ntp.c 12.8 KB
Newer Older
1 2 3 4 5 6 7
/*
 * NTP state machine interfaces and logic.
 *
 * This code was mainly moved from kernel/timer.c and kernel/time.c
 * Please see those files for relevant copyright info and historical
 * changelogs.
 */
A
Alexey Dobriyan 已提交
8
#include <linux/capability.h>
R
Roman Zippel 已提交
9
#include <linux/clocksource.h>
10
#include <linux/workqueue.h>
11 12 13 14 15 16
#include <linux/hrtimer.h>
#include <linux/jiffies.h>
#include <linux/math64.h>
#include <linux/timex.h>
#include <linux/time.h>
#include <linux/mm.h>
17

18
/*
19
 * NTP timekeeping variables:
20 21
 */

22 23 24 25 26
/* USER_HZ period (usecs): */
unsigned long			tick_usec = TICK_USEC;

/* ACTHZ period (nsecs): */
unsigned long			tick_nsec;
R
Roman Zippel 已提交
27

28 29 30 31 32
u64				tick_length;
static u64			tick_length_base;

static struct hrtimer		leap_timer;

33
#define MAX_TICKADJ		500LL		/* usecs */
34
#define MAX_TICKADJ_SCALED \
35
	(((MAX_TICKADJ * NSEC_PER_USEC) << NTP_SCALE_SHIFT) / NTP_INTERVAL_FREQ)
36 37 38 39

/*
 * phase-lock loop variables
 */
40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

/*
 * clock synchronization status
 *
 * (TIME_ERROR prevents overwriting the CMOS clock)
 */
static int			time_state = TIME_OK;

/* clock status bits:							*/
int				time_status = STA_UNSYNC;

/* TAI offset (secs):							*/
static long			time_tai;

/* time adjustment (nsecs):						*/
static s64			time_offset;

/* pll time constant:							*/
static long			time_constant = 2;

/* maximum error (usecs):						*/
61
static long			time_maxerror = NTP_PHASE_LIMIT;
62 63

/* estimated error (usecs):						*/
64
static long			time_esterror = NTP_PHASE_LIMIT;
65 66 67 68 69 70 71

/* frequency offset (scaled nsecs/secs):				*/
static s64			time_freq;

/* time at last adjustment (secs):					*/
static long			time_reftime;

J
John Stultz 已提交
72
static long			time_adjust;
73

74 75
/* constant (boot-param configurable) NTP tick adjustment (upscaled)	*/
static s64			ntp_tick_adj;
76 77 78 79

/*
 * NTP methods:
 */
80

81 82 83 84
/*
 * Update (tick_length, tick_length_base, tick_nsec), based
 * on (tick_usec, ntp_tick_adj, time_freq):
 */
85 86
static void ntp_update_frequency(void)
{
87
	u64 second_length;
88
	u64 new_base;
89 90 91 92

	second_length		 = (u64)(tick_usec * NSEC_PER_USEC * USER_HZ)
						<< NTP_SCALE_SHIFT;

93
	second_length		+= ntp_tick_adj;
94
	second_length		+= time_freq;
95

96
	tick_nsec		 = div_u64(second_length, HZ) >> NTP_SCALE_SHIFT;
97
	new_base		 = div_u64(second_length, NTP_INTERVAL_FREQ);
98 99 100

	/*
	 * Don't wait for the next second_overflow, apply
101
	 * the change to the tick length immediately:
102
	 */
103 104
	tick_length		+= new_base - tick_length_base;
	tick_length_base	 = new_base;
105 106
}

107
static inline s64 ntp_update_offset_fll(s64 offset64, long secs)
108 109 110 111
{
	time_status &= ~STA_MODE;

	if (secs < MINSEC)
112
		return 0;
113 114

	if (!(time_status & STA_FLL) && (secs <= MAXSEC))
115
		return 0;
116 117 118

	time_status |= STA_MODE;

119
	return div_s64(offset64 << (NTP_SCALE_SHIFT - SHIFT_FLL), secs);
120 121
}

R
Roman Zippel 已提交
122 123 124
static void ntp_update_offset(long offset)
{
	s64 freq_adj;
125 126
	s64 offset64;
	long secs;
R
Roman Zippel 已提交
127 128 129 130

	if (!(time_status & STA_PLL))
		return;

R
Roman Zippel 已提交
131
	if (!(time_status & STA_NANO))
132
		offset *= NSEC_PER_USEC;
R
Roman Zippel 已提交
133 134 135 136 137

	/*
	 * Scale the phase adjustment and
	 * clamp to the operating range.
	 */
138 139
	offset = min(offset, MAXPHASE);
	offset = max(offset, -MAXPHASE);
R
Roman Zippel 已提交
140 141 142 143 144

	/*
	 * Select how the frequency is to be controlled
	 * and in which mode (PLL or FLL).
	 */
145
	secs = get_seconds() - time_reftime;
146
	if (unlikely(time_status & STA_FREQHOLD))
147 148
		secs = 0;

149
	time_reftime = get_seconds();
R
Roman Zippel 已提交
150

151
	offset64    = offset;
152
	freq_adj    = ntp_update_offset_fll(offset64, secs);
153

154 155 156 157 158 159 160 161 162 163
	/*
	 * Clamp update interval to reduce PLL gain with low
	 * sampling rate (e.g. intermittent network connection)
	 * to avoid instability.
	 */
	if (unlikely(secs > 1 << (SHIFT_PLL + 1 + time_constant)))
		secs = 1 << (SHIFT_PLL + 1 + time_constant);

	freq_adj    += (offset64 * secs) <<
			(NTP_SCALE_SHIFT - 2 * (SHIFT_PLL + 2 + time_constant));
164 165 166 167 168 169

	freq_adj    = min(freq_adj + time_freq, MAXFREQ_SCALED);

	time_freq   = max(freq_adj, -MAXFREQ_SCALED);

	time_offset = div_s64(offset64 << NTP_SCALE_SHIFT, NTP_INTERVAL_FREQ);
R
Roman Zippel 已提交
170 171
}

172 173 174 175 176 177 178
/**
 * ntp_clear - Clears the NTP state variables
 *
 * Must be called while holding a write on the xtime_lock
 */
void ntp_clear(void)
{
179 180 181 182
	time_adjust	= 0;		/* stop active adjtime() */
	time_status	|= STA_UNSYNC;
	time_maxerror	= NTP_PHASE_LIMIT;
	time_esterror	= NTP_PHASE_LIMIT;
183 184 185

	ntp_update_frequency();

186 187
	tick_length	= tick_length_base;
	time_offset	= 0;
188 189
}

190
/*
R
Roman Zippel 已提交
191 192 193
 * Leap second processing. If in leap-insert state at the end of the
 * day, the system clock is set back one second; if in leap-delete
 * state, the system clock is set ahead one second.
194
 */
R
Roman Zippel 已提交
195
static enum hrtimer_restart ntp_leap_second(struct hrtimer *timer)
196
{
R
Roman Zippel 已提交
197
	enum hrtimer_restart res = HRTIMER_NORESTART;
198

199
	write_seqlock(&xtime_lock);
200 201 202 203 204

	switch (time_state) {
	case TIME_OK:
		break;
	case TIME_INS:
205
		timekeeping_leap_insert(-1);
R
Roman Zippel 已提交
206
		time_state = TIME_OOP;
207 208
		printk(KERN_NOTICE
			"Clock: inserting leap second 23:59:60 UTC\n");
209
		hrtimer_add_expires_ns(&leap_timer, NSEC_PER_SEC);
R
Roman Zippel 已提交
210
		res = HRTIMER_RESTART;
211 212
		break;
	case TIME_DEL:
213
		timekeeping_leap_insert(1);
R
Roman Zippel 已提交
214 215
		time_tai--;
		time_state = TIME_WAIT;
216 217
		printk(KERN_NOTICE
			"Clock: deleting leap second 23:59:59 UTC\n");
218 219
		break;
	case TIME_OOP:
R
Roman Zippel 已提交
220
		time_tai++;
221
		time_state = TIME_WAIT;
R
Roman Zippel 已提交
222
		/* fall through */
223 224
	case TIME_WAIT:
		if (!(time_status & (STA_INS | STA_DEL)))
R
Roman Zippel 已提交
225
			time_state = TIME_OK;
R
Roman Zippel 已提交
226 227 228
		break;
	}

229
	write_sequnlock(&xtime_lock);
R
Roman Zippel 已提交
230 231 232 233 234 235 236 237 238 239 240 241 242 243

	return res;
}

/*
 * this routine handles the overflow of the microsecond field
 *
 * The tricky bits of code to handle the accurate clock support
 * were provided by Dave Mills (Mills@UDEL.EDU) of NTP fame.
 * They were originally developed for SUN and DEC kernels.
 * All the kudos should go to Dave for this stuff.
 */
void second_overflow(void)
{
244
	s64 delta;
R
Roman Zippel 已提交
245 246 247 248 249 250

	/* Bump the maxerror field */
	time_maxerror += MAXFREQ / NSEC_PER_USEC;
	if (time_maxerror > NTP_PHASE_LIMIT) {
		time_maxerror = NTP_PHASE_LIMIT;
		time_status |= STA_UNSYNC;
251 252 253
	}

	/*
254 255
	 * Compute the phase adjustment for the next second. The offset is
	 * reduced by a fixed factor times the time constant.
256
	 */
257 258 259 260 261
	tick_length	 = tick_length_base;

	delta		 = shift_right(time_offset, SHIFT_PLL + time_constant);
	time_offset	-= delta;
	tick_length	+= delta;
262

263 264 265 266 267 268 269
	if (!time_adjust)
		return;

	if (time_adjust > MAX_TICKADJ) {
		time_adjust -= MAX_TICKADJ;
		tick_length += MAX_TICKADJ_SCALED;
		return;
270
	}
271 272 273 274 275 276 277 278 279 280

	if (time_adjust < -MAX_TICKADJ) {
		time_adjust += MAX_TICKADJ;
		tick_length -= MAX_TICKADJ_SCALED;
		return;
	}

	tick_length += (s64)(time_adjust * NSEC_PER_USEC / NTP_INTERVAL_FREQ)
							 << NTP_SCALE_SHIFT;
	time_adjust = 0;
281 282
}

283
#ifdef CONFIG_GENERIC_CMOS_UPDATE
284

285 286 287
/* Disable the cmos update - used by virtualization and embedded */
int no_sync_cmos_clock  __read_mostly;

288
static void sync_cmos_clock(struct work_struct *work);
289

290
static DECLARE_DELAYED_WORK(sync_cmos_work, sync_cmos_clock);
291

292
static void sync_cmos_clock(struct work_struct *work)
293 294 295 296 297 298 299 300 301 302 303
{
	struct timespec now, next;
	int fail = 1;

	/*
	 * If we have an externally synchronized Linux clock, then update
	 * CMOS clock accordingly every ~11 minutes. Set_rtc_mmss() has to be
	 * called as close as possible to 500 ms before the new second starts.
	 * This code is run on a timer.  If the clock is set, that timer
	 * may not expire at the correct time.  Thus, we adjust...
	 */
304
	if (!ntp_synced()) {
305 306 307 308 309
		/*
		 * Not synced, exit, do not restart a timer (if one is
		 * running, let it run out).
		 */
		return;
310
	}
311 312

	getnstimeofday(&now);
313
	if (abs(now.tv_nsec - (NSEC_PER_SEC / 2)) <= tick_nsec / 2)
314 315
		fail = update_persistent_clock(now);

316
	next.tv_nsec = (NSEC_PER_SEC / 2) - now.tv_nsec - (TICK_NSEC / 2);
317 318 319 320 321 322 323 324 325 326 327 328
	if (next.tv_nsec <= 0)
		next.tv_nsec += NSEC_PER_SEC;

	if (!fail)
		next.tv_sec = 659;
	else
		next.tv_sec = 0;

	if (next.tv_nsec >= NSEC_PER_SEC) {
		next.tv_sec++;
		next.tv_nsec -= NSEC_PER_SEC;
	}
329
	schedule_delayed_work(&sync_cmos_work, timespec_to_jiffies(&next));
330 331 332
}

static void notify_cmos_timer(void)
333
{
334
	if (!no_sync_cmos_clock)
335
		schedule_delayed_work(&sync_cmos_work, 0);
336 337
}

338 339 340 341
#else
static inline void notify_cmos_timer(void) { }
#endif

342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362
/*
 * Start the leap seconds timer:
 */
static inline void ntp_start_leap_timer(struct timespec *ts)
{
	long now = ts->tv_sec;

	if (time_status & STA_INS) {
		time_state = TIME_INS;
		now += 86400 - now % 86400;
		hrtimer_start(&leap_timer, ktime_set(now, 0), HRTIMER_MODE_ABS);

		return;
	}

	if (time_status & STA_DEL) {
		time_state = TIME_DEL;
		now += 86400 - (now + 1) % 86400;
		hrtimer_start(&leap_timer, ktime_set(now, 0), HRTIMER_MODE_ABS);
	}
}
I
Ingo Molnar 已提交
363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378

/*
 * Propagate a new txc->status value into the NTP state:
 */
static inline void process_adj_status(struct timex *txc, struct timespec *ts)
{
	if ((time_status & STA_PLL) && !(txc->status & STA_PLL)) {
		time_state = TIME_OK;
		time_status = STA_UNSYNC;
	}

	/*
	 * If we turn on PLL adjustments then reset the
	 * reference time to current time.
	 */
	if (!(time_status & STA_PLL) && (txc->status & STA_PLL))
379
		time_reftime = get_seconds();
I
Ingo Molnar 已提交
380

381 382
	/* only set allowed bits */
	time_status &= STA_RONLY;
I
Ingo Molnar 已提交
383 384 385 386
	time_status |= txc->status & ~STA_RONLY;

	switch (time_state) {
	case TIME_OK:
387
		ntp_start_leap_timer(ts);
I
Ingo Molnar 已提交
388 389 390 391
		break;
	case TIME_INS:
	case TIME_DEL:
		time_state = TIME_OK;
392
		ntp_start_leap_timer(ts);
I
Ingo Molnar 已提交
393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412
	case TIME_WAIT:
		if (!(time_status & (STA_INS | STA_DEL)))
			time_state = TIME_OK;
		break;
	case TIME_OOP:
		hrtimer_restart(&leap_timer);
		break;
	}
}
/*
 * Called with the xtime lock held, so we can access and modify
 * all the global NTP state:
 */
static inline void process_adjtimex_modes(struct timex *txc, struct timespec *ts)
{
	if (txc->modes & ADJ_STATUS)
		process_adj_status(txc, ts);

	if (txc->modes & ADJ_NANO)
		time_status |= STA_NANO;
413

I
Ingo Molnar 已提交
414 415 416 417
	if (txc->modes & ADJ_MICRO)
		time_status &= ~STA_NANO;

	if (txc->modes & ADJ_FREQUENCY) {
418
		time_freq = txc->freq * PPM_SCALE;
I
Ingo Molnar 已提交
419 420 421 422 423 424
		time_freq = min(time_freq, MAXFREQ_SCALED);
		time_freq = max(time_freq, -MAXFREQ_SCALED);
	}

	if (txc->modes & ADJ_MAXERROR)
		time_maxerror = txc->maxerror;
425

I
Ingo Molnar 已提交
426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441
	if (txc->modes & ADJ_ESTERROR)
		time_esterror = txc->esterror;

	if (txc->modes & ADJ_TIMECONST) {
		time_constant = txc->constant;
		if (!(time_status & STA_NANO))
			time_constant += 4;
		time_constant = min(time_constant, (long)MAXTC);
		time_constant = max(time_constant, 0l);
	}

	if (txc->modes & ADJ_TAI && txc->constant > 0)
		time_tai = txc->constant;

	if (txc->modes & ADJ_OFFSET)
		ntp_update_offset(txc->offset);
442

I
Ingo Molnar 已提交
443 444 445 446 447 448 449
	if (txc->modes & ADJ_TICK)
		tick_usec = txc->tick;

	if (txc->modes & (ADJ_TICK|ADJ_FREQUENCY|ADJ_OFFSET))
		ntp_update_frequency();
}

450 451
/*
 * adjtimex mainly allows reading (and writing, if superuser) of
452 453 454 455
 * kernel time-keeping variables. used by xntpd.
 */
int do_adjtimex(struct timex *txc)
{
R
Roman Zippel 已提交
456
	struct timespec ts;
457 458
	int result;

459 460
	/* Validate the data before disabling interrupts */
	if (txc->modes & ADJ_ADJTIME) {
R
Roman Zippel 已提交
461
		/* singleshot must not be used with any other mode bits */
462
		if (!(txc->modes & ADJ_OFFSET_SINGLESHOT))
463
			return -EINVAL;
464 465 466 467 468 469 470 471
		if (!(txc->modes & ADJ_OFFSET_READONLY) &&
		    !capable(CAP_SYS_TIME))
			return -EPERM;
	} else {
		/* In order to modify anything, you gotta be super-user! */
		 if (txc->modes && !capable(CAP_SYS_TIME))
			return -EPERM;

472 473 474 475
		/*
		 * if the quartz is off by more than 10% then
		 * something is VERY wrong!
		 */
476 477 478
		if (txc->modes & ADJ_TICK &&
		    (txc->tick <  900000/USER_HZ ||
		     txc->tick > 1100000/USER_HZ))
479
			return -EINVAL;
480 481 482

		if (txc->modes & ADJ_STATUS && time_state != TIME_OK)
			hrtimer_cancel(&leap_timer);
J
John Stultz 已提交
483
	}
484

R
Roman Zippel 已提交
485 486
	getnstimeofday(&ts);

487 488
	write_seqlock_irq(&xtime_lock);

489 490 491 492 493 494 495 496 497
	if (txc->modes & ADJ_ADJTIME) {
		long save_adjust = time_adjust;

		if (!(txc->modes & ADJ_OFFSET_READONLY)) {
			/* adjtime() is independent from ntp_adjtime() */
			time_adjust = txc->offset;
			ntp_update_frequency();
		}
		txc->offset = save_adjust;
498
	} else {
R
Roman Zippel 已提交
499

500 501 502
		/* If there are input parameters, then process them: */
		if (txc->modes)
			process_adjtimex_modes(txc, &ts);
R
Roman Zippel 已提交
503

504
		txc->offset = shift_right(time_offset * NTP_INTERVAL_FREQ,
505
				  NTP_SCALE_SHIFT);
506 507 508
		if (!(time_status & STA_NANO))
			txc->offset /= NSEC_PER_USEC;
	}
509

R
Roman Zippel 已提交
510
	result = time_state;	/* mostly `TIME_OK' */
R
Roman Zippel 已提交
511
	if (time_status & (STA_UNSYNC|STA_CLOCKERR))
512 513
		result = TIME_ERROR;

514
	txc->freq	   = shift_right((time_freq >> PPM_SCALE_INV_SHIFT) *
515
					 PPM_SCALE_INV, NTP_SCALE_SHIFT);
516 517 518 519
	txc->maxerror	   = time_maxerror;
	txc->esterror	   = time_esterror;
	txc->status	   = time_status;
	txc->constant	   = time_constant;
520
	txc->precision	   = 1;
521
	txc->tolerance	   = MAXFREQ_SCALED / PPM_SCALE;
522
	txc->tick	   = tick_usec;
R
Roman Zippel 已提交
523
	txc->tai	   = time_tai;
524 525 526 527 528 529 530 531 532 533

	/* PPS is not implemented, so these are zero */
	txc->ppsfreq	   = 0;
	txc->jitter	   = 0;
	txc->shift	   = 0;
	txc->stabil	   = 0;
	txc->jitcnt	   = 0;
	txc->calcnt	   = 0;
	txc->errcnt	   = 0;
	txc->stbcnt	   = 0;
534

535
	write_sequnlock_irq(&xtime_lock);
R
Roman Zippel 已提交
536

R
Roman Zippel 已提交
537 538 539 540
	txc->time.tv_sec = ts.tv_sec;
	txc->time.tv_usec = ts.tv_nsec;
	if (!(time_status & STA_NANO))
		txc->time.tv_usec /= NSEC_PER_USEC;
R
Roman Zippel 已提交
541

542
	notify_cmos_timer();
R
Roman Zippel 已提交
543 544

	return result;
545
}
546 547 548 549

static int __init ntp_tick_adj_setup(char *str)
{
	ntp_tick_adj = simple_strtol(str, NULL, 0);
550 551
	ntp_tick_adj <<= NTP_SCALE_SHIFT;

552 553 554 555
	return 1;
}

__setup("ntp_tick_adj=", ntp_tick_adj_setup);
R
Roman Zippel 已提交
556 557 558 559 560 561 562

void __init ntp_init(void)
{
	ntp_clear();
	hrtimer_init(&leap_timer, CLOCK_REALTIME, HRTIMER_MODE_ABS);
	leap_timer.function = ntp_leap_second;
}