tree_plugin.h 90.2 KB
Newer Older
1 2 3
/*
 * Read-Copy Update mechanism for mutual exclusion (tree-based version)
 * Internal non-public definitions that provide either classic
P
Paul E. McKenney 已提交
4
 * or preemptible semantics.
5 6 7 8 9 10 11 12 13 14 15 16
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
17 18
 * along with this program; if not, you can access it online at
 * http://www.gnu.org/licenses/gpl-2.0.html.
19 20 21 22 23 24 25 26
 *
 * Copyright Red Hat, 2009
 * Copyright IBM Corporation, 2009
 *
 * Author: Ingo Molnar <mingo@elte.hu>
 *	   Paul E. McKenney <paulmck@linux.vnet.ibm.com>
 */

27
#include <linux/delay.h>
P
Paul E. McKenney 已提交
28
#include <linux/gfp.h>
29
#include <linux/oom.h>
30
#include <linux/smpboot.h>
31
#include "../time/tick-internal.h"
32

33
#ifdef CONFIG_RCU_BOOST
34

35
#include "../locking/rtmutex_common.h"
36 37 38 39

/* rcuc/rcub kthread realtime priority */
static int kthread_prio = CONFIG_RCU_KTHREAD_PRIO;
module_param(kthread_prio, int, 0644);
40 41 42 43 44 45 46 47 48 49

/*
 * Control variables for per-CPU and per-rcu_node kthreads.  These
 * handle all flavors of RCU.
 */
static DEFINE_PER_CPU(struct task_struct *, rcu_cpu_kthread_task);
DEFINE_PER_CPU(unsigned int, rcu_cpu_kthread_status);
DEFINE_PER_CPU(unsigned int, rcu_cpu_kthread_loops);
DEFINE_PER_CPU(char, rcu_cpu_has_work);

50
#endif /* #ifdef CONFIG_RCU_BOOST */
51

P
Paul E. McKenney 已提交
52 53 54
#ifdef CONFIG_RCU_NOCB_CPU
static cpumask_var_t rcu_nocb_mask; /* CPUs to have callbacks offloaded. */
static bool have_rcu_nocb_mask;	    /* Was rcu_nocb_mask allocated? */
55
static bool __read_mostly rcu_nocb_poll;    /* Offload kthread are to poll. */
P
Paul E. McKenney 已提交
56 57 58
static char __initdata nocb_buf[NR_CPUS * 5];
#endif /* #ifdef CONFIG_RCU_NOCB_CPU */

59 60 61 62 63 64 65 66
/*
 * Check the RCU kernel configuration parameters and print informative
 * messages about anything out of the ordinary.  If you like #ifdef, you
 * will love this function.
 */
static void __init rcu_bootup_announce_oddness(void)
{
#ifdef CONFIG_RCU_TRACE
67
	pr_info("\tRCU debugfs-based tracing is enabled.\n");
68 69
#endif
#if (defined(CONFIG_64BIT) && CONFIG_RCU_FANOUT != 64) || (!defined(CONFIG_64BIT) && CONFIG_RCU_FANOUT != 32)
70
	pr_info("\tCONFIG_RCU_FANOUT set to non-default value of %d\n",
71 72 73
	       CONFIG_RCU_FANOUT);
#endif
#ifdef CONFIG_RCU_FANOUT_EXACT
74
	pr_info("\tHierarchical RCU autobalancing is disabled.\n");
75 76
#endif
#ifdef CONFIG_RCU_FAST_NO_HZ
77
	pr_info("\tRCU dyntick-idle grace-period acceleration is enabled.\n");
78 79
#endif
#ifdef CONFIG_PROVE_RCU
80
	pr_info("\tRCU lockdep checking is enabled.\n");
81 82
#endif
#ifdef CONFIG_RCU_TORTURE_TEST_RUNNABLE
83
	pr_info("\tRCU torture testing starts during boot.\n");
84
#endif
85
#if defined(CONFIG_RCU_CPU_STALL_INFO)
86
	pr_info("\tAdditional per-CPU info printed with stalls.\n");
87 88
#endif
#if NUM_RCU_LVL_4 != 0
89
	pr_info("\tFour-level hierarchy is enabled.\n");
90
#endif
91
	if (rcu_fanout_leaf != CONFIG_RCU_FANOUT_LEAF)
92
		pr_info("\tBoot-time adjustment of leaf fanout to %d.\n", rcu_fanout_leaf);
93
	if (nr_cpu_ids != NR_CPUS)
94
		pr_info("\tRCU restricting CPUs from NR_CPUS=%d to nr_cpu_ids=%d.\n", NR_CPUS, nr_cpu_ids);
95 96 97
#ifdef CONFIG_RCU_BOOST
	pr_info("\tRCU kthread priority: %d.\n", kthread_prio);
#endif
98 99
}

100
#ifdef CONFIG_PREEMPT_RCU
101

102
RCU_STATE_INITIALIZER(rcu_preempt, 'p', call_rcu);
103
static struct rcu_state *rcu_state_p = &rcu_preempt_state;
104

105
static int rcu_preempted_readers_exp(struct rcu_node *rnp);
106 107
static void rcu_report_exp_rnp(struct rcu_state *rsp, struct rcu_node *rnp,
			       bool wake);
108

109 110 111
/*
 * Tell them what RCU they are running.
 */
112
static void __init rcu_bootup_announce(void)
113
{
114
	pr_info("Preemptible hierarchical RCU implementation.\n");
115
	rcu_bootup_announce_oddness();
116 117 118 119 120 121
}

/*
 * Return the number of RCU-preempt batches processed thus far
 * for debug and statistics.
 */
122
static long rcu_batches_completed_preempt(void)
123 124 125 126 127 128 129 130 131 132 133 134 135 136 137
{
	return rcu_preempt_state.completed;
}
EXPORT_SYMBOL_GPL(rcu_batches_completed_preempt);

/*
 * Return the number of RCU batches processed thus far for debug & stats.
 */
long rcu_batches_completed(void)
{
	return rcu_batches_completed_preempt();
}
EXPORT_SYMBOL_GPL(rcu_batches_completed);

/*
P
Paul E. McKenney 已提交
138
 * Record a preemptible-RCU quiescent state for the specified CPU.  Note
139 140 141
 * that this just means that the task currently running on the CPU is
 * not in a quiescent state.  There might be any number of tasks blocked
 * while in an RCU read-side critical section.
142
 *
143 144
 * As with the other rcu_*_qs() functions, callers to this function
 * must disable preemption.
145
 */
146
static void rcu_preempt_qs(void)
147
{
148 149 150 151 152 153 154 155
	if (!__this_cpu_read(rcu_preempt_data.passed_quiesce)) {
		trace_rcu_grace_period(TPS("rcu_preempt"),
				       __this_cpu_read(rcu_preempt_data.gpnum),
				       TPS("cpuqs"));
		__this_cpu_write(rcu_preempt_data.passed_quiesce, 1);
		barrier(); /* Coordinate with rcu_preempt_check_callbacks(). */
		current->rcu_read_unlock_special.b.need_qs = false;
	}
156 157 158
}

/*
159 160 161
 * We have entered the scheduler, and the current task might soon be
 * context-switched away from.  If this task is in an RCU read-side
 * critical section, we will no longer be able to rely on the CPU to
162 163 164 165 166 167
 * record that fact, so we enqueue the task on the blkd_tasks list.
 * The task will dequeue itself when it exits the outermost enclosing
 * RCU read-side critical section.  Therefore, the current grace period
 * cannot be permitted to complete until the blkd_tasks list entries
 * predating the current grace period drain, in other words, until
 * rnp->gp_tasks becomes NULL.
168 169
 *
 * Caller must disable preemption.
170
 */
171
static void rcu_preempt_note_context_switch(void)
172 173
{
	struct task_struct *t = current;
174
	unsigned long flags;
175 176 177
	struct rcu_data *rdp;
	struct rcu_node *rnp;

178
	if (t->rcu_read_lock_nesting > 0 &&
179
	    !t->rcu_read_unlock_special.b.blocked) {
180 181

		/* Possibly blocking in an RCU read-side critical section. */
182
		rdp = this_cpu_ptr(rcu_preempt_state.rda);
183
		rnp = rdp->mynode;
P
Paul E. McKenney 已提交
184
		raw_spin_lock_irqsave(&rnp->lock, flags);
185
		smp_mb__after_unlock_lock();
186
		t->rcu_read_unlock_special.b.blocked = true;
187
		t->rcu_blocked_node = rnp;
188 189 190 191 192 193 194 195 196

		/*
		 * If this CPU has already checked in, then this task
		 * will hold up the next grace period rather than the
		 * current grace period.  Queue the task accordingly.
		 * If the task is queued for the current grace period
		 * (i.e., this CPU has not yet passed through a quiescent
		 * state for the current grace period), then as long
		 * as that task remains queued, the current grace period
197 198 199 200 201 202
		 * cannot end.  Note that there is some uncertainty as
		 * to exactly when the current grace period started.
		 * We take a conservative approach, which can result
		 * in unnecessarily waiting on tasks that started very
		 * slightly after the current grace period began.  C'est
		 * la vie!!!
203 204 205
		 *
		 * But first, note that the current CPU must still be
		 * on line!
206
		 */
207
		WARN_ON_ONCE((rdp->grpmask & rnp->qsmaskinit) == 0);
208
		WARN_ON_ONCE(!list_empty(&t->rcu_node_entry));
209 210 211
		if ((rnp->qsmask & rdp->grpmask) && rnp->gp_tasks != NULL) {
			list_add(&t->rcu_node_entry, rnp->gp_tasks->prev);
			rnp->gp_tasks = &t->rcu_node_entry;
212 213 214 215
#ifdef CONFIG_RCU_BOOST
			if (rnp->boost_tasks != NULL)
				rnp->boost_tasks = rnp->gp_tasks;
#endif /* #ifdef CONFIG_RCU_BOOST */
216 217 218 219 220
		} else {
			list_add(&t->rcu_node_entry, &rnp->blkd_tasks);
			if (rnp->qsmask & rdp->grpmask)
				rnp->gp_tasks = &t->rcu_node_entry;
		}
221 222 223 224 225
		trace_rcu_preempt_task(rdp->rsp->name,
				       t->pid,
				       (rnp->qsmask & rdp->grpmask)
				       ? rnp->gpnum
				       : rnp->gpnum + 1);
P
Paul E. McKenney 已提交
226
		raw_spin_unlock_irqrestore(&rnp->lock, flags);
227
	} else if (t->rcu_read_lock_nesting < 0 &&
228
		   t->rcu_read_unlock_special.s) {
229 230 231 232 233 234

		/*
		 * Complete exit from RCU read-side critical section on
		 * behalf of preempted instance of __rcu_read_unlock().
		 */
		rcu_read_unlock_special(t);
235 236 237 238 239 240 241 242 243 244 245
	}

	/*
	 * Either we were not in an RCU read-side critical section to
	 * begin with, or we have now recorded that critical section
	 * globally.  Either way, we can now note a quiescent state
	 * for this CPU.  Again, if we were in an RCU read-side critical
	 * section, and if that critical section was blocking the current
	 * grace period, then the fact that the task has been enqueued
	 * means that we continue to block the current grace period.
	 */
246
	rcu_preempt_qs();
247 248
}

249 250 251 252 253
/*
 * Check for preempted RCU readers blocking the current grace period
 * for the specified rcu_node structure.  If the caller needs a reliable
 * answer, it must hold the rcu_node's ->lock.
 */
254
static int rcu_preempt_blocked_readers_cgp(struct rcu_node *rnp)
255
{
256
	return rnp->gp_tasks != NULL;
257 258
}

259 260 261 262 263 264 265
/*
 * Record a quiescent state for all tasks that were previously queued
 * on the specified rcu_node structure and that were blocking the current
 * RCU grace period.  The caller must hold the specified rnp->lock with
 * irqs disabled, and this lock is released upon return, but irqs remain
 * disabled.
 */
P
Paul E. McKenney 已提交
266
static void rcu_report_unblock_qs_rnp(struct rcu_node *rnp, unsigned long flags)
267 268 269 270 271
	__releases(rnp->lock)
{
	unsigned long mask;
	struct rcu_node *rnp_p;

272
	if (rnp->qsmask != 0 || rcu_preempt_blocked_readers_cgp(rnp)) {
P
Paul E. McKenney 已提交
273
		raw_spin_unlock_irqrestore(&rnp->lock, flags);
274 275 276 277 278 279 280 281 282 283
		return;  /* Still need more quiescent states! */
	}

	rnp_p = rnp->parent;
	if (rnp_p == NULL) {
		/*
		 * Either there is only one rcu_node in the tree,
		 * or tasks were kicked up to root rcu_node due to
		 * CPUs going offline.
		 */
P
Paul E. McKenney 已提交
284
		rcu_report_qs_rsp(&rcu_preempt_state, flags);
285 286 287 288 289
		return;
	}

	/* Report up the rest of the hierarchy. */
	mask = rnp->grpmask;
P
Paul E. McKenney 已提交
290 291
	raw_spin_unlock(&rnp->lock);	/* irqs remain disabled. */
	raw_spin_lock(&rnp_p->lock);	/* irqs already disabled. */
292
	smp_mb__after_unlock_lock();
P
Paul E. McKenney 已提交
293
	rcu_report_qs_rnp(mask, &rcu_preempt_state, rnp_p, flags);
294 295
}

296 297 298 299 300 301 302 303 304 305 306 307 308 309 310
/*
 * Advance a ->blkd_tasks-list pointer to the next entry, instead
 * returning NULL if at the end of the list.
 */
static struct list_head *rcu_next_node_entry(struct task_struct *t,
					     struct rcu_node *rnp)
{
	struct list_head *np;

	np = t->rcu_node_entry.next;
	if (np == &rnp->blkd_tasks)
		np = NULL;
	return np;
}

311 312 313 314 315 316 317 318 319
/*
 * Return true if the specified rcu_node structure has tasks that were
 * preempted within an RCU read-side critical section.
 */
static bool rcu_preempt_has_tasks(struct rcu_node *rnp)
{
	return !list_empty(&rnp->blkd_tasks);
}

320 321 322 323 324
/*
 * Handle special cases during rcu_read_unlock(), such as needing to
 * notify RCU core processing or task having blocked during the RCU
 * read-side critical section.
 */
325
void rcu_read_unlock_special(struct task_struct *t)
326
{
327 328 329 330
	bool empty;
	bool empty_exp;
	bool empty_norm;
	bool empty_exp_now;
331
	unsigned long flags;
332
	struct list_head *np;
333
#ifdef CONFIG_RCU_BOOST
334
	bool drop_boost_mutex = false;
335
#endif /* #ifdef CONFIG_RCU_BOOST */
336
	struct rcu_node *rnp;
337
	union rcu_special special;
338 339 340 341 342 343 344 345 346

	/* NMI handlers cannot block and cannot safely manipulate state. */
	if (in_nmi())
		return;

	local_irq_save(flags);

	/*
	 * If RCU core is waiting for this CPU to exit critical section,
347 348
	 * let it know that we have done so.  Because irqs are disabled,
	 * t->rcu_read_unlock_special cannot change.
349 350
	 */
	special = t->rcu_read_unlock_special;
351
	if (special.b.need_qs) {
352
		rcu_preempt_qs();
353
		if (!t->rcu_read_unlock_special.s) {
354 355 356
			local_irq_restore(flags);
			return;
		}
357 358
	}

359 360
	/* Hardware IRQ handlers cannot block, complain if they get here. */
	if (WARN_ON_ONCE(in_irq() || in_serving_softirq())) {
361 362 363 364 365
		local_irq_restore(flags);
		return;
	}

	/* Clean up if blocked during RCU read-side critical section. */
366 367
	if (special.b.blocked) {
		t->rcu_read_unlock_special.b.blocked = false;
368

369 370 371 372 373 374
		/*
		 * Remove this task from the list it blocked on.  The
		 * task can migrate while we acquire the lock, but at
		 * most one time.  So at most two passes through loop.
		 */
		for (;;) {
375
			rnp = t->rcu_blocked_node;
P
Paul E. McKenney 已提交
376
			raw_spin_lock(&rnp->lock);  /* irqs already disabled. */
377
			smp_mb__after_unlock_lock();
378
			if (rnp == t->rcu_blocked_node)
379
				break;
P
Paul E. McKenney 已提交
380
			raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
381
		}
382
		empty = !rcu_preempt_has_tasks(rnp);
383
		empty_norm = !rcu_preempt_blocked_readers_cgp(rnp);
384 385
		empty_exp = !rcu_preempted_readers_exp(rnp);
		smp_mb(); /* ensure expedited fastpath sees end of RCU c-s. */
386
		np = rcu_next_node_entry(t, rnp);
387
		list_del_init(&t->rcu_node_entry);
388
		t->rcu_blocked_node = NULL;
389
		trace_rcu_unlock_preempted_task(TPS("rcu_preempt"),
390
						rnp->gpnum, t->pid);
391 392 393 394
		if (&t->rcu_node_entry == rnp->gp_tasks)
			rnp->gp_tasks = np;
		if (&t->rcu_node_entry == rnp->exp_tasks)
			rnp->exp_tasks = np;
395 396 397
#ifdef CONFIG_RCU_BOOST
		if (&t->rcu_node_entry == rnp->boost_tasks)
			rnp->boost_tasks = np;
398 399
		/* Snapshot ->boost_mtx ownership with rcu_node lock held. */
		drop_boost_mutex = rt_mutex_owner(&rnp->boost_mtx) == t;
400
#endif /* #ifdef CONFIG_RCU_BOOST */
401

402 403 404 405 406 407 408 409
		/*
		 * If this was the last task on the list, go see if we
		 * need to propagate ->qsmaskinit bit clearing up the
		 * rcu_node tree.
		 */
		if (!empty && !rcu_preempt_has_tasks(rnp))
			rcu_cleanup_dead_rnp(rnp);

410 411 412
		/*
		 * If this was the last task on the current list, and if
		 * we aren't waiting on any CPUs, report the quiescent state.
413 414
		 * Note that rcu_report_unblock_qs_rnp() releases rnp->lock,
		 * so we must take a snapshot of the expedited state.
415
		 */
416
		empty_exp_now = !rcu_preempted_readers_exp(rnp);
417
		if (!empty_norm && !rcu_preempt_blocked_readers_cgp(rnp)) {
418
			trace_rcu_quiescent_state_report(TPS("preempt_rcu"),
419 420 421 422 423 424
							 rnp->gpnum,
							 0, rnp->qsmask,
							 rnp->level,
							 rnp->grplo,
							 rnp->grphi,
							 !!rnp->gp_tasks);
P
Paul E. McKenney 已提交
425
			rcu_report_unblock_qs_rnp(rnp, flags);
426
		} else {
427
			raw_spin_unlock_irqrestore(&rnp->lock, flags);
428
		}
429

430 431
#ifdef CONFIG_RCU_BOOST
		/* Unboost if we were boosted. */
432 433
		if (drop_boost_mutex) {
			rt_mutex_unlock(&rnp->boost_mtx);
434 435
			complete(&rnp->boost_completion);
		}
436 437
#endif /* #ifdef CONFIG_RCU_BOOST */

438 439 440 441
		/*
		 * If this was the last task on the expedited lists,
		 * then we need to report up the rcu_node hierarchy.
		 */
442
		if (!empty_exp && empty_exp_now)
443
			rcu_report_exp_rnp(&rcu_preempt_state, rnp, true);
444 445
	} else {
		local_irq_restore(flags);
446 447 448
	}
}

449 450 451 452 453 454 455 456 457
/*
 * Dump detailed information for all tasks blocking the current RCU
 * grace period on the specified rcu_node structure.
 */
static void rcu_print_detail_task_stall_rnp(struct rcu_node *rnp)
{
	unsigned long flags;
	struct task_struct *t;

458
	raw_spin_lock_irqsave(&rnp->lock, flags);
459 460 461 462
	if (!rcu_preempt_blocked_readers_cgp(rnp)) {
		raw_spin_unlock_irqrestore(&rnp->lock, flags);
		return;
	}
463 464 465 466 467
	t = list_entry(rnp->gp_tasks,
		       struct task_struct, rcu_node_entry);
	list_for_each_entry_continue(t, &rnp->blkd_tasks, rcu_node_entry)
		sched_show_task(t);
	raw_spin_unlock_irqrestore(&rnp->lock, flags);
468 469 470 471 472 473 474 475 476 477 478 479 480 481 482
}

/*
 * Dump detailed information for all tasks blocking the current RCU
 * grace period.
 */
static void rcu_print_detail_task_stall(struct rcu_state *rsp)
{
	struct rcu_node *rnp = rcu_get_root(rsp);

	rcu_print_detail_task_stall_rnp(rnp);
	rcu_for_each_leaf_node(rsp, rnp)
		rcu_print_detail_task_stall_rnp(rnp);
}

483 484 485 486
#ifdef CONFIG_RCU_CPU_STALL_INFO

static void rcu_print_task_stall_begin(struct rcu_node *rnp)
{
487
	pr_err("\tTasks blocked on level-%d rcu_node (CPUs %d-%d):",
488 489 490 491 492
	       rnp->level, rnp->grplo, rnp->grphi);
}

static void rcu_print_task_stall_end(void)
{
493
	pr_cont("\n");
494 495 496 497 498 499 500 501 502 503 504 505 506 507
}

#else /* #ifdef CONFIG_RCU_CPU_STALL_INFO */

static void rcu_print_task_stall_begin(struct rcu_node *rnp)
{
}

static void rcu_print_task_stall_end(void)
{
}

#endif /* #else #ifdef CONFIG_RCU_CPU_STALL_INFO */

508 509 510 511
/*
 * Scan the current list of tasks blocked within RCU read-side critical
 * sections, printing out the tid of each.
 */
512
static int rcu_print_task_stall(struct rcu_node *rnp)
513 514
{
	struct task_struct *t;
515
	int ndetected = 0;
516

517
	if (!rcu_preempt_blocked_readers_cgp(rnp))
518
		return 0;
519
	rcu_print_task_stall_begin(rnp);
520 521
	t = list_entry(rnp->gp_tasks,
		       struct task_struct, rcu_node_entry);
522
	list_for_each_entry_continue(t, &rnp->blkd_tasks, rcu_node_entry) {
523
		pr_cont(" P%d", t->pid);
524 525
		ndetected++;
	}
526
	rcu_print_task_stall_end();
527
	return ndetected;
528 529
}

530 531 532 533 534 535
/*
 * Check that the list of blocked tasks for the newly completed grace
 * period is in fact empty.  It is a serious bug to complete a grace
 * period that still has RCU readers blocked!  This function must be
 * invoked -before- updating this rnp's ->gpnum, and the rnp's ->lock
 * must be held by the caller.
536 537 538
 *
 * Also, if there are blocked tasks on the list, they automatically
 * block the newly created grace period, so set up ->gp_tasks accordingly.
539 540 541
 */
static void rcu_preempt_check_blocked_tasks(struct rcu_node *rnp)
{
542
	WARN_ON_ONCE(rcu_preempt_blocked_readers_cgp(rnp));
543
	if (rcu_preempt_has_tasks(rnp))
544
		rnp->gp_tasks = rnp->blkd_tasks.next;
545
	WARN_ON_ONCE(rnp->qsmask);
546 547
}

548 549
#ifdef CONFIG_HOTPLUG_CPU

550 551
#endif /* #ifdef CONFIG_HOTPLUG_CPU */

552 553 554 555 556 557 558
/*
 * Check for a quiescent state from the current CPU.  When a task blocks,
 * the task is recorded in the corresponding CPU's rcu_node structure,
 * which is checked elsewhere.
 *
 * Caller must disable hard irqs.
 */
559
static void rcu_preempt_check_callbacks(void)
560 561 562 563
{
	struct task_struct *t = current;

	if (t->rcu_read_lock_nesting == 0) {
564
		rcu_preempt_qs();
565 566
		return;
	}
567
	if (t->rcu_read_lock_nesting > 0 &&
568 569
	    __this_cpu_read(rcu_preempt_data.qs_pending) &&
	    !__this_cpu_read(rcu_preempt_data.passed_quiesce))
570
		t->rcu_read_unlock_special.b.need_qs = true;
571 572
}

573 574
#ifdef CONFIG_RCU_BOOST

575 576
static void rcu_preempt_do_callbacks(void)
{
577
	rcu_do_batch(&rcu_preempt_state, this_cpu_ptr(&rcu_preempt_data));
578 579
}

580 581
#endif /* #ifdef CONFIG_RCU_BOOST */

582
/*
P
Paul E. McKenney 已提交
583
 * Queue a preemptible-RCU callback for invocation after a grace period.
584 585 586
 */
void call_rcu(struct rcu_head *head, void (*func)(struct rcu_head *rcu))
{
P
Paul E. McKenney 已提交
587
	__call_rcu(head, func, &rcu_preempt_state, -1, 0);
588 589 590
}
EXPORT_SYMBOL_GPL(call_rcu);

591 592 593 594 595
/**
 * synchronize_rcu - wait until a grace period has elapsed.
 *
 * Control will return to the caller some time after a full grace
 * period has elapsed, in other words after all currently executing RCU
596 597 598 599 600
 * read-side critical sections have completed.  Note, however, that
 * upon return from synchronize_rcu(), the caller might well be executing
 * concurrently with new RCU read-side critical sections that began while
 * synchronize_rcu() was waiting.  RCU read-side critical sections are
 * delimited by rcu_read_lock() and rcu_read_unlock(), and may be nested.
601 602 603
 *
 * See the description of synchronize_sched() for more detailed information
 * on memory ordering guarantees.
604 605 606
 */
void synchronize_rcu(void)
{
607 608 609 610
	rcu_lockdep_assert(!lock_is_held(&rcu_bh_lock_map) &&
			   !lock_is_held(&rcu_lock_map) &&
			   !lock_is_held(&rcu_sched_lock_map),
			   "Illegal synchronize_rcu() in RCU read-side critical section");
611 612
	if (!rcu_scheduler_active)
		return;
613 614 615 616
	if (rcu_expedited)
		synchronize_rcu_expedited();
	else
		wait_rcu_gp(call_rcu);
617 618 619
}
EXPORT_SYMBOL_GPL(synchronize_rcu);

620
static DECLARE_WAIT_QUEUE_HEAD(sync_rcu_preempt_exp_wq);
621
static unsigned long sync_rcu_preempt_exp_count;
622 623 624 625 626 627 628 629 630 631
static DEFINE_MUTEX(sync_rcu_preempt_exp_mutex);

/*
 * Return non-zero if there are any tasks in RCU read-side critical
 * sections blocking the current preemptible-RCU expedited grace period.
 * If there is no preemptible-RCU expedited grace period currently in
 * progress, returns zero unconditionally.
 */
static int rcu_preempted_readers_exp(struct rcu_node *rnp)
{
632
	return rnp->exp_tasks != NULL;
633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657
}

/*
 * return non-zero if there is no RCU expedited grace period in progress
 * for the specified rcu_node structure, in other words, if all CPUs and
 * tasks covered by the specified rcu_node structure have done their bit
 * for the current expedited grace period.  Works only for preemptible
 * RCU -- other RCU implementation use other means.
 *
 * Caller must hold sync_rcu_preempt_exp_mutex.
 */
static int sync_rcu_preempt_exp_done(struct rcu_node *rnp)
{
	return !rcu_preempted_readers_exp(rnp) &&
	       ACCESS_ONCE(rnp->expmask) == 0;
}

/*
 * Report the exit from RCU read-side critical section for the last task
 * that queued itself during or before the current expedited preemptible-RCU
 * grace period.  This event is reported either to the rcu_node structure on
 * which the task was queued or to one of that rcu_node structure's ancestors,
 * recursively up the tree.  (Calm down, calm down, we do the recursion
 * iteratively!)
 *
658 659 660
 * Most callers will set the "wake" flag, but the task initiating the
 * expedited grace period need not wake itself.
 *
661 662
 * Caller must hold sync_rcu_preempt_exp_mutex.
 */
663 664
static void rcu_report_exp_rnp(struct rcu_state *rsp, struct rcu_node *rnp,
			       bool wake)
665 666 667 668
{
	unsigned long flags;
	unsigned long mask;

P
Paul E. McKenney 已提交
669
	raw_spin_lock_irqsave(&rnp->lock, flags);
670
	smp_mb__after_unlock_lock();
671
	for (;;) {
672 673
		if (!sync_rcu_preempt_exp_done(rnp)) {
			raw_spin_unlock_irqrestore(&rnp->lock, flags);
674
			break;
675
		}
676
		if (rnp->parent == NULL) {
677
			raw_spin_unlock_irqrestore(&rnp->lock, flags);
678 679
			if (wake) {
				smp_mb(); /* EGP done before wake_up(). */
680
				wake_up(&sync_rcu_preempt_exp_wq);
681
			}
682 683 684
			break;
		}
		mask = rnp->grpmask;
P
Paul E. McKenney 已提交
685
		raw_spin_unlock(&rnp->lock); /* irqs remain disabled */
686
		rnp = rnp->parent;
P
Paul E. McKenney 已提交
687
		raw_spin_lock(&rnp->lock); /* irqs already disabled */
688
		smp_mb__after_unlock_lock();
689 690 691 692 693 694 695 696 697
		rnp->expmask &= ~mask;
	}
}

/*
 * Snapshot the tasks blocking the newly started preemptible-RCU expedited
 * grace period for the specified rcu_node structure.  If there are no such
 * tasks, report it up the rcu_node hierarchy.
 *
698 699
 * Caller must hold sync_rcu_preempt_exp_mutex and must exclude
 * CPU hotplug operations.
700 701 702 703
 */
static void
sync_rcu_preempt_exp_init(struct rcu_state *rsp, struct rcu_node *rnp)
{
704
	unsigned long flags;
705
	int must_wait = 0;
706

707
	raw_spin_lock_irqsave(&rnp->lock, flags);
708
	smp_mb__after_unlock_lock();
709
	if (!rcu_preempt_has_tasks(rnp)) {
710
		raw_spin_unlock_irqrestore(&rnp->lock, flags);
711
	} else {
712
		rnp->exp_tasks = rnp->blkd_tasks.next;
713
		rcu_initiate_boost(rnp, flags);  /* releases rnp->lock */
714 715
		must_wait = 1;
	}
716
	if (!must_wait)
717
		rcu_report_exp_rnp(rsp, rnp, false); /* Don't wake self. */
718 719
}

720 721 722 723 724 725 726 727 728 729 730
/**
 * synchronize_rcu_expedited - Brute-force RCU grace period
 *
 * Wait for an RCU-preempt grace period, but expedite it.  The basic
 * idea is to invoke synchronize_sched_expedited() to push all the tasks to
 * the ->blkd_tasks lists and wait for this list to drain.  This consumes
 * significant time on all CPUs and is unfriendly to real-time workloads,
 * so is thus not recommended for any sort of common-case code.
 * In fact, if you are using synchronize_rcu_expedited() in a loop,
 * please restructure your code to batch your updates, and then Use a
 * single synchronize_rcu() instead.
731 732 733
 */
void synchronize_rcu_expedited(void)
{
734 735 736
	unsigned long flags;
	struct rcu_node *rnp;
	struct rcu_state *rsp = &rcu_preempt_state;
737
	unsigned long snap;
738 739 740 741 742 743
	int trycount = 0;

	smp_mb(); /* Caller's modifications seen first by other CPUs. */
	snap = ACCESS_ONCE(sync_rcu_preempt_exp_count) + 1;
	smp_mb(); /* Above access cannot bleed into critical section. */

744 745 746 747 748 749 750 751
	/*
	 * Block CPU-hotplug operations.  This means that any CPU-hotplug
	 * operation that finds an rcu_node structure with tasks in the
	 * process of being boosted will know that all tasks blocking
	 * this expedited grace period will already be in the process of
	 * being boosted.  This simplifies the process of moving tasks
	 * from leaf to root rcu_node structures.
	 */
752 753 754 755 756
	if (!try_get_online_cpus()) {
		/* CPU-hotplug operation in flight, fall back to normal GP. */
		wait_rcu_gp(call_rcu);
		return;
	}
757

758 759 760 761 762 763
	/*
	 * Acquire lock, falling back to synchronize_rcu() if too many
	 * lock-acquisition failures.  Of course, if someone does the
	 * expedited grace period for us, just leave.
	 */
	while (!mutex_trylock(&sync_rcu_preempt_exp_mutex)) {
764 765 766 767 768
		if (ULONG_CMP_LT(snap,
		    ACCESS_ONCE(sync_rcu_preempt_exp_count))) {
			put_online_cpus();
			goto mb_ret; /* Others did our work for us. */
		}
769
		if (trycount++ < 10) {
770
			udelay(trycount * num_online_cpus());
771
		} else {
772
			put_online_cpus();
773
			wait_rcu_gp(call_rcu);
774 775 776
			return;
		}
	}
777 778
	if (ULONG_CMP_LT(snap, ACCESS_ONCE(sync_rcu_preempt_exp_count))) {
		put_online_cpus();
779
		goto unlock_mb_ret; /* Others did our work for us. */
780
	}
781

782
	/* force all RCU readers onto ->blkd_tasks lists. */
783 784 785 786
	synchronize_sched_expedited();

	/* Initialize ->expmask for all non-leaf rcu_node structures. */
	rcu_for_each_nonleaf_node_breadth_first(rsp, rnp) {
787
		raw_spin_lock_irqsave(&rnp->lock, flags);
788
		smp_mb__after_unlock_lock();
789
		rnp->expmask = rnp->qsmaskinit;
790
		raw_spin_unlock_irqrestore(&rnp->lock, flags);
791 792
	}

793
	/* Snapshot current state of ->blkd_tasks lists. */
794 795 796 797 798
	rcu_for_each_leaf_node(rsp, rnp)
		sync_rcu_preempt_exp_init(rsp, rnp);
	if (NUM_RCU_NODES > 1)
		sync_rcu_preempt_exp_init(rsp, rcu_get_root(rsp));

799
	put_online_cpus();
800

801
	/* Wait for snapshotted ->blkd_tasks lists to drain. */
802 803 804 805 806 807
	rnp = rcu_get_root(rsp);
	wait_event(sync_rcu_preempt_exp_wq,
		   sync_rcu_preempt_exp_done(rnp));

	/* Clean up and exit. */
	smp_mb(); /* ensure expedited GP seen before counter increment. */
808 809
	ACCESS_ONCE(sync_rcu_preempt_exp_count) =
					sync_rcu_preempt_exp_count + 1;
810 811 812 813
unlock_mb_ret:
	mutex_unlock(&sync_rcu_preempt_exp_mutex);
mb_ret:
	smp_mb(); /* ensure subsequent action seen after grace period. */
814 815 816
}
EXPORT_SYMBOL_GPL(synchronize_rcu_expedited);

817 818
/**
 * rcu_barrier - Wait until all in-flight call_rcu() callbacks complete.
819 820 821 822 823
 *
 * Note that this primitive does not necessarily wait for an RCU grace period
 * to complete.  For example, if there are no RCU callbacks queued anywhere
 * in the system, then rcu_barrier() is within its rights to return
 * immediately, without waiting for anything, much less an RCU grace period.
824 825 826
 */
void rcu_barrier(void)
{
827
	_rcu_barrier(&rcu_preempt_state);
828 829 830
}
EXPORT_SYMBOL_GPL(rcu_barrier);

831
/*
P
Paul E. McKenney 已提交
832
 * Initialize preemptible RCU's state structures.
833 834 835
 */
static void __init __rcu_init_preempt(void)
{
836
	rcu_init_one(&rcu_preempt_state, &rcu_preempt_data);
837 838
}

839 840 841 842 843 844 845 846 847 848 849 850 851 852
/*
 * Check for a task exiting while in a preemptible-RCU read-side
 * critical section, clean up if so.  No need to issue warnings,
 * as debug_check_no_locks_held() already does this if lockdep
 * is enabled.
 */
void exit_rcu(void)
{
	struct task_struct *t = current;

	if (likely(list_empty(&current->rcu_node_entry)))
		return;
	t->rcu_read_lock_nesting = 1;
	barrier();
853
	t->rcu_read_unlock_special.b.blocked = true;
854 855 856
	__rcu_read_unlock();
}

857
#else /* #ifdef CONFIG_PREEMPT_RCU */
858

859
static struct rcu_state *rcu_state_p = &rcu_sched_state;
860

861 862 863
/*
 * Tell them what RCU they are running.
 */
864
static void __init rcu_bootup_announce(void)
865
{
866
	pr_info("Hierarchical RCU implementation.\n");
867
	rcu_bootup_announce_oddness();
868 869 870 871 872 873 874 875 876 877 878
}

/*
 * Return the number of RCU batches processed thus far for debug & stats.
 */
long rcu_batches_completed(void)
{
	return rcu_batches_completed_sched();
}
EXPORT_SYMBOL_GPL(rcu_batches_completed);

879 880 881 882
/*
 * Because preemptible RCU does not exist, we never have to check for
 * CPUs being in quiescent states.
 */
883
static void rcu_preempt_note_context_switch(void)
884 885 886
{
}

887
/*
P
Paul E. McKenney 已提交
888
 * Because preemptible RCU does not exist, there are never any preempted
889 890
 * RCU readers.
 */
891
static int rcu_preempt_blocked_readers_cgp(struct rcu_node *rnp)
892 893 894 895
{
	return 0;
}

896 897
#ifdef CONFIG_HOTPLUG_CPU

898 899 900 901 902 903 904 905
/*
 * Because there is no preemptible RCU, there can be no readers blocked.
 */
static bool rcu_preempt_has_tasks(struct rcu_node *rnp)
{
	return false;
}

906 907
#endif /* #ifdef CONFIG_HOTPLUG_CPU */

908
/*
P
Paul E. McKenney 已提交
909
 * Because preemptible RCU does not exist, we never have to check for
910 911 912 913 914 915
 * tasks blocked within RCU read-side critical sections.
 */
static void rcu_print_detail_task_stall(struct rcu_state *rsp)
{
}

916
/*
P
Paul E. McKenney 已提交
917
 * Because preemptible RCU does not exist, we never have to check for
918 919
 * tasks blocked within RCU read-side critical sections.
 */
920
static int rcu_print_task_stall(struct rcu_node *rnp)
921
{
922
	return 0;
923 924
}

925
/*
P
Paul E. McKenney 已提交
926
 * Because there is no preemptible RCU, there can be no readers blocked,
927 928
 * so there is no need to check for blocked tasks.  So check only for
 * bogus qsmask values.
929 930 931
 */
static void rcu_preempt_check_blocked_tasks(struct rcu_node *rnp)
{
932
	WARN_ON_ONCE(rnp->qsmask);
933 934
}

935
/*
P
Paul E. McKenney 已提交
936
 * Because preemptible RCU does not exist, it never has any callbacks
937 938
 * to check.
 */
939
static void rcu_preempt_check_callbacks(void)
940 941 942
{
}

943 944
/*
 * Wait for an rcu-preempt grace period, but make it happen quickly.
P
Paul E. McKenney 已提交
945
 * But because preemptible RCU does not exist, map to rcu-sched.
946 947 948 949 950 951 952
 */
void synchronize_rcu_expedited(void)
{
	synchronize_sched_expedited();
}
EXPORT_SYMBOL_GPL(synchronize_rcu_expedited);

953
/*
P
Paul E. McKenney 已提交
954
 * Because preemptible RCU does not exist, rcu_barrier() is just
955 956 957 958 959 960 961 962
 * another name for rcu_barrier_sched().
 */
void rcu_barrier(void)
{
	rcu_barrier_sched();
}
EXPORT_SYMBOL_GPL(rcu_barrier);

963
/*
P
Paul E. McKenney 已提交
964
 * Because preemptible RCU does not exist, it need not be initialized.
965 966 967 968 969
 */
static void __init __rcu_init_preempt(void)
{
}

970 971 972 973 974 975 976 977
/*
 * Because preemptible RCU does not exist, tasks cannot possibly exit
 * while in preemptible RCU read-side critical sections.
 */
void exit_rcu(void)
{
}

978
#endif /* #else #ifdef CONFIG_PREEMPT_RCU */
979

980 981
#ifdef CONFIG_RCU_BOOST

982
#include "../locking/rtmutex_common.h"
983

984 985 986 987
#ifdef CONFIG_RCU_TRACE

static void rcu_initiate_boost_trace(struct rcu_node *rnp)
{
988
	if (!rcu_preempt_has_tasks(rnp))
989 990 991 992 993 994 995 996
		rnp->n_balk_blkd_tasks++;
	else if (rnp->exp_tasks == NULL && rnp->gp_tasks == NULL)
		rnp->n_balk_exp_gp_tasks++;
	else if (rnp->gp_tasks != NULL && rnp->boost_tasks != NULL)
		rnp->n_balk_boost_tasks++;
	else if (rnp->gp_tasks != NULL && rnp->qsmask != 0)
		rnp->n_balk_notblocked++;
	else if (rnp->gp_tasks != NULL &&
997
		 ULONG_CMP_LT(jiffies, rnp->boost_time))
998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010
		rnp->n_balk_notyet++;
	else
		rnp->n_balk_nos++;
}

#else /* #ifdef CONFIG_RCU_TRACE */

static void rcu_initiate_boost_trace(struct rcu_node *rnp)
{
}

#endif /* #else #ifdef CONFIG_RCU_TRACE */

T
Thomas Gleixner 已提交
1011 1012 1013 1014 1015 1016 1017 1018 1019 1020
static void rcu_wake_cond(struct task_struct *t, int status)
{
	/*
	 * If the thread is yielding, only wake it when this
	 * is invoked from idle
	 */
	if (status != RCU_KTHREAD_YIELDING || is_idle_task(current))
		wake_up_process(t);
}

1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034
/*
 * Carry out RCU priority boosting on the task indicated by ->exp_tasks
 * or ->boost_tasks, advancing the pointer to the next task in the
 * ->blkd_tasks list.
 *
 * Note that irqs must be enabled: boosting the task can block.
 * Returns 1 if there are more tasks needing to be boosted.
 */
static int rcu_boost(struct rcu_node *rnp)
{
	unsigned long flags;
	struct task_struct *t;
	struct list_head *tb;

1035 1036
	if (ACCESS_ONCE(rnp->exp_tasks) == NULL &&
	    ACCESS_ONCE(rnp->boost_tasks) == NULL)
1037 1038 1039
		return 0;  /* Nothing left to boost. */

	raw_spin_lock_irqsave(&rnp->lock, flags);
1040
	smp_mb__after_unlock_lock();
1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056

	/*
	 * Recheck under the lock: all tasks in need of boosting
	 * might exit their RCU read-side critical sections on their own.
	 */
	if (rnp->exp_tasks == NULL && rnp->boost_tasks == NULL) {
		raw_spin_unlock_irqrestore(&rnp->lock, flags);
		return 0;
	}

	/*
	 * Preferentially boost tasks blocking expedited grace periods.
	 * This cannot starve the normal grace periods because a second
	 * expedited grace period must boost all blocked tasks, including
	 * those blocking the pre-existing normal grace period.
	 */
1057
	if (rnp->exp_tasks != NULL) {
1058
		tb = rnp->exp_tasks;
1059 1060
		rnp->n_exp_boosts++;
	} else {
1061
		tb = rnp->boost_tasks;
1062 1063 1064
		rnp->n_normal_boosts++;
	}
	rnp->n_tasks_boosted++;
1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082

	/*
	 * We boost task t by manufacturing an rt_mutex that appears to
	 * be held by task t.  We leave a pointer to that rt_mutex where
	 * task t can find it, and task t will release the mutex when it
	 * exits its outermost RCU read-side critical section.  Then
	 * simply acquiring this artificial rt_mutex will boost task
	 * t's priority.  (Thanks to tglx for suggesting this approach!)
	 *
	 * Note that task t must acquire rnp->lock to remove itself from
	 * the ->blkd_tasks list, which it will do from exit() if from
	 * nowhere else.  We therefore are guaranteed that task t will
	 * stay around at least until we drop rnp->lock.  Note that
	 * rnp->lock also resolves races between our priority boosting
	 * and task t's exiting its outermost RCU read-side critical
	 * section.
	 */
	t = container_of(tb, struct task_struct, rcu_node_entry);
1083
	rt_mutex_init_proxy_locked(&rnp->boost_mtx, t);
1084
	init_completion(&rnp->boost_completion);
1085
	raw_spin_unlock_irqrestore(&rnp->lock, flags);
1086 1087 1088
	/* Lock only for side effect: boosts task t's priority. */
	rt_mutex_lock(&rnp->boost_mtx);
	rt_mutex_unlock(&rnp->boost_mtx);  /* Then keep lockdep happy. */
1089

1090
	/* Wait for boostee to be done w/boost_mtx before reinitializing. */
1091
	wait_for_completion(&rnp->boost_completion);
1092

1093 1094
	return ACCESS_ONCE(rnp->exp_tasks) != NULL ||
	       ACCESS_ONCE(rnp->boost_tasks) != NULL;
1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106
}

/*
 * Priority-boosting kthread.  One per leaf rcu_node and one for the
 * root rcu_node.
 */
static int rcu_boost_kthread(void *arg)
{
	struct rcu_node *rnp = (struct rcu_node *)arg;
	int spincnt = 0;
	int more2boost;

1107
	trace_rcu_utilization(TPS("Start boost kthread@init"));
1108
	for (;;) {
1109
		rnp->boost_kthread_status = RCU_KTHREAD_WAITING;
1110
		trace_rcu_utilization(TPS("End boost kthread@rcu_wait"));
1111
		rcu_wait(rnp->boost_tasks || rnp->exp_tasks);
1112
		trace_rcu_utilization(TPS("Start boost kthread@rcu_wait"));
1113
		rnp->boost_kthread_status = RCU_KTHREAD_RUNNING;
1114 1115 1116 1117 1118 1119
		more2boost = rcu_boost(rnp);
		if (more2boost)
			spincnt++;
		else
			spincnt = 0;
		if (spincnt > 10) {
T
Thomas Gleixner 已提交
1120
			rnp->boost_kthread_status = RCU_KTHREAD_YIELDING;
1121
			trace_rcu_utilization(TPS("End boost kthread@rcu_yield"));
T
Thomas Gleixner 已提交
1122
			schedule_timeout_interruptible(2);
1123
			trace_rcu_utilization(TPS("Start boost kthread@rcu_yield"));
1124 1125 1126
			spincnt = 0;
		}
	}
1127
	/* NOTREACHED */
1128
	trace_rcu_utilization(TPS("End boost kthread@notreached"));
1129 1130 1131 1132 1133 1134 1135 1136 1137
	return 0;
}

/*
 * Check to see if it is time to start boosting RCU readers that are
 * blocking the current grace period, and, if so, tell the per-rcu_node
 * kthread to start boosting them.  If there is an expedited grace
 * period in progress, it is always time to boost.
 *
1138 1139 1140
 * The caller must hold rnp->lock, which this function releases.
 * The ->boost_kthread_task is immortal, so we don't need to worry
 * about it going away.
1141
 */
1142
static void rcu_initiate_boost(struct rcu_node *rnp, unsigned long flags)
1143
	__releases(rnp->lock)
1144 1145 1146
{
	struct task_struct *t;

1147 1148
	if (!rcu_preempt_blocked_readers_cgp(rnp) && rnp->exp_tasks == NULL) {
		rnp->n_balk_exp_gp_tasks++;
1149
		raw_spin_unlock_irqrestore(&rnp->lock, flags);
1150
		return;
1151
	}
1152 1153 1154 1155 1156 1157 1158
	if (rnp->exp_tasks != NULL ||
	    (rnp->gp_tasks != NULL &&
	     rnp->boost_tasks == NULL &&
	     rnp->qsmask == 0 &&
	     ULONG_CMP_GE(jiffies, rnp->boost_time))) {
		if (rnp->exp_tasks == NULL)
			rnp->boost_tasks = rnp->gp_tasks;
1159
		raw_spin_unlock_irqrestore(&rnp->lock, flags);
1160
		t = rnp->boost_kthread_task;
T
Thomas Gleixner 已提交
1161 1162
		if (t)
			rcu_wake_cond(t, rnp->boost_kthread_status);
1163
	} else {
1164
		rcu_initiate_boost_trace(rnp);
1165 1166
		raw_spin_unlock_irqrestore(&rnp->lock, flags);
	}
1167 1168
}

1169 1170 1171 1172 1173 1174 1175 1176 1177
/*
 * Wake up the per-CPU kthread to invoke RCU callbacks.
 */
static void invoke_rcu_callbacks_kthread(void)
{
	unsigned long flags;

	local_irq_save(flags);
	__this_cpu_write(rcu_cpu_has_work, 1);
1178
	if (__this_cpu_read(rcu_cpu_kthread_task) != NULL &&
T
Thomas Gleixner 已提交
1179 1180 1181 1182
	    current != __this_cpu_read(rcu_cpu_kthread_task)) {
		rcu_wake_cond(__this_cpu_read(rcu_cpu_kthread_task),
			      __this_cpu_read(rcu_cpu_kthread_status));
	}
1183 1184 1185
	local_irq_restore(flags);
}

1186 1187 1188 1189 1190 1191
/*
 * Is the current CPU running the RCU-callbacks kthread?
 * Caller must have preemption disabled.
 */
static bool rcu_is_callbacks_kthread(void)
{
1192
	return __this_cpu_read(rcu_cpu_kthread_task) == current;
1193 1194
}

1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209
#define RCU_BOOST_DELAY_JIFFIES DIV_ROUND_UP(CONFIG_RCU_BOOST_DELAY * HZ, 1000)

/*
 * Do priority-boost accounting for the start of a new grace period.
 */
static void rcu_preempt_boost_start_gp(struct rcu_node *rnp)
{
	rnp->boost_time = jiffies + RCU_BOOST_DELAY_JIFFIES;
}

/*
 * Create an RCU-boost kthread for the specified node if one does not
 * already exist.  We only create this kthread for preemptible RCU.
 * Returns zero if all is well, a negated errno otherwise.
 */
1210
static int rcu_spawn_one_boost_kthread(struct rcu_state *rsp,
T
Thomas Gleixner 已提交
1211
						 struct rcu_node *rnp)
1212
{
T
Thomas Gleixner 已提交
1213
	int rnp_index = rnp - &rsp->node[0];
1214 1215 1216 1217 1218 1219
	unsigned long flags;
	struct sched_param sp;
	struct task_struct *t;

	if (&rcu_preempt_state != rsp)
		return 0;
T
Thomas Gleixner 已提交
1220 1221 1222 1223

	if (!rcu_scheduler_fully_active || rnp->qsmaskinit == 0)
		return 0;

1224
	rsp->boost = 1;
1225 1226 1227
	if (rnp->boost_kthread_task != NULL)
		return 0;
	t = kthread_create(rcu_boost_kthread, (void *)rnp,
1228
			   "rcub/%d", rnp_index);
1229 1230 1231
	if (IS_ERR(t))
		return PTR_ERR(t);
	raw_spin_lock_irqsave(&rnp->lock, flags);
1232
	smp_mb__after_unlock_lock();
1233 1234
	rnp->boost_kthread_task = t;
	raw_spin_unlock_irqrestore(&rnp->lock, flags);
1235
	sp.sched_priority = kthread_prio;
1236
	sched_setscheduler_nocheck(t, SCHED_FIFO, &sp);
1237
	wake_up_process(t); /* get to TASK_INTERRUPTIBLE quickly. */
1238 1239 1240
	return 0;
}

1241 1242
static void rcu_kthread_do_work(void)
{
1243 1244
	rcu_do_batch(&rcu_sched_state, this_cpu_ptr(&rcu_sched_data));
	rcu_do_batch(&rcu_bh_state, this_cpu_ptr(&rcu_bh_data));
1245 1246 1247
	rcu_preempt_do_callbacks();
}

1248
static void rcu_cpu_kthread_setup(unsigned int cpu)
1249 1250 1251
{
	struct sched_param sp;

1252
	sp.sched_priority = kthread_prio;
1253
	sched_setscheduler_nocheck(current, SCHED_FIFO, &sp);
1254 1255
}

1256
static void rcu_cpu_kthread_park(unsigned int cpu)
1257
{
1258
	per_cpu(rcu_cpu_kthread_status, cpu) = RCU_KTHREAD_OFFCPU;
1259 1260
}

1261
static int rcu_cpu_kthread_should_run(unsigned int cpu)
1262
{
1263
	return __this_cpu_read(rcu_cpu_has_work);
1264 1265 1266 1267
}

/*
 * Per-CPU kernel thread that invokes RCU callbacks.  This replaces the
1268 1269
 * RCU softirq used in flavors and configurations of RCU that do not
 * support RCU priority boosting.
1270
 */
1271
static void rcu_cpu_kthread(unsigned int cpu)
1272
{
1273 1274
	unsigned int *statusp = this_cpu_ptr(&rcu_cpu_kthread_status);
	char work, *workp = this_cpu_ptr(&rcu_cpu_has_work);
1275
	int spincnt;
1276

1277
	for (spincnt = 0; spincnt < 10; spincnt++) {
1278
		trace_rcu_utilization(TPS("Start CPU kthread@rcu_wait"));
1279 1280
		local_bh_disable();
		*statusp = RCU_KTHREAD_RUNNING;
1281 1282
		this_cpu_inc(rcu_cpu_kthread_loops);
		local_irq_disable();
1283 1284
		work = *workp;
		*workp = 0;
1285
		local_irq_enable();
1286 1287 1288
		if (work)
			rcu_kthread_do_work();
		local_bh_enable();
1289
		if (*workp == 0) {
1290
			trace_rcu_utilization(TPS("End CPU kthread@rcu_wait"));
1291 1292
			*statusp = RCU_KTHREAD_WAITING;
			return;
1293 1294
		}
	}
1295
	*statusp = RCU_KTHREAD_YIELDING;
1296
	trace_rcu_utilization(TPS("Start CPU kthread@rcu_yield"));
1297
	schedule_timeout_interruptible(2);
1298
	trace_rcu_utilization(TPS("End CPU kthread@rcu_yield"));
1299
	*statusp = RCU_KTHREAD_WAITING;
1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310
}

/*
 * Set the per-rcu_node kthread's affinity to cover all CPUs that are
 * served by the rcu_node in question.  The CPU hotplug lock is still
 * held, so the value of rnp->qsmaskinit will be stable.
 *
 * We don't include outgoingcpu in the affinity set, use -1 if there is
 * no outgoing CPU.  If there are no CPUs left in the affinity set,
 * this function allows the kthread to execute on any CPU.
 */
T
Thomas Gleixner 已提交
1311
static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu)
1312
{
T
Thomas Gleixner 已提交
1313 1314
	struct task_struct *t = rnp->boost_kthread_task;
	unsigned long mask = rnp->qsmaskinit;
1315 1316 1317
	cpumask_var_t cm;
	int cpu;

T
Thomas Gleixner 已提交
1318
	if (!t)
1319
		return;
T
Thomas Gleixner 已提交
1320
	if (!zalloc_cpumask_var(&cm, GFP_KERNEL))
1321 1322 1323 1324 1325 1326 1327 1328 1329 1330
		return;
	for (cpu = rnp->grplo; cpu <= rnp->grphi; cpu++, mask >>= 1)
		if ((mask & 0x1) && cpu != outgoingcpu)
			cpumask_set_cpu(cpu, cm);
	if (cpumask_weight(cm) == 0) {
		cpumask_setall(cm);
		for (cpu = rnp->grplo; cpu <= rnp->grphi; cpu++)
			cpumask_clear_cpu(cpu, cm);
		WARN_ON_ONCE(cpumask_weight(cm) == 0);
	}
T
Thomas Gleixner 已提交
1331
	set_cpus_allowed_ptr(t, cm);
1332 1333 1334
	free_cpumask_var(cm);
}

1335 1336 1337 1338 1339 1340 1341 1342
static struct smp_hotplug_thread rcu_cpu_thread_spec = {
	.store			= &rcu_cpu_kthread_task,
	.thread_should_run	= rcu_cpu_kthread_should_run,
	.thread_fn		= rcu_cpu_kthread,
	.thread_comm		= "rcuc/%u",
	.setup			= rcu_cpu_kthread_setup,
	.park			= rcu_cpu_kthread_park,
};
1343 1344

/*
1345
 * Spawn boost kthreads -- called as soon as the scheduler is running.
1346
 */
1347
static void __init rcu_spawn_boost_kthreads(void)
1348 1349
{
	struct rcu_node *rnp;
T
Thomas Gleixner 已提交
1350
	int cpu;
1351

1352
	for_each_possible_cpu(cpu)
1353
		per_cpu(rcu_cpu_has_work, cpu) = 0;
1354
	BUG_ON(smpboot_register_percpu_thread(&rcu_cpu_thread_spec));
1355 1356
	rcu_for_each_leaf_node(rcu_state_p, rnp)
		(void)rcu_spawn_one_boost_kthread(rcu_state_p, rnp);
1357 1358
}

1359
static void rcu_prepare_kthreads(int cpu)
1360
{
1361
	struct rcu_data *rdp = per_cpu_ptr(rcu_state_p->rda, cpu);
1362 1363 1364
	struct rcu_node *rnp = rdp->mynode;

	/* Fire up the incoming CPU's kthread and leaf rcu_node kthread. */
1365
	if (rcu_scheduler_fully_active)
1366
		(void)rcu_spawn_one_boost_kthread(rcu_state_p, rnp);
1367 1368
}

1369 1370
#else /* #ifdef CONFIG_RCU_BOOST */

1371
static void rcu_initiate_boost(struct rcu_node *rnp, unsigned long flags)
1372
	__releases(rnp->lock)
1373
{
1374
	raw_spin_unlock_irqrestore(&rnp->lock, flags);
1375 1376
}

1377
static void invoke_rcu_callbacks_kthread(void)
1378
{
1379
	WARN_ON_ONCE(1);
1380 1381
}

1382 1383 1384 1385 1386
static bool rcu_is_callbacks_kthread(void)
{
	return false;
}

1387 1388 1389 1390
static void rcu_preempt_boost_start_gp(struct rcu_node *rnp)
{
}

T
Thomas Gleixner 已提交
1391
static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu)
1392 1393 1394
{
}

1395
static void __init rcu_spawn_boost_kthreads(void)
1396 1397 1398
{
}

1399
static void rcu_prepare_kthreads(int cpu)
1400 1401 1402
{
}

1403 1404
#endif /* #else #ifdef CONFIG_RCU_BOOST */

1405 1406 1407 1408 1409 1410 1411 1412
#if !defined(CONFIG_RCU_FAST_NO_HZ)

/*
 * Check to see if any future RCU-related work will need to be done
 * by the current CPU, even if none need be done immediately, returning
 * 1 if so.  This function is part of the RCU implementation; it is -not-
 * an exported member of the RCU API.
 *
1413 1414
 * Because we not have RCU_FAST_NO_HZ, just check whether this CPU needs
 * any flavor of RCU.
1415
 */
1416
#ifndef CONFIG_RCU_NOCB_CPU_ALL
1417
int rcu_needs_cpu(unsigned long *delta_jiffies)
1418
{
1419
	*delta_jiffies = ULONG_MAX;
1420
	return rcu_cpu_has_callbacks(NULL);
1421
}
1422
#endif /* #ifndef CONFIG_RCU_NOCB_CPU_ALL */
1423 1424 1425 1426 1427

/*
 * Because we do not have RCU_FAST_NO_HZ, don't bother cleaning up
 * after it.
 */
1428
static void rcu_cleanup_after_idle(void)
1429 1430 1431
{
}

1432
/*
1433
 * Do the idle-entry grace-period work, which, because CONFIG_RCU_FAST_NO_HZ=n,
1434 1435
 * is nothing.
 */
1436
static void rcu_prepare_for_idle(void)
1437 1438 1439
{
}

1440 1441 1442 1443 1444 1445 1446 1447
/*
 * Don't bother keeping a running count of the number of RCU callbacks
 * posted because CONFIG_RCU_FAST_NO_HZ=n.
 */
static void rcu_idle_count_callbacks_posted(void)
{
}

1448 1449
#else /* #if !defined(CONFIG_RCU_FAST_NO_HZ) */

1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464
/*
 * This code is invoked when a CPU goes idle, at which point we want
 * to have the CPU do everything required for RCU so that it can enter
 * the energy-efficient dyntick-idle mode.  This is handled by a
 * state machine implemented by rcu_prepare_for_idle() below.
 *
 * The following three proprocessor symbols control this state machine:
 *
 * RCU_IDLE_GP_DELAY gives the number of jiffies that a CPU is permitted
 *	to sleep in dyntick-idle mode with RCU callbacks pending.  This
 *	is sized to be roughly one RCU grace period.  Those energy-efficiency
 *	benchmarkers who might otherwise be tempted to set this to a large
 *	number, be warned: Setting RCU_IDLE_GP_DELAY too high can hang your
 *	system.  And if you are -that- concerned about energy efficiency,
 *	just power the system down and be done with it!
1465 1466 1467
 * RCU_IDLE_LAZY_GP_DELAY gives the number of jiffies that a CPU is
 *	permitted to sleep in dyntick-idle mode with only lazy RCU
 *	callbacks pending.  Setting this too high can OOM your system.
1468 1469 1470 1471 1472
 *
 * The values below work well in practice.  If future workloads require
 * adjustment, they can be converted into kernel config parameters, though
 * making the state machine smarter might be a better option.
 */
1473
#define RCU_IDLE_GP_DELAY 4		/* Roughly one grace period. */
1474
#define RCU_IDLE_LAZY_GP_DELAY (6 * HZ)	/* Roughly six seconds. */
1475

1476 1477 1478 1479
static int rcu_idle_gp_delay = RCU_IDLE_GP_DELAY;
module_param(rcu_idle_gp_delay, int, 0644);
static int rcu_idle_lazy_gp_delay = RCU_IDLE_LAZY_GP_DELAY;
module_param(rcu_idle_lazy_gp_delay, int, 0644);
1480

1481
extern int tick_nohz_active;
1482 1483

/*
1484 1485 1486
 * Try to advance callbacks for all flavors of RCU on the current CPU, but
 * only if it has been awhile since the last time we did so.  Afterwards,
 * if there are any callbacks ready for immediate invocation, return true.
1487
 */
1488
static bool __maybe_unused rcu_try_advance_all_cbs(void)
1489
{
1490 1491
	bool cbs_ready = false;
	struct rcu_data *rdp;
1492
	struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
1493 1494
	struct rcu_node *rnp;
	struct rcu_state *rsp;
1495

1496 1497
	/* Exit early if we advanced recently. */
	if (jiffies == rdtp->last_advance_all)
1498
		return false;
1499 1500
	rdtp->last_advance_all = jiffies;

1501 1502 1503
	for_each_rcu_flavor(rsp) {
		rdp = this_cpu_ptr(rsp->rda);
		rnp = rdp->mynode;
1504

1505 1506 1507 1508 1509 1510 1511
		/*
		 * Don't bother checking unless a grace period has
		 * completed since we last checked and there are
		 * callbacks not yet ready to invoke.
		 */
		if (rdp->completed != rnp->completed &&
		    rdp->nxttail[RCU_DONE_TAIL] != rdp->nxttail[RCU_NEXT_TAIL])
1512
			note_gp_changes(rsp, rdp);
1513

1514 1515 1516 1517
		if (cpu_has_callbacks_ready_to_invoke(rdp))
			cbs_ready = true;
	}
	return cbs_ready;
1518 1519
}

1520
/*
1521 1522 1523 1524
 * Allow the CPU to enter dyntick-idle mode unless it has callbacks ready
 * to invoke.  If the CPU has callbacks, try to advance them.  Tell the
 * caller to set the timeout based on whether or not there are non-lazy
 * callbacks.
1525
 *
1526
 * The caller must have disabled interrupts.
1527
 */
1528
#ifndef CONFIG_RCU_NOCB_CPU_ALL
1529
int rcu_needs_cpu(unsigned long *dj)
1530
{
1531
	struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
1532

1533 1534 1535
	/* Snapshot to detect later posting of non-lazy callback. */
	rdtp->nonlazy_posted_snap = rdtp->nonlazy_posted;

1536
	/* If no callbacks, RCU doesn't need the CPU. */
1537
	if (!rcu_cpu_has_callbacks(&rdtp->all_lazy)) {
1538
		*dj = ULONG_MAX;
1539 1540
		return 0;
	}
1541 1542 1543 1544 1545

	/* Attempt to advance callbacks. */
	if (rcu_try_advance_all_cbs()) {
		/* Some ready to invoke, so initiate later invocation. */
		invoke_rcu_core();
1546 1547
		return 1;
	}
1548 1549 1550
	rdtp->last_accelerate = jiffies;

	/* Request timer delay depending on laziness, and round. */
1551
	if (!rdtp->all_lazy) {
1552 1553
		*dj = round_up(rcu_idle_gp_delay + jiffies,
			       rcu_idle_gp_delay) - jiffies;
1554
	} else {
1555
		*dj = round_jiffies(rcu_idle_lazy_gp_delay + jiffies) - jiffies;
1556
	}
1557 1558
	return 0;
}
1559
#endif /* #ifndef CONFIG_RCU_NOCB_CPU_ALL */
1560

1561
/*
1562 1563 1564 1565 1566 1567
 * Prepare a CPU for idle from an RCU perspective.  The first major task
 * is to sense whether nohz mode has been enabled or disabled via sysfs.
 * The second major task is to check to see if a non-lazy callback has
 * arrived at a CPU that previously had only lazy callbacks.  The third
 * major task is to accelerate (that is, assign grace-period numbers to)
 * any recently arrived callbacks.
1568 1569
 *
 * The caller must have disabled interrupts.
1570
 */
1571
static void rcu_prepare_for_idle(void)
1572
{
1573
#ifndef CONFIG_RCU_NOCB_CPU_ALL
1574
	bool needwake;
1575
	struct rcu_data *rdp;
1576
	struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
1577 1578
	struct rcu_node *rnp;
	struct rcu_state *rsp;
1579 1580 1581
	int tne;

	/* Handle nohz enablement switches conservatively. */
1582
	tne = ACCESS_ONCE(tick_nohz_active);
1583
	if (tne != rdtp->tick_nohz_enabled_snap) {
1584
		if (rcu_cpu_has_callbacks(NULL))
1585 1586 1587 1588 1589 1590
			invoke_rcu_core(); /* force nohz to see update. */
		rdtp->tick_nohz_enabled_snap = tne;
		return;
	}
	if (!tne)
		return;
1591

1592
	/* If this is a no-CBs CPU, no callbacks, just return. */
1593
	if (rcu_is_nocb_cpu(smp_processor_id()))
1594 1595
		return;

1596
	/*
1597 1598 1599
	 * If a non-lazy callback arrived at a CPU having only lazy
	 * callbacks, invoke RCU core for the side-effect of recalculating
	 * idle duration on re-entry to idle.
1600
	 */
1601 1602
	if (rdtp->all_lazy &&
	    rdtp->nonlazy_posted != rdtp->nonlazy_posted_snap) {
1603 1604
		rdtp->all_lazy = false;
		rdtp->nonlazy_posted_snap = rdtp->nonlazy_posted;
1605
		invoke_rcu_core();
1606 1607 1608
		return;
	}

1609
	/*
1610 1611
	 * If we have not yet accelerated this jiffy, accelerate all
	 * callbacks on this CPU.
1612
	 */
1613
	if (rdtp->last_accelerate == jiffies)
1614
		return;
1615 1616
	rdtp->last_accelerate = jiffies;
	for_each_rcu_flavor(rsp) {
1617
		rdp = this_cpu_ptr(rsp->rda);
1618 1619 1620 1621
		if (!*rdp->nxttail[RCU_DONE_TAIL])
			continue;
		rnp = rdp->mynode;
		raw_spin_lock(&rnp->lock); /* irqs already disabled. */
1622
		smp_mb__after_unlock_lock();
1623
		needwake = rcu_accelerate_cbs(rsp, rnp, rdp);
1624
		raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
1625 1626
		if (needwake)
			rcu_gp_kthread_wake(rsp);
1627
	}
1628
#endif /* #ifndef CONFIG_RCU_NOCB_CPU_ALL */
1629
}
1630

1631 1632 1633 1634 1635
/*
 * Clean up for exit from idle.  Attempt to advance callbacks based on
 * any grace periods that elapsed while the CPU was idle, and if any
 * callbacks are now ready to invoke, initiate invocation.
 */
1636
static void rcu_cleanup_after_idle(void)
1637
{
1638
#ifndef CONFIG_RCU_NOCB_CPU_ALL
1639
	if (rcu_is_nocb_cpu(smp_processor_id()))
1640
		return;
1641 1642
	if (rcu_try_advance_all_cbs())
		invoke_rcu_core();
1643
#endif /* #ifndef CONFIG_RCU_NOCB_CPU_ALL */
1644 1645
}

1646
/*
1647 1648 1649 1650 1651 1652
 * Keep a running count of the number of non-lazy callbacks posted
 * on this CPU.  This running counter (which is never decremented) allows
 * rcu_prepare_for_idle() to detect when something out of the idle loop
 * posts a callback, even if an equal number of callbacks are invoked.
 * Of course, callbacks should only be posted from within a trace event
 * designed to be called from idle or from within RCU_NONIDLE().
1653 1654 1655
 */
static void rcu_idle_count_callbacks_posted(void)
{
1656
	__this_cpu_add(rcu_dynticks.nonlazy_posted, 1);
1657 1658
}

1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687
/*
 * Data for flushing lazy RCU callbacks at OOM time.
 */
static atomic_t oom_callback_count;
static DECLARE_WAIT_QUEUE_HEAD(oom_callback_wq);

/*
 * RCU OOM callback -- decrement the outstanding count and deliver the
 * wake-up if we are the last one.
 */
static void rcu_oom_callback(struct rcu_head *rhp)
{
	if (atomic_dec_and_test(&oom_callback_count))
		wake_up(&oom_callback_wq);
}

/*
 * Post an rcu_oom_notify callback on the current CPU if it has at
 * least one lazy callback.  This will unnecessarily post callbacks
 * to CPUs that already have a non-lazy callback at the end of their
 * callback list, but this is an infrequent operation, so accept some
 * extra overhead to keep things simple.
 */
static void rcu_oom_notify_cpu(void *unused)
{
	struct rcu_state *rsp;
	struct rcu_data *rdp;

	for_each_rcu_flavor(rsp) {
1688
		rdp = raw_cpu_ptr(rsp->rda);
1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709
		if (rdp->qlen_lazy != 0) {
			atomic_inc(&oom_callback_count);
			rsp->call(&rdp->oom_head, rcu_oom_callback);
		}
	}
}

/*
 * If low on memory, ensure that each CPU has a non-lazy callback.
 * This will wake up CPUs that have only lazy callbacks, in turn
 * ensuring that they free up the corresponding memory in a timely manner.
 * Because an uncertain amount of memory will be freed in some uncertain
 * timeframe, we do not claim to have freed anything.
 */
static int rcu_oom_notify(struct notifier_block *self,
			  unsigned long notused, void *nfreed)
{
	int cpu;

	/* Wait for callbacks from earlier instance to complete. */
	wait_event(oom_callback_wq, atomic_read(&oom_callback_count) == 0);
1710
	smp_mb(); /* Ensure callback reuse happens after callback invocation. */
1711 1712 1713 1714 1715 1716 1717 1718 1719 1720

	/*
	 * Prevent premature wakeup: ensure that all increments happen
	 * before there is a chance of the counter reaching zero.
	 */
	atomic_set(&oom_callback_count, 1);

	get_online_cpus();
	for_each_online_cpu(cpu) {
		smp_call_function_single(cpu, rcu_oom_notify_cpu, NULL, 1);
1721
		cond_resched_rcu_qs();
1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741
	}
	put_online_cpus();

	/* Unconditionally decrement: no need to wake ourselves up. */
	atomic_dec(&oom_callback_count);

	return NOTIFY_OK;
}

static struct notifier_block rcu_oom_nb = {
	.notifier_call = rcu_oom_notify
};

static int __init rcu_register_oom_notifier(void)
{
	register_oom_notifier(&rcu_oom_nb);
	return 0;
}
early_initcall(rcu_register_oom_notifier);

1742
#endif /* #else #if !defined(CONFIG_RCU_FAST_NO_HZ) */
1743 1744 1745 1746 1747 1748 1749

#ifdef CONFIG_RCU_CPU_STALL_INFO

#ifdef CONFIG_RCU_FAST_NO_HZ

static void print_cpu_stall_fast_no_hz(char *cp, int cpu)
{
1750
	struct rcu_dynticks *rdtp = &per_cpu(rcu_dynticks, cpu);
1751
	unsigned long nlpd = rdtp->nonlazy_posted - rdtp->nonlazy_posted_snap;
1752

1753 1754 1755 1756 1757
	sprintf(cp, "last_accelerate: %04lx/%04lx, nonlazy_posted: %ld, %c%c",
		rdtp->last_accelerate & 0xffff, jiffies & 0xffff,
		ulong2long(nlpd),
		rdtp->all_lazy ? 'L' : '.',
		rdtp->tick_nohz_enabled_snap ? '.' : 'D');
1758 1759 1760 1761 1762 1763
}

#else /* #ifdef CONFIG_RCU_FAST_NO_HZ */

static void print_cpu_stall_fast_no_hz(char *cp, int cpu)
{
1764
	*cp = '\0';
1765 1766 1767 1768 1769 1770 1771
}

#endif /* #else #ifdef CONFIG_RCU_FAST_NO_HZ */

/* Initiate the stall-info list. */
static void print_cpu_stall_info_begin(void)
{
1772
	pr_cont("\n");
1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802
}

/*
 * Print out diagnostic information for the specified stalled CPU.
 *
 * If the specified CPU is aware of the current RCU grace period
 * (flavor specified by rsp), then print the number of scheduling
 * clock interrupts the CPU has taken during the time that it has
 * been aware.  Otherwise, print the number of RCU grace periods
 * that this CPU is ignorant of, for example, "1" if the CPU was
 * aware of the previous grace period.
 *
 * Also print out idle and (if CONFIG_RCU_FAST_NO_HZ) idle-entry info.
 */
static void print_cpu_stall_info(struct rcu_state *rsp, int cpu)
{
	char fast_no_hz[72];
	struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
	struct rcu_dynticks *rdtp = rdp->dynticks;
	char *ticks_title;
	unsigned long ticks_value;

	if (rsp->gpnum == rdp->gpnum) {
		ticks_title = "ticks this GP";
		ticks_value = rdp->ticks_this_gp;
	} else {
		ticks_title = "GPs behind";
		ticks_value = rsp->gpnum - rdp->gpnum;
	}
	print_cpu_stall_fast_no_hz(fast_no_hz, cpu);
1803
	pr_err("\t%d: (%lu %s) idle=%03x/%llx/%d softirq=%u/%u %s\n",
1804 1805 1806
	       cpu, ticks_value, ticks_title,
	       atomic_read(&rdtp->dynticks) & 0xfff,
	       rdtp->dynticks_nesting, rdtp->dynticks_nmi_nesting,
1807
	       rdp->softirq_snap, kstat_softirqs_cpu(RCU_SOFTIRQ, cpu),
1808 1809 1810 1811 1812 1813
	       fast_no_hz);
}

/* Terminate the stall-info list. */
static void print_cpu_stall_info_end(void)
{
1814
	pr_err("\t");
1815 1816 1817 1818 1819 1820
}

/* Zero ->ticks_this_gp for all flavors of RCU. */
static void zero_cpu_stall_ticks(struct rcu_data *rdp)
{
	rdp->ticks_this_gp = 0;
1821
	rdp->softirq_snap = kstat_softirqs_cpu(RCU_SOFTIRQ, smp_processor_id());
1822 1823 1824 1825 1826
}

/* Increment ->ticks_this_gp for all flavors of RCU. */
static void increment_cpu_stall_ticks(void)
{
1827 1828 1829
	struct rcu_state *rsp;

	for_each_rcu_flavor(rsp)
1830
		raw_cpu_inc(rsp->rda->ticks_this_gp);
1831 1832 1833 1834 1835 1836
}

#else /* #ifdef CONFIG_RCU_CPU_STALL_INFO */

static void print_cpu_stall_info_begin(void)
{
1837
	pr_cont(" {");
1838 1839 1840 1841
}

static void print_cpu_stall_info(struct rcu_state *rsp, int cpu)
{
1842
	pr_cont(" %d", cpu);
1843 1844 1845 1846
}

static void print_cpu_stall_info_end(void)
{
1847
	pr_cont("} ");
1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858
}

static void zero_cpu_stall_ticks(struct rcu_data *rdp)
{
}

static void increment_cpu_stall_ticks(void)
{
}

#endif /* #else #ifdef CONFIG_RCU_CPU_STALL_INFO */
P
Paul E. McKenney 已提交
1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892

#ifdef CONFIG_RCU_NOCB_CPU

/*
 * Offload callback processing from the boot-time-specified set of CPUs
 * specified by rcu_nocb_mask.  For each CPU in the set, there is a
 * kthread created that pulls the callbacks from the corresponding CPU,
 * waits for a grace period to elapse, and invokes the callbacks.
 * The no-CBs CPUs do a wake_up() on their kthread when they insert
 * a callback into any empty list, unless the rcu_nocb_poll boot parameter
 * has been specified, in which case each kthread actively polls its
 * CPU.  (Which isn't so great for energy efficiency, but which does
 * reduce RCU's overhead on that CPU.)
 *
 * This is intended to be used in conjunction with Frederic Weisbecker's
 * adaptive-idle work, which would seriously reduce OS jitter on CPUs
 * running CPU-bound user-mode computations.
 *
 * Offloading of callback processing could also in theory be used as
 * an energy-efficiency measure because CPUs with no RCU callbacks
 * queued are more aggressive about entering dyntick-idle mode.
 */


/* Parse the boot-time rcu_nocb_mask CPU list from the kernel parameters. */
static int __init rcu_nocb_setup(char *str)
{
	alloc_bootmem_cpumask_var(&rcu_nocb_mask);
	have_rcu_nocb_mask = true;
	cpulist_parse(str, rcu_nocb_mask);
	return 1;
}
__setup("rcu_nocbs=", rcu_nocb_setup);

1893 1894 1895 1896 1897 1898 1899
static int __init parse_rcu_nocb_poll(char *arg)
{
	rcu_nocb_poll = 1;
	return 0;
}
early_param("rcu_nocb_poll", parse_rcu_nocb_poll);

1900
/*
1901 1902
 * Wake up any no-CBs CPUs' kthreads that were waiting on the just-ended
 * grace period.
1903
 */
1904
static void rcu_nocb_gp_cleanup(struct rcu_state *rsp, struct rcu_node *rnp)
1905
{
1906
	wake_up_all(&rnp->nocb_gp_wq[rnp->completed & 0x1]);
1907 1908 1909
}

/*
1910
 * Set the root rcu_node structure's ->need_future_gp field
1911 1912 1913 1914 1915
 * based on the sum of those of all rcu_node structures.  This does
 * double-count the root rcu_node structure's requests, but this
 * is necessary to handle the possibility of a rcu_nocb_kthread()
 * having awakened during the time that the rcu_node structures
 * were being updated for the end of the previous grace period.
1916
 */
1917 1918
static void rcu_nocb_gp_set(struct rcu_node *rnp, int nrq)
{
1919
	rnp->need_future_gp[(rnp->completed + 1) & 0x1] += nrq;
1920 1921 1922
}

static void rcu_init_one_nocb(struct rcu_node *rnp)
1923
{
1924 1925
	init_waitqueue_head(&rnp->nocb_gp_wq[0]);
	init_waitqueue_head(&rnp->nocb_gp_wq[1]);
1926 1927
}

1928
#ifndef CONFIG_RCU_NOCB_CPU_ALL
L
Liu Ping Fan 已提交
1929
/* Is the specified CPU a no-CBs CPU? */
1930
bool rcu_is_nocb_cpu(int cpu)
P
Paul E. McKenney 已提交
1931 1932 1933 1934 1935
{
	if (have_rcu_nocb_mask)
		return cpumask_test_cpu(cpu, rcu_nocb_mask);
	return false;
}
1936
#endif /* #ifndef CONFIG_RCU_NOCB_CPU_ALL */
P
Paul E. McKenney 已提交
1937

1938 1939 1940 1941 1942 1943 1944 1945 1946
/*
 * Kick the leader kthread for this NOCB group.
 */
static void wake_nocb_leader(struct rcu_data *rdp, bool force)
{
	struct rcu_data *rdp_leader = rdp->nocb_leader;

	if (!ACCESS_ONCE(rdp_leader->nocb_kthread))
		return;
1947
	if (ACCESS_ONCE(rdp_leader->nocb_leader_sleep) || force) {
1948
		/* Prior smp_mb__after_atomic() orders against prior enqueue. */
1949
		ACCESS_ONCE(rdp_leader->nocb_leader_sleep) = false;
1950 1951 1952 1953
		wake_up(&rdp_leader->nocb_wq);
	}
}

1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980
/*
 * Does the specified CPU need an RCU callback for the specified flavor
 * of rcu_barrier()?
 */
static bool rcu_nocb_cpu_needs_barrier(struct rcu_state *rsp, int cpu)
{
	struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
	struct rcu_head *rhp;

	/* No-CBs CPUs might have callbacks on any of three lists. */
	rhp = ACCESS_ONCE(rdp->nocb_head);
	if (!rhp)
		rhp = ACCESS_ONCE(rdp->nocb_gp_head);
	if (!rhp)
		rhp = ACCESS_ONCE(rdp->nocb_follower_head);

	/* Having no rcuo kthread but CBs after scheduler starts is bad! */
	if (!ACCESS_ONCE(rdp->nocb_kthread) && rhp) {
		/* RCU callback enqueued before CPU first came online??? */
		pr_err("RCU: Never-onlined no-CBs CPU %d has CB %p\n",
		       cpu, rhp->func);
		WARN_ON_ONCE(1);
	}

	return !!rhp;
}

P
Paul E. McKenney 已提交
1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991
/*
 * Enqueue the specified string of rcu_head structures onto the specified
 * CPU's no-CBs lists.  The CPU is specified by rdp, the head of the
 * string by rhp, and the tail of the string by rhtp.  The non-lazy/lazy
 * counts are supplied by rhcount and rhcount_lazy.
 *
 * If warranted, also wake up the kthread servicing this CPUs queues.
 */
static void __call_rcu_nocb_enqueue(struct rcu_data *rdp,
				    struct rcu_head *rhp,
				    struct rcu_head **rhtp,
1992 1993
				    int rhcount, int rhcount_lazy,
				    unsigned long flags)
P
Paul E. McKenney 已提交
1994 1995 1996 1997 1998 1999 2000 2001 2002 2003
{
	int len;
	struct rcu_head **old_rhpp;
	struct task_struct *t;

	/* Enqueue the callback on the nocb list and update counts. */
	old_rhpp = xchg(&rdp->nocb_tail, rhtp);
	ACCESS_ONCE(*old_rhpp) = rhp;
	atomic_long_add(rhcount, &rdp->nocb_q_count);
	atomic_long_add(rhcount_lazy, &rdp->nocb_q_count_lazy);
2004
	smp_mb__after_atomic(); /* Store *old_rhpp before _wake test. */
P
Paul E. McKenney 已提交
2005 2006 2007

	/* If we are not being polled and there is a kthread, awaken it ... */
	t = ACCESS_ONCE(rdp->nocb_kthread);
2008
	if (rcu_nocb_poll || !t) {
2009 2010
		trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
				    TPS("WakeNotPoll"));
P
Paul E. McKenney 已提交
2011
		return;
2012
	}
P
Paul E. McKenney 已提交
2013 2014
	len = atomic_long_read(&rdp->nocb_q_count);
	if (old_rhpp == &rdp->nocb_head) {
2015
		if (!irqs_disabled_flags(flags)) {
2016 2017
			/* ... if queue was empty ... */
			wake_nocb_leader(rdp, false);
2018 2019 2020
			trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
					    TPS("WakeEmpty"));
		} else {
2021
			rdp->nocb_defer_wakeup = RCU_NOGP_WAKE;
2022 2023 2024
			trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
					    TPS("WakeEmptyIsDeferred"));
		}
P
Paul E. McKenney 已提交
2025 2026
		rdp->qlen_last_fqs_check = 0;
	} else if (len > rdp->qlen_last_fqs_check + qhimark) {
2027
		/* ... or if many callbacks queued. */
2028 2029 2030 2031 2032 2033 2034 2035 2036
		if (!irqs_disabled_flags(flags)) {
			wake_nocb_leader(rdp, true);
			trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
					    TPS("WakeOvf"));
		} else {
			rdp->nocb_defer_wakeup = RCU_NOGP_WAKE_FORCE;
			trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
					    TPS("WakeOvfIsDeferred"));
		}
P
Paul E. McKenney 已提交
2037
		rdp->qlen_last_fqs_check = LONG_MAX / 2;
2038 2039
	} else {
		trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, TPS("WakeNot"));
P
Paul E. McKenney 已提交
2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053
	}
	return;
}

/*
 * This is a helper for __call_rcu(), which invokes this when the normal
 * callback queue is inoperable.  If this is not a no-CBs CPU, this
 * function returns failure back to __call_rcu(), which can complain
 * appropriately.
 *
 * Otherwise, this function queues the callback where the corresponding
 * "rcuo" kthread can find it.
 */
static bool __call_rcu_nocb(struct rcu_data *rdp, struct rcu_head *rhp,
2054
			    bool lazy, unsigned long flags)
P
Paul E. McKenney 已提交
2055 2056
{

2057
	if (!rcu_is_nocb_cpu(rdp->cpu))
2058
		return false;
2059
	__call_rcu_nocb_enqueue(rdp, rhp, &rhp->next, 1, lazy, flags);
2060 2061 2062
	if (__is_kfree_rcu_offset((unsigned long)rhp->func))
		trace_rcu_kfree_callback(rdp->rsp->name, rhp,
					 (unsigned long)rhp->func,
2063 2064
					 -atomic_long_read(&rdp->nocb_q_count_lazy),
					 -atomic_long_read(&rdp->nocb_q_count));
2065 2066
	else
		trace_rcu_callback(rdp->rsp->name, rhp,
2067 2068
				   -atomic_long_read(&rdp->nocb_q_count_lazy),
				   -atomic_long_read(&rdp->nocb_q_count));
2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079

	/*
	 * If called from an extended quiescent state with interrupts
	 * disabled, invoke the RCU core in order to allow the idle-entry
	 * deferred-wakeup check to function.
	 */
	if (irqs_disabled_flags(flags) &&
	    !rcu_is_watching() &&
	    cpu_online(smp_processor_id()))
		invoke_rcu_core();

2080
	return true;
P
Paul E. McKenney 已提交
2081 2082 2083 2084 2085 2086 2087
}

/*
 * Adopt orphaned callbacks on a no-CBs CPU, or return 0 if this is
 * not a no-CBs CPU.
 */
static bool __maybe_unused rcu_nocb_adopt_orphan_cbs(struct rcu_state *rsp,
2088 2089
						     struct rcu_data *rdp,
						     unsigned long flags)
P
Paul E. McKenney 已提交
2090 2091 2092 2093 2094
{
	long ql = rsp->qlen;
	long qll = rsp->qlen_lazy;

	/* If this is not a no-CBs CPU, tell the caller to do it the old way. */
2095
	if (!rcu_is_nocb_cpu(smp_processor_id()))
2096
		return false;
P
Paul E. McKenney 已提交
2097 2098 2099 2100 2101 2102
	rsp->qlen = 0;
	rsp->qlen_lazy = 0;

	/* First, enqueue the donelist, if any.  This preserves CB ordering. */
	if (rsp->orphan_donelist != NULL) {
		__call_rcu_nocb_enqueue(rdp, rsp->orphan_donelist,
2103
					rsp->orphan_donetail, ql, qll, flags);
P
Paul E. McKenney 已提交
2104 2105 2106 2107 2108 2109
		ql = qll = 0;
		rsp->orphan_donelist = NULL;
		rsp->orphan_donetail = &rsp->orphan_donelist;
	}
	if (rsp->orphan_nxtlist != NULL) {
		__call_rcu_nocb_enqueue(rdp, rsp->orphan_nxtlist,
2110
					rsp->orphan_nxttail, ql, qll, flags);
P
Paul E. McKenney 已提交
2111 2112 2113 2114
		ql = qll = 0;
		rsp->orphan_nxtlist = NULL;
		rsp->orphan_nxttail = &rsp->orphan_nxtlist;
	}
2115
	return true;
P
Paul E. McKenney 已提交
2116 2117 2118
}

/*
2119 2120
 * If necessary, kick off a new grace period, and either way wait
 * for a subsequent grace period to complete.
P
Paul E. McKenney 已提交
2121
 */
2122
static void rcu_nocb_wait_gp(struct rcu_data *rdp)
P
Paul E. McKenney 已提交
2123
{
2124
	unsigned long c;
2125
	bool d;
2126
	unsigned long flags;
2127
	bool needwake;
2128 2129 2130
	struct rcu_node *rnp = rdp->mynode;

	raw_spin_lock_irqsave(&rnp->lock, flags);
2131
	smp_mb__after_unlock_lock();
2132
	needwake = rcu_start_future_gp(rnp, rdp, &c);
2133
	raw_spin_unlock_irqrestore(&rnp->lock, flags);
2134 2135
	if (needwake)
		rcu_gp_kthread_wake(rdp->rsp);
P
Paul E. McKenney 已提交
2136 2137

	/*
2138 2139
	 * Wait for the grace period.  Do so interruptibly to avoid messing
	 * up the load average.
P
Paul E. McKenney 已提交
2140
	 */
2141
	trace_rcu_future_gp(rnp, rdp, c, TPS("StartWait"));
2142
	for (;;) {
2143 2144 2145 2146
		wait_event_interruptible(
			rnp->nocb_gp_wq[c & 0x1],
			(d = ULONG_CMP_GE(ACCESS_ONCE(rnp->completed), c)));
		if (likely(d))
2147
			break;
2148
		WARN_ON(signal_pending(current));
2149
		trace_rcu_future_gp(rnp, rdp, c, TPS("ResumeWait"));
2150
	}
2151
	trace_rcu_future_gp(rnp, rdp, c, TPS("EndWait"));
2152
	smp_mb(); /* Ensure that CB invocation happens after GP end. */
P
Paul E. McKenney 已提交
2153 2154
}

2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171
/*
 * Leaders come here to wait for additional callbacks to show up.
 * This function does not return until callbacks appear.
 */
static void nocb_leader_wait(struct rcu_data *my_rdp)
{
	bool firsttime = true;
	bool gotcbs;
	struct rcu_data *rdp;
	struct rcu_head **tail;

wait_again:

	/* Wait for callbacks to appear. */
	if (!rcu_nocb_poll) {
		trace_rcu_nocb_wake(my_rdp->rsp->name, my_rdp->cpu, "Sleep");
		wait_event_interruptible(my_rdp->nocb_wq,
2172
				!ACCESS_ONCE(my_rdp->nocb_leader_sleep));
2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206
		/* Memory barrier handled by smp_mb() calls below and repoll. */
	} else if (firsttime) {
		firsttime = false; /* Don't drown trace log with "Poll"! */
		trace_rcu_nocb_wake(my_rdp->rsp->name, my_rdp->cpu, "Poll");
	}

	/*
	 * Each pass through the following loop checks a follower for CBs.
	 * We are our own first follower.  Any CBs found are moved to
	 * nocb_gp_head, where they await a grace period.
	 */
	gotcbs = false;
	for (rdp = my_rdp; rdp; rdp = rdp->nocb_next_follower) {
		rdp->nocb_gp_head = ACCESS_ONCE(rdp->nocb_head);
		if (!rdp->nocb_gp_head)
			continue;  /* No CBs here, try next follower. */

		/* Move callbacks to wait-for-GP list, which is empty. */
		ACCESS_ONCE(rdp->nocb_head) = NULL;
		rdp->nocb_gp_tail = xchg(&rdp->nocb_tail, &rdp->nocb_head);
		rdp->nocb_gp_count = atomic_long_xchg(&rdp->nocb_q_count, 0);
		rdp->nocb_gp_count_lazy =
			atomic_long_xchg(&rdp->nocb_q_count_lazy, 0);
		gotcbs = true;
	}

	/*
	 * If there were no callbacks, sleep a bit, rescan after a
	 * memory barrier, and go retry.
	 */
	if (unlikely(!gotcbs)) {
		if (!rcu_nocb_poll)
			trace_rcu_nocb_wake(my_rdp->rsp->name, my_rdp->cpu,
					    "WokeEmpty");
2207
		WARN_ON(signal_pending(current));
2208 2209 2210
		schedule_timeout_interruptible(1);

		/* Rescan in case we were a victim of memory ordering. */
2211 2212
		my_rdp->nocb_leader_sleep = true;
		smp_mb();  /* Ensure _sleep true before scan. */
2213 2214 2215
		for (rdp = my_rdp; rdp; rdp = rdp->nocb_next_follower)
			if (ACCESS_ONCE(rdp->nocb_head)) {
				/* Found CB, so short-circuit next wait. */
2216
				my_rdp->nocb_leader_sleep = false;
2217 2218 2219 2220 2221 2222 2223 2224 2225
				break;
			}
		goto wait_again;
	}

	/* Wait for one grace period. */
	rcu_nocb_wait_gp(my_rdp);

	/*
2226 2227
	 * We left ->nocb_leader_sleep unset to reduce cache thrashing.
	 * We set it now, but recheck for new callbacks while
2228 2229
	 * traversing our follower list.
	 */
2230 2231
	my_rdp->nocb_leader_sleep = true;
	smp_mb(); /* Ensure _sleep true before scan of ->nocb_head. */
2232 2233 2234 2235

	/* Each pass through the following loop wakes a follower, if needed. */
	for (rdp = my_rdp; rdp; rdp = rdp->nocb_next_follower) {
		if (ACCESS_ONCE(rdp->nocb_head))
2236
			my_rdp->nocb_leader_sleep = false;/* No need to sleep.*/
2237 2238 2239 2240 2241 2242 2243 2244 2245
		if (!rdp->nocb_gp_head)
			continue; /* No CBs, so no need to wake follower. */

		/* Append callbacks to follower's "done" list. */
		tail = xchg(&rdp->nocb_follower_tail, rdp->nocb_gp_tail);
		*tail = rdp->nocb_gp_head;
		atomic_long_add(rdp->nocb_gp_count, &rdp->nocb_follower_count);
		atomic_long_add(rdp->nocb_gp_count_lazy,
				&rdp->nocb_follower_count_lazy);
2246
		smp_mb__after_atomic(); /* Store *tail before wakeup. */
2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286
		if (rdp != my_rdp && tail == &rdp->nocb_follower_head) {
			/*
			 * List was empty, wake up the follower.
			 * Memory barriers supplied by atomic_long_add().
			 */
			wake_up(&rdp->nocb_wq);
		}
	}

	/* If we (the leader) don't have CBs, go wait some more. */
	if (!my_rdp->nocb_follower_head)
		goto wait_again;
}

/*
 * Followers come here to wait for additional callbacks to show up.
 * This function does not return until callbacks appear.
 */
static void nocb_follower_wait(struct rcu_data *rdp)
{
	bool firsttime = true;

	for (;;) {
		if (!rcu_nocb_poll) {
			trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
					    "FollowerSleep");
			wait_event_interruptible(rdp->nocb_wq,
						 ACCESS_ONCE(rdp->nocb_follower_head));
		} else if (firsttime) {
			/* Don't drown trace log with "Poll"! */
			firsttime = false;
			trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, "Poll");
		}
		if (smp_load_acquire(&rdp->nocb_follower_head)) {
			/* ^^^ Ensure CB invocation follows _head test. */
			return;
		}
		if (!rcu_nocb_poll)
			trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
					    "WokeEmpty");
2287
		WARN_ON(signal_pending(current));
2288 2289 2290 2291
		schedule_timeout_interruptible(1);
	}
}

P
Paul E. McKenney 已提交
2292 2293
/*
 * Per-rcu_data kthread, but only for no-CBs CPUs.  Each kthread invokes
2294 2295 2296
 * callbacks queued by the corresponding no-CBs CPU, however, there is
 * an optional leader-follower relationship so that the grace-period
 * kthreads don't have to do quite so many wakeups.
P
Paul E. McKenney 已提交
2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307
 */
static int rcu_nocb_kthread(void *arg)
{
	int c, cl;
	struct rcu_head *list;
	struct rcu_head *next;
	struct rcu_head **tail;
	struct rcu_data *rdp = arg;

	/* Each pass through this loop invokes one batch of callbacks */
	for (;;) {
2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323
		/* Wait for callbacks. */
		if (rdp->nocb_leader == rdp)
			nocb_leader_wait(rdp);
		else
			nocb_follower_wait(rdp);

		/* Pull the ready-to-invoke callbacks onto local list. */
		list = ACCESS_ONCE(rdp->nocb_follower_head);
		BUG_ON(!list);
		trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, "WokeNonEmpty");
		ACCESS_ONCE(rdp->nocb_follower_head) = NULL;
		tail = xchg(&rdp->nocb_follower_tail, &rdp->nocb_follower_head);
		c = atomic_long_xchg(&rdp->nocb_follower_count, 0);
		cl = atomic_long_xchg(&rdp->nocb_follower_count_lazy, 0);
		rdp->nocb_p_count += c;
		rdp->nocb_p_count_lazy += cl;
P
Paul E. McKenney 已提交
2324 2325 2326 2327 2328 2329 2330 2331

		/* Each pass through the following loop invokes a callback. */
		trace_rcu_batch_start(rdp->rsp->name, cl, c, -1);
		c = cl = 0;
		while (list) {
			next = list->next;
			/* Wait for enqueuing to complete, if needed. */
			while (next == NULL && &list->next != tail) {
2332 2333
				trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
						    TPS("WaitQueue"));
P
Paul E. McKenney 已提交
2334
				schedule_timeout_interruptible(1);
2335 2336
				trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
						    TPS("WokeQueue"));
P
Paul E. McKenney 已提交
2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347
				next = list->next;
			}
			debug_rcu_head_unqueue(list);
			local_bh_disable();
			if (__rcu_reclaim(rdp->rsp->name, list))
				cl++;
			c++;
			local_bh_enable();
			list = next;
		}
		trace_rcu_batch_end(rdp->rsp->name, c, !!list, 0, 0, 1);
2348 2349 2350
		ACCESS_ONCE(rdp->nocb_p_count) = rdp->nocb_p_count - c;
		ACCESS_ONCE(rdp->nocb_p_count_lazy) =
						rdp->nocb_p_count_lazy - cl;
2351
		rdp->n_nocbs_invoked += c;
P
Paul E. McKenney 已提交
2352 2353 2354 2355
	}
	return 0;
}

2356
/* Is a deferred wakeup of rcu_nocb_kthread() required? */
2357
static int rcu_nocb_need_deferred_wakeup(struct rcu_data *rdp)
2358 2359 2360 2361 2362 2363 2364
{
	return ACCESS_ONCE(rdp->nocb_defer_wakeup);
}

/* Do a deferred wakeup of rcu_nocb_kthread(). */
static void do_nocb_deferred_wakeup(struct rcu_data *rdp)
{
2365 2366
	int ndw;

2367 2368
	if (!rcu_nocb_need_deferred_wakeup(rdp))
		return;
2369 2370 2371 2372
	ndw = ACCESS_ONCE(rdp->nocb_defer_wakeup);
	ACCESS_ONCE(rdp->nocb_defer_wakeup) = RCU_NOGP_WAKE_NOT;
	wake_nocb_leader(rdp, ndw == RCU_NOGP_WAKE_FORCE);
	trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, TPS("DeferredWake"));
2373 2374
}

2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390
void __init rcu_init_nohz(void)
{
	int cpu;
	bool need_rcu_nocb_mask = true;
	struct rcu_state *rsp;

#ifdef CONFIG_RCU_NOCB_CPU_NONE
	need_rcu_nocb_mask = false;
#endif /* #ifndef CONFIG_RCU_NOCB_CPU_NONE */

#if defined(CONFIG_NO_HZ_FULL)
	if (tick_nohz_full_running && cpumask_weight(tick_nohz_full_mask))
		need_rcu_nocb_mask = true;
#endif /* #if defined(CONFIG_NO_HZ_FULL) */

	if (!have_rcu_nocb_mask && need_rcu_nocb_mask) {
2391 2392 2393 2394
		if (!zalloc_cpumask_var(&rcu_nocb_mask, GFP_KERNEL)) {
			pr_info("rcu_nocb_mask allocation failed, callback offloading disabled.\n");
			return;
		}
2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435
		have_rcu_nocb_mask = true;
	}
	if (!have_rcu_nocb_mask)
		return;

#ifdef CONFIG_RCU_NOCB_CPU_ZERO
	pr_info("\tOffload RCU callbacks from CPU 0\n");
	cpumask_set_cpu(0, rcu_nocb_mask);
#endif /* #ifdef CONFIG_RCU_NOCB_CPU_ZERO */
#ifdef CONFIG_RCU_NOCB_CPU_ALL
	pr_info("\tOffload RCU callbacks from all CPUs\n");
	cpumask_copy(rcu_nocb_mask, cpu_possible_mask);
#endif /* #ifdef CONFIG_RCU_NOCB_CPU_ALL */
#if defined(CONFIG_NO_HZ_FULL)
	if (tick_nohz_full_running)
		cpumask_or(rcu_nocb_mask, rcu_nocb_mask, tick_nohz_full_mask);
#endif /* #if defined(CONFIG_NO_HZ_FULL) */

	if (!cpumask_subset(rcu_nocb_mask, cpu_possible_mask)) {
		pr_info("\tNote: kernel parameter 'rcu_nocbs=' contains nonexistent CPUs.\n");
		cpumask_and(rcu_nocb_mask, cpu_possible_mask,
			    rcu_nocb_mask);
	}
	cpulist_scnprintf(nocb_buf, sizeof(nocb_buf), rcu_nocb_mask);
	pr_info("\tOffload RCU callbacks from CPUs: %s.\n", nocb_buf);
	if (rcu_nocb_poll)
		pr_info("\tPoll for callbacks from no-CBs CPUs.\n");

	for_each_rcu_flavor(rsp) {
		for_each_cpu(cpu, rcu_nocb_mask) {
			struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);

			/*
			 * If there are early callbacks, they will need
			 * to be moved to the nocb lists.
			 */
			WARN_ON_ONCE(rdp->nxttail[RCU_NEXT_TAIL] !=
				     &rdp->nxtlist &&
				     rdp->nxttail[RCU_NEXT_TAIL] != NULL);
			init_nocb_callback_list(rdp);
		}
2436
		rcu_organize_nocb_kthreads(rsp);
2437
	}
2438 2439
}

P
Paul E. McKenney 已提交
2440 2441 2442 2443 2444
/* Initialize per-rcu_data variables for no-CBs CPUs. */
static void __init rcu_boot_init_nocb_percpu_data(struct rcu_data *rdp)
{
	rdp->nocb_tail = &rdp->nocb_head;
	init_waitqueue_head(&rdp->nocb_wq);
2445
	rdp->nocb_follower_tail = &rdp->nocb_follower_head;
P
Paul E. McKenney 已提交
2446 2447
}

2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477
/*
 * If the specified CPU is a no-CBs CPU that does not already have its
 * rcuo kthread for the specified RCU flavor, spawn it.  If the CPUs are
 * brought online out of order, this can require re-organizing the
 * leader-follower relationships.
 */
static void rcu_spawn_one_nocb_kthread(struct rcu_state *rsp, int cpu)
{
	struct rcu_data *rdp;
	struct rcu_data *rdp_last;
	struct rcu_data *rdp_old_leader;
	struct rcu_data *rdp_spawn = per_cpu_ptr(rsp->rda, cpu);
	struct task_struct *t;

	/*
	 * If this isn't a no-CBs CPU or if it already has an rcuo kthread,
	 * then nothing to do.
	 */
	if (!rcu_is_nocb_cpu(cpu) || rdp_spawn->nocb_kthread)
		return;

	/* If we didn't spawn the leader first, reorganize! */
	rdp_old_leader = rdp_spawn->nocb_leader;
	if (rdp_old_leader != rdp_spawn && !rdp_old_leader->nocb_kthread) {
		rdp_last = NULL;
		rdp = rdp_old_leader;
		do {
			rdp->nocb_leader = rdp_spawn;
			if (rdp_last && rdp != rdp_spawn)
				rdp_last->nocb_next_follower = rdp;
2478 2479 2480 2481 2482 2483 2484
			if (rdp == rdp_spawn) {
				rdp = rdp->nocb_next_follower;
			} else {
				rdp_last = rdp;
				rdp = rdp->nocb_next_follower;
				rdp_last->nocb_next_follower = NULL;
			}
2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522
		} while (rdp);
		rdp_spawn->nocb_next_follower = rdp_old_leader;
	}

	/* Spawn the kthread for this CPU and RCU flavor. */
	t = kthread_run(rcu_nocb_kthread, rdp_spawn,
			"rcuo%c/%d", rsp->abbr, cpu);
	BUG_ON(IS_ERR(t));
	ACCESS_ONCE(rdp_spawn->nocb_kthread) = t;
}

/*
 * If the specified CPU is a no-CBs CPU that does not already have its
 * rcuo kthreads, spawn them.
 */
static void rcu_spawn_all_nocb_kthreads(int cpu)
{
	struct rcu_state *rsp;

	if (rcu_scheduler_fully_active)
		for_each_rcu_flavor(rsp)
			rcu_spawn_one_nocb_kthread(rsp, cpu);
}

/*
 * Once the scheduler is running, spawn rcuo kthreads for all online
 * no-CBs CPUs.  This assumes that the early_initcall()s happen before
 * non-boot CPUs come online -- if this changes, we will need to add
 * some mutual exclusion.
 */
static void __init rcu_spawn_nocb_kthreads(void)
{
	int cpu;

	for_each_online_cpu(cpu)
		rcu_spawn_all_nocb_kthreads(cpu);
}

2523 2524 2525 2526 2527
/* How many follower CPU IDs per leader?  Default of -1 for sqrt(nr_cpu_ids). */
static int rcu_nocb_leader_stride = -1;
module_param(rcu_nocb_leader_stride, int, 0444);

/*
2528
 * Initialize leader-follower relationships for all no-CBs CPU.
2529
 */
2530
static void __init rcu_organize_nocb_kthreads(struct rcu_state *rsp)
P
Paul E. McKenney 已提交
2531 2532
{
	int cpu;
2533 2534
	int ls = rcu_nocb_leader_stride;
	int nl = 0;  /* Next leader. */
P
Paul E. McKenney 已提交
2535
	struct rcu_data *rdp;
2536 2537
	struct rcu_data *rdp_leader = NULL;  /* Suppress misguided gcc warn. */
	struct rcu_data *rdp_prev = NULL;
P
Paul E. McKenney 已提交
2538

2539
	if (!have_rcu_nocb_mask)
P
Paul E. McKenney 已提交
2540
		return;
2541 2542 2543 2544 2545 2546 2547 2548 2549
	if (ls == -1) {
		ls = int_sqrt(nr_cpu_ids);
		rcu_nocb_leader_stride = ls;
	}

	/*
	 * Each pass through this loop sets up one rcu_data structure and
	 * spawns one rcu_nocb_kthread().
	 */
P
Paul E. McKenney 已提交
2550 2551
	for_each_cpu(cpu, rcu_nocb_mask) {
		rdp = per_cpu_ptr(rsp->rda, cpu);
2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562
		if (rdp->cpu >= nl) {
			/* New leader, set up for followers & next leader. */
			nl = DIV_ROUND_UP(rdp->cpu + 1, ls) * ls;
			rdp->nocb_leader = rdp;
			rdp_leader = rdp;
		} else {
			/* Another follower, link to previous leader. */
			rdp->nocb_leader = rdp_leader;
			rdp_prev->nocb_next_follower = rdp;
		}
		rdp_prev = rdp;
P
Paul E. McKenney 已提交
2563 2564 2565 2566
	}
}

/* Prevent __call_rcu() from enqueuing callbacks on no-CBs CPUs */
2567
static bool init_nocb_callback_list(struct rcu_data *rdp)
P
Paul E. McKenney 已提交
2568
{
2569
	if (!rcu_is_nocb_cpu(rdp->cpu))
2570
		return false;
2571

P
Paul E. McKenney 已提交
2572
	rdp->nxttail[RCU_NEXT_TAIL] = NULL;
2573
	return true;
P
Paul E. McKenney 已提交
2574 2575
}

2576 2577
#else /* #ifdef CONFIG_RCU_NOCB_CPU */

2578 2579 2580 2581 2582 2583
static bool rcu_nocb_cpu_needs_barrier(struct rcu_state *rsp, int cpu)
{
	WARN_ON_ONCE(1); /* Should be dead code. */
	return false;
}

2584
static void rcu_nocb_gp_cleanup(struct rcu_state *rsp, struct rcu_node *rnp)
P
Paul E. McKenney 已提交
2585 2586 2587
{
}

2588 2589 2590 2591 2592 2593 2594
static void rcu_nocb_gp_set(struct rcu_node *rnp, int nrq)
{
}

static void rcu_init_one_nocb(struct rcu_node *rnp)
{
}
P
Paul E. McKenney 已提交
2595 2596

static bool __call_rcu_nocb(struct rcu_data *rdp, struct rcu_head *rhp,
2597
			    bool lazy, unsigned long flags)
P
Paul E. McKenney 已提交
2598
{
2599
	return false;
P
Paul E. McKenney 已提交
2600 2601 2602
}

static bool __maybe_unused rcu_nocb_adopt_orphan_cbs(struct rcu_state *rsp,
2603 2604
						     struct rcu_data *rdp,
						     unsigned long flags)
P
Paul E. McKenney 已提交
2605
{
2606
	return false;
P
Paul E. McKenney 已提交
2607 2608 2609 2610 2611 2612
}

static void __init rcu_boot_init_nocb_percpu_data(struct rcu_data *rdp)
{
}

2613
static int rcu_nocb_need_deferred_wakeup(struct rcu_data *rdp)
2614 2615 2616 2617 2618 2619 2620 2621
{
	return false;
}

static void do_nocb_deferred_wakeup(struct rcu_data *rdp)
{
}

2622 2623 2624 2625 2626
static void rcu_spawn_all_nocb_kthreads(int cpu)
{
}

static void __init rcu_spawn_nocb_kthreads(void)
P
Paul E. McKenney 已提交
2627 2628 2629
{
}

2630
static bool init_nocb_callback_list(struct rcu_data *rdp)
P
Paul E. McKenney 已提交
2631
{
2632
	return false;
P
Paul E. McKenney 已提交
2633 2634 2635
}

#endif /* #else #ifdef CONFIG_RCU_NOCB_CPU */
2636 2637 2638 2639 2640 2641 2642 2643 2644 2645

/*
 * An adaptive-ticks CPU can potentially execute in kernel mode for an
 * arbitrarily long period of time with the scheduling-clock tick turned
 * off.  RCU will be paying attention to this CPU because it is in the
 * kernel, but the CPU cannot be guaranteed to be executing the RCU state
 * machine because the scheduling-clock tick has been disabled.  Therefore,
 * if an adaptive-ticks CPU is failing to respond to the current grace
 * period and has not be idle from an RCU perspective, kick it.
 */
2646
static void __maybe_unused rcu_kick_nohz_cpu(int cpu)
2647 2648 2649 2650 2651 2652
{
#ifdef CONFIG_NO_HZ_FULL
	if (tick_nohz_full_cpu(cpu))
		smp_send_reschedule(cpu);
#endif /* #ifdef CONFIG_NO_HZ_FULL */
}
2653 2654 2655 2656


#ifdef CONFIG_NO_HZ_FULL_SYSIDLE

2657
static int full_sysidle_state;		/* Current system-idle state. */
2658 2659 2660 2661 2662 2663
#define RCU_SYSIDLE_NOT		0	/* Some CPU is not idle. */
#define RCU_SYSIDLE_SHORT	1	/* All CPUs idle for brief period. */
#define RCU_SYSIDLE_LONG	2	/* All CPUs idle for long enough. */
#define RCU_SYSIDLE_FULL	3	/* All CPUs idle, ready for sysidle. */
#define RCU_SYSIDLE_FULL_NOTED	4	/* Actually entered sysidle state. */

2664 2665 2666 2667 2668 2669
/*
 * Invoked to note exit from irq or task transition to idle.  Note that
 * usermode execution does -not- count as idle here!  After all, we want
 * to detect full-system idle states, not RCU quiescent states and grace
 * periods.  The caller must have disabled interrupts.
 */
2670
static void rcu_sysidle_enter(int irq)
2671 2672
{
	unsigned long j;
2673
	struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
2674

2675 2676 2677 2678
	/* If there are no nohz_full= CPUs, no need to track this. */
	if (!tick_nohz_full_enabled())
		return;

2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698
	/* Adjust nesting, check for fully idle. */
	if (irq) {
		rdtp->dynticks_idle_nesting--;
		WARN_ON_ONCE(rdtp->dynticks_idle_nesting < 0);
		if (rdtp->dynticks_idle_nesting != 0)
			return;  /* Still not fully idle. */
	} else {
		if ((rdtp->dynticks_idle_nesting & DYNTICK_TASK_NEST_MASK) ==
		    DYNTICK_TASK_NEST_VALUE) {
			rdtp->dynticks_idle_nesting = 0;
		} else {
			rdtp->dynticks_idle_nesting -= DYNTICK_TASK_NEST_VALUE;
			WARN_ON_ONCE(rdtp->dynticks_idle_nesting < 0);
			return;  /* Still not fully idle. */
		}
	}

	/* Record start of fully idle period. */
	j = jiffies;
	ACCESS_ONCE(rdtp->dynticks_idle_jiffies) = j;
2699
	smp_mb__before_atomic();
2700
	atomic_inc(&rdtp->dynticks_idle);
2701
	smp_mb__after_atomic();
2702 2703 2704
	WARN_ON_ONCE(atomic_read(&rdtp->dynticks_idle) & 0x1);
}

2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736
/*
 * Unconditionally force exit from full system-idle state.  This is
 * invoked when a normal CPU exits idle, but must be called separately
 * for the timekeeping CPU (tick_do_timer_cpu).  The reason for this
 * is that the timekeeping CPU is permitted to take scheduling-clock
 * interrupts while the system is in system-idle state, and of course
 * rcu_sysidle_exit() has no way of distinguishing a scheduling-clock
 * interrupt from any other type of interrupt.
 */
void rcu_sysidle_force_exit(void)
{
	int oldstate = ACCESS_ONCE(full_sysidle_state);
	int newoldstate;

	/*
	 * Each pass through the following loop attempts to exit full
	 * system-idle state.  If contention proves to be a problem,
	 * a trylock-based contention tree could be used here.
	 */
	while (oldstate > RCU_SYSIDLE_SHORT) {
		newoldstate = cmpxchg(&full_sysidle_state,
				      oldstate, RCU_SYSIDLE_NOT);
		if (oldstate == newoldstate &&
		    oldstate == RCU_SYSIDLE_FULL_NOTED) {
			rcu_kick_nohz_cpu(tick_do_timer_cpu);
			return; /* We cleared it, done! */
		}
		oldstate = newoldstate;
	}
	smp_mb(); /* Order initial oldstate fetch vs. later non-idle work. */
}

2737 2738 2739 2740 2741
/*
 * Invoked to note entry to irq or task transition from idle.  Note that
 * usermode execution does -not- count as idle here!  The caller must
 * have disabled interrupts.
 */
2742
static void rcu_sysidle_exit(int irq)
2743
{
2744 2745
	struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);

2746 2747 2748 2749
	/* If there are no nohz_full= CPUs, no need to track this. */
	if (!tick_nohz_full_enabled())
		return;

2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771
	/* Adjust nesting, check for already non-idle. */
	if (irq) {
		rdtp->dynticks_idle_nesting++;
		WARN_ON_ONCE(rdtp->dynticks_idle_nesting <= 0);
		if (rdtp->dynticks_idle_nesting != 1)
			return; /* Already non-idle. */
	} else {
		/*
		 * Allow for irq misnesting.  Yes, it really is possible
		 * to enter an irq handler then never leave it, and maybe
		 * also vice versa.  Handle both possibilities.
		 */
		if (rdtp->dynticks_idle_nesting & DYNTICK_TASK_NEST_MASK) {
			rdtp->dynticks_idle_nesting += DYNTICK_TASK_NEST_VALUE;
			WARN_ON_ONCE(rdtp->dynticks_idle_nesting <= 0);
			return; /* Already non-idle. */
		} else {
			rdtp->dynticks_idle_nesting = DYNTICK_TASK_EXIT_IDLE;
		}
	}

	/* Record end of idle period. */
2772
	smp_mb__before_atomic();
2773
	atomic_inc(&rdtp->dynticks_idle);
2774
	smp_mb__after_atomic();
2775
	WARN_ON_ONCE(!(atomic_read(&rdtp->dynticks_idle) & 0x1));
2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803

	/*
	 * If we are the timekeeping CPU, we are permitted to be non-idle
	 * during a system-idle state.  This must be the case, because
	 * the timekeeping CPU has to take scheduling-clock interrupts
	 * during the time that the system is transitioning to full
	 * system-idle state.  This means that the timekeeping CPU must
	 * invoke rcu_sysidle_force_exit() directly if it does anything
	 * more than take a scheduling-clock interrupt.
	 */
	if (smp_processor_id() == tick_do_timer_cpu)
		return;

	/* Update system-idle state: We are clearly no longer fully idle! */
	rcu_sysidle_force_exit();
}

/*
 * Check to see if the current CPU is idle.  Note that usermode execution
 * does not count as idle.  The caller must have disabled interrupts.
 */
static void rcu_sysidle_check_cpu(struct rcu_data *rdp, bool *isidle,
				  unsigned long *maxj)
{
	int cur;
	unsigned long j;
	struct rcu_dynticks *rdtp = rdp->dynticks;

2804 2805 2806 2807
	/* If there are no nohz_full= CPUs, don't check system-wide idleness. */
	if (!tick_nohz_full_enabled())
		return;

2808 2809 2810 2811 2812
	/*
	 * If some other CPU has already reported non-idle, if this is
	 * not the flavor of RCU that tracks sysidle state, or if this
	 * is an offline or the timekeeping CPU, nothing to do.
	 */
2813
	if (!*isidle || rdp->rsp != rcu_state_p ||
2814 2815
	    cpu_is_offline(rdp->cpu) || rdp->cpu == tick_do_timer_cpu)
		return;
2816 2817
	if (rcu_gp_in_progress(rdp->rsp))
		WARN_ON_ONCE(smp_processor_id() != tick_do_timer_cpu);
2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838

	/* Pick up current idle and NMI-nesting counter and check. */
	cur = atomic_read(&rdtp->dynticks_idle);
	if (cur & 0x1) {
		*isidle = false; /* We are not idle! */
		return;
	}
	smp_mb(); /* Read counters before timestamps. */

	/* Pick up timestamps. */
	j = ACCESS_ONCE(rdtp->dynticks_idle_jiffies);
	/* If this CPU entered idle more recently, update maxj timestamp. */
	if (ULONG_CMP_LT(*maxj, j))
		*maxj = j;
}

/*
 * Is this the flavor of RCU that is handling full-system idle?
 */
static bool is_sysidle_rcu_state(struct rcu_state *rsp)
{
2839
	return rsp == rcu_state_p;
2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905
}

/*
 * Return a delay in jiffies based on the number of CPUs, rcu_node
 * leaf fanout, and jiffies tick rate.  The idea is to allow larger
 * systems more time to transition to full-idle state in order to
 * avoid the cache thrashing that otherwise occur on the state variable.
 * Really small systems (less than a couple of tens of CPUs) should
 * instead use a single global atomically incremented counter, and later
 * versions of this will automatically reconfigure themselves accordingly.
 */
static unsigned long rcu_sysidle_delay(void)
{
	if (nr_cpu_ids <= CONFIG_NO_HZ_FULL_SYSIDLE_SMALL)
		return 0;
	return DIV_ROUND_UP(nr_cpu_ids * HZ, rcu_fanout_leaf * 1000);
}

/*
 * Advance the full-system-idle state.  This is invoked when all of
 * the non-timekeeping CPUs are idle.
 */
static void rcu_sysidle(unsigned long j)
{
	/* Check the current state. */
	switch (ACCESS_ONCE(full_sysidle_state)) {
	case RCU_SYSIDLE_NOT:

		/* First time all are idle, so note a short idle period. */
		ACCESS_ONCE(full_sysidle_state) = RCU_SYSIDLE_SHORT;
		break;

	case RCU_SYSIDLE_SHORT:

		/*
		 * Idle for a bit, time to advance to next state?
		 * cmpxchg failure means race with non-idle, let them win.
		 */
		if (ULONG_CMP_GE(jiffies, j + rcu_sysidle_delay()))
			(void)cmpxchg(&full_sysidle_state,
				      RCU_SYSIDLE_SHORT, RCU_SYSIDLE_LONG);
		break;

	case RCU_SYSIDLE_LONG:

		/*
		 * Do an additional check pass before advancing to full.
		 * cmpxchg failure means race with non-idle, let them win.
		 */
		if (ULONG_CMP_GE(jiffies, j + rcu_sysidle_delay()))
			(void)cmpxchg(&full_sysidle_state,
				      RCU_SYSIDLE_LONG, RCU_SYSIDLE_FULL);
		break;

	default:
		break;
	}
}

/*
 * Found a non-idle non-timekeeping CPU, so kick the system-idle state
 * back to the beginning.
 */
static void rcu_sysidle_cancel(void)
{
	smp_mb();
2906 2907
	if (full_sysidle_state > RCU_SYSIDLE_SHORT)
		ACCESS_ONCE(full_sysidle_state) = RCU_SYSIDLE_NOT;
2908 2909 2910 2911 2912 2913 2914 2915 2916
}

/*
 * Update the sysidle state based on the results of a force-quiescent-state
 * scan of the CPUs' dyntick-idle state.
 */
static void rcu_sysidle_report(struct rcu_state *rsp, int isidle,
			       unsigned long maxj, bool gpkt)
{
2917
	if (rsp != rcu_state_p)
2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933
		return;  /* Wrong flavor, ignore. */
	if (gpkt && nr_cpu_ids <= CONFIG_NO_HZ_FULL_SYSIDLE_SMALL)
		return;  /* Running state machine from timekeeping CPU. */
	if (isidle)
		rcu_sysidle(maxj);    /* More idle! */
	else
		rcu_sysidle_cancel(); /* Idle is over. */
}

/*
 * Wrapper for rcu_sysidle_report() when called from the grace-period
 * kthread's context.
 */
static void rcu_sysidle_report_gp(struct rcu_state *rsp, int isidle,
				  unsigned long maxj)
{
2934 2935 2936 2937
	/* If there are no nohz_full= CPUs, no need to track this. */
	if (!tick_nohz_full_enabled())
		return;

2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963
	rcu_sysidle_report(rsp, isidle, maxj, true);
}

/* Callback and function for forcing an RCU grace period. */
struct rcu_sysidle_head {
	struct rcu_head rh;
	int inuse;
};

static void rcu_sysidle_cb(struct rcu_head *rhp)
{
	struct rcu_sysidle_head *rshp;

	/*
	 * The following memory barrier is needed to replace the
	 * memory barriers that would normally be in the memory
	 * allocator.
	 */
	smp_mb();  /* grace period precedes setting inuse. */

	rshp = container_of(rhp, struct rcu_sysidle_head, rh);
	ACCESS_ONCE(rshp->inuse) = 0;
}

/*
 * Check to see if the system is fully idle, other than the timekeeping CPU.
2964 2965
 * The caller must have disabled interrupts.  This is not intended to be
 * called unless tick_nohz_full_enabled().
2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990
 */
bool rcu_sys_is_idle(void)
{
	static struct rcu_sysidle_head rsh;
	int rss = ACCESS_ONCE(full_sysidle_state);

	if (WARN_ON_ONCE(smp_processor_id() != tick_do_timer_cpu))
		return false;

	/* Handle small-system case by doing a full scan of CPUs. */
	if (nr_cpu_ids <= CONFIG_NO_HZ_FULL_SYSIDLE_SMALL) {
		int oldrss = rss - 1;

		/*
		 * One pass to advance to each state up to _FULL.
		 * Give up if any pass fails to advance the state.
		 */
		while (rss < RCU_SYSIDLE_FULL && oldrss < rss) {
			int cpu;
			bool isidle = true;
			unsigned long maxj = jiffies - ULONG_MAX / 4;
			struct rcu_data *rdp;

			/* Scan all the CPUs looking for nonidle CPUs. */
			for_each_possible_cpu(cpu) {
2991
				rdp = per_cpu_ptr(rcu_state_p->rda, cpu);
2992 2993 2994 2995
				rcu_sysidle_check_cpu(rdp, &isidle, &maxj);
				if (!isidle)
					break;
			}
2996
			rcu_sysidle_report(rcu_state_p, isidle, maxj, false);
2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022
			oldrss = rss;
			rss = ACCESS_ONCE(full_sysidle_state);
		}
	}

	/* If this is the first observation of an idle period, record it. */
	if (rss == RCU_SYSIDLE_FULL) {
		rss = cmpxchg(&full_sysidle_state,
			      RCU_SYSIDLE_FULL, RCU_SYSIDLE_FULL_NOTED);
		return rss == RCU_SYSIDLE_FULL;
	}

	smp_mb(); /* ensure rss load happens before later caller actions. */

	/* If already fully idle, tell the caller (in case of races). */
	if (rss == RCU_SYSIDLE_FULL_NOTED)
		return true;

	/*
	 * If we aren't there yet, and a grace period is not in flight,
	 * initiate a grace period.  Either way, tell the caller that
	 * we are not there yet.  We use an xchg() rather than an assignment
	 * to make up for the memory barriers that would otherwise be
	 * provided by the memory allocator.
	 */
	if (nr_cpu_ids > CONFIG_NO_HZ_FULL_SYSIDLE_SMALL &&
3023
	    !rcu_gp_in_progress(rcu_state_p) &&
3024 3025 3026
	    !rsh.inuse && xchg(&rsh.inuse, 1) == 0)
		call_rcu(&rsh.rh, rcu_sysidle_cb);
	return false;
3027 3028
}

3029 3030 3031 3032 3033 3034 3035 3036 3037 3038
/*
 * Initialize dynticks sysidle state for CPUs coming online.
 */
static void rcu_sysidle_init_percpu_data(struct rcu_dynticks *rdtp)
{
	rdtp->dynticks_idle_nesting = DYNTICK_TASK_NEST_VALUE;
}

#else /* #ifdef CONFIG_NO_HZ_FULL_SYSIDLE */

3039
static void rcu_sysidle_enter(int irq)
3040 3041 3042
{
}

3043
static void rcu_sysidle_exit(int irq)
3044 3045 3046
{
}

3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061
static void rcu_sysidle_check_cpu(struct rcu_data *rdp, bool *isidle,
				  unsigned long *maxj)
{
}

static bool is_sysidle_rcu_state(struct rcu_state *rsp)
{
	return false;
}

static void rcu_sysidle_report_gp(struct rcu_state *rsp, int isidle,
				  unsigned long maxj)
{
}

3062 3063 3064 3065 3066
static void rcu_sysidle_init_percpu_data(struct rcu_dynticks *rdtp)
{
}

#endif /* #else #ifdef CONFIG_NO_HZ_FULL_SYSIDLE */
3067 3068 3069 3070 3071 3072 3073 3074

/*
 * Is this CPU a NO_HZ_FULL CPU that should ignore RCU so that the
 * grace-period kthread will do force_quiescent_state() processing?
 * The idea is to avoid waking up RCU core processing on such a
 * CPU unless the grace period has extended for too long.
 *
 * This code relies on the fact that all NO_HZ_FULL CPUs are also
3075
 * CONFIG_RCU_NOCB_CPU CPUs.
3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086
 */
static bool rcu_nohz_full_cpu(struct rcu_state *rsp)
{
#ifdef CONFIG_NO_HZ_FULL
	if (tick_nohz_full_cpu(smp_processor_id()) &&
	    (!rcu_gp_in_progress(rsp) ||
	     ULONG_CMP_LT(jiffies, ACCESS_ONCE(rsp->gp_start) + HZ)))
		return 1;
#endif /* #ifdef CONFIG_NO_HZ_FULL */
	return 0;
}
3087 3088 3089 3090 3091 3092 3093

/*
 * Bind the grace-period kthread for the sysidle flavor of RCU to the
 * timekeeping CPU.
 */
static void rcu_bind_gp_kthread(void)
{
3094
	int __maybe_unused cpu;
3095

3096
	if (!tick_nohz_full_enabled())
3097
		return;
3098 3099 3100
#ifdef CONFIG_NO_HZ_FULL_SYSIDLE
	cpu = tick_do_timer_cpu;
	if (cpu >= 0 && cpu < nr_cpu_ids && raw_smp_processor_id() != cpu)
3101
		set_cpus_allowed_ptr(current, cpumask_of(cpu));
3102 3103 3104 3105
#else /* #ifdef CONFIG_NO_HZ_FULL_SYSIDLE */
	if (!is_housekeeping_cpu(raw_smp_processor_id()))
		housekeeping_affine(current);
#endif /* #else #ifdef CONFIG_NO_HZ_FULL_SYSIDLE */
3106
}
3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122

/* Record the current task on dyntick-idle entry. */
static void rcu_dynticks_task_enter(void)
{
#if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL)
	ACCESS_ONCE(current->rcu_tasks_idle_cpu) = smp_processor_id();
#endif /* #if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL) */
}

/* Record no current task on dyntick-idle exit. */
static void rcu_dynticks_task_exit(void)
{
#if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL)
	ACCESS_ONCE(current->rcu_tasks_idle_cpu) = -1;
#endif /* #if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL) */
}