tree_plugin.h 89.1 KB
Newer Older
1 2 3
/*
 * Read-Copy Update mechanism for mutual exclusion (tree-based version)
 * Internal non-public definitions that provide either classic
P
Paul E. McKenney 已提交
4
 * or preemptible semantics.
5 6 7 8 9 10 11 12 13 14 15 16
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
17 18
 * along with this program; if not, you can access it online at
 * http://www.gnu.org/licenses/gpl-2.0.html.
19 20 21 22 23 24 25 26
 *
 * Copyright Red Hat, 2009
 * Copyright IBM Corporation, 2009
 *
 * Author: Ingo Molnar <mingo@elte.hu>
 *	   Paul E. McKenney <paulmck@linux.vnet.ibm.com>
 */

27
#include <linux/delay.h>
P
Paul E. McKenney 已提交
28
#include <linux/gfp.h>
29
#include <linux/oom.h>
30
#include <linux/smpboot.h>
31
#include "../time/tick-internal.h"
32

33
#ifdef CONFIG_RCU_BOOST
34

35
#include "../locking/rtmutex_common.h"
36

37 38 39 40 41 42 43 44 45
/*
 * Control variables for per-CPU and per-rcu_node kthreads.  These
 * handle all flavors of RCU.
 */
static DEFINE_PER_CPU(struct task_struct *, rcu_cpu_kthread_task);
DEFINE_PER_CPU(unsigned int, rcu_cpu_kthread_status);
DEFINE_PER_CPU(unsigned int, rcu_cpu_kthread_loops);
DEFINE_PER_CPU(char, rcu_cpu_has_work);

46 47 48 49 50 51 52 53 54 55 56
#else /* #ifdef CONFIG_RCU_BOOST */

/*
 * Some architectures do not define rt_mutexes, but if !CONFIG_RCU_BOOST,
 * all uses are in dead code.  Provide a definition to keep the compiler
 * happy, but add WARN_ON_ONCE() to complain if used in the wrong place.
 * This probably needs to be excluded from -rt builds.
 */
#define rt_mutex_owner(a) ({ WARN_ON_ONCE(1); NULL; })

#endif /* #else #ifdef CONFIG_RCU_BOOST */
57

P
Paul E. McKenney 已提交
58 59 60
#ifdef CONFIG_RCU_NOCB_CPU
static cpumask_var_t rcu_nocb_mask; /* CPUs to have callbacks offloaded. */
static bool have_rcu_nocb_mask;	    /* Was rcu_nocb_mask allocated? */
61
static bool __read_mostly rcu_nocb_poll;    /* Offload kthread are to poll. */
P
Paul E. McKenney 已提交
62 63
#endif /* #ifdef CONFIG_RCU_NOCB_CPU */

64 65 66 67 68 69 70
/*
 * Check the RCU kernel configuration parameters and print informative
 * messages about anything out of the ordinary.  If you like #ifdef, you
 * will love this function.
 */
static void __init rcu_bootup_announce_oddness(void)
{
71 72
	if (IS_ENABLED(CONFIG_RCU_TRACE))
		pr_info("\tRCU debugfs-based tracing is enabled.\n");
73 74
	if ((IS_ENABLED(CONFIG_64BIT) && RCU_FANOUT != 64) ||
	    (!IS_ENABLED(CONFIG_64BIT) && RCU_FANOUT != 32))
75
		pr_info("\tCONFIG_RCU_FANOUT set to non-default value of %d\n",
76
		       RCU_FANOUT);
77
	if (rcu_fanout_exact)
78 79 80 81 82 83 84
		pr_info("\tHierarchical RCU autobalancing is disabled.\n");
	if (IS_ENABLED(CONFIG_RCU_FAST_NO_HZ))
		pr_info("\tRCU dyntick-idle grace-period acceleration is enabled.\n");
	if (IS_ENABLED(CONFIG_PROVE_RCU))
		pr_info("\tRCU lockdep checking is enabled.\n");
	if (IS_ENABLED(CONFIG_RCU_TORTURE_TEST_RUNNABLE))
		pr_info("\tRCU torture testing starts during boot.\n");
85 86
	if (RCU_NUM_LVLS >= 4)
		pr_info("\tFour(or more)-level hierarchy is enabled.\n");
87
	if (RCU_FANOUT_LEAF != 16)
88
		pr_info("\tBuild-time adjustment of leaf fanout to %d.\n",
89 90
			RCU_FANOUT_LEAF);
	if (rcu_fanout_leaf != RCU_FANOUT_LEAF)
91
		pr_info("\tBoot-time adjustment of leaf fanout to %d.\n", rcu_fanout_leaf);
92
	if (nr_cpu_ids != NR_CPUS)
93
		pr_info("\tRCU restricting CPUs from NR_CPUS=%d to nr_cpu_ids=%d.\n", NR_CPUS, nr_cpu_ids);
94 95
	if (IS_ENABLED(CONFIG_RCU_BOOST))
		pr_info("\tRCU kthread priority: %d.\n", kthread_prio);
96 97
}

98
#ifdef CONFIG_PREEMPT_RCU
99

100
RCU_STATE_INITIALIZER(rcu_preempt, 'p', call_rcu);
101
static struct rcu_state *const rcu_state_p = &rcu_preempt_state;
102
static struct rcu_data __percpu *const rcu_data_p = &rcu_preempt_data;
103

104
static int rcu_preempted_readers_exp(struct rcu_node *rnp);
105 106
static void rcu_report_exp_rnp(struct rcu_state *rsp, struct rcu_node *rnp,
			       bool wake);
107

108 109 110
/*
 * Tell them what RCU they are running.
 */
111
static void __init rcu_bootup_announce(void)
112
{
113
	pr_info("Preemptible hierarchical RCU implementation.\n");
114
	rcu_bootup_announce_oddness();
115 116 117
}

/*
P
Paul E. McKenney 已提交
118
 * Record a preemptible-RCU quiescent state for the specified CPU.  Note
119 120 121
 * that this just means that the task currently running on the CPU is
 * not in a quiescent state.  There might be any number of tasks blocked
 * while in an RCU read-side critical section.
122
 *
123 124
 * As with the other rcu_*_qs() functions, callers to this function
 * must disable preemption.
125
 */
126
static void rcu_preempt_qs(void)
127
{
128
	if (!__this_cpu_read(rcu_data_p->passed_quiesce)) {
129
		trace_rcu_grace_period(TPS("rcu_preempt"),
130
				       __this_cpu_read(rcu_data_p->gpnum),
131
				       TPS("cpuqs"));
132
		__this_cpu_write(rcu_data_p->passed_quiesce, 1);
133 134 135
		barrier(); /* Coordinate with rcu_preempt_check_callbacks(). */
		current->rcu_read_unlock_special.b.need_qs = false;
	}
136 137 138
}

/*
139 140 141
 * We have entered the scheduler, and the current task might soon be
 * context-switched away from.  If this task is in an RCU read-side
 * critical section, we will no longer be able to rely on the CPU to
142 143 144 145 146 147
 * record that fact, so we enqueue the task on the blkd_tasks list.
 * The task will dequeue itself when it exits the outermost enclosing
 * RCU read-side critical section.  Therefore, the current grace period
 * cannot be permitted to complete until the blkd_tasks list entries
 * predating the current grace period drain, in other words, until
 * rnp->gp_tasks becomes NULL.
148 149
 *
 * Caller must disable preemption.
150
 */
151
static void rcu_preempt_note_context_switch(void)
152 153
{
	struct task_struct *t = current;
154
	unsigned long flags;
155 156 157
	struct rcu_data *rdp;
	struct rcu_node *rnp;

158
	if (t->rcu_read_lock_nesting > 0 &&
159
	    !t->rcu_read_unlock_special.b.blocked) {
160 161

		/* Possibly blocking in an RCU read-side critical section. */
162
		rdp = this_cpu_ptr(rcu_state_p->rda);
163
		rnp = rdp->mynode;
P
Paul E. McKenney 已提交
164
		raw_spin_lock_irqsave(&rnp->lock, flags);
165
		smp_mb__after_unlock_lock();
166
		t->rcu_read_unlock_special.b.blocked = true;
167
		t->rcu_blocked_node = rnp;
168 169 170 171 172 173 174 175 176

		/*
		 * If this CPU has already checked in, then this task
		 * will hold up the next grace period rather than the
		 * current grace period.  Queue the task accordingly.
		 * If the task is queued for the current grace period
		 * (i.e., this CPU has not yet passed through a quiescent
		 * state for the current grace period), then as long
		 * as that task remains queued, the current grace period
177 178 179 180 181 182
		 * cannot end.  Note that there is some uncertainty as
		 * to exactly when the current grace period started.
		 * We take a conservative approach, which can result
		 * in unnecessarily waiting on tasks that started very
		 * slightly after the current grace period began.  C'est
		 * la vie!!!
183 184 185
		 *
		 * But first, note that the current CPU must still be
		 * on line!
186
		 */
187
		WARN_ON_ONCE((rdp->grpmask & rcu_rnp_online_cpus(rnp)) == 0);
188
		WARN_ON_ONCE(!list_empty(&t->rcu_node_entry));
189 190 191
		if ((rnp->qsmask & rdp->grpmask) && rnp->gp_tasks != NULL) {
			list_add(&t->rcu_node_entry, rnp->gp_tasks->prev);
			rnp->gp_tasks = &t->rcu_node_entry;
192 193
			if (IS_ENABLED(CONFIG_RCU_BOOST) &&
			    rnp->boost_tasks != NULL)
194
				rnp->boost_tasks = rnp->gp_tasks;
195 196 197 198 199
		} else {
			list_add(&t->rcu_node_entry, &rnp->blkd_tasks);
			if (rnp->qsmask & rdp->grpmask)
				rnp->gp_tasks = &t->rcu_node_entry;
		}
200 201 202 203 204
		trace_rcu_preempt_task(rdp->rsp->name,
				       t->pid,
				       (rnp->qsmask & rdp->grpmask)
				       ? rnp->gpnum
				       : rnp->gpnum + 1);
P
Paul E. McKenney 已提交
205
		raw_spin_unlock_irqrestore(&rnp->lock, flags);
206
	} else if (t->rcu_read_lock_nesting < 0 &&
207
		   t->rcu_read_unlock_special.s) {
208 209 210 211 212 213

		/*
		 * Complete exit from RCU read-side critical section on
		 * behalf of preempted instance of __rcu_read_unlock().
		 */
		rcu_read_unlock_special(t);
214 215 216 217 218 219 220 221 222 223 224
	}

	/*
	 * Either we were not in an RCU read-side critical section to
	 * begin with, or we have now recorded that critical section
	 * globally.  Either way, we can now note a quiescent state
	 * for this CPU.  Again, if we were in an RCU read-side critical
	 * section, and if that critical section was blocking the current
	 * grace period, then the fact that the task has been enqueued
	 * means that we continue to block the current grace period.
	 */
225
	rcu_preempt_qs();
226 227
}

228 229 230 231 232
/*
 * Check for preempted RCU readers blocking the current grace period
 * for the specified rcu_node structure.  If the caller needs a reliable
 * answer, it must hold the rcu_node's ->lock.
 */
233
static int rcu_preempt_blocked_readers_cgp(struct rcu_node *rnp)
234
{
235
	return rnp->gp_tasks != NULL;
236 237
}

238 239 240 241 242 243 244 245 246 247 248 249 250 251 252
/*
 * Advance a ->blkd_tasks-list pointer to the next entry, instead
 * returning NULL if at the end of the list.
 */
static struct list_head *rcu_next_node_entry(struct task_struct *t,
					     struct rcu_node *rnp)
{
	struct list_head *np;

	np = t->rcu_node_entry.next;
	if (np == &rnp->blkd_tasks)
		np = NULL;
	return np;
}

253 254 255 256 257 258 259 260 261
/*
 * Return true if the specified rcu_node structure has tasks that were
 * preempted within an RCU read-side critical section.
 */
static bool rcu_preempt_has_tasks(struct rcu_node *rnp)
{
	return !list_empty(&rnp->blkd_tasks);
}

262 263 264 265 266
/*
 * Handle special cases during rcu_read_unlock(), such as needing to
 * notify RCU core processing or task having blocked during the RCU
 * read-side critical section.
 */
267
void rcu_read_unlock_special(struct task_struct *t)
268
{
269 270 271
	bool empty_exp;
	bool empty_norm;
	bool empty_exp_now;
272
	unsigned long flags;
273
	struct list_head *np;
274
	bool drop_boost_mutex = false;
275
	struct rcu_node *rnp;
276
	union rcu_special special;
277 278 279 280 281 282 283 284 285

	/* NMI handlers cannot block and cannot safely manipulate state. */
	if (in_nmi())
		return;

	local_irq_save(flags);

	/*
	 * If RCU core is waiting for this CPU to exit critical section,
286 287
	 * let it know that we have done so.  Because irqs are disabled,
	 * t->rcu_read_unlock_special cannot change.
288 289
	 */
	special = t->rcu_read_unlock_special;
290
	if (special.b.need_qs) {
291
		rcu_preempt_qs();
292
		t->rcu_read_unlock_special.b.need_qs = false;
293
		if (!t->rcu_read_unlock_special.s) {
294 295 296
			local_irq_restore(flags);
			return;
		}
297 298
	}

299
	/* Hardware IRQ handlers cannot block, complain if they get here. */
300 301 302 303 304 305 306
	if (in_irq() || in_serving_softirq()) {
		lockdep_rcu_suspicious(__FILE__, __LINE__,
				       "rcu_read_unlock() from irq or softirq with blocking in critical section!!!\n");
		pr_alert("->rcu_read_unlock_special: %#x (b: %d, nq: %d)\n",
			 t->rcu_read_unlock_special.s,
			 t->rcu_read_unlock_special.b.blocked,
			 t->rcu_read_unlock_special.b.need_qs);
307 308 309 310 311
		local_irq_restore(flags);
		return;
	}

	/* Clean up if blocked during RCU read-side critical section. */
312 313
	if (special.b.blocked) {
		t->rcu_read_unlock_special.b.blocked = false;
314

315
		/*
316 317 318 319 320
		 * Remove this task from the list it blocked on.  The task
		 * now remains queued on the rcu_node corresponding to
		 * the CPU it first blocked on, so the first attempt to
		 * acquire the task's rcu_node's ->lock will succeed.
		 * Keep the loop and add a WARN_ON() out of sheer paranoia.
321 322
		 */
		for (;;) {
323
			rnp = t->rcu_blocked_node;
P
Paul E. McKenney 已提交
324
			raw_spin_lock(&rnp->lock);  /* irqs already disabled. */
325
			smp_mb__after_unlock_lock();
326
			if (rnp == t->rcu_blocked_node)
327
				break;
328
			WARN_ON_ONCE(1);
P
Paul E. McKenney 已提交
329
			raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
330
		}
331
		empty_norm = !rcu_preempt_blocked_readers_cgp(rnp);
332 333
		empty_exp = !rcu_preempted_readers_exp(rnp);
		smp_mb(); /* ensure expedited fastpath sees end of RCU c-s. */
334
		np = rcu_next_node_entry(t, rnp);
335
		list_del_init(&t->rcu_node_entry);
336
		t->rcu_blocked_node = NULL;
337
		trace_rcu_unlock_preempted_task(TPS("rcu_preempt"),
338
						rnp->gpnum, t->pid);
339 340 341 342
		if (&t->rcu_node_entry == rnp->gp_tasks)
			rnp->gp_tasks = np;
		if (&t->rcu_node_entry == rnp->exp_tasks)
			rnp->exp_tasks = np;
343 344 345 346 347 348
		if (IS_ENABLED(CONFIG_RCU_BOOST)) {
			if (&t->rcu_node_entry == rnp->boost_tasks)
				rnp->boost_tasks = np;
			/* Snapshot ->boost_mtx ownership w/rnp->lock held. */
			drop_boost_mutex = rt_mutex_owner(&rnp->boost_mtx) == t;
		}
349 350 351 352

		/*
		 * If this was the last task on the current list, and if
		 * we aren't waiting on any CPUs, report the quiescent state.
353 354
		 * Note that rcu_report_unblock_qs_rnp() releases rnp->lock,
		 * so we must take a snapshot of the expedited state.
355
		 */
356
		empty_exp_now = !rcu_preempted_readers_exp(rnp);
357
		if (!empty_norm && !rcu_preempt_blocked_readers_cgp(rnp)) {
358
			trace_rcu_quiescent_state_report(TPS("preempt_rcu"),
359 360 361 362 363 364
							 rnp->gpnum,
							 0, rnp->qsmask,
							 rnp->level,
							 rnp->grplo,
							 rnp->grphi,
							 !!rnp->gp_tasks);
365
			rcu_report_unblock_qs_rnp(rcu_state_p, rnp, flags);
366
		} else {
367
			raw_spin_unlock_irqrestore(&rnp->lock, flags);
368
		}
369

370
		/* Unboost if we were boosted. */
371
		if (IS_ENABLED(CONFIG_RCU_BOOST) && drop_boost_mutex)
372
			rt_mutex_unlock(&rnp->boost_mtx);
373

374 375 376 377
		/*
		 * If this was the last task on the expedited lists,
		 * then we need to report up the rcu_node hierarchy.
		 */
378
		if (!empty_exp && empty_exp_now)
379
			rcu_report_exp_rnp(rcu_state_p, rnp, true);
380 381
	} else {
		local_irq_restore(flags);
382 383 384
	}
}

385 386 387 388 389 390 391 392 393
/*
 * Dump detailed information for all tasks blocking the current RCU
 * grace period on the specified rcu_node structure.
 */
static void rcu_print_detail_task_stall_rnp(struct rcu_node *rnp)
{
	unsigned long flags;
	struct task_struct *t;

394
	raw_spin_lock_irqsave(&rnp->lock, flags);
395 396 397 398
	if (!rcu_preempt_blocked_readers_cgp(rnp)) {
		raw_spin_unlock_irqrestore(&rnp->lock, flags);
		return;
	}
399
	t = list_entry(rnp->gp_tasks->prev,
400 401 402 403
		       struct task_struct, rcu_node_entry);
	list_for_each_entry_continue(t, &rnp->blkd_tasks, rcu_node_entry)
		sched_show_task(t);
	raw_spin_unlock_irqrestore(&rnp->lock, flags);
404 405 406 407 408 409 410 411 412 413 414 415 416 417 418
}

/*
 * Dump detailed information for all tasks blocking the current RCU
 * grace period.
 */
static void rcu_print_detail_task_stall(struct rcu_state *rsp)
{
	struct rcu_node *rnp = rcu_get_root(rsp);

	rcu_print_detail_task_stall_rnp(rnp);
	rcu_for_each_leaf_node(rsp, rnp)
		rcu_print_detail_task_stall_rnp(rnp);
}

419 420
static void rcu_print_task_stall_begin(struct rcu_node *rnp)
{
421
	pr_err("\tTasks blocked on level-%d rcu_node (CPUs %d-%d):",
422 423 424 425 426
	       rnp->level, rnp->grplo, rnp->grphi);
}

static void rcu_print_task_stall_end(void)
{
427
	pr_cont("\n");
428 429
}

430 431 432 433
/*
 * Scan the current list of tasks blocked within RCU read-side critical
 * sections, printing out the tid of each.
 */
434
static int rcu_print_task_stall(struct rcu_node *rnp)
435 436
{
	struct task_struct *t;
437
	int ndetected = 0;
438

439
	if (!rcu_preempt_blocked_readers_cgp(rnp))
440
		return 0;
441
	rcu_print_task_stall_begin(rnp);
442
	t = list_entry(rnp->gp_tasks->prev,
443
		       struct task_struct, rcu_node_entry);
444
	list_for_each_entry_continue(t, &rnp->blkd_tasks, rcu_node_entry) {
445
		pr_cont(" P%d", t->pid);
446 447
		ndetected++;
	}
448
	rcu_print_task_stall_end();
449
	return ndetected;
450 451
}

452 453 454 455 456 457
/*
 * Check that the list of blocked tasks for the newly completed grace
 * period is in fact empty.  It is a serious bug to complete a grace
 * period that still has RCU readers blocked!  This function must be
 * invoked -before- updating this rnp's ->gpnum, and the rnp's ->lock
 * must be held by the caller.
458 459 460
 *
 * Also, if there are blocked tasks on the list, they automatically
 * block the newly created grace period, so set up ->gp_tasks accordingly.
461 462 463
 */
static void rcu_preempt_check_blocked_tasks(struct rcu_node *rnp)
{
464
	WARN_ON_ONCE(rcu_preempt_blocked_readers_cgp(rnp));
465
	if (rcu_preempt_has_tasks(rnp))
466
		rnp->gp_tasks = rnp->blkd_tasks.next;
467
	WARN_ON_ONCE(rnp->qsmask);
468 469
}

470 471 472 473 474 475 476
/*
 * Check for a quiescent state from the current CPU.  When a task blocks,
 * the task is recorded in the corresponding CPU's rcu_node structure,
 * which is checked elsewhere.
 *
 * Caller must disable hard irqs.
 */
477
static void rcu_preempt_check_callbacks(void)
478 479 480 481
{
	struct task_struct *t = current;

	if (t->rcu_read_lock_nesting == 0) {
482
		rcu_preempt_qs();
483 484
		return;
	}
485
	if (t->rcu_read_lock_nesting > 0 &&
486 487
	    __this_cpu_read(rcu_data_p->qs_pending) &&
	    !__this_cpu_read(rcu_data_p->passed_quiesce))
488
		t->rcu_read_unlock_special.b.need_qs = true;
489 490
}

491 492
#ifdef CONFIG_RCU_BOOST

493 494
static void rcu_preempt_do_callbacks(void)
{
495
	rcu_do_batch(rcu_state_p, this_cpu_ptr(rcu_data_p));
496 497
}

498 499
#endif /* #ifdef CONFIG_RCU_BOOST */

500
/*
P
Paul E. McKenney 已提交
501
 * Queue a preemptible-RCU callback for invocation after a grace period.
502 503 504
 */
void call_rcu(struct rcu_head *head, void (*func)(struct rcu_head *rcu))
{
505
	__call_rcu(head, func, rcu_state_p, -1, 0);
506 507 508
}
EXPORT_SYMBOL_GPL(call_rcu);

509 510 511 512 513
/**
 * synchronize_rcu - wait until a grace period has elapsed.
 *
 * Control will return to the caller some time after a full grace
 * period has elapsed, in other words after all currently executing RCU
514 515 516 517 518
 * read-side critical sections have completed.  Note, however, that
 * upon return from synchronize_rcu(), the caller might well be executing
 * concurrently with new RCU read-side critical sections that began while
 * synchronize_rcu() was waiting.  RCU read-side critical sections are
 * delimited by rcu_read_lock() and rcu_read_unlock(), and may be nested.
519 520 521
 *
 * See the description of synchronize_sched() for more detailed information
 * on memory ordering guarantees.
522 523 524
 */
void synchronize_rcu(void)
{
525 526 527 528
	rcu_lockdep_assert(!lock_is_held(&rcu_bh_lock_map) &&
			   !lock_is_held(&rcu_lock_map) &&
			   !lock_is_held(&rcu_sched_lock_map),
			   "Illegal synchronize_rcu() in RCU read-side critical section");
529 530
	if (!rcu_scheduler_active)
		return;
531
	if (rcu_gp_is_expedited())
532 533 534
		synchronize_rcu_expedited();
	else
		wait_rcu_gp(call_rcu);
535 536 537
}
EXPORT_SYMBOL_GPL(synchronize_rcu);

538
static DECLARE_WAIT_QUEUE_HEAD(sync_rcu_preempt_exp_wq);
539
static unsigned long sync_rcu_preempt_exp_count;
540 541 542 543 544 545 546 547 548 549
static DEFINE_MUTEX(sync_rcu_preempt_exp_mutex);

/*
 * Return non-zero if there are any tasks in RCU read-side critical
 * sections blocking the current preemptible-RCU expedited grace period.
 * If there is no preemptible-RCU expedited grace period currently in
 * progress, returns zero unconditionally.
 */
static int rcu_preempted_readers_exp(struct rcu_node *rnp)
{
550
	return rnp->exp_tasks != NULL;
551 552 553 554 555 556 557 558 559 560 561 562 563 564
}

/*
 * return non-zero if there is no RCU expedited grace period in progress
 * for the specified rcu_node structure, in other words, if all CPUs and
 * tasks covered by the specified rcu_node structure have done their bit
 * for the current expedited grace period.  Works only for preemptible
 * RCU -- other RCU implementation use other means.
 *
 * Caller must hold sync_rcu_preempt_exp_mutex.
 */
static int sync_rcu_preempt_exp_done(struct rcu_node *rnp)
{
	return !rcu_preempted_readers_exp(rnp) &&
565
	       READ_ONCE(rnp->expmask) == 0;
566 567 568 569 570 571 572 573 574 575 576 577
}

/*
 * Report the exit from RCU read-side critical section for the last task
 * that queued itself during or before the current expedited preemptible-RCU
 * grace period.  This event is reported either to the rcu_node structure on
 * which the task was queued or to one of that rcu_node structure's ancestors,
 * recursively up the tree.  (Calm down, calm down, we do the recursion
 * iteratively!)
 *
 * Caller must hold sync_rcu_preempt_exp_mutex.
 */
578 579
static void rcu_report_exp_rnp(struct rcu_state *rsp, struct rcu_node *rnp,
			       bool wake)
580 581 582 583
{
	unsigned long flags;
	unsigned long mask;

P
Paul E. McKenney 已提交
584
	raw_spin_lock_irqsave(&rnp->lock, flags);
585
	smp_mb__after_unlock_lock();
586
	for (;;) {
587 588
		if (!sync_rcu_preempt_exp_done(rnp)) {
			raw_spin_unlock_irqrestore(&rnp->lock, flags);
589
			break;
590
		}
591
		if (rnp->parent == NULL) {
592
			raw_spin_unlock_irqrestore(&rnp->lock, flags);
593 594
			if (wake) {
				smp_mb(); /* EGP done before wake_up(). */
595
				wake_up(&sync_rcu_preempt_exp_wq);
596
			}
597 598 599
			break;
		}
		mask = rnp->grpmask;
P
Paul E. McKenney 已提交
600
		raw_spin_unlock(&rnp->lock); /* irqs remain disabled */
601
		rnp = rnp->parent;
P
Paul E. McKenney 已提交
602
		raw_spin_lock(&rnp->lock); /* irqs already disabled */
603
		smp_mb__after_unlock_lock();
604 605 606 607 608 609
		rnp->expmask &= ~mask;
	}
}

/*
 * Snapshot the tasks blocking the newly started preemptible-RCU expedited
610 611 612 613
 * grace period for the specified rcu_node structure, phase 1.  If there
 * are such tasks, set the ->expmask bits up the rcu_node tree and also
 * set the ->expmask bits on the leaf rcu_node structures to tell phase 2
 * that work is needed here.
614
 *
615
 * Caller must hold sync_rcu_preempt_exp_mutex.
616 617
 */
static void
618
sync_rcu_preempt_exp_init1(struct rcu_state *rsp, struct rcu_node *rnp)
619
{
620
	unsigned long flags;
621 622
	unsigned long mask;
	struct rcu_node *rnp_up;
623

624
	raw_spin_lock_irqsave(&rnp->lock, flags);
625
	smp_mb__after_unlock_lock();
626 627
	WARN_ON_ONCE(rnp->expmask);
	WARN_ON_ONCE(rnp->exp_tasks);
628
	if (!rcu_preempt_has_tasks(rnp)) {
629
		/* No blocked tasks, nothing to do. */
630
		raw_spin_unlock_irqrestore(&rnp->lock, flags);
631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680
		return;
	}
	/* Call for Phase 2 and propagate ->expmask bits up the tree. */
	rnp->expmask = 1;
	rnp_up = rnp;
	while (rnp_up->parent) {
		mask = rnp_up->grpmask;
		rnp_up = rnp_up->parent;
		if (rnp_up->expmask & mask)
			break;
		raw_spin_lock(&rnp_up->lock); /* irqs already off */
		smp_mb__after_unlock_lock();
		rnp_up->expmask |= mask;
		raw_spin_unlock(&rnp_up->lock); /* irqs still off */
	}
	raw_spin_unlock_irqrestore(&rnp->lock, flags);
}

/*
 * Snapshot the tasks blocking the newly started preemptible-RCU expedited
 * grace period for the specified rcu_node structure, phase 2.  If the
 * leaf rcu_node structure has its ->expmask field set, check for tasks.
 * If there are some, clear ->expmask and set ->exp_tasks accordingly,
 * then initiate RCU priority boosting.  Otherwise, clear ->expmask and
 * invoke rcu_report_exp_rnp() to clear out the upper-level ->expmask bits,
 * enabling rcu_read_unlock_special() to do the bit-clearing.
 *
 * Caller must hold sync_rcu_preempt_exp_mutex.
 */
static void
sync_rcu_preempt_exp_init2(struct rcu_state *rsp, struct rcu_node *rnp)
{
	unsigned long flags;

	raw_spin_lock_irqsave(&rnp->lock, flags);
	smp_mb__after_unlock_lock();
	if (!rnp->expmask) {
		/* Phase 1 didn't do anything, so Phase 2 doesn't either. */
		raw_spin_unlock_irqrestore(&rnp->lock, flags);
		return;
	}

	/* Phase 1 is over. */
	rnp->expmask = 0;

	/*
	 * If there are still blocked tasks, set up ->exp_tasks so that
	 * rcu_read_unlock_special() will wake us and then boost them.
	 */
	if (rcu_preempt_has_tasks(rnp)) {
681
		rnp->exp_tasks = rnp->blkd_tasks.next;
682
		rcu_initiate_boost(rnp, flags);  /* releases rnp->lock */
683
		return;
684
	}
685 686 687 688

	/* No longer any blocked tasks, so undo bit setting. */
	raw_spin_unlock_irqrestore(&rnp->lock, flags);
	rcu_report_exp_rnp(rsp, rnp, false);
689 690
}

691 692 693 694 695 696 697 698 699 700 701
/**
 * synchronize_rcu_expedited - Brute-force RCU grace period
 *
 * Wait for an RCU-preempt grace period, but expedite it.  The basic
 * idea is to invoke synchronize_sched_expedited() to push all the tasks to
 * the ->blkd_tasks lists and wait for this list to drain.  This consumes
 * significant time on all CPUs and is unfriendly to real-time workloads,
 * so is thus not recommended for any sort of common-case code.
 * In fact, if you are using synchronize_rcu_expedited() in a loop,
 * please restructure your code to batch your updates, and then Use a
 * single synchronize_rcu() instead.
702 703 704
 */
void synchronize_rcu_expedited(void)
{
705
	struct rcu_node *rnp;
706
	struct rcu_state *rsp = rcu_state_p;
707
	unsigned long snap;
708 709 710
	int trycount = 0;

	smp_mb(); /* Caller's modifications seen first by other CPUs. */
711
	snap = READ_ONCE(sync_rcu_preempt_exp_count) + 1;
712 713 714 715 716 717 718 719
	smp_mb(); /* Above access cannot bleed into critical section. */

	/*
	 * Acquire lock, falling back to synchronize_rcu() if too many
	 * lock-acquisition failures.  Of course, if someone does the
	 * expedited grace period for us, just leave.
	 */
	while (!mutex_trylock(&sync_rcu_preempt_exp_mutex)) {
720
		if (ULONG_CMP_LT(snap,
721
		    READ_ONCE(sync_rcu_preempt_exp_count)))
722
			goto mb_ret; /* Others did our work for us. */
723
		if (trycount++ < 10) {
724
			udelay(trycount * num_online_cpus());
725
		} else {
726
			wait_rcu_gp(call_rcu);
727 728 729
			return;
		}
	}
730
	if (ULONG_CMP_LT(snap, READ_ONCE(sync_rcu_preempt_exp_count)))
731 732
		goto unlock_mb_ret; /* Others did our work for us. */

733
	/* force all RCU readers onto ->blkd_tasks lists. */
734 735
	synchronize_sched_expedited();

736 737 738 739 740 741
	/*
	 * Snapshot current state of ->blkd_tasks lists into ->expmask.
	 * Phase 1 sets bits and phase 2 permits rcu_read_unlock_special()
	 * to start clearing them.  Doing this in one phase leads to
	 * strange races between setting and clearing bits, so just say "no"!
	 */
742
	rcu_for_each_leaf_node(rsp, rnp)
743
		sync_rcu_preempt_exp_init1(rsp, rnp);
744
	rcu_for_each_leaf_node(rsp, rnp)
745
		sync_rcu_preempt_exp_init2(rsp, rnp);
746

747
	/* Wait for snapshotted ->blkd_tasks lists to drain. */
748 749 750 751 752 753
	rnp = rcu_get_root(rsp);
	wait_event(sync_rcu_preempt_exp_wq,
		   sync_rcu_preempt_exp_done(rnp));

	/* Clean up and exit. */
	smp_mb(); /* ensure expedited GP seen before counter increment. */
754
	WRITE_ONCE(sync_rcu_preempt_exp_count, sync_rcu_preempt_exp_count + 1);
755 756 757 758
unlock_mb_ret:
	mutex_unlock(&sync_rcu_preempt_exp_mutex);
mb_ret:
	smp_mb(); /* ensure subsequent action seen after grace period. */
759 760 761
}
EXPORT_SYMBOL_GPL(synchronize_rcu_expedited);

762 763
/**
 * rcu_barrier - Wait until all in-flight call_rcu() callbacks complete.
764 765 766 767 768
 *
 * Note that this primitive does not necessarily wait for an RCU grace period
 * to complete.  For example, if there are no RCU callbacks queued anywhere
 * in the system, then rcu_barrier() is within its rights to return
 * immediately, without waiting for anything, much less an RCU grace period.
769 770 771
 */
void rcu_barrier(void)
{
772
	_rcu_barrier(rcu_state_p);
773 774 775
}
EXPORT_SYMBOL_GPL(rcu_barrier);

776
/*
P
Paul E. McKenney 已提交
777
 * Initialize preemptible RCU's state structures.
778 779 780
 */
static void __init __rcu_init_preempt(void)
{
781
	rcu_init_one(rcu_state_p, rcu_data_p);
782 783
}

784 785 786 787 788 789 790 791 792 793 794 795 796 797
/*
 * Check for a task exiting while in a preemptible-RCU read-side
 * critical section, clean up if so.  No need to issue warnings,
 * as debug_check_no_locks_held() already does this if lockdep
 * is enabled.
 */
void exit_rcu(void)
{
	struct task_struct *t = current;

	if (likely(list_empty(&current->rcu_node_entry)))
		return;
	t->rcu_read_lock_nesting = 1;
	barrier();
798
	t->rcu_read_unlock_special.b.blocked = true;
799 800 801
	__rcu_read_unlock();
}

802
#else /* #ifdef CONFIG_PREEMPT_RCU */
803

804
static struct rcu_state *const rcu_state_p = &rcu_sched_state;
805
static struct rcu_data __percpu *const rcu_data_p = &rcu_sched_data;
806

807 808 809
/*
 * Tell them what RCU they are running.
 */
810
static void __init rcu_bootup_announce(void)
811
{
812
	pr_info("Hierarchical RCU implementation.\n");
813
	rcu_bootup_announce_oddness();
814 815
}

816 817 818 819
/*
 * Because preemptible RCU does not exist, we never have to check for
 * CPUs being in quiescent states.
 */
820
static void rcu_preempt_note_context_switch(void)
821 822 823
{
}

824
/*
P
Paul E. McKenney 已提交
825
 * Because preemptible RCU does not exist, there are never any preempted
826 827
 * RCU readers.
 */
828
static int rcu_preempt_blocked_readers_cgp(struct rcu_node *rnp)
829 830 831 832
{
	return 0;
}

833 834 835 836
/*
 * Because there is no preemptible RCU, there can be no readers blocked.
 */
static bool rcu_preempt_has_tasks(struct rcu_node *rnp)
837
{
838
	return false;
839 840
}

841
/*
P
Paul E. McKenney 已提交
842
 * Because preemptible RCU does not exist, we never have to check for
843 844 845 846 847 848
 * tasks blocked within RCU read-side critical sections.
 */
static void rcu_print_detail_task_stall(struct rcu_state *rsp)
{
}

849
/*
P
Paul E. McKenney 已提交
850
 * Because preemptible RCU does not exist, we never have to check for
851 852
 * tasks blocked within RCU read-side critical sections.
 */
853
static int rcu_print_task_stall(struct rcu_node *rnp)
854
{
855
	return 0;
856 857
}

858
/*
P
Paul E. McKenney 已提交
859
 * Because there is no preemptible RCU, there can be no readers blocked,
860 861
 * so there is no need to check for blocked tasks.  So check only for
 * bogus qsmask values.
862 863 864
 */
static void rcu_preempt_check_blocked_tasks(struct rcu_node *rnp)
{
865
	WARN_ON_ONCE(rnp->qsmask);
866 867
}

868
/*
P
Paul E. McKenney 已提交
869
 * Because preemptible RCU does not exist, it never has any callbacks
870 871
 * to check.
 */
872
static void rcu_preempt_check_callbacks(void)
873 874 875
{
}

876 877
/*
 * Wait for an rcu-preempt grace period, but make it happen quickly.
P
Paul E. McKenney 已提交
878
 * But because preemptible RCU does not exist, map to rcu-sched.
879 880 881 882 883 884 885
 */
void synchronize_rcu_expedited(void)
{
	synchronize_sched_expedited();
}
EXPORT_SYMBOL_GPL(synchronize_rcu_expedited);

886
/*
P
Paul E. McKenney 已提交
887
 * Because preemptible RCU does not exist, rcu_barrier() is just
888 889 890 891 892 893 894 895
 * another name for rcu_barrier_sched().
 */
void rcu_barrier(void)
{
	rcu_barrier_sched();
}
EXPORT_SYMBOL_GPL(rcu_barrier);

896
/*
P
Paul E. McKenney 已提交
897
 * Because preemptible RCU does not exist, it need not be initialized.
898 899 900 901 902
 */
static void __init __rcu_init_preempt(void)
{
}

903 904 905 906 907 908 909 910
/*
 * Because preemptible RCU does not exist, tasks cannot possibly exit
 * while in preemptible RCU read-side critical sections.
 */
void exit_rcu(void)
{
}

911
#endif /* #else #ifdef CONFIG_PREEMPT_RCU */
912

913 914
#ifdef CONFIG_RCU_BOOST

915
#include "../locking/rtmutex_common.h"
916

917 918 919 920
#ifdef CONFIG_RCU_TRACE

static void rcu_initiate_boost_trace(struct rcu_node *rnp)
{
921
	if (!rcu_preempt_has_tasks(rnp))
922 923 924 925 926 927 928 929
		rnp->n_balk_blkd_tasks++;
	else if (rnp->exp_tasks == NULL && rnp->gp_tasks == NULL)
		rnp->n_balk_exp_gp_tasks++;
	else if (rnp->gp_tasks != NULL && rnp->boost_tasks != NULL)
		rnp->n_balk_boost_tasks++;
	else if (rnp->gp_tasks != NULL && rnp->qsmask != 0)
		rnp->n_balk_notblocked++;
	else if (rnp->gp_tasks != NULL &&
930
		 ULONG_CMP_LT(jiffies, rnp->boost_time))
931 932 933 934 935 936 937 938 939 940 941 942 943
		rnp->n_balk_notyet++;
	else
		rnp->n_balk_nos++;
}

#else /* #ifdef CONFIG_RCU_TRACE */

static void rcu_initiate_boost_trace(struct rcu_node *rnp)
{
}

#endif /* #else #ifdef CONFIG_RCU_TRACE */

T
Thomas Gleixner 已提交
944 945 946 947 948 949 950 951 952 953
static void rcu_wake_cond(struct task_struct *t, int status)
{
	/*
	 * If the thread is yielding, only wake it when this
	 * is invoked from idle
	 */
	if (status != RCU_KTHREAD_YIELDING || is_idle_task(current))
		wake_up_process(t);
}

954 955 956 957 958 959 960 961 962 963 964 965 966 967
/*
 * Carry out RCU priority boosting on the task indicated by ->exp_tasks
 * or ->boost_tasks, advancing the pointer to the next task in the
 * ->blkd_tasks list.
 *
 * Note that irqs must be enabled: boosting the task can block.
 * Returns 1 if there are more tasks needing to be boosted.
 */
static int rcu_boost(struct rcu_node *rnp)
{
	unsigned long flags;
	struct task_struct *t;
	struct list_head *tb;

968 969
	if (READ_ONCE(rnp->exp_tasks) == NULL &&
	    READ_ONCE(rnp->boost_tasks) == NULL)
970 971 972
		return 0;  /* Nothing left to boost. */

	raw_spin_lock_irqsave(&rnp->lock, flags);
973
	smp_mb__after_unlock_lock();
974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989

	/*
	 * Recheck under the lock: all tasks in need of boosting
	 * might exit their RCU read-side critical sections on their own.
	 */
	if (rnp->exp_tasks == NULL && rnp->boost_tasks == NULL) {
		raw_spin_unlock_irqrestore(&rnp->lock, flags);
		return 0;
	}

	/*
	 * Preferentially boost tasks blocking expedited grace periods.
	 * This cannot starve the normal grace periods because a second
	 * expedited grace period must boost all blocked tasks, including
	 * those blocking the pre-existing normal grace period.
	 */
990
	if (rnp->exp_tasks != NULL) {
991
		tb = rnp->exp_tasks;
992 993
		rnp->n_exp_boosts++;
	} else {
994
		tb = rnp->boost_tasks;
995 996 997
		rnp->n_normal_boosts++;
	}
	rnp->n_tasks_boosted++;
998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015

	/*
	 * We boost task t by manufacturing an rt_mutex that appears to
	 * be held by task t.  We leave a pointer to that rt_mutex where
	 * task t can find it, and task t will release the mutex when it
	 * exits its outermost RCU read-side critical section.  Then
	 * simply acquiring this artificial rt_mutex will boost task
	 * t's priority.  (Thanks to tglx for suggesting this approach!)
	 *
	 * Note that task t must acquire rnp->lock to remove itself from
	 * the ->blkd_tasks list, which it will do from exit() if from
	 * nowhere else.  We therefore are guaranteed that task t will
	 * stay around at least until we drop rnp->lock.  Note that
	 * rnp->lock also resolves races between our priority boosting
	 * and task t's exiting its outermost RCU read-side critical
	 * section.
	 */
	t = container_of(tb, struct task_struct, rcu_node_entry);
1016
	rt_mutex_init_proxy_locked(&rnp->boost_mtx, t);
1017
	raw_spin_unlock_irqrestore(&rnp->lock, flags);
1018 1019 1020
	/* Lock only for side effect: boosts task t's priority. */
	rt_mutex_lock(&rnp->boost_mtx);
	rt_mutex_unlock(&rnp->boost_mtx);  /* Then keep lockdep happy. */
1021

1022 1023
	return READ_ONCE(rnp->exp_tasks) != NULL ||
	       READ_ONCE(rnp->boost_tasks) != NULL;
1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035
}

/*
 * Priority-boosting kthread.  One per leaf rcu_node and one for the
 * root rcu_node.
 */
static int rcu_boost_kthread(void *arg)
{
	struct rcu_node *rnp = (struct rcu_node *)arg;
	int spincnt = 0;
	int more2boost;

1036
	trace_rcu_utilization(TPS("Start boost kthread@init"));
1037
	for (;;) {
1038
		rnp->boost_kthread_status = RCU_KTHREAD_WAITING;
1039
		trace_rcu_utilization(TPS("End boost kthread@rcu_wait"));
1040
		rcu_wait(rnp->boost_tasks || rnp->exp_tasks);
1041
		trace_rcu_utilization(TPS("Start boost kthread@rcu_wait"));
1042
		rnp->boost_kthread_status = RCU_KTHREAD_RUNNING;
1043 1044 1045 1046 1047 1048
		more2boost = rcu_boost(rnp);
		if (more2boost)
			spincnt++;
		else
			spincnt = 0;
		if (spincnt > 10) {
T
Thomas Gleixner 已提交
1049
			rnp->boost_kthread_status = RCU_KTHREAD_YIELDING;
1050
			trace_rcu_utilization(TPS("End boost kthread@rcu_yield"));
T
Thomas Gleixner 已提交
1051
			schedule_timeout_interruptible(2);
1052
			trace_rcu_utilization(TPS("Start boost kthread@rcu_yield"));
1053 1054 1055
			spincnt = 0;
		}
	}
1056
	/* NOTREACHED */
1057
	trace_rcu_utilization(TPS("End boost kthread@notreached"));
1058 1059 1060 1061 1062 1063 1064 1065 1066
	return 0;
}

/*
 * Check to see if it is time to start boosting RCU readers that are
 * blocking the current grace period, and, if so, tell the per-rcu_node
 * kthread to start boosting them.  If there is an expedited grace
 * period in progress, it is always time to boost.
 *
1067 1068 1069
 * The caller must hold rnp->lock, which this function releases.
 * The ->boost_kthread_task is immortal, so we don't need to worry
 * about it going away.
1070
 */
1071
static void rcu_initiate_boost(struct rcu_node *rnp, unsigned long flags)
1072
	__releases(rnp->lock)
1073 1074 1075
{
	struct task_struct *t;

1076 1077
	if (!rcu_preempt_blocked_readers_cgp(rnp) && rnp->exp_tasks == NULL) {
		rnp->n_balk_exp_gp_tasks++;
1078
		raw_spin_unlock_irqrestore(&rnp->lock, flags);
1079
		return;
1080
	}
1081 1082 1083 1084 1085 1086 1087
	if (rnp->exp_tasks != NULL ||
	    (rnp->gp_tasks != NULL &&
	     rnp->boost_tasks == NULL &&
	     rnp->qsmask == 0 &&
	     ULONG_CMP_GE(jiffies, rnp->boost_time))) {
		if (rnp->exp_tasks == NULL)
			rnp->boost_tasks = rnp->gp_tasks;
1088
		raw_spin_unlock_irqrestore(&rnp->lock, flags);
1089
		t = rnp->boost_kthread_task;
T
Thomas Gleixner 已提交
1090 1091
		if (t)
			rcu_wake_cond(t, rnp->boost_kthread_status);
1092
	} else {
1093
		rcu_initiate_boost_trace(rnp);
1094 1095
		raw_spin_unlock_irqrestore(&rnp->lock, flags);
	}
1096 1097
}

1098 1099 1100 1101 1102 1103 1104 1105 1106
/*
 * Wake up the per-CPU kthread to invoke RCU callbacks.
 */
static void invoke_rcu_callbacks_kthread(void)
{
	unsigned long flags;

	local_irq_save(flags);
	__this_cpu_write(rcu_cpu_has_work, 1);
1107
	if (__this_cpu_read(rcu_cpu_kthread_task) != NULL &&
T
Thomas Gleixner 已提交
1108 1109 1110 1111
	    current != __this_cpu_read(rcu_cpu_kthread_task)) {
		rcu_wake_cond(__this_cpu_read(rcu_cpu_kthread_task),
			      __this_cpu_read(rcu_cpu_kthread_status));
	}
1112 1113 1114
	local_irq_restore(flags);
}

1115 1116 1117 1118 1119 1120
/*
 * Is the current CPU running the RCU-callbacks kthread?
 * Caller must have preemption disabled.
 */
static bool rcu_is_callbacks_kthread(void)
{
1121
	return __this_cpu_read(rcu_cpu_kthread_task) == current;
1122 1123
}

1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138
#define RCU_BOOST_DELAY_JIFFIES DIV_ROUND_UP(CONFIG_RCU_BOOST_DELAY * HZ, 1000)

/*
 * Do priority-boost accounting for the start of a new grace period.
 */
static void rcu_preempt_boost_start_gp(struct rcu_node *rnp)
{
	rnp->boost_time = jiffies + RCU_BOOST_DELAY_JIFFIES;
}

/*
 * Create an RCU-boost kthread for the specified node if one does not
 * already exist.  We only create this kthread for preemptible RCU.
 * Returns zero if all is well, a negated errno otherwise.
 */
1139
static int rcu_spawn_one_boost_kthread(struct rcu_state *rsp,
1140
				       struct rcu_node *rnp)
1141
{
T
Thomas Gleixner 已提交
1142
	int rnp_index = rnp - &rsp->node[0];
1143 1144 1145 1146
	unsigned long flags;
	struct sched_param sp;
	struct task_struct *t;

1147
	if (rcu_state_p != rsp)
1148
		return 0;
T
Thomas Gleixner 已提交
1149

1150
	if (!rcu_scheduler_fully_active || rcu_rnp_online_cpus(rnp) == 0)
T
Thomas Gleixner 已提交
1151 1152
		return 0;

1153
	rsp->boost = 1;
1154 1155 1156
	if (rnp->boost_kthread_task != NULL)
		return 0;
	t = kthread_create(rcu_boost_kthread, (void *)rnp,
1157
			   "rcub/%d", rnp_index);
1158 1159 1160
	if (IS_ERR(t))
		return PTR_ERR(t);
	raw_spin_lock_irqsave(&rnp->lock, flags);
1161
	smp_mb__after_unlock_lock();
1162 1163
	rnp->boost_kthread_task = t;
	raw_spin_unlock_irqrestore(&rnp->lock, flags);
1164
	sp.sched_priority = kthread_prio;
1165
	sched_setscheduler_nocheck(t, SCHED_FIFO, &sp);
1166
	wake_up_process(t); /* get to TASK_INTERRUPTIBLE quickly. */
1167 1168 1169
	return 0;
}

1170 1171
static void rcu_kthread_do_work(void)
{
1172 1173
	rcu_do_batch(&rcu_sched_state, this_cpu_ptr(&rcu_sched_data));
	rcu_do_batch(&rcu_bh_state, this_cpu_ptr(&rcu_bh_data));
1174 1175 1176
	rcu_preempt_do_callbacks();
}

1177
static void rcu_cpu_kthread_setup(unsigned int cpu)
1178 1179 1180
{
	struct sched_param sp;

1181
	sp.sched_priority = kthread_prio;
1182
	sched_setscheduler_nocheck(current, SCHED_FIFO, &sp);
1183 1184
}

1185
static void rcu_cpu_kthread_park(unsigned int cpu)
1186
{
1187
	per_cpu(rcu_cpu_kthread_status, cpu) = RCU_KTHREAD_OFFCPU;
1188 1189
}

1190
static int rcu_cpu_kthread_should_run(unsigned int cpu)
1191
{
1192
	return __this_cpu_read(rcu_cpu_has_work);
1193 1194 1195 1196
}

/*
 * Per-CPU kernel thread that invokes RCU callbacks.  This replaces the
1197 1198
 * RCU softirq used in flavors and configurations of RCU that do not
 * support RCU priority boosting.
1199
 */
1200
static void rcu_cpu_kthread(unsigned int cpu)
1201
{
1202 1203
	unsigned int *statusp = this_cpu_ptr(&rcu_cpu_kthread_status);
	char work, *workp = this_cpu_ptr(&rcu_cpu_has_work);
1204
	int spincnt;
1205

1206
	for (spincnt = 0; spincnt < 10; spincnt++) {
1207
		trace_rcu_utilization(TPS("Start CPU kthread@rcu_wait"));
1208 1209
		local_bh_disable();
		*statusp = RCU_KTHREAD_RUNNING;
1210 1211
		this_cpu_inc(rcu_cpu_kthread_loops);
		local_irq_disable();
1212 1213
		work = *workp;
		*workp = 0;
1214
		local_irq_enable();
1215 1216 1217
		if (work)
			rcu_kthread_do_work();
		local_bh_enable();
1218
		if (*workp == 0) {
1219
			trace_rcu_utilization(TPS("End CPU kthread@rcu_wait"));
1220 1221
			*statusp = RCU_KTHREAD_WAITING;
			return;
1222 1223
		}
	}
1224
	*statusp = RCU_KTHREAD_YIELDING;
1225
	trace_rcu_utilization(TPS("Start CPU kthread@rcu_yield"));
1226
	schedule_timeout_interruptible(2);
1227
	trace_rcu_utilization(TPS("End CPU kthread@rcu_yield"));
1228
	*statusp = RCU_KTHREAD_WAITING;
1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239
}

/*
 * Set the per-rcu_node kthread's affinity to cover all CPUs that are
 * served by the rcu_node in question.  The CPU hotplug lock is still
 * held, so the value of rnp->qsmaskinit will be stable.
 *
 * We don't include outgoingcpu in the affinity set, use -1 if there is
 * no outgoing CPU.  If there are no CPUs left in the affinity set,
 * this function allows the kthread to execute on any CPU.
 */
T
Thomas Gleixner 已提交
1240
static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu)
1241
{
T
Thomas Gleixner 已提交
1242
	struct task_struct *t = rnp->boost_kthread_task;
1243
	unsigned long mask = rcu_rnp_online_cpus(rnp);
1244 1245 1246
	cpumask_var_t cm;
	int cpu;

T
Thomas Gleixner 已提交
1247
	if (!t)
1248
		return;
T
Thomas Gleixner 已提交
1249
	if (!zalloc_cpumask_var(&cm, GFP_KERNEL))
1250 1251 1252 1253
		return;
	for (cpu = rnp->grplo; cpu <= rnp->grphi; cpu++, mask >>= 1)
		if ((mask & 0x1) && cpu != outgoingcpu)
			cpumask_set_cpu(cpu, cm);
1254
	if (cpumask_weight(cm) == 0)
1255
		cpumask_setall(cm);
T
Thomas Gleixner 已提交
1256
	set_cpus_allowed_ptr(t, cm);
1257 1258 1259
	free_cpumask_var(cm);
}

1260 1261 1262 1263 1264 1265 1266 1267
static struct smp_hotplug_thread rcu_cpu_thread_spec = {
	.store			= &rcu_cpu_kthread_task,
	.thread_should_run	= rcu_cpu_kthread_should_run,
	.thread_fn		= rcu_cpu_kthread,
	.thread_comm		= "rcuc/%u",
	.setup			= rcu_cpu_kthread_setup,
	.park			= rcu_cpu_kthread_park,
};
1268 1269

/*
1270
 * Spawn boost kthreads -- called as soon as the scheduler is running.
1271
 */
1272
static void __init rcu_spawn_boost_kthreads(void)
1273 1274
{
	struct rcu_node *rnp;
T
Thomas Gleixner 已提交
1275
	int cpu;
1276

1277
	for_each_possible_cpu(cpu)
1278
		per_cpu(rcu_cpu_has_work, cpu) = 0;
1279
	BUG_ON(smpboot_register_percpu_thread(&rcu_cpu_thread_spec));
1280 1281
	rcu_for_each_leaf_node(rcu_state_p, rnp)
		(void)rcu_spawn_one_boost_kthread(rcu_state_p, rnp);
1282 1283
}

1284
static void rcu_prepare_kthreads(int cpu)
1285
{
1286
	struct rcu_data *rdp = per_cpu_ptr(rcu_state_p->rda, cpu);
1287 1288 1289
	struct rcu_node *rnp = rdp->mynode;

	/* Fire up the incoming CPU's kthread and leaf rcu_node kthread. */
1290
	if (rcu_scheduler_fully_active)
1291
		(void)rcu_spawn_one_boost_kthread(rcu_state_p, rnp);
1292 1293
}

1294 1295
#else /* #ifdef CONFIG_RCU_BOOST */

1296
static void rcu_initiate_boost(struct rcu_node *rnp, unsigned long flags)
1297
	__releases(rnp->lock)
1298
{
1299
	raw_spin_unlock_irqrestore(&rnp->lock, flags);
1300 1301
}

1302
static void invoke_rcu_callbacks_kthread(void)
1303
{
1304
	WARN_ON_ONCE(1);
1305 1306
}

1307 1308 1309 1310 1311
static bool rcu_is_callbacks_kthread(void)
{
	return false;
}

1312 1313 1314 1315
static void rcu_preempt_boost_start_gp(struct rcu_node *rnp)
{
}

T
Thomas Gleixner 已提交
1316
static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu)
1317 1318 1319
{
}

1320
static void __init rcu_spawn_boost_kthreads(void)
1321 1322 1323
{
}

1324
static void rcu_prepare_kthreads(int cpu)
1325 1326 1327
{
}

1328 1329
#endif /* #else #ifdef CONFIG_RCU_BOOST */

1330 1331 1332 1333 1334 1335 1336 1337
#if !defined(CONFIG_RCU_FAST_NO_HZ)

/*
 * Check to see if any future RCU-related work will need to be done
 * by the current CPU, even if none need be done immediately, returning
 * 1 if so.  This function is part of the RCU implementation; it is -not-
 * an exported member of the RCU API.
 *
1338 1339
 * Because we not have RCU_FAST_NO_HZ, just check whether this CPU needs
 * any flavor of RCU.
1340
 */
1341
int rcu_needs_cpu(u64 basemono, u64 *nextevt)
1342
{
1343
	*nextevt = KTIME_MAX;
1344 1345
	return IS_ENABLED(CONFIG_RCU_NOCB_CPU_ALL)
	       ? 0 : rcu_cpu_has_callbacks(NULL);
1346 1347 1348 1349 1350 1351
}

/*
 * Because we do not have RCU_FAST_NO_HZ, don't bother cleaning up
 * after it.
 */
1352
static void rcu_cleanup_after_idle(void)
1353 1354 1355
{
}

1356
/*
1357
 * Do the idle-entry grace-period work, which, because CONFIG_RCU_FAST_NO_HZ=n,
1358 1359
 * is nothing.
 */
1360
static void rcu_prepare_for_idle(void)
1361 1362 1363
{
}

1364 1365 1366 1367 1368 1369 1370 1371
/*
 * Don't bother keeping a running count of the number of RCU callbacks
 * posted because CONFIG_RCU_FAST_NO_HZ=n.
 */
static void rcu_idle_count_callbacks_posted(void)
{
}

1372 1373
#else /* #if !defined(CONFIG_RCU_FAST_NO_HZ) */

1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388
/*
 * This code is invoked when a CPU goes idle, at which point we want
 * to have the CPU do everything required for RCU so that it can enter
 * the energy-efficient dyntick-idle mode.  This is handled by a
 * state machine implemented by rcu_prepare_for_idle() below.
 *
 * The following three proprocessor symbols control this state machine:
 *
 * RCU_IDLE_GP_DELAY gives the number of jiffies that a CPU is permitted
 *	to sleep in dyntick-idle mode with RCU callbacks pending.  This
 *	is sized to be roughly one RCU grace period.  Those energy-efficiency
 *	benchmarkers who might otherwise be tempted to set this to a large
 *	number, be warned: Setting RCU_IDLE_GP_DELAY too high can hang your
 *	system.  And if you are -that- concerned about energy efficiency,
 *	just power the system down and be done with it!
1389 1390 1391
 * RCU_IDLE_LAZY_GP_DELAY gives the number of jiffies that a CPU is
 *	permitted to sleep in dyntick-idle mode with only lazy RCU
 *	callbacks pending.  Setting this too high can OOM your system.
1392 1393 1394 1395 1396
 *
 * The values below work well in practice.  If future workloads require
 * adjustment, they can be converted into kernel config parameters, though
 * making the state machine smarter might be a better option.
 */
1397
#define RCU_IDLE_GP_DELAY 4		/* Roughly one grace period. */
1398
#define RCU_IDLE_LAZY_GP_DELAY (6 * HZ)	/* Roughly six seconds. */
1399

1400 1401 1402 1403
static int rcu_idle_gp_delay = RCU_IDLE_GP_DELAY;
module_param(rcu_idle_gp_delay, int, 0644);
static int rcu_idle_lazy_gp_delay = RCU_IDLE_LAZY_GP_DELAY;
module_param(rcu_idle_lazy_gp_delay, int, 0644);
1404 1405

/*
1406 1407 1408
 * Try to advance callbacks for all flavors of RCU on the current CPU, but
 * only if it has been awhile since the last time we did so.  Afterwards,
 * if there are any callbacks ready for immediate invocation, return true.
1409
 */
1410
static bool __maybe_unused rcu_try_advance_all_cbs(void)
1411
{
1412 1413
	bool cbs_ready = false;
	struct rcu_data *rdp;
1414
	struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
1415 1416
	struct rcu_node *rnp;
	struct rcu_state *rsp;
1417

1418 1419
	/* Exit early if we advanced recently. */
	if (jiffies == rdtp->last_advance_all)
1420
		return false;
1421 1422
	rdtp->last_advance_all = jiffies;

1423 1424 1425
	for_each_rcu_flavor(rsp) {
		rdp = this_cpu_ptr(rsp->rda);
		rnp = rdp->mynode;
1426

1427 1428 1429 1430 1431
		/*
		 * Don't bother checking unless a grace period has
		 * completed since we last checked and there are
		 * callbacks not yet ready to invoke.
		 */
1432
		if ((rdp->completed != rnp->completed ||
1433
		     unlikely(READ_ONCE(rdp->gpwrap))) &&
1434
		    rdp->nxttail[RCU_DONE_TAIL] != rdp->nxttail[RCU_NEXT_TAIL])
1435
			note_gp_changes(rsp, rdp);
1436

1437 1438 1439 1440
		if (cpu_has_callbacks_ready_to_invoke(rdp))
			cbs_ready = true;
	}
	return cbs_ready;
1441 1442
}

1443
/*
1444 1445 1446 1447
 * Allow the CPU to enter dyntick-idle mode unless it has callbacks ready
 * to invoke.  If the CPU has callbacks, try to advance them.  Tell the
 * caller to set the timeout based on whether or not there are non-lazy
 * callbacks.
1448
 *
1449
 * The caller must have disabled interrupts.
1450
 */
1451
int rcu_needs_cpu(u64 basemono, u64 *nextevt)
1452
{
1453
	struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
1454
	unsigned long dj;
1455

1456
	if (IS_ENABLED(CONFIG_RCU_NOCB_CPU_ALL)) {
1457
		*nextevt = KTIME_MAX;
1458 1459 1460
		return 0;
	}

1461 1462 1463
	/* Snapshot to detect later posting of non-lazy callback. */
	rdtp->nonlazy_posted_snap = rdtp->nonlazy_posted;

1464
	/* If no callbacks, RCU doesn't need the CPU. */
1465
	if (!rcu_cpu_has_callbacks(&rdtp->all_lazy)) {
1466
		*nextevt = KTIME_MAX;
1467 1468
		return 0;
	}
1469 1470 1471 1472 1473

	/* Attempt to advance callbacks. */
	if (rcu_try_advance_all_cbs()) {
		/* Some ready to invoke, so initiate later invocation. */
		invoke_rcu_core();
1474 1475
		return 1;
	}
1476 1477 1478
	rdtp->last_accelerate = jiffies;

	/* Request timer delay depending on laziness, and round. */
1479
	if (!rdtp->all_lazy) {
1480
		dj = round_up(rcu_idle_gp_delay + jiffies,
1481
			       rcu_idle_gp_delay) - jiffies;
1482
	} else {
1483
		dj = round_jiffies(rcu_idle_lazy_gp_delay + jiffies) - jiffies;
1484
	}
1485
	*nextevt = basemono + dj * TICK_NSEC;
1486 1487 1488
	return 0;
}

1489
/*
1490 1491 1492 1493 1494 1495
 * Prepare a CPU for idle from an RCU perspective.  The first major task
 * is to sense whether nohz mode has been enabled or disabled via sysfs.
 * The second major task is to check to see if a non-lazy callback has
 * arrived at a CPU that previously had only lazy callbacks.  The third
 * major task is to accelerate (that is, assign grace-period numbers to)
 * any recently arrived callbacks.
1496 1497
 *
 * The caller must have disabled interrupts.
1498
 */
1499
static void rcu_prepare_for_idle(void)
1500
{
1501
	bool needwake;
1502
	struct rcu_data *rdp;
1503
	struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
1504 1505
	struct rcu_node *rnp;
	struct rcu_state *rsp;
1506 1507
	int tne;

1508 1509 1510
	if (IS_ENABLED(CONFIG_RCU_NOCB_CPU_ALL))
		return;

1511
	/* Handle nohz enablement switches conservatively. */
1512
	tne = READ_ONCE(tick_nohz_active);
1513
	if (tne != rdtp->tick_nohz_enabled_snap) {
1514
		if (rcu_cpu_has_callbacks(NULL))
1515 1516 1517 1518 1519 1520
			invoke_rcu_core(); /* force nohz to see update. */
		rdtp->tick_nohz_enabled_snap = tne;
		return;
	}
	if (!tne)
		return;
1521

1522
	/* If this is a no-CBs CPU, no callbacks, just return. */
1523
	if (rcu_is_nocb_cpu(smp_processor_id()))
1524 1525
		return;

1526
	/*
1527 1528 1529
	 * If a non-lazy callback arrived at a CPU having only lazy
	 * callbacks, invoke RCU core for the side-effect of recalculating
	 * idle duration on re-entry to idle.
1530
	 */
1531 1532
	if (rdtp->all_lazy &&
	    rdtp->nonlazy_posted != rdtp->nonlazy_posted_snap) {
1533 1534
		rdtp->all_lazy = false;
		rdtp->nonlazy_posted_snap = rdtp->nonlazy_posted;
1535
		invoke_rcu_core();
1536 1537 1538
		return;
	}

1539
	/*
1540 1541
	 * If we have not yet accelerated this jiffy, accelerate all
	 * callbacks on this CPU.
1542
	 */
1543
	if (rdtp->last_accelerate == jiffies)
1544
		return;
1545 1546
	rdtp->last_accelerate = jiffies;
	for_each_rcu_flavor(rsp) {
1547
		rdp = this_cpu_ptr(rsp->rda);
1548 1549 1550 1551
		if (!*rdp->nxttail[RCU_DONE_TAIL])
			continue;
		rnp = rdp->mynode;
		raw_spin_lock(&rnp->lock); /* irqs already disabled. */
1552
		smp_mb__after_unlock_lock();
1553
		needwake = rcu_accelerate_cbs(rsp, rnp, rdp);
1554
		raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
1555 1556
		if (needwake)
			rcu_gp_kthread_wake(rsp);
1557
	}
1558
}
1559

1560 1561 1562 1563 1564
/*
 * Clean up for exit from idle.  Attempt to advance callbacks based on
 * any grace periods that elapsed while the CPU was idle, and if any
 * callbacks are now ready to invoke, initiate invocation.
 */
1565
static void rcu_cleanup_after_idle(void)
1566
{
1567 1568
	if (IS_ENABLED(CONFIG_RCU_NOCB_CPU_ALL) ||
	    rcu_is_nocb_cpu(smp_processor_id()))
1569
		return;
1570 1571
	if (rcu_try_advance_all_cbs())
		invoke_rcu_core();
1572 1573
}

1574
/*
1575 1576 1577 1578 1579 1580
 * Keep a running count of the number of non-lazy callbacks posted
 * on this CPU.  This running counter (which is never decremented) allows
 * rcu_prepare_for_idle() to detect when something out of the idle loop
 * posts a callback, even if an equal number of callbacks are invoked.
 * Of course, callbacks should only be posted from within a trace event
 * designed to be called from idle or from within RCU_NONIDLE().
1581 1582 1583
 */
static void rcu_idle_count_callbacks_posted(void)
{
1584
	__this_cpu_add(rcu_dynticks.nonlazy_posted, 1);
1585 1586
}

1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615
/*
 * Data for flushing lazy RCU callbacks at OOM time.
 */
static atomic_t oom_callback_count;
static DECLARE_WAIT_QUEUE_HEAD(oom_callback_wq);

/*
 * RCU OOM callback -- decrement the outstanding count and deliver the
 * wake-up if we are the last one.
 */
static void rcu_oom_callback(struct rcu_head *rhp)
{
	if (atomic_dec_and_test(&oom_callback_count))
		wake_up(&oom_callback_wq);
}

/*
 * Post an rcu_oom_notify callback on the current CPU if it has at
 * least one lazy callback.  This will unnecessarily post callbacks
 * to CPUs that already have a non-lazy callback at the end of their
 * callback list, but this is an infrequent operation, so accept some
 * extra overhead to keep things simple.
 */
static void rcu_oom_notify_cpu(void *unused)
{
	struct rcu_state *rsp;
	struct rcu_data *rdp;

	for_each_rcu_flavor(rsp) {
1616
		rdp = raw_cpu_ptr(rsp->rda);
1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637
		if (rdp->qlen_lazy != 0) {
			atomic_inc(&oom_callback_count);
			rsp->call(&rdp->oom_head, rcu_oom_callback);
		}
	}
}

/*
 * If low on memory, ensure that each CPU has a non-lazy callback.
 * This will wake up CPUs that have only lazy callbacks, in turn
 * ensuring that they free up the corresponding memory in a timely manner.
 * Because an uncertain amount of memory will be freed in some uncertain
 * timeframe, we do not claim to have freed anything.
 */
static int rcu_oom_notify(struct notifier_block *self,
			  unsigned long notused, void *nfreed)
{
	int cpu;

	/* Wait for callbacks from earlier instance to complete. */
	wait_event(oom_callback_wq, atomic_read(&oom_callback_count) == 0);
1638
	smp_mb(); /* Ensure callback reuse happens after callback invocation. */
1639 1640 1641 1642 1643 1644 1645 1646 1647 1648

	/*
	 * Prevent premature wakeup: ensure that all increments happen
	 * before there is a chance of the counter reaching zero.
	 */
	atomic_set(&oom_callback_count, 1);

	get_online_cpus();
	for_each_online_cpu(cpu) {
		smp_call_function_single(cpu, rcu_oom_notify_cpu, NULL, 1);
1649
		cond_resched_rcu_qs();
1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669
	}
	put_online_cpus();

	/* Unconditionally decrement: no need to wake ourselves up. */
	atomic_dec(&oom_callback_count);

	return NOTIFY_OK;
}

static struct notifier_block rcu_oom_nb = {
	.notifier_call = rcu_oom_notify
};

static int __init rcu_register_oom_notifier(void)
{
	register_oom_notifier(&rcu_oom_nb);
	return 0;
}
early_initcall(rcu_register_oom_notifier);

1670
#endif /* #else #if !defined(CONFIG_RCU_FAST_NO_HZ) */
1671 1672 1673 1674 1675

#ifdef CONFIG_RCU_FAST_NO_HZ

static void print_cpu_stall_fast_no_hz(char *cp, int cpu)
{
1676
	struct rcu_dynticks *rdtp = &per_cpu(rcu_dynticks, cpu);
1677
	unsigned long nlpd = rdtp->nonlazy_posted - rdtp->nonlazy_posted_snap;
1678

1679 1680 1681 1682 1683
	sprintf(cp, "last_accelerate: %04lx/%04lx, nonlazy_posted: %ld, %c%c",
		rdtp->last_accelerate & 0xffff, jiffies & 0xffff,
		ulong2long(nlpd),
		rdtp->all_lazy ? 'L' : '.',
		rdtp->tick_nohz_enabled_snap ? '.' : 'D');
1684 1685 1686 1687 1688 1689
}

#else /* #ifdef CONFIG_RCU_FAST_NO_HZ */

static void print_cpu_stall_fast_no_hz(char *cp, int cpu)
{
1690
	*cp = '\0';
1691 1692 1693 1694 1695 1696 1697
}

#endif /* #else #ifdef CONFIG_RCU_FAST_NO_HZ */

/* Initiate the stall-info list. */
static void print_cpu_stall_info_begin(void)
{
1698
	pr_cont("\n");
1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728
}

/*
 * Print out diagnostic information for the specified stalled CPU.
 *
 * If the specified CPU is aware of the current RCU grace period
 * (flavor specified by rsp), then print the number of scheduling
 * clock interrupts the CPU has taken during the time that it has
 * been aware.  Otherwise, print the number of RCU grace periods
 * that this CPU is ignorant of, for example, "1" if the CPU was
 * aware of the previous grace period.
 *
 * Also print out idle and (if CONFIG_RCU_FAST_NO_HZ) idle-entry info.
 */
static void print_cpu_stall_info(struct rcu_state *rsp, int cpu)
{
	char fast_no_hz[72];
	struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
	struct rcu_dynticks *rdtp = rdp->dynticks;
	char *ticks_title;
	unsigned long ticks_value;

	if (rsp->gpnum == rdp->gpnum) {
		ticks_title = "ticks this GP";
		ticks_value = rdp->ticks_this_gp;
	} else {
		ticks_title = "GPs behind";
		ticks_value = rsp->gpnum - rdp->gpnum;
	}
	print_cpu_stall_fast_no_hz(fast_no_hz, cpu);
1729
	pr_err("\t%d: (%lu %s) idle=%03x/%llx/%d softirq=%u/%u fqs=%ld %s\n",
1730 1731 1732
	       cpu, ticks_value, ticks_title,
	       atomic_read(&rdtp->dynticks) & 0xfff,
	       rdtp->dynticks_nesting, rdtp->dynticks_nmi_nesting,
1733
	       rdp->softirq_snap, kstat_softirqs_cpu(RCU_SOFTIRQ, cpu),
1734
	       READ_ONCE(rsp->n_force_qs) - rsp->n_force_qs_gpstart,
1735 1736 1737 1738 1739 1740
	       fast_no_hz);
}

/* Terminate the stall-info list. */
static void print_cpu_stall_info_end(void)
{
1741
	pr_err("\t");
1742 1743 1744 1745 1746 1747
}

/* Zero ->ticks_this_gp for all flavors of RCU. */
static void zero_cpu_stall_ticks(struct rcu_data *rdp)
{
	rdp->ticks_this_gp = 0;
1748
	rdp->softirq_snap = kstat_softirqs_cpu(RCU_SOFTIRQ, smp_processor_id());
1749 1750 1751 1752 1753
}

/* Increment ->ticks_this_gp for all flavors of RCU. */
static void increment_cpu_stall_ticks(void)
{
1754 1755 1756
	struct rcu_state *rsp;

	for_each_rcu_flavor(rsp)
1757
		raw_cpu_inc(rsp->rda->ticks_this_gp);
1758 1759
}

P
Paul E. McKenney 已提交
1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792
#ifdef CONFIG_RCU_NOCB_CPU

/*
 * Offload callback processing from the boot-time-specified set of CPUs
 * specified by rcu_nocb_mask.  For each CPU in the set, there is a
 * kthread created that pulls the callbacks from the corresponding CPU,
 * waits for a grace period to elapse, and invokes the callbacks.
 * The no-CBs CPUs do a wake_up() on their kthread when they insert
 * a callback into any empty list, unless the rcu_nocb_poll boot parameter
 * has been specified, in which case each kthread actively polls its
 * CPU.  (Which isn't so great for energy efficiency, but which does
 * reduce RCU's overhead on that CPU.)
 *
 * This is intended to be used in conjunction with Frederic Weisbecker's
 * adaptive-idle work, which would seriously reduce OS jitter on CPUs
 * running CPU-bound user-mode computations.
 *
 * Offloading of callback processing could also in theory be used as
 * an energy-efficiency measure because CPUs with no RCU callbacks
 * queued are more aggressive about entering dyntick-idle mode.
 */


/* Parse the boot-time rcu_nocb_mask CPU list from the kernel parameters. */
static int __init rcu_nocb_setup(char *str)
{
	alloc_bootmem_cpumask_var(&rcu_nocb_mask);
	have_rcu_nocb_mask = true;
	cpulist_parse(str, rcu_nocb_mask);
	return 1;
}
__setup("rcu_nocbs=", rcu_nocb_setup);

1793 1794 1795 1796 1797 1798 1799
static int __init parse_rcu_nocb_poll(char *arg)
{
	rcu_nocb_poll = 1;
	return 0;
}
early_param("rcu_nocb_poll", parse_rcu_nocb_poll);

1800
/*
1801 1802
 * Wake up any no-CBs CPUs' kthreads that were waiting on the just-ended
 * grace period.
1803
 */
1804
static void rcu_nocb_gp_cleanup(struct rcu_state *rsp, struct rcu_node *rnp)
1805
{
1806
	wake_up_all(&rnp->nocb_gp_wq[rnp->completed & 0x1]);
1807 1808 1809
}

/*
1810
 * Set the root rcu_node structure's ->need_future_gp field
1811 1812 1813 1814 1815
 * based on the sum of those of all rcu_node structures.  This does
 * double-count the root rcu_node structure's requests, but this
 * is necessary to handle the possibility of a rcu_nocb_kthread()
 * having awakened during the time that the rcu_node structures
 * were being updated for the end of the previous grace period.
1816
 */
1817 1818
static void rcu_nocb_gp_set(struct rcu_node *rnp, int nrq)
{
1819
	rnp->need_future_gp[(rnp->completed + 1) & 0x1] += nrq;
1820 1821 1822
}

static void rcu_init_one_nocb(struct rcu_node *rnp)
1823
{
1824 1825
	init_waitqueue_head(&rnp->nocb_gp_wq[0]);
	init_waitqueue_head(&rnp->nocb_gp_wq[1]);
1826 1827
}

1828
#ifndef CONFIG_RCU_NOCB_CPU_ALL
L
Liu Ping Fan 已提交
1829
/* Is the specified CPU a no-CBs CPU? */
1830
bool rcu_is_nocb_cpu(int cpu)
P
Paul E. McKenney 已提交
1831 1832 1833 1834 1835
{
	if (have_rcu_nocb_mask)
		return cpumask_test_cpu(cpu, rcu_nocb_mask);
	return false;
}
1836
#endif /* #ifndef CONFIG_RCU_NOCB_CPU_ALL */
P
Paul E. McKenney 已提交
1837

1838 1839 1840 1841 1842 1843 1844
/*
 * Kick the leader kthread for this NOCB group.
 */
static void wake_nocb_leader(struct rcu_data *rdp, bool force)
{
	struct rcu_data *rdp_leader = rdp->nocb_leader;

1845
	if (!READ_ONCE(rdp_leader->nocb_kthread))
1846
		return;
1847
	if (READ_ONCE(rdp_leader->nocb_leader_sleep) || force) {
1848
		/* Prior smp_mb__after_atomic() orders against prior enqueue. */
1849
		WRITE_ONCE(rdp_leader->nocb_leader_sleep, false);
1850 1851 1852 1853
		wake_up(&rdp_leader->nocb_wq);
	}
}

1854 1855 1856 1857 1858 1859 1860
/*
 * Does the specified CPU need an RCU callback for the specified flavor
 * of rcu_barrier()?
 */
static bool rcu_nocb_cpu_needs_barrier(struct rcu_state *rsp, int cpu)
{
	struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
1861 1862
	unsigned long ret;
#ifdef CONFIG_PROVE_RCU
1863
	struct rcu_head *rhp;
1864
#endif /* #ifdef CONFIG_PROVE_RCU */
1865

1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878
	/*
	 * Check count of all no-CBs callbacks awaiting invocation.
	 * There needs to be a barrier before this function is called,
	 * but associated with a prior determination that no more
	 * callbacks would be posted.  In the worst case, the first
	 * barrier in _rcu_barrier() suffices (but the caller cannot
	 * necessarily rely on this, not a substitute for the caller
	 * getting the concurrency design right!).  There must also be
	 * a barrier between the following load an posting of a callback
	 * (if a callback is in fact needed).  This is associated with an
	 * atomic_inc() in the caller.
	 */
	ret = atomic_long_read(&rdp->nocb_q_count);
1879

1880
#ifdef CONFIG_PROVE_RCU
1881
	rhp = READ_ONCE(rdp->nocb_head);
1882
	if (!rhp)
1883
		rhp = READ_ONCE(rdp->nocb_gp_head);
1884
	if (!rhp)
1885
		rhp = READ_ONCE(rdp->nocb_follower_head);
1886 1887

	/* Having no rcuo kthread but CBs after scheduler starts is bad! */
1888
	if (!READ_ONCE(rdp->nocb_kthread) && rhp &&
1889
	    rcu_scheduler_fully_active) {
1890 1891 1892 1893 1894
		/* RCU callback enqueued before CPU first came online??? */
		pr_err("RCU: Never-onlined no-CBs CPU %d has CB %p\n",
		       cpu, rhp->func);
		WARN_ON_ONCE(1);
	}
1895
#endif /* #ifdef CONFIG_PROVE_RCU */
1896

1897
	return !!ret;
1898 1899
}

P
Paul E. McKenney 已提交
1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910
/*
 * Enqueue the specified string of rcu_head structures onto the specified
 * CPU's no-CBs lists.  The CPU is specified by rdp, the head of the
 * string by rhp, and the tail of the string by rhtp.  The non-lazy/lazy
 * counts are supplied by rhcount and rhcount_lazy.
 *
 * If warranted, also wake up the kthread servicing this CPUs queues.
 */
static void __call_rcu_nocb_enqueue(struct rcu_data *rdp,
				    struct rcu_head *rhp,
				    struct rcu_head **rhtp,
1911 1912
				    int rhcount, int rhcount_lazy,
				    unsigned long flags)
P
Paul E. McKenney 已提交
1913 1914 1915 1916 1917 1918
{
	int len;
	struct rcu_head **old_rhpp;
	struct task_struct *t;

	/* Enqueue the callback on the nocb list and update counts. */
1919 1920
	atomic_long_add(rhcount, &rdp->nocb_q_count);
	/* rcu_barrier() relies on ->nocb_q_count add before xchg. */
P
Paul E. McKenney 已提交
1921
	old_rhpp = xchg(&rdp->nocb_tail, rhtp);
1922
	WRITE_ONCE(*old_rhpp, rhp);
P
Paul E. McKenney 已提交
1923
	atomic_long_add(rhcount_lazy, &rdp->nocb_q_count_lazy);
1924
	smp_mb__after_atomic(); /* Store *old_rhpp before _wake test. */
P
Paul E. McKenney 已提交
1925 1926

	/* If we are not being polled and there is a kthread, awaken it ... */
1927
	t = READ_ONCE(rdp->nocb_kthread);
1928
	if (rcu_nocb_poll || !t) {
1929 1930
		trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
				    TPS("WakeNotPoll"));
P
Paul E. McKenney 已提交
1931
		return;
1932
	}
P
Paul E. McKenney 已提交
1933 1934
	len = atomic_long_read(&rdp->nocb_q_count);
	if (old_rhpp == &rdp->nocb_head) {
1935
		if (!irqs_disabled_flags(flags)) {
1936 1937
			/* ... if queue was empty ... */
			wake_nocb_leader(rdp, false);
1938 1939 1940
			trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
					    TPS("WakeEmpty"));
		} else {
1941
			rdp->nocb_defer_wakeup = RCU_NOGP_WAKE;
1942 1943 1944
			trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
					    TPS("WakeEmptyIsDeferred"));
		}
P
Paul E. McKenney 已提交
1945 1946
		rdp->qlen_last_fqs_check = 0;
	} else if (len > rdp->qlen_last_fqs_check + qhimark) {
1947
		/* ... or if many callbacks queued. */
1948 1949 1950 1951 1952 1953 1954 1955 1956
		if (!irqs_disabled_flags(flags)) {
			wake_nocb_leader(rdp, true);
			trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
					    TPS("WakeOvf"));
		} else {
			rdp->nocb_defer_wakeup = RCU_NOGP_WAKE_FORCE;
			trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
					    TPS("WakeOvfIsDeferred"));
		}
P
Paul E. McKenney 已提交
1957
		rdp->qlen_last_fqs_check = LONG_MAX / 2;
1958 1959
	} else {
		trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, TPS("WakeNot"));
P
Paul E. McKenney 已提交
1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973
	}
	return;
}

/*
 * This is a helper for __call_rcu(), which invokes this when the normal
 * callback queue is inoperable.  If this is not a no-CBs CPU, this
 * function returns failure back to __call_rcu(), which can complain
 * appropriately.
 *
 * Otherwise, this function queues the callback where the corresponding
 * "rcuo" kthread can find it.
 */
static bool __call_rcu_nocb(struct rcu_data *rdp, struct rcu_head *rhp,
1974
			    bool lazy, unsigned long flags)
P
Paul E. McKenney 已提交
1975 1976
{

1977
	if (!rcu_is_nocb_cpu(rdp->cpu))
1978
		return false;
1979
	__call_rcu_nocb_enqueue(rdp, rhp, &rhp->next, 1, lazy, flags);
1980 1981 1982
	if (__is_kfree_rcu_offset((unsigned long)rhp->func))
		trace_rcu_kfree_callback(rdp->rsp->name, rhp,
					 (unsigned long)rhp->func,
1983 1984
					 -atomic_long_read(&rdp->nocb_q_count_lazy),
					 -atomic_long_read(&rdp->nocb_q_count));
1985 1986
	else
		trace_rcu_callback(rdp->rsp->name, rhp,
1987 1988
				   -atomic_long_read(&rdp->nocb_q_count_lazy),
				   -atomic_long_read(&rdp->nocb_q_count));
1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999

	/*
	 * If called from an extended quiescent state with interrupts
	 * disabled, invoke the RCU core in order to allow the idle-entry
	 * deferred-wakeup check to function.
	 */
	if (irqs_disabled_flags(flags) &&
	    !rcu_is_watching() &&
	    cpu_online(smp_processor_id()))
		invoke_rcu_core();

2000
	return true;
P
Paul E. McKenney 已提交
2001 2002 2003 2004 2005 2006 2007
}

/*
 * Adopt orphaned callbacks on a no-CBs CPU, or return 0 if this is
 * not a no-CBs CPU.
 */
static bool __maybe_unused rcu_nocb_adopt_orphan_cbs(struct rcu_state *rsp,
2008 2009
						     struct rcu_data *rdp,
						     unsigned long flags)
P
Paul E. McKenney 已提交
2010 2011 2012 2013 2014
{
	long ql = rsp->qlen;
	long qll = rsp->qlen_lazy;

	/* If this is not a no-CBs CPU, tell the caller to do it the old way. */
2015
	if (!rcu_is_nocb_cpu(smp_processor_id()))
2016
		return false;
P
Paul E. McKenney 已提交
2017 2018 2019 2020 2021 2022
	rsp->qlen = 0;
	rsp->qlen_lazy = 0;

	/* First, enqueue the donelist, if any.  This preserves CB ordering. */
	if (rsp->orphan_donelist != NULL) {
		__call_rcu_nocb_enqueue(rdp, rsp->orphan_donelist,
2023
					rsp->orphan_donetail, ql, qll, flags);
P
Paul E. McKenney 已提交
2024 2025 2026 2027 2028 2029
		ql = qll = 0;
		rsp->orphan_donelist = NULL;
		rsp->orphan_donetail = &rsp->orphan_donelist;
	}
	if (rsp->orphan_nxtlist != NULL) {
		__call_rcu_nocb_enqueue(rdp, rsp->orphan_nxtlist,
2030
					rsp->orphan_nxttail, ql, qll, flags);
P
Paul E. McKenney 已提交
2031 2032 2033 2034
		ql = qll = 0;
		rsp->orphan_nxtlist = NULL;
		rsp->orphan_nxttail = &rsp->orphan_nxtlist;
	}
2035
	return true;
P
Paul E. McKenney 已提交
2036 2037 2038
}

/*
2039 2040
 * If necessary, kick off a new grace period, and either way wait
 * for a subsequent grace period to complete.
P
Paul E. McKenney 已提交
2041
 */
2042
static void rcu_nocb_wait_gp(struct rcu_data *rdp)
P
Paul E. McKenney 已提交
2043
{
2044
	unsigned long c;
2045
	bool d;
2046
	unsigned long flags;
2047
	bool needwake;
2048 2049 2050
	struct rcu_node *rnp = rdp->mynode;

	raw_spin_lock_irqsave(&rnp->lock, flags);
2051
	smp_mb__after_unlock_lock();
2052
	needwake = rcu_start_future_gp(rnp, rdp, &c);
2053
	raw_spin_unlock_irqrestore(&rnp->lock, flags);
2054 2055
	if (needwake)
		rcu_gp_kthread_wake(rdp->rsp);
P
Paul E. McKenney 已提交
2056 2057

	/*
2058 2059
	 * Wait for the grace period.  Do so interruptibly to avoid messing
	 * up the load average.
P
Paul E. McKenney 已提交
2060
	 */
2061
	trace_rcu_future_gp(rnp, rdp, c, TPS("StartWait"));
2062
	for (;;) {
2063 2064
		wait_event_interruptible(
			rnp->nocb_gp_wq[c & 0x1],
2065
			(d = ULONG_CMP_GE(READ_ONCE(rnp->completed), c)));
2066
		if (likely(d))
2067
			break;
2068
		WARN_ON(signal_pending(current));
2069
		trace_rcu_future_gp(rnp, rdp, c, TPS("ResumeWait"));
2070
	}
2071
	trace_rcu_future_gp(rnp, rdp, c, TPS("EndWait"));
2072
	smp_mb(); /* Ensure that CB invocation happens after GP end. */
P
Paul E. McKenney 已提交
2073 2074
}

2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091
/*
 * Leaders come here to wait for additional callbacks to show up.
 * This function does not return until callbacks appear.
 */
static void nocb_leader_wait(struct rcu_data *my_rdp)
{
	bool firsttime = true;
	bool gotcbs;
	struct rcu_data *rdp;
	struct rcu_head **tail;

wait_again:

	/* Wait for callbacks to appear. */
	if (!rcu_nocb_poll) {
		trace_rcu_nocb_wake(my_rdp->rsp->name, my_rdp->cpu, "Sleep");
		wait_event_interruptible(my_rdp->nocb_wq,
2092
				!READ_ONCE(my_rdp->nocb_leader_sleep));
2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105
		/* Memory barrier handled by smp_mb() calls below and repoll. */
	} else if (firsttime) {
		firsttime = false; /* Don't drown trace log with "Poll"! */
		trace_rcu_nocb_wake(my_rdp->rsp->name, my_rdp->cpu, "Poll");
	}

	/*
	 * Each pass through the following loop checks a follower for CBs.
	 * We are our own first follower.  Any CBs found are moved to
	 * nocb_gp_head, where they await a grace period.
	 */
	gotcbs = false;
	for (rdp = my_rdp; rdp; rdp = rdp->nocb_next_follower) {
2106
		rdp->nocb_gp_head = READ_ONCE(rdp->nocb_head);
2107 2108 2109 2110
		if (!rdp->nocb_gp_head)
			continue;  /* No CBs here, try next follower. */

		/* Move callbacks to wait-for-GP list, which is empty. */
2111
		WRITE_ONCE(rdp->nocb_head, NULL);
2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123
		rdp->nocb_gp_tail = xchg(&rdp->nocb_tail, &rdp->nocb_head);
		gotcbs = true;
	}

	/*
	 * If there were no callbacks, sleep a bit, rescan after a
	 * memory barrier, and go retry.
	 */
	if (unlikely(!gotcbs)) {
		if (!rcu_nocb_poll)
			trace_rcu_nocb_wake(my_rdp->rsp->name, my_rdp->cpu,
					    "WokeEmpty");
2124
		WARN_ON(signal_pending(current));
2125 2126 2127
		schedule_timeout_interruptible(1);

		/* Rescan in case we were a victim of memory ordering. */
2128 2129
		my_rdp->nocb_leader_sleep = true;
		smp_mb();  /* Ensure _sleep true before scan. */
2130
		for (rdp = my_rdp; rdp; rdp = rdp->nocb_next_follower)
2131
			if (READ_ONCE(rdp->nocb_head)) {
2132
				/* Found CB, so short-circuit next wait. */
2133
				my_rdp->nocb_leader_sleep = false;
2134 2135 2136 2137 2138 2139 2140 2141 2142
				break;
			}
		goto wait_again;
	}

	/* Wait for one grace period. */
	rcu_nocb_wait_gp(my_rdp);

	/*
2143 2144
	 * We left ->nocb_leader_sleep unset to reduce cache thrashing.
	 * We set it now, but recheck for new callbacks while
2145 2146
	 * traversing our follower list.
	 */
2147 2148
	my_rdp->nocb_leader_sleep = true;
	smp_mb(); /* Ensure _sleep true before scan of ->nocb_head. */
2149 2150 2151

	/* Each pass through the following loop wakes a follower, if needed. */
	for (rdp = my_rdp; rdp; rdp = rdp->nocb_next_follower) {
2152
		if (READ_ONCE(rdp->nocb_head))
2153
			my_rdp->nocb_leader_sleep = false;/* No need to sleep.*/
2154 2155 2156 2157 2158 2159
		if (!rdp->nocb_gp_head)
			continue; /* No CBs, so no need to wake follower. */

		/* Append callbacks to follower's "done" list. */
		tail = xchg(&rdp->nocb_follower_tail, rdp->nocb_gp_tail);
		*tail = rdp->nocb_gp_head;
2160
		smp_mb__after_atomic(); /* Store *tail before wakeup. */
2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187
		if (rdp != my_rdp && tail == &rdp->nocb_follower_head) {
			/*
			 * List was empty, wake up the follower.
			 * Memory barriers supplied by atomic_long_add().
			 */
			wake_up(&rdp->nocb_wq);
		}
	}

	/* If we (the leader) don't have CBs, go wait some more. */
	if (!my_rdp->nocb_follower_head)
		goto wait_again;
}

/*
 * Followers come here to wait for additional callbacks to show up.
 * This function does not return until callbacks appear.
 */
static void nocb_follower_wait(struct rcu_data *rdp)
{
	bool firsttime = true;

	for (;;) {
		if (!rcu_nocb_poll) {
			trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
					    "FollowerSleep");
			wait_event_interruptible(rdp->nocb_wq,
2188
						 READ_ONCE(rdp->nocb_follower_head));
2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200
		} else if (firsttime) {
			/* Don't drown trace log with "Poll"! */
			firsttime = false;
			trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, "Poll");
		}
		if (smp_load_acquire(&rdp->nocb_follower_head)) {
			/* ^^^ Ensure CB invocation follows _head test. */
			return;
		}
		if (!rcu_nocb_poll)
			trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
					    "WokeEmpty");
2201
		WARN_ON(signal_pending(current));
2202 2203 2204 2205
		schedule_timeout_interruptible(1);
	}
}

P
Paul E. McKenney 已提交
2206 2207
/*
 * Per-rcu_data kthread, but only for no-CBs CPUs.  Each kthread invokes
2208 2209 2210
 * callbacks queued by the corresponding no-CBs CPU, however, there is
 * an optional leader-follower relationship so that the grace-period
 * kthreads don't have to do quite so many wakeups.
P
Paul E. McKenney 已提交
2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221
 */
static int rcu_nocb_kthread(void *arg)
{
	int c, cl;
	struct rcu_head *list;
	struct rcu_head *next;
	struct rcu_head **tail;
	struct rcu_data *rdp = arg;

	/* Each pass through this loop invokes one batch of callbacks */
	for (;;) {
2222 2223 2224 2225 2226 2227 2228
		/* Wait for callbacks. */
		if (rdp->nocb_leader == rdp)
			nocb_leader_wait(rdp);
		else
			nocb_follower_wait(rdp);

		/* Pull the ready-to-invoke callbacks onto local list. */
2229
		list = READ_ONCE(rdp->nocb_follower_head);
2230 2231
		BUG_ON(!list);
		trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, "WokeNonEmpty");
2232
		WRITE_ONCE(rdp->nocb_follower_head, NULL);
2233
		tail = xchg(&rdp->nocb_follower_tail, &rdp->nocb_follower_head);
P
Paul E. McKenney 已提交
2234 2235

		/* Each pass through the following loop invokes a callback. */
2236 2237 2238
		trace_rcu_batch_start(rdp->rsp->name,
				      atomic_long_read(&rdp->nocb_q_count_lazy),
				      atomic_long_read(&rdp->nocb_q_count), -1);
P
Paul E. McKenney 已提交
2239 2240 2241 2242 2243
		c = cl = 0;
		while (list) {
			next = list->next;
			/* Wait for enqueuing to complete, if needed. */
			while (next == NULL && &list->next != tail) {
2244 2245
				trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
						    TPS("WaitQueue"));
P
Paul E. McKenney 已提交
2246
				schedule_timeout_interruptible(1);
2247 2248
				trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
						    TPS("WokeQueue"));
P
Paul E. McKenney 已提交
2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259
				next = list->next;
			}
			debug_rcu_head_unqueue(list);
			local_bh_disable();
			if (__rcu_reclaim(rdp->rsp->name, list))
				cl++;
			c++;
			local_bh_enable();
			list = next;
		}
		trace_rcu_batch_end(rdp->rsp->name, c, !!list, 0, 0, 1);
2260 2261 2262
		smp_mb__before_atomic();  /* _add after CB invocation. */
		atomic_long_add(-c, &rdp->nocb_q_count);
		atomic_long_add(-cl, &rdp->nocb_q_count_lazy);
2263
		rdp->n_nocbs_invoked += c;
P
Paul E. McKenney 已提交
2264 2265 2266 2267
	}
	return 0;
}

2268
/* Is a deferred wakeup of rcu_nocb_kthread() required? */
2269
static int rcu_nocb_need_deferred_wakeup(struct rcu_data *rdp)
2270
{
2271
	return READ_ONCE(rdp->nocb_defer_wakeup);
2272 2273 2274 2275 2276
}

/* Do a deferred wakeup of rcu_nocb_kthread(). */
static void do_nocb_deferred_wakeup(struct rcu_data *rdp)
{
2277 2278
	int ndw;

2279 2280
	if (!rcu_nocb_need_deferred_wakeup(rdp))
		return;
2281 2282
	ndw = READ_ONCE(rdp->nocb_defer_wakeup);
	WRITE_ONCE(rdp->nocb_defer_wakeup, RCU_NOGP_WAKE_NOT);
2283 2284
	wake_nocb_leader(rdp, ndw == RCU_NOGP_WAKE_FORCE);
	trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, TPS("DeferredWake"));
2285 2286
}

2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302
void __init rcu_init_nohz(void)
{
	int cpu;
	bool need_rcu_nocb_mask = true;
	struct rcu_state *rsp;

#ifdef CONFIG_RCU_NOCB_CPU_NONE
	need_rcu_nocb_mask = false;
#endif /* #ifndef CONFIG_RCU_NOCB_CPU_NONE */

#if defined(CONFIG_NO_HZ_FULL)
	if (tick_nohz_full_running && cpumask_weight(tick_nohz_full_mask))
		need_rcu_nocb_mask = true;
#endif /* #if defined(CONFIG_NO_HZ_FULL) */

	if (!have_rcu_nocb_mask && need_rcu_nocb_mask) {
2303 2304 2305 2306
		if (!zalloc_cpumask_var(&rcu_nocb_mask, GFP_KERNEL)) {
			pr_info("rcu_nocb_mask allocation failed, callback offloading disabled.\n");
			return;
		}
2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329
		have_rcu_nocb_mask = true;
	}
	if (!have_rcu_nocb_mask)
		return;

#ifdef CONFIG_RCU_NOCB_CPU_ZERO
	pr_info("\tOffload RCU callbacks from CPU 0\n");
	cpumask_set_cpu(0, rcu_nocb_mask);
#endif /* #ifdef CONFIG_RCU_NOCB_CPU_ZERO */
#ifdef CONFIG_RCU_NOCB_CPU_ALL
	pr_info("\tOffload RCU callbacks from all CPUs\n");
	cpumask_copy(rcu_nocb_mask, cpu_possible_mask);
#endif /* #ifdef CONFIG_RCU_NOCB_CPU_ALL */
#if defined(CONFIG_NO_HZ_FULL)
	if (tick_nohz_full_running)
		cpumask_or(rcu_nocb_mask, rcu_nocb_mask, tick_nohz_full_mask);
#endif /* #if defined(CONFIG_NO_HZ_FULL) */

	if (!cpumask_subset(rcu_nocb_mask, cpu_possible_mask)) {
		pr_info("\tNote: kernel parameter 'rcu_nocbs=' contains nonexistent CPUs.\n");
		cpumask_and(rcu_nocb_mask, cpu_possible_mask,
			    rcu_nocb_mask);
	}
2330 2331
	pr_info("\tOffload RCU callbacks from CPUs: %*pbl.\n",
		cpumask_pr_args(rcu_nocb_mask));
2332 2333 2334 2335
	if (rcu_nocb_poll)
		pr_info("\tPoll for callbacks from no-CBs CPUs.\n");

	for_each_rcu_flavor(rsp) {
2336 2337
		for_each_cpu(cpu, rcu_nocb_mask)
			init_nocb_callback_list(per_cpu_ptr(rsp->rda, cpu));
2338
		rcu_organize_nocb_kthreads(rsp);
2339
	}
2340 2341
}

P
Paul E. McKenney 已提交
2342 2343 2344 2345 2346
/* Initialize per-rcu_data variables for no-CBs CPUs. */
static void __init rcu_boot_init_nocb_percpu_data(struct rcu_data *rdp)
{
	rdp->nocb_tail = &rdp->nocb_head;
	init_waitqueue_head(&rdp->nocb_wq);
2347
	rdp->nocb_follower_tail = &rdp->nocb_follower_head;
P
Paul E. McKenney 已提交
2348 2349
}

2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379
/*
 * If the specified CPU is a no-CBs CPU that does not already have its
 * rcuo kthread for the specified RCU flavor, spawn it.  If the CPUs are
 * brought online out of order, this can require re-organizing the
 * leader-follower relationships.
 */
static void rcu_spawn_one_nocb_kthread(struct rcu_state *rsp, int cpu)
{
	struct rcu_data *rdp;
	struct rcu_data *rdp_last;
	struct rcu_data *rdp_old_leader;
	struct rcu_data *rdp_spawn = per_cpu_ptr(rsp->rda, cpu);
	struct task_struct *t;

	/*
	 * If this isn't a no-CBs CPU or if it already has an rcuo kthread,
	 * then nothing to do.
	 */
	if (!rcu_is_nocb_cpu(cpu) || rdp_spawn->nocb_kthread)
		return;

	/* If we didn't spawn the leader first, reorganize! */
	rdp_old_leader = rdp_spawn->nocb_leader;
	if (rdp_old_leader != rdp_spawn && !rdp_old_leader->nocb_kthread) {
		rdp_last = NULL;
		rdp = rdp_old_leader;
		do {
			rdp->nocb_leader = rdp_spawn;
			if (rdp_last && rdp != rdp_spawn)
				rdp_last->nocb_next_follower = rdp;
2380 2381 2382 2383 2384 2385 2386
			if (rdp == rdp_spawn) {
				rdp = rdp->nocb_next_follower;
			} else {
				rdp_last = rdp;
				rdp = rdp->nocb_next_follower;
				rdp_last->nocb_next_follower = NULL;
			}
2387 2388 2389 2390 2391 2392 2393 2394
		} while (rdp);
		rdp_spawn->nocb_next_follower = rdp_old_leader;
	}

	/* Spawn the kthread for this CPU and RCU flavor. */
	t = kthread_run(rcu_nocb_kthread, rdp_spawn,
			"rcuo%c/%d", rsp->abbr, cpu);
	BUG_ON(IS_ERR(t));
2395
	WRITE_ONCE(rdp_spawn->nocb_kthread, t);
2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424
}

/*
 * If the specified CPU is a no-CBs CPU that does not already have its
 * rcuo kthreads, spawn them.
 */
static void rcu_spawn_all_nocb_kthreads(int cpu)
{
	struct rcu_state *rsp;

	if (rcu_scheduler_fully_active)
		for_each_rcu_flavor(rsp)
			rcu_spawn_one_nocb_kthread(rsp, cpu);
}

/*
 * Once the scheduler is running, spawn rcuo kthreads for all online
 * no-CBs CPUs.  This assumes that the early_initcall()s happen before
 * non-boot CPUs come online -- if this changes, we will need to add
 * some mutual exclusion.
 */
static void __init rcu_spawn_nocb_kthreads(void)
{
	int cpu;

	for_each_online_cpu(cpu)
		rcu_spawn_all_nocb_kthreads(cpu);
}

2425 2426 2427 2428 2429
/* How many follower CPU IDs per leader?  Default of -1 for sqrt(nr_cpu_ids). */
static int rcu_nocb_leader_stride = -1;
module_param(rcu_nocb_leader_stride, int, 0444);

/*
2430
 * Initialize leader-follower relationships for all no-CBs CPU.
2431
 */
2432
static void __init rcu_organize_nocb_kthreads(struct rcu_state *rsp)
P
Paul E. McKenney 已提交
2433 2434
{
	int cpu;
2435 2436
	int ls = rcu_nocb_leader_stride;
	int nl = 0;  /* Next leader. */
P
Paul E. McKenney 已提交
2437
	struct rcu_data *rdp;
2438 2439
	struct rcu_data *rdp_leader = NULL;  /* Suppress misguided gcc warn. */
	struct rcu_data *rdp_prev = NULL;
P
Paul E. McKenney 已提交
2440

2441
	if (!have_rcu_nocb_mask)
P
Paul E. McKenney 已提交
2442
		return;
2443 2444 2445 2446 2447 2448 2449 2450 2451
	if (ls == -1) {
		ls = int_sqrt(nr_cpu_ids);
		rcu_nocb_leader_stride = ls;
	}

	/*
	 * Each pass through this loop sets up one rcu_data structure and
	 * spawns one rcu_nocb_kthread().
	 */
P
Paul E. McKenney 已提交
2452 2453
	for_each_cpu(cpu, rcu_nocb_mask) {
		rdp = per_cpu_ptr(rsp->rda, cpu);
2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464
		if (rdp->cpu >= nl) {
			/* New leader, set up for followers & next leader. */
			nl = DIV_ROUND_UP(rdp->cpu + 1, ls) * ls;
			rdp->nocb_leader = rdp;
			rdp_leader = rdp;
		} else {
			/* Another follower, link to previous leader. */
			rdp->nocb_leader = rdp_leader;
			rdp_prev->nocb_next_follower = rdp;
		}
		rdp_prev = rdp;
P
Paul E. McKenney 已提交
2465 2466 2467 2468
	}
}

/* Prevent __call_rcu() from enqueuing callbacks on no-CBs CPUs */
2469
static bool init_nocb_callback_list(struct rcu_data *rdp)
P
Paul E. McKenney 已提交
2470
{
2471
	if (!rcu_is_nocb_cpu(rdp->cpu))
2472
		return false;
2473

2474 2475 2476 2477 2478 2479 2480 2481 2482 2483
	/* If there are early-boot callbacks, move them to nocb lists. */
	if (rdp->nxtlist) {
		rdp->nocb_head = rdp->nxtlist;
		rdp->nocb_tail = rdp->nxttail[RCU_NEXT_TAIL];
		atomic_long_set(&rdp->nocb_q_count, rdp->qlen);
		atomic_long_set(&rdp->nocb_q_count_lazy, rdp->qlen_lazy);
		rdp->nxtlist = NULL;
		rdp->qlen = 0;
		rdp->qlen_lazy = 0;
	}
P
Paul E. McKenney 已提交
2484
	rdp->nxttail[RCU_NEXT_TAIL] = NULL;
2485
	return true;
P
Paul E. McKenney 已提交
2486 2487
}

2488 2489
#else /* #ifdef CONFIG_RCU_NOCB_CPU */

2490 2491 2492 2493 2494 2495
static bool rcu_nocb_cpu_needs_barrier(struct rcu_state *rsp, int cpu)
{
	WARN_ON_ONCE(1); /* Should be dead code. */
	return false;
}

2496
static void rcu_nocb_gp_cleanup(struct rcu_state *rsp, struct rcu_node *rnp)
P
Paul E. McKenney 已提交
2497 2498 2499
{
}

2500 2501 2502 2503 2504 2505 2506
static void rcu_nocb_gp_set(struct rcu_node *rnp, int nrq)
{
}

static void rcu_init_one_nocb(struct rcu_node *rnp)
{
}
P
Paul E. McKenney 已提交
2507 2508

static bool __call_rcu_nocb(struct rcu_data *rdp, struct rcu_head *rhp,
2509
			    bool lazy, unsigned long flags)
P
Paul E. McKenney 已提交
2510
{
2511
	return false;
P
Paul E. McKenney 已提交
2512 2513 2514
}

static bool __maybe_unused rcu_nocb_adopt_orphan_cbs(struct rcu_state *rsp,
2515 2516
						     struct rcu_data *rdp,
						     unsigned long flags)
P
Paul E. McKenney 已提交
2517
{
2518
	return false;
P
Paul E. McKenney 已提交
2519 2520 2521 2522 2523 2524
}

static void __init rcu_boot_init_nocb_percpu_data(struct rcu_data *rdp)
{
}

2525
static int rcu_nocb_need_deferred_wakeup(struct rcu_data *rdp)
2526 2527 2528 2529 2530 2531 2532 2533
{
	return false;
}

static void do_nocb_deferred_wakeup(struct rcu_data *rdp)
{
}

2534 2535 2536 2537 2538
static void rcu_spawn_all_nocb_kthreads(int cpu)
{
}

static void __init rcu_spawn_nocb_kthreads(void)
P
Paul E. McKenney 已提交
2539 2540 2541
{
}

2542
static bool init_nocb_callback_list(struct rcu_data *rdp)
P
Paul E. McKenney 已提交
2543
{
2544
	return false;
P
Paul E. McKenney 已提交
2545 2546 2547
}

#endif /* #else #ifdef CONFIG_RCU_NOCB_CPU */
2548 2549 2550 2551 2552 2553 2554 2555 2556 2557

/*
 * An adaptive-ticks CPU can potentially execute in kernel mode for an
 * arbitrarily long period of time with the scheduling-clock tick turned
 * off.  RCU will be paying attention to this CPU because it is in the
 * kernel, but the CPU cannot be guaranteed to be executing the RCU state
 * machine because the scheduling-clock tick has been disabled.  Therefore,
 * if an adaptive-ticks CPU is failing to respond to the current grace
 * period and has not be idle from an RCU perspective, kick it.
 */
2558
static void __maybe_unused rcu_kick_nohz_cpu(int cpu)
2559 2560 2561 2562 2563 2564
{
#ifdef CONFIG_NO_HZ_FULL
	if (tick_nohz_full_cpu(cpu))
		smp_send_reschedule(cpu);
#endif /* #ifdef CONFIG_NO_HZ_FULL */
}
2565 2566 2567 2568


#ifdef CONFIG_NO_HZ_FULL_SYSIDLE

2569
static int full_sysidle_state;		/* Current system-idle state. */
2570 2571 2572 2573 2574 2575
#define RCU_SYSIDLE_NOT		0	/* Some CPU is not idle. */
#define RCU_SYSIDLE_SHORT	1	/* All CPUs idle for brief period. */
#define RCU_SYSIDLE_LONG	2	/* All CPUs idle for long enough. */
#define RCU_SYSIDLE_FULL	3	/* All CPUs idle, ready for sysidle. */
#define RCU_SYSIDLE_FULL_NOTED	4	/* Actually entered sysidle state. */

2576 2577 2578 2579 2580 2581
/*
 * Invoked to note exit from irq or task transition to idle.  Note that
 * usermode execution does -not- count as idle here!  After all, we want
 * to detect full-system idle states, not RCU quiescent states and grace
 * periods.  The caller must have disabled interrupts.
 */
2582
static void rcu_sysidle_enter(int irq)
2583 2584
{
	unsigned long j;
2585
	struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
2586

2587 2588 2589 2590
	/* If there are no nohz_full= CPUs, no need to track this. */
	if (!tick_nohz_full_enabled())
		return;

2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609
	/* Adjust nesting, check for fully idle. */
	if (irq) {
		rdtp->dynticks_idle_nesting--;
		WARN_ON_ONCE(rdtp->dynticks_idle_nesting < 0);
		if (rdtp->dynticks_idle_nesting != 0)
			return;  /* Still not fully idle. */
	} else {
		if ((rdtp->dynticks_idle_nesting & DYNTICK_TASK_NEST_MASK) ==
		    DYNTICK_TASK_NEST_VALUE) {
			rdtp->dynticks_idle_nesting = 0;
		} else {
			rdtp->dynticks_idle_nesting -= DYNTICK_TASK_NEST_VALUE;
			WARN_ON_ONCE(rdtp->dynticks_idle_nesting < 0);
			return;  /* Still not fully idle. */
		}
	}

	/* Record start of fully idle period. */
	j = jiffies;
2610
	WRITE_ONCE(rdtp->dynticks_idle_jiffies, j);
2611
	smp_mb__before_atomic();
2612
	atomic_inc(&rdtp->dynticks_idle);
2613
	smp_mb__after_atomic();
2614 2615 2616
	WARN_ON_ONCE(atomic_read(&rdtp->dynticks_idle) & 0x1);
}

2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627
/*
 * Unconditionally force exit from full system-idle state.  This is
 * invoked when a normal CPU exits idle, but must be called separately
 * for the timekeeping CPU (tick_do_timer_cpu).  The reason for this
 * is that the timekeeping CPU is permitted to take scheduling-clock
 * interrupts while the system is in system-idle state, and of course
 * rcu_sysidle_exit() has no way of distinguishing a scheduling-clock
 * interrupt from any other type of interrupt.
 */
void rcu_sysidle_force_exit(void)
{
2628
	int oldstate = READ_ONCE(full_sysidle_state);
2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648
	int newoldstate;

	/*
	 * Each pass through the following loop attempts to exit full
	 * system-idle state.  If contention proves to be a problem,
	 * a trylock-based contention tree could be used here.
	 */
	while (oldstate > RCU_SYSIDLE_SHORT) {
		newoldstate = cmpxchg(&full_sysidle_state,
				      oldstate, RCU_SYSIDLE_NOT);
		if (oldstate == newoldstate &&
		    oldstate == RCU_SYSIDLE_FULL_NOTED) {
			rcu_kick_nohz_cpu(tick_do_timer_cpu);
			return; /* We cleared it, done! */
		}
		oldstate = newoldstate;
	}
	smp_mb(); /* Order initial oldstate fetch vs. later non-idle work. */
}

2649 2650 2651 2652 2653
/*
 * Invoked to note entry to irq or task transition from idle.  Note that
 * usermode execution does -not- count as idle here!  The caller must
 * have disabled interrupts.
 */
2654
static void rcu_sysidle_exit(int irq)
2655
{
2656 2657
	struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);

2658 2659 2660 2661
	/* If there are no nohz_full= CPUs, no need to track this. */
	if (!tick_nohz_full_enabled())
		return;

2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683
	/* Adjust nesting, check for already non-idle. */
	if (irq) {
		rdtp->dynticks_idle_nesting++;
		WARN_ON_ONCE(rdtp->dynticks_idle_nesting <= 0);
		if (rdtp->dynticks_idle_nesting != 1)
			return; /* Already non-idle. */
	} else {
		/*
		 * Allow for irq misnesting.  Yes, it really is possible
		 * to enter an irq handler then never leave it, and maybe
		 * also vice versa.  Handle both possibilities.
		 */
		if (rdtp->dynticks_idle_nesting & DYNTICK_TASK_NEST_MASK) {
			rdtp->dynticks_idle_nesting += DYNTICK_TASK_NEST_VALUE;
			WARN_ON_ONCE(rdtp->dynticks_idle_nesting <= 0);
			return; /* Already non-idle. */
		} else {
			rdtp->dynticks_idle_nesting = DYNTICK_TASK_EXIT_IDLE;
		}
	}

	/* Record end of idle period. */
2684
	smp_mb__before_atomic();
2685
	atomic_inc(&rdtp->dynticks_idle);
2686
	smp_mb__after_atomic();
2687
	WARN_ON_ONCE(!(atomic_read(&rdtp->dynticks_idle) & 0x1));
2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706

	/*
	 * If we are the timekeeping CPU, we are permitted to be non-idle
	 * during a system-idle state.  This must be the case, because
	 * the timekeeping CPU has to take scheduling-clock interrupts
	 * during the time that the system is transitioning to full
	 * system-idle state.  This means that the timekeeping CPU must
	 * invoke rcu_sysidle_force_exit() directly if it does anything
	 * more than take a scheduling-clock interrupt.
	 */
	if (smp_processor_id() == tick_do_timer_cpu)
		return;

	/* Update system-idle state: We are clearly no longer fully idle! */
	rcu_sysidle_force_exit();
}

/*
 * Check to see if the current CPU is idle.  Note that usermode execution
2707 2708
 * does not count as idle.  The caller must have disabled interrupts,
 * and must be running on tick_do_timer_cpu.
2709 2710 2711 2712 2713 2714 2715 2716
 */
static void rcu_sysidle_check_cpu(struct rcu_data *rdp, bool *isidle,
				  unsigned long *maxj)
{
	int cur;
	unsigned long j;
	struct rcu_dynticks *rdtp = rdp->dynticks;

2717 2718 2719 2720
	/* If there are no nohz_full= CPUs, don't check system-wide idleness. */
	if (!tick_nohz_full_enabled())
		return;

2721 2722 2723 2724 2725
	/*
	 * If some other CPU has already reported non-idle, if this is
	 * not the flavor of RCU that tracks sysidle state, or if this
	 * is an offline or the timekeeping CPU, nothing to do.
	 */
2726
	if (!*isidle || rdp->rsp != rcu_state_p ||
2727 2728
	    cpu_is_offline(rdp->cpu) || rdp->cpu == tick_do_timer_cpu)
		return;
2729 2730
	/* Verify affinity of current kthread. */
	WARN_ON_ONCE(smp_processor_id() != tick_do_timer_cpu);
2731 2732 2733 2734 2735 2736 2737 2738 2739 2740

	/* Pick up current idle and NMI-nesting counter and check. */
	cur = atomic_read(&rdtp->dynticks_idle);
	if (cur & 0x1) {
		*isidle = false; /* We are not idle! */
		return;
	}
	smp_mb(); /* Read counters before timestamps. */

	/* Pick up timestamps. */
2741
	j = READ_ONCE(rdtp->dynticks_idle_jiffies);
2742 2743 2744 2745 2746 2747 2748 2749 2750 2751
	/* If this CPU entered idle more recently, update maxj timestamp. */
	if (ULONG_CMP_LT(*maxj, j))
		*maxj = j;
}

/*
 * Is this the flavor of RCU that is handling full-system idle?
 */
static bool is_sysidle_rcu_state(struct rcu_state *rsp)
{
2752
	return rsp == rcu_state_p;
2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777
}

/*
 * Return a delay in jiffies based on the number of CPUs, rcu_node
 * leaf fanout, and jiffies tick rate.  The idea is to allow larger
 * systems more time to transition to full-idle state in order to
 * avoid the cache thrashing that otherwise occur on the state variable.
 * Really small systems (less than a couple of tens of CPUs) should
 * instead use a single global atomically incremented counter, and later
 * versions of this will automatically reconfigure themselves accordingly.
 */
static unsigned long rcu_sysidle_delay(void)
{
	if (nr_cpu_ids <= CONFIG_NO_HZ_FULL_SYSIDLE_SMALL)
		return 0;
	return DIV_ROUND_UP(nr_cpu_ids * HZ, rcu_fanout_leaf * 1000);
}

/*
 * Advance the full-system-idle state.  This is invoked when all of
 * the non-timekeeping CPUs are idle.
 */
static void rcu_sysidle(unsigned long j)
{
	/* Check the current state. */
2778
	switch (READ_ONCE(full_sysidle_state)) {
2779 2780 2781
	case RCU_SYSIDLE_NOT:

		/* First time all are idle, so note a short idle period. */
2782
		WRITE_ONCE(full_sysidle_state, RCU_SYSIDLE_SHORT);
2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818
		break;

	case RCU_SYSIDLE_SHORT:

		/*
		 * Idle for a bit, time to advance to next state?
		 * cmpxchg failure means race with non-idle, let them win.
		 */
		if (ULONG_CMP_GE(jiffies, j + rcu_sysidle_delay()))
			(void)cmpxchg(&full_sysidle_state,
				      RCU_SYSIDLE_SHORT, RCU_SYSIDLE_LONG);
		break;

	case RCU_SYSIDLE_LONG:

		/*
		 * Do an additional check pass before advancing to full.
		 * cmpxchg failure means race with non-idle, let them win.
		 */
		if (ULONG_CMP_GE(jiffies, j + rcu_sysidle_delay()))
			(void)cmpxchg(&full_sysidle_state,
				      RCU_SYSIDLE_LONG, RCU_SYSIDLE_FULL);
		break;

	default:
		break;
	}
}

/*
 * Found a non-idle non-timekeeping CPU, so kick the system-idle state
 * back to the beginning.
 */
static void rcu_sysidle_cancel(void)
{
	smp_mb();
2819
	if (full_sysidle_state > RCU_SYSIDLE_SHORT)
2820
		WRITE_ONCE(full_sysidle_state, RCU_SYSIDLE_NOT);
2821 2822 2823 2824 2825 2826 2827 2828 2829
}

/*
 * Update the sysidle state based on the results of a force-quiescent-state
 * scan of the CPUs' dyntick-idle state.
 */
static void rcu_sysidle_report(struct rcu_state *rsp, int isidle,
			       unsigned long maxj, bool gpkt)
{
2830
	if (rsp != rcu_state_p)
2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846
		return;  /* Wrong flavor, ignore. */
	if (gpkt && nr_cpu_ids <= CONFIG_NO_HZ_FULL_SYSIDLE_SMALL)
		return;  /* Running state machine from timekeeping CPU. */
	if (isidle)
		rcu_sysidle(maxj);    /* More idle! */
	else
		rcu_sysidle_cancel(); /* Idle is over. */
}

/*
 * Wrapper for rcu_sysidle_report() when called from the grace-period
 * kthread's context.
 */
static void rcu_sysidle_report_gp(struct rcu_state *rsp, int isidle,
				  unsigned long maxj)
{
2847 2848 2849 2850
	/* If there are no nohz_full= CPUs, no need to track this. */
	if (!tick_nohz_full_enabled())
		return;

2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871
	rcu_sysidle_report(rsp, isidle, maxj, true);
}

/* Callback and function for forcing an RCU grace period. */
struct rcu_sysidle_head {
	struct rcu_head rh;
	int inuse;
};

static void rcu_sysidle_cb(struct rcu_head *rhp)
{
	struct rcu_sysidle_head *rshp;

	/*
	 * The following memory barrier is needed to replace the
	 * memory barriers that would normally be in the memory
	 * allocator.
	 */
	smp_mb();  /* grace period precedes setting inuse. */

	rshp = container_of(rhp, struct rcu_sysidle_head, rh);
2872
	WRITE_ONCE(rshp->inuse, 0);
2873 2874 2875 2876
}

/*
 * Check to see if the system is fully idle, other than the timekeeping CPU.
2877 2878
 * The caller must have disabled interrupts.  This is not intended to be
 * called unless tick_nohz_full_enabled().
2879 2880 2881 2882
 */
bool rcu_sys_is_idle(void)
{
	static struct rcu_sysidle_head rsh;
2883
	int rss = READ_ONCE(full_sysidle_state);
2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903

	if (WARN_ON_ONCE(smp_processor_id() != tick_do_timer_cpu))
		return false;

	/* Handle small-system case by doing a full scan of CPUs. */
	if (nr_cpu_ids <= CONFIG_NO_HZ_FULL_SYSIDLE_SMALL) {
		int oldrss = rss - 1;

		/*
		 * One pass to advance to each state up to _FULL.
		 * Give up if any pass fails to advance the state.
		 */
		while (rss < RCU_SYSIDLE_FULL && oldrss < rss) {
			int cpu;
			bool isidle = true;
			unsigned long maxj = jiffies - ULONG_MAX / 4;
			struct rcu_data *rdp;

			/* Scan all the CPUs looking for nonidle CPUs. */
			for_each_possible_cpu(cpu) {
2904
				rdp = per_cpu_ptr(rcu_state_p->rda, cpu);
2905 2906 2907 2908
				rcu_sysidle_check_cpu(rdp, &isidle, &maxj);
				if (!isidle)
					break;
			}
2909
			rcu_sysidle_report(rcu_state_p, isidle, maxj, false);
2910
			oldrss = rss;
2911
			rss = READ_ONCE(full_sysidle_state);
2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935
		}
	}

	/* If this is the first observation of an idle period, record it. */
	if (rss == RCU_SYSIDLE_FULL) {
		rss = cmpxchg(&full_sysidle_state,
			      RCU_SYSIDLE_FULL, RCU_SYSIDLE_FULL_NOTED);
		return rss == RCU_SYSIDLE_FULL;
	}

	smp_mb(); /* ensure rss load happens before later caller actions. */

	/* If already fully idle, tell the caller (in case of races). */
	if (rss == RCU_SYSIDLE_FULL_NOTED)
		return true;

	/*
	 * If we aren't there yet, and a grace period is not in flight,
	 * initiate a grace period.  Either way, tell the caller that
	 * we are not there yet.  We use an xchg() rather than an assignment
	 * to make up for the memory barriers that would otherwise be
	 * provided by the memory allocator.
	 */
	if (nr_cpu_ids > CONFIG_NO_HZ_FULL_SYSIDLE_SMALL &&
2936
	    !rcu_gp_in_progress(rcu_state_p) &&
2937 2938 2939
	    !rsh.inuse && xchg(&rsh.inuse, 1) == 0)
		call_rcu(&rsh.rh, rcu_sysidle_cb);
	return false;
2940 2941
}

2942 2943 2944 2945 2946 2947 2948 2949 2950 2951
/*
 * Initialize dynticks sysidle state for CPUs coming online.
 */
static void rcu_sysidle_init_percpu_data(struct rcu_dynticks *rdtp)
{
	rdtp->dynticks_idle_nesting = DYNTICK_TASK_NEST_VALUE;
}

#else /* #ifdef CONFIG_NO_HZ_FULL_SYSIDLE */

2952
static void rcu_sysidle_enter(int irq)
2953 2954 2955
{
}

2956
static void rcu_sysidle_exit(int irq)
2957 2958 2959
{
}

2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974
static void rcu_sysidle_check_cpu(struct rcu_data *rdp, bool *isidle,
				  unsigned long *maxj)
{
}

static bool is_sysidle_rcu_state(struct rcu_state *rsp)
{
	return false;
}

static void rcu_sysidle_report_gp(struct rcu_state *rsp, int isidle,
				  unsigned long maxj)
{
}

2975 2976 2977 2978 2979
static void rcu_sysidle_init_percpu_data(struct rcu_dynticks *rdtp)
{
}

#endif /* #else #ifdef CONFIG_NO_HZ_FULL_SYSIDLE */
2980 2981 2982 2983 2984 2985 2986 2987

/*
 * Is this CPU a NO_HZ_FULL CPU that should ignore RCU so that the
 * grace-period kthread will do force_quiescent_state() processing?
 * The idea is to avoid waking up RCU core processing on such a
 * CPU unless the grace period has extended for too long.
 *
 * This code relies on the fact that all NO_HZ_FULL CPUs are also
2988
 * CONFIG_RCU_NOCB_CPU CPUs.
2989 2990 2991 2992 2993 2994
 */
static bool rcu_nohz_full_cpu(struct rcu_state *rsp)
{
#ifdef CONFIG_NO_HZ_FULL
	if (tick_nohz_full_cpu(smp_processor_id()) &&
	    (!rcu_gp_in_progress(rsp) ||
2995
	     ULONG_CMP_LT(jiffies, READ_ONCE(rsp->gp_start) + HZ)))
2996
		return true;
2997
#endif /* #ifdef CONFIG_NO_HZ_FULL */
2998
	return false;
2999
}
3000 3001 3002 3003 3004 3005 3006

/*
 * Bind the grace-period kthread for the sysidle flavor of RCU to the
 * timekeeping CPU.
 */
static void rcu_bind_gp_kthread(void)
{
3007
	int __maybe_unused cpu;
3008

3009
	if (!tick_nohz_full_enabled())
3010
		return;
3011 3012
#ifdef CONFIG_NO_HZ_FULL_SYSIDLE
	cpu = tick_do_timer_cpu;
3013
	if (cpu >= 0 && cpu < nr_cpu_ids)
3014
		set_cpus_allowed_ptr(current, cpumask_of(cpu));
3015
#else /* #ifdef CONFIG_NO_HZ_FULL_SYSIDLE */
3016
	housekeeping_affine(current);
3017
#endif /* #else #ifdef CONFIG_NO_HZ_FULL_SYSIDLE */
3018
}
3019 3020 3021 3022 3023

/* Record the current task on dyntick-idle entry. */
static void rcu_dynticks_task_enter(void)
{
#if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL)
3024
	WRITE_ONCE(current->rcu_tasks_idle_cpu, smp_processor_id());
3025 3026 3027 3028 3029 3030 3031
#endif /* #if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL) */
}

/* Record no current task on dyntick-idle exit. */
static void rcu_dynticks_task_exit(void)
{
#if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL)
3032
	WRITE_ONCE(current->rcu_tasks_idle_cpu, -1);
3033 3034
#endif /* #if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL) */
}