entry_64.S 38.1 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4 5 6
/*
 *  linux/arch/x86_64/entry.S
 *
 *  Copyright (C) 1991, 1992  Linus Torvalds
 *  Copyright (C) 2000, 2001, 2002  Andi Kleen SuSE Labs
 *  Copyright (C) 2000  Pavel Machek <pavel@suse.cz>
7
 *
L
Linus Torvalds 已提交
8 9
 * entry.S contains the system-call and fault low-level handling routines.
 *
10 11
 * Some of this is documented in Documentation/x86/entry_64.txt
 *
12
 * A note on terminology:
13 14
 * - iret frame:	Architecture defined interrupt frame from SS to RIP
 *			at the top of the kernel process stack.
15 16
 *
 * Some macro usage:
17 18 19
 * - ENTRY/END:		Define functions in the symbol table.
 * - TRACE_IRQ_*:	Trace hardirq state for lock debugging.
 * - idtentry:		Define exception entry points.
L
Linus Torvalds 已提交
20 21 22 23 24
 */
#include <linux/linkage.h>
#include <asm/segment.h>
#include <asm/cache.h>
#include <asm/errno.h>
25
#include "calling.h"
26
#include <asm/asm-offsets.h>
L
Linus Torvalds 已提交
27 28 29 30
#include <asm/msr.h>
#include <asm/unistd.h>
#include <asm/thread_info.h>
#include <asm/hw_irq.h>
31
#include <asm/page_types.h>
32
#include <asm/irqflags.h>
33
#include <asm/paravirt.h>
34
#include <asm/percpu.h>
35
#include <asm/asm.h>
36
#include <asm/context_tracking.h>
37
#include <asm/smap.h>
38
#include <asm/pgtable_types.h>
39
#include <linux/err.h>
L
Linus Torvalds 已提交
40

R
Roland McGrath 已提交
41 42
/* Avoid __ASSEMBLER__'ifying <linux/audit.h> just for this.  */
#include <linux/elf-em.h>
43 44 45
#define AUDIT_ARCH_X86_64			(EM_X86_64|__AUDIT_ARCH_64BIT|__AUDIT_ARCH_LE)
#define __AUDIT_ARCH_64BIT			0x80000000
#define __AUDIT_ARCH_LE				0x40000000
J
Jiri Olsa 已提交
46

47 48
.code64
.section .entry.text, "ax"
49

50
#ifdef CONFIG_PARAVIRT
51
ENTRY(native_usergs_sysret64)
52 53
	swapgs
	sysretq
54
ENDPROC(native_usergs_sysret64)
55 56
#endif /* CONFIG_PARAVIRT */

57
.macro TRACE_IRQS_IRETQ
58
#ifdef CONFIG_TRACE_IRQFLAGS
59 60
	bt	$9, EFLAGS(%rsp)		/* interrupts off? */
	jnc	1f
61 62 63 64 65
	TRACE_IRQS_ON
1:
#endif
.endm

66 67 68 69 70 71 72 73 74 75 76 77 78 79
/*
 * When dynamic function tracer is enabled it will add a breakpoint
 * to all locations that it is about to modify, sync CPUs, update
 * all the code, sync CPUs, then remove the breakpoints. In this time
 * if lockdep is enabled, it might jump back into the debug handler
 * outside the updating of the IST protection. (TRACE_IRQS_ON/OFF).
 *
 * We need to change the IDT table before calling TRACE_IRQS_ON/OFF to
 * make sure the stack pointer does not get reset back to the top
 * of the debug stack, and instead just reuses the current stack.
 */
#if defined(CONFIG_DYNAMIC_FTRACE) && defined(CONFIG_TRACE_IRQFLAGS)

.macro TRACE_IRQS_OFF_DEBUG
80
	call	debug_stack_set_zero
81
	TRACE_IRQS_OFF
82
	call	debug_stack_reset
83 84 85
.endm

.macro TRACE_IRQS_ON_DEBUG
86
	call	debug_stack_set_zero
87
	TRACE_IRQS_ON
88
	call	debug_stack_reset
89 90
.endm

91
.macro TRACE_IRQS_IRETQ_DEBUG
92 93
	bt	$9, EFLAGS(%rsp)		/* interrupts off? */
	jnc	1f
94 95 96 97 98
	TRACE_IRQS_ON_DEBUG
1:
.endm

#else
99 100 101
# define TRACE_IRQS_OFF_DEBUG			TRACE_IRQS_OFF
# define TRACE_IRQS_ON_DEBUG			TRACE_IRQS_ON
# define TRACE_IRQS_IRETQ_DEBUG			TRACE_IRQS_IRETQ
102 103
#endif

L
Linus Torvalds 已提交
104
/*
105
 * 64-bit SYSCALL instruction entry. Up to 6 arguments in registers.
L
Linus Torvalds 已提交
106
 *
107
 * 64-bit SYSCALL saves rip to rcx, clears rflags.RF, then saves rflags to r11,
108 109 110 111 112 113
 * then loads new ss, cs, and rip from previously programmed MSRs.
 * rflags gets masked by a value from another MSR (so CLD and CLAC
 * are not needed). SYSCALL does not save anything on the stack
 * and does not change rsp.
 *
 * Registers on entry:
L
Linus Torvalds 已提交
114
 * rax  system call number
115 116
 * rcx  return address
 * r11  saved rflags (note: r11 is callee-clobbered register in C ABI)
L
Linus Torvalds 已提交
117 118
 * rdi  arg0
 * rsi  arg1
119
 * rdx  arg2
120
 * r10  arg3 (needs to be moved to rcx to conform to C ABI)
L
Linus Torvalds 已提交
121 122
 * r8   arg4
 * r9   arg5
123
 * (note: r12-r15, rbp, rbx are callee-preserved in C ABI)
124
 *
L
Linus Torvalds 已提交
125 126
 * Only called from user space.
 *
127
 * When user can change pt_regs->foo always force IRET. That is because
128 129
 * it deals with uncanonical addresses better. SYSRET has trouble
 * with them due to bugs in both AMD and Intel CPUs.
130
 */
L
Linus Torvalds 已提交
131

132
ENTRY(entry_SYSCALL_64)
133 134 135 136 137
	/*
	 * Interrupts are off on entry.
	 * We do not frame this tiny irq-off block with TRACE_IRQS_OFF/ON,
	 * it is too small to ever cause noticeable irq latency.
	 */
138 139 140 141 142 143
	SWAPGS_UNSAFE_STACK
	/*
	 * A hypervisor implementation might want to use a label
	 * after the swapgs, so that it can do the swapgs
	 * for the guest and jump here on syscall.
	 */
144
GLOBAL(entry_SYSCALL_64_after_swapgs)
145

146 147
	movq	%rsp, PER_CPU_VAR(rsp_scratch)
	movq	PER_CPU_VAR(cpu_current_top_of_stack), %rsp
148 149

	/* Construct struct pt_regs on stack */
150 151
	pushq	$__USER_DS			/* pt_regs->ss */
	pushq	PER_CPU_VAR(rsp_scratch)	/* pt_regs->sp */
152
	/*
153 154 155 156 157
	 * Re-enable interrupts.
	 * We use 'rsp_scratch' as a scratch space, hence irq-off block above
	 * must execute atomically in the face of possible interrupt-driven
	 * task preemption. We must enable interrupts only after we're done
	 * with using rsp_scratch:
158 159
	 */
	ENABLE_INTERRUPTS(CLBR_NONE)
160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176
	pushq	%r11				/* pt_regs->flags */
	pushq	$__USER_CS			/* pt_regs->cs */
	pushq	%rcx				/* pt_regs->ip */
	pushq	%rax				/* pt_regs->orig_ax */
	pushq	%rdi				/* pt_regs->di */
	pushq	%rsi				/* pt_regs->si */
	pushq	%rdx				/* pt_regs->dx */
	pushq	%rcx				/* pt_regs->cx */
	pushq	$-ENOSYS			/* pt_regs->ax */
	pushq	%r8				/* pt_regs->r8 */
	pushq	%r9				/* pt_regs->r9 */
	pushq	%r10				/* pt_regs->r10 */
	pushq	%r11				/* pt_regs->r11 */
	sub	$(6*8), %rsp			/* pt_regs->bp, bx, r12-15 not saved */

	testl	$_TIF_WORK_SYSCALL_ENTRY, ASM_THREAD_INFO(TI_flags, %rsp, SIZEOF_PTREGS)
	jnz	tracesys
177
entry_SYSCALL_64_fastpath:
178
#if __SYSCALL_MASK == ~0
179
	cmpq	$__NR_syscall_max, %rax
180
#else
181 182
	andl	$__SYSCALL_MASK, %eax
	cmpl	$__NR_syscall_max, %eax
183
#endif
184 185 186 187
	ja	1f				/* return -ENOSYS (already in pt_regs->ax) */
	movq	%r10, %rcx
	call	*sys_call_table(, %rax, 8)
	movq	%rax, RAX(%rsp)
188
1:
L
Linus Torvalds 已提交
189
/*
190 191
 * Syscall return path ending with SYSRET (fast path).
 * Has incompletely filled pt_regs.
192
 */
193
	LOCKDEP_SYS_EXIT
194 195 196 197
	/*
	 * We do not frame this tiny irq-off block with TRACE_IRQS_OFF/ON,
	 * it is too small to ever cause noticeable irq latency.
	 */
198
	DISABLE_INTERRUPTS(CLBR_NONE)
199 200 201 202 203 204 205 206 207

	/*
	 * We must check ti flags with interrupts (or at least preemption)
	 * off because we must *never* return to userspace without
	 * processing exit work that is enqueued if we're preempted here.
	 * In particular, returning to userspace with any of the one-shot
	 * flags (TIF_NOTIFY_RESUME, TIF_USER_RETURN_NOTIFY, etc) set is
	 * very bad.
	 */
208 209
	testl	$_TIF_ALLWORK_MASK, ASM_THREAD_INFO(TI_flags, %rsp, SIZEOF_PTREGS)
	jnz	int_ret_from_sys_call_irqs_off	/* Go to the slow path */
210

211
	RESTORE_C_REGS_EXCEPT_RCX_R11
212 213 214
	movq	RIP(%rsp), %rcx
	movq	EFLAGS(%rsp), %r11
	movq	RSP(%rsp), %rsp
215
	/*
216
	 * 64-bit SYSRET restores rip from rcx,
217 218
	 * rflags from r11 (but RF and VM bits are forced to 0),
	 * cs and ss are loaded from MSRs.
219
	 * Restoration of rflags re-enables interrupts.
220 221 222 223 224 225 226 227 228
	 *
	 * NB: On AMD CPUs with the X86_BUG_SYSRET_SS_ATTRS bug, the ss
	 * descriptor is not reinitialized.  This means that we should
	 * avoid SYSRET with SS == NULL, which could happen if we schedule,
	 * exit the kernel, and re-enter using an interrupt vector.  (All
	 * interrupt entries on x86_64 set SS to NULL.)  We prevent that
	 * from happening by reloading SS in __switch_to.  (Actually
	 * detecting the failure in 64-bit userspace is tricky but can be
	 * done.)
229
	 */
230
	USERGS_SYSRET64
L
Linus Torvalds 已提交
231

232 233 234 235 236
GLOBAL(int_ret_from_sys_call_irqs_off)
	TRACE_IRQS_ON
	ENABLE_INTERRUPTS(CLBR_NONE)
	jmp int_ret_from_sys_call

237
	/* Do syscall entry tracing */
238
tracesys:
239 240 241 242 243 244 245 246
	movq	%rsp, %rdi
	movl	$AUDIT_ARCH_X86_64, %esi
	call	syscall_trace_enter_phase1
	test	%rax, %rax
	jnz	tracesys_phase2			/* if needed, run the slow path */
	RESTORE_C_REGS_EXCEPT_RAX		/* else restore clobbered regs */
	movq	ORIG_RAX(%rsp), %rax
	jmp	entry_SYSCALL_64_fastpath	/* and return to the fast path */
247 248

tracesys_phase2:
249
	SAVE_EXTRA_REGS
250 251 252 253
	movq	%rsp, %rdi
	movl	$AUDIT_ARCH_X86_64, %esi
	movq	%rax, %rdx
	call	syscall_trace_enter_phase2
254

255
	/*
D
Denys Vlasenko 已提交
256
	 * Reload registers from stack in case ptrace changed them.
257
	 * We don't reload %rax because syscall_trace_entry_phase2() returned
258 259
	 * the value it wants us to use in the table lookup.
	 */
260 261
	RESTORE_C_REGS_EXCEPT_RAX
	RESTORE_EXTRA_REGS
262
#if __SYSCALL_MASK == ~0
263
	cmpq	$__NR_syscall_max, %rax
264
#else
265 266
	andl	$__SYSCALL_MASK, %eax
	cmpl	$__NR_syscall_max, %eax
267
#endif
268 269 270 271
	ja	1f				/* return -ENOSYS (already in pt_regs->ax) */
	movq	%r10, %rcx			/* fixup for C */
	call	*sys_call_table(, %rax, 8)
	movq	%rax, RAX(%rsp)
272
1:
273
	/* Use IRET because user could have changed pt_regs->foo */
274 275

/*
L
Linus Torvalds 已提交
276
 * Syscall return path ending with IRET.
277
 * Has correct iret frame.
278
 */
279
GLOBAL(int_ret_from_sys_call)
280
	SAVE_EXTRA_REGS
281 282
	movq	%rsp, %rdi
	call	syscall_return_slowpath	/* returns with IRQs disabled */
283
	RESTORE_EXTRA_REGS
284
	TRACE_IRQS_IRETQ		/* we're about to change IF */
285 286 287 288 289

	/*
	 * Try to use SYSRET instead of IRET if we're returning to
	 * a completely clean 64-bit userspace context.
	 */
290 291 292 293
	movq	RCX(%rsp), %rcx
	movq	RIP(%rsp), %r11
	cmpq	%rcx, %r11			/* RCX == RIP */
	jne	opportunistic_sysret_failed
294 295 296 297

	/*
	 * On Intel CPUs, SYSRET with non-canonical RCX/RIP will #GP
	 * in kernel space.  This essentially lets the user take over
298
	 * the kernel, since userspace controls RSP.
299
	 *
300
	 * If width of "canonical tail" ever becomes variable, this will need
301 302 303 304 305
	 * to be updated to remain correct on both old and new CPUs.
	 */
	.ifne __VIRTUAL_MASK_SHIFT - 47
	.error "virtual address width changed -- SYSRET checks need update"
	.endif
306

307 308 309
	/* Change top 16 bits to be the sign-extension of 47th bit */
	shl	$(64 - (__VIRTUAL_MASK_SHIFT+1)), %rcx
	sar	$(64 - (__VIRTUAL_MASK_SHIFT+1)), %rcx
310

311 312 313
	/* If this changed %rcx, it was not canonical */
	cmpq	%rcx, %r11
	jne	opportunistic_sysret_failed
314

315 316
	cmpq	$__USER_CS, CS(%rsp)		/* CS must match SYSRET */
	jne	opportunistic_sysret_failed
317

318 319 320
	movq	R11(%rsp), %r11
	cmpq	%r11, EFLAGS(%rsp)		/* R11 == RFLAGS */
	jne	opportunistic_sysret_failed
321 322 323 324 325 326 327 328

	/*
	 * SYSRET can't restore RF.  SYSRET can restore TF, but unlike IRET,
	 * restoring TF results in a trap from userspace immediately after
	 * SYSRET.  This would cause an infinite loop whenever #DB happens
	 * with register state that satisfies the opportunistic SYSRET
	 * conditions.  For example, single-stepping this user code:
	 *
329
	 *           movq	$stuck_here, %rcx
330 331 332 333 334 335
	 *           pushfq
	 *           popq %r11
	 *   stuck_here:
	 *
	 * would never get past 'stuck_here'.
	 */
336 337
	testq	$(X86_EFLAGS_RF|X86_EFLAGS_TF), %r11
	jnz	opportunistic_sysret_failed
338 339 340

	/* nothing to check for RSP */

341 342
	cmpq	$__USER_DS, SS(%rsp)		/* SS must match SYSRET */
	jne	opportunistic_sysret_failed
343 344

	/*
345 346
	 * We win! This label is here just for ease of understanding
	 * perf profiles. Nothing jumps here.
347 348
	 */
syscall_return_via_sysret:
349 350
	/* rcx and r11 are already restored (see code above) */
	RESTORE_C_REGS_EXCEPT_RCX_R11
351
	movq	RSP(%rsp), %rsp
352 353 354 355 356
	USERGS_SYSRET64

opportunistic_sysret_failed:
	SWAPGS
	jmp	restore_c_regs_and_iret
357
END(entry_SYSCALL_64)
358

359

360 361
	.macro FORK_LIKE func
ENTRY(stub_\func)
362
	SAVE_EXTRA_REGS 8
363
	jmp	sys_\func
364 365 366 367 368 369
END(stub_\func)
	.endm

	FORK_LIKE  clone
	FORK_LIKE  fork
	FORK_LIKE  vfork
L
Linus Torvalds 已提交
370 371

ENTRY(stub_execve)
372 373 374 375 376 377 378 379 380 381
	call	sys_execve
return_from_execve:
	testl	%eax, %eax
	jz	1f
	/* exec failed, can use fast SYSRET code path in this case */
	ret
1:
	/* must use IRET code path (pt_regs->cs may have changed) */
	addq	$8, %rsp
	ZERO_EXTRA_REGS
382
	movq	%rax, RAX(%rsp)
383
	jmp	int_ret_from_sys_call
384
END(stub_execve)
385 386 387 388 389 390
/*
 * Remaining execve stubs are only 7 bytes long.
 * ENTRY() often aligns to 16 bytes, which in this case has no benefits.
 */
	.align	8
GLOBAL(stub_execveat)
391 392
	call	sys_execveat
	jmp	return_from_execve
D
David Drysdale 已提交
393 394
END(stub_execveat)

395
#if defined(CONFIG_X86_X32_ABI) || defined(CONFIG_IA32_EMULATION)
396 397
	.align	8
GLOBAL(stub_x32_execve)
398
GLOBAL(stub32_execve)
399 400
	call	compat_sys_execve
	jmp	return_from_execve
401
END(stub32_execve)
402
END(stub_x32_execve)
403 404 405
	.align	8
GLOBAL(stub_x32_execveat)
GLOBAL(stub32_execveat)
406 407 408
	call	compat_sys_execveat
	jmp	return_from_execve
END(stub32_execveat)
409
END(stub_x32_execveat)
410 411
#endif

L
Linus Torvalds 已提交
412 413 414
/*
 * sigreturn is special because it needs to restore all registers on return.
 * This cannot be done with SYSRET, so use the IRET return path instead.
415
 */
L
Linus Torvalds 已提交
416
ENTRY(stub_rt_sigreturn)
417 418 419 420 421 422 423 424
	/*
	 * SAVE_EXTRA_REGS result is not normally needed:
	 * sigreturn overwrites all pt_regs->GPREGS.
	 * But sigreturn can fail (!), and there is no easy way to detect that.
	 * To make sure RESTORE_EXTRA_REGS doesn't restore garbage on error,
	 * we SAVE_EXTRA_REGS here.
	 */
	SAVE_EXTRA_REGS 8
425
	call	sys_rt_sigreturn
426 427
return_from_stub:
	addq	$8, %rsp
428
	RESTORE_EXTRA_REGS
429 430
	movq	%rax, RAX(%rsp)
	jmp	int_ret_from_sys_call
431
END(stub_rt_sigreturn)
L
Linus Torvalds 已提交
432

433 434
#ifdef CONFIG_X86_X32_ABI
ENTRY(stub_x32_rt_sigreturn)
435
	SAVE_EXTRA_REGS 8
436 437
	call	sys32_x32_rt_sigreturn
	jmp	return_from_stub
438 439 440
END(stub_x32_rt_sigreturn)
#endif

441 442 443 444 445 446 447
/*
 * A newly forked process directly context switches into this address.
 *
 * rdi: prev task we switched from
 */
ENTRY(ret_from_fork)

448
	LOCK ; btr $TIF_FORK, TI_flags(%r8)
449

450 451
	pushq	$0x0002
	popfq					/* reset kernel eflags */
452

453
	call	schedule_tail			/* rdi: 'prev' task parameter */
454 455 456

	RESTORE_EXTRA_REGS

457
	testb	$3, CS(%rsp)			/* from kernel_thread? */
458

459 460 461
	/*
	 * By the time we get here, we have no idea whether our pt_regs,
	 * ti flags, and ti status came from the 64-bit SYSCALL fast path,
462
	 * the slow path, or one of the 32-bit compat paths.
463
	 * Use IRET code path to return, since it can safely handle
464 465
	 * all of the above.
	 */
466
	jnz	int_ret_from_sys_call
467

468 469 470 471 472 473 474
	/*
	 * We came from kernel_thread
	 * nb: we depend on RESTORE_EXTRA_REGS above
	 */
	movq	%rbp, %rdi
	call	*%rbx
	movl	$0, RAX(%rsp)
475
	RESTORE_EXTRA_REGS
476
	jmp	int_ret_from_sys_call
477 478
END(ret_from_fork)

479
/*
480 481
 * Build the entry stubs with some assembler magic.
 * We pack 1 stub into every 8-byte block.
482
 */
483
	.align 8
484
ENTRY(irq_entries_start)
485 486
    vector=FIRST_EXTERNAL_VECTOR
    .rept (FIRST_SYSTEM_VECTOR - FIRST_EXTERNAL_VECTOR)
487
	pushq	$(~vector+0x80)			/* Note: always in signed byte range */
488 489 490 491
    vector=vector+1
	jmp	common_interrupt
	.align	8
    .endr
492 493
END(irq_entries_start)

494
/*
L
Linus Torvalds 已提交
495 496 497
 * Interrupt entry/exit.
 *
 * Interrupt entry points save only callee clobbered registers in fast path.
498 499 500
 *
 * Entry runs with interrupts off.
 */
L
Linus Torvalds 已提交
501

502
/* 0(%rsp): ~(interrupt number) */
L
Linus Torvalds 已提交
503
	.macro interrupt func
504
	cld
D
Denys Vlasenko 已提交
505 506 507 508 509 510 511
	/*
	 * Since nothing in interrupt handling code touches r12...r15 members
	 * of "struct pt_regs", and since interrupts can nest, we can save
	 * four stack slots and simultaneously provide
	 * an unwind-friendly stack layout by saving "truncated" pt_regs
	 * exactly up to rbp slot, without these members.
	 */
512 513 514 515 516
	ALLOC_PT_GPREGS_ON_STACK -RBP
	SAVE_C_REGS -RBP
	/* this goes to 0(%rsp) for unwinder, not for saving the value: */
	SAVE_EXTRA_REGS_RBP -RBP

517
	leaq	-RBP(%rsp), %rdi		/* arg1 for \func (pointer to pt_regs) */
518

519
	testb	$3, CS-RBP(%rsp)
520
	jz	1f
521
	SWAPGS
522
1:
523
	/*
D
Denys Vlasenko 已提交
524
	 * Save previous stack pointer, optionally switch to interrupt stack.
525 526 527 528 529
	 * irq_count is used to check if a CPU is already on an interrupt stack
	 * or not. While this is essentially redundant with preempt_count it is
	 * a little cheaper to use a separate counter in the PDA (short of
	 * moving irq_enter into assembly, which would be too much work)
	 */
530 531 532 533
	movq	%rsp, %rsi
	incl	PER_CPU_VAR(irq_count)
	cmovzq	PER_CPU_VAR(irq_stack_ptr), %rsp
	pushq	%rsi
534 535 536
	/* We entered an interrupt context - irqs are off: */
	TRACE_IRQS_OFF

537
	call	\func
L
Linus Torvalds 已提交
538 539
	.endm

540 541 542 543
	/*
	 * The interrupt stubs push (~vector+0x80) onto the stack and
	 * then jump to common_interrupt.
	 */
544 545
	.p2align CONFIG_X86_L1_CACHE_SHIFT
common_interrupt:
546
	ASM_CLAC
547
	addq	$-0x80, (%rsp)			/* Adjust vector to [-256, -1] range */
L
Linus Torvalds 已提交
548
	interrupt do_IRQ
549
	/* 0(%rsp): old RSP */
550
ret_from_intr:
551
	DISABLE_INTERRUPTS(CLBR_NONE)
552
	TRACE_IRQS_OFF
553
	decl	PER_CPU_VAR(irq_count)
554

555
	/* Restore saved previous stack */
556
	popq	%rsi
D
Denys Vlasenko 已提交
557
	/* return code expects complete pt_regs - adjust rsp accordingly: */
558
	leaq	-RBP(%rsi), %rsp
559

560
	testb	$3, CS(%rsp)
561
	jz	retint_kernel
L
Linus Torvalds 已提交
562
	/* Interrupt came from user space */
563
GLOBAL(retint_user)
564
	GET_THREAD_INFO(%rcx)
565 566

	/* %rcx: thread info. Interrupts are off. */
L
Linus Torvalds 已提交
567
retint_with_reschedule:
568
	movl	$_TIF_WORK_MASK, %edi
569
retint_check:
570
	LOCKDEP_SYS_EXIT_IRQ
571 572 573
	movl	TI_flags(%rcx), %edx
	andl	%edi, %edx
	jnz	retint_careful
574

575
retint_swapgs:					/* return to user-space */
576 577 578
	/*
	 * The iretq could re-enable interrupts:
	 */
579
	DISABLE_INTERRUPTS(CLBR_ANY)
580
	TRACE_IRQS_IRETQ
581

582
	SWAPGS
583
	jmp	restore_c_regs_and_iret
584

585
/* Returning to kernel space */
586
retint_kernel:
587 588 589
#ifdef CONFIG_PREEMPT
	/* Interrupts are off */
	/* Check if we need preemption */
590
	bt	$9, EFLAGS(%rsp)		/* were interrupts off? */
591
	jnc	1f
592
0:	cmpl	$0, PER_CPU_VAR(__preempt_count)
593
	jnz	1f
594
	call	preempt_schedule_irq
595
	jmp	0b
596
1:
597
#endif
598 599 600 601
	/*
	 * The iretq could re-enable interrupts:
	 */
	TRACE_IRQS_IRETQ
602 603 604 605 606 607

/*
 * At this label, code paths which return to kernel and to user,
 * which come from interrupts/exception and from syscalls, merge.
 */
restore_c_regs_and_iret:
608 609
	RESTORE_C_REGS
	REMOVE_PT_GPREGS_FROM_STACK 8
610 611 612
	INTERRUPT_RETURN

ENTRY(native_iret)
613 614 615 616
	/*
	 * Are we returning to a stack segment from the LDT?  Note: in
	 * 64-bit mode SS:RSP on the exception stack is always valid.
	 */
617
#ifdef CONFIG_X86_ESPFIX64
618 619
	testb	$4, (SS-RIP)(%rsp)
	jnz	native_irq_return_ldt
620
#endif
621

622
.global native_irq_return_iret
623
native_irq_return_iret:
A
Andy Lutomirski 已提交
624 625 626 627 628 629
	/*
	 * This may fault.  Non-paranoid faults on return to userspace are
	 * handled by fixup_bad_iret.  These include #SS, #GP, and #NP.
	 * Double-faults due to espfix64 are handled in do_double_fault.
	 * Other faults here are fatal.
	 */
L
Linus Torvalds 已提交
630
	iretq
I
Ingo Molnar 已提交
631

632
#ifdef CONFIG_X86_ESPFIX64
633
native_irq_return_ldt:
634 635
	pushq	%rax
	pushq	%rdi
636
	SWAPGS
637 638 639 640 641 642 643 644 645 646 647 648 649 650 651
	movq	PER_CPU_VAR(espfix_waddr), %rdi
	movq	%rax, (0*8)(%rdi)		/* RAX */
	movq	(2*8)(%rsp), %rax		/* RIP */
	movq	%rax, (1*8)(%rdi)
	movq	(3*8)(%rsp), %rax		/* CS */
	movq	%rax, (2*8)(%rdi)
	movq	(4*8)(%rsp), %rax		/* RFLAGS */
	movq	%rax, (3*8)(%rdi)
	movq	(6*8)(%rsp), %rax		/* SS */
	movq	%rax, (5*8)(%rdi)
	movq	(5*8)(%rsp), %rax		/* RSP */
	movq	%rax, (4*8)(%rdi)
	andl	$0xffff0000, %eax
	popq	%rdi
	orq	PER_CPU_VAR(espfix_stack), %rax
652
	SWAPGS
653 654 655
	movq	%rax, %rsp
	popq	%rax
	jmp	native_irq_return_iret
656
#endif
657

658
	/* edi: workmask, edx: work */
L
Linus Torvalds 已提交
659
retint_careful:
660 661
	bt	$TIF_NEED_RESCHED, %edx
	jnc	retint_signal
662
	TRACE_IRQS_ON
663
	ENABLE_INTERRUPTS(CLBR_NONE)
664
	pushq	%rdi
665
	SCHEDULE_USER
666
	popq	%rdi
L
Linus Torvalds 已提交
667
	GET_THREAD_INFO(%rcx)
668
	DISABLE_INTERRUPTS(CLBR_NONE)
669
	TRACE_IRQS_OFF
670
	jmp	retint_check
671

L
Linus Torvalds 已提交
672
retint_signal:
673 674
	testl	$_TIF_DO_NOTIFY_MASK, %edx
	jz	retint_swapgs
675
	TRACE_IRQS_ON
676
	ENABLE_INTERRUPTS(CLBR_NONE)
677
	SAVE_EXTRA_REGS
678 679 680 681
	movq	$-1, ORIG_RAX(%rsp)
	xorl	%esi, %esi			/* oldset */
	movq	%rsp, %rdi			/* &pt_regs */
	call	do_notify_resume
682
	RESTORE_EXTRA_REGS
683
	DISABLE_INTERRUPTS(CLBR_NONE)
684
	TRACE_IRQS_OFF
685
	GET_THREAD_INFO(%rcx)
686
	jmp	retint_with_reschedule
L
Linus Torvalds 已提交
687

688
END(common_interrupt)
689

L
Linus Torvalds 已提交
690 691
/*
 * APIC interrupts.
692
 */
693
.macro apicinterrupt3 num sym do_sym
694
ENTRY(\sym)
695
	ASM_CLAC
696
	pushq	$~(\num)
697
.Lcommon_\sym:
698
	interrupt \do_sym
699
	jmp	ret_from_intr
700 701
END(\sym)
.endm
L
Linus Torvalds 已提交
702

703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719
#ifdef CONFIG_TRACING
#define trace(sym) trace_##sym
#define smp_trace(sym) smp_trace_##sym

.macro trace_apicinterrupt num sym
apicinterrupt3 \num trace(\sym) smp_trace(\sym)
.endm
#else
.macro trace_apicinterrupt num sym do_sym
.endm
#endif

.macro apicinterrupt num sym do_sym
apicinterrupt3 \num \sym \do_sym
trace_apicinterrupt \num \sym
.endm

720
#ifdef CONFIG_SMP
721 722
apicinterrupt3 IRQ_MOVE_CLEANUP_VECTOR		irq_move_cleanup_interrupt	smp_irq_move_cleanup_interrupt
apicinterrupt3 REBOOT_VECTOR			reboot_interrupt		smp_reboot_interrupt
723
#endif
L
Linus Torvalds 已提交
724

N
Nick Piggin 已提交
725
#ifdef CONFIG_X86_UV
726
apicinterrupt3 UV_BAU_MESSAGE			uv_bau_message_intr1		uv_bau_message_interrupt
N
Nick Piggin 已提交
727
#endif
728 729 730

apicinterrupt LOCAL_TIMER_VECTOR		apic_timer_interrupt		smp_apic_timer_interrupt
apicinterrupt X86_PLATFORM_IPI_VECTOR		x86_platform_ipi		smp_x86_platform_ipi
731

732
#ifdef CONFIG_HAVE_KVM
733 734
apicinterrupt3 POSTED_INTR_VECTOR		kvm_posted_intr_ipi		smp_kvm_posted_intr_ipi
apicinterrupt3 POSTED_INTR_WAKEUP_VECTOR	kvm_posted_intr_wakeup_ipi	smp_kvm_posted_intr_wakeup_ipi
735 736
#endif

737
#ifdef CONFIG_X86_MCE_THRESHOLD
738
apicinterrupt THRESHOLD_APIC_VECTOR		threshold_interrupt		smp_threshold_interrupt
739 740
#endif

741
#ifdef CONFIG_X86_MCE_AMD
742
apicinterrupt DEFERRED_ERROR_VECTOR		deferred_error_interrupt	smp_deferred_error_interrupt
743 744
#endif

745
#ifdef CONFIG_X86_THERMAL_VECTOR
746
apicinterrupt THERMAL_APIC_VECTOR		thermal_interrupt		smp_thermal_interrupt
747
#endif
748

749
#ifdef CONFIG_SMP
750 751 752
apicinterrupt CALL_FUNCTION_SINGLE_VECTOR	call_function_single_interrupt	smp_call_function_single_interrupt
apicinterrupt CALL_FUNCTION_VECTOR		call_function_interrupt		smp_call_function_interrupt
apicinterrupt RESCHEDULE_VECTOR			reschedule_interrupt		smp_reschedule_interrupt
753
#endif
L
Linus Torvalds 已提交
754

755 756
apicinterrupt ERROR_APIC_VECTOR			error_interrupt			smp_error_interrupt
apicinterrupt SPURIOUS_APIC_VECTOR		spurious_interrupt		smp_spurious_interrupt
757

758
#ifdef CONFIG_IRQ_WORK
759
apicinterrupt IRQ_WORK_VECTOR			irq_work_interrupt		smp_irq_work_interrupt
I
Ingo Molnar 已提交
760 761
#endif

L
Linus Torvalds 已提交
762 763
/*
 * Exception entry points.
764
 */
765
#define CPU_TSS_IST(x) PER_CPU_VAR(cpu_tss) + (TSS_ist + ((x) - 1) * 8)
766 767

.macro idtentry sym do_sym has_error_code:req paranoid=0 shift_ist=-1
768
ENTRY(\sym)
769 770 771 772 773
	/* Sanity check */
	.if \shift_ist != -1 && \paranoid == 0
	.error "using shift_ist requires paranoid=1"
	.endif

774
	ASM_CLAC
775
	PARAVIRT_ADJUST_EXCEPTION_FRAME
776 777

	.ifeq \has_error_code
778
	pushq	$-1				/* ORIG_RAX: no syscall to restart */
779 780
	.endif

781
	ALLOC_PT_GPREGS_ON_STACK
782 783

	.if \paranoid
784
	.if \paranoid == 1
785 786
	testb	$3, CS(%rsp)			/* If coming from userspace, switch stacks */
	jnz	1f
787
	.endif
788
	call	paranoid_entry
789
	.else
790
	call	error_entry
791
	.endif
792
	/* returned flag: ebx=0: need swapgs on exit, ebx=1: don't need it */
793 794

	.if \paranoid
795
	.if \shift_ist != -1
796
	TRACE_IRQS_OFF_DEBUG			/* reload IDT in case of recursion */
797
	.else
798
	TRACE_IRQS_OFF
799
	.endif
800
	.endif
801

802
	movq	%rsp, %rdi			/* pt_regs pointer */
803 804

	.if \has_error_code
805 806
	movq	ORIG_RAX(%rsp), %rsi		/* get error code */
	movq	$-1, ORIG_RAX(%rsp)		/* no syscall to restart */
807
	.else
808
	xorl	%esi, %esi			/* no error code */
809 810
	.endif

811
	.if \shift_ist != -1
812
	subq	$EXCEPTION_STKSZ, CPU_TSS_IST(\shift_ist)
813 814
	.endif

815
	call	\do_sym
816

817
	.if \shift_ist != -1
818
	addq	$EXCEPTION_STKSZ, CPU_TSS_IST(\shift_ist)
819 820
	.endif

821
	/* these procedures expect "no swapgs" flag in ebx */
822
	.if \paranoid
823
	jmp	paranoid_exit
824
	.else
825
	jmp	error_exit
826 827
	.endif

828 829 830 831 832 833 834
	.if \paranoid == 1
	/*
	 * Paranoid entry from userspace.  Switch stacks and treat it
	 * as a normal entry.  This means that paranoid handlers
	 * run in real process context if user_mode(regs).
	 */
1:
835
	call	error_entry
836 837


838 839 840
	movq	%rsp, %rdi			/* pt_regs pointer */
	call	sync_regs
	movq	%rax, %rsp			/* switch stack */
841

842
	movq	%rsp, %rdi			/* pt_regs pointer */
843 844

	.if \has_error_code
845 846
	movq	ORIG_RAX(%rsp), %rsi		/* get error code */
	movq	$-1, ORIG_RAX(%rsp)		/* no syscall to restart */
847
	.else
848
	xorl	%esi, %esi			/* no error code */
849 850
	.endif

851
	call	\do_sym
852

853
	jmp	error_exit			/* %ebx: no swapgs flag */
854
	.endif
855
END(\sym)
856
.endm
857

858
#ifdef CONFIG_TRACING
859 860 861
.macro trace_idtentry sym do_sym has_error_code:req
idtentry trace(\sym) trace(\do_sym) has_error_code=\has_error_code
idtentry \sym \do_sym has_error_code=\has_error_code
862 863
.endm
#else
864 865
.macro trace_idtentry sym do_sym has_error_code:req
idtentry \sym \do_sym has_error_code=\has_error_code
866 867 868
.endm
#endif

869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887
idtentry divide_error			do_divide_error			has_error_code=0
idtentry overflow			do_overflow			has_error_code=0
idtentry bounds				do_bounds			has_error_code=0
idtentry invalid_op			do_invalid_op			has_error_code=0
idtentry device_not_available		do_device_not_available		has_error_code=0
idtentry double_fault			do_double_fault			has_error_code=1 paranoid=2
idtentry coprocessor_segment_overrun	do_coprocessor_segment_overrun	has_error_code=0
idtentry invalid_TSS			do_invalid_TSS			has_error_code=1
idtentry segment_not_present		do_segment_not_present		has_error_code=1
idtentry spurious_interrupt_bug		do_spurious_interrupt_bug	has_error_code=0
idtentry coprocessor_error		do_coprocessor_error		has_error_code=0
idtentry alignment_check		do_alignment_check		has_error_code=1
idtentry simd_coprocessor_error		do_simd_coprocessor_error	has_error_code=0


	/*
	 * Reload gs selector with exception handling
	 * edi:  new selector
	 */
888
ENTRY(native_load_gs_index)
889
	pushfq
890
	DISABLE_INTERRUPTS(CLBR_ANY & ~CLBR_RDI)
891
	SWAPGS
892
gs_change:
893 894
	movl	%edi, %gs
2:	mfence					/* workaround */
895
	SWAPGS
896
	popfq
897
	ret
898
END(native_load_gs_index)
899

900 901
	_ASM_EXTABLE(gs_change, bad_gs)
	.section .fixup, "ax"
L
Linus Torvalds 已提交
902
	/* running with kernelgs */
903
bad_gs:
904 905 906 907
	SWAPGS					/* switch back to user gs */
	xorl	%eax, %eax
	movl	%eax, %gs
	jmp	2b
908
	.previous
909

910
/* Call softirq on interrupt stack. Interrupts are off. */
911
ENTRY(do_softirq_own_stack)
912 913 914 915 916 917
	pushq	%rbp
	mov	%rsp, %rbp
	incl	PER_CPU_VAR(irq_count)
	cmove	PER_CPU_VAR(irq_stack_ptr), %rsp
	push	%rbp				/* frame pointer backlink */
	call	__do_softirq
918
	leaveq
919
	decl	PER_CPU_VAR(irq_count)
920
	ret
921
END(do_softirq_own_stack)
922

923
#ifdef CONFIG_XEN
924
idtentry xen_hypervisor_callback xen_do_hypervisor_callback has_error_code=0
925 926

/*
927 928 929 930 931 932 933 934 935 936 937 938
 * A note on the "critical region" in our callback handler.
 * We want to avoid stacking callback handlers due to events occurring
 * during handling of the last event. To do this, we keep events disabled
 * until we've done all processing. HOWEVER, we must enable events before
 * popping the stack frame (can't be done atomically) and so it would still
 * be possible to get enough handler activations to overflow the stack.
 * Although unlikely, bugs of that kind are hard to track down, so we'd
 * like to avoid the possibility.
 * So, on entry to the handler we detect whether we interrupted an
 * existing activation in its critical region -- if so, we pop the current
 * activation and restart the handler using the previous one.
 */
939 940
ENTRY(xen_do_hypervisor_callback)		/* do_hypervisor_callback(struct *pt_regs) */

941 942 943 944
/*
 * Since we don't modify %rdi, evtchn_do_upall(struct *pt_regs) will
 * see the correct pointer to the pt_regs
 */
945 946 947 948 949 950 951 952
	movq	%rdi, %rsp			/* we don't return, adjust the stack frame */
11:	incl	PER_CPU_VAR(irq_count)
	movq	%rsp, %rbp
	cmovzq	PER_CPU_VAR(irq_stack_ptr), %rsp
	pushq	%rbp				/* frame pointer backlink */
	call	xen_evtchn_do_upcall
	popq	%rsp
	decl	PER_CPU_VAR(irq_count)
953
#ifndef CONFIG_PREEMPT
954
	call	xen_maybe_preempt_hcall
955
#endif
956
	jmp	error_exit
957
END(xen_do_hypervisor_callback)
958 959

/*
960 961 962 963 964 965 966 967 968 969 970 971
 * Hypervisor uses this for application faults while it executes.
 * We get here for two reasons:
 *  1. Fault while reloading DS, ES, FS or GS
 *  2. Fault while executing IRET
 * Category 1 we do not need to fix up as Xen has already reloaded all segment
 * registers that could be reloaded and zeroed the others.
 * Category 2 we fix up by killing the current process. We cannot use the
 * normal Linux return path in this case because if we use the IRET hypercall
 * to pop the stack frame we end up in an infinite loop of failsafe callbacks.
 * We distinguish between categories by comparing each saved segment register
 * with its current contents: any discrepancy means we in category 1.
 */
972
ENTRY(xen_failsafe_callback)
973 974 975 976 977 978 979 980 981 982 983 984
	movl	%ds, %ecx
	cmpw	%cx, 0x10(%rsp)
	jne	1f
	movl	%es, %ecx
	cmpw	%cx, 0x18(%rsp)
	jne	1f
	movl	%fs, %ecx
	cmpw	%cx, 0x20(%rsp)
	jne	1f
	movl	%gs, %ecx
	cmpw	%cx, 0x28(%rsp)
	jne	1f
985
	/* All segments match their saved values => Category 2 (Bad IRET). */
986 987 988 989 990 991 992
	movq	(%rsp), %rcx
	movq	8(%rsp), %r11
	addq	$0x30, %rsp
	pushq	$0				/* RIP */
	pushq	%r11
	pushq	%rcx
	jmp	general_protection
993
1:	/* Segment mismatch => Category 1 (Bad segment). Retry the IRET. */
994 995 996 997
	movq	(%rsp), %rcx
	movq	8(%rsp), %r11
	addq	$0x30, %rsp
	pushq	$-1 /* orig_ax = -1 => not a system call */
998 999 1000
	ALLOC_PT_GPREGS_ON_STACK
	SAVE_C_REGS
	SAVE_EXTRA_REGS
1001
	jmp	error_exit
1002 1003
END(xen_failsafe_callback)

1004
apicinterrupt3 HYPERVISOR_CALLBACK_VECTOR \
1005 1006
	xen_hvm_callback_vector xen_evtchn_do_upcall

1007
#endif /* CONFIG_XEN */
1008

1009
#if IS_ENABLED(CONFIG_HYPERV)
1010
apicinterrupt3 HYPERVISOR_CALLBACK_VECTOR \
1011 1012 1013
	hyperv_callback_vector hyperv_vector_handler
#endif /* CONFIG_HYPERV */

1014 1015 1016 1017
idtentry debug			do_debug		has_error_code=0	paranoid=1 shift_ist=DEBUG_STACK
idtentry int3			do_int3			has_error_code=0	paranoid=1 shift_ist=DEBUG_STACK
idtentry stack_segment		do_stack_segment	has_error_code=1

1018
#ifdef CONFIG_XEN
1019 1020 1021
idtentry xen_debug		do_debug		has_error_code=0
idtentry xen_int3		do_int3			has_error_code=0
idtentry xen_stack_segment	do_stack_segment	has_error_code=1
1022
#endif
1023 1024 1025 1026

idtentry general_protection	do_general_protection	has_error_code=1
trace_idtentry page_fault	do_page_fault		has_error_code=1

G
Gleb Natapov 已提交
1027
#ifdef CONFIG_KVM_GUEST
1028
idtentry async_page_fault	do_async_page_fault	has_error_code=1
G
Gleb Natapov 已提交
1029
#endif
1030

1031
#ifdef CONFIG_X86_MCE
1032
idtentry machine_check					has_error_code=0	paranoid=1 do_sym=*machine_check_vector(%rip)
1033 1034
#endif

1035 1036 1037 1038 1039 1040
/*
 * Save all registers in pt_regs, and switch gs if needed.
 * Use slow, but surefire "are we in kernel?" check.
 * Return: ebx=0: need swapgs on exit, ebx=1: otherwise
 */
ENTRY(paranoid_entry)
1041 1042 1043
	cld
	SAVE_C_REGS 8
	SAVE_EXTRA_REGS 8
1044 1045
	movl	$1, %ebx
	movl	$MSR_GS_BASE, %ecx
1046
	rdmsr
1047 1048
	testl	%edx, %edx
	js	1f				/* negative -> in kernel */
1049
	SWAPGS
1050
	xorl	%ebx, %ebx
1051
1:	ret
1052
END(paranoid_entry)
1053

1054 1055 1056 1057 1058 1059 1060 1061 1062
/*
 * "Paranoid" exit path from exception stack.  This is invoked
 * only on return from non-NMI IST interrupts that came
 * from kernel space.
 *
 * We may be returning to very strange contexts (e.g. very early
 * in syscall entry), so checking for preemption here would
 * be complicated.  Fortunately, we there's no good reason
 * to try to handle preemption here.
1063 1064
 *
 * On entry, ebx is "no swapgs" flag (1: don't need swapgs, 0: need it)
1065
 */
1066 1067
ENTRY(paranoid_exit)
	DISABLE_INTERRUPTS(CLBR_NONE)
1068
	TRACE_IRQS_OFF_DEBUG
1069 1070
	testl	%ebx, %ebx			/* swapgs needed? */
	jnz	paranoid_exit_no_swapgs
1071
	TRACE_IRQS_IRETQ
1072
	SWAPGS_UNSAFE_STACK
1073
	jmp	paranoid_exit_restore
1074
paranoid_exit_no_swapgs:
1075
	TRACE_IRQS_IRETQ_DEBUG
1076
paranoid_exit_restore:
1077 1078 1079
	RESTORE_EXTRA_REGS
	RESTORE_C_REGS
	REMOVE_PT_GPREGS_FROM_STACK 8
1080
	INTERRUPT_RETURN
1081 1082 1083
END(paranoid_exit)

/*
1084
 * Save all registers in pt_regs, and switch gs if needed.
1085
 * Return: EBX=0: came from user mode; EBX=1: otherwise
1086 1087 1088
 */
ENTRY(error_entry)
	cld
1089 1090
	SAVE_C_REGS 8
	SAVE_EXTRA_REGS 8
1091
	xorl	%ebx, %ebx
1092
	testb	$3, CS+8(%rsp)
1093
	jz	.Lerror_kernelspace
1094

1095 1096 1097 1098 1099
.Lerror_entry_from_usermode_swapgs:
	/*
	 * We entered from user mode or we're pretending to have entered
	 * from user mode due to an IRET fault.
	 */
1100
	SWAPGS
1101

1102 1103
.Lerror_entry_from_usermode_after_swapgs:
.Lerror_entry_done:
1104 1105 1106
	TRACE_IRQS_OFF
	ret

1107 1108 1109 1110 1111 1112
	/*
	 * There are two places in the kernel that can potentially fault with
	 * usergs. Handle them here.  B stepping K8s sometimes report a
	 * truncated RIP for IRET exceptions returning to compat mode. Check
	 * for these here too.
	 */
1113
.Lerror_kernelspace:
1114 1115 1116
	incl	%ebx
	leaq	native_irq_return_iret(%rip), %rcx
	cmpq	%rcx, RIP+8(%rsp)
1117
	je	.Lerror_bad_iret
1118 1119
	movl	%ecx, %eax			/* zero extend */
	cmpq	%rax, RIP+8(%rsp)
1120
	je	.Lbstep_iret
1121
	cmpq	$gs_change, RIP+8(%rsp)
1122
	jne	.Lerror_entry_done
1123 1124 1125 1126 1127 1128

	/*
	 * hack: gs_change can fail with user gsbase.  If this happens, fix up
	 * gsbase and proceed.  We'll fix up the exception and land in
	 * gs_change's error handler with kernel gsbase.
	 */
1129
	jmp	.Lerror_entry_from_usermode_swapgs
1130

1131
.Lbstep_iret:
1132
	/* Fix truncated RIP */
1133
	movq	%rcx, RIP+8(%rsp)
A
Andy Lutomirski 已提交
1134 1135
	/* fall through */

1136
.Lerror_bad_iret:
1137 1138 1139 1140
	/*
	 * We came from an IRET to user mode, so we have user gsbase.
	 * Switch to kernel gsbase:
	 */
A
Andy Lutomirski 已提交
1141
	SWAPGS
1142 1143 1144 1145 1146 1147

	/*
	 * Pretend that the exception came from user mode: set up pt_regs
	 * as if we faulted immediately after IRET and clear EBX so that
	 * error_exit knows that we will be returning to user mode.
	 */
1148 1149 1150
	mov	%rsp, %rdi
	call	fixup_bad_iret
	mov	%rax, %rsp
1151
	decl	%ebx
1152
	jmp	.Lerror_entry_from_usermode_after_swapgs
1153 1154 1155
END(error_entry)


1156 1157 1158 1159 1160
/*
 * On entry, EBS is a "return to kernel mode" flag:
 *   1: already in kernel mode, don't need SWAPGS
 *   0: user gsbase is loaded, we need SWAPGS and standard preparation for return to usermode
 */
1161
ENTRY(error_exit)
1162
	movl	%ebx, %eax
1163
	RESTORE_EXTRA_REGS
1164 1165
	DISABLE_INTERRUPTS(CLBR_NONE)
	TRACE_IRQS_OFF
1166 1167 1168
	testl	%eax, %eax
	jnz	retint_kernel
	jmp	retint_user
1169 1170
END(error_exit)

1171
/* Runs on exception stack */
1172 1173
ENTRY(nmi)
	PARAVIRT_ADJUST_EXCEPTION_FRAME
1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205
	/*
	 * We allow breakpoints in NMIs. If a breakpoint occurs, then
	 * the iretq it performs will take us out of NMI context.
	 * This means that we can have nested NMIs where the next
	 * NMI is using the top of the stack of the previous NMI. We
	 * can't let it execute because the nested NMI will corrupt the
	 * stack of the previous NMI. NMI handlers are not re-entrant
	 * anyway.
	 *
	 * To handle this case we do the following:
	 *  Check the a special location on the stack that contains
	 *  a variable that is set when NMIs are executing.
	 *  The interrupted task's stack is also checked to see if it
	 *  is an NMI stack.
	 *  If the variable is not set and the stack is not the NMI
	 *  stack then:
	 *    o Set the special variable on the stack
	 *    o Copy the interrupt frame into a "saved" location on the stack
	 *    o Copy the interrupt frame into a "copy" location on the stack
	 *    o Continue processing the NMI
	 *  If the variable is set or the previous stack is the NMI stack:
	 *    o Modify the "copy" location to jump to the repeate_nmi
	 *    o return back to the first NMI
	 *
	 * Now on exit of the first NMI, we first clear the stack variable
	 * The NMI stack will tell any nested NMIs at that point that it is
	 * nested. Then we pop the stack normally with iret, and if there was
	 * a nested NMI that updated the copy interrupt stack frame, a
	 * jump will be made to the repeat_nmi code that will handle the second
	 * NMI.
	 */

1206
	/* Use %rdx as our temp variable throughout */
1207
	pushq	%rdx
1208

1209 1210 1211 1212
	/*
	 * If %cs was not the kernel segment, then the NMI triggered in user
	 * space, which means it is definitely not nested.
	 */
1213 1214
	cmpl	$__KERNEL_CS, 16(%rsp)
	jne	first_nmi
1215

1216 1217 1218 1219
	/*
	 * Check the special variable on the stack to see if NMIs are
	 * executing.
	 */
1220 1221
	cmpl	$1, -8(%rsp)
	je	nested_nmi
1222 1223 1224 1225 1226 1227 1228 1229

	/*
	 * Now test if the previous stack was an NMI stack.
	 * We need the double check. We check the NMI stack to satisfy the
	 * race when the first NMI clears the variable before returning.
	 * We check the variable because the first NMI could be in a
	 * breakpoint routine using a breakpoint stack.
	 */
1230 1231 1232 1233 1234
	lea	6*8(%rsp), %rdx
	/* Compare the NMI stack (rdx) with the stack we came from (4*8(%rsp)) */
	cmpq	%rdx, 4*8(%rsp)
	/* If the stack pointer is above the NMI stack, this is a normal NMI */
	ja	first_nmi
1235

1236 1237 1238 1239 1240 1241
	subq	$EXCEPTION_STKSZ, %rdx
	cmpq	%rdx, 4*8(%rsp)
	/* If it is below the NMI stack, it is a normal NMI */
	jb	first_nmi
	/* Ah, it is within the NMI stack, treat it as nested */

1242 1243 1244 1245 1246 1247
nested_nmi:
	/*
	 * Do nothing if we interrupted the fixup in repeat_nmi.
	 * It's about to repeat the NMI handler, so we are fine
	 * with ignoring this one.
	 */
1248 1249 1250 1251 1252 1253
	movq	$repeat_nmi, %rdx
	cmpq	8(%rsp), %rdx
	ja	1f
	movq	$end_repeat_nmi, %rdx
	cmpq	8(%rsp), %rdx
	ja	nested_nmi_out
1254 1255 1256

1:
	/* Set up the interrupted NMIs stack to jump to repeat_nmi */
1257 1258 1259 1260 1261
	leaq	-1*8(%rsp), %rdx
	movq	%rdx, %rsp
	leaq	-10*8(%rsp), %rdx
	pushq	$__KERNEL_DS
	pushq	%rdx
1262
	pushfq
1263 1264
	pushq	$__KERNEL_CS
	pushq	$repeat_nmi
1265 1266

	/* Put stack back */
1267
	addq	$(6*8), %rsp
1268 1269

nested_nmi_out:
1270
	popq	%rdx
1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296

	/* No need to check faults here */
	INTERRUPT_RETURN

first_nmi:
	/*
	 * Because nested NMIs will use the pushed location that we
	 * stored in rdx, we must keep that space available.
	 * Here's what our stack frame will look like:
	 * +-------------------------+
	 * | original SS             |
	 * | original Return RSP     |
	 * | original RFLAGS         |
	 * | original CS             |
	 * | original RIP            |
	 * +-------------------------+
	 * | temp storage for rdx    |
	 * +-------------------------+
	 * | NMI executing variable  |
	 * +-------------------------+
	 * | copied SS               |
	 * | copied Return RSP       |
	 * | copied RFLAGS           |
	 * | copied CS               |
	 * | copied RIP              |
	 * +-------------------------+
1297 1298 1299 1300 1301 1302
	 * | Saved SS                |
	 * | Saved Return RSP        |
	 * | Saved RFLAGS            |
	 * | Saved CS                |
	 * | Saved RIP               |
	 * +-------------------------+
1303 1304 1305
	 * | pt_regs                 |
	 * +-------------------------+
	 *
1306 1307 1308
	 * The saved stack frame is used to fix up the copied stack frame
	 * that a nested NMI may change to make the interrupted NMI iret jump
	 * to the repeat_nmi. The original stack frame and the temp storage
1309 1310
	 * is also used by nested NMIs and can not be trusted on exit.
	 */
1311
	/* Do not pop rdx, nested NMIs will corrupt that part of the stack */
1312
	movq	(%rsp), %rdx
1313

1314
	/* Set the NMI executing variable on the stack. */
1315
	pushq	$1
1316

1317 1318
	/* Leave room for the "copied" frame */
	subq	$(5*8), %rsp
1319

1320 1321
	/* Copy the stack frame to the Saved frame */
	.rept 5
1322
	pushq	11*8(%rsp)
1323
	.endr
1324

1325 1326
	/* Everything up to here is safe from nested NMIs */

1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341
	/*
	 * If there was a nested NMI, the first NMI's iret will return
	 * here. But NMIs are still enabled and we can take another
	 * nested NMI. The nested NMI checks the interrupted RIP to see
	 * if it is between repeat_nmi and end_repeat_nmi, and if so
	 * it will just return, as we are about to repeat an NMI anyway.
	 * This makes it safe to copy to the stack frame that a nested
	 * NMI will update.
	 */
repeat_nmi:
	/*
	 * Update the stack variable to say we are still in NMI (the update
	 * is benign for the non-repeat case, where 1 was pushed just above
	 * to this very stack slot).
	 */
1342
	movq	$1, 10*8(%rsp)
1343 1344

	/* Make another copy, this one may be modified by nested NMIs */
1345
	addq	$(10*8), %rsp
1346
	.rept 5
1347
	pushq	-6*8(%rsp)
1348
	.endr
1349
	subq	$(5*8), %rsp
1350
end_repeat_nmi:
1351 1352 1353

	/*
	 * Everything below this point can be preempted by a nested
1354 1355
	 * NMI if the first NMI took an exception and reset our iret stack
	 * so that we repeat another NMI.
1356
	 */
1357
	pushq	$-1				/* ORIG_RAX: no syscall to restart */
1358 1359
	ALLOC_PT_GPREGS_ON_STACK

1360
	/*
1361
	 * Use paranoid_entry to handle SWAPGS, but no need to use paranoid_exit
1362 1363 1364 1365 1366
	 * as we should not be calling schedule in NMI context.
	 * Even with normal interrupts enabled. An NMI should not be
	 * setting NEED_RESCHED or anything that normal interrupts and
	 * exceptions might do.
	 */
1367
	call	paranoid_entry
1368 1369 1370 1371 1372 1373 1374 1375 1376 1377

	/*
	 * Save off the CR2 register. If we take a page fault in the NMI then
	 * it could corrupt the CR2 value. If the NMI preempts a page fault
	 * handler before it was able to read the CR2 register, and then the
	 * NMI itself takes a page fault, the page fault that was preempted
	 * will read the information from the NMI page fault and not the
	 * origin fault. Save it off and restore it if it changes.
	 * Use the r12 callee-saved register.
	 */
1378
	movq	%cr2, %r12
1379

1380
	/* paranoidentry do_nmi, 0; without TRACE_IRQS_OFF */
1381 1382 1383
	movq	%rsp, %rdi
	movq	$-1, %rsi
	call	do_nmi
1384 1385

	/* Did the NMI take a page fault? Restore cr2 if it did */
1386 1387 1388 1389
	movq	%cr2, %rcx
	cmpq	%rcx, %r12
	je	1f
	movq	%r12, %cr2
1390
1:
1391 1392
	testl	%ebx, %ebx			/* swapgs needed? */
	jnz	nmi_restore
1393 1394 1395
nmi_swapgs:
	SWAPGS_UNSAFE_STACK
nmi_restore:
1396 1397
	RESTORE_EXTRA_REGS
	RESTORE_C_REGS
1398
	/* Pop the extra iret frame at once */
1399
	REMOVE_PT_GPREGS_FROM_STACK 6*8
1400

1401
	/* Clear the NMI executing stack variable */
1402
	movq	$0, 5*8(%rsp)
1403
	INTERRUPT_RETURN
1404 1405 1406
END(nmi)

ENTRY(ignore_sysret)
1407
	mov	$-ENOSYS, %eax
1408 1409
	sysret
END(ignore_sysret)