ntp.c 25.4 KB
Newer Older
1 2 3 4 5 6 7
/*
 * NTP state machine interfaces and logic.
 *
 * This code was mainly moved from kernel/timer.c and kernel/time.c
 * Please see those files for relevant copyright info and historical
 * changelogs.
 */
A
Alexey Dobriyan 已提交
8
#include <linux/capability.h>
R
Roman Zippel 已提交
9
#include <linux/clocksource.h>
10
#include <linux/workqueue.h>
11 12 13 14 15 16
#include <linux/hrtimer.h>
#include <linux/jiffies.h>
#include <linux/math64.h>
#include <linux/timex.h>
#include <linux/time.h>
#include <linux/mm.h>
17
#include <linux/module.h>
18
#include <linux/rtc.h>
19

20
#include "ntp_internal.h"
21 22
#include "timekeeping_internal.h"

23

24
/*
25
 * NTP timekeeping variables:
26 27
 *
 * Note: All of the NTP state is protected by the timekeeping locks.
28 29
 */

30

31 32 33
/* USER_HZ period (usecs): */
unsigned long			tick_usec = TICK_USEC;

34
/* SHIFTED_HZ period (nsecs): */
35
unsigned long			tick_nsec;
R
Roman Zippel 已提交
36

37
static u64			tick_length;
38 39
static u64			tick_length_base;

40
#define SECS_PER_DAY		86400
41
#define MAX_TICKADJ		500LL		/* usecs */
42
#define MAX_TICKADJ_SCALED \
43
	(((MAX_TICKADJ * NSEC_PER_USEC) << NTP_SCALE_SHIFT) / NTP_INTERVAL_FREQ)
44 45 46 47

/*
 * phase-lock loop variables
 */
48 49 50 51 52 53 54 55 56

/*
 * clock synchronization status
 *
 * (TIME_ERROR prevents overwriting the CMOS clock)
 */
static int			time_state = TIME_OK;

/* clock status bits:							*/
J
John Stultz 已提交
57
static int			time_status = STA_UNSYNC;
58 59 60 61 62 63 64 65

/* time adjustment (nsecs):						*/
static s64			time_offset;

/* pll time constant:							*/
static long			time_constant = 2;

/* maximum error (usecs):						*/
66
static long			time_maxerror = NTP_PHASE_LIMIT;
67 68

/* estimated error (usecs):						*/
69
static long			time_esterror = NTP_PHASE_LIMIT;
70 71 72 73 74

/* frequency offset (scaled nsecs/secs):				*/
static s64			time_freq;

/* time at last adjustment (secs):					*/
75
static time64_t		time_reftime;
76

J
John Stultz 已提交
77
static long			time_adjust;
78

79 80
/* constant (boot-param configurable) NTP tick adjustment (upscaled)	*/
static s64			ntp_tick_adj;
81

82 83 84
/* second value of the next pending leapsecond, or TIME64_MAX if no leap */
static time64_t			ntp_next_leap_sec = TIME64_MAX;

85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103
#ifdef CONFIG_NTP_PPS

/*
 * The following variables are used when a pulse-per-second (PPS) signal
 * is available. They establish the engineering parameters of the clock
 * discipline loop when controlled by the PPS signal.
 */
#define PPS_VALID	10	/* PPS signal watchdog max (s) */
#define PPS_POPCORN	4	/* popcorn spike threshold (shift) */
#define PPS_INTMIN	2	/* min freq interval (s) (shift) */
#define PPS_INTMAX	8	/* max freq interval (s) (shift) */
#define PPS_INTCOUNT	4	/* number of consecutive good intervals to
				   increase pps_shift or consecutive bad
				   intervals to decrease it */
#define PPS_MAXWANDER	100000	/* max PPS freq wander (ns/s) */

static int pps_valid;		/* signal watchdog counter */
static long pps_tf[3];		/* phase median filter */
static long pps_jitter;		/* current jitter (ns) */
104
static struct timespec64 pps_fbase; /* beginning of the last freq interval */
105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172
static int pps_shift;		/* current interval duration (s) (shift) */
static int pps_intcnt;		/* interval counter */
static s64 pps_freq;		/* frequency offset (scaled ns/s) */
static long pps_stabil;		/* current stability (scaled ns/s) */

/*
 * PPS signal quality monitors
 */
static long pps_calcnt;		/* calibration intervals */
static long pps_jitcnt;		/* jitter limit exceeded */
static long pps_stbcnt;		/* stability limit exceeded */
static long pps_errcnt;		/* calibration errors */


/* PPS kernel consumer compensates the whole phase error immediately.
 * Otherwise, reduce the offset by a fixed factor times the time constant.
 */
static inline s64 ntp_offset_chunk(s64 offset)
{
	if (time_status & STA_PPSTIME && time_status & STA_PPSSIGNAL)
		return offset;
	else
		return shift_right(offset, SHIFT_PLL + time_constant);
}

static inline void pps_reset_freq_interval(void)
{
	/* the PPS calibration interval may end
	   surprisingly early */
	pps_shift = PPS_INTMIN;
	pps_intcnt = 0;
}

/**
 * pps_clear - Clears the PPS state variables
 */
static inline void pps_clear(void)
{
	pps_reset_freq_interval();
	pps_tf[0] = 0;
	pps_tf[1] = 0;
	pps_tf[2] = 0;
	pps_fbase.tv_sec = pps_fbase.tv_nsec = 0;
	pps_freq = 0;
}

/* Decrease pps_valid to indicate that another second has passed since
 * the last PPS signal. When it reaches 0, indicate that PPS signal is
 * missing.
 */
static inline void pps_dec_valid(void)
{
	if (pps_valid > 0)
		pps_valid--;
	else {
		time_status &= ~(STA_PPSSIGNAL | STA_PPSJITTER |
				 STA_PPSWANDER | STA_PPSERROR);
		pps_clear();
	}
}

static inline void pps_set_freq(s64 freq)
{
	pps_freq = freq;
}

static inline int is_error_status(int status)
{
173
	return (status & (STA_UNSYNC|STA_CLOCKERR))
174 175 176
		/* PPS signal lost when either PPS time or
		 * PPS frequency synchronization requested
		 */
177 178
		|| ((status & (STA_PPSFREQ|STA_PPSTIME))
			&& !(status & STA_PPSSIGNAL))
179 180
		/* PPS jitter exceeded when
		 * PPS time synchronization requested */
181
		|| ((status & (STA_PPSTIME|STA_PPSJITTER))
182 183 184 185
			== (STA_PPSTIME|STA_PPSJITTER))
		/* PPS wander exceeded or calibration error when
		 * PPS frequency synchronization requested
		 */
186 187
		|| ((status & STA_PPSFREQ)
			&& (status & (STA_PPSWANDER|STA_PPSERROR)));
188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236
}

static inline void pps_fill_timex(struct timex *txc)
{
	txc->ppsfreq	   = shift_right((pps_freq >> PPM_SCALE_INV_SHIFT) *
					 PPM_SCALE_INV, NTP_SCALE_SHIFT);
	txc->jitter	   = pps_jitter;
	if (!(time_status & STA_NANO))
		txc->jitter /= NSEC_PER_USEC;
	txc->shift	   = pps_shift;
	txc->stabil	   = pps_stabil;
	txc->jitcnt	   = pps_jitcnt;
	txc->calcnt	   = pps_calcnt;
	txc->errcnt	   = pps_errcnt;
	txc->stbcnt	   = pps_stbcnt;
}

#else /* !CONFIG_NTP_PPS */

static inline s64 ntp_offset_chunk(s64 offset)
{
	return shift_right(offset, SHIFT_PLL + time_constant);
}

static inline void pps_reset_freq_interval(void) {}
static inline void pps_clear(void) {}
static inline void pps_dec_valid(void) {}
static inline void pps_set_freq(s64 freq) {}

static inline int is_error_status(int status)
{
	return status & (STA_UNSYNC|STA_CLOCKERR);
}

static inline void pps_fill_timex(struct timex *txc)
{
	/* PPS is not implemented, so these are zero */
	txc->ppsfreq	   = 0;
	txc->jitter	   = 0;
	txc->shift	   = 0;
	txc->stabil	   = 0;
	txc->jitcnt	   = 0;
	txc->calcnt	   = 0;
	txc->errcnt	   = 0;
	txc->stbcnt	   = 0;
}

#endif /* CONFIG_NTP_PPS */

J
John Stultz 已提交
237 238 239 240 241 242 243 244 245 246 247

/**
 * ntp_synced - Returns 1 if the NTP status is not UNSYNC
 *
 */
static inline int ntp_synced(void)
{
	return !(time_status & STA_UNSYNC);
}


248 249 250
/*
 * NTP methods:
 */
251

252 253 254 255
/*
 * Update (tick_length, tick_length_base, tick_nsec), based
 * on (tick_usec, ntp_tick_adj, time_freq):
 */
256 257
static void ntp_update_frequency(void)
{
258
	u64 second_length;
259
	u64 new_base;
260 261 262 263

	second_length		 = (u64)(tick_usec * NSEC_PER_USEC * USER_HZ)
						<< NTP_SCALE_SHIFT;

264
	second_length		+= ntp_tick_adj;
265
	second_length		+= time_freq;
266

267
	tick_nsec		 = div_u64(second_length, HZ) >> NTP_SCALE_SHIFT;
268
	new_base		 = div_u64(second_length, NTP_INTERVAL_FREQ);
269 270 271

	/*
	 * Don't wait for the next second_overflow, apply
272
	 * the change to the tick length immediately:
273
	 */
274 275
	tick_length		+= new_base - tick_length_base;
	tick_length_base	 = new_base;
276 277
}

278
static inline s64 ntp_update_offset_fll(s64 offset64, long secs)
279 280 281 282
{
	time_status &= ~STA_MODE;

	if (secs < MINSEC)
283
		return 0;
284 285

	if (!(time_status & STA_FLL) && (secs <= MAXSEC))
286
		return 0;
287 288 289

	time_status |= STA_MODE;

290
	return div64_long(offset64 << (NTP_SCALE_SHIFT - SHIFT_FLL), secs);
291 292
}

R
Roman Zippel 已提交
293 294 295
static void ntp_update_offset(long offset)
{
	s64 freq_adj;
296 297
	s64 offset64;
	long secs;
R
Roman Zippel 已提交
298 299 300 301

	if (!(time_status & STA_PLL))
		return;

302 303 304
	if (!(time_status & STA_NANO)) {
		/* Make sure the multiplication below won't overflow */
		offset = clamp(offset, -USEC_PER_SEC, USEC_PER_SEC);
305
		offset *= NSEC_PER_USEC;
306
	}
R
Roman Zippel 已提交
307 308 309 310 311

	/*
	 * Scale the phase adjustment and
	 * clamp to the operating range.
	 */
312
	offset = clamp(offset, -MAXPHASE, MAXPHASE);
R
Roman Zippel 已提交
313 314 315 316 317

	/*
	 * Select how the frequency is to be controlled
	 * and in which mode (PLL or FLL).
	 */
318
	secs = (long)(__ktime_get_real_seconds() - time_reftime);
319
	if (unlikely(time_status & STA_FREQHOLD))
320 321
		secs = 0;

322
	time_reftime = __ktime_get_real_seconds();
R
Roman Zippel 已提交
323

324
	offset64    = offset;
325
	freq_adj    = ntp_update_offset_fll(offset64, secs);
326

327 328 329 330 331 332 333 334 335 336
	/*
	 * Clamp update interval to reduce PLL gain with low
	 * sampling rate (e.g. intermittent network connection)
	 * to avoid instability.
	 */
	if (unlikely(secs > 1 << (SHIFT_PLL + 1 + time_constant)))
		secs = 1 << (SHIFT_PLL + 1 + time_constant);

	freq_adj    += (offset64 * secs) <<
			(NTP_SCALE_SHIFT - 2 * (SHIFT_PLL + 2 + time_constant));
337 338 339 340 341 342

	freq_adj    = min(freq_adj + time_freq, MAXFREQ_SCALED);

	time_freq   = max(freq_adj, -MAXFREQ_SCALED);

	time_offset = div_s64(offset64 << NTP_SCALE_SHIFT, NTP_INTERVAL_FREQ);
R
Roman Zippel 已提交
343 344
}

345 346 347 348 349
/**
 * ntp_clear - Clears the NTP state variables
 */
void ntp_clear(void)
{
350 351 352 353
	time_adjust	= 0;		/* stop active adjtime() */
	time_status	|= STA_UNSYNC;
	time_maxerror	= NTP_PHASE_LIMIT;
	time_esterror	= NTP_PHASE_LIMIT;
354 355 356

	ntp_update_frequency();

357 358
	tick_length	= tick_length_base;
	time_offset	= 0;
359

360
	ntp_next_leap_sec = TIME64_MAX;
361 362
	/* Clear PPS state variables */
	pps_clear();
363 364
}

365 366 367

u64 ntp_tick_length(void)
{
368
	return tick_length;
369 370
}

371 372 373 374 375 376 377 378 379 380 381 382 383 384 385
/**
 * ntp_get_next_leap - Returns the next leapsecond in CLOCK_REALTIME ktime_t
 *
 * Provides the time of the next leapsecond against CLOCK_REALTIME in
 * a ktime_t format. Returns KTIME_MAX if no leapsecond is pending.
 */
ktime_t ntp_get_next_leap(void)
{
	ktime_t ret;

	if ((time_state == TIME_INS) && (time_status & STA_INS))
		return ktime_set(ntp_next_leap_sec, 0);
	ret.tv64 = KTIME_MAX;
	return ret;
}
386

387
/*
388 389 390 391 392 393 394 395
 * this routine handles the overflow of the microsecond field
 *
 * The tricky bits of code to handle the accurate clock support
 * were provided by Dave Mills (Mills@UDEL.EDU) of NTP fame.
 * They were originally developed for SUN and DEC kernels.
 * All the kudos should go to Dave for this stuff.
 *
 * Also handles leap second processing, and returns leap offset
396
 */
397
int second_overflow(unsigned long secs)
398
{
399
	s64 delta;
400
	int leap = 0;
401 402 403 404 405 406

	/*
	 * Leap second processing. If in leap-insert state at the end of the
	 * day, the system clock is set back one second; if in leap-delete
	 * state, the system clock is set ahead one second.
	 */
407 408
	switch (time_state) {
	case TIME_OK:
409
		if (time_status & STA_INS) {
410
			time_state = TIME_INS;
411 412 413
			ntp_next_leap_sec = secs + SECS_PER_DAY -
						(secs % SECS_PER_DAY);
		} else if (time_status & STA_DEL) {
414
			time_state = TIME_DEL;
415 416 417
			ntp_next_leap_sec = secs + SECS_PER_DAY -
						 ((secs+1) % SECS_PER_DAY);
		}
418 419
		break;
	case TIME_INS:
420 421
		if (!(time_status & STA_INS)) {
			ntp_next_leap_sec = TIME64_MAX;
J
John Stultz 已提交
422
			time_state = TIME_OK;
423
		} else if (secs % SECS_PER_DAY == 0) {
424 425 426 427 428
			leap = -1;
			time_state = TIME_OOP;
			printk(KERN_NOTICE
				"Clock: inserting leap second 23:59:60 UTC\n");
		}
429 430
		break;
	case TIME_DEL:
431 432
		if (!(time_status & STA_DEL)) {
			ntp_next_leap_sec = TIME64_MAX;
J
John Stultz 已提交
433
			time_state = TIME_OK;
434
		} else if ((secs + 1) % SECS_PER_DAY == 0) {
435
			leap = 1;
436
			ntp_next_leap_sec = TIME64_MAX;
437 438 439 440
			time_state = TIME_WAIT;
			printk(KERN_NOTICE
				"Clock: deleting leap second 23:59:59 UTC\n");
		}
441 442
		break;
	case TIME_OOP:
443
		ntp_next_leap_sec = TIME64_MAX;
444
		time_state = TIME_WAIT;
445
		break;
446 447
	case TIME_WAIT:
		if (!(time_status & (STA_INS | STA_DEL)))
R
Roman Zippel 已提交
448
			time_state = TIME_OK;
R
Roman Zippel 已提交
449 450
		break;
	}
451

R
Roman Zippel 已提交
452 453 454 455 456 457

	/* Bump the maxerror field */
	time_maxerror += MAXFREQ / NSEC_PER_USEC;
	if (time_maxerror > NTP_PHASE_LIMIT) {
		time_maxerror = NTP_PHASE_LIMIT;
		time_status |= STA_UNSYNC;
458 459
	}

460
	/* Compute the phase adjustment for the next second */
461 462
	tick_length	 = tick_length_base;

463
	delta		 = ntp_offset_chunk(time_offset);
464 465
	time_offset	-= delta;
	tick_length	+= delta;
466

467 468 469
	/* Check PPS signal */
	pps_dec_valid();

470
	if (!time_adjust)
471
		goto out;
472 473 474 475

	if (time_adjust > MAX_TICKADJ) {
		time_adjust -= MAX_TICKADJ;
		tick_length += MAX_TICKADJ_SCALED;
476
		goto out;
477
	}
478 479 480 481

	if (time_adjust < -MAX_TICKADJ) {
		time_adjust += MAX_TICKADJ;
		tick_length -= MAX_TICKADJ_SCALED;
482
		goto out;
483 484 485 486 487
	}

	tick_length += (s64)(time_adjust * NSEC_PER_USEC / NTP_INTERVAL_FREQ)
							 << NTP_SCALE_SHIFT;
	time_adjust = 0;
488

489
out:
490
	return leap;
491 492
}

493
#ifdef CONFIG_GENERIC_CMOS_UPDATE
494 495 496 497 498
int __weak update_persistent_clock(struct timespec now)
{
	return -ENODEV;
}

499 500 501 502 503 504 505 506 507
int __weak update_persistent_clock64(struct timespec64 now64)
{
	struct timespec now;

	now = timespec64_to_timespec(now64);
	return update_persistent_clock(now);
}
#endif

508
#if defined(CONFIG_GENERIC_CMOS_UPDATE) || defined(CONFIG_RTC_SYSTOHC)
509
static void sync_cmos_clock(struct work_struct *work);
510

511
static DECLARE_DELAYED_WORK(sync_cmos_work, sync_cmos_clock);
512

513
static void sync_cmos_clock(struct work_struct *work)
514
{
515
	struct timespec64 now;
516
	struct timespec64 next;
517 518 519 520 521 522 523 524
	int fail = 1;

	/*
	 * If we have an externally synchronized Linux clock, then update
	 * CMOS clock accordingly every ~11 minutes. Set_rtc_mmss() has to be
	 * called as close as possible to 500 ms before the new second starts.
	 * This code is run on a timer.  If the clock is set, that timer
	 * may not expire at the correct time.  Thus, we adjust...
525
	 * We want the clock to be within a couple of ticks from the target.
526
	 */
527
	if (!ntp_synced()) {
528 529 530 531 532
		/*
		 * Not synced, exit, do not restart a timer (if one is
		 * running, let it run out).
		 */
		return;
533
	}
534

535
	getnstimeofday64(&now);
536
	if (abs(now.tv_nsec - (NSEC_PER_SEC / 2)) <= tick_nsec * 5) {
537
		struct timespec64 adjust = now;
538

539
		fail = -ENODEV;
540 541
		if (persistent_clock_is_local)
			adjust.tv_sec -= (sys_tz.tz_minuteswest * 60);
542
#ifdef CONFIG_GENERIC_CMOS_UPDATE
543
		fail = update_persistent_clock64(adjust);
544
#endif
545

546 547
#ifdef CONFIG_RTC_SYSTOHC
		if (fail == -ENODEV)
548
			fail = rtc_set_ntp_time(adjust);
549 550
#endif
	}
551

552
	next.tv_nsec = (NSEC_PER_SEC / 2) - now.tv_nsec - (TICK_NSEC / 2);
553 554 555
	if (next.tv_nsec <= 0)
		next.tv_nsec += NSEC_PER_SEC;

556
	if (!fail || fail == -ENODEV)
557 558 559 560 561 562 563 564
		next.tv_sec = 659;
	else
		next.tv_sec = 0;

	if (next.tv_nsec >= NSEC_PER_SEC) {
		next.tv_sec++;
		next.tv_nsec -= NSEC_PER_SEC;
	}
565
	queue_delayed_work(system_power_efficient_wq,
566
			   &sync_cmos_work, timespec64_to_jiffies(&next));
567 568
}

569
void ntp_notify_cmos_timer(void)
570
{
571
	queue_delayed_work(system_power_efficient_wq, &sync_cmos_work, 0);
572 573
}

574
#else
575
void ntp_notify_cmos_timer(void) { }
576 577
#endif

I
Ingo Molnar 已提交
578 579 580 581

/*
 * Propagate a new txc->status value into the NTP state:
 */
582
static inline void process_adj_status(struct timex *txc, struct timespec64 *ts)
I
Ingo Molnar 已提交
583 584 585 586
{
	if ((time_status & STA_PLL) && !(txc->status & STA_PLL)) {
		time_state = TIME_OK;
		time_status = STA_UNSYNC;
587
		ntp_next_leap_sec = TIME64_MAX;
588 589
		/* restart PPS frequency calibration */
		pps_reset_freq_interval();
I
Ingo Molnar 已提交
590 591 592 593 594 595 596
	}

	/*
	 * If we turn on PLL adjustments then reset the
	 * reference time to current time.
	 */
	if (!(time_status & STA_PLL) && (txc->status & STA_PLL))
597
		time_reftime = __ktime_get_real_seconds();
I
Ingo Molnar 已提交
598

599 600
	/* only set allowed bits */
	time_status &= STA_RONLY;
I
Ingo Molnar 已提交
601 602
	time_status |= txc->status & ~STA_RONLY;
}
603

604

605
static inline void process_adjtimex_modes(struct timex *txc,
606
						struct timespec64 *ts,
607
						s32 *time_tai)
I
Ingo Molnar 已提交
608 609 610 611 612 613
{
	if (txc->modes & ADJ_STATUS)
		process_adj_status(txc, ts);

	if (txc->modes & ADJ_NANO)
		time_status |= STA_NANO;
614

I
Ingo Molnar 已提交
615 616 617 618
	if (txc->modes & ADJ_MICRO)
		time_status &= ~STA_NANO;

	if (txc->modes & ADJ_FREQUENCY) {
619
		time_freq = txc->freq * PPM_SCALE;
I
Ingo Molnar 已提交
620 621
		time_freq = min(time_freq, MAXFREQ_SCALED);
		time_freq = max(time_freq, -MAXFREQ_SCALED);
622 623
		/* update pps_freq */
		pps_set_freq(time_freq);
I
Ingo Molnar 已提交
624 625 626 627
	}

	if (txc->modes & ADJ_MAXERROR)
		time_maxerror = txc->maxerror;
628

I
Ingo Molnar 已提交
629 630 631 632 633 634 635 636 637 638 639 640
	if (txc->modes & ADJ_ESTERROR)
		time_esterror = txc->esterror;

	if (txc->modes & ADJ_TIMECONST) {
		time_constant = txc->constant;
		if (!(time_status & STA_NANO))
			time_constant += 4;
		time_constant = min(time_constant, (long)MAXTC);
		time_constant = max(time_constant, 0l);
	}

	if (txc->modes & ADJ_TAI && txc->constant > 0)
641
		*time_tai = txc->constant;
I
Ingo Molnar 已提交
642 643 644

	if (txc->modes & ADJ_OFFSET)
		ntp_update_offset(txc->offset);
645

I
Ingo Molnar 已提交
646 647 648 649 650 651 652
	if (txc->modes & ADJ_TICK)
		tick_usec = txc->tick;

	if (txc->modes & (ADJ_TICK|ADJ_FREQUENCY|ADJ_OFFSET))
		ntp_update_frequency();
}

653 654 655 656


/**
 * ntp_validate_timex - Ensures the timex is ok for use in do_adjtimex
657
 */
658
int ntp_validate_timex(struct timex *txc)
659
{
660
	if (txc->modes & ADJ_ADJTIME) {
R
Roman Zippel 已提交
661
		/* singleshot must not be used with any other mode bits */
662
		if (!(txc->modes & ADJ_OFFSET_SINGLESHOT))
663
			return -EINVAL;
664 665 666 667 668 669 670
		if (!(txc->modes & ADJ_OFFSET_READONLY) &&
		    !capable(CAP_SYS_TIME))
			return -EPERM;
	} else {
		/* In order to modify anything, you gotta be super-user! */
		 if (txc->modes && !capable(CAP_SYS_TIME))
			return -EPERM;
671 672 673 674
		/*
		 * if the quartz is off by more than 10% then
		 * something is VERY wrong!
		 */
675 676 677
		if (txc->modes & ADJ_TICK &&
		    (txc->tick <  900000/USER_HZ ||
		     txc->tick > 1100000/USER_HZ))
678
			return -EINVAL;
J
John Stultz 已提交
679
	}
680

681 682 683 684 685 686 687 688
	if (txc->modes & ADJ_SETOFFSET) {
		/* In order to inject time, you gotta be super-user! */
		if (!capable(CAP_SYS_TIME))
			return -EPERM;

		if (!timeval_inject_offset_valid(&txc->time))
			return -EINVAL;
	}
689

690 691 692 693 694 695
	/*
	 * Check for potential multiplication overflows that can
	 * only happen on 64-bit systems:
	 */
	if ((txc->modes & ADJ_FREQUENCY) && (BITS_PER_LONG == 64)) {
		if (LLONG_MIN / PPM_SCALE > txc->freq)
696
			return -EINVAL;
697
		if (LLONG_MAX / PPM_SCALE < txc->freq)
698 699 700
			return -EINVAL;
	}

701 702 703 704 705 706 707 708
	return 0;
}


/*
 * adjtimex mainly allows reading (and writing, if superuser) of
 * kernel time-keeping variables. used by xntpd.
 */
709
int __do_adjtimex(struct timex *txc, struct timespec64 *ts, s32 *time_tai)
710 711 712
{
	int result;

713 714 715 716 717 718 719 720 721
	if (txc->modes & ADJ_ADJTIME) {
		long save_adjust = time_adjust;

		if (!(txc->modes & ADJ_OFFSET_READONLY)) {
			/* adjtime() is independent from ntp_adjtime() */
			time_adjust = txc->offset;
			ntp_update_frequency();
		}
		txc->offset = save_adjust;
722
	} else {
R
Roman Zippel 已提交
723

724 725
		/* If there are input parameters, then process them: */
		if (txc->modes)
726
			process_adjtimex_modes(txc, ts, time_tai);
R
Roman Zippel 已提交
727

728
		txc->offset = shift_right(time_offset * NTP_INTERVAL_FREQ,
729
				  NTP_SCALE_SHIFT);
730 731 732
		if (!(time_status & STA_NANO))
			txc->offset /= NSEC_PER_USEC;
	}
733

R
Roman Zippel 已提交
734
	result = time_state;	/* mostly `TIME_OK' */
735 736
	/* check for errors */
	if (is_error_status(time_status))
737 738
		result = TIME_ERROR;

739
	txc->freq	   = shift_right((time_freq >> PPM_SCALE_INV_SHIFT) *
740
					 PPM_SCALE_INV, NTP_SCALE_SHIFT);
741 742 743 744
	txc->maxerror	   = time_maxerror;
	txc->esterror	   = time_esterror;
	txc->status	   = time_status;
	txc->constant	   = time_constant;
745
	txc->precision	   = 1;
746
	txc->tolerance	   = MAXFREQ_SCALED / PPM_SCALE;
747
	txc->tick	   = tick_usec;
748
	txc->tai	   = *time_tai;
749

750 751
	/* fill PPS status fields */
	pps_fill_timex(txc);
752

753
	txc->time.tv_sec = (time_t)ts->tv_sec;
754
	txc->time.tv_usec = ts->tv_nsec;
R
Roman Zippel 已提交
755 756
	if (!(time_status & STA_NANO))
		txc->time.tv_usec /= NSEC_PER_USEC;
R
Roman Zippel 已提交
757

758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775
	/* Handle leapsec adjustments */
	if (unlikely(ts->tv_sec >= ntp_next_leap_sec)) {
		if ((time_state == TIME_INS) && (time_status & STA_INS)) {
			result = TIME_OOP;
			txc->tai++;
			txc->time.tv_sec--;
		}
		if ((time_state == TIME_DEL) && (time_status & STA_DEL)) {
			result = TIME_WAIT;
			txc->tai--;
			txc->time.tv_sec++;
		}
		if ((time_state == TIME_OOP) &&
					(ts->tv_sec == ntp_next_leap_sec)) {
			result = TIME_WAIT;
		}
	}

R
Roman Zippel 已提交
776
	return result;
777
}
778

779 780 781 782 783 784 785
#ifdef	CONFIG_NTP_PPS

/* actually struct pps_normtime is good old struct timespec, but it is
 * semantically different (and it is the reason why it was invented):
 * pps_normtime.nsec has a range of ( -NSEC_PER_SEC / 2, NSEC_PER_SEC / 2 ]
 * while timespec.tv_nsec has a range of [0, NSEC_PER_SEC) */
struct pps_normtime {
786
	s64		sec;	/* seconds */
787 788 789 790 791
	long		nsec;	/* nanoseconds */
};

/* normalize the timestamp so that nsec is in the
   ( -NSEC_PER_SEC / 2, NSEC_PER_SEC / 2 ] interval */
792
static inline struct pps_normtime pps_normalize_ts(struct timespec64 ts)
793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872
{
	struct pps_normtime norm = {
		.sec = ts.tv_sec,
		.nsec = ts.tv_nsec
	};

	if (norm.nsec > (NSEC_PER_SEC >> 1)) {
		norm.nsec -= NSEC_PER_SEC;
		norm.sec++;
	}

	return norm;
}

/* get current phase correction and jitter */
static inline long pps_phase_filter_get(long *jitter)
{
	*jitter = pps_tf[0] - pps_tf[1];
	if (*jitter < 0)
		*jitter = -*jitter;

	/* TODO: test various filters */
	return pps_tf[0];
}

/* add the sample to the phase filter */
static inline void pps_phase_filter_add(long err)
{
	pps_tf[2] = pps_tf[1];
	pps_tf[1] = pps_tf[0];
	pps_tf[0] = err;
}

/* decrease frequency calibration interval length.
 * It is halved after four consecutive unstable intervals.
 */
static inline void pps_dec_freq_interval(void)
{
	if (--pps_intcnt <= -PPS_INTCOUNT) {
		pps_intcnt = -PPS_INTCOUNT;
		if (pps_shift > PPS_INTMIN) {
			pps_shift--;
			pps_intcnt = 0;
		}
	}
}

/* increase frequency calibration interval length.
 * It is doubled after four consecutive stable intervals.
 */
static inline void pps_inc_freq_interval(void)
{
	if (++pps_intcnt >= PPS_INTCOUNT) {
		pps_intcnt = PPS_INTCOUNT;
		if (pps_shift < PPS_INTMAX) {
			pps_shift++;
			pps_intcnt = 0;
		}
	}
}

/* update clock frequency based on MONOTONIC_RAW clock PPS signal
 * timestamps
 *
 * At the end of the calibration interval the difference between the
 * first and last MONOTONIC_RAW clock timestamps divided by the length
 * of the interval becomes the frequency update. If the interval was
 * too long, the data are discarded.
 * Returns the difference between old and new frequency values.
 */
static long hardpps_update_freq(struct pps_normtime freq_norm)
{
	long delta, delta_mod;
	s64 ftemp;

	/* check if the frequency interval was too long */
	if (freq_norm.sec > (2 << pps_shift)) {
		time_status |= STA_PPSERROR;
		pps_errcnt++;
		pps_dec_freq_interval();
873
		printk_deferred(KERN_ERR
874
			"hardpps: PPSERROR: interval too long - %lld s\n",
875
			freq_norm.sec);
876 877 878 879 880 881 882 883 884 885 886 887
		return 0;
	}

	/* here the raw frequency offset and wander (stability) is
	 * calculated. If the wander is less than the wander threshold
	 * the interval is increased; otherwise it is decreased.
	 */
	ftemp = div_s64(((s64)(-freq_norm.nsec)) << NTP_SCALE_SHIFT,
			freq_norm.sec);
	delta = shift_right(ftemp - pps_freq, NTP_SCALE_SHIFT);
	pps_freq = ftemp;
	if (delta > PPS_MAXWANDER || delta < -PPS_MAXWANDER) {
888 889
		printk_deferred(KERN_WARNING
				"hardpps: PPSWANDER: change=%ld\n", delta);
890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932
		time_status |= STA_PPSWANDER;
		pps_stbcnt++;
		pps_dec_freq_interval();
	} else {	/* good sample */
		pps_inc_freq_interval();
	}

	/* the stability metric is calculated as the average of recent
	 * frequency changes, but is used only for performance
	 * monitoring
	 */
	delta_mod = delta;
	if (delta_mod < 0)
		delta_mod = -delta_mod;
	pps_stabil += (div_s64(((s64)delta_mod) <<
				(NTP_SCALE_SHIFT - SHIFT_USEC),
				NSEC_PER_USEC) - pps_stabil) >> PPS_INTMIN;

	/* if enabled, the system clock frequency is updated */
	if ((time_status & STA_PPSFREQ) != 0 &&
	    (time_status & STA_FREQHOLD) == 0) {
		time_freq = pps_freq;
		ntp_update_frequency();
	}

	return delta;
}

/* correct REALTIME clock phase error against PPS signal */
static void hardpps_update_phase(long error)
{
	long correction = -error;
	long jitter;

	/* add the sample to the median filter */
	pps_phase_filter_add(correction);
	correction = pps_phase_filter_get(&jitter);

	/* Nominal jitter is due to PPS signal noise. If it exceeds the
	 * threshold, the sample is discarded; otherwise, if so enabled,
	 * the time offset is updated.
	 */
	if (jitter > (pps_jitter << PPS_POPCORN)) {
933 934 935
		printk_deferred(KERN_WARNING
				"hardpps: PPSJITTER: jitter=%ld, limit=%ld\n",
				jitter, (pps_jitter << PPS_POPCORN));
936 937 938 939 940 941 942 943 944 945 946 947 948 949
		time_status |= STA_PPSJITTER;
		pps_jitcnt++;
	} else if (time_status & STA_PPSTIME) {
		/* correct the time using the phase offset */
		time_offset = div_s64(((s64)correction) << NTP_SCALE_SHIFT,
				NTP_INTERVAL_FREQ);
		/* cancel running adjtime() */
		time_adjust = 0;
	}
	/* update jitter */
	pps_jitter += (jitter - pps_jitter) >> PPS_INTMIN;
}

/*
950
 * __hardpps() - discipline CPU clock oscillator to external PPS signal
951 952 953 954 955 956 957 958 959 960
 *
 * This routine is called at each PPS signal arrival in order to
 * discipline the CPU clock oscillator to the PPS signal. It takes two
 * parameters: REALTIME and MONOTONIC_RAW clock timestamps. The former
 * is used to correct clock phase error and the latter is used to
 * correct the frequency.
 *
 * This code is based on David Mills's reference nanokernel
 * implementation. It was mostly rewritten but keeps the same idea.
 */
961
void __hardpps(const struct timespec64 *phase_ts, const struct timespec64 *raw_ts)
962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981
{
	struct pps_normtime pts_norm, freq_norm;

	pts_norm = pps_normalize_ts(*phase_ts);

	/* clear the error bits, they will be set again if needed */
	time_status &= ~(STA_PPSJITTER | STA_PPSWANDER | STA_PPSERROR);

	/* indicate signal presence */
	time_status |= STA_PPSSIGNAL;
	pps_valid = PPS_VALID;

	/* when called for the first time,
	 * just start the frequency interval */
	if (unlikely(pps_fbase.tv_sec == 0)) {
		pps_fbase = *raw_ts;
		return;
	}

	/* ok, now we have a base for frequency calculation */
982
	freq_norm = pps_normalize_ts(timespec64_sub(*raw_ts, pps_fbase));
983 984 985 986 987 988 989 990 991

	/* check that the signal is in the range
	 * [1s - MAXFREQ us, 1s + MAXFREQ us], otherwise reject it */
	if ((freq_norm.sec == 0) ||
			(freq_norm.nsec > MAXFREQ * freq_norm.sec) ||
			(freq_norm.nsec < -MAXFREQ * freq_norm.sec)) {
		time_status |= STA_PPSJITTER;
		/* restart the frequency calibration interval */
		pps_fbase = *raw_ts;
992
		printk_deferred(KERN_ERR "hardpps: PPSJITTER: bad pulse\n");
993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010
		return;
	}

	/* signal is ok */

	/* check if the current frequency interval is finished */
	if (freq_norm.sec >= (1 << pps_shift)) {
		pps_calcnt++;
		/* restart the frequency calibration interval */
		pps_fbase = *raw_ts;
		hardpps_update_freq(freq_norm);
	}

	hardpps_update_phase(pts_norm.nsec);

}
#endif	/* CONFIG_NTP_PPS */

1011 1012
static int __init ntp_tick_adj_setup(char *str)
{
1013 1014 1015 1016
	int rc = kstrtol(str, 0, (long *)&ntp_tick_adj);

	if (rc)
		return rc;
1017 1018
	ntp_tick_adj <<= NTP_SCALE_SHIFT;

1019 1020 1021 1022
	return 1;
}

__setup("ntp_tick_adj=", ntp_tick_adj_setup);
R
Roman Zippel 已提交
1023 1024 1025 1026 1027

void __init ntp_init(void)
{
	ntp_clear();
}