sched_fair.c 44.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
/*
 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
 *
 *  Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
 *
 *  Interactivity improvements by Mike Galbraith
 *  (C) 2007 Mike Galbraith <efault@gmx.de>
 *
 *  Various enhancements by Dmitry Adamushko.
 *  (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
 *
 *  Group scheduling enhancements by Srivatsa Vaddagiri
 *  Copyright IBM Corporation, 2007
 *  Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
 *
 *  Scaled math optimizations by Thomas Gleixner
 *  Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
18 19 20
 *
 *  Adaptive scheduling granularity, math enhancements by Peter Zijlstra
 *  Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
21 22
 */

A
Arjan van de Ven 已提交
23 24
#include <linux/latencytop.h>

25
/*
26
 * Targeted preemption latency for CPU-bound tasks:
27
 * (default: 20ms * (1 + ilog(ncpus)), units: nanoseconds)
28
 *
29
 * NOTE: this latency value is not the same as the concept of
I
Ingo Molnar 已提交
30 31 32
 * 'timeslice length' - timeslices in CFS are of variable length
 * and have no persistent notion like in traditional, time-slice
 * based scheduling concepts.
33
 *
I
Ingo Molnar 已提交
34 35
 * (to see the precise effective timeslice length of your workload,
 *  run vmstat and monitor the context-switches (cs) field)
36
 */
I
Ingo Molnar 已提交
37
unsigned int sysctl_sched_latency = 20000000ULL;
38 39

/*
40
 * Minimal preemption granularity for CPU-bound tasks:
41
 * (default: 4 msec * (1 + ilog(ncpus)), units: nanoseconds)
42
 */
43
unsigned int sysctl_sched_min_granularity = 4000000ULL;
44 45

/*
46 47
 * is kept at sysctl_sched_latency / sysctl_sched_min_granularity
 */
48
static unsigned int sched_nr_latency = 5;
49 50 51 52

/*
 * After fork, child runs first. (default) If set to 0 then
 * parent will (try to) run first.
53
 */
54
const_debug unsigned int sysctl_sched_child_runs_first = 1;
55

56 57 58 59 60 61 62 63
/*
 * sys_sched_yield() compat mode
 *
 * This option switches the agressive yield implementation of the
 * old scheduler back on.
 */
unsigned int __read_mostly sysctl_sched_compat_yield;

64 65
/*
 * SCHED_OTHER wake-up granularity.
66
 * (default: 5 msec * (1 + ilog(ncpus)), units: nanoseconds)
67 68 69 70 71
 *
 * This option delays the preemption effects of decoupled workloads
 * and reduces their over-scheduling. Synchronous workloads will still
 * have immediate wakeup/sleep latencies.
 */
72
unsigned int sysctl_sched_wakeup_granularity = 5000000UL;
73

74 75
const_debug unsigned int sysctl_sched_migration_cost = 500000UL;

76 77
static const struct sched_class fair_sched_class;

78 79 80 81
/**************************************************************
 * CFS operations on generic schedulable entities:
 */

82
#ifdef CONFIG_FAIR_GROUP_SCHED
83

84
/* cpu runqueue to which this cfs_rq is attached */
85 86
static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
{
87
	return cfs_rq->rq;
88 89
}

90 91
/* An entity is a task if it doesn't "own" a runqueue */
#define entity_is_task(se)	(!se->my_q)
92

93 94 95 96 97 98 99 100
static inline struct task_struct *task_of(struct sched_entity *se)
{
#ifdef CONFIG_SCHED_DEBUG
	WARN_ON_ONCE(!entity_is_task(se));
#endif
	return container_of(se, struct task_struct, se);
}

P
Peter Zijlstra 已提交
101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148
/* Walk up scheduling entities hierarchy */
#define for_each_sched_entity(se) \
		for (; se; se = se->parent)

static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
{
	return p->se.cfs_rq;
}

/* runqueue on which this entity is (to be) queued */
static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
{
	return se->cfs_rq;
}

/* runqueue "owned" by this group */
static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
{
	return grp->my_q;
}

/* Given a group's cfs_rq on one cpu, return its corresponding cfs_rq on
 * another cpu ('this_cpu')
 */
static inline struct cfs_rq *cpu_cfs_rq(struct cfs_rq *cfs_rq, int this_cpu)
{
	return cfs_rq->tg->cfs_rq[this_cpu];
}

/* Iterate thr' all leaf cfs_rq's on a runqueue */
#define for_each_leaf_cfs_rq(rq, cfs_rq) \
	list_for_each_entry_rcu(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list)

/* Do the two (enqueued) entities belong to the same group ? */
static inline int
is_same_group(struct sched_entity *se, struct sched_entity *pse)
{
	if (se->cfs_rq == pse->cfs_rq)
		return 1;

	return 0;
}

static inline struct sched_entity *parent_entity(struct sched_entity *se)
{
	return se->parent;
}

149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191
/* return depth at which a sched entity is present in the hierarchy */
static inline int depth_se(struct sched_entity *se)
{
	int depth = 0;

	for_each_sched_entity(se)
		depth++;

	return depth;
}

static void
find_matching_se(struct sched_entity **se, struct sched_entity **pse)
{
	int se_depth, pse_depth;

	/*
	 * preemption test can be made between sibling entities who are in the
	 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
	 * both tasks until we find their ancestors who are siblings of common
	 * parent.
	 */

	/* First walk up until both entities are at same depth */
	se_depth = depth_se(*se);
	pse_depth = depth_se(*pse);

	while (se_depth > pse_depth) {
		se_depth--;
		*se = parent_entity(*se);
	}

	while (pse_depth > se_depth) {
		pse_depth--;
		*pse = parent_entity(*pse);
	}

	while (!is_same_group(*se, *pse)) {
		*se = parent_entity(*se);
		*pse = parent_entity(*pse);
	}
}

192 193 194 195 196 197
#else	/* !CONFIG_FAIR_GROUP_SCHED */

static inline struct task_struct *task_of(struct sched_entity *se)
{
	return container_of(se, struct task_struct, se);
}
198

199 200 201
static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
{
	return container_of(cfs_rq, struct rq, cfs);
202 203 204 205
}

#define entity_is_task(se)	1

P
Peter Zijlstra 已提交
206 207
#define for_each_sched_entity(se) \
		for (; se; se = NULL)
208

P
Peter Zijlstra 已提交
209
static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
210
{
P
Peter Zijlstra 已提交
211
	return &task_rq(p)->cfs;
212 213
}

P
Peter Zijlstra 已提交
214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246
static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
{
	struct task_struct *p = task_of(se);
	struct rq *rq = task_rq(p);

	return &rq->cfs;
}

/* runqueue "owned" by this group */
static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
{
	return NULL;
}

static inline struct cfs_rq *cpu_cfs_rq(struct cfs_rq *cfs_rq, int this_cpu)
{
	return &cpu_rq(this_cpu)->cfs;
}

#define for_each_leaf_cfs_rq(rq, cfs_rq) \
		for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL)

static inline int
is_same_group(struct sched_entity *se, struct sched_entity *pse)
{
	return 1;
}

static inline struct sched_entity *parent_entity(struct sched_entity *se)
{
	return NULL;
}

247 248 249 250 251
static inline void
find_matching_se(struct sched_entity **se, struct sched_entity **pse)
{
}

P
Peter Zijlstra 已提交
252 253
#endif	/* CONFIG_FAIR_GROUP_SCHED */

254 255 256 257 258

/**************************************************************
 * Scheduling class tree data structure manipulation methods:
 */

259
static inline u64 max_vruntime(u64 min_vruntime, u64 vruntime)
260
{
261 262
	s64 delta = (s64)(vruntime - min_vruntime);
	if (delta > 0)
263 264 265 266 267
		min_vruntime = vruntime;

	return min_vruntime;
}

268
static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
P
Peter Zijlstra 已提交
269 270 271 272 273 274 275 276
{
	s64 delta = (s64)(vruntime - min_vruntime);
	if (delta < 0)
		min_vruntime = vruntime;

	return min_vruntime;
}

277 278 279 280 281 282
static inline int entity_before(struct sched_entity *a,
				struct sched_entity *b)
{
	return (s64)(a->vruntime - b->vruntime) < 0;
}

283
static inline s64 entity_key(struct cfs_rq *cfs_rq, struct sched_entity *se)
284
{
285
	return se->vruntime - cfs_rq->min_vruntime;
286 287
}

288 289 290 291 292 293 294 295 296 297 298 299
static void update_min_vruntime(struct cfs_rq *cfs_rq)
{
	u64 vruntime = cfs_rq->min_vruntime;

	if (cfs_rq->curr)
		vruntime = cfs_rq->curr->vruntime;

	if (cfs_rq->rb_leftmost) {
		struct sched_entity *se = rb_entry(cfs_rq->rb_leftmost,
						   struct sched_entity,
						   run_node);

P
Peter Zijlstra 已提交
300
		if (!cfs_rq->curr)
301 302 303 304 305 306 307 308
			vruntime = se->vruntime;
		else
			vruntime = min_vruntime(vruntime, se->vruntime);
	}

	cfs_rq->min_vruntime = max_vruntime(cfs_rq->min_vruntime, vruntime);
}

309 310 311
/*
 * Enqueue an entity into the rb-tree:
 */
312
static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
313 314 315 316
{
	struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
	struct rb_node *parent = NULL;
	struct sched_entity *entry;
317
	s64 key = entity_key(cfs_rq, se);
318 319 320 321 322 323 324 325 326 327 328 329
	int leftmost = 1;

	/*
	 * Find the right place in the rbtree:
	 */
	while (*link) {
		parent = *link;
		entry = rb_entry(parent, struct sched_entity, run_node);
		/*
		 * We dont care about collisions. Nodes with
		 * the same key stay together.
		 */
330
		if (key < entity_key(cfs_rq, entry)) {
331 332 333 334 335 336 337 338 339 340 341
			link = &parent->rb_left;
		} else {
			link = &parent->rb_right;
			leftmost = 0;
		}
	}

	/*
	 * Maintain a cache of leftmost tree entries (it is frequently
	 * used):
	 */
342
	if (leftmost)
I
Ingo Molnar 已提交
343
		cfs_rq->rb_leftmost = &se->run_node;
344 345 346 347 348

	rb_link_node(&se->run_node, parent, link);
	rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline);
}

349
static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
350
{
P
Peter Zijlstra 已提交
351 352 353 354 355 356
	if (cfs_rq->rb_leftmost == &se->run_node) {
		struct rb_node *next_node;

		next_node = rb_next(&se->run_node);
		cfs_rq->rb_leftmost = next_node;
	}
I
Ingo Molnar 已提交
357

358 359 360 361 362
	rb_erase(&se->run_node, &cfs_rq->tasks_timeline);
}

static struct sched_entity *__pick_next_entity(struct cfs_rq *cfs_rq)
{
363 364 365 366 367 368
	struct rb_node *left = cfs_rq->rb_leftmost;

	if (!left)
		return NULL;

	return rb_entry(left, struct sched_entity, run_node);
369 370
}

371
static struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
372
{
373
	struct rb_node *last = rb_last(&cfs_rq->tasks_timeline);
374

375 376
	if (!last)
		return NULL;
377 378

	return rb_entry(last, struct sched_entity, run_node);
379 380
}

381 382 383 384
/**************************************************************
 * Scheduling class statistics methods:
 */

385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400
#ifdef CONFIG_SCHED_DEBUG
int sched_nr_latency_handler(struct ctl_table *table, int write,
		struct file *filp, void __user *buffer, size_t *lenp,
		loff_t *ppos)
{
	int ret = proc_dointvec_minmax(table, write, filp, buffer, lenp, ppos);

	if (ret || !write)
		return ret;

	sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency,
					sysctl_sched_min_granularity);

	return 0;
}
#endif
401

402
/*
403
 * delta /= w
404 405 406 407
 */
static inline unsigned long
calc_delta_fair(unsigned long delta, struct sched_entity *se)
{
408 409
	if (unlikely(se->load.weight != NICE_0_LOAD))
		delta = calc_delta_mine(delta, NICE_0_LOAD, &se->load);
410 411 412 413

	return delta;
}

414 415 416 417 418 419 420 421
/*
 * The idea is to set a period in which each task runs once.
 *
 * When there are too many tasks (sysctl_sched_nr_latency) we have to stretch
 * this period because otherwise the slices get too small.
 *
 * p = (nr <= nl) ? l : l*nr/nl
 */
422 423 424
static u64 __sched_period(unsigned long nr_running)
{
	u64 period = sysctl_sched_latency;
425
	unsigned long nr_latency = sched_nr_latency;
426 427

	if (unlikely(nr_running > nr_latency)) {
428
		period = sysctl_sched_min_granularity;
429 430 431 432 433 434
		period *= nr_running;
	}

	return period;
}

435 436 437 438
/*
 * We calculate the wall-time slice from the period by taking a part
 * proportional to the weight.
 *
439
 * s = p*P[w/rw]
440
 */
P
Peter Zijlstra 已提交
441
static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
442
{
M
Mike Galbraith 已提交
443
	u64 slice = __sched_period(cfs_rq->nr_running + !se->on_rq);
444

M
Mike Galbraith 已提交
445
	for_each_sched_entity(se) {
L
Lin Ming 已提交
446
		struct load_weight *load;
447
		struct load_weight lw;
L
Lin Ming 已提交
448 449 450

		cfs_rq = cfs_rq_of(se);
		load = &cfs_rq->load;
451

M
Mike Galbraith 已提交
452
		if (unlikely(!se->on_rq)) {
453
			lw = cfs_rq->load;
M
Mike Galbraith 已提交
454 455 456 457 458 459 460

			update_load_add(&lw, se->load.weight);
			load = &lw;
		}
		slice = calc_delta_mine(slice, se->load.weight, load);
	}
	return slice;
461 462
}

463
/*
464
 * We calculate the vruntime slice of a to be inserted task
465
 *
466
 * vs = s/w
467
 */
468
static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se)
P
Peter Zijlstra 已提交
469
{
470
	return calc_delta_fair(sched_slice(cfs_rq, se), se);
471 472
}

473 474 475 476 477
/*
 * Update the current task's runtime statistics. Skip current tasks that
 * are not in our scheduling class.
 */
static inline void
I
Ingo Molnar 已提交
478 479
__update_curr(struct cfs_rq *cfs_rq, struct sched_entity *curr,
	      unsigned long delta_exec)
480
{
481
	unsigned long delta_exec_weighted;
482

483
	schedstat_set(curr->exec_max, max((u64)delta_exec, curr->exec_max));
484 485

	curr->sum_exec_runtime += delta_exec;
486
	schedstat_add(cfs_rq, exec_clock, delta_exec);
487
	delta_exec_weighted = calc_delta_fair(delta_exec, curr);
I
Ingo Molnar 已提交
488
	curr->vruntime += delta_exec_weighted;
489
	update_min_vruntime(cfs_rq);
490 491
}

492
static void update_curr(struct cfs_rq *cfs_rq)
493
{
494
	struct sched_entity *curr = cfs_rq->curr;
I
Ingo Molnar 已提交
495
	u64 now = rq_of(cfs_rq)->clock;
496 497 498 499 500 501 502 503 504 505
	unsigned long delta_exec;

	if (unlikely(!curr))
		return;

	/*
	 * Get the amount of time the current task was running
	 * since the last time we changed load (this cannot
	 * overflow on 32 bits):
	 */
I
Ingo Molnar 已提交
506
	delta_exec = (unsigned long)(now - curr->exec_start);
P
Peter Zijlstra 已提交
507 508
	if (!delta_exec)
		return;
509

I
Ingo Molnar 已提交
510 511
	__update_curr(cfs_rq, curr, delta_exec);
	curr->exec_start = now;
512 513 514 515 516

	if (entity_is_task(curr)) {
		struct task_struct *curtask = task_of(curr);

		cpuacct_charge(curtask, delta_exec);
517
		account_group_exec_runtime(curtask, delta_exec);
518
	}
519 520 521
}

static inline void
522
update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
523
{
524
	schedstat_set(se->wait_start, rq_of(cfs_rq)->clock);
525 526 527 528 529
}

/*
 * Task is being enqueued - update stats:
 */
530
static void update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
531 532 533 534 535
{
	/*
	 * Are we enqueueing a waiting task? (for current tasks
	 * a dequeue/enqueue event is a NOP)
	 */
536
	if (se != cfs_rq->curr)
537
		update_stats_wait_start(cfs_rq, se);
538 539 540
}

static void
541
update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
542
{
543 544
	schedstat_set(se->wait_max, max(se->wait_max,
			rq_of(cfs_rq)->clock - se->wait_start));
545 546 547
	schedstat_set(se->wait_count, se->wait_count + 1);
	schedstat_set(se->wait_sum, se->wait_sum +
			rq_of(cfs_rq)->clock - se->wait_start);
I
Ingo Molnar 已提交
548
	schedstat_set(se->wait_start, 0);
549 550 551
}

static inline void
552
update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
553 554 555 556 557
{
	/*
	 * Mark the end of the wait period if dequeueing a
	 * waiting task:
	 */
558
	if (se != cfs_rq->curr)
559
		update_stats_wait_end(cfs_rq, se);
560 561 562 563 564 565
}

/*
 * We are picking a new current task - update its stats:
 */
static inline void
566
update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
567 568 569 570
{
	/*
	 * We are starting a new run period:
	 */
571
	se->exec_start = rq_of(cfs_rq)->clock;
572 573 574 575 576 577
}

/**************************************************
 * Scheduling class queueing methods:
 */

578 579 580 581 582 583 584 585 586 587 588 589 590
#if defined CONFIG_SMP && defined CONFIG_FAIR_GROUP_SCHED
static void
add_cfs_task_weight(struct cfs_rq *cfs_rq, unsigned long weight)
{
	cfs_rq->task_weight += weight;
}
#else
static inline void
add_cfs_task_weight(struct cfs_rq *cfs_rq, unsigned long weight)
{
}
#endif

591 592 593 594
static void
account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
	update_load_add(&cfs_rq->load, se->load.weight);
595 596
	if (!parent_entity(se))
		inc_cpu_load(rq_of(cfs_rq), se->load.weight);
597
	if (entity_is_task(se)) {
598
		add_cfs_task_weight(cfs_rq, se->load.weight);
599 600
		list_add(&se->group_node, &cfs_rq->tasks);
	}
601 602 603 604 605 606 607 608
	cfs_rq->nr_running++;
	se->on_rq = 1;
}

static void
account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
	update_load_sub(&cfs_rq->load, se->load.weight);
609 610
	if (!parent_entity(se))
		dec_cpu_load(rq_of(cfs_rq), se->load.weight);
611
	if (entity_is_task(se)) {
612
		add_cfs_task_weight(cfs_rq, -se->load.weight);
613 614
		list_del_init(&se->group_node);
	}
615 616 617 618
	cfs_rq->nr_running--;
	se->on_rq = 0;
}

619
static void enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
620 621
{
#ifdef CONFIG_SCHEDSTATS
622 623 624 625 626
	struct task_struct *tsk = NULL;

	if (entity_is_task(se))
		tsk = task_of(se);

627
	if (se->sleep_start) {
628
		u64 delta = rq_of(cfs_rq)->clock - se->sleep_start;
629 630 631 632 633 634 635 636 637

		if ((s64)delta < 0)
			delta = 0;

		if (unlikely(delta > se->sleep_max))
			se->sleep_max = delta;

		se->sleep_start = 0;
		se->sum_sleep_runtime += delta;
A
Arjan van de Ven 已提交
638

639 640
		if (tsk)
			account_scheduler_latency(tsk, delta >> 10, 1);
641 642
	}
	if (se->block_start) {
643
		u64 delta = rq_of(cfs_rq)->clock - se->block_start;
644 645 646 647 648 649 650 651 652

		if ((s64)delta < 0)
			delta = 0;

		if (unlikely(delta > se->block_max))
			se->block_max = delta;

		se->block_start = 0;
		se->sum_sleep_runtime += delta;
I
Ingo Molnar 已提交
653

654
		if (tsk) {
655 656 657 658 659
			if (tsk->in_iowait) {
				se->iowait_sum += delta;
				se->iowait_count++;
			}

660 661 662 663 664 665 666 667 668 669 670
			/*
			 * Blocking time is in units of nanosecs, so shift by
			 * 20 to get a milliseconds-range estimation of the
			 * amount of time that the task spent sleeping:
			 */
			if (unlikely(prof_on == SLEEP_PROFILING)) {
				profile_hits(SLEEP_PROFILING,
						(void *)get_wchan(tsk),
						delta >> 20);
			}
			account_scheduler_latency(tsk, delta >> 10, 0);
I
Ingo Molnar 已提交
671
		}
672 673 674 675
	}
#endif
}

P
Peter Zijlstra 已提交
676 677 678 679 680 681 682 683 684 685 686 687 688
static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
#ifdef CONFIG_SCHED_DEBUG
	s64 d = se->vruntime - cfs_rq->min_vruntime;

	if (d < 0)
		d = -d;

	if (d > 3*sysctl_sched_latency)
		schedstat_inc(cfs_rq, nr_spread_over);
#endif
}

689 690 691
static void
place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
{
692
	u64 vruntime = cfs_rq->min_vruntime;
P
Peter Zijlstra 已提交
693

694 695 696 697 698 699
	/*
	 * The 'current' period is already promised to the current tasks,
	 * however the extra weight of the new task will slow them down a
	 * little, place the new task so that it fits in the slot that
	 * stays open at the end.
	 */
P
Peter Zijlstra 已提交
700
	if (initial && sched_feat(START_DEBIT))
701
		vruntime += sched_vslice(cfs_rq, se);
702

I
Ingo Molnar 已提交
703
	if (!initial) {
704
		/* sleeps upto a single latency don't count. */
705 706 707 708
		if (sched_feat(NEW_FAIR_SLEEPERS)) {
			unsigned long thresh = sysctl_sched_latency;

			/*
709 710 711 712
			 * Convert the sleeper threshold into virtual time.
			 * SCHED_IDLE is a special sub-class.  We care about
			 * fairness only relative to other SCHED_IDLE tasks,
			 * all of which have the same weight.
713
			 */
714
			if (sched_feat(NORMALIZED_SLEEPER) &&
715 716
					(!entity_is_task(se) ||
					 task_of(se)->policy != SCHED_IDLE))
717 718 719 720
				thresh = calc_delta_fair(thresh, se);

			vruntime -= thresh;
		}
721

722 723
		/* ensure we never gain time by being placed backwards. */
		vruntime = max_vruntime(se->vruntime, vruntime);
724 725
	}

P
Peter Zijlstra 已提交
726
	se->vruntime = vruntime;
727 728
}

729
static void
730
enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int wakeup)
731 732
{
	/*
733
	 * Update run-time statistics of the 'current'.
734
	 */
735
	update_curr(cfs_rq);
P
Peter Zijlstra 已提交
736
	account_entity_enqueue(cfs_rq, se);
737

I
Ingo Molnar 已提交
738
	if (wakeup) {
739
		place_entity(cfs_rq, se, 0);
740
		enqueue_sleeper(cfs_rq, se);
I
Ingo Molnar 已提交
741
	}
742

743
	update_stats_enqueue(cfs_rq, se);
P
Peter Zijlstra 已提交
744
	check_spread(cfs_rq, se);
745 746
	if (se != cfs_rq->curr)
		__enqueue_entity(cfs_rq, se);
747 748
}

P
Peter Zijlstra 已提交
749
static void __clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
P
Peter Zijlstra 已提交
750 751 752 753 754 755 756 757
{
	if (cfs_rq->last == se)
		cfs_rq->last = NULL;

	if (cfs_rq->next == se)
		cfs_rq->next = NULL;
}

P
Peter Zijlstra 已提交
758 759 760 761 762 763
static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
	for_each_sched_entity(se)
		__clear_buddies(cfs_rq_of(se), se);
}

764
static void
765
dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int sleep)
766
{
767 768 769 770 771
	/*
	 * Update run-time statistics of the 'current'.
	 */
	update_curr(cfs_rq);

772
	update_stats_dequeue(cfs_rq, se);
773
	if (sleep) {
P
Peter Zijlstra 已提交
774
#ifdef CONFIG_SCHEDSTATS
775 776 777 778
		if (entity_is_task(se)) {
			struct task_struct *tsk = task_of(se);

			if (tsk->state & TASK_INTERRUPTIBLE)
779
				se->sleep_start = rq_of(cfs_rq)->clock;
780
			if (tsk->state & TASK_UNINTERRUPTIBLE)
781
				se->block_start = rq_of(cfs_rq)->clock;
782
		}
783
#endif
P
Peter Zijlstra 已提交
784 785
	}

P
Peter Zijlstra 已提交
786
	clear_buddies(cfs_rq, se);
P
Peter Zijlstra 已提交
787

788
	if (se != cfs_rq->curr)
789 790
		__dequeue_entity(cfs_rq, se);
	account_entity_dequeue(cfs_rq, se);
791
	update_min_vruntime(cfs_rq);
792 793 794 795 796
}

/*
 * Preempt the current task with a newly woken task if needed:
 */
797
static void
I
Ingo Molnar 已提交
798
check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
799
{
800 801
	unsigned long ideal_runtime, delta_exec;

P
Peter Zijlstra 已提交
802
	ideal_runtime = sched_slice(cfs_rq, curr);
803
	delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
804
	if (delta_exec > ideal_runtime) {
805
		resched_task(rq_of(cfs_rq)->curr);
806 807 808 809 810 811
		/*
		 * The current task ran long enough, ensure it doesn't get
		 * re-elected due to buddy favours.
		 */
		clear_buddies(cfs_rq, curr);
	}
812 813
}

814
static void
815
set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
816
{
817 818 819 820 821 822 823 824 825 826 827
	/* 'current' is not kept within the tree. */
	if (se->on_rq) {
		/*
		 * Any task has to be enqueued before it get to execute on
		 * a CPU. So account for the time it spent waiting on the
		 * runqueue.
		 */
		update_stats_wait_end(cfs_rq, se);
		__dequeue_entity(cfs_rq, se);
	}

828
	update_stats_curr_start(cfs_rq, se);
829
	cfs_rq->curr = se;
I
Ingo Molnar 已提交
830 831 832 833 834 835
#ifdef CONFIG_SCHEDSTATS
	/*
	 * Track our maximum slice length, if the CPU's load is at
	 * least twice that of our own weight (i.e. dont track it
	 * when there are only lesser-weight tasks around):
	 */
836
	if (rq_of(cfs_rq)->load.weight >= 2*se->load.weight) {
I
Ingo Molnar 已提交
837 838 839 840
		se->slice_max = max(se->slice_max,
			se->sum_exec_runtime - se->prev_sum_exec_runtime);
	}
#endif
841
	se->prev_sum_exec_runtime = se->sum_exec_runtime;
842 843
}

844 845 846
static int
wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se);

847
static struct sched_entity *pick_next_entity(struct cfs_rq *cfs_rq)
848
{
849 850
	struct sched_entity *se = __pick_next_entity(cfs_rq);

P
Peter Zijlstra 已提交
851 852
	if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, se) < 1)
		return cfs_rq->next;
853

P
Peter Zijlstra 已提交
854 855 856 857
	if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, se) < 1)
		return cfs_rq->last;

	return se;
858 859
}

860
static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
861 862 863 864 865 866
{
	/*
	 * If still on the runqueue then deactivate_task()
	 * was not called and update_curr() has to be done:
	 */
	if (prev->on_rq)
867
		update_curr(cfs_rq);
868

P
Peter Zijlstra 已提交
869
	check_spread(cfs_rq, prev);
870
	if (prev->on_rq) {
871
		update_stats_wait_start(cfs_rq, prev);
872 873 874
		/* Put 'current' back into the tree. */
		__enqueue_entity(cfs_rq, prev);
	}
875
	cfs_rq->curr = NULL;
876 877
}

P
Peter Zijlstra 已提交
878 879
static void
entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
880 881
{
	/*
882
	 * Update run-time statistics of the 'current'.
883
	 */
884
	update_curr(cfs_rq);
885

P
Peter Zijlstra 已提交
886 887 888 889 890
#ifdef CONFIG_SCHED_HRTICK
	/*
	 * queued ticks are scheduled to match the slice, so don't bother
	 * validating it and just reschedule.
	 */
891 892 893 894
	if (queued) {
		resched_task(rq_of(cfs_rq)->curr);
		return;
	}
P
Peter Zijlstra 已提交
895 896 897 898 899 900 901 902
	/*
	 * don't let the period tick interfere with the hrtick preemption
	 */
	if (!sched_feat(DOUBLE_TICK) &&
			hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
		return;
#endif

903
	if (cfs_rq->nr_running > 1 || !sched_feat(WAKEUP_PREEMPT))
I
Ingo Molnar 已提交
904
		check_preempt_tick(cfs_rq, curr);
905 906 907 908 909 910
}

/**************************************************
 * CFS operations on tasks:
 */

P
Peter Zijlstra 已提交
911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933
#ifdef CONFIG_SCHED_HRTICK
static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
{
	struct sched_entity *se = &p->se;
	struct cfs_rq *cfs_rq = cfs_rq_of(se);

	WARN_ON(task_rq(p) != rq);

	if (hrtick_enabled(rq) && cfs_rq->nr_running > 1) {
		u64 slice = sched_slice(cfs_rq, se);
		u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
		s64 delta = slice - ran;

		if (delta < 0) {
			if (rq->curr == p)
				resched_task(p);
			return;
		}

		/*
		 * Don't schedule slices shorter than 10000ns, that just
		 * doesn't make sense. Rely on vruntime for fairness.
		 */
934
		if (rq->curr != p)
935
			delta = max_t(s64, 10000LL, delta);
P
Peter Zijlstra 已提交
936

937
		hrtick_start(rq, delta);
P
Peter Zijlstra 已提交
938 939
	}
}
940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955

/*
 * called from enqueue/dequeue and updates the hrtick when the
 * current task is from our class and nr_running is low enough
 * to matter.
 */
static void hrtick_update(struct rq *rq)
{
	struct task_struct *curr = rq->curr;

	if (curr->sched_class != &fair_sched_class)
		return;

	if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency)
		hrtick_start_fair(rq, curr);
}
956
#else /* !CONFIG_SCHED_HRTICK */
P
Peter Zijlstra 已提交
957 958 959 960
static inline void
hrtick_start_fair(struct rq *rq, struct task_struct *p)
{
}
961 962 963 964

static inline void hrtick_update(struct rq *rq)
{
}
P
Peter Zijlstra 已提交
965 966
#endif

967 968 969 970 971
/*
 * The enqueue_task method is called before nr_running is
 * increased. Here we update the fair scheduling stats and
 * then put the task into the rbtree:
 */
972
static void enqueue_task_fair(struct rq *rq, struct task_struct *p, int wakeup)
973 974
{
	struct cfs_rq *cfs_rq;
975
	struct sched_entity *se = &p->se;
976 977

	for_each_sched_entity(se) {
978
		if (se->on_rq)
979 980
			break;
		cfs_rq = cfs_rq_of(se);
981
		enqueue_entity(cfs_rq, se, wakeup);
982
		wakeup = 1;
983
	}
P
Peter Zijlstra 已提交
984

985
	hrtick_update(rq);
986 987 988 989 990 991 992
}

/*
 * The dequeue_task method is called before nr_running is
 * decreased. We remove the task from the rbtree and
 * update the fair scheduling stats:
 */
993
static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int sleep)
994 995
{
	struct cfs_rq *cfs_rq;
996
	struct sched_entity *se = &p->se;
997 998 999

	for_each_sched_entity(se) {
		cfs_rq = cfs_rq_of(se);
1000
		dequeue_entity(cfs_rq, se, sleep);
1001
		/* Don't dequeue parent if it has other entities besides us */
1002
		if (cfs_rq->load.weight)
1003
			break;
1004
		sleep = 1;
1005
	}
P
Peter Zijlstra 已提交
1006

1007
	hrtick_update(rq);
1008 1009 1010
}

/*
1011 1012 1013
 * sched_yield() support is very simple - we dequeue and enqueue.
 *
 * If compat_yield is turned on then we requeue to the end of the tree.
1014
 */
1015
static void yield_task_fair(struct rq *rq)
1016
{
1017 1018 1019
	struct task_struct *curr = rq->curr;
	struct cfs_rq *cfs_rq = task_cfs_rq(curr);
	struct sched_entity *rightmost, *se = &curr->se;
1020 1021

	/*
1022 1023 1024 1025 1026
	 * Are we the only task in the tree?
	 */
	if (unlikely(cfs_rq->nr_running == 1))
		return;

P
Peter Zijlstra 已提交
1027 1028
	clear_buddies(cfs_rq, se);

1029
	if (likely(!sysctl_sched_compat_yield) && curr->policy != SCHED_BATCH) {
1030
		update_rq_clock(rq);
1031
		/*
1032
		 * Update run-time statistics of the 'current'.
1033
		 */
D
Dmitry Adamushko 已提交
1034
		update_curr(cfs_rq);
1035 1036 1037 1038 1039

		return;
	}
	/*
	 * Find the rightmost entry in the rbtree:
1040
	 */
D
Dmitry Adamushko 已提交
1041
	rightmost = __pick_last_entity(cfs_rq);
1042 1043 1044
	/*
	 * Already in the rightmost position?
	 */
1045
	if (unlikely(!rightmost || entity_before(rightmost, se)))
1046 1047 1048 1049
		return;

	/*
	 * Minimally necessary key value to be last in the tree:
D
Dmitry Adamushko 已提交
1050 1051
	 * Upon rescheduling, sched_class::put_prev_task() will place
	 * 'current' within the tree based on its new key value.
1052
	 */
1053
	se->vruntime = rightmost->vruntime + 1;
1054 1055
}

1056 1057 1058 1059 1060
/*
 * wake_idle() will wake a task on an idle cpu if task->cpu is
 * not idle and an idle cpu is available.  The span of cpus to
 * search starts with cpus closest then further out as needed,
 * so we always favor a closer, idle cpu.
1061
 * Domains may include CPUs that are not usable for migration,
1062
 * hence we need to mask them out (rq->rd->online)
1063 1064 1065 1066
 *
 * Returns the CPU we should wake onto.
 */
#if defined(ARCH_HAS_SCHED_WAKE_IDLE)
1067 1068 1069

#define cpu_rd_active(cpu, rq) cpumask_test_cpu(cpu, rq->rd->online)

1070 1071 1072 1073
static int wake_idle(int cpu, struct task_struct *p)
{
	struct sched_domain *sd;
	int i;
1074 1075
	unsigned int chosen_wakeup_cpu;
	int this_cpu;
1076
	struct rq *task_rq = task_rq(p);
1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092

	/*
	 * At POWERSAVINGS_BALANCE_WAKEUP level, if both this_cpu and prev_cpu
	 * are idle and this is not a kernel thread and this task's affinity
	 * allows it to be moved to preferred cpu, then just move!
	 */

	this_cpu = smp_processor_id();
	chosen_wakeup_cpu =
		cpu_rq(this_cpu)->rd->sched_mc_preferred_wakeup_cpu;

	if (sched_mc_power_savings >= POWERSAVINGS_BALANCE_WAKEUP &&
		idle_cpu(cpu) && idle_cpu(this_cpu) &&
		p->mm && !(p->flags & PF_KTHREAD) &&
		cpu_isset(chosen_wakeup_cpu, p->cpus_allowed))
		return chosen_wakeup_cpu;
1093 1094 1095 1096 1097 1098 1099 1100 1101 1102

	/*
	 * If it is idle, then it is the best cpu to run this task.
	 *
	 * This cpu is also the best, if it has more than one task already.
	 * Siblings must be also busy(in most cases) as they didn't already
	 * pickup the extra load from this cpu and hence we need not check
	 * sibling runqueue info. This will avoid the checks and cache miss
	 * penalities associated with that.
	 */
1103
	if (idle_cpu(cpu) || cpu_rq(cpu)->cfs.nr_running > 1)
1104 1105 1106
		return cpu;

	for_each_domain(cpu, sd) {
1107 1108
		if ((sd->flags & SD_WAKE_IDLE)
		    || ((sd->flags & SD_WAKE_IDLE_FAR)
1109
			&& !task_hot(p, task_rq->clock, sd))) {
1110 1111
			for_each_cpu_and(i, sched_domain_span(sd),
					 &p->cpus_allowed) {
1112
				if (cpu_rd_active(i, task_rq) && idle_cpu(i)) {
1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125
					if (i != task_cpu(p)) {
						schedstat_inc(p,
						       se.nr_wakeups_idle);
					}
					return i;
				}
			}
		} else {
			break;
		}
	}
	return cpu;
}
1126
#else /* !ARCH_HAS_SCHED_WAKE_IDLE*/
1127 1128 1129 1130 1131 1132 1133
static inline int wake_idle(int cpu, struct task_struct *p)
{
	return cpu;
}
#endif

#ifdef CONFIG_SMP
1134

1135
#ifdef CONFIG_FAIR_GROUP_SCHED
1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156
/*
 * effective_load() calculates the load change as seen from the root_task_group
 *
 * Adding load to a group doesn't make a group heavier, but can cause movement
 * of group shares between cpus. Assuming the shares were perfectly aligned one
 * can calculate the shift in shares.
 *
 * The problem is that perfectly aligning the shares is rather expensive, hence
 * we try to avoid doing that too often - see update_shares(), which ratelimits
 * this change.
 *
 * We compensate this by not only taking the current delta into account, but
 * also considering the delta between when the shares were last adjusted and
 * now.
 *
 * We still saw a performance dip, some tracing learned us that between
 * cgroup:/ and cgroup:/foo balancing the number of affine wakeups increased
 * significantly. Therefore try to bias the error in direction of failing
 * the affine wakeup.
 *
 */
1157 1158
static long effective_load(struct task_group *tg, int cpu,
		long wl, long wg)
1159
{
P
Peter Zijlstra 已提交
1160
	struct sched_entity *se = tg->se[cpu];
1161 1162 1163 1164

	if (!tg->parent)
		return wl;

1165 1166 1167 1168 1169 1170 1171
	/*
	 * By not taking the decrease of shares on the other cpu into
	 * account our error leans towards reducing the affine wakeups.
	 */
	if (!wl && sched_feat(ASYM_EFF_LOAD))
		return wl;

P
Peter Zijlstra 已提交
1172
	for_each_sched_entity(se) {
1173
		long S, rw, s, a, b;
1174 1175 1176 1177 1178 1179 1180 1181 1182
		long more_w;

		/*
		 * Instead of using this increment, also add the difference
		 * between when the shares were last updated and now.
		 */
		more_w = se->my_q->load.weight - se->my_q->rq_weight;
		wl += more_w;
		wg += more_w;
P
Peter Zijlstra 已提交
1183 1184 1185

		S = se->my_q->tg->shares;
		s = se->my_q->shares;
1186
		rw = se->my_q->rq_weight;
1187

1188 1189
		a = S*(rw + wl);
		b = S*rw + s*wg;
P
Peter Zijlstra 已提交
1190

1191 1192 1193 1194 1195
		wl = s*(a-b);

		if (likely(b))
			wl /= b;

1196 1197 1198 1199 1200 1201 1202
		/*
		 * Assume the group is already running and will
		 * thus already be accounted for in the weight.
		 *
		 * That is, moving shares between CPUs, does not
		 * alter the group weight.
		 */
P
Peter Zijlstra 已提交
1203 1204
		wg = 0;
	}
1205

P
Peter Zijlstra 已提交
1206
	return wl;
1207
}
P
Peter Zijlstra 已提交
1208

1209
#else
P
Peter Zijlstra 已提交
1210

1211 1212
static inline unsigned long effective_load(struct task_group *tg, int cpu,
		unsigned long wl, unsigned long wg)
P
Peter Zijlstra 已提交
1213
{
1214
	return wl;
1215
}
P
Peter Zijlstra 已提交
1216

1217 1218
#endif

1219
static int
1220
wake_affine(struct sched_domain *this_sd, struct rq *this_rq,
I
Ingo Molnar 已提交
1221 1222
	    struct task_struct *p, int prev_cpu, int this_cpu, int sync,
	    int idx, unsigned long load, unsigned long this_load,
1223 1224
	    unsigned int imbalance)
{
1225 1226
	struct task_struct *curr = this_rq->curr;
	struct task_group *tg;
1227 1228
	unsigned long tl = this_load;
	unsigned long tl_per_task;
1229
	unsigned long weight;
1230
	int balanced;
1231

1232
	if (!(this_sd->flags & SD_WAKE_AFFINE) || !sched_feat(AFFINE_WAKEUPS))
1233 1234
		return 0;

1235 1236 1237 1238
	if (sync && (curr->se.avg_overlap > sysctl_sched_migration_cost ||
			p->se.avg_overlap > sysctl_sched_migration_cost))
		sync = 0;

1239 1240 1241 1242 1243
	/*
	 * If sync wakeup then subtract the (maximum possible)
	 * effect of the currently running task from the load
	 * of the current CPU:
	 */
1244 1245 1246 1247 1248 1249 1250
	if (sync) {
		tg = task_group(current);
		weight = current->se.load.weight;

		tl += effective_load(tg, this_cpu, -weight, -weight);
		load += effective_load(tg, prev_cpu, 0, -weight);
	}
1251

1252 1253
	tg = task_group(p);
	weight = p->se.load.weight;
1254

1255 1256
	balanced = 100*(tl + effective_load(tg, this_cpu, weight, weight)) <=
		imbalance*(load + effective_load(tg, prev_cpu, 0, weight));
1257

1258
	/*
I
Ingo Molnar 已提交
1259 1260 1261
	 * If the currently running task will sleep within
	 * a reasonable amount of time then attract this newly
	 * woken task:
1262
	 */
1263 1264
	if (sync && balanced)
		return 1;
1265 1266 1267 1268

	schedstat_inc(p, se.nr_wakeups_affine_attempts);
	tl_per_task = cpu_avg_load_per_task(this_cpu);

1269 1270
	if (balanced || (tl <= load && tl + target_load(prev_cpu, idx) <=
			tl_per_task)) {
1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283
		/*
		 * This domain has SD_WAKE_AFFINE and
		 * p is cache cold in this domain, and
		 * there is no bad imbalance.
		 */
		schedstat_inc(this_sd, ttwu_move_affine);
		schedstat_inc(p, se.nr_wakeups_affine);

		return 1;
	}
	return 0;
}

1284 1285 1286
static int select_task_rq_fair(struct task_struct *p, int sync)
{
	struct sched_domain *sd, *this_sd = NULL;
1287
	int prev_cpu, this_cpu, new_cpu;
1288
	unsigned long load, this_load;
1289
	struct rq *this_rq;
1290 1291
	unsigned int imbalance;
	int idx;
1292

1293 1294
	prev_cpu	= task_cpu(p);
	this_cpu	= smp_processor_id();
I
Ingo Molnar 已提交
1295
	this_rq		= cpu_rq(this_cpu);
1296
	new_cpu		= prev_cpu;
1297

1298 1299
	if (prev_cpu == this_cpu)
		goto out;
1300 1301 1302 1303
	/*
	 * 'this_sd' is the first domain that both
	 * this_cpu and prev_cpu are present in:
	 */
1304
	for_each_domain(this_cpu, sd) {
1305
		if (cpumask_test_cpu(prev_cpu, sched_domain_span(sd))) {
1306 1307 1308 1309 1310
			this_sd = sd;
			break;
		}
	}

1311
	if (unlikely(!cpumask_test_cpu(this_cpu, &p->cpus_allowed)))
1312
		goto out;
1313 1314 1315 1316

	/*
	 * Check for affine wakeup and passive balancing possibilities.
	 */
1317
	if (!this_sd)
1318
		goto out;
1319

1320 1321 1322 1323
	idx = this_sd->wake_idx;

	imbalance = 100 + (this_sd->imbalance_pct - 100) / 2;

1324
	load = source_load(prev_cpu, idx);
1325 1326
	this_load = target_load(this_cpu, idx);

1327
	if (wake_affine(this_sd, this_rq, p, prev_cpu, this_cpu, sync, idx,
I
Ingo Molnar 已提交
1328 1329 1330
				     load, this_load, imbalance))
		return this_cpu;

1331 1332 1333 1334 1335 1336 1337 1338
	/*
	 * Start passive balancing when half the imbalance_pct
	 * limit is reached.
	 */
	if (this_sd->flags & SD_WAKE_BALANCE) {
		if (imbalance*this_load <= 100*load) {
			schedstat_inc(this_sd, ttwu_move_balance);
			schedstat_inc(p, se.nr_wakeups_passive);
I
Ingo Molnar 已提交
1339
			return this_cpu;
1340 1341 1342
		}
	}

1343
out:
1344 1345 1346 1347
	return wake_idle(new_cpu, p);
}
#endif /* CONFIG_SMP */

P
Peter Zijlstra 已提交
1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377
/*
 * Adaptive granularity
 *
 * se->avg_wakeup gives the average time a task runs until it does a wakeup,
 * with the limit of wakeup_gran -- when it never does a wakeup.
 *
 * So the smaller avg_wakeup is the faster we want this task to preempt,
 * but we don't want to treat the preemptee unfairly and therefore allow it
 * to run for at least the amount of time we'd like to run.
 *
 * NOTE: we use 2*avg_wakeup to increase the probability of actually doing one
 *
 * NOTE: we use *nr_running to scale with load, this nicely matches the
 *       degrading latency on load.
 */
static unsigned long
adaptive_gran(struct sched_entity *curr, struct sched_entity *se)
{
	u64 this_run = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
	u64 expected_wakeup = 2*se->avg_wakeup * cfs_rq_of(se)->nr_running;
	u64 gran = 0;

	if (this_run < expected_wakeup)
		gran = expected_wakeup - this_run;

	return min_t(s64, gran, sysctl_sched_wakeup_granularity);
}

static unsigned long
wakeup_gran(struct sched_entity *curr, struct sched_entity *se)
1378 1379 1380
{
	unsigned long gran = sysctl_sched_wakeup_granularity;

P
Peter Zijlstra 已提交
1381 1382 1383
	if (cfs_rq_of(curr)->curr && sched_feat(ADAPTIVE_GRAN))
		gran = adaptive_gran(curr, se);

1384
	/*
P
Peter Zijlstra 已提交
1385 1386
	 * Since its curr running now, convert the gran from real-time
	 * to virtual-time in his units.
1387
	 */
P
Peter Zijlstra 已提交
1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404
	if (sched_feat(ASYM_GRAN)) {
		/*
		 * By using 'se' instead of 'curr' we penalize light tasks, so
		 * they get preempted easier. That is, if 'se' < 'curr' then
		 * the resulting gran will be larger, therefore penalizing the
		 * lighter, if otoh 'se' > 'curr' then the resulting gran will
		 * be smaller, again penalizing the lighter task.
		 *
		 * This is especially important for buddies when the leftmost
		 * task is higher priority than the buddy.
		 */
		if (unlikely(se->load.weight != NICE_0_LOAD))
			gran = calc_delta_fair(gran, se);
	} else {
		if (unlikely(curr->load.weight != NICE_0_LOAD))
			gran = calc_delta_fair(gran, curr);
	}
1405 1406 1407 1408

	return gran;
}

1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430
/*
 * Should 'se' preempt 'curr'.
 *
 *             |s1
 *        |s2
 *   |s3
 *         g
 *      |<--->|c
 *
 *  w(c, s1) = -1
 *  w(c, s2) =  0
 *  w(c, s3) =  1
 *
 */
static int
wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se)
{
	s64 gran, vdiff = curr->vruntime - se->vruntime;

	if (vdiff <= 0)
		return -1;

P
Peter Zijlstra 已提交
1431
	gran = wakeup_gran(curr, se);
1432 1433 1434 1435 1436 1437
	if (vdiff > gran)
		return 1;

	return 0;
}

1438 1439
static void set_last_buddy(struct sched_entity *se)
{
1440 1441 1442 1443
	if (likely(task_of(se)->policy != SCHED_IDLE)) {
		for_each_sched_entity(se)
			cfs_rq_of(se)->last = se;
	}
1444 1445 1446 1447
}

static void set_next_buddy(struct sched_entity *se)
{
1448 1449 1450 1451
	if (likely(task_of(se)->policy != SCHED_IDLE)) {
		for_each_sched_entity(se)
			cfs_rq_of(se)->next = se;
	}
1452 1453
}

1454 1455 1456
/*
 * Preempt the current task with a newly woken task if needed:
 */
1457
static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int sync)
1458 1459
{
	struct task_struct *curr = rq->curr;
1460
	struct sched_entity *se = &curr->se, *pse = &p->se;
1461
	struct cfs_rq *cfs_rq = task_cfs_rq(curr);
1462

1463
	update_curr(cfs_rq);
P
Peter Zijlstra 已提交
1464

1465
	if (unlikely(rt_prio(p->prio))) {
1466 1467 1468
		resched_task(curr);
		return;
	}
1469

P
Peter Zijlstra 已提交
1470 1471 1472
	if (unlikely(p->sched_class != &fair_sched_class))
		return;

I
Ingo Molnar 已提交
1473 1474 1475
	if (unlikely(se == pse))
		return;

P
Peter Zijlstra 已提交
1476 1477 1478 1479 1480 1481 1482 1483 1484 1485
	/*
	 * Only set the backward buddy when the current task is still on the
	 * rq. This can happen when a wakeup gets interleaved with schedule on
	 * the ->pre_schedule() or idle_balance() point, either of which can
	 * drop the rq lock.
	 *
	 * Also, during early boot the idle thread is in the fair class, for
	 * obvious reasons its a bad idea to schedule back to the idle thread.
	 */
	if (sched_feat(LAST_BUDDY) && likely(se->on_rq && curr != rq->idle))
1486 1487
		set_last_buddy(se);
	set_next_buddy(pse);
P
Peter Zijlstra 已提交
1488

1489 1490 1491 1492 1493 1494 1495
	/*
	 * We can come here with TIF_NEED_RESCHED already set from new task
	 * wake up path.
	 */
	if (test_tsk_need_resched(curr))
		return;

1496
	/*
1497
	 * Batch and idle tasks do not preempt (their preemption is driven by
1498 1499
	 * the tick):
	 */
1500
	if (unlikely(p->policy != SCHED_NORMAL))
1501
		return;
1502

1503 1504 1505
	/* Idle tasks are by definition preempted by everybody. */
	if (unlikely(curr->policy == SCHED_IDLE)) {
		resched_task(curr);
1506
		return;
1507
	}
1508

1509 1510
	if (!sched_feat(WAKEUP_PREEMPT))
		return;
1511

1512 1513 1514
	if (sched_feat(WAKEUP_OVERLAP) && (sync ||
			(se->avg_overlap < sysctl_sched_migration_cost &&
			 pse->avg_overlap < sysctl_sched_migration_cost))) {
1515 1516 1517 1518
		resched_task(curr);
		return;
	}

1519 1520
	find_matching_se(&se, &pse);

1521
	BUG_ON(!pse);
1522

1523 1524
	if (wakeup_preempt_entity(se, pse) == 1)
		resched_task(curr);
1525 1526
}

1527
static struct task_struct *pick_next_task_fair(struct rq *rq)
1528
{
P
Peter Zijlstra 已提交
1529
	struct task_struct *p;
1530 1531 1532 1533 1534 1535 1536
	struct cfs_rq *cfs_rq = &rq->cfs;
	struct sched_entity *se;

	if (unlikely(!cfs_rq->nr_running))
		return NULL;

	do {
1537
		se = pick_next_entity(cfs_rq);
1538 1539 1540 1541
		/*
		 * If se was a buddy, clear it so that it will have to earn
		 * the favour again.
		 */
P
Peter Zijlstra 已提交
1542
		__clear_buddies(cfs_rq, se);
1543
		set_next_entity(cfs_rq, se);
1544 1545 1546
		cfs_rq = group_cfs_rq(se);
	} while (cfs_rq);

P
Peter Zijlstra 已提交
1547 1548 1549 1550
	p = task_of(se);
	hrtick_start_fair(rq, p);

	return p;
1551 1552 1553 1554 1555
}

/*
 * Account for a descheduled task:
 */
1556
static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
1557 1558 1559 1560 1561 1562
{
	struct sched_entity *se = &prev->se;
	struct cfs_rq *cfs_rq;

	for_each_sched_entity(se) {
		cfs_rq = cfs_rq_of(se);
1563
		put_prev_entity(cfs_rq, se);
1564 1565 1566
	}
}

1567
#ifdef CONFIG_SMP
1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578
/**************************************************
 * Fair scheduling class load-balancing methods:
 */

/*
 * Load-balancing iterator. Note: while the runqueue stays locked
 * during the whole iteration, the current task might be
 * dequeued so the iterator has to be dequeue-safe. Here we
 * achieve that by always pre-iterating before returning
 * the current task:
 */
A
Alexey Dobriyan 已提交
1579
static struct task_struct *
1580
__load_balance_iterator(struct cfs_rq *cfs_rq, struct list_head *next)
1581
{
D
Dhaval Giani 已提交
1582 1583
	struct task_struct *p = NULL;
	struct sched_entity *se;
1584

1585 1586 1587
	if (next == &cfs_rq->tasks)
		return NULL;

1588 1589 1590
	se = list_entry(next, struct sched_entity, group_node);
	p = task_of(se);
	cfs_rq->balance_iterator = next->next;
1591

1592 1593 1594 1595 1596 1597 1598
	return p;
}

static struct task_struct *load_balance_start_fair(void *arg)
{
	struct cfs_rq *cfs_rq = arg;

1599
	return __load_balance_iterator(cfs_rq, cfs_rq->tasks.next);
1600 1601 1602 1603 1604 1605
}

static struct task_struct *load_balance_next_fair(void *arg)
{
	struct cfs_rq *cfs_rq = arg;

1606
	return __load_balance_iterator(cfs_rq, cfs_rq->balance_iterator);
1607 1608
}

1609 1610 1611 1612 1613
static unsigned long
__load_balance_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
		unsigned long max_load_move, struct sched_domain *sd,
		enum cpu_idle_type idle, int *all_pinned, int *this_best_prio,
		struct cfs_rq *cfs_rq)
1614
{
1615
	struct rq_iterator cfs_rq_iterator;
1616

1617 1618 1619
	cfs_rq_iterator.start = load_balance_start_fair;
	cfs_rq_iterator.next = load_balance_next_fair;
	cfs_rq_iterator.arg = cfs_rq;
1620

1621 1622 1623
	return balance_tasks(this_rq, this_cpu, busiest,
			max_load_move, sd, idle, all_pinned,
			this_best_prio, &cfs_rq_iterator);
1624 1625
}

1626
#ifdef CONFIG_FAIR_GROUP_SCHED
P
Peter Williams 已提交
1627
static unsigned long
1628
load_balance_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
1629
		  unsigned long max_load_move,
1630 1631
		  struct sched_domain *sd, enum cpu_idle_type idle,
		  int *all_pinned, int *this_best_prio)
1632 1633
{
	long rem_load_move = max_load_move;
1634 1635
	int busiest_cpu = cpu_of(busiest);
	struct task_group *tg;
1636

1637
	rcu_read_lock();
1638
	update_h_load(busiest_cpu);
1639

1640
	list_for_each_entry_rcu(tg, &task_groups, list) {
1641
		struct cfs_rq *busiest_cfs_rq = tg->cfs_rq[busiest_cpu];
1642 1643
		unsigned long busiest_h_load = busiest_cfs_rq->h_load;
		unsigned long busiest_weight = busiest_cfs_rq->load.weight;
S
Srivatsa Vaddagiri 已提交
1644
		u64 rem_load, moved_load;
1645

1646 1647 1648
		/*
		 * empty group
		 */
1649
		if (!busiest_cfs_rq->task_weight)
1650 1651
			continue;

S
Srivatsa Vaddagiri 已提交
1652 1653
		rem_load = (u64)rem_load_move * busiest_weight;
		rem_load = div_u64(rem_load, busiest_h_load + 1);
1654

1655
		moved_load = __load_balance_fair(this_rq, this_cpu, busiest,
1656
				rem_load, sd, idle, all_pinned, this_best_prio,
1657
				tg->cfs_rq[busiest_cpu]);
1658

1659
		if (!moved_load)
1660 1661
			continue;

1662
		moved_load *= busiest_h_load;
S
Srivatsa Vaddagiri 已提交
1663
		moved_load = div_u64(moved_load, busiest_weight + 1);
1664

1665 1666
		rem_load_move -= moved_load;
		if (rem_load_move < 0)
1667 1668
			break;
	}
1669
	rcu_read_unlock();
1670

P
Peter Williams 已提交
1671
	return max_load_move - rem_load_move;
1672
}
1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684
#else
static unsigned long
load_balance_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
		  unsigned long max_load_move,
		  struct sched_domain *sd, enum cpu_idle_type idle,
		  int *all_pinned, int *this_best_prio)
{
	return __load_balance_fair(this_rq, this_cpu, busiest,
			max_load_move, sd, idle, all_pinned,
			this_best_prio, &busiest->cfs);
}
#endif
1685

1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708
static int
move_one_task_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
		   struct sched_domain *sd, enum cpu_idle_type idle)
{
	struct cfs_rq *busy_cfs_rq;
	struct rq_iterator cfs_rq_iterator;

	cfs_rq_iterator.start = load_balance_start_fair;
	cfs_rq_iterator.next = load_balance_next_fair;

	for_each_leaf_cfs_rq(busiest, busy_cfs_rq) {
		/*
		 * pass busy_cfs_rq argument into
		 * load_balance_[start|next]_fair iterators
		 */
		cfs_rq_iterator.arg = busy_cfs_rq;
		if (iter_move_one_task(this_rq, this_cpu, busiest, sd, idle,
				       &cfs_rq_iterator))
		    return 1;
	}

	return 0;
}
1709
#endif /* CONFIG_SMP */
1710

1711 1712 1713
/*
 * scheduler tick hitting a task of our scheduling class:
 */
P
Peter Zijlstra 已提交
1714
static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
1715 1716 1717 1718 1719 1720
{
	struct cfs_rq *cfs_rq;
	struct sched_entity *se = &curr->se;

	for_each_sched_entity(se) {
		cfs_rq = cfs_rq_of(se);
P
Peter Zijlstra 已提交
1721
		entity_tick(cfs_rq, se, queued);
1722 1723 1724 1725 1726 1727 1728 1729 1730 1731
	}
}

/*
 * Share the fairness runtime between parent and child, thus the
 * total amount of pressure for CPU stays equal - new tasks
 * get a chance to run but frequent forkers are not allowed to
 * monopolize the CPU. Note: the parent runqueue is locked,
 * the child is not running yet.
 */
1732
static void task_new_fair(struct rq *rq, struct task_struct *p)
1733 1734
{
	struct cfs_rq *cfs_rq = task_cfs_rq(p);
1735
	struct sched_entity *se = &p->se, *curr = cfs_rq->curr;
1736
	int this_cpu = smp_processor_id();
1737 1738 1739

	sched_info_queued(p);

1740
	update_curr(cfs_rq);
1741
	place_entity(cfs_rq, se, 1);
1742

1743
	/* 'curr' will be NULL if the child belongs to a different group */
1744
	if (sysctl_sched_child_runs_first && this_cpu == task_cpu(p) &&
1745
			curr && entity_before(curr, se)) {
D
Dmitry Adamushko 已提交
1746
		/*
1747 1748 1749
		 * Upon rescheduling, sched_class::put_prev_task() will place
		 * 'current' within the tree based on its new key value.
		 */
1750
		swap(curr->vruntime, se->vruntime);
1751
		resched_task(rq->curr);
1752
	}
1753

1754
	enqueue_task_fair(rq, p, 0);
1755 1756
}

1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772
/*
 * Priority of the task has changed. Check to see if we preempt
 * the current task.
 */
static void prio_changed_fair(struct rq *rq, struct task_struct *p,
			      int oldprio, int running)
{
	/*
	 * Reschedule if we are currently running on this runqueue and
	 * our priority decreased, or if we are not currently running on
	 * this runqueue and our priority is higher than the current's
	 */
	if (running) {
		if (p->prio > oldprio)
			resched_task(rq->curr);
	} else
1773
		check_preempt_curr(rq, p, 0);
1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789
}

/*
 * We switched to the sched_fair class.
 */
static void switched_to_fair(struct rq *rq, struct task_struct *p,
			     int running)
{
	/*
	 * We were most likely switched from sched_rt, so
	 * kick off the schedule if running, otherwise just see
	 * if we can still preempt the current task.
	 */
	if (running)
		resched_task(rq->curr);
	else
1790
		check_preempt_curr(rq, p, 0);
1791 1792
}

1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805
/* Account for a task changing its policy or group.
 *
 * This routine is mostly called to set cfs_rq->curr field when a task
 * migrates between groups/classes.
 */
static void set_curr_task_fair(struct rq *rq)
{
	struct sched_entity *se = &rq->curr->se;

	for_each_sched_entity(se)
		set_next_entity(cfs_rq_of(se), se);
}

P
Peter Zijlstra 已提交
1806 1807 1808 1809 1810 1811 1812 1813 1814 1815
#ifdef CONFIG_FAIR_GROUP_SCHED
static void moved_group_fair(struct task_struct *p)
{
	struct cfs_rq *cfs_rq = task_cfs_rq(p);

	update_curr(cfs_rq);
	place_entity(cfs_rq, &p->se, 1);
}
#endif

1816 1817 1818
/*
 * All the scheduling class methods:
 */
1819 1820
static const struct sched_class fair_sched_class = {
	.next			= &idle_sched_class,
1821 1822 1823 1824
	.enqueue_task		= enqueue_task_fair,
	.dequeue_task		= dequeue_task_fair,
	.yield_task		= yield_task_fair,

I
Ingo Molnar 已提交
1825
	.check_preempt_curr	= check_preempt_wakeup,
1826 1827 1828 1829

	.pick_next_task		= pick_next_task_fair,
	.put_prev_task		= put_prev_task_fair,

1830
#ifdef CONFIG_SMP
L
Li Zefan 已提交
1831 1832
	.select_task_rq		= select_task_rq_fair,

1833
	.load_balance		= load_balance_fair,
1834
	.move_one_task		= move_one_task_fair,
1835
#endif
1836

1837
	.set_curr_task          = set_curr_task_fair,
1838 1839
	.task_tick		= task_tick_fair,
	.task_new		= task_new_fair,
1840 1841 1842

	.prio_changed		= prio_changed_fair,
	.switched_to		= switched_to_fair,
P
Peter Zijlstra 已提交
1843 1844 1845 1846

#ifdef CONFIG_FAIR_GROUP_SCHED
	.moved_group		= moved_group_fair,
#endif
1847 1848 1849
};

#ifdef CONFIG_SCHED_DEBUG
1850
static void print_cfs_stats(struct seq_file *m, int cpu)
1851 1852 1853
{
	struct cfs_rq *cfs_rq;

1854
	rcu_read_lock();
1855
	for_each_leaf_cfs_rq(cpu_rq(cpu), cfs_rq)
1856
		print_cfs_rq(m, cpu, cfs_rq);
1857
	rcu_read_unlock();
1858 1859
}
#endif