tree_plugin.h 84.3 KB
Newer Older
1 2 3
/*
 * Read-Copy Update mechanism for mutual exclusion (tree-based version)
 * Internal non-public definitions that provide either classic
P
Paul E. McKenney 已提交
4
 * or preemptible semantics.
5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
 *
 * Copyright Red Hat, 2009
 * Copyright IBM Corporation, 2009
 *
 * Author: Ingo Molnar <mingo@elte.hu>
 *	   Paul E. McKenney <paulmck@linux.vnet.ibm.com>
 */

27
#include <linux/delay.h>
P
Paul E. McKenney 已提交
28
#include <linux/gfp.h>
29
#include <linux/oom.h>
30
#include <linux/smpboot.h>
31
#include "../time/tick-internal.h"
32

33 34 35 36 37 38 39 40
#define RCU_KTHREAD_PRIO 1

#ifdef CONFIG_RCU_BOOST
#define RCU_BOOST_PRIO CONFIG_RCU_BOOST_PRIO
#else
#define RCU_BOOST_PRIO RCU_KTHREAD_PRIO
#endif

P
Paul E. McKenney 已提交
41 42 43
#ifdef CONFIG_RCU_NOCB_CPU
static cpumask_var_t rcu_nocb_mask; /* CPUs to have callbacks offloaded. */
static bool have_rcu_nocb_mask;	    /* Was rcu_nocb_mask allocated? */
44
static bool __read_mostly rcu_nocb_poll;    /* Offload kthread are to poll. */
P
Paul E. McKenney 已提交
45 46 47
static char __initdata nocb_buf[NR_CPUS * 5];
#endif /* #ifdef CONFIG_RCU_NOCB_CPU */

48 49 50 51 52 53 54 55
/*
 * Check the RCU kernel configuration parameters and print informative
 * messages about anything out of the ordinary.  If you like #ifdef, you
 * will love this function.
 */
static void __init rcu_bootup_announce_oddness(void)
{
#ifdef CONFIG_RCU_TRACE
56
	pr_info("\tRCU debugfs-based tracing is enabled.\n");
57 58
#endif
#if (defined(CONFIG_64BIT) && CONFIG_RCU_FANOUT != 64) || (!defined(CONFIG_64BIT) && CONFIG_RCU_FANOUT != 32)
59
	pr_info("\tCONFIG_RCU_FANOUT set to non-default value of %d\n",
60 61 62
	       CONFIG_RCU_FANOUT);
#endif
#ifdef CONFIG_RCU_FANOUT_EXACT
63
	pr_info("\tHierarchical RCU autobalancing is disabled.\n");
64 65
#endif
#ifdef CONFIG_RCU_FAST_NO_HZ
66
	pr_info("\tRCU dyntick-idle grace-period acceleration is enabled.\n");
67 68
#endif
#ifdef CONFIG_PROVE_RCU
69
	pr_info("\tRCU lockdep checking is enabled.\n");
70 71
#endif
#ifdef CONFIG_RCU_TORTURE_TEST_RUNNABLE
72
	pr_info("\tRCU torture testing starts during boot.\n");
73
#endif
74
#if defined(CONFIG_TREE_PREEMPT_RCU) && !defined(CONFIG_RCU_CPU_STALL_VERBOSE)
75
	pr_info("\tDump stacks of tasks blocking RCU-preempt GP.\n");
76 77
#endif
#if defined(CONFIG_RCU_CPU_STALL_INFO)
78
	pr_info("\tAdditional per-CPU info printed with stalls.\n");
79 80
#endif
#if NUM_RCU_LVL_4 != 0
81
	pr_info("\tFour-level hierarchy is enabled.\n");
82
#endif
83
	if (rcu_fanout_leaf != CONFIG_RCU_FANOUT_LEAF)
84
		pr_info("\tBoot-time adjustment of leaf fanout to %d.\n", rcu_fanout_leaf);
85
	if (nr_cpu_ids != NR_CPUS)
86
		pr_info("\tRCU restricting CPUs from NR_CPUS=%d to nr_cpu_ids=%d.\n", NR_CPUS, nr_cpu_ids);
P
Paul E. McKenney 已提交
87
#ifdef CONFIG_RCU_NOCB_CPU
88 89
#ifndef CONFIG_RCU_NOCB_CPU_NONE
	if (!have_rcu_nocb_mask) {
90
		zalloc_cpumask_var(&rcu_nocb_mask, GFP_KERNEL);
91 92 93
		have_rcu_nocb_mask = true;
	}
#ifdef CONFIG_RCU_NOCB_CPU_ZERO
94
	pr_info("\tOffload RCU callbacks from CPU 0\n");
95 96 97
	cpumask_set_cpu(0, rcu_nocb_mask);
#endif /* #ifdef CONFIG_RCU_NOCB_CPU_ZERO */
#ifdef CONFIG_RCU_NOCB_CPU_ALL
98
	pr_info("\tOffload RCU callbacks from all CPUs\n");
99
	cpumask_copy(rcu_nocb_mask, cpu_possible_mask);
100 101
#endif /* #ifdef CONFIG_RCU_NOCB_CPU_ALL */
#endif /* #ifndef CONFIG_RCU_NOCB_CPU_NONE */
P
Paul E. McKenney 已提交
102
	if (have_rcu_nocb_mask) {
103 104 105 106 107
		if (!cpumask_subset(rcu_nocb_mask, cpu_possible_mask)) {
			pr_info("\tNote: kernel parameter 'rcu_nocbs=' contains nonexistent CPUs.\n");
			cpumask_and(rcu_nocb_mask, cpu_possible_mask,
				    rcu_nocb_mask);
		}
P
Paul E. McKenney 已提交
108
		cpulist_scnprintf(nocb_buf, sizeof(nocb_buf), rcu_nocb_mask);
109
		pr_info("\tOffload RCU callbacks from CPUs: %s.\n", nocb_buf);
P
Paul E. McKenney 已提交
110
		if (rcu_nocb_poll)
111
			pr_info("\tPoll for callbacks from no-CBs CPUs.\n");
P
Paul E. McKenney 已提交
112 113
	}
#endif /* #ifdef CONFIG_RCU_NOCB_CPU */
114 115
}

116 117
#ifdef CONFIG_TREE_PREEMPT_RCU

118
RCU_STATE_INITIALIZER(rcu_preempt, 'p', call_rcu);
119
static struct rcu_state *rcu_state = &rcu_preempt_state;
120

121 122
static int rcu_preempted_readers_exp(struct rcu_node *rnp);

123 124 125
/*
 * Tell them what RCU they are running.
 */
126
static void __init rcu_bootup_announce(void)
127
{
128
	pr_info("Preemptible hierarchical RCU implementation.\n");
129
	rcu_bootup_announce_oddness();
130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150
}

/*
 * Return the number of RCU-preempt batches processed thus far
 * for debug and statistics.
 */
long rcu_batches_completed_preempt(void)
{
	return rcu_preempt_state.completed;
}
EXPORT_SYMBOL_GPL(rcu_batches_completed_preempt);

/*
 * Return the number of RCU batches processed thus far for debug & stats.
 */
long rcu_batches_completed(void)
{
	return rcu_batches_completed_preempt();
}
EXPORT_SYMBOL_GPL(rcu_batches_completed);

151 152 153 154 155
/*
 * Force a quiescent state for preemptible RCU.
 */
void rcu_force_quiescent_state(void)
{
156
	force_quiescent_state(&rcu_preempt_state);
157 158 159
}
EXPORT_SYMBOL_GPL(rcu_force_quiescent_state);

160
/*
P
Paul E. McKenney 已提交
161
 * Record a preemptible-RCU quiescent state for the specified CPU.  Note
162 163 164
 * that this just means that the task currently running on the CPU is
 * not in a quiescent state.  There might be any number of tasks blocked
 * while in an RCU read-side critical section.
165 166 167 168
 *
 * Unlike the other rcu_*_qs() functions, callers to this function
 * must disable irqs in order to protect the assignment to
 * ->rcu_read_unlock_special.
169
 */
170
static void rcu_preempt_qs(int cpu)
171 172
{
	struct rcu_data *rdp = &per_cpu(rcu_preempt_data, cpu);
173

174
	if (rdp->passed_quiesce == 0)
175
		trace_rcu_grace_period(TPS("rcu_preempt"), rdp->gpnum, TPS("cpuqs"));
176
	rdp->passed_quiesce = 1;
177
	current->rcu_read_unlock_special &= ~RCU_READ_UNLOCK_NEED_QS;
178 179 180
}

/*
181 182 183
 * We have entered the scheduler, and the current task might soon be
 * context-switched away from.  If this task is in an RCU read-side
 * critical section, we will no longer be able to rely on the CPU to
184 185 186 187 188 189
 * record that fact, so we enqueue the task on the blkd_tasks list.
 * The task will dequeue itself when it exits the outermost enclosing
 * RCU read-side critical section.  Therefore, the current grace period
 * cannot be permitted to complete until the blkd_tasks list entries
 * predating the current grace period drain, in other words, until
 * rnp->gp_tasks becomes NULL.
190 191
 *
 * Caller must disable preemption.
192
 */
193
static void rcu_preempt_note_context_switch(int cpu)
194 195
{
	struct task_struct *t = current;
196
	unsigned long flags;
197 198 199
	struct rcu_data *rdp;
	struct rcu_node *rnp;

200
	if (t->rcu_read_lock_nesting > 0 &&
201 202 203
	    (t->rcu_read_unlock_special & RCU_READ_UNLOCK_BLOCKED) == 0) {

		/* Possibly blocking in an RCU read-side critical section. */
204
		rdp = per_cpu_ptr(rcu_preempt_state.rda, cpu);
205
		rnp = rdp->mynode;
P
Paul E. McKenney 已提交
206
		raw_spin_lock_irqsave(&rnp->lock, flags);
207
		smp_mb__after_unlock_lock();
208
		t->rcu_read_unlock_special |= RCU_READ_UNLOCK_BLOCKED;
209
		t->rcu_blocked_node = rnp;
210 211 212 213 214 215 216 217 218

		/*
		 * If this CPU has already checked in, then this task
		 * will hold up the next grace period rather than the
		 * current grace period.  Queue the task accordingly.
		 * If the task is queued for the current grace period
		 * (i.e., this CPU has not yet passed through a quiescent
		 * state for the current grace period), then as long
		 * as that task remains queued, the current grace period
219 220 221 222 223 224
		 * cannot end.  Note that there is some uncertainty as
		 * to exactly when the current grace period started.
		 * We take a conservative approach, which can result
		 * in unnecessarily waiting on tasks that started very
		 * slightly after the current grace period began.  C'est
		 * la vie!!!
225 226 227
		 *
		 * But first, note that the current CPU must still be
		 * on line!
228
		 */
229
		WARN_ON_ONCE((rdp->grpmask & rnp->qsmaskinit) == 0);
230
		WARN_ON_ONCE(!list_empty(&t->rcu_node_entry));
231 232 233
		if ((rnp->qsmask & rdp->grpmask) && rnp->gp_tasks != NULL) {
			list_add(&t->rcu_node_entry, rnp->gp_tasks->prev);
			rnp->gp_tasks = &t->rcu_node_entry;
234 235 236 237
#ifdef CONFIG_RCU_BOOST
			if (rnp->boost_tasks != NULL)
				rnp->boost_tasks = rnp->gp_tasks;
#endif /* #ifdef CONFIG_RCU_BOOST */
238 239 240 241 242
		} else {
			list_add(&t->rcu_node_entry, &rnp->blkd_tasks);
			if (rnp->qsmask & rdp->grpmask)
				rnp->gp_tasks = &t->rcu_node_entry;
		}
243 244 245 246 247
		trace_rcu_preempt_task(rdp->rsp->name,
				       t->pid,
				       (rnp->qsmask & rdp->grpmask)
				       ? rnp->gpnum
				       : rnp->gpnum + 1);
P
Paul E. McKenney 已提交
248
		raw_spin_unlock_irqrestore(&rnp->lock, flags);
249 250 251 252 253 254 255 256
	} else if (t->rcu_read_lock_nesting < 0 &&
		   t->rcu_read_unlock_special) {

		/*
		 * Complete exit from RCU read-side critical section on
		 * behalf of preempted instance of __rcu_read_unlock().
		 */
		rcu_read_unlock_special(t);
257 258 259 260 261 262 263 264 265 266 267
	}

	/*
	 * Either we were not in an RCU read-side critical section to
	 * begin with, or we have now recorded that critical section
	 * globally.  Either way, we can now note a quiescent state
	 * for this CPU.  Again, if we were in an RCU read-side critical
	 * section, and if that critical section was blocking the current
	 * grace period, then the fact that the task has been enqueued
	 * means that we continue to block the current grace period.
	 */
268
	local_irq_save(flags);
269
	rcu_preempt_qs(cpu);
270
	local_irq_restore(flags);
271 272
}

273 274 275 276 277
/*
 * Check for preempted RCU readers blocking the current grace period
 * for the specified rcu_node structure.  If the caller needs a reliable
 * answer, it must hold the rcu_node's ->lock.
 */
278
static int rcu_preempt_blocked_readers_cgp(struct rcu_node *rnp)
279
{
280
	return rnp->gp_tasks != NULL;
281 282
}

283 284 285 286 287 288 289
/*
 * Record a quiescent state for all tasks that were previously queued
 * on the specified rcu_node structure and that were blocking the current
 * RCU grace period.  The caller must hold the specified rnp->lock with
 * irqs disabled, and this lock is released upon return, but irqs remain
 * disabled.
 */
P
Paul E. McKenney 已提交
290
static void rcu_report_unblock_qs_rnp(struct rcu_node *rnp, unsigned long flags)
291 292 293 294 295
	__releases(rnp->lock)
{
	unsigned long mask;
	struct rcu_node *rnp_p;

296
	if (rnp->qsmask != 0 || rcu_preempt_blocked_readers_cgp(rnp)) {
P
Paul E. McKenney 已提交
297
		raw_spin_unlock_irqrestore(&rnp->lock, flags);
298 299 300 301 302 303 304 305 306 307
		return;  /* Still need more quiescent states! */
	}

	rnp_p = rnp->parent;
	if (rnp_p == NULL) {
		/*
		 * Either there is only one rcu_node in the tree,
		 * or tasks were kicked up to root rcu_node due to
		 * CPUs going offline.
		 */
P
Paul E. McKenney 已提交
308
		rcu_report_qs_rsp(&rcu_preempt_state, flags);
309 310 311 312 313
		return;
	}

	/* Report up the rest of the hierarchy. */
	mask = rnp->grpmask;
P
Paul E. McKenney 已提交
314 315
	raw_spin_unlock(&rnp->lock);	/* irqs remain disabled. */
	raw_spin_lock(&rnp_p->lock);	/* irqs already disabled. */
316
	smp_mb__after_unlock_lock();
P
Paul E. McKenney 已提交
317
	rcu_report_qs_rnp(mask, &rcu_preempt_state, rnp_p, flags);
318 319
}

320 321 322 323 324 325 326 327 328 329 330 331 332 333 334
/*
 * Advance a ->blkd_tasks-list pointer to the next entry, instead
 * returning NULL if at the end of the list.
 */
static struct list_head *rcu_next_node_entry(struct task_struct *t,
					     struct rcu_node *rnp)
{
	struct list_head *np;

	np = t->rcu_node_entry.next;
	if (np == &rnp->blkd_tasks)
		np = NULL;
	return np;
}

335 336 337 338 339
/*
 * Handle special cases during rcu_read_unlock(), such as needing to
 * notify RCU core processing or task having blocked during the RCU
 * read-side critical section.
 */
340
void rcu_read_unlock_special(struct task_struct *t)
341 342
{
	int empty;
343
	int empty_exp;
344
	int empty_exp_now;
345
	unsigned long flags;
346
	struct list_head *np;
347 348 349
#ifdef CONFIG_RCU_BOOST
	struct rt_mutex *rbmp = NULL;
#endif /* #ifdef CONFIG_RCU_BOOST */
350 351 352 353 354 355 356 357 358 359 360 361 362 363 364
	struct rcu_node *rnp;
	int special;

	/* NMI handlers cannot block and cannot safely manipulate state. */
	if (in_nmi())
		return;

	local_irq_save(flags);

	/*
	 * If RCU core is waiting for this CPU to exit critical section,
	 * let it know that we have done so.
	 */
	special = t->rcu_read_unlock_special;
	if (special & RCU_READ_UNLOCK_NEED_QS) {
365
		rcu_preempt_qs(smp_processor_id());
366 367 368 369
		if (!t->rcu_read_unlock_special) {
			local_irq_restore(flags);
			return;
		}
370 371
	}

372 373
	/* Hardware IRQ handlers cannot block, complain if they get here. */
	if (WARN_ON_ONCE(in_irq() || in_serving_softirq())) {
374 375 376 377 378 379 380 381
		local_irq_restore(flags);
		return;
	}

	/* Clean up if blocked during RCU read-side critical section. */
	if (special & RCU_READ_UNLOCK_BLOCKED) {
		t->rcu_read_unlock_special &= ~RCU_READ_UNLOCK_BLOCKED;

382 383 384 385 386 387
		/*
		 * Remove this task from the list it blocked on.  The
		 * task can migrate while we acquire the lock, but at
		 * most one time.  So at most two passes through loop.
		 */
		for (;;) {
388
			rnp = t->rcu_blocked_node;
P
Paul E. McKenney 已提交
389
			raw_spin_lock(&rnp->lock);  /* irqs already disabled. */
390
			smp_mb__after_unlock_lock();
391
			if (rnp == t->rcu_blocked_node)
392
				break;
P
Paul E. McKenney 已提交
393
			raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
394
		}
395
		empty = !rcu_preempt_blocked_readers_cgp(rnp);
396 397
		empty_exp = !rcu_preempted_readers_exp(rnp);
		smp_mb(); /* ensure expedited fastpath sees end of RCU c-s. */
398
		np = rcu_next_node_entry(t, rnp);
399
		list_del_init(&t->rcu_node_entry);
400
		t->rcu_blocked_node = NULL;
401
		trace_rcu_unlock_preempted_task(TPS("rcu_preempt"),
402
						rnp->gpnum, t->pid);
403 404 405 406
		if (&t->rcu_node_entry == rnp->gp_tasks)
			rnp->gp_tasks = np;
		if (&t->rcu_node_entry == rnp->exp_tasks)
			rnp->exp_tasks = np;
407 408 409
#ifdef CONFIG_RCU_BOOST
		if (&t->rcu_node_entry == rnp->boost_tasks)
			rnp->boost_tasks = np;
410 411 412 413
		/* Snapshot/clear ->rcu_boost_mutex with rcu_node lock held. */
		if (t->rcu_boost_mutex) {
			rbmp = t->rcu_boost_mutex;
			t->rcu_boost_mutex = NULL;
414
		}
415
#endif /* #ifdef CONFIG_RCU_BOOST */
416 417 418 419

		/*
		 * If this was the last task on the current list, and if
		 * we aren't waiting on any CPUs, report the quiescent state.
420 421
		 * Note that rcu_report_unblock_qs_rnp() releases rnp->lock,
		 * so we must take a snapshot of the expedited state.
422
		 */
423
		empty_exp_now = !rcu_preempted_readers_exp(rnp);
424
		if (!empty && !rcu_preempt_blocked_readers_cgp(rnp)) {
425
			trace_rcu_quiescent_state_report(TPS("preempt_rcu"),
426 427 428 429 430 431
							 rnp->gpnum,
							 0, rnp->qsmask,
							 rnp->level,
							 rnp->grplo,
							 rnp->grphi,
							 !!rnp->gp_tasks);
P
Paul E. McKenney 已提交
432
			rcu_report_unblock_qs_rnp(rnp, flags);
433
		} else {
434
			raw_spin_unlock_irqrestore(&rnp->lock, flags);
435
		}
436

437 438
#ifdef CONFIG_RCU_BOOST
		/* Unboost if we were boosted. */
439 440
		if (rbmp)
			rt_mutex_unlock(rbmp);
441 442
#endif /* #ifdef CONFIG_RCU_BOOST */

443 444 445 446
		/*
		 * If this was the last task on the expedited lists,
		 * then we need to report up the rcu_node hierarchy.
		 */
447
		if (!empty_exp && empty_exp_now)
448
			rcu_report_exp_rnp(&rcu_preempt_state, rnp, true);
449 450
	} else {
		local_irq_restore(flags);
451 452 453
	}
}

454 455 456 457 458 459 460 461 462 463 464
#ifdef CONFIG_RCU_CPU_STALL_VERBOSE

/*
 * Dump detailed information for all tasks blocking the current RCU
 * grace period on the specified rcu_node structure.
 */
static void rcu_print_detail_task_stall_rnp(struct rcu_node *rnp)
{
	unsigned long flags;
	struct task_struct *t;

465
	raw_spin_lock_irqsave(&rnp->lock, flags);
466 467 468 469
	if (!rcu_preempt_blocked_readers_cgp(rnp)) {
		raw_spin_unlock_irqrestore(&rnp->lock, flags);
		return;
	}
470 471 472 473 474
	t = list_entry(rnp->gp_tasks,
		       struct task_struct, rcu_node_entry);
	list_for_each_entry_continue(t, &rnp->blkd_tasks, rcu_node_entry)
		sched_show_task(t);
	raw_spin_unlock_irqrestore(&rnp->lock, flags);
475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497
}

/*
 * Dump detailed information for all tasks blocking the current RCU
 * grace period.
 */
static void rcu_print_detail_task_stall(struct rcu_state *rsp)
{
	struct rcu_node *rnp = rcu_get_root(rsp);

	rcu_print_detail_task_stall_rnp(rnp);
	rcu_for_each_leaf_node(rsp, rnp)
		rcu_print_detail_task_stall_rnp(rnp);
}

#else /* #ifdef CONFIG_RCU_CPU_STALL_VERBOSE */

static void rcu_print_detail_task_stall(struct rcu_state *rsp)
{
}

#endif /* #else #ifdef CONFIG_RCU_CPU_STALL_VERBOSE */

498 499 500 501
#ifdef CONFIG_RCU_CPU_STALL_INFO

static void rcu_print_task_stall_begin(struct rcu_node *rnp)
{
502
	pr_err("\tTasks blocked on level-%d rcu_node (CPUs %d-%d):",
503 504 505 506 507
	       rnp->level, rnp->grplo, rnp->grphi);
}

static void rcu_print_task_stall_end(void)
{
508
	pr_cont("\n");
509 510 511 512 513 514 515 516 517 518 519 520 521 522
}

#else /* #ifdef CONFIG_RCU_CPU_STALL_INFO */

static void rcu_print_task_stall_begin(struct rcu_node *rnp)
{
}

static void rcu_print_task_stall_end(void)
{
}

#endif /* #else #ifdef CONFIG_RCU_CPU_STALL_INFO */

523 524 525 526
/*
 * Scan the current list of tasks blocked within RCU read-side critical
 * sections, printing out the tid of each.
 */
527
static int rcu_print_task_stall(struct rcu_node *rnp)
528 529
{
	struct task_struct *t;
530
	int ndetected = 0;
531

532
	if (!rcu_preempt_blocked_readers_cgp(rnp))
533
		return 0;
534
	rcu_print_task_stall_begin(rnp);
535 536
	t = list_entry(rnp->gp_tasks,
		       struct task_struct, rcu_node_entry);
537
	list_for_each_entry_continue(t, &rnp->blkd_tasks, rcu_node_entry) {
538
		pr_cont(" P%d", t->pid);
539 540
		ndetected++;
	}
541
	rcu_print_task_stall_end();
542
	return ndetected;
543 544
}

545 546 547 548 549 550
/*
 * Check that the list of blocked tasks for the newly completed grace
 * period is in fact empty.  It is a serious bug to complete a grace
 * period that still has RCU readers blocked!  This function must be
 * invoked -before- updating this rnp's ->gpnum, and the rnp's ->lock
 * must be held by the caller.
551 552 553
 *
 * Also, if there are blocked tasks on the list, they automatically
 * block the newly created grace period, so set up ->gp_tasks accordingly.
554 555 556
 */
static void rcu_preempt_check_blocked_tasks(struct rcu_node *rnp)
{
557
	WARN_ON_ONCE(rcu_preempt_blocked_readers_cgp(rnp));
558 559
	if (!list_empty(&rnp->blkd_tasks))
		rnp->gp_tasks = rnp->blkd_tasks.next;
560
	WARN_ON_ONCE(rnp->qsmask);
561 562
}

563 564
#ifdef CONFIG_HOTPLUG_CPU

565 566 567 568 569 570
/*
 * Handle tasklist migration for case in which all CPUs covered by the
 * specified rcu_node have gone offline.  Move them up to the root
 * rcu_node.  The reason for not just moving them to the immediate
 * parent is to remove the need for rcu_read_unlock_special() to
 * make more than two attempts to acquire the target rcu_node's lock.
571 572
 * Returns true if there were tasks blocking the current RCU grace
 * period.
573
 *
574 575 576
 * Returns 1 if there was previously a task blocking the current grace
 * period on the specified rcu_node structure.
 *
577 578
 * The caller must hold rnp->lock with irqs disabled.
 */
579 580 581
static int rcu_preempt_offline_tasks(struct rcu_state *rsp,
				     struct rcu_node *rnp,
				     struct rcu_data *rdp)
582 583 584
{
	struct list_head *lp;
	struct list_head *lp_root;
585
	int retval = 0;
586
	struct rcu_node *rnp_root = rcu_get_root(rsp);
587
	struct task_struct *t;
588

589 590
	if (rnp == rnp_root) {
		WARN_ONCE(1, "Last CPU thought to be offlined?");
591
		return 0;  /* Shouldn't happen: at least one CPU online. */
592
	}
593 594 595

	/* If we are on an internal node, complain bitterly. */
	WARN_ON_ONCE(rnp != rdp->mynode);
596 597

	/*
598 599 600 601 602 603 604
	 * Move tasks up to root rcu_node.  Don't try to get fancy for
	 * this corner-case operation -- just put this node's tasks
	 * at the head of the root node's list, and update the root node's
	 * ->gp_tasks and ->exp_tasks pointers to those of this node's,
	 * if non-NULL.  This might result in waiting for more tasks than
	 * absolutely necessary, but this is a good performance/complexity
	 * tradeoff.
605
	 */
606
	if (rcu_preempt_blocked_readers_cgp(rnp) && rnp->qsmask == 0)
607 608 609
		retval |= RCU_OFL_TASKS_NORM_GP;
	if (rcu_preempted_readers_exp(rnp))
		retval |= RCU_OFL_TASKS_EXP_GP;
610 611 612 613 614
	lp = &rnp->blkd_tasks;
	lp_root = &rnp_root->blkd_tasks;
	while (!list_empty(lp)) {
		t = list_entry(lp->next, typeof(*t), rcu_node_entry);
		raw_spin_lock(&rnp_root->lock); /* irqs already disabled */
615
		smp_mb__after_unlock_lock();
616 617 618 619 620 621 622
		list_del(&t->rcu_node_entry);
		t->rcu_blocked_node = rnp_root;
		list_add(&t->rcu_node_entry, lp_root);
		if (&t->rcu_node_entry == rnp->gp_tasks)
			rnp_root->gp_tasks = rnp->gp_tasks;
		if (&t->rcu_node_entry == rnp->exp_tasks)
			rnp_root->exp_tasks = rnp->exp_tasks;
623 624 625 626
#ifdef CONFIG_RCU_BOOST
		if (&t->rcu_node_entry == rnp->boost_tasks)
			rnp_root->boost_tasks = rnp->boost_tasks;
#endif /* #ifdef CONFIG_RCU_BOOST */
627
		raw_spin_unlock(&rnp_root->lock); /* irqs still disabled */
628
	}
629

630 631
	rnp->gp_tasks = NULL;
	rnp->exp_tasks = NULL;
632
#ifdef CONFIG_RCU_BOOST
633
	rnp->boost_tasks = NULL;
634 635 636 637 638
	/*
	 * In case root is being boosted and leaf was not.  Make sure
	 * that we boost the tasks blocking the current grace period
	 * in this case.
	 */
639
	raw_spin_lock(&rnp_root->lock); /* irqs already disabled */
640
	smp_mb__after_unlock_lock();
641
	if (rnp_root->boost_tasks != NULL &&
642 643
	    rnp_root->boost_tasks != rnp_root->gp_tasks &&
	    rnp_root->boost_tasks != rnp_root->exp_tasks)
644 645 646 647
		rnp_root->boost_tasks = rnp_root->gp_tasks;
	raw_spin_unlock(&rnp_root->lock); /* irqs still disabled */
#endif /* #ifdef CONFIG_RCU_BOOST */

648
	return retval;
649 650
}

651 652
#endif /* #ifdef CONFIG_HOTPLUG_CPU */

653 654 655 656 657 658 659 660 661 662 663 664
/*
 * Check for a quiescent state from the current CPU.  When a task blocks,
 * the task is recorded in the corresponding CPU's rcu_node structure,
 * which is checked elsewhere.
 *
 * Caller must disable hard irqs.
 */
static void rcu_preempt_check_callbacks(int cpu)
{
	struct task_struct *t = current;

	if (t->rcu_read_lock_nesting == 0) {
665
		rcu_preempt_qs(cpu);
666 667
		return;
	}
668 669
	if (t->rcu_read_lock_nesting > 0 &&
	    per_cpu(rcu_preempt_data, cpu).qs_pending)
670
		t->rcu_read_unlock_special |= RCU_READ_UNLOCK_NEED_QS;
671 672
}

673 674
#ifdef CONFIG_RCU_BOOST

675 676
static void rcu_preempt_do_callbacks(void)
{
677
	rcu_do_batch(&rcu_preempt_state, this_cpu_ptr(&rcu_preempt_data));
678 679
}

680 681
#endif /* #ifdef CONFIG_RCU_BOOST */

682
/*
P
Paul E. McKenney 已提交
683
 * Queue a preemptible-RCU callback for invocation after a grace period.
684 685 686
 */
void call_rcu(struct rcu_head *head, void (*func)(struct rcu_head *rcu))
{
P
Paul E. McKenney 已提交
687
	__call_rcu(head, func, &rcu_preempt_state, -1, 0);
688 689 690
}
EXPORT_SYMBOL_GPL(call_rcu);

691 692 693 694 695 696 697 698 699 700
/*
 * Queue an RCU callback for lazy invocation after a grace period.
 * This will likely be later named something like "call_rcu_lazy()",
 * but this change will require some way of tagging the lazy RCU
 * callbacks in the list of pending callbacks.  Until then, this
 * function may only be called from __kfree_rcu().
 */
void kfree_call_rcu(struct rcu_head *head,
		    void (*func)(struct rcu_head *rcu))
{
P
Paul E. McKenney 已提交
701
	__call_rcu(head, func, &rcu_preempt_state, -1, 1);
702 703 704
}
EXPORT_SYMBOL_GPL(kfree_call_rcu);

705 706 707 708 709
/**
 * synchronize_rcu - wait until a grace period has elapsed.
 *
 * Control will return to the caller some time after a full grace
 * period has elapsed, in other words after all currently executing RCU
710 711 712 713 714
 * read-side critical sections have completed.  Note, however, that
 * upon return from synchronize_rcu(), the caller might well be executing
 * concurrently with new RCU read-side critical sections that began while
 * synchronize_rcu() was waiting.  RCU read-side critical sections are
 * delimited by rcu_read_lock() and rcu_read_unlock(), and may be nested.
715 716 717
 *
 * See the description of synchronize_sched() for more detailed information
 * on memory ordering guarantees.
718 719 720
 */
void synchronize_rcu(void)
{
721 722 723 724
	rcu_lockdep_assert(!lock_is_held(&rcu_bh_lock_map) &&
			   !lock_is_held(&rcu_lock_map) &&
			   !lock_is_held(&rcu_sched_lock_map),
			   "Illegal synchronize_rcu() in RCU read-side critical section");
725 726
	if (!rcu_scheduler_active)
		return;
727 728 729 730
	if (rcu_expedited)
		synchronize_rcu_expedited();
	else
		wait_rcu_gp(call_rcu);
731 732 733
}
EXPORT_SYMBOL_GPL(synchronize_rcu);

734
static DECLARE_WAIT_QUEUE_HEAD(sync_rcu_preempt_exp_wq);
735
static unsigned long sync_rcu_preempt_exp_count;
736 737 738 739 740 741 742 743 744 745
static DEFINE_MUTEX(sync_rcu_preempt_exp_mutex);

/*
 * Return non-zero if there are any tasks in RCU read-side critical
 * sections blocking the current preemptible-RCU expedited grace period.
 * If there is no preemptible-RCU expedited grace period currently in
 * progress, returns zero unconditionally.
 */
static int rcu_preempted_readers_exp(struct rcu_node *rnp)
{
746
	return rnp->exp_tasks != NULL;
747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771
}

/*
 * return non-zero if there is no RCU expedited grace period in progress
 * for the specified rcu_node structure, in other words, if all CPUs and
 * tasks covered by the specified rcu_node structure have done their bit
 * for the current expedited grace period.  Works only for preemptible
 * RCU -- other RCU implementation use other means.
 *
 * Caller must hold sync_rcu_preempt_exp_mutex.
 */
static int sync_rcu_preempt_exp_done(struct rcu_node *rnp)
{
	return !rcu_preempted_readers_exp(rnp) &&
	       ACCESS_ONCE(rnp->expmask) == 0;
}

/*
 * Report the exit from RCU read-side critical section for the last task
 * that queued itself during or before the current expedited preemptible-RCU
 * grace period.  This event is reported either to the rcu_node structure on
 * which the task was queued or to one of that rcu_node structure's ancestors,
 * recursively up the tree.  (Calm down, calm down, we do the recursion
 * iteratively!)
 *
772 773 774
 * Most callers will set the "wake" flag, but the task initiating the
 * expedited grace period need not wake itself.
 *
775 776
 * Caller must hold sync_rcu_preempt_exp_mutex.
 */
777 778
static void rcu_report_exp_rnp(struct rcu_state *rsp, struct rcu_node *rnp,
			       bool wake)
779 780 781 782
{
	unsigned long flags;
	unsigned long mask;

P
Paul E. McKenney 已提交
783
	raw_spin_lock_irqsave(&rnp->lock, flags);
784
	smp_mb__after_unlock_lock();
785
	for (;;) {
786 787
		if (!sync_rcu_preempt_exp_done(rnp)) {
			raw_spin_unlock_irqrestore(&rnp->lock, flags);
788
			break;
789
		}
790
		if (rnp->parent == NULL) {
791
			raw_spin_unlock_irqrestore(&rnp->lock, flags);
792 793
			if (wake) {
				smp_mb(); /* EGP done before wake_up(). */
794
				wake_up(&sync_rcu_preempt_exp_wq);
795
			}
796 797 798
			break;
		}
		mask = rnp->grpmask;
P
Paul E. McKenney 已提交
799
		raw_spin_unlock(&rnp->lock); /* irqs remain disabled */
800
		rnp = rnp->parent;
P
Paul E. McKenney 已提交
801
		raw_spin_lock(&rnp->lock); /* irqs already disabled */
802
		smp_mb__after_unlock_lock();
803 804 805 806 807 808 809 810 811
		rnp->expmask &= ~mask;
	}
}

/*
 * Snapshot the tasks blocking the newly started preemptible-RCU expedited
 * grace period for the specified rcu_node structure.  If there are no such
 * tasks, report it up the rcu_node hierarchy.
 *
812 813
 * Caller must hold sync_rcu_preempt_exp_mutex and must exclude
 * CPU hotplug operations.
814 815 816 817
 */
static void
sync_rcu_preempt_exp_init(struct rcu_state *rsp, struct rcu_node *rnp)
{
818
	unsigned long flags;
819
	int must_wait = 0;
820

821
	raw_spin_lock_irqsave(&rnp->lock, flags);
822
	smp_mb__after_unlock_lock();
823
	if (list_empty(&rnp->blkd_tasks)) {
824
		raw_spin_unlock_irqrestore(&rnp->lock, flags);
825
	} else {
826
		rnp->exp_tasks = rnp->blkd_tasks.next;
827
		rcu_initiate_boost(rnp, flags);  /* releases rnp->lock */
828 829
		must_wait = 1;
	}
830
	if (!must_wait)
831
		rcu_report_exp_rnp(rsp, rnp, false); /* Don't wake self. */
832 833
}

834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849
/**
 * synchronize_rcu_expedited - Brute-force RCU grace period
 *
 * Wait for an RCU-preempt grace period, but expedite it.  The basic
 * idea is to invoke synchronize_sched_expedited() to push all the tasks to
 * the ->blkd_tasks lists and wait for this list to drain.  This consumes
 * significant time on all CPUs and is unfriendly to real-time workloads,
 * so is thus not recommended for any sort of common-case code.
 * In fact, if you are using synchronize_rcu_expedited() in a loop,
 * please restructure your code to batch your updates, and then Use a
 * single synchronize_rcu() instead.
 *
 * Note that it is illegal to call this function while holding any lock
 * that is acquired by a CPU-hotplug notifier.  And yes, it is also illegal
 * to call this function from a CPU-hotplug notifier.  Failing to observe
 * these restriction will result in deadlock.
850 851 852
 */
void synchronize_rcu_expedited(void)
{
853 854 855
	unsigned long flags;
	struct rcu_node *rnp;
	struct rcu_state *rsp = &rcu_preempt_state;
856
	unsigned long snap;
857 858 859 860 861 862
	int trycount = 0;

	smp_mb(); /* Caller's modifications seen first by other CPUs. */
	snap = ACCESS_ONCE(sync_rcu_preempt_exp_count) + 1;
	smp_mb(); /* Above access cannot bleed into critical section. */

863 864 865 866 867 868 869 870 871 872
	/*
	 * Block CPU-hotplug operations.  This means that any CPU-hotplug
	 * operation that finds an rcu_node structure with tasks in the
	 * process of being boosted will know that all tasks blocking
	 * this expedited grace period will already be in the process of
	 * being boosted.  This simplifies the process of moving tasks
	 * from leaf to root rcu_node structures.
	 */
	get_online_cpus();

873 874 875 876 877 878
	/*
	 * Acquire lock, falling back to synchronize_rcu() if too many
	 * lock-acquisition failures.  Of course, if someone does the
	 * expedited grace period for us, just leave.
	 */
	while (!mutex_trylock(&sync_rcu_preempt_exp_mutex)) {
879 880 881 882 883
		if (ULONG_CMP_LT(snap,
		    ACCESS_ONCE(sync_rcu_preempt_exp_count))) {
			put_online_cpus();
			goto mb_ret; /* Others did our work for us. */
		}
884
		if (trycount++ < 10) {
885
			udelay(trycount * num_online_cpus());
886
		} else {
887
			put_online_cpus();
888
			wait_rcu_gp(call_rcu);
889 890 891
			return;
		}
	}
892 893
	if (ULONG_CMP_LT(snap, ACCESS_ONCE(sync_rcu_preempt_exp_count))) {
		put_online_cpus();
894
		goto unlock_mb_ret; /* Others did our work for us. */
895
	}
896

897
	/* force all RCU readers onto ->blkd_tasks lists. */
898 899 900 901
	synchronize_sched_expedited();

	/* Initialize ->expmask for all non-leaf rcu_node structures. */
	rcu_for_each_nonleaf_node_breadth_first(rsp, rnp) {
902
		raw_spin_lock_irqsave(&rnp->lock, flags);
903
		smp_mb__after_unlock_lock();
904
		rnp->expmask = rnp->qsmaskinit;
905
		raw_spin_unlock_irqrestore(&rnp->lock, flags);
906 907
	}

908
	/* Snapshot current state of ->blkd_tasks lists. */
909 910 911 912 913
	rcu_for_each_leaf_node(rsp, rnp)
		sync_rcu_preempt_exp_init(rsp, rnp);
	if (NUM_RCU_NODES > 1)
		sync_rcu_preempt_exp_init(rsp, rcu_get_root(rsp));

914
	put_online_cpus();
915

916
	/* Wait for snapshotted ->blkd_tasks lists to drain. */
917 918 919 920 921 922 923 924 925 926 927
	rnp = rcu_get_root(rsp);
	wait_event(sync_rcu_preempt_exp_wq,
		   sync_rcu_preempt_exp_done(rnp));

	/* Clean up and exit. */
	smp_mb(); /* ensure expedited GP seen before counter increment. */
	ACCESS_ONCE(sync_rcu_preempt_exp_count)++;
unlock_mb_ret:
	mutex_unlock(&sync_rcu_preempt_exp_mutex);
mb_ret:
	smp_mb(); /* ensure subsequent action seen after grace period. */
928 929 930
}
EXPORT_SYMBOL_GPL(synchronize_rcu_expedited);

931 932
/**
 * rcu_barrier - Wait until all in-flight call_rcu() callbacks complete.
933 934 935 936 937
 *
 * Note that this primitive does not necessarily wait for an RCU grace period
 * to complete.  For example, if there are no RCU callbacks queued anywhere
 * in the system, then rcu_barrier() is within its rights to return
 * immediately, without waiting for anything, much less an RCU grace period.
938 939 940
 */
void rcu_barrier(void)
{
941
	_rcu_barrier(&rcu_preempt_state);
942 943 944
}
EXPORT_SYMBOL_GPL(rcu_barrier);

945
/*
P
Paul E. McKenney 已提交
946
 * Initialize preemptible RCU's state structures.
947 948 949
 */
static void __init __rcu_init_preempt(void)
{
950
	rcu_init_one(&rcu_preempt_state, &rcu_preempt_data);
951 952
}

953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970
/*
 * Check for a task exiting while in a preemptible-RCU read-side
 * critical section, clean up if so.  No need to issue warnings,
 * as debug_check_no_locks_held() already does this if lockdep
 * is enabled.
 */
void exit_rcu(void)
{
	struct task_struct *t = current;

	if (likely(list_empty(&current->rcu_node_entry)))
		return;
	t->rcu_read_lock_nesting = 1;
	barrier();
	t->rcu_read_unlock_special = RCU_READ_UNLOCK_BLOCKED;
	__rcu_read_unlock();
}

971 972
#else /* #ifdef CONFIG_TREE_PREEMPT_RCU */

973 974
static struct rcu_state *rcu_state = &rcu_sched_state;

975 976 977
/*
 * Tell them what RCU they are running.
 */
978
static void __init rcu_bootup_announce(void)
979
{
980
	pr_info("Hierarchical RCU implementation.\n");
981
	rcu_bootup_announce_oddness();
982 983 984 985 986 987 988 989 990 991 992
}

/*
 * Return the number of RCU batches processed thus far for debug & stats.
 */
long rcu_batches_completed(void)
{
	return rcu_batches_completed_sched();
}
EXPORT_SYMBOL_GPL(rcu_batches_completed);

993 994 995 996 997 998 999 1000 1001 1002
/*
 * Force a quiescent state for RCU, which, because there is no preemptible
 * RCU, becomes the same as rcu-sched.
 */
void rcu_force_quiescent_state(void)
{
	rcu_sched_force_quiescent_state();
}
EXPORT_SYMBOL_GPL(rcu_force_quiescent_state);

1003 1004 1005 1006 1007 1008 1009 1010
/*
 * Because preemptible RCU does not exist, we never have to check for
 * CPUs being in quiescent states.
 */
static void rcu_preempt_note_context_switch(int cpu)
{
}

1011
/*
P
Paul E. McKenney 已提交
1012
 * Because preemptible RCU does not exist, there are never any preempted
1013 1014
 * RCU readers.
 */
1015
static int rcu_preempt_blocked_readers_cgp(struct rcu_node *rnp)
1016 1017 1018 1019
{
	return 0;
}

1020 1021 1022
#ifdef CONFIG_HOTPLUG_CPU

/* Because preemptible RCU does not exist, no quieting of tasks. */
P
Paul E. McKenney 已提交
1023
static void rcu_report_unblock_qs_rnp(struct rcu_node *rnp, unsigned long flags)
1024
{
P
Paul E. McKenney 已提交
1025
	raw_spin_unlock_irqrestore(&rnp->lock, flags);
1026 1027 1028 1029
}

#endif /* #ifdef CONFIG_HOTPLUG_CPU */

1030
/*
P
Paul E. McKenney 已提交
1031
 * Because preemptible RCU does not exist, we never have to check for
1032 1033 1034 1035 1036 1037
 * tasks blocked within RCU read-side critical sections.
 */
static void rcu_print_detail_task_stall(struct rcu_state *rsp)
{
}

1038
/*
P
Paul E. McKenney 已提交
1039
 * Because preemptible RCU does not exist, we never have to check for
1040 1041
 * tasks blocked within RCU read-side critical sections.
 */
1042
static int rcu_print_task_stall(struct rcu_node *rnp)
1043
{
1044
	return 0;
1045 1046
}

1047
/*
P
Paul E. McKenney 已提交
1048
 * Because there is no preemptible RCU, there can be no readers blocked,
1049 1050
 * so there is no need to check for blocked tasks.  So check only for
 * bogus qsmask values.
1051 1052 1053
 */
static void rcu_preempt_check_blocked_tasks(struct rcu_node *rnp)
{
1054
	WARN_ON_ONCE(rnp->qsmask);
1055 1056
}

1057 1058
#ifdef CONFIG_HOTPLUG_CPU

1059
/*
P
Paul E. McKenney 已提交
1060
 * Because preemptible RCU does not exist, it never needs to migrate
1061 1062 1063
 * tasks that were blocked within RCU read-side critical sections, and
 * such non-existent tasks cannot possibly have been blocking the current
 * grace period.
1064
 */
1065 1066 1067
static int rcu_preempt_offline_tasks(struct rcu_state *rsp,
				     struct rcu_node *rnp,
				     struct rcu_data *rdp)
1068
{
1069
	return 0;
1070 1071
}

1072 1073
#endif /* #ifdef CONFIG_HOTPLUG_CPU */

1074
/*
P
Paul E. McKenney 已提交
1075
 * Because preemptible RCU does not exist, it never has any callbacks
1076 1077
 * to check.
 */
1078
static void rcu_preempt_check_callbacks(int cpu)
1079 1080 1081
{
}

1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093
/*
 * Queue an RCU callback for lazy invocation after a grace period.
 * This will likely be later named something like "call_rcu_lazy()",
 * but this change will require some way of tagging the lazy RCU
 * callbacks in the list of pending callbacks.  Until then, this
 * function may only be called from __kfree_rcu().
 *
 * Because there is no preemptible RCU, we use RCU-sched instead.
 */
void kfree_call_rcu(struct rcu_head *head,
		    void (*func)(struct rcu_head *rcu))
{
P
Paul E. McKenney 已提交
1094
	__call_rcu(head, func, &rcu_sched_state, -1, 1);
1095 1096 1097
}
EXPORT_SYMBOL_GPL(kfree_call_rcu);

1098 1099
/*
 * Wait for an rcu-preempt grace period, but make it happen quickly.
P
Paul E. McKenney 已提交
1100
 * But because preemptible RCU does not exist, map to rcu-sched.
1101 1102 1103 1104 1105 1106 1107
 */
void synchronize_rcu_expedited(void)
{
	synchronize_sched_expedited();
}
EXPORT_SYMBOL_GPL(synchronize_rcu_expedited);

1108 1109 1110
#ifdef CONFIG_HOTPLUG_CPU

/*
P
Paul E. McKenney 已提交
1111
 * Because preemptible RCU does not exist, there is never any need to
1112 1113 1114
 * report on tasks preempted in RCU read-side critical sections during
 * expedited RCU grace periods.
 */
1115 1116
static void rcu_report_exp_rnp(struct rcu_state *rsp, struct rcu_node *rnp,
			       bool wake)
1117 1118 1119 1120 1121
{
}

#endif /* #ifdef CONFIG_HOTPLUG_CPU */

1122
/*
P
Paul E. McKenney 已提交
1123
 * Because preemptible RCU does not exist, rcu_barrier() is just
1124 1125 1126 1127 1128 1129 1130 1131
 * another name for rcu_barrier_sched().
 */
void rcu_barrier(void)
{
	rcu_barrier_sched();
}
EXPORT_SYMBOL_GPL(rcu_barrier);

1132
/*
P
Paul E. McKenney 已提交
1133
 * Because preemptible RCU does not exist, it need not be initialized.
1134 1135 1136 1137 1138
 */
static void __init __rcu_init_preempt(void)
{
}

1139 1140 1141 1142 1143 1144 1145 1146
/*
 * Because preemptible RCU does not exist, tasks cannot possibly exit
 * while in preemptible RCU read-side critical sections.
 */
void exit_rcu(void)
{
}

1147
#endif /* #else #ifdef CONFIG_TREE_PREEMPT_RCU */
1148

1149 1150
#ifdef CONFIG_RCU_BOOST

1151
#include "../locking/rtmutex_common.h"
1152

1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165
#ifdef CONFIG_RCU_TRACE

static void rcu_initiate_boost_trace(struct rcu_node *rnp)
{
	if (list_empty(&rnp->blkd_tasks))
		rnp->n_balk_blkd_tasks++;
	else if (rnp->exp_tasks == NULL && rnp->gp_tasks == NULL)
		rnp->n_balk_exp_gp_tasks++;
	else if (rnp->gp_tasks != NULL && rnp->boost_tasks != NULL)
		rnp->n_balk_boost_tasks++;
	else if (rnp->gp_tasks != NULL && rnp->qsmask != 0)
		rnp->n_balk_notblocked++;
	else if (rnp->gp_tasks != NULL &&
1166
		 ULONG_CMP_LT(jiffies, rnp->boost_time))
1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179
		rnp->n_balk_notyet++;
	else
		rnp->n_balk_nos++;
}

#else /* #ifdef CONFIG_RCU_TRACE */

static void rcu_initiate_boost_trace(struct rcu_node *rnp)
{
}

#endif /* #else #ifdef CONFIG_RCU_TRACE */

T
Thomas Gleixner 已提交
1180 1181 1182 1183 1184 1185 1186 1187 1188 1189
static void rcu_wake_cond(struct task_struct *t, int status)
{
	/*
	 * If the thread is yielding, only wake it when this
	 * is invoked from idle
	 */
	if (status != RCU_KTHREAD_YIELDING || is_idle_task(current))
		wake_up_process(t);
}

1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208
/*
 * Carry out RCU priority boosting on the task indicated by ->exp_tasks
 * or ->boost_tasks, advancing the pointer to the next task in the
 * ->blkd_tasks list.
 *
 * Note that irqs must be enabled: boosting the task can block.
 * Returns 1 if there are more tasks needing to be boosted.
 */
static int rcu_boost(struct rcu_node *rnp)
{
	unsigned long flags;
	struct rt_mutex mtx;
	struct task_struct *t;
	struct list_head *tb;

	if (rnp->exp_tasks == NULL && rnp->boost_tasks == NULL)
		return 0;  /* Nothing left to boost. */

	raw_spin_lock_irqsave(&rnp->lock, flags);
1209
	smp_mb__after_unlock_lock();
1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225

	/*
	 * Recheck under the lock: all tasks in need of boosting
	 * might exit their RCU read-side critical sections on their own.
	 */
	if (rnp->exp_tasks == NULL && rnp->boost_tasks == NULL) {
		raw_spin_unlock_irqrestore(&rnp->lock, flags);
		return 0;
	}

	/*
	 * Preferentially boost tasks blocking expedited grace periods.
	 * This cannot starve the normal grace periods because a second
	 * expedited grace period must boost all blocked tasks, including
	 * those blocking the pre-existing normal grace period.
	 */
1226
	if (rnp->exp_tasks != NULL) {
1227
		tb = rnp->exp_tasks;
1228 1229
		rnp->n_exp_boosts++;
	} else {
1230
		tb = rnp->boost_tasks;
1231 1232 1233
		rnp->n_normal_boosts++;
	}
	rnp->n_tasks_boosted++;
1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257

	/*
	 * We boost task t by manufacturing an rt_mutex that appears to
	 * be held by task t.  We leave a pointer to that rt_mutex where
	 * task t can find it, and task t will release the mutex when it
	 * exits its outermost RCU read-side critical section.  Then
	 * simply acquiring this artificial rt_mutex will boost task
	 * t's priority.  (Thanks to tglx for suggesting this approach!)
	 *
	 * Note that task t must acquire rnp->lock to remove itself from
	 * the ->blkd_tasks list, which it will do from exit() if from
	 * nowhere else.  We therefore are guaranteed that task t will
	 * stay around at least until we drop rnp->lock.  Note that
	 * rnp->lock also resolves races between our priority boosting
	 * and task t's exiting its outermost RCU read-side critical
	 * section.
	 */
	t = container_of(tb, struct task_struct, rcu_node_entry);
	rt_mutex_init_proxy_locked(&mtx, t);
	t->rcu_boost_mutex = &mtx;
	raw_spin_unlock_irqrestore(&rnp->lock, flags);
	rt_mutex_lock(&mtx);  /* Side effect: boosts task t's priority. */
	rt_mutex_unlock(&mtx);  /* Keep lockdep happy. */

1258 1259
	return ACCESS_ONCE(rnp->exp_tasks) != NULL ||
	       ACCESS_ONCE(rnp->boost_tasks) != NULL;
1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271
}

/*
 * Priority-boosting kthread.  One per leaf rcu_node and one for the
 * root rcu_node.
 */
static int rcu_boost_kthread(void *arg)
{
	struct rcu_node *rnp = (struct rcu_node *)arg;
	int spincnt = 0;
	int more2boost;

1272
	trace_rcu_utilization(TPS("Start boost kthread@init"));
1273
	for (;;) {
1274
		rnp->boost_kthread_status = RCU_KTHREAD_WAITING;
1275
		trace_rcu_utilization(TPS("End boost kthread@rcu_wait"));
1276
		rcu_wait(rnp->boost_tasks || rnp->exp_tasks);
1277
		trace_rcu_utilization(TPS("Start boost kthread@rcu_wait"));
1278
		rnp->boost_kthread_status = RCU_KTHREAD_RUNNING;
1279 1280 1281 1282 1283 1284
		more2boost = rcu_boost(rnp);
		if (more2boost)
			spincnt++;
		else
			spincnt = 0;
		if (spincnt > 10) {
T
Thomas Gleixner 已提交
1285
			rnp->boost_kthread_status = RCU_KTHREAD_YIELDING;
1286
			trace_rcu_utilization(TPS("End boost kthread@rcu_yield"));
T
Thomas Gleixner 已提交
1287
			schedule_timeout_interruptible(2);
1288
			trace_rcu_utilization(TPS("Start boost kthread@rcu_yield"));
1289 1290 1291
			spincnt = 0;
		}
	}
1292
	/* NOTREACHED */
1293
	trace_rcu_utilization(TPS("End boost kthread@notreached"));
1294 1295 1296 1297 1298 1299 1300 1301 1302
	return 0;
}

/*
 * Check to see if it is time to start boosting RCU readers that are
 * blocking the current grace period, and, if so, tell the per-rcu_node
 * kthread to start boosting them.  If there is an expedited grace
 * period in progress, it is always time to boost.
 *
1303 1304 1305
 * The caller must hold rnp->lock, which this function releases.
 * The ->boost_kthread_task is immortal, so we don't need to worry
 * about it going away.
1306
 */
1307
static void rcu_initiate_boost(struct rcu_node *rnp, unsigned long flags)
1308 1309 1310
{
	struct task_struct *t;

1311 1312
	if (!rcu_preempt_blocked_readers_cgp(rnp) && rnp->exp_tasks == NULL) {
		rnp->n_balk_exp_gp_tasks++;
1313
		raw_spin_unlock_irqrestore(&rnp->lock, flags);
1314
		return;
1315
	}
1316 1317 1318 1319 1320 1321 1322
	if (rnp->exp_tasks != NULL ||
	    (rnp->gp_tasks != NULL &&
	     rnp->boost_tasks == NULL &&
	     rnp->qsmask == 0 &&
	     ULONG_CMP_GE(jiffies, rnp->boost_time))) {
		if (rnp->exp_tasks == NULL)
			rnp->boost_tasks = rnp->gp_tasks;
1323
		raw_spin_unlock_irqrestore(&rnp->lock, flags);
1324
		t = rnp->boost_kthread_task;
T
Thomas Gleixner 已提交
1325 1326
		if (t)
			rcu_wake_cond(t, rnp->boost_kthread_status);
1327
	} else {
1328
		rcu_initiate_boost_trace(rnp);
1329 1330
		raw_spin_unlock_irqrestore(&rnp->lock, flags);
	}
1331 1332
}

1333 1334 1335 1336 1337 1338 1339 1340 1341
/*
 * Wake up the per-CPU kthread to invoke RCU callbacks.
 */
static void invoke_rcu_callbacks_kthread(void)
{
	unsigned long flags;

	local_irq_save(flags);
	__this_cpu_write(rcu_cpu_has_work, 1);
1342
	if (__this_cpu_read(rcu_cpu_kthread_task) != NULL &&
T
Thomas Gleixner 已提交
1343 1344 1345 1346
	    current != __this_cpu_read(rcu_cpu_kthread_task)) {
		rcu_wake_cond(__this_cpu_read(rcu_cpu_kthread_task),
			      __this_cpu_read(rcu_cpu_kthread_status));
	}
1347 1348 1349
	local_irq_restore(flags);
}

1350 1351 1352 1353 1354 1355
/*
 * Is the current CPU running the RCU-callbacks kthread?
 * Caller must have preemption disabled.
 */
static bool rcu_is_callbacks_kthread(void)
{
1356
	return __this_cpu_read(rcu_cpu_kthread_task) == current;
1357 1358
}

1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373
#define RCU_BOOST_DELAY_JIFFIES DIV_ROUND_UP(CONFIG_RCU_BOOST_DELAY * HZ, 1000)

/*
 * Do priority-boost accounting for the start of a new grace period.
 */
static void rcu_preempt_boost_start_gp(struct rcu_node *rnp)
{
	rnp->boost_time = jiffies + RCU_BOOST_DELAY_JIFFIES;
}

/*
 * Create an RCU-boost kthread for the specified node if one does not
 * already exist.  We only create this kthread for preemptible RCU.
 * Returns zero if all is well, a negated errno otherwise.
 */
1374
static int rcu_spawn_one_boost_kthread(struct rcu_state *rsp,
T
Thomas Gleixner 已提交
1375
						 struct rcu_node *rnp)
1376
{
T
Thomas Gleixner 已提交
1377
	int rnp_index = rnp - &rsp->node[0];
1378 1379 1380 1381 1382 1383
	unsigned long flags;
	struct sched_param sp;
	struct task_struct *t;

	if (&rcu_preempt_state != rsp)
		return 0;
T
Thomas Gleixner 已提交
1384 1385 1386 1387

	if (!rcu_scheduler_fully_active || rnp->qsmaskinit == 0)
		return 0;

1388
	rsp->boost = 1;
1389 1390 1391
	if (rnp->boost_kthread_task != NULL)
		return 0;
	t = kthread_create(rcu_boost_kthread, (void *)rnp,
1392
			   "rcub/%d", rnp_index);
1393 1394 1395
	if (IS_ERR(t))
		return PTR_ERR(t);
	raw_spin_lock_irqsave(&rnp->lock, flags);
1396
	smp_mb__after_unlock_lock();
1397 1398
	rnp->boost_kthread_task = t;
	raw_spin_unlock_irqrestore(&rnp->lock, flags);
1399
	sp.sched_priority = RCU_BOOST_PRIO;
1400
	sched_setscheduler_nocheck(t, SCHED_FIFO, &sp);
1401
	wake_up_process(t); /* get to TASK_INTERRUPTIBLE quickly. */
1402 1403 1404
	return 0;
}

1405 1406
static void rcu_kthread_do_work(void)
{
1407 1408
	rcu_do_batch(&rcu_sched_state, this_cpu_ptr(&rcu_sched_data));
	rcu_do_batch(&rcu_bh_state, this_cpu_ptr(&rcu_bh_data));
1409 1410 1411
	rcu_preempt_do_callbacks();
}

1412
static void rcu_cpu_kthread_setup(unsigned int cpu)
1413 1414 1415
{
	struct sched_param sp;

1416 1417
	sp.sched_priority = RCU_KTHREAD_PRIO;
	sched_setscheduler_nocheck(current, SCHED_FIFO, &sp);
1418 1419
}

1420
static void rcu_cpu_kthread_park(unsigned int cpu)
1421
{
1422
	per_cpu(rcu_cpu_kthread_status, cpu) = RCU_KTHREAD_OFFCPU;
1423 1424
}

1425
static int rcu_cpu_kthread_should_run(unsigned int cpu)
1426
{
1427
	return __this_cpu_read(rcu_cpu_has_work);
1428 1429 1430 1431
}

/*
 * Per-CPU kernel thread that invokes RCU callbacks.  This replaces the
1432 1433
 * RCU softirq used in flavors and configurations of RCU that do not
 * support RCU priority boosting.
1434
 */
1435
static void rcu_cpu_kthread(unsigned int cpu)
1436
{
1437 1438
	unsigned int *statusp = this_cpu_ptr(&rcu_cpu_kthread_status);
	char work, *workp = this_cpu_ptr(&rcu_cpu_has_work);
1439
	int spincnt;
1440

1441
	for (spincnt = 0; spincnt < 10; spincnt++) {
1442
		trace_rcu_utilization(TPS("Start CPU kthread@rcu_wait"));
1443 1444
		local_bh_disable();
		*statusp = RCU_KTHREAD_RUNNING;
1445 1446
		this_cpu_inc(rcu_cpu_kthread_loops);
		local_irq_disable();
1447 1448
		work = *workp;
		*workp = 0;
1449
		local_irq_enable();
1450 1451 1452
		if (work)
			rcu_kthread_do_work();
		local_bh_enable();
1453
		if (*workp == 0) {
1454
			trace_rcu_utilization(TPS("End CPU kthread@rcu_wait"));
1455 1456
			*statusp = RCU_KTHREAD_WAITING;
			return;
1457 1458
		}
	}
1459
	*statusp = RCU_KTHREAD_YIELDING;
1460
	trace_rcu_utilization(TPS("Start CPU kthread@rcu_yield"));
1461
	schedule_timeout_interruptible(2);
1462
	trace_rcu_utilization(TPS("End CPU kthread@rcu_yield"));
1463
	*statusp = RCU_KTHREAD_WAITING;
1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474
}

/*
 * Set the per-rcu_node kthread's affinity to cover all CPUs that are
 * served by the rcu_node in question.  The CPU hotplug lock is still
 * held, so the value of rnp->qsmaskinit will be stable.
 *
 * We don't include outgoingcpu in the affinity set, use -1 if there is
 * no outgoing CPU.  If there are no CPUs left in the affinity set,
 * this function allows the kthread to execute on any CPU.
 */
T
Thomas Gleixner 已提交
1475
static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu)
1476
{
T
Thomas Gleixner 已提交
1477 1478
	struct task_struct *t = rnp->boost_kthread_task;
	unsigned long mask = rnp->qsmaskinit;
1479 1480 1481
	cpumask_var_t cm;
	int cpu;

T
Thomas Gleixner 已提交
1482
	if (!t)
1483
		return;
T
Thomas Gleixner 已提交
1484
	if (!zalloc_cpumask_var(&cm, GFP_KERNEL))
1485 1486 1487 1488 1489 1490 1491 1492 1493 1494
		return;
	for (cpu = rnp->grplo; cpu <= rnp->grphi; cpu++, mask >>= 1)
		if ((mask & 0x1) && cpu != outgoingcpu)
			cpumask_set_cpu(cpu, cm);
	if (cpumask_weight(cm) == 0) {
		cpumask_setall(cm);
		for (cpu = rnp->grplo; cpu <= rnp->grphi; cpu++)
			cpumask_clear_cpu(cpu, cm);
		WARN_ON_ONCE(cpumask_weight(cm) == 0);
	}
T
Thomas Gleixner 已提交
1495
	set_cpus_allowed_ptr(t, cm);
1496 1497 1498
	free_cpumask_var(cm);
}

1499 1500 1501 1502 1503 1504 1505 1506
static struct smp_hotplug_thread rcu_cpu_thread_spec = {
	.store			= &rcu_cpu_kthread_task,
	.thread_should_run	= rcu_cpu_kthread_should_run,
	.thread_fn		= rcu_cpu_kthread,
	.thread_comm		= "rcuc/%u",
	.setup			= rcu_cpu_kthread_setup,
	.park			= rcu_cpu_kthread_park,
};
1507 1508 1509 1510 1511 1512 1513

/*
 * Spawn all kthreads -- called as soon as the scheduler is running.
 */
static int __init rcu_spawn_kthreads(void)
{
	struct rcu_node *rnp;
T
Thomas Gleixner 已提交
1514
	int cpu;
1515

1516
	rcu_scheduler_fully_active = 1;
1517
	for_each_possible_cpu(cpu)
1518
		per_cpu(rcu_cpu_has_work, cpu) = 0;
1519
	BUG_ON(smpboot_register_percpu_thread(&rcu_cpu_thread_spec));
1520
	rnp = rcu_get_root(rcu_state);
T
Thomas Gleixner 已提交
1521
	(void)rcu_spawn_one_boost_kthread(rcu_state, rnp);
1522 1523
	if (NUM_RCU_NODES > 1) {
		rcu_for_each_leaf_node(rcu_state, rnp)
T
Thomas Gleixner 已提交
1524
			(void)rcu_spawn_one_boost_kthread(rcu_state, rnp);
1525 1526 1527 1528 1529
	}
	return 0;
}
early_initcall(rcu_spawn_kthreads);

1530
static void rcu_prepare_kthreads(int cpu)
1531 1532 1533 1534 1535
{
	struct rcu_data *rdp = per_cpu_ptr(rcu_state->rda, cpu);
	struct rcu_node *rnp = rdp->mynode;

	/* Fire up the incoming CPU's kthread and leaf rcu_node kthread. */
1536
	if (rcu_scheduler_fully_active)
T
Thomas Gleixner 已提交
1537
		(void)rcu_spawn_one_boost_kthread(rcu_state, rnp);
1538 1539
}

1540 1541
#else /* #ifdef CONFIG_RCU_BOOST */

1542
static void rcu_initiate_boost(struct rcu_node *rnp, unsigned long flags)
1543
{
1544
	raw_spin_unlock_irqrestore(&rnp->lock, flags);
1545 1546
}

1547
static void invoke_rcu_callbacks_kthread(void)
1548
{
1549
	WARN_ON_ONCE(1);
1550 1551
}

1552 1553 1554 1555 1556
static bool rcu_is_callbacks_kthread(void)
{
	return false;
}

1557 1558 1559 1560
static void rcu_preempt_boost_start_gp(struct rcu_node *rnp)
{
}

T
Thomas Gleixner 已提交
1561
static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu)
1562 1563 1564
{
}

1565 1566 1567 1568 1569 1570 1571
static int __init rcu_scheduler_really_started(void)
{
	rcu_scheduler_fully_active = 1;
	return 0;
}
early_initcall(rcu_scheduler_really_started);

1572
static void rcu_prepare_kthreads(int cpu)
1573 1574 1575
{
}

1576 1577
#endif /* #else #ifdef CONFIG_RCU_BOOST */

1578 1579 1580 1581 1582 1583 1584 1585
#if !defined(CONFIG_RCU_FAST_NO_HZ)

/*
 * Check to see if any future RCU-related work will need to be done
 * by the current CPU, even if none need be done immediately, returning
 * 1 if so.  This function is part of the RCU implementation; it is -not-
 * an exported member of the RCU API.
 *
1586 1587
 * Because we not have RCU_FAST_NO_HZ, just check whether this CPU needs
 * any flavor of RCU.
1588
 */
1589
int rcu_needs_cpu(int cpu, unsigned long *delta_jiffies)
1590
{
1591
	*delta_jiffies = ULONG_MAX;
1592
	return rcu_cpu_has_callbacks(cpu, NULL);
1593 1594 1595 1596 1597 1598 1599 1600 1601 1602
}

/*
 * Because we do not have RCU_FAST_NO_HZ, don't bother cleaning up
 * after it.
 */
static void rcu_cleanup_after_idle(int cpu)
{
}

1603
/*
1604
 * Do the idle-entry grace-period work, which, because CONFIG_RCU_FAST_NO_HZ=n,
1605 1606 1607 1608 1609 1610
 * is nothing.
 */
static void rcu_prepare_for_idle(int cpu)
{
}

1611 1612 1613 1614 1615 1616 1617 1618
/*
 * Don't bother keeping a running count of the number of RCU callbacks
 * posted because CONFIG_RCU_FAST_NO_HZ=n.
 */
static void rcu_idle_count_callbacks_posted(void)
{
}

1619 1620
#else /* #if !defined(CONFIG_RCU_FAST_NO_HZ) */

1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635
/*
 * This code is invoked when a CPU goes idle, at which point we want
 * to have the CPU do everything required for RCU so that it can enter
 * the energy-efficient dyntick-idle mode.  This is handled by a
 * state machine implemented by rcu_prepare_for_idle() below.
 *
 * The following three proprocessor symbols control this state machine:
 *
 * RCU_IDLE_GP_DELAY gives the number of jiffies that a CPU is permitted
 *	to sleep in dyntick-idle mode with RCU callbacks pending.  This
 *	is sized to be roughly one RCU grace period.  Those energy-efficiency
 *	benchmarkers who might otherwise be tempted to set this to a large
 *	number, be warned: Setting RCU_IDLE_GP_DELAY too high can hang your
 *	system.  And if you are -that- concerned about energy efficiency,
 *	just power the system down and be done with it!
1636 1637 1638
 * RCU_IDLE_LAZY_GP_DELAY gives the number of jiffies that a CPU is
 *	permitted to sleep in dyntick-idle mode with only lazy RCU
 *	callbacks pending.  Setting this too high can OOM your system.
1639 1640 1641 1642 1643
 *
 * The values below work well in practice.  If future workloads require
 * adjustment, they can be converted into kernel config parameters, though
 * making the state machine smarter might be a better option.
 */
1644
#define RCU_IDLE_GP_DELAY 4		/* Roughly one grace period. */
1645
#define RCU_IDLE_LAZY_GP_DELAY (6 * HZ)	/* Roughly six seconds. */
1646

1647 1648 1649 1650
static int rcu_idle_gp_delay = RCU_IDLE_GP_DELAY;
module_param(rcu_idle_gp_delay, int, 0644);
static int rcu_idle_lazy_gp_delay = RCU_IDLE_LAZY_GP_DELAY;
module_param(rcu_idle_lazy_gp_delay, int, 0644);
1651

1652
extern int tick_nohz_active;
1653 1654

/*
1655 1656 1657
 * Try to advance callbacks for all flavors of RCU on the current CPU, but
 * only if it has been awhile since the last time we did so.  Afterwards,
 * if there are any callbacks ready for immediate invocation, return true.
1658
 */
1659
static bool rcu_try_advance_all_cbs(void)
1660
{
1661 1662
	bool cbs_ready = false;
	struct rcu_data *rdp;
1663
	struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
1664 1665
	struct rcu_node *rnp;
	struct rcu_state *rsp;
1666

1667 1668 1669 1670 1671
	/* Exit early if we advanced recently. */
	if (jiffies == rdtp->last_advance_all)
		return 0;
	rdtp->last_advance_all = jiffies;

1672 1673 1674
	for_each_rcu_flavor(rsp) {
		rdp = this_cpu_ptr(rsp->rda);
		rnp = rdp->mynode;
1675

1676 1677 1678 1679 1680 1681 1682
		/*
		 * Don't bother checking unless a grace period has
		 * completed since we last checked and there are
		 * callbacks not yet ready to invoke.
		 */
		if (rdp->completed != rnp->completed &&
		    rdp->nxttail[RCU_DONE_TAIL] != rdp->nxttail[RCU_NEXT_TAIL])
1683
			note_gp_changes(rsp, rdp);
1684

1685 1686 1687 1688
		if (cpu_has_callbacks_ready_to_invoke(rdp))
			cbs_ready = true;
	}
	return cbs_ready;
1689 1690
}

1691
/*
1692 1693 1694 1695
 * Allow the CPU to enter dyntick-idle mode unless it has callbacks ready
 * to invoke.  If the CPU has callbacks, try to advance them.  Tell the
 * caller to set the timeout based on whether or not there are non-lazy
 * callbacks.
1696
 *
1697
 * The caller must have disabled interrupts.
1698
 */
1699
int rcu_needs_cpu(int cpu, unsigned long *dj)
1700 1701 1702
{
	struct rcu_dynticks *rdtp = &per_cpu(rcu_dynticks, cpu);

1703 1704 1705
	/* Snapshot to detect later posting of non-lazy callback. */
	rdtp->nonlazy_posted_snap = rdtp->nonlazy_posted;

1706
	/* If no callbacks, RCU doesn't need the CPU. */
1707 1708
	if (!rcu_cpu_has_callbacks(cpu, &rdtp->all_lazy)) {
		*dj = ULONG_MAX;
1709 1710
		return 0;
	}
1711 1712 1713 1714 1715

	/* Attempt to advance callbacks. */
	if (rcu_try_advance_all_cbs()) {
		/* Some ready to invoke, so initiate later invocation. */
		invoke_rcu_core();
1716 1717
		return 1;
	}
1718 1719 1720
	rdtp->last_accelerate = jiffies;

	/* Request timer delay depending on laziness, and round. */
1721
	if (!rdtp->all_lazy) {
1722 1723
		*dj = round_up(rcu_idle_gp_delay + jiffies,
			       rcu_idle_gp_delay) - jiffies;
1724
	} else {
1725
		*dj = round_jiffies(rcu_idle_lazy_gp_delay + jiffies) - jiffies;
1726
	}
1727 1728 1729
	return 0;
}

1730
/*
1731 1732 1733 1734 1735 1736
 * Prepare a CPU for idle from an RCU perspective.  The first major task
 * is to sense whether nohz mode has been enabled or disabled via sysfs.
 * The second major task is to check to see if a non-lazy callback has
 * arrived at a CPU that previously had only lazy callbacks.  The third
 * major task is to accelerate (that is, assign grace-period numbers to)
 * any recently arrived callbacks.
1737 1738
 *
 * The caller must have disabled interrupts.
1739
 */
1740
static void rcu_prepare_for_idle(int cpu)
1741
{
1742
	struct rcu_data *rdp;
1743
	struct rcu_dynticks *rdtp = &per_cpu(rcu_dynticks, cpu);
1744 1745
	struct rcu_node *rnp;
	struct rcu_state *rsp;
1746 1747 1748
	int tne;

	/* Handle nohz enablement switches conservatively. */
1749
	tne = ACCESS_ONCE(tick_nohz_active);
1750
	if (tne != rdtp->tick_nohz_enabled_snap) {
1751
		if (rcu_cpu_has_callbacks(cpu, NULL))
1752 1753 1754 1755 1756 1757
			invoke_rcu_core(); /* force nohz to see update. */
		rdtp->tick_nohz_enabled_snap = tne;
		return;
	}
	if (!tne)
		return;
1758

1759
	/* If this is a no-CBs CPU, no callbacks, just return. */
1760
	if (rcu_is_nocb_cpu(cpu))
1761 1762
		return;

1763
	/*
1764 1765 1766
	 * If a non-lazy callback arrived at a CPU having only lazy
	 * callbacks, invoke RCU core for the side-effect of recalculating
	 * idle duration on re-entry to idle.
1767
	 */
1768 1769
	if (rdtp->all_lazy &&
	    rdtp->nonlazy_posted != rdtp->nonlazy_posted_snap) {
1770 1771
		rdtp->all_lazy = false;
		rdtp->nonlazy_posted_snap = rdtp->nonlazy_posted;
1772
		invoke_rcu_core();
1773 1774 1775
		return;
	}

1776
	/*
1777 1778
	 * If we have not yet accelerated this jiffy, accelerate all
	 * callbacks on this CPU.
1779
	 */
1780
	if (rdtp->last_accelerate == jiffies)
1781
		return;
1782 1783 1784 1785 1786 1787 1788
	rdtp->last_accelerate = jiffies;
	for_each_rcu_flavor(rsp) {
		rdp = per_cpu_ptr(rsp->rda, cpu);
		if (!*rdp->nxttail[RCU_DONE_TAIL])
			continue;
		rnp = rdp->mynode;
		raw_spin_lock(&rnp->lock); /* irqs already disabled. */
1789
		smp_mb__after_unlock_lock();
1790 1791
		rcu_accelerate_cbs(rsp, rnp, rdp);
		raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
1792
	}
1793
}
1794

1795 1796 1797 1798 1799 1800 1801
/*
 * Clean up for exit from idle.  Attempt to advance callbacks based on
 * any grace periods that elapsed while the CPU was idle, and if any
 * callbacks are now ready to invoke, initiate invocation.
 */
static void rcu_cleanup_after_idle(int cpu)
{
1802

1803
	if (rcu_is_nocb_cpu(cpu))
1804
		return;
1805 1806
	if (rcu_try_advance_all_cbs())
		invoke_rcu_core();
1807 1808
}

1809
/*
1810 1811 1812 1813 1814 1815
 * Keep a running count of the number of non-lazy callbacks posted
 * on this CPU.  This running counter (which is never decremented) allows
 * rcu_prepare_for_idle() to detect when something out of the idle loop
 * posts a callback, even if an equal number of callbacks are invoked.
 * Of course, callbacks should only be posted from within a trace event
 * designed to be called from idle or from within RCU_NONIDLE().
1816 1817 1818
 */
static void rcu_idle_count_callbacks_posted(void)
{
1819
	__this_cpu_add(rcu_dynticks.nonlazy_posted, 1);
1820 1821
}

1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872
/*
 * Data for flushing lazy RCU callbacks at OOM time.
 */
static atomic_t oom_callback_count;
static DECLARE_WAIT_QUEUE_HEAD(oom_callback_wq);

/*
 * RCU OOM callback -- decrement the outstanding count and deliver the
 * wake-up if we are the last one.
 */
static void rcu_oom_callback(struct rcu_head *rhp)
{
	if (atomic_dec_and_test(&oom_callback_count))
		wake_up(&oom_callback_wq);
}

/*
 * Post an rcu_oom_notify callback on the current CPU if it has at
 * least one lazy callback.  This will unnecessarily post callbacks
 * to CPUs that already have a non-lazy callback at the end of their
 * callback list, but this is an infrequent operation, so accept some
 * extra overhead to keep things simple.
 */
static void rcu_oom_notify_cpu(void *unused)
{
	struct rcu_state *rsp;
	struct rcu_data *rdp;

	for_each_rcu_flavor(rsp) {
		rdp = __this_cpu_ptr(rsp->rda);
		if (rdp->qlen_lazy != 0) {
			atomic_inc(&oom_callback_count);
			rsp->call(&rdp->oom_head, rcu_oom_callback);
		}
	}
}

/*
 * If low on memory, ensure that each CPU has a non-lazy callback.
 * This will wake up CPUs that have only lazy callbacks, in turn
 * ensuring that they free up the corresponding memory in a timely manner.
 * Because an uncertain amount of memory will be freed in some uncertain
 * timeframe, we do not claim to have freed anything.
 */
static int rcu_oom_notify(struct notifier_block *self,
			  unsigned long notused, void *nfreed)
{
	int cpu;

	/* Wait for callbacks from earlier instance to complete. */
	wait_event(oom_callback_wq, atomic_read(&oom_callback_count) == 0);
1873
	smp_mb(); /* Ensure callback reuse happens after callback invocation. */
1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904

	/*
	 * Prevent premature wakeup: ensure that all increments happen
	 * before there is a chance of the counter reaching zero.
	 */
	atomic_set(&oom_callback_count, 1);

	get_online_cpus();
	for_each_online_cpu(cpu) {
		smp_call_function_single(cpu, rcu_oom_notify_cpu, NULL, 1);
		cond_resched();
	}
	put_online_cpus();

	/* Unconditionally decrement: no need to wake ourselves up. */
	atomic_dec(&oom_callback_count);

	return NOTIFY_OK;
}

static struct notifier_block rcu_oom_nb = {
	.notifier_call = rcu_oom_notify
};

static int __init rcu_register_oom_notifier(void)
{
	register_oom_notifier(&rcu_oom_nb);
	return 0;
}
early_initcall(rcu_register_oom_notifier);

1905
#endif /* #else #if !defined(CONFIG_RCU_FAST_NO_HZ) */
1906 1907 1908 1909 1910 1911 1912

#ifdef CONFIG_RCU_CPU_STALL_INFO

#ifdef CONFIG_RCU_FAST_NO_HZ

static void print_cpu_stall_fast_no_hz(char *cp, int cpu)
{
1913
	struct rcu_dynticks *rdtp = &per_cpu(rcu_dynticks, cpu);
1914
	unsigned long nlpd = rdtp->nonlazy_posted - rdtp->nonlazy_posted_snap;
1915

1916 1917 1918 1919 1920
	sprintf(cp, "last_accelerate: %04lx/%04lx, nonlazy_posted: %ld, %c%c",
		rdtp->last_accelerate & 0xffff, jiffies & 0xffff,
		ulong2long(nlpd),
		rdtp->all_lazy ? 'L' : '.',
		rdtp->tick_nohz_enabled_snap ? '.' : 'D');
1921 1922 1923 1924 1925 1926
}

#else /* #ifdef CONFIG_RCU_FAST_NO_HZ */

static void print_cpu_stall_fast_no_hz(char *cp, int cpu)
{
1927
	*cp = '\0';
1928 1929 1930 1931 1932 1933 1934
}

#endif /* #else #ifdef CONFIG_RCU_FAST_NO_HZ */

/* Initiate the stall-info list. */
static void print_cpu_stall_info_begin(void)
{
1935
	pr_cont("\n");
1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965
}

/*
 * Print out diagnostic information for the specified stalled CPU.
 *
 * If the specified CPU is aware of the current RCU grace period
 * (flavor specified by rsp), then print the number of scheduling
 * clock interrupts the CPU has taken during the time that it has
 * been aware.  Otherwise, print the number of RCU grace periods
 * that this CPU is ignorant of, for example, "1" if the CPU was
 * aware of the previous grace period.
 *
 * Also print out idle and (if CONFIG_RCU_FAST_NO_HZ) idle-entry info.
 */
static void print_cpu_stall_info(struct rcu_state *rsp, int cpu)
{
	char fast_no_hz[72];
	struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
	struct rcu_dynticks *rdtp = rdp->dynticks;
	char *ticks_title;
	unsigned long ticks_value;

	if (rsp->gpnum == rdp->gpnum) {
		ticks_title = "ticks this GP";
		ticks_value = rdp->ticks_this_gp;
	} else {
		ticks_title = "GPs behind";
		ticks_value = rsp->gpnum - rdp->gpnum;
	}
	print_cpu_stall_fast_no_hz(fast_no_hz, cpu);
1966
	pr_err("\t%d: (%lu %s) idle=%03x/%llx/%d softirq=%u/%u %s\n",
1967 1968 1969
	       cpu, ticks_value, ticks_title,
	       atomic_read(&rdtp->dynticks) & 0xfff,
	       rdtp->dynticks_nesting, rdtp->dynticks_nmi_nesting,
1970
	       rdp->softirq_snap, kstat_softirqs_cpu(RCU_SOFTIRQ, cpu),
1971 1972 1973 1974 1975 1976
	       fast_no_hz);
}

/* Terminate the stall-info list. */
static void print_cpu_stall_info_end(void)
{
1977
	pr_err("\t");
1978 1979 1980 1981 1982 1983
}

/* Zero ->ticks_this_gp for all flavors of RCU. */
static void zero_cpu_stall_ticks(struct rcu_data *rdp)
{
	rdp->ticks_this_gp = 0;
1984
	rdp->softirq_snap = kstat_softirqs_cpu(RCU_SOFTIRQ, smp_processor_id());
1985 1986 1987 1988 1989
}

/* Increment ->ticks_this_gp for all flavors of RCU. */
static void increment_cpu_stall_ticks(void)
{
1990 1991 1992 1993
	struct rcu_state *rsp;

	for_each_rcu_flavor(rsp)
		__this_cpu_ptr(rsp->rda)->ticks_this_gp++;
1994 1995 1996 1997 1998 1999
}

#else /* #ifdef CONFIG_RCU_CPU_STALL_INFO */

static void print_cpu_stall_info_begin(void)
{
2000
	pr_cont(" {");
2001 2002 2003 2004
}

static void print_cpu_stall_info(struct rcu_state *rsp, int cpu)
{
2005
	pr_cont(" %d", cpu);
2006 2007 2008 2009
}

static void print_cpu_stall_info_end(void)
{
2010
	pr_cont("} ");
2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021
}

static void zero_cpu_stall_ticks(struct rcu_data *rdp)
{
}

static void increment_cpu_stall_ticks(void)
{
}

#endif /* #else #ifdef CONFIG_RCU_CPU_STALL_INFO */
P
Paul E. McKenney 已提交
2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055

#ifdef CONFIG_RCU_NOCB_CPU

/*
 * Offload callback processing from the boot-time-specified set of CPUs
 * specified by rcu_nocb_mask.  For each CPU in the set, there is a
 * kthread created that pulls the callbacks from the corresponding CPU,
 * waits for a grace period to elapse, and invokes the callbacks.
 * The no-CBs CPUs do a wake_up() on their kthread when they insert
 * a callback into any empty list, unless the rcu_nocb_poll boot parameter
 * has been specified, in which case each kthread actively polls its
 * CPU.  (Which isn't so great for energy efficiency, but which does
 * reduce RCU's overhead on that CPU.)
 *
 * This is intended to be used in conjunction with Frederic Weisbecker's
 * adaptive-idle work, which would seriously reduce OS jitter on CPUs
 * running CPU-bound user-mode computations.
 *
 * Offloading of callback processing could also in theory be used as
 * an energy-efficiency measure because CPUs with no RCU callbacks
 * queued are more aggressive about entering dyntick-idle mode.
 */


/* Parse the boot-time rcu_nocb_mask CPU list from the kernel parameters. */
static int __init rcu_nocb_setup(char *str)
{
	alloc_bootmem_cpumask_var(&rcu_nocb_mask);
	have_rcu_nocb_mask = true;
	cpulist_parse(str, rcu_nocb_mask);
	return 1;
}
__setup("rcu_nocbs=", rcu_nocb_setup);

2056 2057 2058 2059 2060 2061 2062
static int __init parse_rcu_nocb_poll(char *arg)
{
	rcu_nocb_poll = 1;
	return 0;
}
early_param("rcu_nocb_poll", parse_rcu_nocb_poll);

2063
/*
2064 2065 2066 2067 2068 2069 2070 2071 2072
 * Do any no-CBs CPUs need another grace period?
 *
 * Interrupts must be disabled.  If the caller does not hold the root
 * rnp_node structure's ->lock, the results are advisory only.
 */
static int rcu_nocb_needs_gp(struct rcu_state *rsp)
{
	struct rcu_node *rnp = rcu_get_root(rsp);

2073
	return rnp->need_future_gp[(ACCESS_ONCE(rnp->completed) + 1) & 0x1];
2074 2075 2076
}

/*
2077 2078
 * Wake up any no-CBs CPUs' kthreads that were waiting on the just-ended
 * grace period.
2079
 */
2080
static void rcu_nocb_gp_cleanup(struct rcu_state *rsp, struct rcu_node *rnp)
2081
{
2082
	wake_up_all(&rnp->nocb_gp_wq[rnp->completed & 0x1]);
2083 2084 2085
}

/*
2086
 * Set the root rcu_node structure's ->need_future_gp field
2087 2088 2089 2090 2091
 * based on the sum of those of all rcu_node structures.  This does
 * double-count the root rcu_node structure's requests, but this
 * is necessary to handle the possibility of a rcu_nocb_kthread()
 * having awakened during the time that the rcu_node structures
 * were being updated for the end of the previous grace period.
2092
 */
2093 2094
static void rcu_nocb_gp_set(struct rcu_node *rnp, int nrq)
{
2095
	rnp->need_future_gp[(rnp->completed + 1) & 0x1] += nrq;
2096 2097 2098
}

static void rcu_init_one_nocb(struct rcu_node *rnp)
2099
{
2100 2101
	init_waitqueue_head(&rnp->nocb_gp_wq[0]);
	init_waitqueue_head(&rnp->nocb_gp_wq[1]);
2102 2103
}

P
Paul E. McKenney 已提交
2104
/* Is the specified CPU a no-CPUs CPU? */
2105
bool rcu_is_nocb_cpu(int cpu)
P
Paul E. McKenney 已提交
2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122
{
	if (have_rcu_nocb_mask)
		return cpumask_test_cpu(cpu, rcu_nocb_mask);
	return false;
}

/*
 * Enqueue the specified string of rcu_head structures onto the specified
 * CPU's no-CBs lists.  The CPU is specified by rdp, the head of the
 * string by rhp, and the tail of the string by rhtp.  The non-lazy/lazy
 * counts are supplied by rhcount and rhcount_lazy.
 *
 * If warranted, also wake up the kthread servicing this CPUs queues.
 */
static void __call_rcu_nocb_enqueue(struct rcu_data *rdp,
				    struct rcu_head *rhp,
				    struct rcu_head **rhtp,
2123 2124
				    int rhcount, int rhcount_lazy,
				    unsigned long flags)
P
Paul E. McKenney 已提交
2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137
{
	int len;
	struct rcu_head **old_rhpp;
	struct task_struct *t;

	/* Enqueue the callback on the nocb list and update counts. */
	old_rhpp = xchg(&rdp->nocb_tail, rhtp);
	ACCESS_ONCE(*old_rhpp) = rhp;
	atomic_long_add(rhcount, &rdp->nocb_q_count);
	atomic_long_add(rhcount_lazy, &rdp->nocb_q_count_lazy);

	/* If we are not being polled and there is a kthread, awaken it ... */
	t = ACCESS_ONCE(rdp->nocb_kthread);
2138
	if (rcu_nocb_poll || !t) {
2139 2140
		trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
				    TPS("WakeNotPoll"));
P
Paul E. McKenney 已提交
2141
		return;
2142
	}
P
Paul E. McKenney 已提交
2143 2144
	len = atomic_long_read(&rdp->nocb_q_count);
	if (old_rhpp == &rdp->nocb_head) {
2145 2146 2147 2148 2149 2150 2151 2152 2153
		if (!irqs_disabled_flags(flags)) {
			wake_up(&rdp->nocb_wq); /* ... if queue was empty ... */
			trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
					    TPS("WakeEmpty"));
		} else {
			rdp->nocb_defer_wakeup = true;
			trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
					    TPS("WakeEmptyIsDeferred"));
		}
P
Paul E. McKenney 已提交
2154 2155 2156 2157
		rdp->qlen_last_fqs_check = 0;
	} else if (len > rdp->qlen_last_fqs_check + qhimark) {
		wake_up_process(t); /* ... or if many callbacks queued. */
		rdp->qlen_last_fqs_check = LONG_MAX / 2;
2158 2159 2160
		trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, TPS("WakeOvf"));
	} else {
		trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, TPS("WakeNot"));
P
Paul E. McKenney 已提交
2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174
	}
	return;
}

/*
 * This is a helper for __call_rcu(), which invokes this when the normal
 * callback queue is inoperable.  If this is not a no-CBs CPU, this
 * function returns failure back to __call_rcu(), which can complain
 * appropriately.
 *
 * Otherwise, this function queues the callback where the corresponding
 * "rcuo" kthread can find it.
 */
static bool __call_rcu_nocb(struct rcu_data *rdp, struct rcu_head *rhp,
2175
			    bool lazy, unsigned long flags)
P
Paul E. McKenney 已提交
2176 2177
{

2178
	if (!rcu_is_nocb_cpu(rdp->cpu))
P
Paul E. McKenney 已提交
2179
		return 0;
2180
	__call_rcu_nocb_enqueue(rdp, rhp, &rhp->next, 1, lazy, flags);
2181 2182 2183
	if (__is_kfree_rcu_offset((unsigned long)rhp->func))
		trace_rcu_kfree_callback(rdp->rsp->name, rhp,
					 (unsigned long)rhp->func,
2184 2185
					 -atomic_long_read(&rdp->nocb_q_count_lazy),
					 -atomic_long_read(&rdp->nocb_q_count));
2186 2187
	else
		trace_rcu_callback(rdp->rsp->name, rhp,
2188 2189
				   -atomic_long_read(&rdp->nocb_q_count_lazy),
				   -atomic_long_read(&rdp->nocb_q_count));
P
Paul E. McKenney 已提交
2190 2191 2192 2193 2194 2195 2196 2197
	return 1;
}

/*
 * Adopt orphaned callbacks on a no-CBs CPU, or return 0 if this is
 * not a no-CBs CPU.
 */
static bool __maybe_unused rcu_nocb_adopt_orphan_cbs(struct rcu_state *rsp,
2198 2199
						     struct rcu_data *rdp,
						     unsigned long flags)
P
Paul E. McKenney 已提交
2200 2201 2202 2203 2204
{
	long ql = rsp->qlen;
	long qll = rsp->qlen_lazy;

	/* If this is not a no-CBs CPU, tell the caller to do it the old way. */
2205
	if (!rcu_is_nocb_cpu(smp_processor_id()))
P
Paul E. McKenney 已提交
2206 2207 2208 2209 2210 2211 2212
		return 0;
	rsp->qlen = 0;
	rsp->qlen_lazy = 0;

	/* First, enqueue the donelist, if any.  This preserves CB ordering. */
	if (rsp->orphan_donelist != NULL) {
		__call_rcu_nocb_enqueue(rdp, rsp->orphan_donelist,
2213
					rsp->orphan_donetail, ql, qll, flags);
P
Paul E. McKenney 已提交
2214 2215 2216 2217 2218 2219
		ql = qll = 0;
		rsp->orphan_donelist = NULL;
		rsp->orphan_donetail = &rsp->orphan_donelist;
	}
	if (rsp->orphan_nxtlist != NULL) {
		__call_rcu_nocb_enqueue(rdp, rsp->orphan_nxtlist,
2220
					rsp->orphan_nxttail, ql, qll, flags);
P
Paul E. McKenney 已提交
2221 2222 2223 2224 2225 2226 2227 2228
		ql = qll = 0;
		rsp->orphan_nxtlist = NULL;
		rsp->orphan_nxttail = &rsp->orphan_nxtlist;
	}
	return 1;
}

/*
2229 2230
 * If necessary, kick off a new grace period, and either way wait
 * for a subsequent grace period to complete.
P
Paul E. McKenney 已提交
2231
 */
2232
static void rcu_nocb_wait_gp(struct rcu_data *rdp)
P
Paul E. McKenney 已提交
2233
{
2234
	unsigned long c;
2235
	bool d;
2236 2237 2238 2239
	unsigned long flags;
	struct rcu_node *rnp = rdp->mynode;

	raw_spin_lock_irqsave(&rnp->lock, flags);
2240
	smp_mb__after_unlock_lock();
2241 2242
	c = rcu_start_future_gp(rnp, rdp);
	raw_spin_unlock_irqrestore(&rnp->lock, flags);
P
Paul E. McKenney 已提交
2243 2244

	/*
2245 2246
	 * Wait for the grace period.  Do so interruptibly to avoid messing
	 * up the load average.
P
Paul E. McKenney 已提交
2247
	 */
2248
	trace_rcu_future_gp(rnp, rdp, c, TPS("StartWait"));
2249
	for (;;) {
2250 2251 2252 2253
		wait_event_interruptible(
			rnp->nocb_gp_wq[c & 0x1],
			(d = ULONG_CMP_GE(ACCESS_ONCE(rnp->completed), c)));
		if (likely(d))
2254
			break;
2255
		flush_signals(current);
2256
		trace_rcu_future_gp(rnp, rdp, c, TPS("ResumeWait"));
2257
	}
2258
	trace_rcu_future_gp(rnp, rdp, c, TPS("EndWait"));
2259
	smp_mb(); /* Ensure that CB invocation happens after GP end. */
P
Paul E. McKenney 已提交
2260 2261 2262 2263 2264 2265 2266 2267 2268
}

/*
 * Per-rcu_data kthread, but only for no-CBs CPUs.  Each kthread invokes
 * callbacks queued by the corresponding no-CBs CPU.
 */
static int rcu_nocb_kthread(void *arg)
{
	int c, cl;
2269
	bool firsttime = 1;
P
Paul E. McKenney 已提交
2270 2271 2272 2273 2274 2275 2276 2277
	struct rcu_head *list;
	struct rcu_head *next;
	struct rcu_head **tail;
	struct rcu_data *rdp = arg;

	/* Each pass through this loop invokes one batch of callbacks */
	for (;;) {
		/* If not polling, wait for next batch of callbacks. */
2278 2279 2280
		if (!rcu_nocb_poll) {
			trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
					    TPS("Sleep"));
2281
			wait_event_interruptible(rdp->nocb_wq, rdp->nocb_head);
2282
			/* Memory barrier provide by xchg() below. */
2283 2284 2285 2286 2287
		} else if (firsttime) {
			firsttime = 0;
			trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
					    TPS("Poll"));
		}
P
Paul E. McKenney 已提交
2288 2289
		list = ACCESS_ONCE(rdp->nocb_head);
		if (!list) {
2290 2291 2292
			if (!rcu_nocb_poll)
				trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
						    TPS("WokeEmpty"));
P
Paul E. McKenney 已提交
2293
			schedule_timeout_interruptible(1);
2294
			flush_signals(current);
P
Paul E. McKenney 已提交
2295 2296
			continue;
		}
2297
		firsttime = 1;
2298 2299
		trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
				    TPS("WokeNonEmpty"));
P
Paul E. McKenney 已提交
2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310

		/*
		 * Extract queued callbacks, update counts, and wait
		 * for a grace period to elapse.
		 */
		ACCESS_ONCE(rdp->nocb_head) = NULL;
		tail = xchg(&rdp->nocb_tail, &rdp->nocb_head);
		c = atomic_long_xchg(&rdp->nocb_q_count, 0);
		cl = atomic_long_xchg(&rdp->nocb_q_count_lazy, 0);
		ACCESS_ONCE(rdp->nocb_p_count) += c;
		ACCESS_ONCE(rdp->nocb_p_count_lazy) += cl;
2311
		rcu_nocb_wait_gp(rdp);
P
Paul E. McKenney 已提交
2312 2313 2314 2315 2316 2317 2318 2319

		/* Each pass through the following loop invokes a callback. */
		trace_rcu_batch_start(rdp->rsp->name, cl, c, -1);
		c = cl = 0;
		while (list) {
			next = list->next;
			/* Wait for enqueuing to complete, if needed. */
			while (next == NULL && &list->next != tail) {
2320 2321
				trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
						    TPS("WaitQueue"));
P
Paul E. McKenney 已提交
2322
				schedule_timeout_interruptible(1);
2323 2324
				trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
						    TPS("WokeQueue"));
P
Paul E. McKenney 已提交
2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337
				next = list->next;
			}
			debug_rcu_head_unqueue(list);
			local_bh_disable();
			if (__rcu_reclaim(rdp->rsp->name, list))
				cl++;
			c++;
			local_bh_enable();
			list = next;
		}
		trace_rcu_batch_end(rdp->rsp->name, c, !!list, 0, 0, 1);
		ACCESS_ONCE(rdp->nocb_p_count) -= c;
		ACCESS_ONCE(rdp->nocb_p_count_lazy) -= cl;
2338
		rdp->n_nocbs_invoked += c;
P
Paul E. McKenney 已提交
2339 2340 2341 2342
	}
	return 0;
}

2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358
/* Is a deferred wakeup of rcu_nocb_kthread() required? */
static bool rcu_nocb_need_deferred_wakeup(struct rcu_data *rdp)
{
	return ACCESS_ONCE(rdp->nocb_defer_wakeup);
}

/* Do a deferred wakeup of rcu_nocb_kthread(). */
static void do_nocb_deferred_wakeup(struct rcu_data *rdp)
{
	if (!rcu_nocb_need_deferred_wakeup(rdp))
		return;
	ACCESS_ONCE(rdp->nocb_defer_wakeup) = false;
	wake_up(&rdp->nocb_wq);
	trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, TPS("DeferredWakeEmpty"));
}

P
Paul E. McKenney 已提交
2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376
/* Initialize per-rcu_data variables for no-CBs CPUs. */
static void __init rcu_boot_init_nocb_percpu_data(struct rcu_data *rdp)
{
	rdp->nocb_tail = &rdp->nocb_head;
	init_waitqueue_head(&rdp->nocb_wq);
}

/* Create a kthread for each RCU flavor for each no-CBs CPU. */
static void __init rcu_spawn_nocb_kthreads(struct rcu_state *rsp)
{
	int cpu;
	struct rcu_data *rdp;
	struct task_struct *t;

	if (rcu_nocb_mask == NULL)
		return;
	for_each_cpu(cpu, rcu_nocb_mask) {
		rdp = per_cpu_ptr(rsp->rda, cpu);
2377 2378
		t = kthread_run(rcu_nocb_kthread, rdp,
				"rcuo%c/%d", rsp->abbr, cpu);
P
Paul E. McKenney 已提交
2379 2380 2381 2382 2383 2384
		BUG_ON(IS_ERR(t));
		ACCESS_ONCE(rdp->nocb_kthread) = t;
	}
}

/* Prevent __call_rcu() from enqueuing callbacks on no-CBs CPUs */
2385
static bool init_nocb_callback_list(struct rcu_data *rdp)
P
Paul E. McKenney 已提交
2386 2387 2388
{
	if (rcu_nocb_mask == NULL ||
	    !cpumask_test_cpu(rdp->cpu, rcu_nocb_mask))
2389
		return false;
P
Paul E. McKenney 已提交
2390
	rdp->nxttail[RCU_NEXT_TAIL] = NULL;
2391
	return true;
P
Paul E. McKenney 已提交
2392 2393
}

2394 2395
#else /* #ifdef CONFIG_RCU_NOCB_CPU */

2396 2397 2398
static int rcu_nocb_needs_gp(struct rcu_state *rsp)
{
	return 0;
P
Paul E. McKenney 已提交
2399 2400
}

2401
static void rcu_nocb_gp_cleanup(struct rcu_state *rsp, struct rcu_node *rnp)
P
Paul E. McKenney 已提交
2402 2403 2404
{
}

2405 2406 2407 2408 2409 2410 2411
static void rcu_nocb_gp_set(struct rcu_node *rnp, int nrq)
{
}

static void rcu_init_one_nocb(struct rcu_node *rnp)
{
}
P
Paul E. McKenney 已提交
2412 2413

static bool __call_rcu_nocb(struct rcu_data *rdp, struct rcu_head *rhp,
2414
			    bool lazy, unsigned long flags)
P
Paul E. McKenney 已提交
2415 2416 2417 2418 2419
{
	return 0;
}

static bool __maybe_unused rcu_nocb_adopt_orphan_cbs(struct rcu_state *rsp,
2420 2421
						     struct rcu_data *rdp,
						     unsigned long flags)
P
Paul E. McKenney 已提交
2422 2423 2424 2425 2426 2427 2428 2429
{
	return 0;
}

static void __init rcu_boot_init_nocb_percpu_data(struct rcu_data *rdp)
{
}

2430 2431 2432 2433 2434 2435 2436 2437 2438
static bool rcu_nocb_need_deferred_wakeup(struct rcu_data *rdp)
{
	return false;
}

static void do_nocb_deferred_wakeup(struct rcu_data *rdp)
{
}

P
Paul E. McKenney 已提交
2439 2440 2441 2442
static void __init rcu_spawn_nocb_kthreads(struct rcu_state *rsp)
{
}

2443
static bool init_nocb_callback_list(struct rcu_data *rdp)
P
Paul E. McKenney 已提交
2444
{
2445
	return false;
P
Paul E. McKenney 已提交
2446 2447 2448
}

#endif /* #else #ifdef CONFIG_RCU_NOCB_CPU */
2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465

/*
 * An adaptive-ticks CPU can potentially execute in kernel mode for an
 * arbitrarily long period of time with the scheduling-clock tick turned
 * off.  RCU will be paying attention to this CPU because it is in the
 * kernel, but the CPU cannot be guaranteed to be executing the RCU state
 * machine because the scheduling-clock tick has been disabled.  Therefore,
 * if an adaptive-ticks CPU is failing to respond to the current grace
 * period and has not be idle from an RCU perspective, kick it.
 */
static void rcu_kick_nohz_cpu(int cpu)
{
#ifdef CONFIG_NO_HZ_FULL
	if (tick_nohz_full_cpu(cpu))
		smp_send_reschedule(cpu);
#endif /* #ifdef CONFIG_NO_HZ_FULL */
}
2466 2467 2468 2469


#ifdef CONFIG_NO_HZ_FULL_SYSIDLE

2470 2471 2472 2473 2474
/*
 * Define RCU flavor that holds sysidle state.  This needs to be the
 * most active flavor of RCU.
 */
#ifdef CONFIG_PREEMPT_RCU
2475
static struct rcu_state *rcu_sysidle_state = &rcu_preempt_state;
2476
#else /* #ifdef CONFIG_PREEMPT_RCU */
2477
static struct rcu_state *rcu_sysidle_state = &rcu_sched_state;
2478 2479
#endif /* #else #ifdef CONFIG_PREEMPT_RCU */

2480
static int full_sysidle_state;		/* Current system-idle state. */
2481 2482 2483 2484 2485 2486
#define RCU_SYSIDLE_NOT		0	/* Some CPU is not idle. */
#define RCU_SYSIDLE_SHORT	1	/* All CPUs idle for brief period. */
#define RCU_SYSIDLE_LONG	2	/* All CPUs idle for long enough. */
#define RCU_SYSIDLE_FULL	3	/* All CPUs idle, ready for sysidle. */
#define RCU_SYSIDLE_FULL_NOTED	4	/* Actually entered sysidle state. */

2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522
/*
 * Invoked to note exit from irq or task transition to idle.  Note that
 * usermode execution does -not- count as idle here!  After all, we want
 * to detect full-system idle states, not RCU quiescent states and grace
 * periods.  The caller must have disabled interrupts.
 */
static void rcu_sysidle_enter(struct rcu_dynticks *rdtp, int irq)
{
	unsigned long j;

	/* Adjust nesting, check for fully idle. */
	if (irq) {
		rdtp->dynticks_idle_nesting--;
		WARN_ON_ONCE(rdtp->dynticks_idle_nesting < 0);
		if (rdtp->dynticks_idle_nesting != 0)
			return;  /* Still not fully idle. */
	} else {
		if ((rdtp->dynticks_idle_nesting & DYNTICK_TASK_NEST_MASK) ==
		    DYNTICK_TASK_NEST_VALUE) {
			rdtp->dynticks_idle_nesting = 0;
		} else {
			rdtp->dynticks_idle_nesting -= DYNTICK_TASK_NEST_VALUE;
			WARN_ON_ONCE(rdtp->dynticks_idle_nesting < 0);
			return;  /* Still not fully idle. */
		}
	}

	/* Record start of fully idle period. */
	j = jiffies;
	ACCESS_ONCE(rdtp->dynticks_idle_jiffies) = j;
	smp_mb__before_atomic_inc();
	atomic_inc(&rdtp->dynticks_idle);
	smp_mb__after_atomic_inc();
	WARN_ON_ONCE(atomic_read(&rdtp->dynticks_idle) & 0x1);
}

2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554
/*
 * Unconditionally force exit from full system-idle state.  This is
 * invoked when a normal CPU exits idle, but must be called separately
 * for the timekeeping CPU (tick_do_timer_cpu).  The reason for this
 * is that the timekeeping CPU is permitted to take scheduling-clock
 * interrupts while the system is in system-idle state, and of course
 * rcu_sysidle_exit() has no way of distinguishing a scheduling-clock
 * interrupt from any other type of interrupt.
 */
void rcu_sysidle_force_exit(void)
{
	int oldstate = ACCESS_ONCE(full_sysidle_state);
	int newoldstate;

	/*
	 * Each pass through the following loop attempts to exit full
	 * system-idle state.  If contention proves to be a problem,
	 * a trylock-based contention tree could be used here.
	 */
	while (oldstate > RCU_SYSIDLE_SHORT) {
		newoldstate = cmpxchg(&full_sysidle_state,
				      oldstate, RCU_SYSIDLE_NOT);
		if (oldstate == newoldstate &&
		    oldstate == RCU_SYSIDLE_FULL_NOTED) {
			rcu_kick_nohz_cpu(tick_do_timer_cpu);
			return; /* We cleared it, done! */
		}
		oldstate = newoldstate;
	}
	smp_mb(); /* Order initial oldstate fetch vs. later non-idle work. */
}

2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587
/*
 * Invoked to note entry to irq or task transition from idle.  Note that
 * usermode execution does -not- count as idle here!  The caller must
 * have disabled interrupts.
 */
static void rcu_sysidle_exit(struct rcu_dynticks *rdtp, int irq)
{
	/* Adjust nesting, check for already non-idle. */
	if (irq) {
		rdtp->dynticks_idle_nesting++;
		WARN_ON_ONCE(rdtp->dynticks_idle_nesting <= 0);
		if (rdtp->dynticks_idle_nesting != 1)
			return; /* Already non-idle. */
	} else {
		/*
		 * Allow for irq misnesting.  Yes, it really is possible
		 * to enter an irq handler then never leave it, and maybe
		 * also vice versa.  Handle both possibilities.
		 */
		if (rdtp->dynticks_idle_nesting & DYNTICK_TASK_NEST_MASK) {
			rdtp->dynticks_idle_nesting += DYNTICK_TASK_NEST_VALUE;
			WARN_ON_ONCE(rdtp->dynticks_idle_nesting <= 0);
			return; /* Already non-idle. */
		} else {
			rdtp->dynticks_idle_nesting = DYNTICK_TASK_EXIT_IDLE;
		}
	}

	/* Record end of idle period. */
	smp_mb__before_atomic_inc();
	atomic_inc(&rdtp->dynticks_idle);
	smp_mb__after_atomic_inc();
	WARN_ON_ONCE(!(atomic_read(&rdtp->dynticks_idle) & 0x1));
2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623

	/*
	 * If we are the timekeeping CPU, we are permitted to be non-idle
	 * during a system-idle state.  This must be the case, because
	 * the timekeeping CPU has to take scheduling-clock interrupts
	 * during the time that the system is transitioning to full
	 * system-idle state.  This means that the timekeeping CPU must
	 * invoke rcu_sysidle_force_exit() directly if it does anything
	 * more than take a scheduling-clock interrupt.
	 */
	if (smp_processor_id() == tick_do_timer_cpu)
		return;

	/* Update system-idle state: We are clearly no longer fully idle! */
	rcu_sysidle_force_exit();
}

/*
 * Check to see if the current CPU is idle.  Note that usermode execution
 * does not count as idle.  The caller must have disabled interrupts.
 */
static void rcu_sysidle_check_cpu(struct rcu_data *rdp, bool *isidle,
				  unsigned long *maxj)
{
	int cur;
	unsigned long j;
	struct rcu_dynticks *rdtp = rdp->dynticks;

	/*
	 * If some other CPU has already reported non-idle, if this is
	 * not the flavor of RCU that tracks sysidle state, or if this
	 * is an offline or the timekeeping CPU, nothing to do.
	 */
	if (!*isidle || rdp->rsp != rcu_sysidle_state ||
	    cpu_is_offline(rdp->cpu) || rdp->cpu == tick_do_timer_cpu)
		return;
2624 2625
	if (rcu_gp_in_progress(rdp->rsp))
		WARN_ON_ONCE(smp_processor_id() != tick_do_timer_cpu);
2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649

	/* Pick up current idle and NMI-nesting counter and check. */
	cur = atomic_read(&rdtp->dynticks_idle);
	if (cur & 0x1) {
		*isidle = false; /* We are not idle! */
		return;
	}
	smp_mb(); /* Read counters before timestamps. */

	/* Pick up timestamps. */
	j = ACCESS_ONCE(rdtp->dynticks_idle_jiffies);
	/* If this CPU entered idle more recently, update maxj timestamp. */
	if (ULONG_CMP_LT(*maxj, j))
		*maxj = j;
}

/*
 * Is this the flavor of RCU that is handling full-system idle?
 */
static bool is_sysidle_rcu_state(struct rcu_state *rsp)
{
	return rsp == rcu_sysidle_state;
}

2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663
/*
 * Bind the grace-period kthread for the sysidle flavor of RCU to the
 * timekeeping CPU.
 */
static void rcu_bind_gp_kthread(void)
{
	int cpu = ACCESS_ONCE(tick_do_timer_cpu);

	if (cpu < 0 || cpu >= nr_cpu_ids)
		return;
	if (raw_smp_processor_id() != cpu)
		set_cpus_allowed_ptr(current, cpumask_of(cpu));
}

2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843
/*
 * Return a delay in jiffies based on the number of CPUs, rcu_node
 * leaf fanout, and jiffies tick rate.  The idea is to allow larger
 * systems more time to transition to full-idle state in order to
 * avoid the cache thrashing that otherwise occur on the state variable.
 * Really small systems (less than a couple of tens of CPUs) should
 * instead use a single global atomically incremented counter, and later
 * versions of this will automatically reconfigure themselves accordingly.
 */
static unsigned long rcu_sysidle_delay(void)
{
	if (nr_cpu_ids <= CONFIG_NO_HZ_FULL_SYSIDLE_SMALL)
		return 0;
	return DIV_ROUND_UP(nr_cpu_ids * HZ, rcu_fanout_leaf * 1000);
}

/*
 * Advance the full-system-idle state.  This is invoked when all of
 * the non-timekeeping CPUs are idle.
 */
static void rcu_sysidle(unsigned long j)
{
	/* Check the current state. */
	switch (ACCESS_ONCE(full_sysidle_state)) {
	case RCU_SYSIDLE_NOT:

		/* First time all are idle, so note a short idle period. */
		ACCESS_ONCE(full_sysidle_state) = RCU_SYSIDLE_SHORT;
		break;

	case RCU_SYSIDLE_SHORT:

		/*
		 * Idle for a bit, time to advance to next state?
		 * cmpxchg failure means race with non-idle, let them win.
		 */
		if (ULONG_CMP_GE(jiffies, j + rcu_sysidle_delay()))
			(void)cmpxchg(&full_sysidle_state,
				      RCU_SYSIDLE_SHORT, RCU_SYSIDLE_LONG);
		break;

	case RCU_SYSIDLE_LONG:

		/*
		 * Do an additional check pass before advancing to full.
		 * cmpxchg failure means race with non-idle, let them win.
		 */
		if (ULONG_CMP_GE(jiffies, j + rcu_sysidle_delay()))
			(void)cmpxchg(&full_sysidle_state,
				      RCU_SYSIDLE_LONG, RCU_SYSIDLE_FULL);
		break;

	default:
		break;
	}
}

/*
 * Found a non-idle non-timekeeping CPU, so kick the system-idle state
 * back to the beginning.
 */
static void rcu_sysidle_cancel(void)
{
	smp_mb();
	ACCESS_ONCE(full_sysidle_state) = RCU_SYSIDLE_NOT;
}

/*
 * Update the sysidle state based on the results of a force-quiescent-state
 * scan of the CPUs' dyntick-idle state.
 */
static void rcu_sysidle_report(struct rcu_state *rsp, int isidle,
			       unsigned long maxj, bool gpkt)
{
	if (rsp != rcu_sysidle_state)
		return;  /* Wrong flavor, ignore. */
	if (gpkt && nr_cpu_ids <= CONFIG_NO_HZ_FULL_SYSIDLE_SMALL)
		return;  /* Running state machine from timekeeping CPU. */
	if (isidle)
		rcu_sysidle(maxj);    /* More idle! */
	else
		rcu_sysidle_cancel(); /* Idle is over. */
}

/*
 * Wrapper for rcu_sysidle_report() when called from the grace-period
 * kthread's context.
 */
static void rcu_sysidle_report_gp(struct rcu_state *rsp, int isidle,
				  unsigned long maxj)
{
	rcu_sysidle_report(rsp, isidle, maxj, true);
}

/* Callback and function for forcing an RCU grace period. */
struct rcu_sysidle_head {
	struct rcu_head rh;
	int inuse;
};

static void rcu_sysidle_cb(struct rcu_head *rhp)
{
	struct rcu_sysidle_head *rshp;

	/*
	 * The following memory barrier is needed to replace the
	 * memory barriers that would normally be in the memory
	 * allocator.
	 */
	smp_mb();  /* grace period precedes setting inuse. */

	rshp = container_of(rhp, struct rcu_sysidle_head, rh);
	ACCESS_ONCE(rshp->inuse) = 0;
}

/*
 * Check to see if the system is fully idle, other than the timekeeping CPU.
 * The caller must have disabled interrupts.
 */
bool rcu_sys_is_idle(void)
{
	static struct rcu_sysidle_head rsh;
	int rss = ACCESS_ONCE(full_sysidle_state);

	if (WARN_ON_ONCE(smp_processor_id() != tick_do_timer_cpu))
		return false;

	/* Handle small-system case by doing a full scan of CPUs. */
	if (nr_cpu_ids <= CONFIG_NO_HZ_FULL_SYSIDLE_SMALL) {
		int oldrss = rss - 1;

		/*
		 * One pass to advance to each state up to _FULL.
		 * Give up if any pass fails to advance the state.
		 */
		while (rss < RCU_SYSIDLE_FULL && oldrss < rss) {
			int cpu;
			bool isidle = true;
			unsigned long maxj = jiffies - ULONG_MAX / 4;
			struct rcu_data *rdp;

			/* Scan all the CPUs looking for nonidle CPUs. */
			for_each_possible_cpu(cpu) {
				rdp = per_cpu_ptr(rcu_sysidle_state->rda, cpu);
				rcu_sysidle_check_cpu(rdp, &isidle, &maxj);
				if (!isidle)
					break;
			}
			rcu_sysidle_report(rcu_sysidle_state,
					   isidle, maxj, false);
			oldrss = rss;
			rss = ACCESS_ONCE(full_sysidle_state);
		}
	}

	/* If this is the first observation of an idle period, record it. */
	if (rss == RCU_SYSIDLE_FULL) {
		rss = cmpxchg(&full_sysidle_state,
			      RCU_SYSIDLE_FULL, RCU_SYSIDLE_FULL_NOTED);
		return rss == RCU_SYSIDLE_FULL;
	}

	smp_mb(); /* ensure rss load happens before later caller actions. */

	/* If already fully idle, tell the caller (in case of races). */
	if (rss == RCU_SYSIDLE_FULL_NOTED)
		return true;

	/*
	 * If we aren't there yet, and a grace period is not in flight,
	 * initiate a grace period.  Either way, tell the caller that
	 * we are not there yet.  We use an xchg() rather than an assignment
	 * to make up for the memory barriers that would otherwise be
	 * provided by the memory allocator.
	 */
	if (nr_cpu_ids > CONFIG_NO_HZ_FULL_SYSIDLE_SMALL &&
	    !rcu_gp_in_progress(rcu_sysidle_state) &&
	    !rsh.inuse && xchg(&rsh.inuse, 1) == 0)
		call_rcu(&rsh.rh, rcu_sysidle_cb);
	return false;
2844 2845
}

2846 2847 2848 2849 2850 2851 2852 2853 2854 2855
/*
 * Initialize dynticks sysidle state for CPUs coming online.
 */
static void rcu_sysidle_init_percpu_data(struct rcu_dynticks *rdtp)
{
	rdtp->dynticks_idle_nesting = DYNTICK_TASK_NEST_VALUE;
}

#else /* #ifdef CONFIG_NO_HZ_FULL_SYSIDLE */

2856 2857 2858 2859 2860 2861 2862 2863
static void rcu_sysidle_enter(struct rcu_dynticks *rdtp, int irq)
{
}

static void rcu_sysidle_exit(struct rcu_dynticks *rdtp, int irq)
{
}

2864 2865 2866 2867 2868 2869 2870 2871 2872 2873
static void rcu_sysidle_check_cpu(struct rcu_data *rdp, bool *isidle,
				  unsigned long *maxj)
{
}

static bool is_sysidle_rcu_state(struct rcu_state *rsp)
{
	return false;
}

2874 2875 2876 2877
static void rcu_bind_gp_kthread(void)
{
}

2878 2879 2880 2881 2882
static void rcu_sysidle_report_gp(struct rcu_state *rsp, int isidle,
				  unsigned long maxj)
{
}

2883 2884 2885 2886 2887
static void rcu_sysidle_init_percpu_data(struct rcu_dynticks *rdtp)
{
}

#endif /* #else #ifdef CONFIG_NO_HZ_FULL_SYSIDLE */
2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907

/*
 * Is this CPU a NO_HZ_FULL CPU that should ignore RCU so that the
 * grace-period kthread will do force_quiescent_state() processing?
 * The idea is to avoid waking up RCU core processing on such a
 * CPU unless the grace period has extended for too long.
 *
 * This code relies on the fact that all NO_HZ_FULL CPUs are also
 * CONFIG_RCU_NOCB_CPUs.
 */
static bool rcu_nohz_full_cpu(struct rcu_state *rsp)
{
#ifdef CONFIG_NO_HZ_FULL
	if (tick_nohz_full_cpu(smp_processor_id()) &&
	    (!rcu_gp_in_progress(rsp) ||
	     ULONG_CMP_LT(jiffies, ACCESS_ONCE(rsp->gp_start) + HZ)))
		return 1;
#endif /* #ifdef CONFIG_NO_HZ_FULL */
	return 0;
}