	s64 freq_adj;
294 295
	s64 offset64;
	long secs;
R
Roman Zippel 已提交
296 297 298 299

	if (!(time_status & STA_PLL))
		return;

R
Roman Zippel 已提交
300
	if (!(time_status & STA_NANO))
301
		offset *= NSEC_PER_USEC;
R
Roman Zippel 已提交
302 303 304 305 306

	/*
	 * Scale the phase adjustment and
	 * clamp to the operating range.
	 */
307 308
	offset = min(offset, MAXPHASE);
	offset = max(offset, -MAXPHASE);
R
Roman Zippel 已提交
309 310 311 312 313

	/*
	 * Select how the frequency is to be controlled
	 * and in which mode (PLL or FLL).
	 */
314
	secs = get_seconds() - time_reftime;
315
	if (unlikely(time_status & STA_FREQHOLD))
316 317
		secs = 0;

318
	time_reftime = get_seconds();
R
Roman Zippel 已提交
319

320
	offset64    = offset;
321
	freq_adj    = ntp_update_offset_fll(offset64, secs);
322

323 324 325 326 327 328 329 330 331 332
	/*
	 * Clamp update interval to reduce PLL gain with low
	 * sampling rate (e.g. intermittent network connection)
	 * to avoid instability.
	 */
	if (unlikely(secs > 1 << (SHIFT_PLL + 1 + time_constant)))
		secs = 1 << (SHIFT_PLL + 1 + time_constant);

	freq_adj    += (offset64 * secs) <<
			(NTP_SCALE_SHIFT - 2 * (SHIFT_PLL + 2 + time_constant));
333 334 335 336 337 338

	freq_adj    = min(freq_adj + time_freq, MAXFREQ_SCALED);

	time_freq   = max(freq_adj, -MAXFREQ_SCALED);

	time_offset = div_s64(offset64 << NTP_SCALE_SHIFT, NTP_INTERVAL_FREQ);
R
Roman Zippel 已提交
339 340
}

341 342 343 344 345
/**
 * ntp_clear - Clears the NTP state variables
 */
void ntp_clear(void)
{
346 347 348 349
	time_adjust	= 0;		/* stop active adjtime() */
	time_status	|= STA_UNSYNC;
	time_maxerror	= NTP_PHASE_LIMIT;
	time_esterror	= NTP_PHASE_LIMIT;
350 351 352

	ntp_update_frequency();

353 354
	tick_length	= tick_length_base;
	time_offset	= 0;
355

356
	ntp_next_leap_sec = TIME64_MAX;
357 358
	/* Clear PPS state variables */
	pps_clear();
359 360
}

361 362 363

u64 ntp_tick_length(void)
{
364
	return tick_length;
365 366
}

367 368 369 370 371 372 373 374 375 376 377 378 379 380 381
/**
 * ntp_get_next_leap - Returns the next leapsecond in CLOCK_REALTIME ktime_t
 *
 * Provides the time of the next leapsecond against CLOCK_REALTIME in
 * a ktime_t format. Returns KTIME_MAX if no leapsecond is pending.
 */
ktime_t ntp_get_next_leap(void)
{
	ktime_t ret;

	if ((time_state == TIME_INS) && (time_status & STA_INS))
		return ktime_set(ntp_next_leap_sec, 0);
	ret.tv64 = KTIME_MAX;
	return ret;
}
382

383
/*
384 385 386 387 388 389 390 391
 * this routine handles the overflow of the microsecond field
 *
 * The tricky bits of code to handle the accurate clock support
 * were provided by Dave Mills (Mills@UDEL.EDU) of NTP fame.
 * They were originally developed for SUN and DEC kernels.
 * All the kudos should go to Dave for this stuff.
 *
 * Also handles leap second processing, and returns leap offset
392
 */
393
int second_overflow(unsigned long secs)
394
{
395
	s64 delta;
396
	int leap = 0;
397 398 399 400 401 402

	/*
	 * Leap second processing. If in leap-insert state at the end of the
	 * day, the system clock is set back one second; if in leap-delete
	 * state, the system clock is set ahead one second.
	 */
403 404
	switch (time_state) {
	case TIME_OK:
405
		if (time_status & STA_INS) {
406
			time_state = TIME_INS;
407 408 409
			ntp_next_leap_sec = secs + SECS_PER_DAY -
						(secs % SECS_PER_DAY);
		} else if (time_status & STA_DEL) {
410
			time_state = TIME_DEL;
411 412 413
			ntp_next_leap_sec = secs + SECS_PER_DAY -
						 ((secs+1) % SECS_PER_DAY);
		}
414 415
		break;
	case TIME_INS:
416 417
		if (!(time_status & STA_INS)) {
			ntp_next_leap_sec = TIME64_MAX;
J
John Stultz 已提交
418
			time_state = TIME_OK;
419
		} else if (secs % SECS_PER_DAY == 0) {
420 421 422 423 424
			leap = -1;
			time_state = TIME_OOP;
			printk(KERN_NOTICE
				"Clock: inserting leap second 23:59:60 UTC\n");
		}
425 426
		break;
	case TIME_DEL:
427 428
		if (!(time_status & STA_DEL)) {
			ntp_next_leap_sec = TIME64_MAX;
J
John Stultz 已提交
429
			time_state = TIME_OK;
430
		} else if ((secs + 1) % SECS_PER_DAY == 0) {
431
			leap = 1;
432
			ntp_next_leap_sec = TIME64_MAX;
433 434 435 436
			time_state = TIME_WAIT;
			printk(KERN_NOTICE
				"Clock: deleting leap second 23:59:59 UTC\n");
		}
437 438
		break;
	case TIME_OOP:
439
		ntp_next_leap_sec = TIME64_MAX;
440
		time_state = TIME_WAIT;
441
		break;
442 443
	case TIME_WAIT:
		if (!(time_status & (STA_INS | STA_DEL)))
R
Roman Zippel 已提交
444
			time_state = TIME_OK;
R
Roman Zippel 已提交
445 446
		break;
	}
447

R
Roman Zippel 已提交
448 449 450 451 452 453

	/* Bump the maxerror field */
	time_maxerror += MAXFREQ / NSEC_PER_USEC;
	if (time_maxerror > NTP_PHASE_LIMIT) {
		time_maxerror = NTP_PHASE_LIMIT;
		time_status |= STA_UNSYNC;
454 455
	}

456
	/* Compute the phase adjustment for the next second */
457 458
	tick_length	 = tick_length_base;

459
	delta		 = ntp_offset_chunk(time_offset);
460 461
	time_offset	-= delta;
	tick_length	+= delta;
462

463 464 465
	/* Check PPS signal */
	pps_dec_valid();

466
	if (!time_adjust)
467
		goto out;
468 469 470 471

	if (time_adjust > MAX_TICKADJ) {
		time_adjust -= MAX_TICKADJ;
		tick_length += MAX_TICKADJ_SCALED;
472
		goto out;
473
	}
474 475 476 477

	if (time_adjust < -MAX_TICKADJ) {
		time_adjust += MAX_TICKADJ;
		tick_length -= MAX_TICKADJ_SCALED;
478
		goto out;
479 480 481 482 483
	}

	tick_length += (s64)(time_adjust * NSEC_PER_USEC / NTP_INTERVAL_FREQ)
							 << NTP_SCALE_SHIFT;
	time_adjust = 0;
484

485
out:
486
	return leap;
487 488
}

489 490 491 492 493 494 495 496 497 498
#ifdef CONFIG_GENERIC_CMOS_UPDATE
int __weak update_persistent_clock64(struct timespec64 now64)
{
	struct timespec now;

	now = timespec64_to_timespec(now64);
	return update_persistent_clock(now);
}
#endif

499
#if defined(CONFIG_GENERIC_CMOS_UPDATE) || defined(CONFIG_RTC_SYSTOHC)
500
static void sync_cmos_clock(struct work_struct *work);
501

502
static DECLARE_DELAYED_WORK(sync_cmos_work, sync_cmos_clock);
503

504
static void sync_cmos_clock(struct work_struct *work)
505
{
506 507
	struct timespec64 now;
	struct timespec next;
508 509 510 511 512 513 514 515
	int fail = 1;

	/*
	 * If we have an externally synchronized Linux clock, then update
	 * CMOS clock accordingly every ~11 minutes. Set_rtc_mmss() has to be
	 * called as close as possible to 500 ms before the new second starts.
	 * This code is run on a timer.  If the clock is set, that timer
	 * may not expire at the correct time.  Thus, we adjust...
516
	 * We want the clock to be within a couple of ticks from the target.
517
	 */
518
	if (!ntp_synced()) {
519 520 521 522 523
		/*
		 * Not synced, exit, do not restart a timer (if one is
		 * running, let it run out).
		 */
		return;
524
	}
525

526
	getnstimeofday64(&now);
527
	if (abs(now.tv_nsec - (NSEC_PER_SEC / 2)) <= tick_nsec * 5) {
528
		struct timespec64 adjust = now;
529

530
		fail = -ENODEV;
531 532
		if (persistent_clock_is_local)
			adjust.tv_sec -= (sys_tz.tz_minuteswest * 60);
533
#ifdef CONFIG_GENERIC_CMOS_UPDATE
534
		fail = update_persistent_clock64(adjust);
535
#endif
536

537 538
#ifdef CONFIG_RTC_SYSTOHC
		if (fail == -ENODEV)
539
			fail = rtc_set_ntp_time(adjust);
540 541
#endif
	}
542

543
	next.tv_nsec = (NSEC_PER_SEC / 2) - now.tv_nsec - (TICK_NSEC / 2);
544 545 546
	if (next.tv_nsec <= 0)
		next.tv_nsec += NSEC_PER_SEC;

547
	if (!fail || fail == -ENODEV)
548 549 550 551 552 553 554 555
		next.tv_sec = 659;
	else
		next.tv_sec = 0;

	if (next.tv_nsec >= NSEC_PER_SEC) {
		next.tv_sec++;
		next.tv_nsec -= NSEC_PER_SEC;
	}
556 557
	queue_delayed_work(system_power_efficient_wq,
			   &sync_cmos_work, timespec_to_jiffies(&next));
558 559
}

560
void ntp_notify_cmos_timer(void)
561
{
562
	queue_delayed_work(system_power_efficient_wq, &sync_cmos_work, 0);
563 564
}

565
#else
566
void ntp_notify_cmos_timer(void) { }
567 568
#endif

I
Ingo Molnar 已提交
569 570 571 572

/*
 * Propagate a new txc->status value into the NTP state:
 */
573
static inline void process_adj_status(struct timex *txc, struct timespec64 *ts)
I
Ingo Molnar 已提交
574 575 576 577
{
	if ((time_status & STA_PLL) && !(txc->status & STA_PLL)) {
		time_state = TIME_OK;
		time_status = STA_UNSYNC;
578
		ntp_next_leap_sec = TIME64_MAX;
579 580
		/* restart PPS frequency calibration */
		pps_reset_freq_interval();
I
Ingo Molnar 已提交
581 582 583 584 585 586 587
	}

	/*
	 * If we turn on PLL adjustments then reset the
	 * reference time to current time.
	 */
	if (!(time_status & STA_PLL) && (txc->status & STA_PLL))
588
		time_reftime = get_seconds();
I
Ingo Molnar 已提交
589

590 591
	/* only set allowed bits */
	time_status &= STA_RONLY;
I
Ingo Molnar 已提交
592 593
	time_status |= txc->status & ~STA_RONLY;
}
594

595

596
static inline void process_adjtimex_modes(struct timex *txc,
597
						struct timespec64 *ts,
598
						s32 *time_tai)
I
Ingo Molnar 已提交
599 600 601 602 603 604
{
	if (txc->modes & ADJ_STATUS)
		process_adj_status(txc, ts);

	if (txc->modes & ADJ_NANO)
		time_status |= STA_NANO;
605

I
Ingo Molnar 已提交
606 607 608 609
	if (txc->modes & ADJ_MICRO)
		time_status &= ~STA_NANO;

	if (txc->modes & ADJ_FREQUENCY) {
610
		time_freq = txc->freq * PPM_SCALE;
I
Ingo Molnar 已提交
611 612
		time_freq = min(time_freq, MAXFREQ_SCALED);
		time_freq = max(time_freq, -MAXFREQ_SCALED);
613 614
		/* update pps_freq */
		pps_set_freq(time_freq);
I
Ingo Molnar 已提交
615 616 617 618
	}

	if (txc->modes & ADJ_MAXERROR)
		time_maxerror = txc->maxerror;
619

I
Ingo Molnar 已提交
620 621 622 623 624 625 626 627 628 629 630 631
	if (txc->modes & ADJ_ESTERROR)
		time_esterror = txc->esterror;

	if (txc->modes & ADJ_TIMECONST) {
		time_constant = txc->constant;
		if (!(time_status & STA_NANO))
			time_constant += 4;
		time_constant = min(time_constant, (long)MAXTC);
		time_constant = max(time_constant, 0l);
	}

	if (txc->modes & ADJ_TAI && txc->constant > 0)
632
		*time_tai = txc->constant;
I
Ingo Molnar 已提交
633 634 635

	if (txc->modes & ADJ_OFFSET)
		ntp_update_offset(txc->offset);
636

I
Ingo Molnar 已提交
637 638 639 640 641 642 643
	if (txc->modes & ADJ_TICK)
		tick_usec = txc->tick;

	if (txc->modes & (ADJ_TICK|ADJ_FREQUENCY|ADJ_OFFSET))
		ntp_update_frequency();
}

644 645 646 647


/**
 * ntp_validate_timex - Ensures the timex is ok for use in do_adjtimex
648
 */
649
int ntp_validate_timex(struct timex *txc)
650
{
651
	if (txc->modes & ADJ_ADJTIME) {
R
Roman Zippel 已提交
652
		/* singleshot must not be used with any other mode bits */
653
		if (!(txc->modes & ADJ_OFFSET_SINGLESHOT))
654
			return -EINVAL;
655 656 657 658 659 660 661
		if (!(txc->modes & ADJ_OFFSET_READONLY) &&
		    !capable(CAP_SYS_TIME))
			return -EPERM;
	} else {
		/* In order to modify anything, you gotta be super-user! */
		 if (txc->modes && !capable(CAP_SYS_TIME))
			return -EPERM;
662 663 664 665
		/*
		 * if the quartz is off by more than 10% then
		 * something is VERY wrong!
		 */
666 667 668
		if (txc->modes & ADJ_TICK &&
		    (txc->tick <  900000/USER_HZ ||
		     txc->tick > 1100000/USER_HZ))
669
			return -EINVAL;
J
John Stultz 已提交
670
	}
671

672 673 674
	if ((txc->modes & ADJ_SETOFFSET) && (!capable(CAP_SYS_TIME)))
		return -EPERM;

675 676 677 678 679 680
	/*
	 * Check for potential multiplication overflows that can
	 * only happen on 64-bit systems:
	 */
	if ((txc->modes & ADJ_FREQUENCY) && (BITS_PER_LONG == 64)) {
		if (LLONG_MIN / PPM_SCALE > txc->freq)
681
			return -EINVAL;
682
		if (LLONG_MAX / PPM_SCALE < txc->freq)
683 684 685
			return -EINVAL;
	}

686 687 688 689 690 691 692 693
	return 0;
}


/*
 * adjtimex mainly allows reading (and writing, if superuser) of
 * kernel time-keeping variables. used by xntpd.
 */
694
int __do_adjtimex(struct timex *txc, struct timespec64 *ts, s32 *time_tai)
695 696 697
{
	int result;

698 699 700 701 702 703 704 705 706
	if (txc->modes & ADJ_ADJTIME) {
		long save_adjust = time_adjust;

		if (!(txc->modes & ADJ_OFFSET_READONLY)) {
			/* adjtime() is independent from ntp_adjtime() */
			time_adjust = txc->offset;
			ntp_update_frequency();
		}
		txc->offset = save_adjust;
707
	} else {
R
Roman Zippel 已提交
708

709 710
		/* If there are input parameters, then process them: */
		if (txc->modes)
711
			process_adjtimex_modes(txc, ts, time_tai);
R
Roman Zippel 已提交
712

713
		txc->offset = shift_right(time_offset * NTP_INTERVAL_FREQ,
714
				  NTP_SCALE_SHIFT);
715 716 717
		if (!(time_status & STA_NANO))
			txc->offset /= NSEC_PER_USEC;
	}
718

R
Roman Zippel 已提交
719
	result = time_state;	/* mostly `TIME_OK' */
720 721
	/* check for errors */
	if (is_error_status(time_status))
722 723
		result = TIME_ERROR;

724
	txc->freq	   = shift_right((time_freq >> PPM_SCALE_INV_SHIFT) *
725
					 PPM_SCALE_INV, NTP_SCALE_SHIFT);
726 727 728 729
	txc->maxerror	   = time_maxerror;
	txc->esterror	   = time_esterror;
	txc->status	   = time_status;
	txc->constant	   = time_constant;
730
	txc->precision	   = 1;
731
	txc->tolerance	   = MAXFREQ_SCALED / PPM_SCALE;
732
	txc->tick	   = tick_usec;
733
	txc->tai	   = *time_tai;
734

735 736
	/* fill PPS status fields */
	pps_fill_timex(txc);
737

738
	txc->time.tv_sec = (time_t)ts->tv_sec;
739
	txc->time.tv_usec = ts->tv_nsec;
R
Roman Zippel 已提交
740 741
	if (!(time_status & STA_NANO))
		txc->time.tv_usec /= NSEC_PER_USEC;
R
Roman Zippel 已提交
742

743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760
	/* Handle leapsec adjustments */
	if (unlikely(ts->tv_sec >= ntp_next_leap_sec)) {
		if ((time_state == TIME_INS) && (time_status & STA_INS)) {
			result = TIME_OOP;
			txc->tai++;
			txc->time.tv_sec--;
		}
		if ((time_state == TIME_DEL) && (time_status & STA_DEL)) {
			result = TIME_WAIT;
			txc->tai--;
			txc->time.tv_sec++;
		}
		if ((time_state == TIME_OOP) &&
					(ts->tv_sec == ntp_next_leap_sec)) {
			result = TIME_WAIT;
		}
	}

R
Roman Zippel 已提交
761
	return result;
762
}
763

764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857
#ifdef	CONFIG_NTP_PPS

/* actually struct pps_normtime is good old struct timespec, but it is
 * semantically different (and it is the reason why it was invented):
 * pps_normtime.nsec has a range of ( -NSEC_PER_SEC / 2, NSEC_PER_SEC / 2 ]
 * while timespec.tv_nsec has a range of [0, NSEC_PER_SEC) */
struct pps_normtime {
	__kernel_time_t	sec;	/* seconds */
	long		nsec;	/* nanoseconds */
};

/* normalize the timestamp so that nsec is in the
   ( -NSEC_PER_SEC / 2, NSEC_PER_SEC / 2 ] interval */
static inline struct pps_normtime pps_normalize_ts(struct timespec ts)
{
	struct pps_normtime norm = {
		.sec = ts.tv_sec,
		.nsec = ts.tv_nsec
	};

	if (norm.nsec > (NSEC_PER_SEC >> 1)) {
		norm.nsec -= NSEC_PER_SEC;
		norm.sec++;
	}

	return norm;
}

/* get current phase correction and jitter */
static inline long pps_phase_filter_get(long *jitter)
{
	*jitter = pps_tf[0] - pps_tf[1];
	if (*jitter < 0)
		*jitter = -*jitter;

	/* TODO: test various filters */
	return pps_tf[0];
}

/* add the sample to the phase filter */
static inline void pps_phase_filter_add(long err)
{
	pps_tf[2] = pps_tf[1];
	pps_tf[1] = pps_tf[0];
	pps_tf[0] = err;
}

/* decrease frequency calibration interval length.
 * It is halved after four consecutive unstable intervals.
 */
static inline void pps_dec_freq_interval(void)
{
	if (--pps_intcnt <= -PPS_INTCOUNT) {
		pps_intcnt = -PPS_INTCOUNT;
		if (pps_shift > PPS_INTMIN) {
			pps_shift--;
			pps_intcnt = 0;
		}
	}
}

/* increase frequency calibration interval length.
 * It is doubled after four consecutive stable intervals.
 */
static inline void pps_inc_freq_interval(void)
{
	if (++pps_intcnt >= PPS_INTCOUNT) {
		pps_intcnt = PPS_INTCOUNT;
		if (pps_shift < PPS_INTMAX) {
			pps_shift++;
			pps_intcnt = 0;
		}
	}
}

/* update clock frequency based on MONOTONIC_RAW clock PPS signal
 * timestamps
 *
 * At the end of the calibration interval the difference between the
 * first and last MONOTONIC_RAW clock timestamps divided by the length
 * of the interval becomes the frequency update. If the interval was
 * too long, the data are discarded.
 * Returns the difference between old and new frequency values.
 */
static long hardpps_update_freq(struct pps_normtime freq_norm)
{
	long delta, delta_mod;
	s64 ftemp;

	/* check if the frequency interval was too long */
	if (freq_norm.sec > (2 << pps_shift)) {
		time_status |= STA_PPSERROR;
		pps_errcnt++;
		pps_dec_freq_interval();
858 859 860
		printk_deferred(KERN_ERR
			"hardpps: PPSERROR: interval too long - %ld s\n",
			freq_norm.sec);
861 862 863 864 865 866 867 868 869 870 871 872
		return 0;
	}

	/* here the raw frequency offset and wander (stability) is
	 * calculated. If the wander is less than the wander threshold
	 * the interval is increased; otherwise it is decreased.
	 */
	ftemp = div_s64(((s64)(-freq_norm.nsec)) << NTP_SCALE_SHIFT,
			freq_norm.sec);
	delta = shift_right(ftemp - pps_freq, NTP_SCALE_SHIFT);
	pps_freq = ftemp;
	if (delta > PPS_MAXWANDER || delta < -PPS_MAXWANDER) {
873 874
		printk_deferred(KERN_WARNING
				"hardpps: PPSWANDER: change=%ld\n", delta);
875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917
		time_status |= STA_PPSWANDER;
		pps_stbcnt++;
		pps_dec_freq_interval();
	} else {	/* good sample */
		pps_inc_freq_interval();
	}

	/* the stability metric is calculated as the average of recent
	 * frequency changes, but is used only for performance
	 * monitoring
	 */
	delta_mod = delta;
	if (delta_mod < 0)
		delta_mod = -delta_mod;
	pps_stabil += (div_s64(((s64)delta_mod) <<
				(NTP_SCALE_SHIFT - SHIFT_USEC),
				NSEC_PER_USEC) - pps_stabil) >> PPS_INTMIN;

	/* if enabled, the system clock frequency is updated */
	if ((time_status & STA_PPSFREQ) != 0 &&
	    (time_status & STA_FREQHOLD) == 0) {
		time_freq = pps_freq;
		ntp_update_frequency();
	}

	return delta;
}

/* correct REALTIME clock phase error against PPS signal */
static void hardpps_update_phase(long error)
{
	long correction = -error;
	long jitter;

	/* add the sample to the median filter */
	pps_phase_filter_add(correction);
	correction = pps_phase_filter_get(&jitter);

	/* Nominal jitter is due to PPS signal noise. If it exceeds the
	 * threshold, the sample is discarded; otherwise, if so enabled,
	 * the time offset is updated.
	 */
	if (jitter > (pps_jitter << PPS_POPCORN)) {
918 919 920
		printk_deferred(KERN_WARNING
				"hardpps: PPSJITTER: jitter=%ld, limit=%ld\n",
				jitter, (pps_jitter << PPS_POPCORN));
921 922 923 924 925 926 927 928 929 930 931 932 933 934
		time_status |= STA_PPSJITTER;
		pps_jitcnt++;
	} else if (time_status & STA_PPSTIME) {
		/* correct the time using the phase offset */
		time_offset = div_s64(((s64)correction) << NTP_SCALE_SHIFT,
				NTP_INTERVAL_FREQ);
		/* cancel running adjtime() */
		time_adjust = 0;
	}
	/* update jitter */
	pps_jitter += (jitter - pps_jitter) >> PPS_INTMIN;
}

/*
935
 * __hardpps() - discipline CPU clock oscillator to external PPS signal
936 937 938 939 940 941 942 943 944 945
 *
 * This routine is called at each PPS signal arrival in order to
 * discipline the CPU clock oscillator to the PPS signal. It takes two
 * parameters: REALTIME and MONOTONIC_RAW clock timestamps. The former
 * is used to correct clock phase error and the latter is used to
 * correct the frequency.
 *
 * This code is based on David Mills's reference nanokernel
 * implementation. It was mostly rewritten but keeps the same idea.
 */
946
void __hardpps(const struct timespec *phase_ts, const struct timespec *raw_ts)
947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976
{
	struct pps_normtime pts_norm, freq_norm;

	pts_norm = pps_normalize_ts(*phase_ts);

	/* clear the error bits, they will be set again if needed */
	time_status &= ~(STA_PPSJITTER | STA_PPSWANDER | STA_PPSERROR);

	/* indicate signal presence */
	time_status |= STA_PPSSIGNAL;
	pps_valid = PPS_VALID;

	/* when called for the first time,
	 * just start the frequency interval */
	if (unlikely(pps_fbase.tv_sec == 0)) {
		pps_fbase = *raw_ts;
		return;
	}

	/* ok, now we have a base for frequency calculation */
	freq_norm = pps_normalize_ts(timespec_sub(*raw_ts, pps_fbase));

	/* check that the signal is in the range
	 * [1s - MAXFREQ us, 1s + MAXFREQ us], otherwise reject it */
	if ((freq_norm.sec == 0) ||
			(freq_norm.nsec > MAXFREQ * freq_norm.sec) ||
			(freq_norm.nsec < -MAXFREQ * freq_norm.sec)) {
		time_status |= STA_PPSJITTER;
		/* restart the frequency calibration interval */
		pps_fbase = *raw_ts;
977
		printk_deferred(KERN_ERR "hardpps: PPSJITTER: bad pulse\n");
978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995
		return;
	}

	/* signal is ok */

	/* check if the current frequency interval is finished */
	if (freq_norm.sec >= (1 << pps_shift)) {
		pps_calcnt++;
		/* restart the frequency calibration interval */
		pps_fbase = *raw_ts;
		hardpps_update_freq(freq_norm);
	}

	hardpps_update_phase(pts_norm.nsec);

}
#endif	/* CONFIG_NTP_PPS */

996 997
static int __init ntp_tick_adj_setup(char *str)
{
998 999 1000 1001
	int rc = kstrtol(str, 0, (long *)&ntp_tick_adj);

	if (rc)
		return rc;
1002 1003
	ntp_tick_adj <<= NTP_SCALE_SHIFT;

1004 1005 1006 1007
	return 1;
}

__setup("ntp_tick_adj=", ntp_tick_adj_setup);
R
Roman Zippel 已提交
1008 1009 1010 1011 1012

void __init ntp_init(void)
{
	ntp_clear();
}