ntp.c 24.7 KB
Newer Older
1 2 3 4 5 6 7
/*
 * NTP state machine interfaces and logic.
 *
 * This code was mainly moved from kernel/timer.c and kernel/time.c
 * Please see those files for relevant copyright info and historical
 * changelogs.
 */
A
Alexey Dobriyan 已提交
8
#include <linux/capability.h>
R
Roman Zippel 已提交
9
#include <linux/clocksource.h>
10
#include <linux/workqueue.h>
11 12 13 14 15 16
#include <linux/hrtimer.h>
#include <linux/jiffies.h>
#include <linux/math64.h>
#include <linux/timex.h>
#include <linux/time.h>
#include <linux/mm.h>
17
#include <linux/module.h>
18

19 20
#include "tick-internal.h"

21
/*
22
 * NTP timekeeping variables:
23 24
 */

25 26 27
DEFINE_SPINLOCK(ntp_lock);


28 29 30 31 32
/* USER_HZ period (usecs): */
unsigned long			tick_usec = TICK_USEC;

/* ACTHZ period (nsecs): */
unsigned long			tick_nsec;
R
Roman Zippel 已提交
33

34
static u64			tick_length;
35 36 37 38
static u64			tick_length_base;

static struct hrtimer		leap_timer;

39
#define MAX_TICKADJ		500LL		/* usecs */
40
#define MAX_TICKADJ_SCALED \
41
	(((MAX_TICKADJ * NSEC_PER_USEC) << NTP_SCALE_SHIFT) / NTP_INTERVAL_FREQ)
42 43 44 45

/*
 * phase-lock loop variables
 */
46 47 48 49 50 51 52 53 54

/*
 * clock synchronization status
 *
 * (TIME_ERROR prevents overwriting the CMOS clock)
 */
static int			time_state = TIME_OK;

/* clock status bits:							*/
J
John Stultz 已提交
55
static int			time_status = STA_UNSYNC;
56 57 58 59 60 61 62 63 64 65 66

/* TAI offset (secs):							*/
static long			time_tai;

/* time adjustment (nsecs):						*/
static s64			time_offset;

/* pll time constant:							*/
static long			time_constant = 2;

/* maximum error (usecs):						*/
67
static long			time_maxerror = NTP_PHASE_LIMIT;
68 69

/* estimated error (usecs):						*/
70
static long			time_esterror = NTP_PHASE_LIMIT;
71 72 73 74 75 76 77

/* frequency offset (scaled nsecs/secs):				*/
static s64			time_freq;

/* time at last adjustment (secs):					*/
static long			time_reftime;

J
John Stultz 已提交
78
static long			time_adjust;
79

80 81
/* constant (boot-param configurable) NTP tick adjustment (upscaled)	*/
static s64			ntp_tick_adj;
82

83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138
#ifdef CONFIG_NTP_PPS

/*
 * The following variables are used when a pulse-per-second (PPS) signal
 * is available. They establish the engineering parameters of the clock
 * discipline loop when controlled by the PPS signal.
 */
#define PPS_VALID	10	/* PPS signal watchdog max (s) */
#define PPS_POPCORN	4	/* popcorn spike threshold (shift) */
#define PPS_INTMIN	2	/* min freq interval (s) (shift) */
#define PPS_INTMAX	8	/* max freq interval (s) (shift) */
#define PPS_INTCOUNT	4	/* number of consecutive good intervals to
				   increase pps_shift or consecutive bad
				   intervals to decrease it */
#define PPS_MAXWANDER	100000	/* max PPS freq wander (ns/s) */

static int pps_valid;		/* signal watchdog counter */
static long pps_tf[3];		/* phase median filter */
static long pps_jitter;		/* current jitter (ns) */
static struct timespec pps_fbase; /* beginning of the last freq interval */
static int pps_shift;		/* current interval duration (s) (shift) */
static int pps_intcnt;		/* interval counter */
static s64 pps_freq;		/* frequency offset (scaled ns/s) */
static long pps_stabil;		/* current stability (scaled ns/s) */

/*
 * PPS signal quality monitors
 */
static long pps_calcnt;		/* calibration intervals */
static long pps_jitcnt;		/* jitter limit exceeded */
static long pps_stbcnt;		/* stability limit exceeded */
static long pps_errcnt;		/* calibration errors */


/* PPS kernel consumer compensates the whole phase error immediately.
 * Otherwise, reduce the offset by a fixed factor times the time constant.
 */
static inline s64 ntp_offset_chunk(s64 offset)
{
	if (time_status & STA_PPSTIME && time_status & STA_PPSSIGNAL)
		return offset;
	else
		return shift_right(offset, SHIFT_PLL + time_constant);
}

static inline void pps_reset_freq_interval(void)
{
	/* the PPS calibration interval may end
	   surprisingly early */
	pps_shift = PPS_INTMIN;
	pps_intcnt = 0;
}

/**
 * pps_clear - Clears the PPS state variables
 *
139
 * Must be called while holding a write on the ntp_lock
140 141 142 143 144 145 146 147 148 149 150 151 152 153 154
 */
static inline void pps_clear(void)
{
	pps_reset_freq_interval();
	pps_tf[0] = 0;
	pps_tf[1] = 0;
	pps_tf[2] = 0;
	pps_fbase.tv_sec = pps_fbase.tv_nsec = 0;
	pps_freq = 0;
}

/* Decrease pps_valid to indicate that another second has passed since
 * the last PPS signal. When it reaches 0, indicate that PPS signal is
 * missing.
 *
155
 * Must be called while holding a write on the ntp_lock
156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238
 */
static inline void pps_dec_valid(void)
{
	if (pps_valid > 0)
		pps_valid--;
	else {
		time_status &= ~(STA_PPSSIGNAL | STA_PPSJITTER |
				 STA_PPSWANDER | STA_PPSERROR);
		pps_clear();
	}
}

static inline void pps_set_freq(s64 freq)
{
	pps_freq = freq;
}

static inline int is_error_status(int status)
{
	return (time_status & (STA_UNSYNC|STA_CLOCKERR))
		/* PPS signal lost when either PPS time or
		 * PPS frequency synchronization requested
		 */
		|| ((time_status & (STA_PPSFREQ|STA_PPSTIME))
			&& !(time_status & STA_PPSSIGNAL))
		/* PPS jitter exceeded when
		 * PPS time synchronization requested */
		|| ((time_status & (STA_PPSTIME|STA_PPSJITTER))
			== (STA_PPSTIME|STA_PPSJITTER))
		/* PPS wander exceeded or calibration error when
		 * PPS frequency synchronization requested
		 */
		|| ((time_status & STA_PPSFREQ)
			&& (time_status & (STA_PPSWANDER|STA_PPSERROR)));
}

static inline void pps_fill_timex(struct timex *txc)
{
	txc->ppsfreq	   = shift_right((pps_freq >> PPM_SCALE_INV_SHIFT) *
					 PPM_SCALE_INV, NTP_SCALE_SHIFT);
	txc->jitter	   = pps_jitter;
	if (!(time_status & STA_NANO))
		txc->jitter /= NSEC_PER_USEC;
	txc->shift	   = pps_shift;
	txc->stabil	   = pps_stabil;
	txc->jitcnt	   = pps_jitcnt;
	txc->calcnt	   = pps_calcnt;
	txc->errcnt	   = pps_errcnt;
	txc->stbcnt	   = pps_stbcnt;
}

#else /* !CONFIG_NTP_PPS */

static inline s64 ntp_offset_chunk(s64 offset)
{
	return shift_right(offset, SHIFT_PLL + time_constant);
}

static inline void pps_reset_freq_interval(void) {}
static inline void pps_clear(void) {}
static inline void pps_dec_valid(void) {}
static inline void pps_set_freq(s64 freq) {}

static inline int is_error_status(int status)
{
	return status & (STA_UNSYNC|STA_CLOCKERR);
}

static inline void pps_fill_timex(struct timex *txc)
{
	/* PPS is not implemented, so these are zero */
	txc->ppsfreq	   = 0;
	txc->jitter	   = 0;
	txc->shift	   = 0;
	txc->stabil	   = 0;
	txc->jitcnt	   = 0;
	txc->calcnt	   = 0;
	txc->errcnt	   = 0;
	txc->stbcnt	   = 0;
}

#endif /* CONFIG_NTP_PPS */

J
John Stultz 已提交
239 240 241 242 243 244 245 246 247 248 249

/**
 * ntp_synced - Returns 1 if the NTP status is not UNSYNC
 *
 */
static inline int ntp_synced(void)
{
	return !(time_status & STA_UNSYNC);
}


250 251 252
/*
 * NTP methods:
 */
253

254 255 256 257
/*
 * Update (tick_length, tick_length_base, tick_nsec), based
 * on (tick_usec, ntp_tick_adj, time_freq):
 */
258 259
static void ntp_update_frequency(void)
{
260
	u64 second_length;
261
	u64 new_base;
262 263 264 265

	second_length		 = (u64)(tick_usec * NSEC_PER_USEC * USER_HZ)
						<< NTP_SCALE_SHIFT;

266
	second_length		+= ntp_tick_adj;
267
	second_length		+= time_freq;
268

269
	tick_nsec		 = div_u64(second_length, HZ) >> NTP_SCALE_SHIFT;
270
	new_base		 = div_u64(second_length, NTP_INTERVAL_FREQ);
271 272 273

	/*
	 * Don't wait for the next second_overflow, apply
274
	 * the change to the tick length immediately:
275
	 */
276 277
	tick_length		+= new_base - tick_length_base;
	tick_length_base	 = new_base;
278 279
}

280
static inline s64 ntp_update_offset_fll(s64 offset64, long secs)
281 282 283 284
{
	time_status &= ~STA_MODE;

	if (secs < MINSEC)
285
		return 0;
286 287

	if (!(time_status & STA_FLL) && (secs <= MAXSEC))
288
		return 0;
289 290 291

	time_status |= STA_MODE;

292
	return div64_long(offset64 << (NTP_SCALE_SHIFT - SHIFT_FLL), secs);
293 294
}

R
Roman Zippel 已提交
295 296 297
static void ntp_update_offset(long offset)
{
	s64 freq_adj;
298 299
	s64 offset64;
	long secs;
R
Roman Zippel 已提交
300 301 302 303

	if (!(time_status & STA_PLL))
		return;

R
Roman Zippel 已提交
304
	if (!(time_status & STA_NANO))
305
		offset *= NSEC_PER_USEC;
R
Roman Zippel 已提交
306 307 308 309 310

	/*
	 * Scale the phase adjustment and
	 * clamp to the operating range.
	 */
311 312
	offset = min(offset, MAXPHASE);
	offset = max(offset, -MAXPHASE);
R
Roman Zippel 已提交
313 314 315 316 317

	/*
	 * Select how the frequency is to be controlled
	 * and in which mode (PLL or FLL).
	 */
318
	secs = get_seconds() - time_reftime;
319
	if (unlikely(time_status & STA_FREQHOLD))
320 321
		secs = 0;

322
	time_reftime = get_seconds();
R
Roman Zippel 已提交
323

324
	offset64    = offset;
325
	freq_adj    = ntp_update_offset_fll(offset64, secs);
326

327 328 329 330 331 332 333 334 335 336
	/*
	 * Clamp update interval to reduce PLL gain with low
	 * sampling rate (e.g. intermittent network connection)
	 * to avoid instability.
	 */
	if (unlikely(secs > 1 << (SHIFT_PLL + 1 + time_constant)))
		secs = 1 << (SHIFT_PLL + 1 + time_constant);

	freq_adj    += (offset64 * secs) <<
			(NTP_SCALE_SHIFT - 2 * (SHIFT_PLL + 2 + time_constant));
337 338 339 340 341 342

	freq_adj    = min(freq_adj + time_freq, MAXFREQ_SCALED);

	time_freq   = max(freq_adj, -MAXFREQ_SCALED);

	time_offset = div_s64(offset64 << NTP_SCALE_SHIFT, NTP_INTERVAL_FREQ);
R
Roman Zippel 已提交
343 344
}

345 346 347 348 349
/**
 * ntp_clear - Clears the NTP state variables
 */
void ntp_clear(void)
{
350 351 352 353
	unsigned long flags;

	spin_lock_irqsave(&ntp_lock, flags);

354 355 356 357
	time_adjust	= 0;		/* stop active adjtime() */
	time_status	|= STA_UNSYNC;
	time_maxerror	= NTP_PHASE_LIMIT;
	time_esterror	= NTP_PHASE_LIMIT;
358 359 360

	ntp_update_frequency();

361 362
	tick_length	= tick_length_base;
	time_offset	= 0;
363 364 365

	/* Clear PPS state variables */
	pps_clear();
366 367
	spin_unlock_irqrestore(&ntp_lock, flags);

368 369
}

370 371 372

u64 ntp_tick_length(void)
{
373 374 375 376 377 378 379
	unsigned long flags;
	s64 ret;

	spin_lock_irqsave(&ntp_lock, flags);
	ret = tick_length;
	spin_unlock_irqrestore(&ntp_lock, flags);
	return ret;
380 381 382
}


383
/*
R
Roman Zippel 已提交
384 385 386
 * Leap second processing. If in leap-insert state at the end of the
 * day, the system clock is set back one second; if in leap-delete
 * state, the system clock is set ahead one second.
387
 */
R
Roman Zippel 已提交
388
static enum hrtimer_restart ntp_leap_second(struct hrtimer *timer)
389
{
R
Roman Zippel 已提交
390
	enum hrtimer_restart res = HRTIMER_NORESTART;
391 392
	unsigned long flags;
	int leap = 0;
393

394
	spin_lock_irqsave(&ntp_lock, flags);
395 396 397 398
	switch (time_state) {
	case TIME_OK:
		break;
	case TIME_INS:
399
		leap = -1;
R
Roman Zippel 已提交
400
		time_state = TIME_OOP;
401 402
		printk(KERN_NOTICE
			"Clock: inserting leap second 23:59:60 UTC\n");
403
		hrtimer_add_expires_ns(&leap_timer, NSEC_PER_SEC);
R
Roman Zippel 已提交
404
		res = HRTIMER_RESTART;
405 406
		break;
	case TIME_DEL:
407
		leap = 1;
R
Roman Zippel 已提交
408 409
		time_tai--;
		time_state = TIME_WAIT;
410 411
		printk(KERN_NOTICE
			"Clock: deleting leap second 23:59:59 UTC\n");
412 413
		break;
	case TIME_OOP:
R
Roman Zippel 已提交
414
		time_tai++;
415
		time_state = TIME_WAIT;
R
Roman Zippel 已提交
416
		/* fall through */
417 418
	case TIME_WAIT:
		if (!(time_status & (STA_INS | STA_DEL)))
R
Roman Zippel 已提交
419
			time_state = TIME_OK;
R
Roman Zippel 已提交
420 421
		break;
	}
422
	spin_unlock_irqrestore(&ntp_lock, flags);
R
Roman Zippel 已提交
423

424 425 426 427 428 429
	/*
	 * We have to call this outside of the ntp_lock to keep
	 * the proper locking hierarchy
	 */
	if (leap)
		timekeeping_leap_insert(leap);
R
Roman Zippel 已提交
430 431 432 433 434 435 436 437 438 439 440 441 442 443

	return res;
}

/*
 * this routine handles the overflow of the microsecond field
 *
 * The tricky bits of code to handle the accurate clock support
 * were provided by Dave Mills (Mills@UDEL.EDU) of NTP fame.
 * They were originally developed for SUN and DEC kernels.
 * All the kudos should go to Dave for this stuff.
 */
void second_overflow(void)
{
444
	s64 delta;
445 446 447
	unsigned long flags;

	spin_lock_irqsave(&ntp_lock, flags);
R
Roman Zippel 已提交
448 449 450 451 452 453

	/* Bump the maxerror field */
	time_maxerror += MAXFREQ / NSEC_PER_USEC;
	if (time_maxerror > NTP_PHASE_LIMIT) {
		time_maxerror = NTP_PHASE_LIMIT;
		time_status |= STA_UNSYNC;
454 455
	}

456
	/* Compute the phase adjustment for the next second */
457 458
	tick_length	 = tick_length_base;

459
	delta		 = ntp_offset_chunk(time_offset);
460 461
	time_offset	-= delta;
	tick_length	+= delta;
462

463 464 465
	/* Check PPS signal */
	pps_dec_valid();

466
	if (!time_adjust)
467
		goto out;
468 469 470 471

	if (time_adjust > MAX_TICKADJ) {
		time_adjust -= MAX_TICKADJ;
		tick_length += MAX_TICKADJ_SCALED;
472
		goto out;
473
	}
474 475 476 477

	if (time_adjust < -MAX_TICKADJ) {
		time_adjust += MAX_TICKADJ;
		tick_length -= MAX_TICKADJ_SCALED;
478
		goto out;
479 480 481 482 483
	}

	tick_length += (s64)(time_adjust * NSEC_PER_USEC / NTP_INTERVAL_FREQ)
							 << NTP_SCALE_SHIFT;
	time_adjust = 0;
484 485
out:
	spin_unlock_irqrestore(&ntp_lock, flags);
486 487
}

488
#ifdef CONFIG_GENERIC_CMOS_UPDATE
489

490 491 492
/* Disable the cmos update - used by virtualization and embedded */
int no_sync_cmos_clock  __read_mostly;

493
static void sync_cmos_clock(struct work_struct *work);
494

495
static DECLARE_DELAYED_WORK(sync_cmos_work, sync_cmos_clock);
496

497
static void sync_cmos_clock(struct work_struct *work)
498 499 500 501 502 503 504 505 506 507 508
{
	struct timespec now, next;
	int fail = 1;

	/*
	 * If we have an externally synchronized Linux clock, then update
	 * CMOS clock accordingly every ~11 minutes. Set_rtc_mmss() has to be
	 * called as close as possible to 500 ms before the new second starts.
	 * This code is run on a timer.  If the clock is set, that timer
	 * may not expire at the correct time.  Thus, we adjust...
	 */
509
	if (!ntp_synced()) {
510 511 512 513 514
		/*
		 * Not synced, exit, do not restart a timer (if one is
		 * running, let it run out).
		 */
		return;
515
	}
516 517

	getnstimeofday(&now);
518
	if (abs(now.tv_nsec - (NSEC_PER_SEC / 2)) <= tick_nsec / 2)
519 520
		fail = update_persistent_clock(now);

521
	next.tv_nsec = (NSEC_PER_SEC / 2) - now.tv_nsec - (TICK_NSEC / 2);
522 523 524 525 526 527 528 529 530 531 532 533
	if (next.tv_nsec <= 0)
		next.tv_nsec += NSEC_PER_SEC;

	if (!fail)
		next.tv_sec = 659;
	else
		next.tv_sec = 0;

	if (next.tv_nsec >= NSEC_PER_SEC) {
		next.tv_sec++;
		next.tv_nsec -= NSEC_PER_SEC;
	}
534
	schedule_delayed_work(&sync_cmos_work, timespec_to_jiffies(&next));
535 536 537
}

static void notify_cmos_timer(void)
538
{
539
	if (!no_sync_cmos_clock)
540
		schedule_delayed_work(&sync_cmos_work, 0);
541 542
}

543 544 545 546
#else
static inline void notify_cmos_timer(void) { }
#endif

547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567
/*
 * Start the leap seconds timer:
 */
static inline void ntp_start_leap_timer(struct timespec *ts)
{
	long now = ts->tv_sec;

	if (time_status & STA_INS) {
		time_state = TIME_INS;
		now += 86400 - now % 86400;
		hrtimer_start(&leap_timer, ktime_set(now, 0), HRTIMER_MODE_ABS);

		return;
	}

	if (time_status & STA_DEL) {
		time_state = TIME_DEL;
		now += 86400 - (now + 1) % 86400;
		hrtimer_start(&leap_timer, ktime_set(now, 0), HRTIMER_MODE_ABS);
	}
}
I
Ingo Molnar 已提交
568 569 570 571 572 573 574 575 576

/*
 * Propagate a new txc->status value into the NTP state:
 */
static inline void process_adj_status(struct timex *txc, struct timespec *ts)
{
	if ((time_status & STA_PLL) && !(txc->status & STA_PLL)) {
		time_state = TIME_OK;
		time_status = STA_UNSYNC;
577 578
		/* restart PPS frequency calibration */
		pps_reset_freq_interval();
I
Ingo Molnar 已提交
579 580 581 582 583 584 585
	}

	/*
	 * If we turn on PLL adjustments then reset the
	 * reference time to current time.
	 */
	if (!(time_status & STA_PLL) && (txc->status & STA_PLL))
586
		time_reftime = get_seconds();
I
Ingo Molnar 已提交
587

588 589
	/* only set allowed bits */
	time_status &= STA_RONLY;
I
Ingo Molnar 已提交
590 591 592 593
	time_status |= txc->status & ~STA_RONLY;

	switch (time_state) {
	case TIME_OK:
594
		ntp_start_leap_timer(ts);
I
Ingo Molnar 已提交
595 596 597 598
		break;
	case TIME_INS:
	case TIME_DEL:
		time_state = TIME_OK;
599
		ntp_start_leap_timer(ts);
I
Ingo Molnar 已提交
600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619
	case TIME_WAIT:
		if (!(time_status & (STA_INS | STA_DEL)))
			time_state = TIME_OK;
		break;
	case TIME_OOP:
		hrtimer_restart(&leap_timer);
		break;
	}
}
/*
 * Called with the xtime lock held, so we can access and modify
 * all the global NTP state:
 */
static inline void process_adjtimex_modes(struct timex *txc, struct timespec *ts)
{
	if (txc->modes & ADJ_STATUS)
		process_adj_status(txc, ts);

	if (txc->modes & ADJ_NANO)
		time_status |= STA_NANO;
620

I
Ingo Molnar 已提交
621 622 623 624
	if (txc->modes & ADJ_MICRO)
		time_status &= ~STA_NANO;

	if (txc->modes & ADJ_FREQUENCY) {
625
		time_freq = txc->freq * PPM_SCALE;
I
Ingo Molnar 已提交
626 627
		time_freq = min(time_freq, MAXFREQ_SCALED);
		time_freq = max(time_freq, -MAXFREQ_SCALED);
628 629
		/* update pps_freq */
		pps_set_freq(time_freq);
I
Ingo Molnar 已提交
630 631 632 633
	}

	if (txc->modes & ADJ_MAXERROR)
		time_maxerror = txc->maxerror;
634

I
Ingo Molnar 已提交
635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650
	if (txc->modes & ADJ_ESTERROR)
		time_esterror = txc->esterror;

	if (txc->modes & ADJ_TIMECONST) {
		time_constant = txc->constant;
		if (!(time_status & STA_NANO))
			time_constant += 4;
		time_constant = min(time_constant, (long)MAXTC);
		time_constant = max(time_constant, 0l);
	}

	if (txc->modes & ADJ_TAI && txc->constant > 0)
		time_tai = txc->constant;

	if (txc->modes & ADJ_OFFSET)
		ntp_update_offset(txc->offset);
651

I
Ingo Molnar 已提交
652 653 654 655 656 657 658
	if (txc->modes & ADJ_TICK)
		tick_usec = txc->tick;

	if (txc->modes & (ADJ_TICK|ADJ_FREQUENCY|ADJ_OFFSET))
		ntp_update_frequency();
}

659 660
/*
 * adjtimex mainly allows reading (and writing, if superuser) of
661 662 663 664
 * kernel time-keeping variables. used by xntpd.
 */
int do_adjtimex(struct timex *txc)
{
R
Roman Zippel 已提交
665
	struct timespec ts;
666 667
	int result;

668 669
	/* Validate the data before disabling interrupts */
	if (txc->modes & ADJ_ADJTIME) {
R
Roman Zippel 已提交
670
		/* singleshot must not be used with any other mode bits */
671
		if (!(txc->modes & ADJ_OFFSET_SINGLESHOT))
672
			return -EINVAL;
673 674 675 676 677 678 679 680
		if (!(txc->modes & ADJ_OFFSET_READONLY) &&
		    !capable(CAP_SYS_TIME))
			return -EPERM;
	} else {
		/* In order to modify anything, you gotta be super-user! */
		 if (txc->modes && !capable(CAP_SYS_TIME))
			return -EPERM;

681 682 683 684
		/*
		 * if the quartz is off by more than 10% then
		 * something is VERY wrong!
		 */
685 686 687
		if (txc->modes & ADJ_TICK &&
		    (txc->tick <  900000/USER_HZ ||
		     txc->tick > 1100000/USER_HZ))
688
			return -EINVAL;
689 690 691

		if (txc->modes & ADJ_STATUS && time_state != TIME_OK)
			hrtimer_cancel(&leap_timer);
J
John Stultz 已提交
692
	}
693

694 695 696 697
	if (txc->modes & ADJ_SETOFFSET) {
		struct timespec delta;
		delta.tv_sec  = txc->time.tv_sec;
		delta.tv_nsec = txc->time.tv_usec;
698 699
		if (!capable(CAP_SYS_TIME))
			return -EPERM;
700 701
		if (!(txc->modes & ADJ_NANO))
			delta.tv_nsec *= 1000;
702 703 704
		result = timekeeping_inject_offset(&delta);
		if (result)
			return result;
705 706
	}

R
Roman Zippel 已提交
707 708
	getnstimeofday(&ts);

709
	spin_lock_irq(&ntp_lock);
710

711 712 713 714 715 716 717 718 719
	if (txc->modes & ADJ_ADJTIME) {
		long save_adjust = time_adjust;

		if (!(txc->modes & ADJ_OFFSET_READONLY)) {
			/* adjtime() is independent from ntp_adjtime() */
			time_adjust = txc->offset;
			ntp_update_frequency();
		}
		txc->offset = save_adjust;
720
	} else {
R
Roman Zippel 已提交
721

722 723 724
		/* If there are input parameters, then process them: */
		if (txc->modes)
			process_adjtimex_modes(txc, &ts);
R
Roman Zippel 已提交
725

726
		txc->offset = shift_right(time_offset * NTP_INTERVAL_FREQ,
727
				  NTP_SCALE_SHIFT);
728 729 730
		if (!(time_status & STA_NANO))
			txc->offset /= NSEC_PER_USEC;
	}
731

R
Roman Zippel 已提交
732
	result = time_state;	/* mostly `TIME_OK' */
733 734
	/* check for errors */
	if (is_error_status(time_status))
735 736
		result = TIME_ERROR;

737
	txc->freq	   = shift_right((time_freq >> PPM_SCALE_INV_SHIFT) *
738
					 PPM_SCALE_INV, NTP_SCALE_SHIFT);
739 740 741 742
	txc->maxerror	   = time_maxerror;
	txc->esterror	   = time_esterror;
	txc->status	   = time_status;
	txc->constant	   = time_constant;
743
	txc->precision	   = 1;
744
	txc->tolerance	   = MAXFREQ_SCALED / PPM_SCALE;
745
	txc->tick	   = tick_usec;
R
Roman Zippel 已提交
746
	txc->tai	   = time_tai;
747

748 749
	/* fill PPS status fields */
	pps_fill_timex(txc);
750

751
	spin_unlock_irq(&ntp_lock);
R
Roman Zippel 已提交
752

R
Roman Zippel 已提交
753 754 755 756
	txc->time.tv_sec = ts.tv_sec;
	txc->time.tv_usec = ts.tv_nsec;
	if (!(time_status & STA_NANO))
		txc->time.tv_usec /= NSEC_PER_USEC;
R
Roman Zippel 已提交
757

758
	notify_cmos_timer();
R
Roman Zippel 已提交
759 760

	return result;
761
}
762

763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948
#ifdef	CONFIG_NTP_PPS

/* actually struct pps_normtime is good old struct timespec, but it is
 * semantically different (and it is the reason why it was invented):
 * pps_normtime.nsec has a range of ( -NSEC_PER_SEC / 2, NSEC_PER_SEC / 2 ]
 * while timespec.tv_nsec has a range of [0, NSEC_PER_SEC) */
struct pps_normtime {
	__kernel_time_t	sec;	/* seconds */
	long		nsec;	/* nanoseconds */
};

/* normalize the timestamp so that nsec is in the
   ( -NSEC_PER_SEC / 2, NSEC_PER_SEC / 2 ] interval */
static inline struct pps_normtime pps_normalize_ts(struct timespec ts)
{
	struct pps_normtime norm = {
		.sec = ts.tv_sec,
		.nsec = ts.tv_nsec
	};

	if (norm.nsec > (NSEC_PER_SEC >> 1)) {
		norm.nsec -= NSEC_PER_SEC;
		norm.sec++;
	}

	return norm;
}

/* get current phase correction and jitter */
static inline long pps_phase_filter_get(long *jitter)
{
	*jitter = pps_tf[0] - pps_tf[1];
	if (*jitter < 0)
		*jitter = -*jitter;

	/* TODO: test various filters */
	return pps_tf[0];
}

/* add the sample to the phase filter */
static inline void pps_phase_filter_add(long err)
{
	pps_tf[2] = pps_tf[1];
	pps_tf[1] = pps_tf[0];
	pps_tf[0] = err;
}

/* decrease frequency calibration interval length.
 * It is halved after four consecutive unstable intervals.
 */
static inline void pps_dec_freq_interval(void)
{
	if (--pps_intcnt <= -PPS_INTCOUNT) {
		pps_intcnt = -PPS_INTCOUNT;
		if (pps_shift > PPS_INTMIN) {
			pps_shift--;
			pps_intcnt = 0;
		}
	}
}

/* increase frequency calibration interval length.
 * It is doubled after four consecutive stable intervals.
 */
static inline void pps_inc_freq_interval(void)
{
	if (++pps_intcnt >= PPS_INTCOUNT) {
		pps_intcnt = PPS_INTCOUNT;
		if (pps_shift < PPS_INTMAX) {
			pps_shift++;
			pps_intcnt = 0;
		}
	}
}

/* update clock frequency based on MONOTONIC_RAW clock PPS signal
 * timestamps
 *
 * At the end of the calibration interval the difference between the
 * first and last MONOTONIC_RAW clock timestamps divided by the length
 * of the interval becomes the frequency update. If the interval was
 * too long, the data are discarded.
 * Returns the difference between old and new frequency values.
 */
static long hardpps_update_freq(struct pps_normtime freq_norm)
{
	long delta, delta_mod;
	s64 ftemp;

	/* check if the frequency interval was too long */
	if (freq_norm.sec > (2 << pps_shift)) {
		time_status |= STA_PPSERROR;
		pps_errcnt++;
		pps_dec_freq_interval();
		pr_err("hardpps: PPSERROR: interval too long - %ld s\n",
				freq_norm.sec);
		return 0;
	}

	/* here the raw frequency offset and wander (stability) is
	 * calculated. If the wander is less than the wander threshold
	 * the interval is increased; otherwise it is decreased.
	 */
	ftemp = div_s64(((s64)(-freq_norm.nsec)) << NTP_SCALE_SHIFT,
			freq_norm.sec);
	delta = shift_right(ftemp - pps_freq, NTP_SCALE_SHIFT);
	pps_freq = ftemp;
	if (delta > PPS_MAXWANDER || delta < -PPS_MAXWANDER) {
		pr_warning("hardpps: PPSWANDER: change=%ld\n", delta);
		time_status |= STA_PPSWANDER;
		pps_stbcnt++;
		pps_dec_freq_interval();
	} else {	/* good sample */
		pps_inc_freq_interval();
	}

	/* the stability metric is calculated as the average of recent
	 * frequency changes, but is used only for performance
	 * monitoring
	 */
	delta_mod = delta;
	if (delta_mod < 0)
		delta_mod = -delta_mod;
	pps_stabil += (div_s64(((s64)delta_mod) <<
				(NTP_SCALE_SHIFT - SHIFT_USEC),
				NSEC_PER_USEC) - pps_stabil) >> PPS_INTMIN;

	/* if enabled, the system clock frequency is updated */
	if ((time_status & STA_PPSFREQ) != 0 &&
	    (time_status & STA_FREQHOLD) == 0) {
		time_freq = pps_freq;
		ntp_update_frequency();
	}

	return delta;
}

/* correct REALTIME clock phase error against PPS signal */
static void hardpps_update_phase(long error)
{
	long correction = -error;
	long jitter;

	/* add the sample to the median filter */
	pps_phase_filter_add(correction);
	correction = pps_phase_filter_get(&jitter);

	/* Nominal jitter is due to PPS signal noise. If it exceeds the
	 * threshold, the sample is discarded; otherwise, if so enabled,
	 * the time offset is updated.
	 */
	if (jitter > (pps_jitter << PPS_POPCORN)) {
		pr_warning("hardpps: PPSJITTER: jitter=%ld, limit=%ld\n",
		       jitter, (pps_jitter << PPS_POPCORN));
		time_status |= STA_PPSJITTER;
		pps_jitcnt++;
	} else if (time_status & STA_PPSTIME) {
		/* correct the time using the phase offset */
		time_offset = div_s64(((s64)correction) << NTP_SCALE_SHIFT,
				NTP_INTERVAL_FREQ);
		/* cancel running adjtime() */
		time_adjust = 0;
	}
	/* update jitter */
	pps_jitter += (jitter - pps_jitter) >> PPS_INTMIN;
}

/*
 * hardpps() - discipline CPU clock oscillator to external PPS signal
 *
 * This routine is called at each PPS signal arrival in order to
 * discipline the CPU clock oscillator to the PPS signal. It takes two
 * parameters: REALTIME and MONOTONIC_RAW clock timestamps. The former
 * is used to correct clock phase error and the latter is used to
 * correct the frequency.
 *
 * This code is based on David Mills's reference nanokernel
 * implementation. It was mostly rewritten but keeps the same idea.
 */
void hardpps(const struct timespec *phase_ts, const struct timespec *raw_ts)
{
	struct pps_normtime pts_norm, freq_norm;
	unsigned long flags;

	pts_norm = pps_normalize_ts(*phase_ts);

949
	spin_lock_irqsave(&ntp_lock, flags);
950 951 952 953 954 955 956 957 958 959 960 961

	/* clear the error bits, they will be set again if needed */
	time_status &= ~(STA_PPSJITTER | STA_PPSWANDER | STA_PPSERROR);

	/* indicate signal presence */
	time_status |= STA_PPSSIGNAL;
	pps_valid = PPS_VALID;

	/* when called for the first time,
	 * just start the frequency interval */
	if (unlikely(pps_fbase.tv_sec == 0)) {
		pps_fbase = *raw_ts;
962
		spin_unlock_irqrestore(&ntp_lock, flags);
963 964 965 966 967 968 969 970 971 972 973 974 975 976
		return;
	}

	/* ok, now we have a base for frequency calculation */
	freq_norm = pps_normalize_ts(timespec_sub(*raw_ts, pps_fbase));

	/* check that the signal is in the range
	 * [1s - MAXFREQ us, 1s + MAXFREQ us], otherwise reject it */
	if ((freq_norm.sec == 0) ||
			(freq_norm.nsec > MAXFREQ * freq_norm.sec) ||
			(freq_norm.nsec < -MAXFREQ * freq_norm.sec)) {
		time_status |= STA_PPSJITTER;
		/* restart the frequency calibration interval */
		pps_fbase = *raw_ts;
977
		spin_unlock_irqrestore(&ntp_lock, flags);
978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993
		pr_err("hardpps: PPSJITTER: bad pulse\n");
		return;
	}

	/* signal is ok */

	/* check if the current frequency interval is finished */
	if (freq_norm.sec >= (1 << pps_shift)) {
		pps_calcnt++;
		/* restart the frequency calibration interval */
		pps_fbase = *raw_ts;
		hardpps_update_freq(freq_norm);
	}

	hardpps_update_phase(pts_norm.nsec);

994
	spin_unlock_irqrestore(&ntp_lock, flags);
995 996 997 998 999
}
EXPORT_SYMBOL(hardpps);

#endif	/* CONFIG_NTP_PPS */

1000 1001 1002
static int __init ntp_tick_adj_setup(char *str)
{
	ntp_tick_adj = simple_strtol(str, NULL, 0);
1003 1004
	ntp_tick_adj <<= NTP_SCALE_SHIFT;

1005 1006 1007 1008
	return 1;
}

__setup("ntp_tick_adj=", ntp_tick_adj_setup);
R
Roman Zippel 已提交
1009 1010 1011 1012 1013 1014 1015

void __init ntp_init(void)
{
	ntp_clear();
	hrtimer_init(&leap_timer, CLOCK_REALTIME, HRTIMER_MODE_ABS);
	leap_timer.function = ntp_leap_second;
}