tree_plugin.h 86.1 KB
Newer Older
1 2 3
/*
 * Read-Copy Update mechanism for mutual exclusion (tree-based version)
 * Internal non-public definitions that provide either classic
P
Paul E. McKenney 已提交
4
 * or preemptible semantics.
5 6 7 8 9 10 11 12 13 14 15 16
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
17 18
 * along with this program; if not, you can access it online at
 * http://www.gnu.org/licenses/gpl-2.0.html.
19 20 21 22 23 24 25 26
 *
 * Copyright Red Hat, 2009
 * Copyright IBM Corporation, 2009
 *
 * Author: Ingo Molnar <mingo@elte.hu>
 *	   Paul E. McKenney <paulmck@linux.vnet.ibm.com>
 */

27
#include <linux/delay.h>
P
Paul E. McKenney 已提交
28
#include <linux/gfp.h>
29
#include <linux/oom.h>
30
#include <linux/smpboot.h>
31
#include "../time/tick-internal.h"
32

33
#ifdef CONFIG_RCU_BOOST
34

35
#include "../locking/rtmutex_common.h"
36

37 38 39 40 41 42 43 44 45
/*
 * Control variables for per-CPU and per-rcu_node kthreads.  These
 * handle all flavors of RCU.
 */
static DEFINE_PER_CPU(struct task_struct *, rcu_cpu_kthread_task);
DEFINE_PER_CPU(unsigned int, rcu_cpu_kthread_status);
DEFINE_PER_CPU(unsigned int, rcu_cpu_kthread_loops);
DEFINE_PER_CPU(char, rcu_cpu_has_work);

46 47 48 49 50 51 52 53 54 55 56
#else /* #ifdef CONFIG_RCU_BOOST */

/*
 * Some architectures do not define rt_mutexes, but if !CONFIG_RCU_BOOST,
 * all uses are in dead code.  Provide a definition to keep the compiler
 * happy, but add WARN_ON_ONCE() to complain if used in the wrong place.
 * This probably needs to be excluded from -rt builds.
 */
#define rt_mutex_owner(a) ({ WARN_ON_ONCE(1); NULL; })

#endif /* #else #ifdef CONFIG_RCU_BOOST */
57

P
Paul E. McKenney 已提交
58 59 60
#ifdef CONFIG_RCU_NOCB_CPU
static cpumask_var_t rcu_nocb_mask; /* CPUs to have callbacks offloaded. */
static bool have_rcu_nocb_mask;	    /* Was rcu_nocb_mask allocated? */
61
static bool __read_mostly rcu_nocb_poll;    /* Offload kthread are to poll. */
P
Paul E. McKenney 已提交
62 63
#endif /* #ifdef CONFIG_RCU_NOCB_CPU */

64 65 66 67 68 69 70
/*
 * Check the RCU kernel configuration parameters and print informative
 * messages about anything out of the ordinary.  If you like #ifdef, you
 * will love this function.
 */
static void __init rcu_bootup_announce_oddness(void)
{
71 72
	if (IS_ENABLED(CONFIG_RCU_TRACE))
		pr_info("\tRCU debugfs-based tracing is enabled.\n");
73 74
	if ((IS_ENABLED(CONFIG_64BIT) && RCU_FANOUT != 64) ||
	    (!IS_ENABLED(CONFIG_64BIT) && RCU_FANOUT != 32))
75
		pr_info("\tCONFIG_RCU_FANOUT set to non-default value of %d\n",
76
		       RCU_FANOUT);
77
	if (rcu_fanout_exact)
78 79 80 81 82 83 84
		pr_info("\tHierarchical RCU autobalancing is disabled.\n");
	if (IS_ENABLED(CONFIG_RCU_FAST_NO_HZ))
		pr_info("\tRCU dyntick-idle grace-period acceleration is enabled.\n");
	if (IS_ENABLED(CONFIG_PROVE_RCU))
		pr_info("\tRCU lockdep checking is enabled.\n");
	if (IS_ENABLED(CONFIG_RCU_TORTURE_TEST_RUNNABLE))
		pr_info("\tRCU torture testing starts during boot.\n");
85 86
	if (RCU_NUM_LVLS >= 4)
		pr_info("\tFour(or more)-level hierarchy is enabled.\n");
87
	if (RCU_FANOUT_LEAF != 16)
88
		pr_info("\tBuild-time adjustment of leaf fanout to %d.\n",
89 90
			RCU_FANOUT_LEAF);
	if (rcu_fanout_leaf != RCU_FANOUT_LEAF)
91
		pr_info("\tBoot-time adjustment of leaf fanout to %d.\n", rcu_fanout_leaf);
92
	if (nr_cpu_ids != NR_CPUS)
93
		pr_info("\tRCU restricting CPUs from NR_CPUS=%d to nr_cpu_ids=%d.\n", NR_CPUS, nr_cpu_ids);
94 95
	if (IS_ENABLED(CONFIG_RCU_BOOST))
		pr_info("\tRCU kthread priority: %d.\n", kthread_prio);
96 97
}

98
#ifdef CONFIG_PREEMPT_RCU
99

100
RCU_STATE_INITIALIZER(rcu_preempt, 'p', call_rcu);
101
static struct rcu_state *const rcu_state_p = &rcu_preempt_state;
102
static struct rcu_data __percpu *const rcu_data_p = &rcu_preempt_data;
103

104
static int rcu_preempted_readers_exp(struct rcu_node *rnp);
105 106
static void rcu_report_exp_rnp(struct rcu_state *rsp, struct rcu_node *rnp,
			       bool wake);
107

108 109 110
/*
 * Tell them what RCU they are running.
 */
111
static void __init rcu_bootup_announce(void)
112
{
113
	pr_info("Preemptible hierarchical RCU implementation.\n");
114
	rcu_bootup_announce_oddness();
115 116 117
}

/*
P
Paul E. McKenney 已提交
118
 * Record a preemptible-RCU quiescent state for the specified CPU.  Note
119 120 121
 * that this just means that the task currently running on the CPU is
 * not in a quiescent state.  There might be any number of tasks blocked
 * while in an RCU read-side critical section.
122
 *
123 124
 * As with the other rcu_*_qs() functions, callers to this function
 * must disable preemption.
125
 */
126
static void rcu_preempt_qs(void)
127
{
128
	if (!__this_cpu_read(rcu_data_p->passed_quiesce)) {
129
		trace_rcu_grace_period(TPS("rcu_preempt"),
130
				       __this_cpu_read(rcu_data_p->gpnum),
131
				       TPS("cpuqs"));
132
		__this_cpu_write(rcu_data_p->passed_quiesce, 1);
133 134 135
		barrier(); /* Coordinate with rcu_preempt_check_callbacks(). */
		current->rcu_read_unlock_special.b.need_qs = false;
	}
136 137 138
}

/*
139 140 141
 * We have entered the scheduler, and the current task might soon be
 * context-switched away from.  If this task is in an RCU read-side
 * critical section, we will no longer be able to rely on the CPU to
142 143 144 145 146 147
 * record that fact, so we enqueue the task on the blkd_tasks list.
 * The task will dequeue itself when it exits the outermost enclosing
 * RCU read-side critical section.  Therefore, the current grace period
 * cannot be permitted to complete until the blkd_tasks list entries
 * predating the current grace period drain, in other words, until
 * rnp->gp_tasks becomes NULL.
148 149
 *
 * Caller must disable preemption.
150
 */
151
static void rcu_preempt_note_context_switch(void)
152 153
{
	struct task_struct *t = current;
154
	unsigned long flags;
155 156 157
	struct rcu_data *rdp;
	struct rcu_node *rnp;

158
	if (t->rcu_read_lock_nesting > 0 &&
159
	    !t->rcu_read_unlock_special.b.blocked) {
160 161

		/* Possibly blocking in an RCU read-side critical section. */
162
		rdp = this_cpu_ptr(rcu_state_p->rda);
163
		rnp = rdp->mynode;
P
Paul E. McKenney 已提交
164
		raw_spin_lock_irqsave(&rnp->lock, flags);
165
		smp_mb__after_unlock_lock();
166
		t->rcu_read_unlock_special.b.blocked = true;
167
		t->rcu_blocked_node = rnp;
168 169 170 171 172 173 174 175 176

		/*
		 * If this CPU has already checked in, then this task
		 * will hold up the next grace period rather than the
		 * current grace period.  Queue the task accordingly.
		 * If the task is queued for the current grace period
		 * (i.e., this CPU has not yet passed through a quiescent
		 * state for the current grace period), then as long
		 * as that task remains queued, the current grace period
177 178 179 180 181 182
		 * cannot end.  Note that there is some uncertainty as
		 * to exactly when the current grace period started.
		 * We take a conservative approach, which can result
		 * in unnecessarily waiting on tasks that started very
		 * slightly after the current grace period began.  C'est
		 * la vie!!!
183 184 185
		 *
		 * But first, note that the current CPU must still be
		 * on line!
186
		 */
187
		WARN_ON_ONCE((rdp->grpmask & rcu_rnp_online_cpus(rnp)) == 0);
188
		WARN_ON_ONCE(!list_empty(&t->rcu_node_entry));
189 190 191
		if ((rnp->qsmask & rdp->grpmask) && rnp->gp_tasks != NULL) {
			list_add(&t->rcu_node_entry, rnp->gp_tasks->prev);
			rnp->gp_tasks = &t->rcu_node_entry;
192 193
			if (IS_ENABLED(CONFIG_RCU_BOOST) &&
			    rnp->boost_tasks != NULL)
194
				rnp->boost_tasks = rnp->gp_tasks;
195 196 197 198 199
		} else {
			list_add(&t->rcu_node_entry, &rnp->blkd_tasks);
			if (rnp->qsmask & rdp->grpmask)
				rnp->gp_tasks = &t->rcu_node_entry;
		}
200 201 202 203 204
		trace_rcu_preempt_task(rdp->rsp->name,
				       t->pid,
				       (rnp->qsmask & rdp->grpmask)
				       ? rnp->gpnum
				       : rnp->gpnum + 1);
P
Paul E. McKenney 已提交
205
		raw_spin_unlock_irqrestore(&rnp->lock, flags);
206
	} else if (t->rcu_read_lock_nesting < 0 &&
207
		   t->rcu_read_unlock_special.s) {
208 209 210 211 212 213

		/*
		 * Complete exit from RCU read-side critical section on
		 * behalf of preempted instance of __rcu_read_unlock().
		 */
		rcu_read_unlock_special(t);
214 215 216 217 218 219 220 221 222 223 224
	}

	/*
	 * Either we were not in an RCU read-side critical section to
	 * begin with, or we have now recorded that critical section
	 * globally.  Either way, we can now note a quiescent state
	 * for this CPU.  Again, if we were in an RCU read-side critical
	 * section, and if that critical section was blocking the current
	 * grace period, then the fact that the task has been enqueued
	 * means that we continue to block the current grace period.
	 */
225
	rcu_preempt_qs();
226 227
}

228 229 230 231 232
/*
 * Check for preempted RCU readers blocking the current grace period
 * for the specified rcu_node structure.  If the caller needs a reliable
 * answer, it must hold the rcu_node's ->lock.
 */
233
static int rcu_preempt_blocked_readers_cgp(struct rcu_node *rnp)
234
{
235
	return rnp->gp_tasks != NULL;
236 237
}

238 239 240 241 242 243 244 245 246 247 248 249 250 251 252
/*
 * Advance a ->blkd_tasks-list pointer to the next entry, instead
 * returning NULL if at the end of the list.
 */
static struct list_head *rcu_next_node_entry(struct task_struct *t,
					     struct rcu_node *rnp)
{
	struct list_head *np;

	np = t->rcu_node_entry.next;
	if (np == &rnp->blkd_tasks)
		np = NULL;
	return np;
}

253 254 255 256 257 258 259 260 261
/*
 * Return true if the specified rcu_node structure has tasks that were
 * preempted within an RCU read-side critical section.
 */
static bool rcu_preempt_has_tasks(struct rcu_node *rnp)
{
	return !list_empty(&rnp->blkd_tasks);
}

262 263 264 265 266
/*
 * Handle special cases during rcu_read_unlock(), such as needing to
 * notify RCU core processing or task having blocked during the RCU
 * read-side critical section.
 */
267
void rcu_read_unlock_special(struct task_struct *t)
268
{
269 270 271
	bool empty_exp;
	bool empty_norm;
	bool empty_exp_now;
272
	unsigned long flags;
273
	struct list_head *np;
274
	bool drop_boost_mutex = false;
275
	struct rcu_node *rnp;
276
	union rcu_special special;
277 278 279 280 281 282 283 284 285

	/* NMI handlers cannot block and cannot safely manipulate state. */
	if (in_nmi())
		return;

	local_irq_save(flags);

	/*
	 * If RCU core is waiting for this CPU to exit critical section,
286 287
	 * let it know that we have done so.  Because irqs are disabled,
	 * t->rcu_read_unlock_special cannot change.
288 289
	 */
	special = t->rcu_read_unlock_special;
290
	if (special.b.need_qs) {
291
		rcu_preempt_qs();
292
		t->rcu_read_unlock_special.b.need_qs = false;
293
		if (!t->rcu_read_unlock_special.s) {
294 295 296
			local_irq_restore(flags);
			return;
		}
297 298
	}

299
	/* Hardware IRQ handlers cannot block, complain if they get here. */
300 301 302 303 304 305 306
	if (in_irq() || in_serving_softirq()) {
		lockdep_rcu_suspicious(__FILE__, __LINE__,
				       "rcu_read_unlock() from irq or softirq with blocking in critical section!!!\n");
		pr_alert("->rcu_read_unlock_special: %#x (b: %d, nq: %d)\n",
			 t->rcu_read_unlock_special.s,
			 t->rcu_read_unlock_special.b.blocked,
			 t->rcu_read_unlock_special.b.need_qs);
307 308 309 310 311
		local_irq_restore(flags);
		return;
	}

	/* Clean up if blocked during RCU read-side critical section. */
312 313
	if (special.b.blocked) {
		t->rcu_read_unlock_special.b.blocked = false;
314

315
		/*
316 317 318 319 320
		 * Remove this task from the list it blocked on.  The task
		 * now remains queued on the rcu_node corresponding to
		 * the CPU it first blocked on, so the first attempt to
		 * acquire the task's rcu_node's ->lock will succeed.
		 * Keep the loop and add a WARN_ON() out of sheer paranoia.
321 322
		 */
		for (;;) {
323
			rnp = t->rcu_blocked_node;
P
Paul E. McKenney 已提交
324
			raw_spin_lock(&rnp->lock);  /* irqs already disabled. */
325
			smp_mb__after_unlock_lock();
326
			if (rnp == t->rcu_blocked_node)
327
				break;
328
			WARN_ON_ONCE(1);
P
Paul E. McKenney 已提交
329
			raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
330
		}
331
		empty_norm = !rcu_preempt_blocked_readers_cgp(rnp);
332 333
		empty_exp = !rcu_preempted_readers_exp(rnp);
		smp_mb(); /* ensure expedited fastpath sees end of RCU c-s. */
334
		np = rcu_next_node_entry(t, rnp);
335
		list_del_init(&t->rcu_node_entry);
336
		t->rcu_blocked_node = NULL;
337
		trace_rcu_unlock_preempted_task(TPS("rcu_preempt"),
338
						rnp->gpnum, t->pid);
339 340 341 342
		if (&t->rcu_node_entry == rnp->gp_tasks)
			rnp->gp_tasks = np;
		if (&t->rcu_node_entry == rnp->exp_tasks)
			rnp->exp_tasks = np;
343 344 345 346 347 348
		if (IS_ENABLED(CONFIG_RCU_BOOST)) {
			if (&t->rcu_node_entry == rnp->boost_tasks)
				rnp->boost_tasks = np;
			/* Snapshot ->boost_mtx ownership w/rnp->lock held. */
			drop_boost_mutex = rt_mutex_owner(&rnp->boost_mtx) == t;
		}
349 350 351 352

		/*
		 * If this was the last task on the current list, and if
		 * we aren't waiting on any CPUs, report the quiescent state.
353 354
		 * Note that rcu_report_unblock_qs_rnp() releases rnp->lock,
		 * so we must take a snapshot of the expedited state.
355
		 */
356
		empty_exp_now = !rcu_preempted_readers_exp(rnp);
357
		if (!empty_norm && !rcu_preempt_blocked_readers_cgp(rnp)) {
358
			trace_rcu_quiescent_state_report(TPS("preempt_rcu"),
359 360 361 362 363 364
							 rnp->gpnum,
							 0, rnp->qsmask,
							 rnp->level,
							 rnp->grplo,
							 rnp->grphi,
							 !!rnp->gp_tasks);
365
			rcu_report_unblock_qs_rnp(rcu_state_p, rnp, flags);
366
		} else {
367
			raw_spin_unlock_irqrestore(&rnp->lock, flags);
368
		}
369

370
		/* Unboost if we were boosted. */
371
		if (IS_ENABLED(CONFIG_RCU_BOOST) && drop_boost_mutex)
372
			rt_mutex_unlock(&rnp->boost_mtx);
373

374 375 376 377
		/*
		 * If this was the last task on the expedited lists,
		 * then we need to report up the rcu_node hierarchy.
		 */
378
		if (!empty_exp && empty_exp_now)
379
			rcu_report_exp_rnp(rcu_state_p, rnp, true);
380 381
	} else {
		local_irq_restore(flags);
382 383 384
	}
}

385 386 387 388 389 390 391 392 393
/*
 * Dump detailed information for all tasks blocking the current RCU
 * grace period on the specified rcu_node structure.
 */
static void rcu_print_detail_task_stall_rnp(struct rcu_node *rnp)
{
	unsigned long flags;
	struct task_struct *t;

394
	raw_spin_lock_irqsave(&rnp->lock, flags);
395 396 397 398
	if (!rcu_preempt_blocked_readers_cgp(rnp)) {
		raw_spin_unlock_irqrestore(&rnp->lock, flags);
		return;
	}
399
	t = list_entry(rnp->gp_tasks->prev,
400 401 402 403
		       struct task_struct, rcu_node_entry);
	list_for_each_entry_continue(t, &rnp->blkd_tasks, rcu_node_entry)
		sched_show_task(t);
	raw_spin_unlock_irqrestore(&rnp->lock, flags);
404 405 406 407 408 409 410 411 412 413 414 415 416 417 418
}

/*
 * Dump detailed information for all tasks blocking the current RCU
 * grace period.
 */
static void rcu_print_detail_task_stall(struct rcu_state *rsp)
{
	struct rcu_node *rnp = rcu_get_root(rsp);

	rcu_print_detail_task_stall_rnp(rnp);
	rcu_for_each_leaf_node(rsp, rnp)
		rcu_print_detail_task_stall_rnp(rnp);
}

419 420
static void rcu_print_task_stall_begin(struct rcu_node *rnp)
{
421
	pr_err("\tTasks blocked on level-%d rcu_node (CPUs %d-%d):",
422 423 424 425 426
	       rnp->level, rnp->grplo, rnp->grphi);
}

static void rcu_print_task_stall_end(void)
{
427
	pr_cont("\n");
428 429
}

430 431 432 433
/*
 * Scan the current list of tasks blocked within RCU read-side critical
 * sections, printing out the tid of each.
 */
434
static int rcu_print_task_stall(struct rcu_node *rnp)
435 436
{
	struct task_struct *t;
437
	int ndetected = 0;
438

439
	if (!rcu_preempt_blocked_readers_cgp(rnp))
440
		return 0;
441
	rcu_print_task_stall_begin(rnp);
442
	t = list_entry(rnp->gp_tasks->prev,
443
		       struct task_struct, rcu_node_entry);
444
	list_for_each_entry_continue(t, &rnp->blkd_tasks, rcu_node_entry) {
445
		pr_cont(" P%d", t->pid);
446 447
		ndetected++;
	}
448
	rcu_print_task_stall_end();
449
	return ndetected;
450 451
}

452 453 454 455 456 457
/*
 * Check that the list of blocked tasks for the newly completed grace
 * period is in fact empty.  It is a serious bug to complete a grace
 * period that still has RCU readers blocked!  This function must be
 * invoked -before- updating this rnp's ->gpnum, and the rnp's ->lock
 * must be held by the caller.
458 459 460
 *
 * Also, if there are blocked tasks on the list, they automatically
 * block the newly created grace period, so set up ->gp_tasks accordingly.
461 462 463
 */
static void rcu_preempt_check_blocked_tasks(struct rcu_node *rnp)
{
464
	WARN_ON_ONCE(rcu_preempt_blocked_readers_cgp(rnp));
465
	if (rcu_preempt_has_tasks(rnp))
466
		rnp->gp_tasks = rnp->blkd_tasks.next;
467
	WARN_ON_ONCE(rnp->qsmask);
468 469
}

470 471 472 473 474 475 476
/*
 * Check for a quiescent state from the current CPU.  When a task blocks,
 * the task is recorded in the corresponding CPU's rcu_node structure,
 * which is checked elsewhere.
 *
 * Caller must disable hard irqs.
 */
477
static void rcu_preempt_check_callbacks(void)
478 479 480 481
{
	struct task_struct *t = current;

	if (t->rcu_read_lock_nesting == 0) {
482
		rcu_preempt_qs();
483 484
		return;
	}
485
	if (t->rcu_read_lock_nesting > 0 &&
486 487
	    __this_cpu_read(rcu_data_p->qs_pending) &&
	    !__this_cpu_read(rcu_data_p->passed_quiesce))
488
		t->rcu_read_unlock_special.b.need_qs = true;
489 490
}

491 492
#ifdef CONFIG_RCU_BOOST

493 494
static void rcu_preempt_do_callbacks(void)
{
495
	rcu_do_batch(rcu_state_p, this_cpu_ptr(rcu_data_p));
496 497
}

498 499
#endif /* #ifdef CONFIG_RCU_BOOST */

500
/*
P
Paul E. McKenney 已提交
501
 * Queue a preemptible-RCU callback for invocation after a grace period.
502 503 504
 */
void call_rcu(struct rcu_head *head, void (*func)(struct rcu_head *rcu))
{
505
	__call_rcu(head, func, rcu_state_p, -1, 0);
506 507 508
}
EXPORT_SYMBOL_GPL(call_rcu);

509 510 511 512 513
/**
 * synchronize_rcu - wait until a grace period has elapsed.
 *
 * Control will return to the caller some time after a full grace
 * period has elapsed, in other words after all currently executing RCU
514 515 516 517 518
 * read-side critical sections have completed.  Note, however, that
 * upon return from synchronize_rcu(), the caller might well be executing
 * concurrently with new RCU read-side critical sections that began while
 * synchronize_rcu() was waiting.  RCU read-side critical sections are
 * delimited by rcu_read_lock() and rcu_read_unlock(), and may be nested.
519 520 521
 *
 * See the description of synchronize_sched() for more detailed information
 * on memory ordering guarantees.
522 523 524
 */
void synchronize_rcu(void)
{
525 526 527 528
	RCU_LOCKDEP_WARN(lock_is_held(&rcu_bh_lock_map) ||
			 lock_is_held(&rcu_lock_map) ||
			 lock_is_held(&rcu_sched_lock_map),
			 "Illegal synchronize_rcu() in RCU read-side critical section");
529 530
	if (!rcu_scheduler_active)
		return;
531
	if (rcu_gp_is_expedited())
532 533 534
		synchronize_rcu_expedited();
	else
		wait_rcu_gp(call_rcu);
535 536 537
}
EXPORT_SYMBOL_GPL(synchronize_rcu);

538 539
/*
 * Snapshot the tasks blocking the newly started preemptible-RCU expedited
540 541 542 543
 * grace period for the specified rcu_node structure, phase 1.  If there
 * are such tasks, set the ->expmask bits up the rcu_node tree and also
 * set the ->expmask bits on the leaf rcu_node structures to tell phase 2
 * that work is needed here.
544
 *
545
 * Caller must hold the root rcu_node's exp_funnel_mutex.
546 547
 */
static void
548
sync_rcu_preempt_exp_init1(struct rcu_state *rsp, struct rcu_node *rnp)
549
{
550
	unsigned long flags;
551 552
	unsigned long mask;
	struct rcu_node *rnp_up;
553

554
	raw_spin_lock_irqsave(&rnp->lock, flags);
555
	smp_mb__after_unlock_lock();
556 557
	WARN_ON_ONCE(rnp->expmask);
	WARN_ON_ONCE(rnp->exp_tasks);
558
	if (!rcu_preempt_has_tasks(rnp)) {
559
		/* No blocked tasks, nothing to do. */
560
		raw_spin_unlock_irqrestore(&rnp->lock, flags);
561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587
		return;
	}
	/* Call for Phase 2 and propagate ->expmask bits up the tree. */
	rnp->expmask = 1;
	rnp_up = rnp;
	while (rnp_up->parent) {
		mask = rnp_up->grpmask;
		rnp_up = rnp_up->parent;
		if (rnp_up->expmask & mask)
			break;
		raw_spin_lock(&rnp_up->lock); /* irqs already off */
		smp_mb__after_unlock_lock();
		rnp_up->expmask |= mask;
		raw_spin_unlock(&rnp_up->lock); /* irqs still off */
	}
	raw_spin_unlock_irqrestore(&rnp->lock, flags);
}

/*
 * Snapshot the tasks blocking the newly started preemptible-RCU expedited
 * grace period for the specified rcu_node structure, phase 2.  If the
 * leaf rcu_node structure has its ->expmask field set, check for tasks.
 * If there are some, clear ->expmask and set ->exp_tasks accordingly,
 * then initiate RCU priority boosting.  Otherwise, clear ->expmask and
 * invoke rcu_report_exp_rnp() to clear out the upper-level ->expmask bits,
 * enabling rcu_read_unlock_special() to do the bit-clearing.
 *
588
 * Caller must hold the root rcu_node's exp_funnel_mutex.
589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610
 */
static void
sync_rcu_preempt_exp_init2(struct rcu_state *rsp, struct rcu_node *rnp)
{
	unsigned long flags;

	raw_spin_lock_irqsave(&rnp->lock, flags);
	smp_mb__after_unlock_lock();
	if (!rnp->expmask) {
		/* Phase 1 didn't do anything, so Phase 2 doesn't either. */
		raw_spin_unlock_irqrestore(&rnp->lock, flags);
		return;
	}

	/* Phase 1 is over. */
	rnp->expmask = 0;

	/*
	 * If there are still blocked tasks, set up ->exp_tasks so that
	 * rcu_read_unlock_special() will wake us and then boost them.
	 */
	if (rcu_preempt_has_tasks(rnp)) {
611
		rnp->exp_tasks = rnp->blkd_tasks.next;
612
		rcu_initiate_boost(rnp, flags);  /* releases rnp->lock */
613
		return;
614
	}
615 616 617 618

	/* No longer any blocked tasks, so undo bit setting. */
	raw_spin_unlock_irqrestore(&rnp->lock, flags);
	rcu_report_exp_rnp(rsp, rnp, false);
619 620
}

621 622 623 624 625 626 627 628 629 630 631
/**
 * synchronize_rcu_expedited - Brute-force RCU grace period
 *
 * Wait for an RCU-preempt grace period, but expedite it.  The basic
 * idea is to invoke synchronize_sched_expedited() to push all the tasks to
 * the ->blkd_tasks lists and wait for this list to drain.  This consumes
 * significant time on all CPUs and is unfriendly to real-time workloads,
 * so is thus not recommended for any sort of common-case code.
 * In fact, if you are using synchronize_rcu_expedited() in a loop,
 * please restructure your code to batch your updates, and then Use a
 * single synchronize_rcu() instead.
632 633 634
 */
void synchronize_rcu_expedited(void)
{
635
	struct rcu_node *rnp;
636
	struct rcu_node *rnp_unlock;
637
	struct rcu_state *rsp = rcu_state_p;
638
	unsigned long s;
639

640
	s = rcu_exp_gp_seq_snap(rsp);
641

642 643 644
	rnp_unlock = exp_funnel_lock(rsp, s);
	if (rnp_unlock == NULL)
		return;  /* Someone else did our work for us. */
645

646
	rcu_exp_gp_seq_start(rsp);
647

648
	/* force all RCU readers onto ->blkd_tasks lists. */
649 650
	synchronize_sched_expedited();

651 652 653 654 655 656
	/*
	 * Snapshot current state of ->blkd_tasks lists into ->expmask.
	 * Phase 1 sets bits and phase 2 permits rcu_read_unlock_special()
	 * to start clearing them.  Doing this in one phase leads to
	 * strange races between setting and clearing bits, so just say "no"!
	 */
657
	rcu_for_each_leaf_node(rsp, rnp)
658
		sync_rcu_preempt_exp_init1(rsp, rnp);
659
	rcu_for_each_leaf_node(rsp, rnp)
660
		sync_rcu_preempt_exp_init2(rsp, rnp);
661

662
	/* Wait for snapshotted ->blkd_tasks lists to drain. */
663
	rnp = rcu_get_root(rsp);
664
	wait_event(rsp->expedited_wq,
665 666 667
		   sync_rcu_preempt_exp_done(rnp));

	/* Clean up and exit. */
668
	rcu_exp_gp_seq_end(rsp);
669
	mutex_unlock(&rnp_unlock->exp_funnel_mutex);
670 671 672
}
EXPORT_SYMBOL_GPL(synchronize_rcu_expedited);

673 674
/**
 * rcu_barrier - Wait until all in-flight call_rcu() callbacks complete.
675 676 677 678 679
 *
 * Note that this primitive does not necessarily wait for an RCU grace period
 * to complete.  For example, if there are no RCU callbacks queued anywhere
 * in the system, then rcu_barrier() is within its rights to return
 * immediately, without waiting for anything, much less an RCU grace period.
680 681 682
 */
void rcu_barrier(void)
{
683
	_rcu_barrier(rcu_state_p);
684 685 686
}
EXPORT_SYMBOL_GPL(rcu_barrier);

687
/*
P
Paul E. McKenney 已提交
688
 * Initialize preemptible RCU's state structures.
689 690 691
 */
static void __init __rcu_init_preempt(void)
{
692
	rcu_init_one(rcu_state_p, rcu_data_p);
693 694
}

695 696 697 698 699 700 701 702 703 704 705 706 707 708
/*
 * Check for a task exiting while in a preemptible-RCU read-side
 * critical section, clean up if so.  No need to issue warnings,
 * as debug_check_no_locks_held() already does this if lockdep
 * is enabled.
 */
void exit_rcu(void)
{
	struct task_struct *t = current;

	if (likely(list_empty(&current->rcu_node_entry)))
		return;
	t->rcu_read_lock_nesting = 1;
	barrier();
709
	t->rcu_read_unlock_special.b.blocked = true;
710 711 712
	__rcu_read_unlock();
}

713
#else /* #ifdef CONFIG_PREEMPT_RCU */
714

715
static struct rcu_state *const rcu_state_p = &rcu_sched_state;
716
static struct rcu_data __percpu *const rcu_data_p = &rcu_sched_data;
717

718 719 720
/*
 * Tell them what RCU they are running.
 */
721
static void __init rcu_bootup_announce(void)
722
{
723
	pr_info("Hierarchical RCU implementation.\n");
724
	rcu_bootup_announce_oddness();
725 726
}

727 728 729 730
/*
 * Because preemptible RCU does not exist, we never have to check for
 * CPUs being in quiescent states.
 */
731
static void rcu_preempt_note_context_switch(void)
732 733 734
{
}

735
/*
P
Paul E. McKenney 已提交
736
 * Because preemptible RCU does not exist, there are never any preempted
737 738
 * RCU readers.
 */
739
static int rcu_preempt_blocked_readers_cgp(struct rcu_node *rnp)
740 741 742 743
{
	return 0;
}

744 745 746 747
/*
 * Because there is no preemptible RCU, there can be no readers blocked.
 */
static bool rcu_preempt_has_tasks(struct rcu_node *rnp)
748
{
749
	return false;
750 751
}

752
/*
P
Paul E. McKenney 已提交
753
 * Because preemptible RCU does not exist, we never have to check for
754 755 756 757 758 759
 * tasks blocked within RCU read-side critical sections.
 */
static void rcu_print_detail_task_stall(struct rcu_state *rsp)
{
}

760
/*
P
Paul E. McKenney 已提交
761
 * Because preemptible RCU does not exist, we never have to check for
762 763
 * tasks blocked within RCU read-side critical sections.
 */
764
static int rcu_print_task_stall(struct rcu_node *rnp)
765
{
766
	return 0;
767 768
}

769
/*
P
Paul E. McKenney 已提交
770
 * Because there is no preemptible RCU, there can be no readers blocked,
771 772
 * so there is no need to check for blocked tasks.  So check only for
 * bogus qsmask values.
773 774 775
 */
static void rcu_preempt_check_blocked_tasks(struct rcu_node *rnp)
{
776
	WARN_ON_ONCE(rnp->qsmask);
777 778
}

779
/*
P
Paul E. McKenney 已提交
780
 * Because preemptible RCU does not exist, it never has any callbacks
781 782
 * to check.
 */
783
static void rcu_preempt_check_callbacks(void)
784 785 786
{
}

787 788
/*
 * Wait for an rcu-preempt grace period, but make it happen quickly.
P
Paul E. McKenney 已提交
789
 * But because preemptible RCU does not exist, map to rcu-sched.
790 791 792 793 794 795 796
 */
void synchronize_rcu_expedited(void)
{
	synchronize_sched_expedited();
}
EXPORT_SYMBOL_GPL(synchronize_rcu_expedited);

797
/*
P
Paul E. McKenney 已提交
798
 * Because preemptible RCU does not exist, rcu_barrier() is just
799 800 801 802 803 804 805 806
 * another name for rcu_barrier_sched().
 */
void rcu_barrier(void)
{
	rcu_barrier_sched();
}
EXPORT_SYMBOL_GPL(rcu_barrier);

807
/*
P
Paul E. McKenney 已提交
808
 * Because preemptible RCU does not exist, it need not be initialized.
809 810 811 812 813
 */
static void __init __rcu_init_preempt(void)
{
}

814 815 816 817 818 819 820 821
/*
 * Because preemptible RCU does not exist, tasks cannot possibly exit
 * while in preemptible RCU read-side critical sections.
 */
void exit_rcu(void)
{
}

822
#endif /* #else #ifdef CONFIG_PREEMPT_RCU */
823

824 825
#ifdef CONFIG_RCU_BOOST

826
#include "../locking/rtmutex_common.h"
827

828 829 830 831
#ifdef CONFIG_RCU_TRACE

static void rcu_initiate_boost_trace(struct rcu_node *rnp)
{
832
	if (!rcu_preempt_has_tasks(rnp))
833 834 835 836 837 838 839 840
		rnp->n_balk_blkd_tasks++;
	else if (rnp->exp_tasks == NULL && rnp->gp_tasks == NULL)
		rnp->n_balk_exp_gp_tasks++;
	else if (rnp->gp_tasks != NULL && rnp->boost_tasks != NULL)
		rnp->n_balk_boost_tasks++;
	else if (rnp->gp_tasks != NULL && rnp->qsmask != 0)
		rnp->n_balk_notblocked++;
	else if (rnp->gp_tasks != NULL &&
841
		 ULONG_CMP_LT(jiffies, rnp->boost_time))
842 843 844 845 846 847 848 849 850 851 852 853 854
		rnp->n_balk_notyet++;
	else
		rnp->n_balk_nos++;
}

#else /* #ifdef CONFIG_RCU_TRACE */

static void rcu_initiate_boost_trace(struct rcu_node *rnp)
{
}

#endif /* #else #ifdef CONFIG_RCU_TRACE */

T
Thomas Gleixner 已提交
855 856 857 858 859 860 861 862 863 864
static void rcu_wake_cond(struct task_struct *t, int status)
{
	/*
	 * If the thread is yielding, only wake it when this
	 * is invoked from idle
	 */
	if (status != RCU_KTHREAD_YIELDING || is_idle_task(current))
		wake_up_process(t);
}

865 866 867 868 869 870 871 872 873 874 875 876 877 878
/*
 * Carry out RCU priority boosting on the task indicated by ->exp_tasks
 * or ->boost_tasks, advancing the pointer to the next task in the
 * ->blkd_tasks list.
 *
 * Note that irqs must be enabled: boosting the task can block.
 * Returns 1 if there are more tasks needing to be boosted.
 */
static int rcu_boost(struct rcu_node *rnp)
{
	unsigned long flags;
	struct task_struct *t;
	struct list_head *tb;

879 880
	if (READ_ONCE(rnp->exp_tasks) == NULL &&
	    READ_ONCE(rnp->boost_tasks) == NULL)
881 882 883
		return 0;  /* Nothing left to boost. */

	raw_spin_lock_irqsave(&rnp->lock, flags);
884
	smp_mb__after_unlock_lock();
885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900

	/*
	 * Recheck under the lock: all tasks in need of boosting
	 * might exit their RCU read-side critical sections on their own.
	 */
	if (rnp->exp_tasks == NULL && rnp->boost_tasks == NULL) {
		raw_spin_unlock_irqrestore(&rnp->lock, flags);
		return 0;
	}

	/*
	 * Preferentially boost tasks blocking expedited grace periods.
	 * This cannot starve the normal grace periods because a second
	 * expedited grace period must boost all blocked tasks, including
	 * those blocking the pre-existing normal grace period.
	 */
901
	if (rnp->exp_tasks != NULL) {
902
		tb = rnp->exp_tasks;
903 904
		rnp->n_exp_boosts++;
	} else {
905
		tb = rnp->boost_tasks;
906 907 908
		rnp->n_normal_boosts++;
	}
	rnp->n_tasks_boosted++;
909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926

	/*
	 * We boost task t by manufacturing an rt_mutex that appears to
	 * be held by task t.  We leave a pointer to that rt_mutex where
	 * task t can find it, and task t will release the mutex when it
	 * exits its outermost RCU read-side critical section.  Then
	 * simply acquiring this artificial rt_mutex will boost task
	 * t's priority.  (Thanks to tglx for suggesting this approach!)
	 *
	 * Note that task t must acquire rnp->lock to remove itself from
	 * the ->blkd_tasks list, which it will do from exit() if from
	 * nowhere else.  We therefore are guaranteed that task t will
	 * stay around at least until we drop rnp->lock.  Note that
	 * rnp->lock also resolves races between our priority boosting
	 * and task t's exiting its outermost RCU read-side critical
	 * section.
	 */
	t = container_of(tb, struct task_struct, rcu_node_entry);
927
	rt_mutex_init_proxy_locked(&rnp->boost_mtx, t);
928
	raw_spin_unlock_irqrestore(&rnp->lock, flags);
929 930 931
	/* Lock only for side effect: boosts task t's priority. */
	rt_mutex_lock(&rnp->boost_mtx);
	rt_mutex_unlock(&rnp->boost_mtx);  /* Then keep lockdep happy. */
932

933 934
	return READ_ONCE(rnp->exp_tasks) != NULL ||
	       READ_ONCE(rnp->boost_tasks) != NULL;
935 936 937
}

/*
938
 * Priority-boosting kthread, one per leaf rcu_node.
939 940 941 942 943 944 945
 */
static int rcu_boost_kthread(void *arg)
{
	struct rcu_node *rnp = (struct rcu_node *)arg;
	int spincnt = 0;
	int more2boost;

946
	trace_rcu_utilization(TPS("Start boost kthread@init"));
947
	for (;;) {
948
		rnp->boost_kthread_status = RCU_KTHREAD_WAITING;
949
		trace_rcu_utilization(TPS("End boost kthread@rcu_wait"));
950
		rcu_wait(rnp->boost_tasks || rnp->exp_tasks);
951
		trace_rcu_utilization(TPS("Start boost kthread@rcu_wait"));
952
		rnp->boost_kthread_status = RCU_KTHREAD_RUNNING;
953 954 955 956 957 958
		more2boost = rcu_boost(rnp);
		if (more2boost)
			spincnt++;
		else
			spincnt = 0;
		if (spincnt > 10) {
T
Thomas Gleixner 已提交
959
			rnp->boost_kthread_status = RCU_KTHREAD_YIELDING;
960
			trace_rcu_utilization(TPS("End boost kthread@rcu_yield"));
T
Thomas Gleixner 已提交
961
			schedule_timeout_interruptible(2);
962
			trace_rcu_utilization(TPS("Start boost kthread@rcu_yield"));
963 964 965
			spincnt = 0;
		}
	}
966
	/* NOTREACHED */
967
	trace_rcu_utilization(TPS("End boost kthread@notreached"));
968 969 970 971 972 973 974 975 976
	return 0;
}

/*
 * Check to see if it is time to start boosting RCU readers that are
 * blocking the current grace period, and, if so, tell the per-rcu_node
 * kthread to start boosting them.  If there is an expedited grace
 * period in progress, it is always time to boost.
 *
977 978 979
 * The caller must hold rnp->lock, which this function releases.
 * The ->boost_kthread_task is immortal, so we don't need to worry
 * about it going away.
980
 */
981
static void rcu_initiate_boost(struct rcu_node *rnp, unsigned long flags)
982
	__releases(rnp->lock)
983 984 985
{
	struct task_struct *t;

986 987
	if (!rcu_preempt_blocked_readers_cgp(rnp) && rnp->exp_tasks == NULL) {
		rnp->n_balk_exp_gp_tasks++;
988
		raw_spin_unlock_irqrestore(&rnp->lock, flags);
989
		return;
990
	}
991 992 993 994 995 996 997
	if (rnp->exp_tasks != NULL ||
	    (rnp->gp_tasks != NULL &&
	     rnp->boost_tasks == NULL &&
	     rnp->qsmask == 0 &&
	     ULONG_CMP_GE(jiffies, rnp->boost_time))) {
		if (rnp->exp_tasks == NULL)
			rnp->boost_tasks = rnp->gp_tasks;
998
		raw_spin_unlock_irqrestore(&rnp->lock, flags);
999
		t = rnp->boost_kthread_task;
T
Thomas Gleixner 已提交
1000 1001
		if (t)
			rcu_wake_cond(t, rnp->boost_kthread_status);
1002
	} else {
1003
		rcu_initiate_boost_trace(rnp);
1004 1005
		raw_spin_unlock_irqrestore(&rnp->lock, flags);
	}
1006 1007
}

1008 1009 1010 1011 1012 1013 1014 1015 1016
/*
 * Wake up the per-CPU kthread to invoke RCU callbacks.
 */
static void invoke_rcu_callbacks_kthread(void)
{
	unsigned long flags;

	local_irq_save(flags);
	__this_cpu_write(rcu_cpu_has_work, 1);
1017
	if (__this_cpu_read(rcu_cpu_kthread_task) != NULL &&
T
Thomas Gleixner 已提交
1018 1019 1020 1021
	    current != __this_cpu_read(rcu_cpu_kthread_task)) {
		rcu_wake_cond(__this_cpu_read(rcu_cpu_kthread_task),
			      __this_cpu_read(rcu_cpu_kthread_status));
	}
1022 1023 1024
	local_irq_restore(flags);
}

1025 1026 1027 1028 1029 1030
/*
 * Is the current CPU running the RCU-callbacks kthread?
 * Caller must have preemption disabled.
 */
static bool rcu_is_callbacks_kthread(void)
{
1031
	return __this_cpu_read(rcu_cpu_kthread_task) == current;
1032 1033
}

1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048
#define RCU_BOOST_DELAY_JIFFIES DIV_ROUND_UP(CONFIG_RCU_BOOST_DELAY * HZ, 1000)

/*
 * Do priority-boost accounting for the start of a new grace period.
 */
static void rcu_preempt_boost_start_gp(struct rcu_node *rnp)
{
	rnp->boost_time = jiffies + RCU_BOOST_DELAY_JIFFIES;
}

/*
 * Create an RCU-boost kthread for the specified node if one does not
 * already exist.  We only create this kthread for preemptible RCU.
 * Returns zero if all is well, a negated errno otherwise.
 */
1049
static int rcu_spawn_one_boost_kthread(struct rcu_state *rsp,
1050
				       struct rcu_node *rnp)
1051
{
T
Thomas Gleixner 已提交
1052
	int rnp_index = rnp - &rsp->node[0];
1053 1054 1055 1056
	unsigned long flags;
	struct sched_param sp;
	struct task_struct *t;

1057
	if (rcu_state_p != rsp)
1058
		return 0;
T
Thomas Gleixner 已提交
1059

1060
	if (!rcu_scheduler_fully_active || rcu_rnp_online_cpus(rnp) == 0)
T
Thomas Gleixner 已提交
1061 1062
		return 0;

1063
	rsp->boost = 1;
1064 1065 1066
	if (rnp->boost_kthread_task != NULL)
		return 0;
	t = kthread_create(rcu_boost_kthread, (void *)rnp,
1067
			   "rcub/%d", rnp_index);
1068 1069 1070
	if (IS_ERR(t))
		return PTR_ERR(t);
	raw_spin_lock_irqsave(&rnp->lock, flags);
1071
	smp_mb__after_unlock_lock();
1072 1073
	rnp->boost_kthread_task = t;
	raw_spin_unlock_irqrestore(&rnp->lock, flags);
1074
	sp.sched_priority = kthread_prio;
1075
	sched_setscheduler_nocheck(t, SCHED_FIFO, &sp);
1076
	wake_up_process(t); /* get to TASK_INTERRUPTIBLE quickly. */
1077 1078 1079
	return 0;
}

1080 1081
static void rcu_kthread_do_work(void)
{
1082 1083
	rcu_do_batch(&rcu_sched_state, this_cpu_ptr(&rcu_sched_data));
	rcu_do_batch(&rcu_bh_state, this_cpu_ptr(&rcu_bh_data));
1084 1085 1086
	rcu_preempt_do_callbacks();
}

1087
static void rcu_cpu_kthread_setup(unsigned int cpu)
1088 1089 1090
{
	struct sched_param sp;

1091
	sp.sched_priority = kthread_prio;
1092
	sched_setscheduler_nocheck(current, SCHED_FIFO, &sp);
1093 1094
}

1095
static void rcu_cpu_kthread_park(unsigned int cpu)
1096
{
1097
	per_cpu(rcu_cpu_kthread_status, cpu) = RCU_KTHREAD_OFFCPU;
1098 1099
}

1100
static int rcu_cpu_kthread_should_run(unsigned int cpu)
1101
{
1102
	return __this_cpu_read(rcu_cpu_has_work);
1103 1104 1105 1106
}

/*
 * Per-CPU kernel thread that invokes RCU callbacks.  This replaces the
1107 1108
 * RCU softirq used in flavors and configurations of RCU that do not
 * support RCU priority boosting.
1109
 */
1110
static void rcu_cpu_kthread(unsigned int cpu)
1111
{
1112 1113
	unsigned int *statusp = this_cpu_ptr(&rcu_cpu_kthread_status);
	char work, *workp = this_cpu_ptr(&rcu_cpu_has_work);
1114
	int spincnt;
1115

1116
	for (spincnt = 0; spincnt < 10; spincnt++) {
1117
		trace_rcu_utilization(TPS("Start CPU kthread@rcu_wait"));
1118 1119
		local_bh_disable();
		*statusp = RCU_KTHREAD_RUNNING;
1120 1121
		this_cpu_inc(rcu_cpu_kthread_loops);
		local_irq_disable();
1122 1123
		work = *workp;
		*workp = 0;
1124
		local_irq_enable();
1125 1126 1127
		if (work)
			rcu_kthread_do_work();
		local_bh_enable();
1128
		if (*workp == 0) {
1129
			trace_rcu_utilization(TPS("End CPU kthread@rcu_wait"));
1130 1131
			*statusp = RCU_KTHREAD_WAITING;
			return;
1132 1133
		}
	}
1134
	*statusp = RCU_KTHREAD_YIELDING;
1135
	trace_rcu_utilization(TPS("Start CPU kthread@rcu_yield"));
1136
	schedule_timeout_interruptible(2);
1137
	trace_rcu_utilization(TPS("End CPU kthread@rcu_yield"));
1138
	*statusp = RCU_KTHREAD_WAITING;
1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149
}

/*
 * Set the per-rcu_node kthread's affinity to cover all CPUs that are
 * served by the rcu_node in question.  The CPU hotplug lock is still
 * held, so the value of rnp->qsmaskinit will be stable.
 *
 * We don't include outgoingcpu in the affinity set, use -1 if there is
 * no outgoing CPU.  If there are no CPUs left in the affinity set,
 * this function allows the kthread to execute on any CPU.
 */
T
Thomas Gleixner 已提交
1150
static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu)
1151
{
T
Thomas Gleixner 已提交
1152
	struct task_struct *t = rnp->boost_kthread_task;
1153
	unsigned long mask = rcu_rnp_online_cpus(rnp);
1154 1155 1156
	cpumask_var_t cm;
	int cpu;

T
Thomas Gleixner 已提交
1157
	if (!t)
1158
		return;
T
Thomas Gleixner 已提交
1159
	if (!zalloc_cpumask_var(&cm, GFP_KERNEL))
1160 1161 1162 1163
		return;
	for (cpu = rnp->grplo; cpu <= rnp->grphi; cpu++, mask >>= 1)
		if ((mask & 0x1) && cpu != outgoingcpu)
			cpumask_set_cpu(cpu, cm);
1164
	if (cpumask_weight(cm) == 0)
1165
		cpumask_setall(cm);
T
Thomas Gleixner 已提交
1166
	set_cpus_allowed_ptr(t, cm);
1167 1168 1169
	free_cpumask_var(cm);
}

1170 1171 1172 1173 1174 1175 1176 1177
static struct smp_hotplug_thread rcu_cpu_thread_spec = {
	.store			= &rcu_cpu_kthread_task,
	.thread_should_run	= rcu_cpu_kthread_should_run,
	.thread_fn		= rcu_cpu_kthread,
	.thread_comm		= "rcuc/%u",
	.setup			= rcu_cpu_kthread_setup,
	.park			= rcu_cpu_kthread_park,
};
1178 1179

/*
1180
 * Spawn boost kthreads -- called as soon as the scheduler is running.
1181
 */
1182
static void __init rcu_spawn_boost_kthreads(void)
1183 1184
{
	struct rcu_node *rnp;
T
Thomas Gleixner 已提交
1185
	int cpu;
1186

1187
	for_each_possible_cpu(cpu)
1188
		per_cpu(rcu_cpu_has_work, cpu) = 0;
1189
	BUG_ON(smpboot_register_percpu_thread(&rcu_cpu_thread_spec));
1190 1191
	rcu_for_each_leaf_node(rcu_state_p, rnp)
		(void)rcu_spawn_one_boost_kthread(rcu_state_p, rnp);
1192 1193
}

1194
static void rcu_prepare_kthreads(int cpu)
1195
{
1196
	struct rcu_data *rdp = per_cpu_ptr(rcu_state_p->rda, cpu);
1197 1198 1199
	struct rcu_node *rnp = rdp->mynode;

	/* Fire up the incoming CPU's kthread and leaf rcu_node kthread. */
1200
	if (rcu_scheduler_fully_active)
1201
		(void)rcu_spawn_one_boost_kthread(rcu_state_p, rnp);
1202 1203
}

1204 1205
#else /* #ifdef CONFIG_RCU_BOOST */

1206
static void rcu_initiate_boost(struct rcu_node *rnp, unsigned long flags)
1207
	__releases(rnp->lock)
1208
{
1209
	raw_spin_unlock_irqrestore(&rnp->lock, flags);
1210 1211
}

1212
static void invoke_rcu_callbacks_kthread(void)
1213
{
1214
	WARN_ON_ONCE(1);
1215 1216
}

1217 1218 1219 1220 1221
static bool rcu_is_callbacks_kthread(void)
{
	return false;
}

1222 1223 1224 1225
static void rcu_preempt_boost_start_gp(struct rcu_node *rnp)
{
}

T
Thomas Gleixner 已提交
1226
static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu)
1227 1228 1229
{
}

1230
static void __init rcu_spawn_boost_kthreads(void)
1231 1232 1233
{
}

1234
static void rcu_prepare_kthreads(int cpu)
1235 1236 1237
{
}

1238 1239
#endif /* #else #ifdef CONFIG_RCU_BOOST */

1240 1241 1242 1243 1244 1245 1246 1247
#if !defined(CONFIG_RCU_FAST_NO_HZ)

/*
 * Check to see if any future RCU-related work will need to be done
 * by the current CPU, even if none need be done immediately, returning
 * 1 if so.  This function is part of the RCU implementation; it is -not-
 * an exported member of the RCU API.
 *
1248 1249
 * Because we not have RCU_FAST_NO_HZ, just check whether this CPU needs
 * any flavor of RCU.
1250
 */
1251
int rcu_needs_cpu(u64 basemono, u64 *nextevt)
1252
{
1253
	*nextevt = KTIME_MAX;
1254 1255
	return IS_ENABLED(CONFIG_RCU_NOCB_CPU_ALL)
	       ? 0 : rcu_cpu_has_callbacks(NULL);
1256 1257 1258 1259 1260 1261
}

/*
 * Because we do not have RCU_FAST_NO_HZ, don't bother cleaning up
 * after it.
 */
1262
static void rcu_cleanup_after_idle(void)
1263 1264 1265
{
}

1266
/*
1267
 * Do the idle-entry grace-period work, which, because CONFIG_RCU_FAST_NO_HZ=n,
1268 1269
 * is nothing.
 */
1270
static void rcu_prepare_for_idle(void)
1271 1272 1273
{
}

1274 1275 1276 1277 1278 1279 1280 1281
/*
 * Don't bother keeping a running count of the number of RCU callbacks
 * posted because CONFIG_RCU_FAST_NO_HZ=n.
 */
static void rcu_idle_count_callbacks_posted(void)
{
}

1282 1283
#else /* #if !defined(CONFIG_RCU_FAST_NO_HZ) */

1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298
/*
 * This code is invoked when a CPU goes idle, at which point we want
 * to have the CPU do everything required for RCU so that it can enter
 * the energy-efficient dyntick-idle mode.  This is handled by a
 * state machine implemented by rcu_prepare_for_idle() below.
 *
 * The following three proprocessor symbols control this state machine:
 *
 * RCU_IDLE_GP_DELAY gives the number of jiffies that a CPU is permitted
 *	to sleep in dyntick-idle mode with RCU callbacks pending.  This
 *	is sized to be roughly one RCU grace period.  Those energy-efficiency
 *	benchmarkers who might otherwise be tempted to set this to a large
 *	number, be warned: Setting RCU_IDLE_GP_DELAY too high can hang your
 *	system.  And if you are -that- concerned about energy efficiency,
 *	just power the system down and be done with it!
1299 1300 1301
 * RCU_IDLE_LAZY_GP_DELAY gives the number of jiffies that a CPU is
 *	permitted to sleep in dyntick-idle mode with only lazy RCU
 *	callbacks pending.  Setting this too high can OOM your system.
1302 1303 1304 1305 1306
 *
 * The values below work well in practice.  If future workloads require
 * adjustment, they can be converted into kernel config parameters, though
 * making the state machine smarter might be a better option.
 */
1307
#define RCU_IDLE_GP_DELAY 4		/* Roughly one grace period. */
1308
#define RCU_IDLE_LAZY_GP_DELAY (6 * HZ)	/* Roughly six seconds. */
1309

1310 1311 1312 1313
static int rcu_idle_gp_delay = RCU_IDLE_GP_DELAY;
module_param(rcu_idle_gp_delay, int, 0644);
static int rcu_idle_lazy_gp_delay = RCU_IDLE_LAZY_GP_DELAY;
module_param(rcu_idle_lazy_gp_delay, int, 0644);
1314 1315

/*
1316 1317 1318
 * Try to advance callbacks for all flavors of RCU on the current CPU, but
 * only if it has been awhile since the last time we did so.  Afterwards,
 * if there are any callbacks ready for immediate invocation, return true.
1319
 */
1320
static bool __maybe_unused rcu_try_advance_all_cbs(void)
1321
{
1322 1323
	bool cbs_ready = false;
	struct rcu_data *rdp;
1324
	struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
1325 1326
	struct rcu_node *rnp;
	struct rcu_state *rsp;
1327

1328 1329
	/* Exit early if we advanced recently. */
	if (jiffies == rdtp->last_advance_all)
1330
		return false;
1331 1332
	rdtp->last_advance_all = jiffies;

1333 1334 1335
	for_each_rcu_flavor(rsp) {
		rdp = this_cpu_ptr(rsp->rda);
		rnp = rdp->mynode;
1336

1337 1338 1339 1340 1341
		/*
		 * Don't bother checking unless a grace period has
		 * completed since we last checked and there are
		 * callbacks not yet ready to invoke.
		 */
1342
		if ((rdp->completed != rnp->completed ||
1343
		     unlikely(READ_ONCE(rdp->gpwrap))) &&
1344
		    rdp->nxttail[RCU_DONE_TAIL] != rdp->nxttail[RCU_NEXT_TAIL])
1345
			note_gp_changes(rsp, rdp);
1346

1347 1348 1349 1350
		if (cpu_has_callbacks_ready_to_invoke(rdp))
			cbs_ready = true;
	}
	return cbs_ready;
1351 1352
}

1353
/*
1354 1355 1356 1357
 * Allow the CPU to enter dyntick-idle mode unless it has callbacks ready
 * to invoke.  If the CPU has callbacks, try to advance them.  Tell the
 * caller to set the timeout based on whether or not there are non-lazy
 * callbacks.
1358
 *
1359
 * The caller must have disabled interrupts.
1360
 */
1361
int rcu_needs_cpu(u64 basemono, u64 *nextevt)
1362
{
1363
	struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
1364
	unsigned long dj;
1365

1366
	if (IS_ENABLED(CONFIG_RCU_NOCB_CPU_ALL)) {
1367
		*nextevt = KTIME_MAX;
1368 1369 1370
		return 0;
	}

1371 1372 1373
	/* Snapshot to detect later posting of non-lazy callback. */
	rdtp->nonlazy_posted_snap = rdtp->nonlazy_posted;

1374
	/* If no callbacks, RCU doesn't need the CPU. */
1375
	if (!rcu_cpu_has_callbacks(&rdtp->all_lazy)) {
1376
		*nextevt = KTIME_MAX;
1377 1378
		return 0;
	}
1379 1380 1381 1382 1383

	/* Attempt to advance callbacks. */
	if (rcu_try_advance_all_cbs()) {
		/* Some ready to invoke, so initiate later invocation. */
		invoke_rcu_core();
1384 1385
		return 1;
	}
1386 1387 1388
	rdtp->last_accelerate = jiffies;

	/* Request timer delay depending on laziness, and round. */
1389
	if (!rdtp->all_lazy) {
1390
		dj = round_up(rcu_idle_gp_delay + jiffies,
1391
			       rcu_idle_gp_delay) - jiffies;
1392
	} else {
1393
		dj = round_jiffies(rcu_idle_lazy_gp_delay + jiffies) - jiffies;
1394
	}
1395
	*nextevt = basemono + dj * TICK_NSEC;
1396 1397 1398
	return 0;
}

1399
/*
1400 1401 1402 1403 1404 1405
 * Prepare a CPU for idle from an RCU perspective.  The first major task
 * is to sense whether nohz mode has been enabled or disabled via sysfs.
 * The second major task is to check to see if a non-lazy callback has
 * arrived at a CPU that previously had only lazy callbacks.  The third
 * major task is to accelerate (that is, assign grace-period numbers to)
 * any recently arrived callbacks.
1406 1407
 *
 * The caller must have disabled interrupts.
1408
 */
1409
static void rcu_prepare_for_idle(void)
1410
{
1411
	bool needwake;
1412
	struct rcu_data *rdp;
1413
	struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
1414 1415
	struct rcu_node *rnp;
	struct rcu_state *rsp;
1416 1417
	int tne;

1418 1419 1420
	if (IS_ENABLED(CONFIG_RCU_NOCB_CPU_ALL))
		return;

1421
	/* Handle nohz enablement switches conservatively. */
1422
	tne = READ_ONCE(tick_nohz_active);
1423
	if (tne != rdtp->tick_nohz_enabled_snap) {
1424
		if (rcu_cpu_has_callbacks(NULL))
1425 1426 1427 1428 1429 1430
			invoke_rcu_core(); /* force nohz to see update. */
		rdtp->tick_nohz_enabled_snap = tne;
		return;
	}
	if (!tne)
		return;
1431

1432
	/* If this is a no-CBs CPU, no callbacks, just return. */
1433
	if (rcu_is_nocb_cpu(smp_processor_id()))
1434 1435
		return;

1436
	/*
1437 1438 1439
	 * If a non-lazy callback arrived at a CPU having only lazy
	 * callbacks, invoke RCU core for the side-effect of recalculating
	 * idle duration on re-entry to idle.
1440
	 */
1441 1442
	if (rdtp->all_lazy &&
	    rdtp->nonlazy_posted != rdtp->nonlazy_posted_snap) {
1443 1444
		rdtp->all_lazy = false;
		rdtp->nonlazy_posted_snap = rdtp->nonlazy_posted;
1445
		invoke_rcu_core();
1446 1447 1448
		return;
	}

1449
	/*
1450 1451
	 * If we have not yet accelerated this jiffy, accelerate all
	 * callbacks on this CPU.
1452
	 */
1453
	if (rdtp->last_accelerate == jiffies)
1454
		return;
1455 1456
	rdtp->last_accelerate = jiffies;
	for_each_rcu_flavor(rsp) {
1457
		rdp = this_cpu_ptr(rsp->rda);
1458 1459 1460 1461
		if (!*rdp->nxttail[RCU_DONE_TAIL])
			continue;
		rnp = rdp->mynode;
		raw_spin_lock(&rnp->lock); /* irqs already disabled. */
1462
		smp_mb__after_unlock_lock();
1463
		needwake = rcu_accelerate_cbs(rsp, rnp, rdp);
1464
		raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
1465 1466
		if (needwake)
			rcu_gp_kthread_wake(rsp);
1467
	}
1468
}
1469

1470 1471 1472 1473 1474
/*
 * Clean up for exit from idle.  Attempt to advance callbacks based on
 * any grace periods that elapsed while the CPU was idle, and if any
 * callbacks are now ready to invoke, initiate invocation.
 */
1475
static void rcu_cleanup_after_idle(void)
1476
{
1477 1478
	if (IS_ENABLED(CONFIG_RCU_NOCB_CPU_ALL) ||
	    rcu_is_nocb_cpu(smp_processor_id()))
1479
		return;
1480 1481
	if (rcu_try_advance_all_cbs())
		invoke_rcu_core();
1482 1483
}

1484
/*
1485 1486 1487 1488 1489 1490
 * Keep a running count of the number of non-lazy callbacks posted
 * on this CPU.  This running counter (which is never decremented) allows
 * rcu_prepare_for_idle() to detect when something out of the idle loop
 * posts a callback, even if an equal number of callbacks are invoked.
 * Of course, callbacks should only be posted from within a trace event
 * designed to be called from idle or from within RCU_NONIDLE().
1491 1492 1493
 */
static void rcu_idle_count_callbacks_posted(void)
{
1494
	__this_cpu_add(rcu_dynticks.nonlazy_posted, 1);
1495 1496
}

1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525
/*
 * Data for flushing lazy RCU callbacks at OOM time.
 */
static atomic_t oom_callback_count;
static DECLARE_WAIT_QUEUE_HEAD(oom_callback_wq);

/*
 * RCU OOM callback -- decrement the outstanding count and deliver the
 * wake-up if we are the last one.
 */
static void rcu_oom_callback(struct rcu_head *rhp)
{
	if (atomic_dec_and_test(&oom_callback_count))
		wake_up(&oom_callback_wq);
}

/*
 * Post an rcu_oom_notify callback on the current CPU if it has at
 * least one lazy callback.  This will unnecessarily post callbacks
 * to CPUs that already have a non-lazy callback at the end of their
 * callback list, but this is an infrequent operation, so accept some
 * extra overhead to keep things simple.
 */
static void rcu_oom_notify_cpu(void *unused)
{
	struct rcu_state *rsp;
	struct rcu_data *rdp;

	for_each_rcu_flavor(rsp) {
1526
		rdp = raw_cpu_ptr(rsp->rda);
1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547
		if (rdp->qlen_lazy != 0) {
			atomic_inc(&oom_callback_count);
			rsp->call(&rdp->oom_head, rcu_oom_callback);
		}
	}
}

/*
 * If low on memory, ensure that each CPU has a non-lazy callback.
 * This will wake up CPUs that have only lazy callbacks, in turn
 * ensuring that they free up the corresponding memory in a timely manner.
 * Because an uncertain amount of memory will be freed in some uncertain
 * timeframe, we do not claim to have freed anything.
 */
static int rcu_oom_notify(struct notifier_block *self,
			  unsigned long notused, void *nfreed)
{
	int cpu;

	/* Wait for callbacks from earlier instance to complete. */
	wait_event(oom_callback_wq, atomic_read(&oom_callback_count) == 0);
1548
	smp_mb(); /* Ensure callback reuse happens after callback invocation. */
1549 1550 1551 1552 1553 1554 1555 1556 1557

	/*
	 * Prevent premature wakeup: ensure that all increments happen
	 * before there is a chance of the counter reaching zero.
	 */
	atomic_set(&oom_callback_count, 1);

	for_each_online_cpu(cpu) {
		smp_call_function_single(cpu, rcu_oom_notify_cpu, NULL, 1);
1558
		cond_resched_rcu_qs();
1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577
	}

	/* Unconditionally decrement: no need to wake ourselves up. */
	atomic_dec(&oom_callback_count);

	return NOTIFY_OK;
}

static struct notifier_block rcu_oom_nb = {
	.notifier_call = rcu_oom_notify
};

static int __init rcu_register_oom_notifier(void)
{
	register_oom_notifier(&rcu_oom_nb);
	return 0;
}
early_initcall(rcu_register_oom_notifier);

1578
#endif /* #else #if !defined(CONFIG_RCU_FAST_NO_HZ) */
1579 1580 1581 1582 1583

#ifdef CONFIG_RCU_FAST_NO_HZ

static void print_cpu_stall_fast_no_hz(char *cp, int cpu)
{
1584
	struct rcu_dynticks *rdtp = &per_cpu(rcu_dynticks, cpu);
1585
	unsigned long nlpd = rdtp->nonlazy_posted - rdtp->nonlazy_posted_snap;
1586

1587 1588 1589 1590 1591
	sprintf(cp, "last_accelerate: %04lx/%04lx, nonlazy_posted: %ld, %c%c",
		rdtp->last_accelerate & 0xffff, jiffies & 0xffff,
		ulong2long(nlpd),
		rdtp->all_lazy ? 'L' : '.',
		rdtp->tick_nohz_enabled_snap ? '.' : 'D');
1592 1593 1594 1595 1596 1597
}

#else /* #ifdef CONFIG_RCU_FAST_NO_HZ */

static void print_cpu_stall_fast_no_hz(char *cp, int cpu)
{
1598
	*cp = '\0';
1599 1600 1601 1602 1603 1604 1605
}

#endif /* #else #ifdef CONFIG_RCU_FAST_NO_HZ */

/* Initiate the stall-info list. */
static void print_cpu_stall_info_begin(void)
{
1606
	pr_cont("\n");
1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636
}

/*
 * Print out diagnostic information for the specified stalled CPU.
 *
 * If the specified CPU is aware of the current RCU grace period
 * (flavor specified by rsp), then print the number of scheduling
 * clock interrupts the CPU has taken during the time that it has
 * been aware.  Otherwise, print the number of RCU grace periods
 * that this CPU is ignorant of, for example, "1" if the CPU was
 * aware of the previous grace period.
 *
 * Also print out idle and (if CONFIG_RCU_FAST_NO_HZ) idle-entry info.
 */
static void print_cpu_stall_info(struct rcu_state *rsp, int cpu)
{
	char fast_no_hz[72];
	struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
	struct rcu_dynticks *rdtp = rdp->dynticks;
	char *ticks_title;
	unsigned long ticks_value;

	if (rsp->gpnum == rdp->gpnum) {
		ticks_title = "ticks this GP";
		ticks_value = rdp->ticks_this_gp;
	} else {
		ticks_title = "GPs behind";
		ticks_value = rsp->gpnum - rdp->gpnum;
	}
	print_cpu_stall_fast_no_hz(fast_no_hz, cpu);
1637
	pr_err("\t%d: (%lu %s) idle=%03x/%llx/%d softirq=%u/%u fqs=%ld %s\n",
1638 1639 1640
	       cpu, ticks_value, ticks_title,
	       atomic_read(&rdtp->dynticks) & 0xfff,
	       rdtp->dynticks_nesting, rdtp->dynticks_nmi_nesting,
1641
	       rdp->softirq_snap, kstat_softirqs_cpu(RCU_SOFTIRQ, cpu),
1642
	       READ_ONCE(rsp->n_force_qs) - rsp->n_force_qs_gpstart,
1643 1644 1645 1646 1647 1648
	       fast_no_hz);
}

/* Terminate the stall-info list. */
static void print_cpu_stall_info_end(void)
{
1649
	pr_err("\t");
1650 1651 1652 1653 1654 1655
}

/* Zero ->ticks_this_gp for all flavors of RCU. */
static void zero_cpu_stall_ticks(struct rcu_data *rdp)
{
	rdp->ticks_this_gp = 0;
1656
	rdp->softirq_snap = kstat_softirqs_cpu(RCU_SOFTIRQ, smp_processor_id());
1657 1658 1659 1660 1661
}

/* Increment ->ticks_this_gp for all flavors of RCU. */
static void increment_cpu_stall_ticks(void)
{
1662 1663 1664
	struct rcu_state *rsp;

	for_each_rcu_flavor(rsp)
1665
		raw_cpu_inc(rsp->rda->ticks_this_gp);
1666 1667
}

P
Paul E. McKenney 已提交
1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700
#ifdef CONFIG_RCU_NOCB_CPU

/*
 * Offload callback processing from the boot-time-specified set of CPUs
 * specified by rcu_nocb_mask.  For each CPU in the set, there is a
 * kthread created that pulls the callbacks from the corresponding CPU,
 * waits for a grace period to elapse, and invokes the callbacks.
 * The no-CBs CPUs do a wake_up() on their kthread when they insert
 * a callback into any empty list, unless the rcu_nocb_poll boot parameter
 * has been specified, in which case each kthread actively polls its
 * CPU.  (Which isn't so great for energy efficiency, but which does
 * reduce RCU's overhead on that CPU.)
 *
 * This is intended to be used in conjunction with Frederic Weisbecker's
 * adaptive-idle work, which would seriously reduce OS jitter on CPUs
 * running CPU-bound user-mode computations.
 *
 * Offloading of callback processing could also in theory be used as
 * an energy-efficiency measure because CPUs with no RCU callbacks
 * queued are more aggressive about entering dyntick-idle mode.
 */


/* Parse the boot-time rcu_nocb_mask CPU list from the kernel parameters. */
static int __init rcu_nocb_setup(char *str)
{
	alloc_bootmem_cpumask_var(&rcu_nocb_mask);
	have_rcu_nocb_mask = true;
	cpulist_parse(str, rcu_nocb_mask);
	return 1;
}
__setup("rcu_nocbs=", rcu_nocb_setup);

1701 1702 1703 1704 1705 1706 1707
static int __init parse_rcu_nocb_poll(char *arg)
{
	rcu_nocb_poll = 1;
	return 0;
}
early_param("rcu_nocb_poll", parse_rcu_nocb_poll);

1708
/*
1709 1710
 * Wake up any no-CBs CPUs' kthreads that were waiting on the just-ended
 * grace period.
1711
 */
1712
static void rcu_nocb_gp_cleanup(struct rcu_state *rsp, struct rcu_node *rnp)
1713
{
1714
	wake_up_all(&rnp->nocb_gp_wq[rnp->completed & 0x1]);
1715 1716 1717
}

/*
1718
 * Set the root rcu_node structure's ->need_future_gp field
1719 1720 1721 1722 1723
 * based on the sum of those of all rcu_node structures.  This does
 * double-count the root rcu_node structure's requests, but this
 * is necessary to handle the possibility of a rcu_nocb_kthread()
 * having awakened during the time that the rcu_node structures
 * were being updated for the end of the previous grace period.
1724
 */
1725 1726
static void rcu_nocb_gp_set(struct rcu_node *rnp, int nrq)
{
1727
	rnp->need_future_gp[(rnp->completed + 1) & 0x1] += nrq;
1728 1729 1730
}

static void rcu_init_one_nocb(struct rcu_node *rnp)
1731
{
1732 1733
	init_waitqueue_head(&rnp->nocb_gp_wq[0]);
	init_waitqueue_head(&rnp->nocb_gp_wq[1]);
1734 1735
}

1736
#ifndef CONFIG_RCU_NOCB_CPU_ALL
L
Liu Ping Fan 已提交
1737
/* Is the specified CPU a no-CBs CPU? */
1738
bool rcu_is_nocb_cpu(int cpu)
P
Paul E. McKenney 已提交
1739 1740 1741 1742 1743
{
	if (have_rcu_nocb_mask)
		return cpumask_test_cpu(cpu, rcu_nocb_mask);
	return false;
}
1744
#endif /* #ifndef CONFIG_RCU_NOCB_CPU_ALL */
P
Paul E. McKenney 已提交
1745

1746 1747 1748 1749 1750 1751 1752
/*
 * Kick the leader kthread for this NOCB group.
 */
static void wake_nocb_leader(struct rcu_data *rdp, bool force)
{
	struct rcu_data *rdp_leader = rdp->nocb_leader;

1753
	if (!READ_ONCE(rdp_leader->nocb_kthread))
1754
		return;
1755
	if (READ_ONCE(rdp_leader->nocb_leader_sleep) || force) {
1756
		/* Prior smp_mb__after_atomic() orders against prior enqueue. */
1757
		WRITE_ONCE(rdp_leader->nocb_leader_sleep, false);
1758 1759 1760 1761
		wake_up(&rdp_leader->nocb_wq);
	}
}

1762 1763 1764 1765 1766 1767 1768
/*
 * Does the specified CPU need an RCU callback for the specified flavor
 * of rcu_barrier()?
 */
static bool rcu_nocb_cpu_needs_barrier(struct rcu_state *rsp, int cpu)
{
	struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
1769 1770
	unsigned long ret;
#ifdef CONFIG_PROVE_RCU
1771
	struct rcu_head *rhp;
1772
#endif /* #ifdef CONFIG_PROVE_RCU */
1773

1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786
	/*
	 * Check count of all no-CBs callbacks awaiting invocation.
	 * There needs to be a barrier before this function is called,
	 * but associated with a prior determination that no more
	 * callbacks would be posted.  In the worst case, the first
	 * barrier in _rcu_barrier() suffices (but the caller cannot
	 * necessarily rely on this, not a substitute for the caller
	 * getting the concurrency design right!).  There must also be
	 * a barrier between the following load an posting of a callback
	 * (if a callback is in fact needed).  This is associated with an
	 * atomic_inc() in the caller.
	 */
	ret = atomic_long_read(&rdp->nocb_q_count);
1787

1788
#ifdef CONFIG_PROVE_RCU
1789
	rhp = READ_ONCE(rdp->nocb_head);
1790
	if (!rhp)
1791
		rhp = READ_ONCE(rdp->nocb_gp_head);
1792
	if (!rhp)
1793
		rhp = READ_ONCE(rdp->nocb_follower_head);
1794 1795

	/* Having no rcuo kthread but CBs after scheduler starts is bad! */
1796
	if (!READ_ONCE(rdp->nocb_kthread) && rhp &&
1797
	    rcu_scheduler_fully_active) {
1798 1799 1800 1801 1802
		/* RCU callback enqueued before CPU first came online??? */
		pr_err("RCU: Never-onlined no-CBs CPU %d has CB %p\n",
		       cpu, rhp->func);
		WARN_ON_ONCE(1);
	}
1803
#endif /* #ifdef CONFIG_PROVE_RCU */
1804

1805
	return !!ret;
1806 1807
}

P
Paul E. McKenney 已提交
1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818
/*
 * Enqueue the specified string of rcu_head structures onto the specified
 * CPU's no-CBs lists.  The CPU is specified by rdp, the head of the
 * string by rhp, and the tail of the string by rhtp.  The non-lazy/lazy
 * counts are supplied by rhcount and rhcount_lazy.
 *
 * If warranted, also wake up the kthread servicing this CPUs queues.
 */
static void __call_rcu_nocb_enqueue(struct rcu_data *rdp,
				    struct rcu_head *rhp,
				    struct rcu_head **rhtp,
1819 1820
				    int rhcount, int rhcount_lazy,
				    unsigned long flags)
P
Paul E. McKenney 已提交
1821 1822 1823 1824 1825 1826
{
	int len;
	struct rcu_head **old_rhpp;
	struct task_struct *t;

	/* Enqueue the callback on the nocb list and update counts. */
1827 1828
	atomic_long_add(rhcount, &rdp->nocb_q_count);
	/* rcu_barrier() relies on ->nocb_q_count add before xchg. */
P
Paul E. McKenney 已提交
1829
	old_rhpp = xchg(&rdp->nocb_tail, rhtp);
1830
	WRITE_ONCE(*old_rhpp, rhp);
P
Paul E. McKenney 已提交
1831
	atomic_long_add(rhcount_lazy, &rdp->nocb_q_count_lazy);
1832
	smp_mb__after_atomic(); /* Store *old_rhpp before _wake test. */
P
Paul E. McKenney 已提交
1833 1834

	/* If we are not being polled and there is a kthread, awaken it ... */
1835
	t = READ_ONCE(rdp->nocb_kthread);
1836
	if (rcu_nocb_poll || !t) {
1837 1838
		trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
				    TPS("WakeNotPoll"));
P
Paul E. McKenney 已提交
1839
		return;
1840
	}
P
Paul E. McKenney 已提交
1841 1842
	len = atomic_long_read(&rdp->nocb_q_count);
	if (old_rhpp == &rdp->nocb_head) {
1843
		if (!irqs_disabled_flags(flags)) {
1844 1845
			/* ... if queue was empty ... */
			wake_nocb_leader(rdp, false);
1846 1847 1848
			trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
					    TPS("WakeEmpty"));
		} else {
1849
			rdp->nocb_defer_wakeup = RCU_NOGP_WAKE;
1850 1851 1852
			trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
					    TPS("WakeEmptyIsDeferred"));
		}
P
Paul E. McKenney 已提交
1853 1854
		rdp->qlen_last_fqs_check = 0;
	} else if (len > rdp->qlen_last_fqs_check + qhimark) {
1855
		/* ... or if many callbacks queued. */
1856 1857 1858 1859 1860 1861 1862 1863 1864
		if (!irqs_disabled_flags(flags)) {
			wake_nocb_leader(rdp, true);
			trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
					    TPS("WakeOvf"));
		} else {
			rdp->nocb_defer_wakeup = RCU_NOGP_WAKE_FORCE;
			trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
					    TPS("WakeOvfIsDeferred"));
		}
P
Paul E. McKenney 已提交
1865
		rdp->qlen_last_fqs_check = LONG_MAX / 2;
1866 1867
	} else {
		trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, TPS("WakeNot"));
P
Paul E. McKenney 已提交
1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881
	}
	return;
}

/*
 * This is a helper for __call_rcu(), which invokes this when the normal
 * callback queue is inoperable.  If this is not a no-CBs CPU, this
 * function returns failure back to __call_rcu(), which can complain
 * appropriately.
 *
 * Otherwise, this function queues the callback where the corresponding
 * "rcuo" kthread can find it.
 */
static bool __call_rcu_nocb(struct rcu_data *rdp, struct rcu_head *rhp,
1882
			    bool lazy, unsigned long flags)
P
Paul E. McKenney 已提交
1883 1884
{

1885
	if (!rcu_is_nocb_cpu(rdp->cpu))
1886
		return false;
1887
	__call_rcu_nocb_enqueue(rdp, rhp, &rhp->next, 1, lazy, flags);
1888 1889 1890
	if (__is_kfree_rcu_offset((unsigned long)rhp->func))
		trace_rcu_kfree_callback(rdp->rsp->name, rhp,
					 (unsigned long)rhp->func,
1891 1892
					 -atomic_long_read(&rdp->nocb_q_count_lazy),
					 -atomic_long_read(&rdp->nocb_q_count));
1893 1894
	else
		trace_rcu_callback(rdp->rsp->name, rhp,
1895 1896
				   -atomic_long_read(&rdp->nocb_q_count_lazy),
				   -atomic_long_read(&rdp->nocb_q_count));
1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907

	/*
	 * If called from an extended quiescent state with interrupts
	 * disabled, invoke the RCU core in order to allow the idle-entry
	 * deferred-wakeup check to function.
	 */
	if (irqs_disabled_flags(flags) &&
	    !rcu_is_watching() &&
	    cpu_online(smp_processor_id()))
		invoke_rcu_core();

1908
	return true;
P
Paul E. McKenney 已提交
1909 1910 1911 1912 1913 1914 1915
}

/*
 * Adopt orphaned callbacks on a no-CBs CPU, or return 0 if this is
 * not a no-CBs CPU.
 */
static bool __maybe_unused rcu_nocb_adopt_orphan_cbs(struct rcu_state *rsp,
1916 1917
						     struct rcu_data *rdp,
						     unsigned long flags)
P
Paul E. McKenney 已提交
1918 1919 1920 1921 1922
{
	long ql = rsp->qlen;
	long qll = rsp->qlen_lazy;

	/* If this is not a no-CBs CPU, tell the caller to do it the old way. */
1923
	if (!rcu_is_nocb_cpu(smp_processor_id()))
1924
		return false;
P
Paul E. McKenney 已提交
1925 1926 1927 1928 1929 1930
	rsp->qlen = 0;
	rsp->qlen_lazy = 0;

	/* First, enqueue the donelist, if any.  This preserves CB ordering. */
	if (rsp->orphan_donelist != NULL) {
		__call_rcu_nocb_enqueue(rdp, rsp->orphan_donelist,
1931
					rsp->orphan_donetail, ql, qll, flags);
P
Paul E. McKenney 已提交
1932 1933 1934 1935 1936 1937
		ql = qll = 0;
		rsp->orphan_donelist = NULL;
		rsp->orphan_donetail = &rsp->orphan_donelist;
	}
	if (rsp->orphan_nxtlist != NULL) {
		__call_rcu_nocb_enqueue(rdp, rsp->orphan_nxtlist,
1938
					rsp->orphan_nxttail, ql, qll, flags);
P
Paul E. McKenney 已提交
1939 1940 1941 1942
		ql = qll = 0;
		rsp->orphan_nxtlist = NULL;
		rsp->orphan_nxttail = &rsp->orphan_nxtlist;
	}
1943
	return true;
P
Paul E. McKenney 已提交
1944 1945 1946
}

/*
1947 1948
 * If necessary, kick off a new grace period, and either way wait
 * for a subsequent grace period to complete.
P
Paul E. McKenney 已提交
1949
 */
1950
static void rcu_nocb_wait_gp(struct rcu_data *rdp)
P
Paul E. McKenney 已提交
1951
{
1952
	unsigned long c;
1953
	bool d;
1954
	unsigned long flags;
1955
	bool needwake;
1956 1957 1958
	struct rcu_node *rnp = rdp->mynode;

	raw_spin_lock_irqsave(&rnp->lock, flags);
1959
	smp_mb__after_unlock_lock();
1960
	needwake = rcu_start_future_gp(rnp, rdp, &c);
1961
	raw_spin_unlock_irqrestore(&rnp->lock, flags);
1962 1963
	if (needwake)
		rcu_gp_kthread_wake(rdp->rsp);
P
Paul E. McKenney 已提交
1964 1965

	/*
1966 1967
	 * Wait for the grace period.  Do so interruptibly to avoid messing
	 * up the load average.
P
Paul E. McKenney 已提交
1968
	 */
1969
	trace_rcu_future_gp(rnp, rdp, c, TPS("StartWait"));
1970
	for (;;) {
1971 1972
		wait_event_interruptible(
			rnp->nocb_gp_wq[c & 0x1],
1973
			(d = ULONG_CMP_GE(READ_ONCE(rnp->completed), c)));
1974
		if (likely(d))
1975
			break;
1976
		WARN_ON(signal_pending(current));
1977
		trace_rcu_future_gp(rnp, rdp, c, TPS("ResumeWait"));
1978
	}
1979
	trace_rcu_future_gp(rnp, rdp, c, TPS("EndWait"));
1980
	smp_mb(); /* Ensure that CB invocation happens after GP end. */
P
Paul E. McKenney 已提交
1981 1982
}

1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999
/*
 * Leaders come here to wait for additional callbacks to show up.
 * This function does not return until callbacks appear.
 */
static void nocb_leader_wait(struct rcu_data *my_rdp)
{
	bool firsttime = true;
	bool gotcbs;
	struct rcu_data *rdp;
	struct rcu_head **tail;

wait_again:

	/* Wait for callbacks to appear. */
	if (!rcu_nocb_poll) {
		trace_rcu_nocb_wake(my_rdp->rsp->name, my_rdp->cpu, "Sleep");
		wait_event_interruptible(my_rdp->nocb_wq,
2000
				!READ_ONCE(my_rdp->nocb_leader_sleep));
2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013
		/* Memory barrier handled by smp_mb() calls below and repoll. */
	} else if (firsttime) {
		firsttime = false; /* Don't drown trace log with "Poll"! */
		trace_rcu_nocb_wake(my_rdp->rsp->name, my_rdp->cpu, "Poll");
	}

	/*
	 * Each pass through the following loop checks a follower for CBs.
	 * We are our own first follower.  Any CBs found are moved to
	 * nocb_gp_head, where they await a grace period.
	 */
	gotcbs = false;
	for (rdp = my_rdp; rdp; rdp = rdp->nocb_next_follower) {
2014
		rdp->nocb_gp_head = READ_ONCE(rdp->nocb_head);
2015 2016 2017 2018
		if (!rdp->nocb_gp_head)
			continue;  /* No CBs here, try next follower. */

		/* Move callbacks to wait-for-GP list, which is empty. */
2019
		WRITE_ONCE(rdp->nocb_head, NULL);
2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031
		rdp->nocb_gp_tail = xchg(&rdp->nocb_tail, &rdp->nocb_head);
		gotcbs = true;
	}

	/*
	 * If there were no callbacks, sleep a bit, rescan after a
	 * memory barrier, and go retry.
	 */
	if (unlikely(!gotcbs)) {
		if (!rcu_nocb_poll)
			trace_rcu_nocb_wake(my_rdp->rsp->name, my_rdp->cpu,
					    "WokeEmpty");
2032
		WARN_ON(signal_pending(current));
2033 2034 2035
		schedule_timeout_interruptible(1);

		/* Rescan in case we were a victim of memory ordering. */
2036 2037
		my_rdp->nocb_leader_sleep = true;
		smp_mb();  /* Ensure _sleep true before scan. */
2038
		for (rdp = my_rdp; rdp; rdp = rdp->nocb_next_follower)
2039
			if (READ_ONCE(rdp->nocb_head)) {
2040
				/* Found CB, so short-circuit next wait. */
2041
				my_rdp->nocb_leader_sleep = false;
2042 2043 2044 2045 2046 2047 2048 2049 2050
				break;
			}
		goto wait_again;
	}

	/* Wait for one grace period. */
	rcu_nocb_wait_gp(my_rdp);

	/*
2051 2052
	 * We left ->nocb_leader_sleep unset to reduce cache thrashing.
	 * We set it now, but recheck for new callbacks while
2053 2054
	 * traversing our follower list.
	 */
2055 2056
	my_rdp->nocb_leader_sleep = true;
	smp_mb(); /* Ensure _sleep true before scan of ->nocb_head. */
2057 2058 2059

	/* Each pass through the following loop wakes a follower, if needed. */
	for (rdp = my_rdp; rdp; rdp = rdp->nocb_next_follower) {
2060
		if (READ_ONCE(rdp->nocb_head))
2061
			my_rdp->nocb_leader_sleep = false;/* No need to sleep.*/
2062 2063 2064 2065 2066 2067
		if (!rdp->nocb_gp_head)
			continue; /* No CBs, so no need to wake follower. */

		/* Append callbacks to follower's "done" list. */
		tail = xchg(&rdp->nocb_follower_tail, rdp->nocb_gp_tail);
		*tail = rdp->nocb_gp_head;
2068
		smp_mb__after_atomic(); /* Store *tail before wakeup. */
2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095
		if (rdp != my_rdp && tail == &rdp->nocb_follower_head) {
			/*
			 * List was empty, wake up the follower.
			 * Memory barriers supplied by atomic_long_add().
			 */
			wake_up(&rdp->nocb_wq);
		}
	}

	/* If we (the leader) don't have CBs, go wait some more. */
	if (!my_rdp->nocb_follower_head)
		goto wait_again;
}

/*
 * Followers come here to wait for additional callbacks to show up.
 * This function does not return until callbacks appear.
 */
static void nocb_follower_wait(struct rcu_data *rdp)
{
	bool firsttime = true;

	for (;;) {
		if (!rcu_nocb_poll) {
			trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
					    "FollowerSleep");
			wait_event_interruptible(rdp->nocb_wq,
2096
						 READ_ONCE(rdp->nocb_follower_head));
2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108
		} else if (firsttime) {
			/* Don't drown trace log with "Poll"! */
			firsttime = false;
			trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, "Poll");
		}
		if (smp_load_acquire(&rdp->nocb_follower_head)) {
			/* ^^^ Ensure CB invocation follows _head test. */
			return;
		}
		if (!rcu_nocb_poll)
			trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
					    "WokeEmpty");
2109
		WARN_ON(signal_pending(current));
2110 2111 2112 2113
		schedule_timeout_interruptible(1);
	}
}

P
Paul E. McKenney 已提交
2114 2115
/*
 * Per-rcu_data kthread, but only for no-CBs CPUs.  Each kthread invokes
2116 2117 2118
 * callbacks queued by the corresponding no-CBs CPU, however, there is
 * an optional leader-follower relationship so that the grace-period
 * kthreads don't have to do quite so many wakeups.
P
Paul E. McKenney 已提交
2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129
 */
static int rcu_nocb_kthread(void *arg)
{
	int c, cl;
	struct rcu_head *list;
	struct rcu_head *next;
	struct rcu_head **tail;
	struct rcu_data *rdp = arg;

	/* Each pass through this loop invokes one batch of callbacks */
	for (;;) {
2130 2131 2132 2133 2134 2135 2136
		/* Wait for callbacks. */
		if (rdp->nocb_leader == rdp)
			nocb_leader_wait(rdp);
		else
			nocb_follower_wait(rdp);

		/* Pull the ready-to-invoke callbacks onto local list. */
2137
		list = READ_ONCE(rdp->nocb_follower_head);
2138 2139
		BUG_ON(!list);
		trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, "WokeNonEmpty");
2140
		WRITE_ONCE(rdp->nocb_follower_head, NULL);
2141
		tail = xchg(&rdp->nocb_follower_tail, &rdp->nocb_follower_head);
P
Paul E. McKenney 已提交
2142 2143

		/* Each pass through the following loop invokes a callback. */
2144 2145 2146
		trace_rcu_batch_start(rdp->rsp->name,
				      atomic_long_read(&rdp->nocb_q_count_lazy),
				      atomic_long_read(&rdp->nocb_q_count), -1);
P
Paul E. McKenney 已提交
2147 2148 2149 2150 2151
		c = cl = 0;
		while (list) {
			next = list->next;
			/* Wait for enqueuing to complete, if needed. */
			while (next == NULL && &list->next != tail) {
2152 2153
				trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
						    TPS("WaitQueue"));
P
Paul E. McKenney 已提交
2154
				schedule_timeout_interruptible(1);
2155 2156
				trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
						    TPS("WokeQueue"));
P
Paul E. McKenney 已提交
2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167
				next = list->next;
			}
			debug_rcu_head_unqueue(list);
			local_bh_disable();
			if (__rcu_reclaim(rdp->rsp->name, list))
				cl++;
			c++;
			local_bh_enable();
			list = next;
		}
		trace_rcu_batch_end(rdp->rsp->name, c, !!list, 0, 0, 1);
2168 2169 2170
		smp_mb__before_atomic();  /* _add after CB invocation. */
		atomic_long_add(-c, &rdp->nocb_q_count);
		atomic_long_add(-cl, &rdp->nocb_q_count_lazy);
2171
		rdp->n_nocbs_invoked += c;
P
Paul E. McKenney 已提交
2172 2173 2174 2175
	}
	return 0;
}

2176
/* Is a deferred wakeup of rcu_nocb_kthread() required? */
2177
static int rcu_nocb_need_deferred_wakeup(struct rcu_data *rdp)
2178
{
2179
	return READ_ONCE(rdp->nocb_defer_wakeup);
2180 2181 2182 2183 2184
}

/* Do a deferred wakeup of rcu_nocb_kthread(). */
static void do_nocb_deferred_wakeup(struct rcu_data *rdp)
{
2185 2186
	int ndw;

2187 2188
	if (!rcu_nocb_need_deferred_wakeup(rdp))
		return;
2189 2190
	ndw = READ_ONCE(rdp->nocb_defer_wakeup);
	WRITE_ONCE(rdp->nocb_defer_wakeup, RCU_NOGP_WAKE_NOT);
2191 2192
	wake_nocb_leader(rdp, ndw == RCU_NOGP_WAKE_FORCE);
	trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, TPS("DeferredWake"));
2193 2194
}

2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210
void __init rcu_init_nohz(void)
{
	int cpu;
	bool need_rcu_nocb_mask = true;
	struct rcu_state *rsp;

#ifdef CONFIG_RCU_NOCB_CPU_NONE
	need_rcu_nocb_mask = false;
#endif /* #ifndef CONFIG_RCU_NOCB_CPU_NONE */

#if defined(CONFIG_NO_HZ_FULL)
	if (tick_nohz_full_running && cpumask_weight(tick_nohz_full_mask))
		need_rcu_nocb_mask = true;
#endif /* #if defined(CONFIG_NO_HZ_FULL) */

	if (!have_rcu_nocb_mask && need_rcu_nocb_mask) {
2211 2212 2213 2214
		if (!zalloc_cpumask_var(&rcu_nocb_mask, GFP_KERNEL)) {
			pr_info("rcu_nocb_mask allocation failed, callback offloading disabled.\n");
			return;
		}
2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237
		have_rcu_nocb_mask = true;
	}
	if (!have_rcu_nocb_mask)
		return;

#ifdef CONFIG_RCU_NOCB_CPU_ZERO
	pr_info("\tOffload RCU callbacks from CPU 0\n");
	cpumask_set_cpu(0, rcu_nocb_mask);
#endif /* #ifdef CONFIG_RCU_NOCB_CPU_ZERO */
#ifdef CONFIG_RCU_NOCB_CPU_ALL
	pr_info("\tOffload RCU callbacks from all CPUs\n");
	cpumask_copy(rcu_nocb_mask, cpu_possible_mask);
#endif /* #ifdef CONFIG_RCU_NOCB_CPU_ALL */
#if defined(CONFIG_NO_HZ_FULL)
	if (tick_nohz_full_running)
		cpumask_or(rcu_nocb_mask, rcu_nocb_mask, tick_nohz_full_mask);
#endif /* #if defined(CONFIG_NO_HZ_FULL) */

	if (!cpumask_subset(rcu_nocb_mask, cpu_possible_mask)) {
		pr_info("\tNote: kernel parameter 'rcu_nocbs=' contains nonexistent CPUs.\n");
		cpumask_and(rcu_nocb_mask, cpu_possible_mask,
			    rcu_nocb_mask);
	}
2238 2239
	pr_info("\tOffload RCU callbacks from CPUs: %*pbl.\n",
		cpumask_pr_args(rcu_nocb_mask));
2240 2241 2242 2243
	if (rcu_nocb_poll)
		pr_info("\tPoll for callbacks from no-CBs CPUs.\n");

	for_each_rcu_flavor(rsp) {
2244 2245
		for_each_cpu(cpu, rcu_nocb_mask)
			init_nocb_callback_list(per_cpu_ptr(rsp->rda, cpu));
2246
		rcu_organize_nocb_kthreads(rsp);
2247
	}
2248 2249
}

P
Paul E. McKenney 已提交
2250 2251 2252 2253 2254
/* Initialize per-rcu_data variables for no-CBs CPUs. */
static void __init rcu_boot_init_nocb_percpu_data(struct rcu_data *rdp)
{
	rdp->nocb_tail = &rdp->nocb_head;
	init_waitqueue_head(&rdp->nocb_wq);
2255
	rdp->nocb_follower_tail = &rdp->nocb_follower_head;
P
Paul E. McKenney 已提交
2256 2257
}

2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287
/*
 * If the specified CPU is a no-CBs CPU that does not already have its
 * rcuo kthread for the specified RCU flavor, spawn it.  If the CPUs are
 * brought online out of order, this can require re-organizing the
 * leader-follower relationships.
 */
static void rcu_spawn_one_nocb_kthread(struct rcu_state *rsp, int cpu)
{
	struct rcu_data *rdp;
	struct rcu_data *rdp_last;
	struct rcu_data *rdp_old_leader;
	struct rcu_data *rdp_spawn = per_cpu_ptr(rsp->rda, cpu);
	struct task_struct *t;

	/*
	 * If this isn't a no-CBs CPU or if it already has an rcuo kthread,
	 * then nothing to do.
	 */
	if (!rcu_is_nocb_cpu(cpu) || rdp_spawn->nocb_kthread)
		return;

	/* If we didn't spawn the leader first, reorganize! */
	rdp_old_leader = rdp_spawn->nocb_leader;
	if (rdp_old_leader != rdp_spawn && !rdp_old_leader->nocb_kthread) {
		rdp_last = NULL;
		rdp = rdp_old_leader;
		do {
			rdp->nocb_leader = rdp_spawn;
			if (rdp_last && rdp != rdp_spawn)
				rdp_last->nocb_next_follower = rdp;
2288 2289 2290 2291 2292 2293 2294
			if (rdp == rdp_spawn) {
				rdp = rdp->nocb_next_follower;
			} else {
				rdp_last = rdp;
				rdp = rdp->nocb_next_follower;
				rdp_last->nocb_next_follower = NULL;
			}
2295 2296 2297 2298 2299 2300 2301 2302
		} while (rdp);
		rdp_spawn->nocb_next_follower = rdp_old_leader;
	}

	/* Spawn the kthread for this CPU and RCU flavor. */
	t = kthread_run(rcu_nocb_kthread, rdp_spawn,
			"rcuo%c/%d", rsp->abbr, cpu);
	BUG_ON(IS_ERR(t));
2303
	WRITE_ONCE(rdp_spawn->nocb_kthread, t);
2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332
}

/*
 * If the specified CPU is a no-CBs CPU that does not already have its
 * rcuo kthreads, spawn them.
 */
static void rcu_spawn_all_nocb_kthreads(int cpu)
{
	struct rcu_state *rsp;

	if (rcu_scheduler_fully_active)
		for_each_rcu_flavor(rsp)
			rcu_spawn_one_nocb_kthread(rsp, cpu);
}

/*
 * Once the scheduler is running, spawn rcuo kthreads for all online
 * no-CBs CPUs.  This assumes that the early_initcall()s happen before
 * non-boot CPUs come online -- if this changes, we will need to add
 * some mutual exclusion.
 */
static void __init rcu_spawn_nocb_kthreads(void)
{
	int cpu;

	for_each_online_cpu(cpu)
		rcu_spawn_all_nocb_kthreads(cpu);
}

2333 2334 2335 2336 2337
/* How many follower CPU IDs per leader?  Default of -1 for sqrt(nr_cpu_ids). */
static int rcu_nocb_leader_stride = -1;
module_param(rcu_nocb_leader_stride, int, 0444);

/*
2338
 * Initialize leader-follower relationships for all no-CBs CPU.
2339
 */
2340
static void __init rcu_organize_nocb_kthreads(struct rcu_state *rsp)
P
Paul E. McKenney 已提交
2341 2342
{
	int cpu;
2343 2344
	int ls = rcu_nocb_leader_stride;
	int nl = 0;  /* Next leader. */
P
Paul E. McKenney 已提交
2345
	struct rcu_data *rdp;
2346 2347
	struct rcu_data *rdp_leader = NULL;  /* Suppress misguided gcc warn. */
	struct rcu_data *rdp_prev = NULL;
P
Paul E. McKenney 已提交
2348

2349
	if (!have_rcu_nocb_mask)
P
Paul E. McKenney 已提交
2350
		return;
2351 2352 2353 2354 2355 2356 2357 2358 2359
	if (ls == -1) {
		ls = int_sqrt(nr_cpu_ids);
		rcu_nocb_leader_stride = ls;
	}

	/*
	 * Each pass through this loop sets up one rcu_data structure and
	 * spawns one rcu_nocb_kthread().
	 */
P
Paul E. McKenney 已提交
2360 2361
	for_each_cpu(cpu, rcu_nocb_mask) {
		rdp = per_cpu_ptr(rsp->rda, cpu);
2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372
		if (rdp->cpu >= nl) {
			/* New leader, set up for followers & next leader. */
			nl = DIV_ROUND_UP(rdp->cpu + 1, ls) * ls;
			rdp->nocb_leader = rdp;
			rdp_leader = rdp;
		} else {
			/* Another follower, link to previous leader. */
			rdp->nocb_leader = rdp_leader;
			rdp_prev->nocb_next_follower = rdp;
		}
		rdp_prev = rdp;
P
Paul E. McKenney 已提交
2373 2374 2375 2376
	}
}

/* Prevent __call_rcu() from enqueuing callbacks on no-CBs CPUs */
2377
static bool init_nocb_callback_list(struct rcu_data *rdp)
P
Paul E. McKenney 已提交
2378
{
2379
	if (!rcu_is_nocb_cpu(rdp->cpu))
2380
		return false;
2381

2382 2383 2384 2385 2386 2387 2388 2389 2390 2391
	/* If there are early-boot callbacks, move them to nocb lists. */
	if (rdp->nxtlist) {
		rdp->nocb_head = rdp->nxtlist;
		rdp->nocb_tail = rdp->nxttail[RCU_NEXT_TAIL];
		atomic_long_set(&rdp->nocb_q_count, rdp->qlen);
		atomic_long_set(&rdp->nocb_q_count_lazy, rdp->qlen_lazy);
		rdp->nxtlist = NULL;
		rdp->qlen = 0;
		rdp->qlen_lazy = 0;
	}
P
Paul E. McKenney 已提交
2392
	rdp->nxttail[RCU_NEXT_TAIL] = NULL;
2393
	return true;
P
Paul E. McKenney 已提交
2394 2395
}

2396 2397
#else /* #ifdef CONFIG_RCU_NOCB_CPU */

2398 2399 2400 2401 2402 2403
static bool rcu_nocb_cpu_needs_barrier(struct rcu_state *rsp, int cpu)
{
	WARN_ON_ONCE(1); /* Should be dead code. */
	return false;
}

2404
static void rcu_nocb_gp_cleanup(struct rcu_state *rsp, struct rcu_node *rnp)
P
Paul E. McKenney 已提交
2405 2406 2407
{
}

2408 2409 2410 2411 2412 2413 2414
static void rcu_nocb_gp_set(struct rcu_node *rnp, int nrq)
{
}

static void rcu_init_one_nocb(struct rcu_node *rnp)
{
}
P
Paul E. McKenney 已提交
2415 2416

static bool __call_rcu_nocb(struct rcu_data *rdp, struct rcu_head *rhp,
2417
			    bool lazy, unsigned long flags)
P
Paul E. McKenney 已提交
2418
{
2419
	return false;
P
Paul E. McKenney 已提交
2420 2421 2422
}

static bool __maybe_unused rcu_nocb_adopt_orphan_cbs(struct rcu_state *rsp,
2423 2424
						     struct rcu_data *rdp,
						     unsigned long flags)
P
Paul E. McKenney 已提交
2425
{
2426
	return false;
P
Paul E. McKenney 已提交
2427 2428 2429 2430 2431 2432
}

static void __init rcu_boot_init_nocb_percpu_data(struct rcu_data *rdp)
{
}

2433
static int rcu_nocb_need_deferred_wakeup(struct rcu_data *rdp)
2434 2435 2436 2437 2438 2439 2440 2441
{
	return false;
}

static void do_nocb_deferred_wakeup(struct rcu_data *rdp)
{
}

2442 2443 2444 2445 2446
static void rcu_spawn_all_nocb_kthreads(int cpu)
{
}

static void __init rcu_spawn_nocb_kthreads(void)
P
Paul E. McKenney 已提交
2447 2448 2449
{
}

2450
static bool init_nocb_callback_list(struct rcu_data *rdp)
P
Paul E. McKenney 已提交
2451
{
2452
	return false;
P
Paul E. McKenney 已提交
2453 2454 2455
}

#endif /* #else #ifdef CONFIG_RCU_NOCB_CPU */
2456 2457 2458 2459 2460 2461 2462 2463 2464 2465

/*
 * An adaptive-ticks CPU can potentially execute in kernel mode for an
 * arbitrarily long period of time with the scheduling-clock tick turned
 * off.  RCU will be paying attention to this CPU because it is in the
 * kernel, but the CPU cannot be guaranteed to be executing the RCU state
 * machine because the scheduling-clock tick has been disabled.  Therefore,
 * if an adaptive-ticks CPU is failing to respond to the current grace
 * period and has not be idle from an RCU perspective, kick it.
 */
2466
static void __maybe_unused rcu_kick_nohz_cpu(int cpu)
2467 2468 2469 2470 2471 2472
{
#ifdef CONFIG_NO_HZ_FULL
	if (tick_nohz_full_cpu(cpu))
		smp_send_reschedule(cpu);
#endif /* #ifdef CONFIG_NO_HZ_FULL */
}
2473 2474 2475 2476


#ifdef CONFIG_NO_HZ_FULL_SYSIDLE

2477
static int full_sysidle_state;		/* Current system-idle state. */
2478 2479 2480 2481 2482 2483
#define RCU_SYSIDLE_NOT		0	/* Some CPU is not idle. */
#define RCU_SYSIDLE_SHORT	1	/* All CPUs idle for brief period. */
#define RCU_SYSIDLE_LONG	2	/* All CPUs idle for long enough. */
#define RCU_SYSIDLE_FULL	3	/* All CPUs idle, ready for sysidle. */
#define RCU_SYSIDLE_FULL_NOTED	4	/* Actually entered sysidle state. */

2484 2485 2486 2487 2488 2489
/*
 * Invoked to note exit from irq or task transition to idle.  Note that
 * usermode execution does -not- count as idle here!  After all, we want
 * to detect full-system idle states, not RCU quiescent states and grace
 * periods.  The caller must have disabled interrupts.
 */
2490
static void rcu_sysidle_enter(int irq)
2491 2492
{
	unsigned long j;
2493
	struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
2494

2495 2496 2497 2498
	/* If there are no nohz_full= CPUs, no need to track this. */
	if (!tick_nohz_full_enabled())
		return;

2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517
	/* Adjust nesting, check for fully idle. */
	if (irq) {
		rdtp->dynticks_idle_nesting--;
		WARN_ON_ONCE(rdtp->dynticks_idle_nesting < 0);
		if (rdtp->dynticks_idle_nesting != 0)
			return;  /* Still not fully idle. */
	} else {
		if ((rdtp->dynticks_idle_nesting & DYNTICK_TASK_NEST_MASK) ==
		    DYNTICK_TASK_NEST_VALUE) {
			rdtp->dynticks_idle_nesting = 0;
		} else {
			rdtp->dynticks_idle_nesting -= DYNTICK_TASK_NEST_VALUE;
			WARN_ON_ONCE(rdtp->dynticks_idle_nesting < 0);
			return;  /* Still not fully idle. */
		}
	}

	/* Record start of fully idle period. */
	j = jiffies;
2518
	WRITE_ONCE(rdtp->dynticks_idle_jiffies, j);
2519
	smp_mb__before_atomic();
2520
	atomic_inc(&rdtp->dynticks_idle);
2521
	smp_mb__after_atomic();
2522 2523 2524
	WARN_ON_ONCE(atomic_read(&rdtp->dynticks_idle) & 0x1);
}

2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535
/*
 * Unconditionally force exit from full system-idle state.  This is
 * invoked when a normal CPU exits idle, but must be called separately
 * for the timekeeping CPU (tick_do_timer_cpu).  The reason for this
 * is that the timekeeping CPU is permitted to take scheduling-clock
 * interrupts while the system is in system-idle state, and of course
 * rcu_sysidle_exit() has no way of distinguishing a scheduling-clock
 * interrupt from any other type of interrupt.
 */
void rcu_sysidle_force_exit(void)
{
2536
	int oldstate = READ_ONCE(full_sysidle_state);
2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556
	int newoldstate;

	/*
	 * Each pass through the following loop attempts to exit full
	 * system-idle state.  If contention proves to be a problem,
	 * a trylock-based contention tree could be used here.
	 */
	while (oldstate > RCU_SYSIDLE_SHORT) {
		newoldstate = cmpxchg(&full_sysidle_state,
				      oldstate, RCU_SYSIDLE_NOT);
		if (oldstate == newoldstate &&
		    oldstate == RCU_SYSIDLE_FULL_NOTED) {
			rcu_kick_nohz_cpu(tick_do_timer_cpu);
			return; /* We cleared it, done! */
		}
		oldstate = newoldstate;
	}
	smp_mb(); /* Order initial oldstate fetch vs. later non-idle work. */
}

2557 2558 2559 2560 2561
/*
 * Invoked to note entry to irq or task transition from idle.  Note that
 * usermode execution does -not- count as idle here!  The caller must
 * have disabled interrupts.
 */
2562
static void rcu_sysidle_exit(int irq)
2563
{
2564 2565
	struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);

2566 2567 2568 2569
	/* If there are no nohz_full= CPUs, no need to track this. */
	if (!tick_nohz_full_enabled())
		return;

2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591
	/* Adjust nesting, check for already non-idle. */
	if (irq) {
		rdtp->dynticks_idle_nesting++;
		WARN_ON_ONCE(rdtp->dynticks_idle_nesting <= 0);
		if (rdtp->dynticks_idle_nesting != 1)
			return; /* Already non-idle. */
	} else {
		/*
		 * Allow for irq misnesting.  Yes, it really is possible
		 * to enter an irq handler then never leave it, and maybe
		 * also vice versa.  Handle both possibilities.
		 */
		if (rdtp->dynticks_idle_nesting & DYNTICK_TASK_NEST_MASK) {
			rdtp->dynticks_idle_nesting += DYNTICK_TASK_NEST_VALUE;
			WARN_ON_ONCE(rdtp->dynticks_idle_nesting <= 0);
			return; /* Already non-idle. */
		} else {
			rdtp->dynticks_idle_nesting = DYNTICK_TASK_EXIT_IDLE;
		}
	}

	/* Record end of idle period. */
2592
	smp_mb__before_atomic();
2593
	atomic_inc(&rdtp->dynticks_idle);
2594
	smp_mb__after_atomic();
2595
	WARN_ON_ONCE(!(atomic_read(&rdtp->dynticks_idle) & 0x1));
2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614

	/*
	 * If we are the timekeeping CPU, we are permitted to be non-idle
	 * during a system-idle state.  This must be the case, because
	 * the timekeeping CPU has to take scheduling-clock interrupts
	 * during the time that the system is transitioning to full
	 * system-idle state.  This means that the timekeeping CPU must
	 * invoke rcu_sysidle_force_exit() directly if it does anything
	 * more than take a scheduling-clock interrupt.
	 */
	if (smp_processor_id() == tick_do_timer_cpu)
		return;

	/* Update system-idle state: We are clearly no longer fully idle! */
	rcu_sysidle_force_exit();
}

/*
 * Check to see if the current CPU is idle.  Note that usermode execution
2615 2616
 * does not count as idle.  The caller must have disabled interrupts,
 * and must be running on tick_do_timer_cpu.
2617 2618 2619 2620 2621 2622 2623 2624
 */
static void rcu_sysidle_check_cpu(struct rcu_data *rdp, bool *isidle,
				  unsigned long *maxj)
{
	int cur;
	unsigned long j;
	struct rcu_dynticks *rdtp = rdp->dynticks;

2625 2626 2627 2628
	/* If there are no nohz_full= CPUs, don't check system-wide idleness. */
	if (!tick_nohz_full_enabled())
		return;

2629 2630 2631 2632 2633
	/*
	 * If some other CPU has already reported non-idle, if this is
	 * not the flavor of RCU that tracks sysidle state, or if this
	 * is an offline or the timekeeping CPU, nothing to do.
	 */
2634
	if (!*isidle || rdp->rsp != rcu_state_p ||
2635 2636
	    cpu_is_offline(rdp->cpu) || rdp->cpu == tick_do_timer_cpu)
		return;
2637 2638
	/* Verify affinity of current kthread. */
	WARN_ON_ONCE(smp_processor_id() != tick_do_timer_cpu);
2639 2640 2641 2642 2643 2644 2645 2646 2647 2648

	/* Pick up current idle and NMI-nesting counter and check. */
	cur = atomic_read(&rdtp->dynticks_idle);
	if (cur & 0x1) {
		*isidle = false; /* We are not idle! */
		return;
	}
	smp_mb(); /* Read counters before timestamps. */

	/* Pick up timestamps. */
2649
	j = READ_ONCE(rdtp->dynticks_idle_jiffies);
2650 2651 2652 2653 2654 2655 2656 2657 2658 2659
	/* If this CPU entered idle more recently, update maxj timestamp. */
	if (ULONG_CMP_LT(*maxj, j))
		*maxj = j;
}

/*
 * Is this the flavor of RCU that is handling full-system idle?
 */
static bool is_sysidle_rcu_state(struct rcu_state *rsp)
{
2660
	return rsp == rcu_state_p;
2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685
}

/*
 * Return a delay in jiffies based on the number of CPUs, rcu_node
 * leaf fanout, and jiffies tick rate.  The idea is to allow larger
 * systems more time to transition to full-idle state in order to
 * avoid the cache thrashing that otherwise occur on the state variable.
 * Really small systems (less than a couple of tens of CPUs) should
 * instead use a single global atomically incremented counter, and later
 * versions of this will automatically reconfigure themselves accordingly.
 */
static unsigned long rcu_sysidle_delay(void)
{
	if (nr_cpu_ids <= CONFIG_NO_HZ_FULL_SYSIDLE_SMALL)
		return 0;
	return DIV_ROUND_UP(nr_cpu_ids * HZ, rcu_fanout_leaf * 1000);
}

/*
 * Advance the full-system-idle state.  This is invoked when all of
 * the non-timekeeping CPUs are idle.
 */
static void rcu_sysidle(unsigned long j)
{
	/* Check the current state. */
2686
	switch (READ_ONCE(full_sysidle_state)) {
2687 2688 2689
	case RCU_SYSIDLE_NOT:

		/* First time all are idle, so note a short idle period. */
2690
		WRITE_ONCE(full_sysidle_state, RCU_SYSIDLE_SHORT);
2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726
		break;

	case RCU_SYSIDLE_SHORT:

		/*
		 * Idle for a bit, time to advance to next state?
		 * cmpxchg failure means race with non-idle, let them win.
		 */
		if (ULONG_CMP_GE(jiffies, j + rcu_sysidle_delay()))
			(void)cmpxchg(&full_sysidle_state,
				      RCU_SYSIDLE_SHORT, RCU_SYSIDLE_LONG);
		break;

	case RCU_SYSIDLE_LONG:

		/*
		 * Do an additional check pass before advancing to full.
		 * cmpxchg failure means race with non-idle, let them win.
		 */
		if (ULONG_CMP_GE(jiffies, j + rcu_sysidle_delay()))
			(void)cmpxchg(&full_sysidle_state,
				      RCU_SYSIDLE_LONG, RCU_SYSIDLE_FULL);
		break;

	default:
		break;
	}
}

/*
 * Found a non-idle non-timekeeping CPU, so kick the system-idle state
 * back to the beginning.
 */
static void rcu_sysidle_cancel(void)
{
	smp_mb();
2727
	if (full_sysidle_state > RCU_SYSIDLE_SHORT)
2728
		WRITE_ONCE(full_sysidle_state, RCU_SYSIDLE_NOT);
2729 2730 2731 2732 2733 2734 2735 2736 2737
}

/*
 * Update the sysidle state based on the results of a force-quiescent-state
 * scan of the CPUs' dyntick-idle state.
 */
static void rcu_sysidle_report(struct rcu_state *rsp, int isidle,
			       unsigned long maxj, bool gpkt)
{
2738
	if (rsp != rcu_state_p)
2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754
		return;  /* Wrong flavor, ignore. */
	if (gpkt && nr_cpu_ids <= CONFIG_NO_HZ_FULL_SYSIDLE_SMALL)
		return;  /* Running state machine from timekeeping CPU. */
	if (isidle)
		rcu_sysidle(maxj);    /* More idle! */
	else
		rcu_sysidle_cancel(); /* Idle is over. */
}

/*
 * Wrapper for rcu_sysidle_report() when called from the grace-period
 * kthread's context.
 */
static void rcu_sysidle_report_gp(struct rcu_state *rsp, int isidle,
				  unsigned long maxj)
{
2755 2756 2757 2758
	/* If there are no nohz_full= CPUs, no need to track this. */
	if (!tick_nohz_full_enabled())
		return;

2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779
	rcu_sysidle_report(rsp, isidle, maxj, true);
}

/* Callback and function for forcing an RCU grace period. */
struct rcu_sysidle_head {
	struct rcu_head rh;
	int inuse;
};

static void rcu_sysidle_cb(struct rcu_head *rhp)
{
	struct rcu_sysidle_head *rshp;

	/*
	 * The following memory barrier is needed to replace the
	 * memory barriers that would normally be in the memory
	 * allocator.
	 */
	smp_mb();  /* grace period precedes setting inuse. */

	rshp = container_of(rhp, struct rcu_sysidle_head, rh);
2780
	WRITE_ONCE(rshp->inuse, 0);
2781 2782 2783 2784
}

/*
 * Check to see if the system is fully idle, other than the timekeeping CPU.
2785 2786
 * The caller must have disabled interrupts.  This is not intended to be
 * called unless tick_nohz_full_enabled().
2787 2788 2789 2790
 */
bool rcu_sys_is_idle(void)
{
	static struct rcu_sysidle_head rsh;
2791
	int rss = READ_ONCE(full_sysidle_state);
2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811

	if (WARN_ON_ONCE(smp_processor_id() != tick_do_timer_cpu))
		return false;

	/* Handle small-system case by doing a full scan of CPUs. */
	if (nr_cpu_ids <= CONFIG_NO_HZ_FULL_SYSIDLE_SMALL) {
		int oldrss = rss - 1;

		/*
		 * One pass to advance to each state up to _FULL.
		 * Give up if any pass fails to advance the state.
		 */
		while (rss < RCU_SYSIDLE_FULL && oldrss < rss) {
			int cpu;
			bool isidle = true;
			unsigned long maxj = jiffies - ULONG_MAX / 4;
			struct rcu_data *rdp;

			/* Scan all the CPUs looking for nonidle CPUs. */
			for_each_possible_cpu(cpu) {
2812
				rdp = per_cpu_ptr(rcu_state_p->rda, cpu);
2813 2814 2815 2816
				rcu_sysidle_check_cpu(rdp, &isidle, &maxj);
				if (!isidle)
					break;
			}
2817
			rcu_sysidle_report(rcu_state_p, isidle, maxj, false);
2818
			oldrss = rss;
2819
			rss = READ_ONCE(full_sysidle_state);
2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843
		}
	}

	/* If this is the first observation of an idle period, record it. */
	if (rss == RCU_SYSIDLE_FULL) {
		rss = cmpxchg(&full_sysidle_state,
			      RCU_SYSIDLE_FULL, RCU_SYSIDLE_FULL_NOTED);
		return rss == RCU_SYSIDLE_FULL;
	}

	smp_mb(); /* ensure rss load happens before later caller actions. */

	/* If already fully idle, tell the caller (in case of races). */
	if (rss == RCU_SYSIDLE_FULL_NOTED)
		return true;

	/*
	 * If we aren't there yet, and a grace period is not in flight,
	 * initiate a grace period.  Either way, tell the caller that
	 * we are not there yet.  We use an xchg() rather than an assignment
	 * to make up for the memory barriers that would otherwise be
	 * provided by the memory allocator.
	 */
	if (nr_cpu_ids > CONFIG_NO_HZ_FULL_SYSIDLE_SMALL &&
2844
	    !rcu_gp_in_progress(rcu_state_p) &&
2845 2846 2847
	    !rsh.inuse && xchg(&rsh.inuse, 1) == 0)
		call_rcu(&rsh.rh, rcu_sysidle_cb);
	return false;
2848 2849
}

2850 2851 2852 2853 2854 2855 2856 2857 2858 2859
/*
 * Initialize dynticks sysidle state for CPUs coming online.
 */
static void rcu_sysidle_init_percpu_data(struct rcu_dynticks *rdtp)
{
	rdtp->dynticks_idle_nesting = DYNTICK_TASK_NEST_VALUE;
}

#else /* #ifdef CONFIG_NO_HZ_FULL_SYSIDLE */

2860
static void rcu_sysidle_enter(int irq)
2861 2862 2863
{
}

2864
static void rcu_sysidle_exit(int irq)
2865 2866 2867
{
}

2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882
static void rcu_sysidle_check_cpu(struct rcu_data *rdp, bool *isidle,
				  unsigned long *maxj)
{
}

static bool is_sysidle_rcu_state(struct rcu_state *rsp)
{
	return false;
}

static void rcu_sysidle_report_gp(struct rcu_state *rsp, int isidle,
				  unsigned long maxj)
{
}

2883 2884 2885 2886 2887
static void rcu_sysidle_init_percpu_data(struct rcu_dynticks *rdtp)
{
}

#endif /* #else #ifdef CONFIG_NO_HZ_FULL_SYSIDLE */
2888 2889 2890 2891 2892 2893 2894 2895

/*
 * Is this CPU a NO_HZ_FULL CPU that should ignore RCU so that the
 * grace-period kthread will do force_quiescent_state() processing?
 * The idea is to avoid waking up RCU core processing on such a
 * CPU unless the grace period has extended for too long.
 *
 * This code relies on the fact that all NO_HZ_FULL CPUs are also
2896
 * CONFIG_RCU_NOCB_CPU CPUs.
2897 2898 2899 2900 2901 2902
 */
static bool rcu_nohz_full_cpu(struct rcu_state *rsp)
{
#ifdef CONFIG_NO_HZ_FULL
	if (tick_nohz_full_cpu(smp_processor_id()) &&
	    (!rcu_gp_in_progress(rsp) ||
2903
	     ULONG_CMP_LT(jiffies, READ_ONCE(rsp->gp_start) + HZ)))
2904
		return true;
2905
#endif /* #ifdef CONFIG_NO_HZ_FULL */
2906
	return false;
2907
}
2908 2909 2910 2911 2912 2913 2914

/*
 * Bind the grace-period kthread for the sysidle flavor of RCU to the
 * timekeeping CPU.
 */
static void rcu_bind_gp_kthread(void)
{
2915
	int __maybe_unused cpu;
2916

2917
	if (!tick_nohz_full_enabled())
2918
		return;
2919 2920
#ifdef CONFIG_NO_HZ_FULL_SYSIDLE
	cpu = tick_do_timer_cpu;
2921
	if (cpu >= 0 && cpu < nr_cpu_ids)
2922
		set_cpus_allowed_ptr(current, cpumask_of(cpu));
2923
#else /* #ifdef CONFIG_NO_HZ_FULL_SYSIDLE */
2924
	housekeeping_affine(current);
2925
#endif /* #else #ifdef CONFIG_NO_HZ_FULL_SYSIDLE */
2926
}
2927 2928 2929 2930 2931

/* Record the current task on dyntick-idle entry. */
static void rcu_dynticks_task_enter(void)
{
#if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL)
2932
	WRITE_ONCE(current->rcu_tasks_idle_cpu, smp_processor_id());
2933 2934 2935 2936 2937 2938 2939
#endif /* #if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL) */
}

/* Record no current task on dyntick-idle exit. */
static void rcu_dynticks_task_exit(void)
{
#if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL)
2940
	WRITE_ONCE(current->rcu_tasks_idle_cpu, -1);
2941 2942
#endif /* #if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL) */
}