ntp.c 24.3 KB
Newer Older
1 2 3 4 5 6 7
/*
 * NTP state machine interfaces and logic.
 *
 * This code was mainly moved from kernel/timer.c and kernel/time.c
 * Please see those files for relevant copyright info and historical
 * changelogs.
 */
A
Alexey Dobriyan 已提交
8
#include <linux/capability.h>
R
Roman Zippel 已提交
9
#include <linux/clocksource.h>
10
#include <linux/workqueue.h>
11 12 13 14 15 16
#include <linux/hrtimer.h>
#include <linux/jiffies.h>
#include <linux/math64.h>
#include <linux/timex.h>
#include <linux/time.h>
#include <linux/mm.h>
17
#include <linux/module.h>
18

19 20
#include "tick-internal.h"

21
/*
22
 * NTP timekeeping variables:
23 24
 */

25 26 27 28 29
/* USER_HZ period (usecs): */
unsigned long			tick_usec = TICK_USEC;

/* ACTHZ period (nsecs): */
unsigned long			tick_nsec;
R
Roman Zippel 已提交
30

31
static u64			tick_length;
32 33 34 35
static u64			tick_length_base;

static struct hrtimer		leap_timer;

36
#define MAX_TICKADJ		500LL		/* usecs */
37
#define MAX_TICKADJ_SCALED \
38
	(((MAX_TICKADJ * NSEC_PER_USEC) << NTP_SCALE_SHIFT) / NTP_INTERVAL_FREQ)
39 40 41 42

/*
 * phase-lock loop variables
 */
43 44 45 46 47 48 49 50 51

/*
 * clock synchronization status
 *
 * (TIME_ERROR prevents overwriting the CMOS clock)
 */
static int			time_state = TIME_OK;

/* clock status bits:							*/
J
John Stultz 已提交
52
static int			time_status = STA_UNSYNC;
53 54 55 56 57 58 59 60 61 62 63

/* TAI offset (secs):							*/
static long			time_tai;

/* time adjustment (nsecs):						*/
static s64			time_offset;

/* pll time constant:							*/
static long			time_constant = 2;

/* maximum error (usecs):						*/
64
static long			time_maxerror = NTP_PHASE_LIMIT;
65 66

/* estimated error (usecs):						*/
67
static long			time_esterror = NTP_PHASE_LIMIT;
68 69 70 71 72 73 74

/* frequency offset (scaled nsecs/secs):				*/
static s64			time_freq;

/* time at last adjustment (secs):					*/
static long			time_reftime;

J
John Stultz 已提交
75
static long			time_adjust;
76

77 78
/* constant (boot-param configurable) NTP tick adjustment (upscaled)	*/
static s64			ntp_tick_adj;
79

80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235
#ifdef CONFIG_NTP_PPS

/*
 * The following variables are used when a pulse-per-second (PPS) signal
 * is available. They establish the engineering parameters of the clock
 * discipline loop when controlled by the PPS signal.
 */
#define PPS_VALID	10	/* PPS signal watchdog max (s) */
#define PPS_POPCORN	4	/* popcorn spike threshold (shift) */
#define PPS_INTMIN	2	/* min freq interval (s) (shift) */
#define PPS_INTMAX	8	/* max freq interval (s) (shift) */
#define PPS_INTCOUNT	4	/* number of consecutive good intervals to
				   increase pps_shift or consecutive bad
				   intervals to decrease it */
#define PPS_MAXWANDER	100000	/* max PPS freq wander (ns/s) */

static int pps_valid;		/* signal watchdog counter */
static long pps_tf[3];		/* phase median filter */
static long pps_jitter;		/* current jitter (ns) */
static struct timespec pps_fbase; /* beginning of the last freq interval */
static int pps_shift;		/* current interval duration (s) (shift) */
static int pps_intcnt;		/* interval counter */
static s64 pps_freq;		/* frequency offset (scaled ns/s) */
static long pps_stabil;		/* current stability (scaled ns/s) */

/*
 * PPS signal quality monitors
 */
static long pps_calcnt;		/* calibration intervals */
static long pps_jitcnt;		/* jitter limit exceeded */
static long pps_stbcnt;		/* stability limit exceeded */
static long pps_errcnt;		/* calibration errors */


/* PPS kernel consumer compensates the whole phase error immediately.
 * Otherwise, reduce the offset by a fixed factor times the time constant.
 */
static inline s64 ntp_offset_chunk(s64 offset)
{
	if (time_status & STA_PPSTIME && time_status & STA_PPSSIGNAL)
		return offset;
	else
		return shift_right(offset, SHIFT_PLL + time_constant);
}

static inline void pps_reset_freq_interval(void)
{
	/* the PPS calibration interval may end
	   surprisingly early */
	pps_shift = PPS_INTMIN;
	pps_intcnt = 0;
}

/**
 * pps_clear - Clears the PPS state variables
 *
 * Must be called while holding a write on the xtime_lock
 */
static inline void pps_clear(void)
{
	pps_reset_freq_interval();
	pps_tf[0] = 0;
	pps_tf[1] = 0;
	pps_tf[2] = 0;
	pps_fbase.tv_sec = pps_fbase.tv_nsec = 0;
	pps_freq = 0;
}

/* Decrease pps_valid to indicate that another second has passed since
 * the last PPS signal. When it reaches 0, indicate that PPS signal is
 * missing.
 *
 * Must be called while holding a write on the xtime_lock
 */
static inline void pps_dec_valid(void)
{
	if (pps_valid > 0)
		pps_valid--;
	else {
		time_status &= ~(STA_PPSSIGNAL | STA_PPSJITTER |
				 STA_PPSWANDER | STA_PPSERROR);
		pps_clear();
	}
}

static inline void pps_set_freq(s64 freq)
{
	pps_freq = freq;
}

static inline int is_error_status(int status)
{
	return (time_status & (STA_UNSYNC|STA_CLOCKERR))
		/* PPS signal lost when either PPS time or
		 * PPS frequency synchronization requested
		 */
		|| ((time_status & (STA_PPSFREQ|STA_PPSTIME))
			&& !(time_status & STA_PPSSIGNAL))
		/* PPS jitter exceeded when
		 * PPS time synchronization requested */
		|| ((time_status & (STA_PPSTIME|STA_PPSJITTER))
			== (STA_PPSTIME|STA_PPSJITTER))
		/* PPS wander exceeded or calibration error when
		 * PPS frequency synchronization requested
		 */
		|| ((time_status & STA_PPSFREQ)
			&& (time_status & (STA_PPSWANDER|STA_PPSERROR)));
}

static inline void pps_fill_timex(struct timex *txc)
{
	txc->ppsfreq	   = shift_right((pps_freq >> PPM_SCALE_INV_SHIFT) *
					 PPM_SCALE_INV, NTP_SCALE_SHIFT);
	txc->jitter	   = pps_jitter;
	if (!(time_status & STA_NANO))
		txc->jitter /= NSEC_PER_USEC;
	txc->shift	   = pps_shift;
	txc->stabil	   = pps_stabil;
	txc->jitcnt	   = pps_jitcnt;
	txc->calcnt	   = pps_calcnt;
	txc->errcnt	   = pps_errcnt;
	txc->stbcnt	   = pps_stbcnt;
}

#else /* !CONFIG_NTP_PPS */

static inline s64 ntp_offset_chunk(s64 offset)
{
	return shift_right(offset, SHIFT_PLL + time_constant);
}

static inline void pps_reset_freq_interval(void) {}
static inline void pps_clear(void) {}
static inline void pps_dec_valid(void) {}
static inline void pps_set_freq(s64 freq) {}

static inline int is_error_status(int status)
{
	return status & (STA_UNSYNC|STA_CLOCKERR);
}

static inline void pps_fill_timex(struct timex *txc)
{
	/* PPS is not implemented, so these are zero */
	txc->ppsfreq	   = 0;
	txc->jitter	   = 0;
	txc->shift	   = 0;
	txc->stabil	   = 0;
	txc->jitcnt	   = 0;
	txc->calcnt	   = 0;
	txc->errcnt	   = 0;
	txc->stbcnt	   = 0;
}

#endif /* CONFIG_NTP_PPS */

J
John Stultz 已提交
236 237 238 239 240 241 242 243 244 245 246

/**
 * ntp_synced - Returns 1 if the NTP status is not UNSYNC
 *
 */
static inline int ntp_synced(void)
{
	return !(time_status & STA_UNSYNC);
}


247 248 249
/*
 * NTP methods:
 */
250

251 252 253 254
/*
 * Update (tick_length, tick_length_base, tick_nsec), based
 * on (tick_usec, ntp_tick_adj, time_freq):
 */
255 256
static void ntp_update_frequency(void)
{
257
	u64 second_length;
258
	u64 new_base;
259 260 261 262

	second_length		 = (u64)(tick_usec * NSEC_PER_USEC * USER_HZ)
						<< NTP_SCALE_SHIFT;

263
	second_length		+= ntp_tick_adj;
264
	second_length		+= time_freq;
265

266
	tick_nsec		 = div_u64(second_length, HZ) >> NTP_SCALE_SHIFT;
267
	new_base		 = div_u64(second_length, NTP_INTERVAL_FREQ);
268 269 270

	/*
	 * Don't wait for the next second_overflow, apply
271
	 * the change to the tick length immediately:
272
	 */
273 274
	tick_length		+= new_base - tick_length_base;
	tick_length_base	 = new_base;
275 276
}

277
static inline s64 ntp_update_offset_fll(s64 offset64, long secs)
278 279 280 281
{
	time_status &= ~STA_MODE;

	if (secs < MINSEC)
282
		return 0;
283 284

	if (!(time_status & STA_FLL) && (secs <= MAXSEC))
285
		return 0;
286 287 288

	time_status |= STA_MODE;

289
	return div_s64(offset64 << (NTP_SCALE_SHIFT - SHIFT_FLL), secs);
290 291
}

R
Roman Zippel 已提交
292 293 294
static void ntp_update_offset(long offset)
{
	s64 freq_adj;
295 296
	s64 offset64;
	long secs;
R
Roman Zippel 已提交
297 298 299 300

	if (!(time_status & STA_PLL))
		return;

R
Roman Zippel 已提交
301
	if (!(time_status & STA_NANO))
302
		offset *= NSEC_PER_USEC;
R
Roman Zippel 已提交
303 304 305 306 307

	/*
	 * Scale the phase adjustment and
	 * clamp to the operating range.
	 */
308 309
	offset = min(offset, MAXPHASE);
	offset = max(offset, -MAXPHASE);
R
Roman Zippel 已提交
310 311 312 313 314

	/*
	 * Select how the frequency is to be controlled
	 * and in which mode (PLL or FLL).
	 */
315
	secs = get_seconds() - time_reftime;
316
	if (unlikely(time_status & STA_FREQHOLD))
317 318
		secs = 0;

319
	time_reftime = get_seconds();
R
Roman Zippel 已提交
320

321
	offset64    = offset;
322
	freq_adj    = ntp_update_offset_fll(offset64, secs);
323

324 325 326 327 328 329 330 331 332 333
	/*
	 * Clamp update interval to reduce PLL gain with low
	 * sampling rate (e.g. intermittent network connection)
	 * to avoid instability.
	 */
	if (unlikely(secs > 1 << (SHIFT_PLL + 1 + time_constant)))
		secs = 1 << (SHIFT_PLL + 1 + time_constant);

	freq_adj    += (offset64 * secs) <<
			(NTP_SCALE_SHIFT - 2 * (SHIFT_PLL + 2 + time_constant));
334 335 336 337 338 339

	freq_adj    = min(freq_adj + time_freq, MAXFREQ_SCALED);

	time_freq   = max(freq_adj, -MAXFREQ_SCALED);

	time_offset = div_s64(offset64 << NTP_SCALE_SHIFT, NTP_INTERVAL_FREQ);
R
Roman Zippel 已提交
340 341
}

342 343 344 345 346 347 348
/**
 * ntp_clear - Clears the NTP state variables
 *
 * Must be called while holding a write on the xtime_lock
 */
void ntp_clear(void)
{
349 350 351 352
	time_adjust	= 0;		/* stop active adjtime() */
	time_status	|= STA_UNSYNC;
	time_maxerror	= NTP_PHASE_LIMIT;
	time_esterror	= NTP_PHASE_LIMIT;
353 354 355

	ntp_update_frequency();

356 357
	tick_length	= tick_length_base;
	time_offset	= 0;
358 359 360

	/* Clear PPS state variables */
	pps_clear();
361 362
}

363 364 365 366 367 368 369

u64 ntp_tick_length(void)
{
	return tick_length;
}


370
/*
R
Roman Zippel 已提交
371 372 373
 * Leap second processing. If in leap-insert state at the end of the
 * day, the system clock is set back one second; if in leap-delete
 * state, the system clock is set ahead one second.
374
 */
R
Roman Zippel 已提交
375
static enum hrtimer_restart ntp_leap_second(struct hrtimer *timer)
376
{
R
Roman Zippel 已提交
377
	enum hrtimer_restart res = HRTIMER_NORESTART;
378

379
	write_seqlock(&xtime_lock);
380 381 382 383 384

	switch (time_state) {
	case TIME_OK:
		break;
	case TIME_INS:
385
		timekeeping_leap_insert(-1);
R
Roman Zippel 已提交
386
		time_state = TIME_OOP;
387 388
		printk(KERN_NOTICE
			"Clock: inserting leap second 23:59:60 UTC\n");
389
		hrtimer_add_expires_ns(&leap_timer, NSEC_PER_SEC);
R
Roman Zippel 已提交
390
		res = HRTIMER_RESTART;
391 392
		break;
	case TIME_DEL:
393
		timekeeping_leap_insert(1);
R
Roman Zippel 已提交
394 395
		time_tai--;
		time_state = TIME_WAIT;
396 397
		printk(KERN_NOTICE
			"Clock: deleting leap second 23:59:59 UTC\n");
398 399
		break;
	case TIME_OOP:
R
Roman Zippel 已提交
400
		time_tai++;
401
		time_state = TIME_WAIT;
R
Roman Zippel 已提交
402
		/* fall through */
403 404
	case TIME_WAIT:
		if (!(time_status & (STA_INS | STA_DEL)))
R
Roman Zippel 已提交
405
			time_state = TIME_OK;
R
Roman Zippel 已提交
406 407 408
		break;
	}

409
	write_sequnlock(&xtime_lock);
R
Roman Zippel 已提交
410 411 412 413 414 415 416 417 418 419 420 421 422 423

	return res;
}

/*
 * this routine handles the overflow of the microsecond field
 *
 * The tricky bits of code to handle the accurate clock support
 * were provided by Dave Mills (Mills@UDEL.EDU) of NTP fame.
 * They were originally developed for SUN and DEC kernels.
 * All the kudos should go to Dave for this stuff.
 */
void second_overflow(void)
{
424
	s64 delta;
R
Roman Zippel 已提交
425 426 427 428 429 430

	/* Bump the maxerror field */
	time_maxerror += MAXFREQ / NSEC_PER_USEC;
	if (time_maxerror > NTP_PHASE_LIMIT) {
		time_maxerror = NTP_PHASE_LIMIT;
		time_status |= STA_UNSYNC;
431 432
	}

433
	/* Compute the phase adjustment for the next second */
434 435
	tick_length	 = tick_length_base;

436
	delta		 = ntp_offset_chunk(time_offset);
437 438
	time_offset	-= delta;
	tick_length	+= delta;
439

440 441 442
	/* Check PPS signal */
	pps_dec_valid();

443 444 445 446 447 448 449
	if (!time_adjust)
		return;

	if (time_adjust > MAX_TICKADJ) {
		time_adjust -= MAX_TICKADJ;
		tick_length += MAX_TICKADJ_SCALED;
		return;
450
	}
451 452 453 454 455 456 457 458 459 460

	if (time_adjust < -MAX_TICKADJ) {
		time_adjust += MAX_TICKADJ;
		tick_length -= MAX_TICKADJ_SCALED;
		return;
	}

	tick_length += (s64)(time_adjust * NSEC_PER_USEC / NTP_INTERVAL_FREQ)
							 << NTP_SCALE_SHIFT;
	time_adjust = 0;
461 462
}

463
#ifdef CONFIG_GENERIC_CMOS_UPDATE
464

465 466 467
/* Disable the cmos update - used by virtualization and embedded */
int no_sync_cmos_clock  __read_mostly;

468
static void sync_cmos_clock(struct work_struct *work);
469

470
static DECLARE_DELAYED_WORK(sync_cmos_work, sync_cmos_clock);
471

472
static void sync_cmos_clock(struct work_struct *work)
473 474 475 476 477 478 479 480 481 482 483
{
	struct timespec now, next;
	int fail = 1;

	/*
	 * If we have an externally synchronized Linux clock, then update
	 * CMOS clock accordingly every ~11 minutes. Set_rtc_mmss() has to be
	 * called as close as possible to 500 ms before the new second starts.
	 * This code is run on a timer.  If the clock is set, that timer
	 * may not expire at the correct time.  Thus, we adjust...
	 */
484
	if (!ntp_synced()) {
485 486 487 488 489
		/*
		 * Not synced, exit, do not restart a timer (if one is
		 * running, let it run out).
		 */
		return;
490
	}
491 492

	getnstimeofday(&now);
493
	if (abs(now.tv_nsec - (NSEC_PER_SEC / 2)) <= tick_nsec / 2)
494 495
		fail = update_persistent_clock(now);

496
	next.tv_nsec = (NSEC_PER_SEC / 2) - now.tv_nsec - (TICK_NSEC / 2);
497 498 499 500 501 502 503 504 505 506 507 508
	if (next.tv_nsec <= 0)
		next.tv_nsec += NSEC_PER_SEC;

	if (!fail)
		next.tv_sec = 659;
	else
		next.tv_sec = 0;

	if (next.tv_nsec >= NSEC_PER_SEC) {
		next.tv_sec++;
		next.tv_nsec -= NSEC_PER_SEC;
	}
509
	schedule_delayed_work(&sync_cmos_work, timespec_to_jiffies(&next));
510 511 512
}

static void notify_cmos_timer(void)
513
{
514
	if (!no_sync_cmos_clock)
515
		schedule_delayed_work(&sync_cmos_work, 0);
516 517
}

518 519 520 521
#else
static inline void notify_cmos_timer(void) { }
#endif

522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542
/*
 * Start the leap seconds timer:
 */
static inline void ntp_start_leap_timer(struct timespec *ts)
{
	long now = ts->tv_sec;

	if (time_status & STA_INS) {
		time_state = TIME_INS;
		now += 86400 - now % 86400;
		hrtimer_start(&leap_timer, ktime_set(now, 0), HRTIMER_MODE_ABS);

		return;
	}

	if (time_status & STA_DEL) {
		time_state = TIME_DEL;
		now += 86400 - (now + 1) % 86400;
		hrtimer_start(&leap_timer, ktime_set(now, 0), HRTIMER_MODE_ABS);
	}
}
I
Ingo Molnar 已提交
543 544 545 546 547 548 549 550 551

/*
 * Propagate a new txc->status value into the NTP state:
 */
static inline void process_adj_status(struct timex *txc, struct timespec *ts)
{
	if ((time_status & STA_PLL) && !(txc->status & STA_PLL)) {
		time_state = TIME_OK;
		time_status = STA_UNSYNC;
552 553
		/* restart PPS frequency calibration */
		pps_reset_freq_interval();
I
Ingo Molnar 已提交
554 555 556 557 558 559 560
	}

	/*
	 * If we turn on PLL adjustments then reset the
	 * reference time to current time.
	 */
	if (!(time_status & STA_PLL) && (txc->status & STA_PLL))
561
		time_reftime = get_seconds();
I
Ingo Molnar 已提交
562

563 564
	/* only set allowed bits */
	time_status &= STA_RONLY;
I
Ingo Molnar 已提交
565 566 567 568
	time_status |= txc->status & ~STA_RONLY;

	switch (time_state) {
	case TIME_OK:
569
		ntp_start_leap_timer(ts);
I
Ingo Molnar 已提交
570 571 572 573
		break;
	case TIME_INS:
	case TIME_DEL:
		time_state = TIME_OK;
574
		ntp_start_leap_timer(ts);
I
Ingo Molnar 已提交
575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594
	case TIME_WAIT:
		if (!(time_status & (STA_INS | STA_DEL)))
			time_state = TIME_OK;
		break;
	case TIME_OOP:
		hrtimer_restart(&leap_timer);
		break;
	}
}
/*
 * Called with the xtime lock held, so we can access and modify
 * all the global NTP state:
 */
static inline void process_adjtimex_modes(struct timex *txc, struct timespec *ts)
{
	if (txc->modes & ADJ_STATUS)
		process_adj_status(txc, ts);

	if (txc->modes & ADJ_NANO)
		time_status |= STA_NANO;
595

I
Ingo Molnar 已提交
596 597 598 599
	if (txc->modes & ADJ_MICRO)
		time_status &= ~STA_NANO;

	if (txc->modes & ADJ_FREQUENCY) {
600
		time_freq = txc->freq * PPM_SCALE;
I
Ingo Molnar 已提交
601 602
		time_freq = min(time_freq, MAXFREQ_SCALED);
		time_freq = max(time_freq, -MAXFREQ_SCALED);
603 604
		/* update pps_freq */
		pps_set_freq(time_freq);
I
Ingo Molnar 已提交
605 606 607 608
	}

	if (txc->modes & ADJ_MAXERROR)
		time_maxerror = txc->maxerror;
609

I
Ingo Molnar 已提交
610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625
	if (txc->modes & ADJ_ESTERROR)
		time_esterror = txc->esterror;

	if (txc->modes & ADJ_TIMECONST) {
		time_constant = txc->constant;
		if (!(time_status & STA_NANO))
			time_constant += 4;
		time_constant = min(time_constant, (long)MAXTC);
		time_constant = max(time_constant, 0l);
	}

	if (txc->modes & ADJ_TAI && txc->constant > 0)
		time_tai = txc->constant;

	if (txc->modes & ADJ_OFFSET)
		ntp_update_offset(txc->offset);
626

I
Ingo Molnar 已提交
627 628 629 630 631 632 633
	if (txc->modes & ADJ_TICK)
		tick_usec = txc->tick;

	if (txc->modes & (ADJ_TICK|ADJ_FREQUENCY|ADJ_OFFSET))
		ntp_update_frequency();
}

634 635
/*
 * adjtimex mainly allows reading (and writing, if superuser) of
636 637 638 639
 * kernel time-keeping variables. used by xntpd.
 */
int do_adjtimex(struct timex *txc)
{
R
Roman Zippel 已提交
640
	struct timespec ts;
641 642
	int result;

643 644
	/* Validate the data before disabling interrupts */
	if (txc->modes & ADJ_ADJTIME) {
R
Roman Zippel 已提交
645
		/* singleshot must not be used with any other mode bits */
646
		if (!(txc->modes & ADJ_OFFSET_SINGLESHOT))
647
			return -EINVAL;
648 649 650 651 652 653 654 655
		if (!(txc->modes & ADJ_OFFSET_READONLY) &&
		    !capable(CAP_SYS_TIME))
			return -EPERM;
	} else {
		/* In order to modify anything, you gotta be super-user! */
		 if (txc->modes && !capable(CAP_SYS_TIME))
			return -EPERM;

656 657 658 659
		/*
		 * if the quartz is off by more than 10% then
		 * something is VERY wrong!
		 */
660 661 662
		if (txc->modes & ADJ_TICK &&
		    (txc->tick <  900000/USER_HZ ||
		     txc->tick > 1100000/USER_HZ))
663
			return -EINVAL;
664 665 666

		if (txc->modes & ADJ_STATUS && time_state != TIME_OK)
			hrtimer_cancel(&leap_timer);
J
John Stultz 已提交
667
	}
668

669 670 671 672
	if (txc->modes & ADJ_SETOFFSET) {
		struct timespec delta;
		delta.tv_sec  = txc->time.tv_sec;
		delta.tv_nsec = txc->time.tv_usec;
673 674
		if (!capable(CAP_SYS_TIME))
			return -EPERM;
675 676
		if (!(txc->modes & ADJ_NANO))
			delta.tv_nsec *= 1000;
677 678 679
		result = timekeeping_inject_offset(&delta);
		if (result)
			return result;
680 681
	}

R
Roman Zippel 已提交
682 683
	getnstimeofday(&ts);

684 685
	write_seqlock_irq(&xtime_lock);

686 687 688 689 690 691 692 693 694
	if (txc->modes & ADJ_ADJTIME) {
		long save_adjust = time_adjust;

		if (!(txc->modes & ADJ_OFFSET_READONLY)) {
			/* adjtime() is independent from ntp_adjtime() */
			time_adjust = txc->offset;
			ntp_update_frequency();
		}
		txc->offset = save_adjust;
695
	} else {
R
Roman Zippel 已提交
696

697 698 699
		/* If there are input parameters, then process them: */
		if (txc->modes)
			process_adjtimex_modes(txc, &ts);
R
Roman Zippel 已提交
700

701
		txc->offset = shift_right(time_offset * NTP_INTERVAL_FREQ,
702
				  NTP_SCALE_SHIFT);
703 704 705
		if (!(time_status & STA_NANO))
			txc->offset /= NSEC_PER_USEC;
	}
706

R
Roman Zippel 已提交
707
	result = time_state;	/* mostly `TIME_OK' */
708 709
	/* check for errors */
	if (is_error_status(time_status))
710 711
		result = TIME_ERROR;

712
	txc->freq	   = shift_right((time_freq >> PPM_SCALE_INV_SHIFT) *
713
					 PPM_SCALE_INV, NTP_SCALE_SHIFT);
714 715 716 717
	txc->maxerror	   = time_maxerror;
	txc->esterror	   = time_esterror;
	txc->status	   = time_status;
	txc->constant	   = time_constant;
718
	txc->precision	   = 1;
719
	txc->tolerance	   = MAXFREQ_SCALED / PPM_SCALE;
720
	txc->tick	   = tick_usec;
R
Roman Zippel 已提交
721
	txc->tai	   = time_tai;
722

723 724
	/* fill PPS status fields */
	pps_fill_timex(txc);
725

726
	write_sequnlock_irq(&xtime_lock);
R
Roman Zippel 已提交
727

R
Roman Zippel 已提交
728 729 730 731
	txc->time.tv_sec = ts.tv_sec;
	txc->time.tv_usec = ts.tv_nsec;
	if (!(time_status & STA_NANO))
		txc->time.tv_usec /= NSEC_PER_USEC;
R
Roman Zippel 已提交
732

733
	notify_cmos_timer();
R
Roman Zippel 已提交
734 735

	return result;
736
}
737

738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974
#ifdef	CONFIG_NTP_PPS

/* actually struct pps_normtime is good old struct timespec, but it is
 * semantically different (and it is the reason why it was invented):
 * pps_normtime.nsec has a range of ( -NSEC_PER_SEC / 2, NSEC_PER_SEC / 2 ]
 * while timespec.tv_nsec has a range of [0, NSEC_PER_SEC) */
struct pps_normtime {
	__kernel_time_t	sec;	/* seconds */
	long		nsec;	/* nanoseconds */
};

/* normalize the timestamp so that nsec is in the
   ( -NSEC_PER_SEC / 2, NSEC_PER_SEC / 2 ] interval */
static inline struct pps_normtime pps_normalize_ts(struct timespec ts)
{
	struct pps_normtime norm = {
		.sec = ts.tv_sec,
		.nsec = ts.tv_nsec
	};

	if (norm.nsec > (NSEC_PER_SEC >> 1)) {
		norm.nsec -= NSEC_PER_SEC;
		norm.sec++;
	}

	return norm;
}

/* get current phase correction and jitter */
static inline long pps_phase_filter_get(long *jitter)
{
	*jitter = pps_tf[0] - pps_tf[1];
	if (*jitter < 0)
		*jitter = -*jitter;

	/* TODO: test various filters */
	return pps_tf[0];
}

/* add the sample to the phase filter */
static inline void pps_phase_filter_add(long err)
{
	pps_tf[2] = pps_tf[1];
	pps_tf[1] = pps_tf[0];
	pps_tf[0] = err;
}

/* decrease frequency calibration interval length.
 * It is halved after four consecutive unstable intervals.
 */
static inline void pps_dec_freq_interval(void)
{
	if (--pps_intcnt <= -PPS_INTCOUNT) {
		pps_intcnt = -PPS_INTCOUNT;
		if (pps_shift > PPS_INTMIN) {
			pps_shift--;
			pps_intcnt = 0;
		}
	}
}

/* increase frequency calibration interval length.
 * It is doubled after four consecutive stable intervals.
 */
static inline void pps_inc_freq_interval(void)
{
	if (++pps_intcnt >= PPS_INTCOUNT) {
		pps_intcnt = PPS_INTCOUNT;
		if (pps_shift < PPS_INTMAX) {
			pps_shift++;
			pps_intcnt = 0;
		}
	}
}

/* update clock frequency based on MONOTONIC_RAW clock PPS signal
 * timestamps
 *
 * At the end of the calibration interval the difference between the
 * first and last MONOTONIC_RAW clock timestamps divided by the length
 * of the interval becomes the frequency update. If the interval was
 * too long, the data are discarded.
 * Returns the difference between old and new frequency values.
 */
static long hardpps_update_freq(struct pps_normtime freq_norm)
{
	long delta, delta_mod;
	s64 ftemp;

	/* check if the frequency interval was too long */
	if (freq_norm.sec > (2 << pps_shift)) {
		time_status |= STA_PPSERROR;
		pps_errcnt++;
		pps_dec_freq_interval();
		pr_err("hardpps: PPSERROR: interval too long - %ld s\n",
				freq_norm.sec);
		return 0;
	}

	/* here the raw frequency offset and wander (stability) is
	 * calculated. If the wander is less than the wander threshold
	 * the interval is increased; otherwise it is decreased.
	 */
	ftemp = div_s64(((s64)(-freq_norm.nsec)) << NTP_SCALE_SHIFT,
			freq_norm.sec);
	delta = shift_right(ftemp - pps_freq, NTP_SCALE_SHIFT);
	pps_freq = ftemp;
	if (delta > PPS_MAXWANDER || delta < -PPS_MAXWANDER) {
		pr_warning("hardpps: PPSWANDER: change=%ld\n", delta);
		time_status |= STA_PPSWANDER;
		pps_stbcnt++;
		pps_dec_freq_interval();
	} else {	/* good sample */
		pps_inc_freq_interval();
	}

	/* the stability metric is calculated as the average of recent
	 * frequency changes, but is used only for performance
	 * monitoring
	 */
	delta_mod = delta;
	if (delta_mod < 0)
		delta_mod = -delta_mod;
	pps_stabil += (div_s64(((s64)delta_mod) <<
				(NTP_SCALE_SHIFT - SHIFT_USEC),
				NSEC_PER_USEC) - pps_stabil) >> PPS_INTMIN;

	/* if enabled, the system clock frequency is updated */
	if ((time_status & STA_PPSFREQ) != 0 &&
	    (time_status & STA_FREQHOLD) == 0) {
		time_freq = pps_freq;
		ntp_update_frequency();
	}

	return delta;
}

/* correct REALTIME clock phase error against PPS signal */
static void hardpps_update_phase(long error)
{
	long correction = -error;
	long jitter;

	/* add the sample to the median filter */
	pps_phase_filter_add(correction);
	correction = pps_phase_filter_get(&jitter);

	/* Nominal jitter is due to PPS signal noise. If it exceeds the
	 * threshold, the sample is discarded; otherwise, if so enabled,
	 * the time offset is updated.
	 */
	if (jitter > (pps_jitter << PPS_POPCORN)) {
		pr_warning("hardpps: PPSJITTER: jitter=%ld, limit=%ld\n",
		       jitter, (pps_jitter << PPS_POPCORN));
		time_status |= STA_PPSJITTER;
		pps_jitcnt++;
	} else if (time_status & STA_PPSTIME) {
		/* correct the time using the phase offset */
		time_offset = div_s64(((s64)correction) << NTP_SCALE_SHIFT,
				NTP_INTERVAL_FREQ);
		/* cancel running adjtime() */
		time_adjust = 0;
	}
	/* update jitter */
	pps_jitter += (jitter - pps_jitter) >> PPS_INTMIN;
}

/*
 * hardpps() - discipline CPU clock oscillator to external PPS signal
 *
 * This routine is called at each PPS signal arrival in order to
 * discipline the CPU clock oscillator to the PPS signal. It takes two
 * parameters: REALTIME and MONOTONIC_RAW clock timestamps. The former
 * is used to correct clock phase error and the latter is used to
 * correct the frequency.
 *
 * This code is based on David Mills's reference nanokernel
 * implementation. It was mostly rewritten but keeps the same idea.
 */
void hardpps(const struct timespec *phase_ts, const struct timespec *raw_ts)
{
	struct pps_normtime pts_norm, freq_norm;
	unsigned long flags;

	pts_norm = pps_normalize_ts(*phase_ts);

	write_seqlock_irqsave(&xtime_lock, flags);

	/* clear the error bits, they will be set again if needed */
	time_status &= ~(STA_PPSJITTER | STA_PPSWANDER | STA_PPSERROR);

	/* indicate signal presence */
	time_status |= STA_PPSSIGNAL;
	pps_valid = PPS_VALID;

	/* when called for the first time,
	 * just start the frequency interval */
	if (unlikely(pps_fbase.tv_sec == 0)) {
		pps_fbase = *raw_ts;
		write_sequnlock_irqrestore(&xtime_lock, flags);
		return;
	}

	/* ok, now we have a base for frequency calculation */
	freq_norm = pps_normalize_ts(timespec_sub(*raw_ts, pps_fbase));

	/* check that the signal is in the range
	 * [1s - MAXFREQ us, 1s + MAXFREQ us], otherwise reject it */
	if ((freq_norm.sec == 0) ||
			(freq_norm.nsec > MAXFREQ * freq_norm.sec) ||
			(freq_norm.nsec < -MAXFREQ * freq_norm.sec)) {
		time_status |= STA_PPSJITTER;
		/* restart the frequency calibration interval */
		pps_fbase = *raw_ts;
		write_sequnlock_irqrestore(&xtime_lock, flags);
		pr_err("hardpps: PPSJITTER: bad pulse\n");
		return;
	}

	/* signal is ok */

	/* check if the current frequency interval is finished */
	if (freq_norm.sec >= (1 << pps_shift)) {
		pps_calcnt++;
		/* restart the frequency calibration interval */
		pps_fbase = *raw_ts;
		hardpps_update_freq(freq_norm);
	}

	hardpps_update_phase(pts_norm.nsec);

	write_sequnlock_irqrestore(&xtime_lock, flags);
}
EXPORT_SYMBOL(hardpps);

#endif	/* CONFIG_NTP_PPS */

975 976 977
static int __init ntp_tick_adj_setup(char *str)
{
	ntp_tick_adj = simple_strtol(str, NULL, 0);
978 979
	ntp_tick_adj <<= NTP_SCALE_SHIFT;

980 981 982 983
	return 1;
}

__setup("ntp_tick_adj=", ntp_tick_adj_setup);
R
Roman Zippel 已提交
984 985 986 987 988 989 990

void __init ntp_init(void)
{
	ntp_clear();
	hrtimer_init(&leap_timer, CLOCK_REALTIME, HRTIMER_MODE_ABS);
	leap_timer.function = ntp_leap_second;
}