tree_plugin.h 90.2 KB
Newer Older
1 2 3
/*
 * Read-Copy Update mechanism for mutual exclusion (tree-based version)
 * Internal non-public definitions that provide either classic
P
Paul E. McKenney 已提交
4
 * or preemptible semantics.
5 6 7 8 9 10 11 12 13 14 15 16
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
17 18
 * along with this program; if not, you can access it online at
 * http://www.gnu.org/licenses/gpl-2.0.html.
19 20 21 22 23 24 25 26
 *
 * Copyright Red Hat, 2009
 * Copyright IBM Corporation, 2009
 *
 * Author: Ingo Molnar <mingo@elte.hu>
 *	   Paul E. McKenney <paulmck@linux.vnet.ibm.com>
 */

27
#include <linux/delay.h>
P
Paul E. McKenney 已提交
28
#include <linux/gfp.h>
29
#include <linux/oom.h>
30
#include <linux/smpboot.h>
31
#include "../time/tick-internal.h"
32

33
#ifdef CONFIG_RCU_BOOST
34

35
#include "../locking/rtmutex_common.h"
36

37 38 39 40 41 42 43 44 45
/*
 * Control variables for per-CPU and per-rcu_node kthreads.  These
 * handle all flavors of RCU.
 */
static DEFINE_PER_CPU(struct task_struct *, rcu_cpu_kthread_task);
DEFINE_PER_CPU(unsigned int, rcu_cpu_kthread_status);
DEFINE_PER_CPU(unsigned int, rcu_cpu_kthread_loops);
DEFINE_PER_CPU(char, rcu_cpu_has_work);

46
#endif /* #ifdef CONFIG_RCU_BOOST */
47

P
Paul E. McKenney 已提交
48 49 50
#ifdef CONFIG_RCU_NOCB_CPU
static cpumask_var_t rcu_nocb_mask; /* CPUs to have callbacks offloaded. */
static bool have_rcu_nocb_mask;	    /* Was rcu_nocb_mask allocated? */
51
static bool __read_mostly rcu_nocb_poll;    /* Offload kthread are to poll. */
P
Paul E. McKenney 已提交
52 53
#endif /* #ifdef CONFIG_RCU_NOCB_CPU */

54 55 56 57 58 59 60
/*
 * Check the RCU kernel configuration parameters and print informative
 * messages about anything out of the ordinary.  If you like #ifdef, you
 * will love this function.
 */
static void __init rcu_bootup_announce_oddness(void)
{
61 62 63 64 65 66
	if (IS_ENABLED(CONFIG_RCU_TRACE))
		pr_info("\tRCU debugfs-based tracing is enabled.\n");
	if ((IS_ENABLED(CONFIG_64BIT) && CONFIG_RCU_FANOUT != 64) ||
	    (!IS_ENABLED(CONFIG_64BIT) && CONFIG_RCU_FANOUT != 32))
		pr_info("\tCONFIG_RCU_FANOUT set to non-default value of %d\n",
		       CONFIG_RCU_FANOUT);
67
	if (rcu_fanout_exact)
68 69 70 71 72 73 74 75 76 77 78
		pr_info("\tHierarchical RCU autobalancing is disabled.\n");
	if (IS_ENABLED(CONFIG_RCU_FAST_NO_HZ))
		pr_info("\tRCU dyntick-idle grace-period acceleration is enabled.\n");
	if (IS_ENABLED(CONFIG_PROVE_RCU))
		pr_info("\tRCU lockdep checking is enabled.\n");
	if (IS_ENABLED(CONFIG_RCU_TORTURE_TEST_RUNNABLE))
		pr_info("\tRCU torture testing starts during boot.\n");
	if (IS_ENABLED(CONFIG_RCU_CPU_STALL_INFO))
		pr_info("\tAdditional per-CPU info printed with stalls.\n");
	if (NUM_RCU_LVL_4 != 0)
		pr_info("\tFour-level hierarchy is enabled.\n");
79 80 81
	if (CONFIG_RCU_FANOUT_LEAF != 16)
		pr_info("\tBuild-time adjustment of leaf fanout to %d.\n",
			CONFIG_RCU_FANOUT_LEAF);
82
	if (rcu_fanout_leaf != CONFIG_RCU_FANOUT_LEAF)
83
		pr_info("\tBoot-time adjustment of leaf fanout to %d.\n", rcu_fanout_leaf);
84
	if (nr_cpu_ids != NR_CPUS)
85
		pr_info("\tRCU restricting CPUs from NR_CPUS=%d to nr_cpu_ids=%d.\n", NR_CPUS, nr_cpu_ids);
86 87
	if (IS_ENABLED(CONFIG_RCU_BOOST))
		pr_info("\tRCU kthread priority: %d.\n", kthread_prio);
88 89
}

90
#ifdef CONFIG_PREEMPT_RCU
91

92
RCU_STATE_INITIALIZER(rcu_preempt, 'p', call_rcu);
93
static struct rcu_state *rcu_state_p = &rcu_preempt_state;
94

95
static int rcu_preempted_readers_exp(struct rcu_node *rnp);
96 97
static void rcu_report_exp_rnp(struct rcu_state *rsp, struct rcu_node *rnp,
			       bool wake);
98

99 100 101
/*
 * Tell them what RCU they are running.
 */
102
static void __init rcu_bootup_announce(void)
103
{
104
	pr_info("Preemptible hierarchical RCU implementation.\n");
105
	rcu_bootup_announce_oddness();
106 107 108
}

/*
P
Paul E. McKenney 已提交
109
 * Record a preemptible-RCU quiescent state for the specified CPU.  Note
110 111 112
 * that this just means that the task currently running on the CPU is
 * not in a quiescent state.  There might be any number of tasks blocked
 * while in an RCU read-side critical section.
113
 *
114 115
 * As with the other rcu_*_qs() functions, callers to this function
 * must disable preemption.
116
 */
117
static void rcu_preempt_qs(void)
118
{
119 120 121 122 123 124 125 126
	if (!__this_cpu_read(rcu_preempt_data.passed_quiesce)) {
		trace_rcu_grace_period(TPS("rcu_preempt"),
				       __this_cpu_read(rcu_preempt_data.gpnum),
				       TPS("cpuqs"));
		__this_cpu_write(rcu_preempt_data.passed_quiesce, 1);
		barrier(); /* Coordinate with rcu_preempt_check_callbacks(). */
		current->rcu_read_unlock_special.b.need_qs = false;
	}
127 128 129
}

/*
130 131 132
 * We have entered the scheduler, and the current task might soon be
 * context-switched away from.  If this task is in an RCU read-side
 * critical section, we will no longer be able to rely on the CPU to
133 134 135 136 137 138
 * record that fact, so we enqueue the task on the blkd_tasks list.
 * The task will dequeue itself when it exits the outermost enclosing
 * RCU read-side critical section.  Therefore, the current grace period
 * cannot be permitted to complete until the blkd_tasks list entries
 * predating the current grace period drain, in other words, until
 * rnp->gp_tasks becomes NULL.
139 140
 *
 * Caller must disable preemption.
141
 */
142
static void rcu_preempt_note_context_switch(void)
143 144
{
	struct task_struct *t = current;
145
	unsigned long flags;
146 147 148
	struct rcu_data *rdp;
	struct rcu_node *rnp;

149
	if (t->rcu_read_lock_nesting > 0 &&
150
	    !t->rcu_read_unlock_special.b.blocked) {
151 152

		/* Possibly blocking in an RCU read-side critical section. */
153
		rdp = this_cpu_ptr(rcu_preempt_state.rda);
154
		rnp = rdp->mynode;
P
Paul E. McKenney 已提交
155
		raw_spin_lock_irqsave(&rnp->lock, flags);
156
		smp_mb__after_unlock_lock();
157
		t->rcu_read_unlock_special.b.blocked = true;
158
		t->rcu_blocked_node = rnp;
159 160 161 162 163 164 165 166 167

		/*
		 * If this CPU has already checked in, then this task
		 * will hold up the next grace period rather than the
		 * current grace period.  Queue the task accordingly.
		 * If the task is queued for the current grace period
		 * (i.e., this CPU has not yet passed through a quiescent
		 * state for the current grace period), then as long
		 * as that task remains queued, the current grace period
168 169 170 171 172 173
		 * cannot end.  Note that there is some uncertainty as
		 * to exactly when the current grace period started.
		 * We take a conservative approach, which can result
		 * in unnecessarily waiting on tasks that started very
		 * slightly after the current grace period began.  C'est
		 * la vie!!!
174 175 176
		 *
		 * But first, note that the current CPU must still be
		 * on line!
177
		 */
178
		WARN_ON_ONCE((rdp->grpmask & rcu_rnp_online_cpus(rnp)) == 0);
179
		WARN_ON_ONCE(!list_empty(&t->rcu_node_entry));
180 181 182
		if ((rnp->qsmask & rdp->grpmask) && rnp->gp_tasks != NULL) {
			list_add(&t->rcu_node_entry, rnp->gp_tasks->prev);
			rnp->gp_tasks = &t->rcu_node_entry;
183 184 185 186
#ifdef CONFIG_RCU_BOOST
			if (rnp->boost_tasks != NULL)
				rnp->boost_tasks = rnp->gp_tasks;
#endif /* #ifdef CONFIG_RCU_BOOST */
187 188 189 190 191
		} else {
			list_add(&t->rcu_node_entry, &rnp->blkd_tasks);
			if (rnp->qsmask & rdp->grpmask)
				rnp->gp_tasks = &t->rcu_node_entry;
		}
192 193 194 195 196
		trace_rcu_preempt_task(rdp->rsp->name,
				       t->pid,
				       (rnp->qsmask & rdp->grpmask)
				       ? rnp->gpnum
				       : rnp->gpnum + 1);
P
Paul E. McKenney 已提交
197
		raw_spin_unlock_irqrestore(&rnp->lock, flags);
198
	} else if (t->rcu_read_lock_nesting < 0 &&
199
		   t->rcu_read_unlock_special.s) {
200 201 202 203 204 205

		/*
		 * Complete exit from RCU read-side critical section on
		 * behalf of preempted instance of __rcu_read_unlock().
		 */
		rcu_read_unlock_special(t);
206 207 208 209 210 211 212 213 214 215 216
	}

	/*
	 * Either we were not in an RCU read-side critical section to
	 * begin with, or we have now recorded that critical section
	 * globally.  Either way, we can now note a quiescent state
	 * for this CPU.  Again, if we were in an RCU read-side critical
	 * section, and if that critical section was blocking the current
	 * grace period, then the fact that the task has been enqueued
	 * means that we continue to block the current grace period.
	 */
217
	rcu_preempt_qs();
218 219
}

220 221 222 223 224
/*
 * Check for preempted RCU readers blocking the current grace period
 * for the specified rcu_node structure.  If the caller needs a reliable
 * answer, it must hold the rcu_node's ->lock.
 */
225
static int rcu_preempt_blocked_readers_cgp(struct rcu_node *rnp)
226
{
227
	return rnp->gp_tasks != NULL;
228 229
}

230 231 232 233 234 235 236 237 238 239 240 241 242 243 244
/*
 * Advance a ->blkd_tasks-list pointer to the next entry, instead
 * returning NULL if at the end of the list.
 */
static struct list_head *rcu_next_node_entry(struct task_struct *t,
					     struct rcu_node *rnp)
{
	struct list_head *np;

	np = t->rcu_node_entry.next;
	if (np == &rnp->blkd_tasks)
		np = NULL;
	return np;
}

245 246 247 248 249 250 251 252 253
/*
 * Return true if the specified rcu_node structure has tasks that were
 * preempted within an RCU read-side critical section.
 */
static bool rcu_preempt_has_tasks(struct rcu_node *rnp)
{
	return !list_empty(&rnp->blkd_tasks);
}

254 255 256 257 258
/*
 * Handle special cases during rcu_read_unlock(), such as needing to
 * notify RCU core processing or task having blocked during the RCU
 * read-side critical section.
 */
259
void rcu_read_unlock_special(struct task_struct *t)
260
{
261 262 263
	bool empty_exp;
	bool empty_norm;
	bool empty_exp_now;
264
	unsigned long flags;
265
	struct list_head *np;
266
#ifdef CONFIG_RCU_BOOST
267
	bool drop_boost_mutex = false;
268
#endif /* #ifdef CONFIG_RCU_BOOST */
269
	struct rcu_node *rnp;
270
	union rcu_special special;
271 272 273 274 275 276 277 278 279

	/* NMI handlers cannot block and cannot safely manipulate state. */
	if (in_nmi())
		return;

	local_irq_save(flags);

	/*
	 * If RCU core is waiting for this CPU to exit critical section,
280 281
	 * let it know that we have done so.  Because irqs are disabled,
	 * t->rcu_read_unlock_special cannot change.
282 283
	 */
	special = t->rcu_read_unlock_special;
284
	if (special.b.need_qs) {
285
		rcu_preempt_qs();
286
		t->rcu_read_unlock_special.b.need_qs = false;
287
		if (!t->rcu_read_unlock_special.s) {
288 289 290
			local_irq_restore(flags);
			return;
		}
291 292
	}

293
	/* Hardware IRQ handlers cannot block, complain if they get here. */
294 295 296 297 298 299 300
	if (in_irq() || in_serving_softirq()) {
		lockdep_rcu_suspicious(__FILE__, __LINE__,
				       "rcu_read_unlock() from irq or softirq with blocking in critical section!!!\n");
		pr_alert("->rcu_read_unlock_special: %#x (b: %d, nq: %d)\n",
			 t->rcu_read_unlock_special.s,
			 t->rcu_read_unlock_special.b.blocked,
			 t->rcu_read_unlock_special.b.need_qs);
301 302 303 304 305
		local_irq_restore(flags);
		return;
	}

	/* Clean up if blocked during RCU read-side critical section. */
306 307
	if (special.b.blocked) {
		t->rcu_read_unlock_special.b.blocked = false;
308

309 310 311 312 313 314
		/*
		 * Remove this task from the list it blocked on.  The
		 * task can migrate while we acquire the lock, but at
		 * most one time.  So at most two passes through loop.
		 */
		for (;;) {
315
			rnp = t->rcu_blocked_node;
P
Paul E. McKenney 已提交
316
			raw_spin_lock(&rnp->lock);  /* irqs already disabled. */
317
			smp_mb__after_unlock_lock();
318
			if (rnp == t->rcu_blocked_node)
319
				break;
P
Paul E. McKenney 已提交
320
			raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
321
		}
322
		empty_norm = !rcu_preempt_blocked_readers_cgp(rnp);
323 324
		empty_exp = !rcu_preempted_readers_exp(rnp);
		smp_mb(); /* ensure expedited fastpath sees end of RCU c-s. */
325
		np = rcu_next_node_entry(t, rnp);
326
		list_del_init(&t->rcu_node_entry);
327
		t->rcu_blocked_node = NULL;
328
		trace_rcu_unlock_preempted_task(TPS("rcu_preempt"),
329
						rnp->gpnum, t->pid);
330 331 332 333
		if (&t->rcu_node_entry == rnp->gp_tasks)
			rnp->gp_tasks = np;
		if (&t->rcu_node_entry == rnp->exp_tasks)
			rnp->exp_tasks = np;
334 335 336
#ifdef CONFIG_RCU_BOOST
		if (&t->rcu_node_entry == rnp->boost_tasks)
			rnp->boost_tasks = np;
337 338
		/* Snapshot ->boost_mtx ownership with rcu_node lock held. */
		drop_boost_mutex = rt_mutex_owner(&rnp->boost_mtx) == t;
339
#endif /* #ifdef CONFIG_RCU_BOOST */
340 341 342 343

		/*
		 * If this was the last task on the current list, and if
		 * we aren't waiting on any CPUs, report the quiescent state.
344 345
		 * Note that rcu_report_unblock_qs_rnp() releases rnp->lock,
		 * so we must take a snapshot of the expedited state.
346
		 */
347
		empty_exp_now = !rcu_preempted_readers_exp(rnp);
348
		if (!empty_norm && !rcu_preempt_blocked_readers_cgp(rnp)) {
349
			trace_rcu_quiescent_state_report(TPS("preempt_rcu"),
350 351 352 353 354 355
							 rnp->gpnum,
							 0, rnp->qsmask,
							 rnp->level,
							 rnp->grplo,
							 rnp->grphi,
							 !!rnp->gp_tasks);
356 357
			rcu_report_unblock_qs_rnp(&rcu_preempt_state,
						  rnp, flags);
358
		} else {
359
			raw_spin_unlock_irqrestore(&rnp->lock, flags);
360
		}
361

362 363
#ifdef CONFIG_RCU_BOOST
		/* Unboost if we were boosted. */
364
		if (drop_boost_mutex)
365
			rt_mutex_unlock(&rnp->boost_mtx);
366 367
#endif /* #ifdef CONFIG_RCU_BOOST */

368 369 370 371
		/*
		 * If this was the last task on the expedited lists,
		 * then we need to report up the rcu_node hierarchy.
		 */
372
		if (!empty_exp && empty_exp_now)
373
			rcu_report_exp_rnp(&rcu_preempt_state, rnp, true);
374 375
	} else {
		local_irq_restore(flags);
376 377 378
	}
}

379 380 381 382 383 384 385 386 387
/*
 * Dump detailed information for all tasks blocking the current RCU
 * grace period on the specified rcu_node structure.
 */
static void rcu_print_detail_task_stall_rnp(struct rcu_node *rnp)
{
	unsigned long flags;
	struct task_struct *t;

388
	raw_spin_lock_irqsave(&rnp->lock, flags);
389 390 391 392
	if (!rcu_preempt_blocked_readers_cgp(rnp)) {
		raw_spin_unlock_irqrestore(&rnp->lock, flags);
		return;
	}
393 394 395 396 397
	t = list_entry(rnp->gp_tasks,
		       struct task_struct, rcu_node_entry);
	list_for_each_entry_continue(t, &rnp->blkd_tasks, rcu_node_entry)
		sched_show_task(t);
	raw_spin_unlock_irqrestore(&rnp->lock, flags);
398 399 400 401 402 403 404 405 406 407 408 409 410 411 412
}

/*
 * Dump detailed information for all tasks blocking the current RCU
 * grace period.
 */
static void rcu_print_detail_task_stall(struct rcu_state *rsp)
{
	struct rcu_node *rnp = rcu_get_root(rsp);

	rcu_print_detail_task_stall_rnp(rnp);
	rcu_for_each_leaf_node(rsp, rnp)
		rcu_print_detail_task_stall_rnp(rnp);
}

413 414 415 416
#ifdef CONFIG_RCU_CPU_STALL_INFO

static void rcu_print_task_stall_begin(struct rcu_node *rnp)
{
417
	pr_err("\tTasks blocked on level-%d rcu_node (CPUs %d-%d):",
418 419 420 421 422
	       rnp->level, rnp->grplo, rnp->grphi);
}

static void rcu_print_task_stall_end(void)
{
423
	pr_cont("\n");
424 425 426 427 428 429 430 431 432 433 434 435 436 437
}

#else /* #ifdef CONFIG_RCU_CPU_STALL_INFO */

static void rcu_print_task_stall_begin(struct rcu_node *rnp)
{
}

static void rcu_print_task_stall_end(void)
{
}

#endif /* #else #ifdef CONFIG_RCU_CPU_STALL_INFO */

438 439 440 441
/*
 * Scan the current list of tasks blocked within RCU read-side critical
 * sections, printing out the tid of each.
 */
442
static int rcu_print_task_stall(struct rcu_node *rnp)
443 444
{
	struct task_struct *t;
445
	int ndetected = 0;
446

447
	if (!rcu_preempt_blocked_readers_cgp(rnp))
448
		return 0;
449
	rcu_print_task_stall_begin(rnp);
450 451
	t = list_entry(rnp->gp_tasks,
		       struct task_struct, rcu_node_entry);
452
	list_for_each_entry_continue(t, &rnp->blkd_tasks, rcu_node_entry) {
453
		pr_cont(" P%d", t->pid);
454 455
		ndetected++;
	}
456
	rcu_print_task_stall_end();
457
	return ndetected;
458 459
}

460 461 462 463 464 465
/*
 * Check that the list of blocked tasks for the newly completed grace
 * period is in fact empty.  It is a serious bug to complete a grace
 * period that still has RCU readers blocked!  This function must be
 * invoked -before- updating this rnp's ->gpnum, and the rnp's ->lock
 * must be held by the caller.
466 467 468
 *
 * Also, if there are blocked tasks on the list, they automatically
 * block the newly created grace period, so set up ->gp_tasks accordingly.
469 470 471
 */
static void rcu_preempt_check_blocked_tasks(struct rcu_node *rnp)
{
472
	WARN_ON_ONCE(rcu_preempt_blocked_readers_cgp(rnp));
473
	if (rcu_preempt_has_tasks(rnp))
474
		rnp->gp_tasks = rnp->blkd_tasks.next;
475
	WARN_ON_ONCE(rnp->qsmask);
476 477
}

478 479 480 481 482 483 484
/*
 * Check for a quiescent state from the current CPU.  When a task blocks,
 * the task is recorded in the corresponding CPU's rcu_node structure,
 * which is checked elsewhere.
 *
 * Caller must disable hard irqs.
 */
485
static void rcu_preempt_check_callbacks(void)
486 487 488 489
{
	struct task_struct *t = current;

	if (t->rcu_read_lock_nesting == 0) {
490
		rcu_preempt_qs();
491 492
		return;
	}
493
	if (t->rcu_read_lock_nesting > 0 &&
494 495
	    __this_cpu_read(rcu_preempt_data.qs_pending) &&
	    !__this_cpu_read(rcu_preempt_data.passed_quiesce))
496
		t->rcu_read_unlock_special.b.need_qs = true;
497 498
}

499 500
#ifdef CONFIG_RCU_BOOST

501 502
static void rcu_preempt_do_callbacks(void)
{
503
	rcu_do_batch(&rcu_preempt_state, this_cpu_ptr(&rcu_preempt_data));
504 505
}

506 507
#endif /* #ifdef CONFIG_RCU_BOOST */

508
/*
P
Paul E. McKenney 已提交
509
 * Queue a preemptible-RCU callback for invocation after a grace period.
510 511 512
 */
void call_rcu(struct rcu_head *head, void (*func)(struct rcu_head *rcu))
{
P
Paul E. McKenney 已提交
513
	__call_rcu(head, func, &rcu_preempt_state, -1, 0);
514 515 516
}
EXPORT_SYMBOL_GPL(call_rcu);

517 518 519 520 521
/**
 * synchronize_rcu - wait until a grace period has elapsed.
 *
 * Control will return to the caller some time after a full grace
 * period has elapsed, in other words after all currently executing RCU
522 523 524 525 526
 * read-side critical sections have completed.  Note, however, that
 * upon return from synchronize_rcu(), the caller might well be executing
 * concurrently with new RCU read-side critical sections that began while
 * synchronize_rcu() was waiting.  RCU read-side critical sections are
 * delimited by rcu_read_lock() and rcu_read_unlock(), and may be nested.
527 528 529
 *
 * See the description of synchronize_sched() for more detailed information
 * on memory ordering guarantees.
530 531 532
 */
void synchronize_rcu(void)
{
533 534 535 536
	rcu_lockdep_assert(!lock_is_held(&rcu_bh_lock_map) &&
			   !lock_is_held(&rcu_lock_map) &&
			   !lock_is_held(&rcu_sched_lock_map),
			   "Illegal synchronize_rcu() in RCU read-side critical section");
537 538
	if (!rcu_scheduler_active)
		return;
539
	if (rcu_gp_is_expedited())
540 541 542
		synchronize_rcu_expedited();
	else
		wait_rcu_gp(call_rcu);
543 544 545
}
EXPORT_SYMBOL_GPL(synchronize_rcu);

546
static DECLARE_WAIT_QUEUE_HEAD(sync_rcu_preempt_exp_wq);
547
static unsigned long sync_rcu_preempt_exp_count;
548 549 550 551 552 553 554 555 556 557
static DEFINE_MUTEX(sync_rcu_preempt_exp_mutex);

/*
 * Return non-zero if there are any tasks in RCU read-side critical
 * sections blocking the current preemptible-RCU expedited grace period.
 * If there is no preemptible-RCU expedited grace period currently in
 * progress, returns zero unconditionally.
 */
static int rcu_preempted_readers_exp(struct rcu_node *rnp)
{
558
	return rnp->exp_tasks != NULL;
559 560 561 562 563 564 565 566 567 568 569 570 571 572
}

/*
 * return non-zero if there is no RCU expedited grace period in progress
 * for the specified rcu_node structure, in other words, if all CPUs and
 * tasks covered by the specified rcu_node structure have done their bit
 * for the current expedited grace period.  Works only for preemptible
 * RCU -- other RCU implementation use other means.
 *
 * Caller must hold sync_rcu_preempt_exp_mutex.
 */
static int sync_rcu_preempt_exp_done(struct rcu_node *rnp)
{
	return !rcu_preempted_readers_exp(rnp) &&
573
	       READ_ONCE(rnp->expmask) == 0;
574 575 576 577 578 579 580 581 582 583 584 585
}

/*
 * Report the exit from RCU read-side critical section for the last task
 * that queued itself during or before the current expedited preemptible-RCU
 * grace period.  This event is reported either to the rcu_node structure on
 * which the task was queued or to one of that rcu_node structure's ancestors,
 * recursively up the tree.  (Calm down, calm down, we do the recursion
 * iteratively!)
 *
 * Caller must hold sync_rcu_preempt_exp_mutex.
 */
586 587
static void rcu_report_exp_rnp(struct rcu_state *rsp, struct rcu_node *rnp,
			       bool wake)
588 589 590 591
{
	unsigned long flags;
	unsigned long mask;

P
Paul E. McKenney 已提交
592
	raw_spin_lock_irqsave(&rnp->lock, flags);
593
	smp_mb__after_unlock_lock();
594
	for (;;) {
595 596
		if (!sync_rcu_preempt_exp_done(rnp)) {
			raw_spin_unlock_irqrestore(&rnp->lock, flags);
597
			break;
598
		}
599
		if (rnp->parent == NULL) {
600
			raw_spin_unlock_irqrestore(&rnp->lock, flags);
601 602
			if (wake) {
				smp_mb(); /* EGP done before wake_up(). */
603
				wake_up(&sync_rcu_preempt_exp_wq);
604
			}
605 606 607
			break;
		}
		mask = rnp->grpmask;
P
Paul E. McKenney 已提交
608
		raw_spin_unlock(&rnp->lock); /* irqs remain disabled */
609
		rnp = rnp->parent;
P
Paul E. McKenney 已提交
610
		raw_spin_lock(&rnp->lock); /* irqs already disabled */
611
		smp_mb__after_unlock_lock();
612 613 614 615 616 617
		rnp->expmask &= ~mask;
	}
}

/*
 * Snapshot the tasks blocking the newly started preemptible-RCU expedited
618 619 620 621
 * grace period for the specified rcu_node structure, phase 1.  If there
 * are such tasks, set the ->expmask bits up the rcu_node tree and also
 * set the ->expmask bits on the leaf rcu_node structures to tell phase 2
 * that work is needed here.
622
 *
623
 * Caller must hold sync_rcu_preempt_exp_mutex.
624 625
 */
static void
626
sync_rcu_preempt_exp_init1(struct rcu_state *rsp, struct rcu_node *rnp)
627
{
628
	unsigned long flags;
629 630
	unsigned long mask;
	struct rcu_node *rnp_up;
631

632
	raw_spin_lock_irqsave(&rnp->lock, flags);
633
	smp_mb__after_unlock_lock();
634 635
	WARN_ON_ONCE(rnp->expmask);
	WARN_ON_ONCE(rnp->exp_tasks);
636
	if (!rcu_preempt_has_tasks(rnp)) {
637
		/* No blocked tasks, nothing to do. */
638
		raw_spin_unlock_irqrestore(&rnp->lock, flags);
639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688
		return;
	}
	/* Call for Phase 2 and propagate ->expmask bits up the tree. */
	rnp->expmask = 1;
	rnp_up = rnp;
	while (rnp_up->parent) {
		mask = rnp_up->grpmask;
		rnp_up = rnp_up->parent;
		if (rnp_up->expmask & mask)
			break;
		raw_spin_lock(&rnp_up->lock); /* irqs already off */
		smp_mb__after_unlock_lock();
		rnp_up->expmask |= mask;
		raw_spin_unlock(&rnp_up->lock); /* irqs still off */
	}
	raw_spin_unlock_irqrestore(&rnp->lock, flags);
}

/*
 * Snapshot the tasks blocking the newly started preemptible-RCU expedited
 * grace period for the specified rcu_node structure, phase 2.  If the
 * leaf rcu_node structure has its ->expmask field set, check for tasks.
 * If there are some, clear ->expmask and set ->exp_tasks accordingly,
 * then initiate RCU priority boosting.  Otherwise, clear ->expmask and
 * invoke rcu_report_exp_rnp() to clear out the upper-level ->expmask bits,
 * enabling rcu_read_unlock_special() to do the bit-clearing.
 *
 * Caller must hold sync_rcu_preempt_exp_mutex.
 */
static void
sync_rcu_preempt_exp_init2(struct rcu_state *rsp, struct rcu_node *rnp)
{
	unsigned long flags;

	raw_spin_lock_irqsave(&rnp->lock, flags);
	smp_mb__after_unlock_lock();
	if (!rnp->expmask) {
		/* Phase 1 didn't do anything, so Phase 2 doesn't either. */
		raw_spin_unlock_irqrestore(&rnp->lock, flags);
		return;
	}

	/* Phase 1 is over. */
	rnp->expmask = 0;

	/*
	 * If there are still blocked tasks, set up ->exp_tasks so that
	 * rcu_read_unlock_special() will wake us and then boost them.
	 */
	if (rcu_preempt_has_tasks(rnp)) {
689
		rnp->exp_tasks = rnp->blkd_tasks.next;
690
		rcu_initiate_boost(rnp, flags);  /* releases rnp->lock */
691
		return;
692
	}
693 694 695 696

	/* No longer any blocked tasks, so undo bit setting. */
	raw_spin_unlock_irqrestore(&rnp->lock, flags);
	rcu_report_exp_rnp(rsp, rnp, false);
697 698
}

699 700 701 702 703 704 705 706 707 708 709
/**
 * synchronize_rcu_expedited - Brute-force RCU grace period
 *
 * Wait for an RCU-preempt grace period, but expedite it.  The basic
 * idea is to invoke synchronize_sched_expedited() to push all the tasks to
 * the ->blkd_tasks lists and wait for this list to drain.  This consumes
 * significant time on all CPUs and is unfriendly to real-time workloads,
 * so is thus not recommended for any sort of common-case code.
 * In fact, if you are using synchronize_rcu_expedited() in a loop,
 * please restructure your code to batch your updates, and then Use a
 * single synchronize_rcu() instead.
710 711 712
 */
void synchronize_rcu_expedited(void)
{
713 714
	struct rcu_node *rnp;
	struct rcu_state *rsp = &rcu_preempt_state;
715
	unsigned long snap;
716 717 718
	int trycount = 0;

	smp_mb(); /* Caller's modifications seen first by other CPUs. */
719
	snap = READ_ONCE(sync_rcu_preempt_exp_count) + 1;
720 721
	smp_mb(); /* Above access cannot bleed into critical section. */

722 723 724 725 726 727 728 729
	/*
	 * Block CPU-hotplug operations.  This means that any CPU-hotplug
	 * operation that finds an rcu_node structure with tasks in the
	 * process of being boosted will know that all tasks blocking
	 * this expedited grace period will already be in the process of
	 * being boosted.  This simplifies the process of moving tasks
	 * from leaf to root rcu_node structures.
	 */
730 731 732 733 734
	if (!try_get_online_cpus()) {
		/* CPU-hotplug operation in flight, fall back to normal GP. */
		wait_rcu_gp(call_rcu);
		return;
	}
735

736 737 738 739 740 741
	/*
	 * Acquire lock, falling back to synchronize_rcu() if too many
	 * lock-acquisition failures.  Of course, if someone does the
	 * expedited grace period for us, just leave.
	 */
	while (!mutex_trylock(&sync_rcu_preempt_exp_mutex)) {
742
		if (ULONG_CMP_LT(snap,
743
		    READ_ONCE(sync_rcu_preempt_exp_count))) {
744 745 746
			put_online_cpus();
			goto mb_ret; /* Others did our work for us. */
		}
747
		if (trycount++ < 10) {
748
			udelay(trycount * num_online_cpus());
749
		} else {
750
			put_online_cpus();
751
			wait_rcu_gp(call_rcu);
752 753 754
			return;
		}
	}
755
	if (ULONG_CMP_LT(snap, READ_ONCE(sync_rcu_preempt_exp_count))) {
756
		put_online_cpus();
757
		goto unlock_mb_ret; /* Others did our work for us. */
758
	}
759

760
	/* force all RCU readers onto ->blkd_tasks lists. */
761 762
	synchronize_sched_expedited();

763 764 765 766 767 768
	/*
	 * Snapshot current state of ->blkd_tasks lists into ->expmask.
	 * Phase 1 sets bits and phase 2 permits rcu_read_unlock_special()
	 * to start clearing them.  Doing this in one phase leads to
	 * strange races between setting and clearing bits, so just say "no"!
	 */
769
	rcu_for_each_leaf_node(rsp, rnp)
770
		sync_rcu_preempt_exp_init1(rsp, rnp);
771
	rcu_for_each_leaf_node(rsp, rnp)
772
		sync_rcu_preempt_exp_init2(rsp, rnp);
773

774
	put_online_cpus();
775

776
	/* Wait for snapshotted ->blkd_tasks lists to drain. */
777 778 779 780 781 782
	rnp = rcu_get_root(rsp);
	wait_event(sync_rcu_preempt_exp_wq,
		   sync_rcu_preempt_exp_done(rnp));

	/* Clean up and exit. */
	smp_mb(); /* ensure expedited GP seen before counter increment. */
783
	WRITE_ONCE(sync_rcu_preempt_exp_count, sync_rcu_preempt_exp_count + 1);
784 785 786 787
unlock_mb_ret:
	mutex_unlock(&sync_rcu_preempt_exp_mutex);
mb_ret:
	smp_mb(); /* ensure subsequent action seen after grace period. */
788 789 790
}
EXPORT_SYMBOL_GPL(synchronize_rcu_expedited);

791 792
/**
 * rcu_barrier - Wait until all in-flight call_rcu() callbacks complete.
793 794 795 796 797
 *
 * Note that this primitive does not necessarily wait for an RCU grace period
 * to complete.  For example, if there are no RCU callbacks queued anywhere
 * in the system, then rcu_barrier() is within its rights to return
 * immediately, without waiting for anything, much less an RCU grace period.
798 799 800
 */
void rcu_barrier(void)
{
801
	_rcu_barrier(&rcu_preempt_state);
802 803 804
}
EXPORT_SYMBOL_GPL(rcu_barrier);

805
/*
P
Paul E. McKenney 已提交
806
 * Initialize preemptible RCU's state structures.
807 808 809
 */
static void __init __rcu_init_preempt(void)
{
810
	rcu_init_one(&rcu_preempt_state, &rcu_preempt_data);
811 812
}

813 814 815 816 817 818 819 820 821 822 823 824 825 826
/*
 * Check for a task exiting while in a preemptible-RCU read-side
 * critical section, clean up if so.  No need to issue warnings,
 * as debug_check_no_locks_held() already does this if lockdep
 * is enabled.
 */
void exit_rcu(void)
{
	struct task_struct *t = current;

	if (likely(list_empty(&current->rcu_node_entry)))
		return;
	t->rcu_read_lock_nesting = 1;
	barrier();
827
	t->rcu_read_unlock_special.b.blocked = true;
828 829 830
	__rcu_read_unlock();
}

831
#else /* #ifdef CONFIG_PREEMPT_RCU */
832

833
static struct rcu_state *rcu_state_p = &rcu_sched_state;
834

835 836 837
/*
 * Tell them what RCU they are running.
 */
838
static void __init rcu_bootup_announce(void)
839
{
840
	pr_info("Hierarchical RCU implementation.\n");
841
	rcu_bootup_announce_oddness();
842 843
}

844 845 846 847
/*
 * Because preemptible RCU does not exist, we never have to check for
 * CPUs being in quiescent states.
 */
848
static void rcu_preempt_note_context_switch(void)
849 850 851
{
}

852
/*
P
Paul E. McKenney 已提交
853
 * Because preemptible RCU does not exist, there are never any preempted
854 855
 * RCU readers.
 */
856
static int rcu_preempt_blocked_readers_cgp(struct rcu_node *rnp)
857 858 859 860
{
	return 0;
}

861 862 863 864
/*
 * Because there is no preemptible RCU, there can be no readers blocked.
 */
static bool rcu_preempt_has_tasks(struct rcu_node *rnp)
865
{
866
	return false;
867 868
}

869
/*
P
Paul E. McKenney 已提交
870
 * Because preemptible RCU does not exist, we never have to check for
871 872 873 874 875 876
 * tasks blocked within RCU read-side critical sections.
 */
static void rcu_print_detail_task_stall(struct rcu_state *rsp)
{
}

877
/*
P
Paul E. McKenney 已提交
878
 * Because preemptible RCU does not exist, we never have to check for
879 880
 * tasks blocked within RCU read-side critical sections.
 */
881
static int rcu_print_task_stall(struct rcu_node *rnp)
882
{
883
	return 0;
884 885
}

886
/*
P
Paul E. McKenney 已提交
887
 * Because there is no preemptible RCU, there can be no readers blocked,
888 889
 * so there is no need to check for blocked tasks.  So check only for
 * bogus qsmask values.
890 891 892
 */
static void rcu_preempt_check_blocked_tasks(struct rcu_node *rnp)
{
893
	WARN_ON_ONCE(rnp->qsmask);
894 895
}

896
/*
P
Paul E. McKenney 已提交
897
 * Because preemptible RCU does not exist, it never has any callbacks
898 899
 * to check.
 */
900
static void rcu_preempt_check_callbacks(void)
901 902 903
{
}

904 905
/*
 * Wait for an rcu-preempt grace period, but make it happen quickly.
P
Paul E. McKenney 已提交
906
 * But because preemptible RCU does not exist, map to rcu-sched.
907 908 909 910 911 912 913
 */
void synchronize_rcu_expedited(void)
{
	synchronize_sched_expedited();
}
EXPORT_SYMBOL_GPL(synchronize_rcu_expedited);

914
/*
P
Paul E. McKenney 已提交
915
 * Because preemptible RCU does not exist, rcu_barrier() is just
916 917 918 919 920 921 922 923
 * another name for rcu_barrier_sched().
 */
void rcu_barrier(void)
{
	rcu_barrier_sched();
}
EXPORT_SYMBOL_GPL(rcu_barrier);

924
/*
P
Paul E. McKenney 已提交
925
 * Because preemptible RCU does not exist, it need not be initialized.
926 927 928 929 930
 */
static void __init __rcu_init_preempt(void)
{
}

931 932 933 934 935 936 937 938
/*
 * Because preemptible RCU does not exist, tasks cannot possibly exit
 * while in preemptible RCU read-side critical sections.
 */
void exit_rcu(void)
{
}

939
#endif /* #else #ifdef CONFIG_PREEMPT_RCU */
940

941 942
#ifdef CONFIG_RCU_BOOST

943
#include "../locking/rtmutex_common.h"
944

945 946 947 948
#ifdef CONFIG_RCU_TRACE

static void rcu_initiate_boost_trace(struct rcu_node *rnp)
{
949
	if (!rcu_preempt_has_tasks(rnp))
950 951 952 953 954 955 956 957
		rnp->n_balk_blkd_tasks++;
	else if (rnp->exp_tasks == NULL && rnp->gp_tasks == NULL)
		rnp->n_balk_exp_gp_tasks++;
	else if (rnp->gp_tasks != NULL && rnp->boost_tasks != NULL)
		rnp->n_balk_boost_tasks++;
	else if (rnp->gp_tasks != NULL && rnp->qsmask != 0)
		rnp->n_balk_notblocked++;
	else if (rnp->gp_tasks != NULL &&
958
		 ULONG_CMP_LT(jiffies, rnp->boost_time))
959 960 961 962 963 964 965 966 967 968 969 970 971
		rnp->n_balk_notyet++;
	else
		rnp->n_balk_nos++;
}

#else /* #ifdef CONFIG_RCU_TRACE */

static void rcu_initiate_boost_trace(struct rcu_node *rnp)
{
}

#endif /* #else #ifdef CONFIG_RCU_TRACE */

T
Thomas Gleixner 已提交
972 973 974 975 976 977 978 979 980 981
static void rcu_wake_cond(struct task_struct *t, int status)
{
	/*
	 * If the thread is yielding, only wake it when this
	 * is invoked from idle
	 */
	if (status != RCU_KTHREAD_YIELDING || is_idle_task(current))
		wake_up_process(t);
}

982 983 984 985 986 987 988 989 990 991 992 993 994 995
/*
 * Carry out RCU priority boosting on the task indicated by ->exp_tasks
 * or ->boost_tasks, advancing the pointer to the next task in the
 * ->blkd_tasks list.
 *
 * Note that irqs must be enabled: boosting the task can block.
 * Returns 1 if there are more tasks needing to be boosted.
 */
static int rcu_boost(struct rcu_node *rnp)
{
	unsigned long flags;
	struct task_struct *t;
	struct list_head *tb;

996 997
	if (READ_ONCE(rnp->exp_tasks) == NULL &&
	    READ_ONCE(rnp->boost_tasks) == NULL)
998 999 1000
		return 0;  /* Nothing left to boost. */

	raw_spin_lock_irqsave(&rnp->lock, flags);
1001
	smp_mb__after_unlock_lock();
1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017

	/*
	 * Recheck under the lock: all tasks in need of boosting
	 * might exit their RCU read-side critical sections on their own.
	 */
	if (rnp->exp_tasks == NULL && rnp->boost_tasks == NULL) {
		raw_spin_unlock_irqrestore(&rnp->lock, flags);
		return 0;
	}

	/*
	 * Preferentially boost tasks blocking expedited grace periods.
	 * This cannot starve the normal grace periods because a second
	 * expedited grace period must boost all blocked tasks, including
	 * those blocking the pre-existing normal grace period.
	 */
1018
	if (rnp->exp_tasks != NULL) {
1019
		tb = rnp->exp_tasks;
1020 1021
		rnp->n_exp_boosts++;
	} else {
1022
		tb = rnp->boost_tasks;
1023 1024 1025
		rnp->n_normal_boosts++;
	}
	rnp->n_tasks_boosted++;
1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043

	/*
	 * We boost task t by manufacturing an rt_mutex that appears to
	 * be held by task t.  We leave a pointer to that rt_mutex where
	 * task t can find it, and task t will release the mutex when it
	 * exits its outermost RCU read-side critical section.  Then
	 * simply acquiring this artificial rt_mutex will boost task
	 * t's priority.  (Thanks to tglx for suggesting this approach!)
	 *
	 * Note that task t must acquire rnp->lock to remove itself from
	 * the ->blkd_tasks list, which it will do from exit() if from
	 * nowhere else.  We therefore are guaranteed that task t will
	 * stay around at least until we drop rnp->lock.  Note that
	 * rnp->lock also resolves races between our priority boosting
	 * and task t's exiting its outermost RCU read-side critical
	 * section.
	 */
	t = container_of(tb, struct task_struct, rcu_node_entry);
1044
	rt_mutex_init_proxy_locked(&rnp->boost_mtx, t);
1045
	raw_spin_unlock_irqrestore(&rnp->lock, flags);
1046 1047 1048
	/* Lock only for side effect: boosts task t's priority. */
	rt_mutex_lock(&rnp->boost_mtx);
	rt_mutex_unlock(&rnp->boost_mtx);  /* Then keep lockdep happy. */
1049

1050 1051
	return READ_ONCE(rnp->exp_tasks) != NULL ||
	       READ_ONCE(rnp->boost_tasks) != NULL;
1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063
}

/*
 * Priority-boosting kthread.  One per leaf rcu_node and one for the
 * root rcu_node.
 */
static int rcu_boost_kthread(void *arg)
{
	struct rcu_node *rnp = (struct rcu_node *)arg;
	int spincnt = 0;
	int more2boost;

1064
	trace_rcu_utilization(TPS("Start boost kthread@init"));
1065
	for (;;) {
1066
		rnp->boost_kthread_status = RCU_KTHREAD_WAITING;
1067
		trace_rcu_utilization(TPS("End boost kthread@rcu_wait"));
1068
		rcu_wait(rnp->boost_tasks || rnp->exp_tasks);
1069
		trace_rcu_utilization(TPS("Start boost kthread@rcu_wait"));
1070
		rnp->boost_kthread_status = RCU_KTHREAD_RUNNING;
1071 1072 1073 1074 1075 1076
		more2boost = rcu_boost(rnp);
		if (more2boost)
			spincnt++;
		else
			spincnt = 0;
		if (spincnt > 10) {
T
Thomas Gleixner 已提交
1077
			rnp->boost_kthread_status = RCU_KTHREAD_YIELDING;
1078
			trace_rcu_utilization(TPS("End boost kthread@rcu_yield"));
T
Thomas Gleixner 已提交
1079
			schedule_timeout_interruptible(2);
1080
			trace_rcu_utilization(TPS("Start boost kthread@rcu_yield"));
1081 1082 1083
			spincnt = 0;
		}
	}
1084
	/* NOTREACHED */
1085
	trace_rcu_utilization(TPS("End boost kthread@notreached"));
1086 1087 1088 1089 1090 1091 1092 1093 1094
	return 0;
}

/*
 * Check to see if it is time to start boosting RCU readers that are
 * blocking the current grace period, and, if so, tell the per-rcu_node
 * kthread to start boosting them.  If there is an expedited grace
 * period in progress, it is always time to boost.
 *
1095 1096 1097
 * The caller must hold rnp->lock, which this function releases.
 * The ->boost_kthread_task is immortal, so we don't need to worry
 * about it going away.
1098
 */
1099
static void rcu_initiate_boost(struct rcu_node *rnp, unsigned long flags)
1100
	__releases(rnp->lock)
1101 1102 1103
{
	struct task_struct *t;

1104 1105
	if (!rcu_preempt_blocked_readers_cgp(rnp) && rnp->exp_tasks == NULL) {
		rnp->n_balk_exp_gp_tasks++;
1106
		raw_spin_unlock_irqrestore(&rnp->lock, flags);
1107
		return;
1108
	}
1109 1110 1111 1112 1113 1114 1115
	if (rnp->exp_tasks != NULL ||
	    (rnp->gp_tasks != NULL &&
	     rnp->boost_tasks == NULL &&
	     rnp->qsmask == 0 &&
	     ULONG_CMP_GE(jiffies, rnp->boost_time))) {
		if (rnp->exp_tasks == NULL)
			rnp->boost_tasks = rnp->gp_tasks;
1116
		raw_spin_unlock_irqrestore(&rnp->lock, flags);
1117
		t = rnp->boost_kthread_task;
T
Thomas Gleixner 已提交
1118 1119
		if (t)
			rcu_wake_cond(t, rnp->boost_kthread_status);
1120
	} else {
1121
		rcu_initiate_boost_trace(rnp);
1122 1123
		raw_spin_unlock_irqrestore(&rnp->lock, flags);
	}
1124 1125
}

1126 1127 1128 1129 1130 1131 1132 1133 1134
/*
 * Wake up the per-CPU kthread to invoke RCU callbacks.
 */
static void invoke_rcu_callbacks_kthread(void)
{
	unsigned long flags;

	local_irq_save(flags);
	__this_cpu_write(rcu_cpu_has_work, 1);
1135
	if (__this_cpu_read(rcu_cpu_kthread_task) != NULL &&
T
Thomas Gleixner 已提交
1136 1137 1138 1139
	    current != __this_cpu_read(rcu_cpu_kthread_task)) {
		rcu_wake_cond(__this_cpu_read(rcu_cpu_kthread_task),
			      __this_cpu_read(rcu_cpu_kthread_status));
	}
1140 1141 1142
	local_irq_restore(flags);
}

1143 1144 1145 1146 1147 1148
/*
 * Is the current CPU running the RCU-callbacks kthread?
 * Caller must have preemption disabled.
 */
static bool rcu_is_callbacks_kthread(void)
{
1149
	return __this_cpu_read(rcu_cpu_kthread_task) == current;
1150 1151
}

1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166
#define RCU_BOOST_DELAY_JIFFIES DIV_ROUND_UP(CONFIG_RCU_BOOST_DELAY * HZ, 1000)

/*
 * Do priority-boost accounting for the start of a new grace period.
 */
static void rcu_preempt_boost_start_gp(struct rcu_node *rnp)
{
	rnp->boost_time = jiffies + RCU_BOOST_DELAY_JIFFIES;
}

/*
 * Create an RCU-boost kthread for the specified node if one does not
 * already exist.  We only create this kthread for preemptible RCU.
 * Returns zero if all is well, a negated errno otherwise.
 */
1167
static int rcu_spawn_one_boost_kthread(struct rcu_state *rsp,
1168
				       struct rcu_node *rnp)
1169
{
T
Thomas Gleixner 已提交
1170
	int rnp_index = rnp - &rsp->node[0];
1171 1172 1173 1174 1175 1176
	unsigned long flags;
	struct sched_param sp;
	struct task_struct *t;

	if (&rcu_preempt_state != rsp)
		return 0;
T
Thomas Gleixner 已提交
1177

1178
	if (!rcu_scheduler_fully_active || rcu_rnp_online_cpus(rnp) == 0)
T
Thomas Gleixner 已提交
1179 1180
		return 0;

1181
	rsp->boost = 1;
1182 1183 1184
	if (rnp->boost_kthread_task != NULL)
		return 0;
	t = kthread_create(rcu_boost_kthread, (void *)rnp,
1185
			   "rcub/%d", rnp_index);
1186 1187 1188
	if (IS_ERR(t))
		return PTR_ERR(t);
	raw_spin_lock_irqsave(&rnp->lock, flags);
1189
	smp_mb__after_unlock_lock();
1190 1191
	rnp->boost_kthread_task = t;
	raw_spin_unlock_irqrestore(&rnp->lock, flags);
1192
	sp.sched_priority = kthread_prio;
1193
	sched_setscheduler_nocheck(t, SCHED_FIFO, &sp);
1194
	wake_up_process(t); /* get to TASK_INTERRUPTIBLE quickly. */
1195 1196 1197
	return 0;
}

1198 1199
static void rcu_kthread_do_work(void)
{
1200 1201
	rcu_do_batch(&rcu_sched_state, this_cpu_ptr(&rcu_sched_data));
	rcu_do_batch(&rcu_bh_state, this_cpu_ptr(&rcu_bh_data));
1202 1203 1204
	rcu_preempt_do_callbacks();
}

1205
static void rcu_cpu_kthread_setup(unsigned int cpu)
1206 1207 1208
{
	struct sched_param sp;

1209
	sp.sched_priority = kthread_prio;
1210
	sched_setscheduler_nocheck(current, SCHED_FIFO, &sp);
1211 1212
}

1213
static void rcu_cpu_kthread_park(unsigned int cpu)
1214
{
1215
	per_cpu(rcu_cpu_kthread_status, cpu) = RCU_KTHREAD_OFFCPU;
1216 1217
}

1218
static int rcu_cpu_kthread_should_run(unsigned int cpu)
1219
{
1220
	return __this_cpu_read(rcu_cpu_has_work);
1221 1222 1223 1224
}

/*
 * Per-CPU kernel thread that invokes RCU callbacks.  This replaces the
1225 1226
 * RCU softirq used in flavors and configurations of RCU that do not
 * support RCU priority boosting.
1227
 */
1228
static void rcu_cpu_kthread(unsigned int cpu)
1229
{
1230 1231
	unsigned int *statusp = this_cpu_ptr(&rcu_cpu_kthread_status);
	char work, *workp = this_cpu_ptr(&rcu_cpu_has_work);
1232
	int spincnt;
1233

1234
	for (spincnt = 0; spincnt < 10; spincnt++) {
1235
		trace_rcu_utilization(TPS("Start CPU kthread@rcu_wait"));
1236 1237
		local_bh_disable();
		*statusp = RCU_KTHREAD_RUNNING;
1238 1239
		this_cpu_inc(rcu_cpu_kthread_loops);
		local_irq_disable();
1240 1241
		work = *workp;
		*workp = 0;
1242
		local_irq_enable();
1243 1244 1245
		if (work)
			rcu_kthread_do_work();
		local_bh_enable();
1246
		if (*workp == 0) {
1247
			trace_rcu_utilization(TPS("End CPU kthread@rcu_wait"));
1248 1249
			*statusp = RCU_KTHREAD_WAITING;
			return;
1250 1251
		}
	}
1252
	*statusp = RCU_KTHREAD_YIELDING;
1253
	trace_rcu_utilization(TPS("Start CPU kthread@rcu_yield"));
1254
	schedule_timeout_interruptible(2);
1255
	trace_rcu_utilization(TPS("End CPU kthread@rcu_yield"));
1256
	*statusp = RCU_KTHREAD_WAITING;
1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267
}

/*
 * Set the per-rcu_node kthread's affinity to cover all CPUs that are
 * served by the rcu_node in question.  The CPU hotplug lock is still
 * held, so the value of rnp->qsmaskinit will be stable.
 *
 * We don't include outgoingcpu in the affinity set, use -1 if there is
 * no outgoing CPU.  If there are no CPUs left in the affinity set,
 * this function allows the kthread to execute on any CPU.
 */
T
Thomas Gleixner 已提交
1268
static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu)
1269
{
T
Thomas Gleixner 已提交
1270
	struct task_struct *t = rnp->boost_kthread_task;
1271
	unsigned long mask = rcu_rnp_online_cpus(rnp);
1272 1273 1274
	cpumask_var_t cm;
	int cpu;

T
Thomas Gleixner 已提交
1275
	if (!t)
1276
		return;
T
Thomas Gleixner 已提交
1277
	if (!zalloc_cpumask_var(&cm, GFP_KERNEL))
1278 1279 1280 1281
		return;
	for (cpu = rnp->grplo; cpu <= rnp->grphi; cpu++, mask >>= 1)
		if ((mask & 0x1) && cpu != outgoingcpu)
			cpumask_set_cpu(cpu, cm);
1282
	if (cpumask_weight(cm) == 0)
1283
		cpumask_setall(cm);
T
Thomas Gleixner 已提交
1284
	set_cpus_allowed_ptr(t, cm);
1285 1286 1287
	free_cpumask_var(cm);
}

1288 1289 1290 1291 1292 1293 1294 1295
static struct smp_hotplug_thread rcu_cpu_thread_spec = {
	.store			= &rcu_cpu_kthread_task,
	.thread_should_run	= rcu_cpu_kthread_should_run,
	.thread_fn		= rcu_cpu_kthread,
	.thread_comm		= "rcuc/%u",
	.setup			= rcu_cpu_kthread_setup,
	.park			= rcu_cpu_kthread_park,
};
1296 1297

/*
1298
 * Spawn boost kthreads -- called as soon as the scheduler is running.
1299
 */
1300
static void __init rcu_spawn_boost_kthreads(void)
1301 1302
{
	struct rcu_node *rnp;
T
Thomas Gleixner 已提交
1303
	int cpu;
1304

1305
	for_each_possible_cpu(cpu)
1306
		per_cpu(rcu_cpu_has_work, cpu) = 0;
1307
	BUG_ON(smpboot_register_percpu_thread(&rcu_cpu_thread_spec));
1308 1309
	rcu_for_each_leaf_node(rcu_state_p, rnp)
		(void)rcu_spawn_one_boost_kthread(rcu_state_p, rnp);
1310 1311
}

1312
static void rcu_prepare_kthreads(int cpu)
1313
{
1314
	struct rcu_data *rdp = per_cpu_ptr(rcu_state_p->rda, cpu);
1315 1316 1317
	struct rcu_node *rnp = rdp->mynode;

	/* Fire up the incoming CPU's kthread and leaf rcu_node kthread. */
1318
	if (rcu_scheduler_fully_active)
1319
		(void)rcu_spawn_one_boost_kthread(rcu_state_p, rnp);
1320 1321
}

1322 1323
#else /* #ifdef CONFIG_RCU_BOOST */

1324
static void rcu_initiate_boost(struct rcu_node *rnp, unsigned long flags)
1325
	__releases(rnp->lock)
1326
{
1327
	raw_spin_unlock_irqrestore(&rnp->lock, flags);
1328 1329
}

1330
static void invoke_rcu_callbacks_kthread(void)
1331
{
1332
	WARN_ON_ONCE(1);
1333 1334
}

1335 1336 1337 1338 1339
static bool rcu_is_callbacks_kthread(void)
{
	return false;
}

1340 1341 1342 1343
static void rcu_preempt_boost_start_gp(struct rcu_node *rnp)
{
}

T
Thomas Gleixner 已提交
1344
static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu)
1345 1346 1347
{
}

1348
static void __init rcu_spawn_boost_kthreads(void)
1349 1350 1351
{
}

1352
static void rcu_prepare_kthreads(int cpu)
1353 1354 1355
{
}

1356 1357
#endif /* #else #ifdef CONFIG_RCU_BOOST */

1358 1359 1360 1361 1362 1363 1364 1365
#if !defined(CONFIG_RCU_FAST_NO_HZ)

/*
 * Check to see if any future RCU-related work will need to be done
 * by the current CPU, even if none need be done immediately, returning
 * 1 if so.  This function is part of the RCU implementation; it is -not-
 * an exported member of the RCU API.
 *
1366 1367
 * Because we not have RCU_FAST_NO_HZ, just check whether this CPU needs
 * any flavor of RCU.
1368
 */
1369
#ifndef CONFIG_RCU_NOCB_CPU_ALL
1370
int rcu_needs_cpu(unsigned long *delta_jiffies)
1371
{
1372
	*delta_jiffies = ULONG_MAX;
1373
	return rcu_cpu_has_callbacks(NULL);
1374
}
1375
#endif /* #ifndef CONFIG_RCU_NOCB_CPU_ALL */
1376 1377 1378 1379 1380

/*
 * Because we do not have RCU_FAST_NO_HZ, don't bother cleaning up
 * after it.
 */
1381
static void rcu_cleanup_after_idle(void)
1382 1383 1384
{
}

1385
/*
1386
 * Do the idle-entry grace-period work, which, because CONFIG_RCU_FAST_NO_HZ=n,
1387 1388
 * is nothing.
 */
1389
static void rcu_prepare_for_idle(void)
1390 1391 1392
{
}

1393 1394 1395 1396 1397 1398 1399 1400
/*
 * Don't bother keeping a running count of the number of RCU callbacks
 * posted because CONFIG_RCU_FAST_NO_HZ=n.
 */
static void rcu_idle_count_callbacks_posted(void)
{
}

1401 1402
#else /* #if !defined(CONFIG_RCU_FAST_NO_HZ) */

1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417
/*
 * This code is invoked when a CPU goes idle, at which point we want
 * to have the CPU do everything required for RCU so that it can enter
 * the energy-efficient dyntick-idle mode.  This is handled by a
 * state machine implemented by rcu_prepare_for_idle() below.
 *
 * The following three proprocessor symbols control this state machine:
 *
 * RCU_IDLE_GP_DELAY gives the number of jiffies that a CPU is permitted
 *	to sleep in dyntick-idle mode with RCU callbacks pending.  This
 *	is sized to be roughly one RCU grace period.  Those energy-efficiency
 *	benchmarkers who might otherwise be tempted to set this to a large
 *	number, be warned: Setting RCU_IDLE_GP_DELAY too high can hang your
 *	system.  And if you are -that- concerned about energy efficiency,
 *	just power the system down and be done with it!
1418 1419 1420
 * RCU_IDLE_LAZY_GP_DELAY gives the number of jiffies that a CPU is
 *	permitted to sleep in dyntick-idle mode with only lazy RCU
 *	callbacks pending.  Setting this too high can OOM your system.
1421 1422 1423 1424 1425
 *
 * The values below work well in practice.  If future workloads require
 * adjustment, they can be converted into kernel config parameters, though
 * making the state machine smarter might be a better option.
 */
1426
#define RCU_IDLE_GP_DELAY 4		/* Roughly one grace period. */
1427
#define RCU_IDLE_LAZY_GP_DELAY (6 * HZ)	/* Roughly six seconds. */
1428

1429 1430 1431 1432
static int rcu_idle_gp_delay = RCU_IDLE_GP_DELAY;
module_param(rcu_idle_gp_delay, int, 0644);
static int rcu_idle_lazy_gp_delay = RCU_IDLE_LAZY_GP_DELAY;
module_param(rcu_idle_lazy_gp_delay, int, 0644);
1433

1434
extern int tick_nohz_active;
1435 1436

/*
1437 1438 1439
 * Try to advance callbacks for all flavors of RCU on the current CPU, but
 * only if it has been awhile since the last time we did so.  Afterwards,
 * if there are any callbacks ready for immediate invocation, return true.
1440
 */
1441
static bool __maybe_unused rcu_try_advance_all_cbs(void)
1442
{
1443 1444
	bool cbs_ready = false;
	struct rcu_data *rdp;
1445
	struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
1446 1447
	struct rcu_node *rnp;
	struct rcu_state *rsp;
1448

1449 1450
	/* Exit early if we advanced recently. */
	if (jiffies == rdtp->last_advance_all)
1451
		return false;
1452 1453
	rdtp->last_advance_all = jiffies;

1454 1455 1456
	for_each_rcu_flavor(rsp) {
		rdp = this_cpu_ptr(rsp->rda);
		rnp = rdp->mynode;
1457

1458 1459 1460 1461 1462
		/*
		 * Don't bother checking unless a grace period has
		 * completed since we last checked and there are
		 * callbacks not yet ready to invoke.
		 */
1463
		if ((rdp->completed != rnp->completed ||
1464
		     unlikely(READ_ONCE(rdp->gpwrap))) &&
1465
		    rdp->nxttail[RCU_DONE_TAIL] != rdp->nxttail[RCU_NEXT_TAIL])
1466
			note_gp_changes(rsp, rdp);
1467

1468 1469 1470 1471
		if (cpu_has_callbacks_ready_to_invoke(rdp))
			cbs_ready = true;
	}
	return cbs_ready;
1472 1473
}

1474
/*
1475 1476 1477 1478
 * Allow the CPU to enter dyntick-idle mode unless it has callbacks ready
 * to invoke.  If the CPU has callbacks, try to advance them.  Tell the
 * caller to set the timeout based on whether or not there are non-lazy
 * callbacks.
1479
 *
1480
 * The caller must have disabled interrupts.
1481
 */
1482
#ifndef CONFIG_RCU_NOCB_CPU_ALL
1483
int rcu_needs_cpu(unsigned long *dj)
1484
{
1485
	struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
1486

1487 1488 1489
	/* Snapshot to detect later posting of non-lazy callback. */
	rdtp->nonlazy_posted_snap = rdtp->nonlazy_posted;

1490
	/* If no callbacks, RCU doesn't need the CPU. */
1491
	if (!rcu_cpu_has_callbacks(&rdtp->all_lazy)) {
1492
		*dj = ULONG_MAX;
1493 1494
		return 0;
	}
1495 1496 1497 1498 1499

	/* Attempt to advance callbacks. */
	if (rcu_try_advance_all_cbs()) {
		/* Some ready to invoke, so initiate later invocation. */
		invoke_rcu_core();
1500 1501
		return 1;
	}
1502 1503 1504
	rdtp->last_accelerate = jiffies;

	/* Request timer delay depending on laziness, and round. */
1505
	if (!rdtp->all_lazy) {
1506 1507
		*dj = round_up(rcu_idle_gp_delay + jiffies,
			       rcu_idle_gp_delay) - jiffies;
1508
	} else {
1509
		*dj = round_jiffies(rcu_idle_lazy_gp_delay + jiffies) - jiffies;
1510
	}
1511 1512
	return 0;
}
1513
#endif /* #ifndef CONFIG_RCU_NOCB_CPU_ALL */
1514

1515
/*
1516 1517 1518 1519 1520 1521
 * Prepare a CPU for idle from an RCU perspective.  The first major task
 * is to sense whether nohz mode has been enabled or disabled via sysfs.
 * The second major task is to check to see if a non-lazy callback has
 * arrived at a CPU that previously had only lazy callbacks.  The third
 * major task is to accelerate (that is, assign grace-period numbers to)
 * any recently arrived callbacks.
1522 1523
 *
 * The caller must have disabled interrupts.
1524
 */
1525
static void rcu_prepare_for_idle(void)
1526
{
1527
#ifndef CONFIG_RCU_NOCB_CPU_ALL
1528
	bool needwake;
1529
	struct rcu_data *rdp;
1530
	struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
1531 1532
	struct rcu_node *rnp;
	struct rcu_state *rsp;
1533 1534 1535
	int tne;

	/* Handle nohz enablement switches conservatively. */
1536
	tne = READ_ONCE(tick_nohz_active);
1537
	if (tne != rdtp->tick_nohz_enabled_snap) {
1538
		if (rcu_cpu_has_callbacks(NULL))
1539 1540 1541 1542 1543 1544
			invoke_rcu_core(); /* force nohz to see update. */
		rdtp->tick_nohz_enabled_snap = tne;
		return;
	}
	if (!tne)
		return;
1545

1546
	/* If this is a no-CBs CPU, no callbacks, just return. */
1547
	if (rcu_is_nocb_cpu(smp_processor_id()))
1548 1549
		return;

1550
	/*
1551 1552 1553
	 * If a non-lazy callback arrived at a CPU having only lazy
	 * callbacks, invoke RCU core for the side-effect of recalculating
	 * idle duration on re-entry to idle.
1554
	 */
1555 1556
	if (rdtp->all_lazy &&
	    rdtp->nonlazy_posted != rdtp->nonlazy_posted_snap) {
1557 1558
		rdtp->all_lazy = false;
		rdtp->nonlazy_posted_snap = rdtp->nonlazy_posted;
1559
		invoke_rcu_core();
1560 1561 1562
		return;
	}

1563
	/*
1564 1565
	 * If we have not yet accelerated this jiffy, accelerate all
	 * callbacks on this CPU.
1566
	 */
1567
	if (rdtp->last_accelerate == jiffies)
1568
		return;
1569 1570
	rdtp->last_accelerate = jiffies;
	for_each_rcu_flavor(rsp) {
1571
		rdp = this_cpu_ptr(rsp->rda);
1572 1573 1574 1575
		if (!*rdp->nxttail[RCU_DONE_TAIL])
			continue;
		rnp = rdp->mynode;
		raw_spin_lock(&rnp->lock); /* irqs already disabled. */
1576
		smp_mb__after_unlock_lock();
1577
		needwake = rcu_accelerate_cbs(rsp, rnp, rdp);
1578
		raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
1579 1580
		if (needwake)
			rcu_gp_kthread_wake(rsp);
1581
	}
1582
#endif /* #ifndef CONFIG_RCU_NOCB_CPU_ALL */
1583
}
1584

1585 1586 1587 1588 1589
/*
 * Clean up for exit from idle.  Attempt to advance callbacks based on
 * any grace periods that elapsed while the CPU was idle, and if any
 * callbacks are now ready to invoke, initiate invocation.
 */
1590
static void rcu_cleanup_after_idle(void)
1591
{
1592
#ifndef CONFIG_RCU_NOCB_CPU_ALL
1593
	if (rcu_is_nocb_cpu(smp_processor_id()))
1594
		return;
1595 1596
	if (rcu_try_advance_all_cbs())
		invoke_rcu_core();
1597
#endif /* #ifndef CONFIG_RCU_NOCB_CPU_ALL */
1598 1599
}

1600
/*
1601 1602 1603 1604 1605 1606
 * Keep a running count of the number of non-lazy callbacks posted
 * on this CPU.  This running counter (which is never decremented) allows
 * rcu_prepare_for_idle() to detect when something out of the idle loop
 * posts a callback, even if an equal number of callbacks are invoked.
 * Of course, callbacks should only be posted from within a trace event
 * designed to be called from idle or from within RCU_NONIDLE().
1607 1608 1609
 */
static void rcu_idle_count_callbacks_posted(void)
{
1610
	__this_cpu_add(rcu_dynticks.nonlazy_posted, 1);
1611 1612
}

1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641
/*
 * Data for flushing lazy RCU callbacks at OOM time.
 */
static atomic_t oom_callback_count;
static DECLARE_WAIT_QUEUE_HEAD(oom_callback_wq);

/*
 * RCU OOM callback -- decrement the outstanding count and deliver the
 * wake-up if we are the last one.
 */
static void rcu_oom_callback(struct rcu_head *rhp)
{
	if (atomic_dec_and_test(&oom_callback_count))
		wake_up(&oom_callback_wq);
}

/*
 * Post an rcu_oom_notify callback on the current CPU if it has at
 * least one lazy callback.  This will unnecessarily post callbacks
 * to CPUs that already have a non-lazy callback at the end of their
 * callback list, but this is an infrequent operation, so accept some
 * extra overhead to keep things simple.
 */
static void rcu_oom_notify_cpu(void *unused)
{
	struct rcu_state *rsp;
	struct rcu_data *rdp;

	for_each_rcu_flavor(rsp) {
1642
		rdp = raw_cpu_ptr(rsp->rda);
1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663
		if (rdp->qlen_lazy != 0) {
			atomic_inc(&oom_callback_count);
			rsp->call(&rdp->oom_head, rcu_oom_callback);
		}
	}
}

/*
 * If low on memory, ensure that each CPU has a non-lazy callback.
 * This will wake up CPUs that have only lazy callbacks, in turn
 * ensuring that they free up the corresponding memory in a timely manner.
 * Because an uncertain amount of memory will be freed in some uncertain
 * timeframe, we do not claim to have freed anything.
 */
static int rcu_oom_notify(struct notifier_block *self,
			  unsigned long notused, void *nfreed)
{
	int cpu;

	/* Wait for callbacks from earlier instance to complete. */
	wait_event(oom_callback_wq, atomic_read(&oom_callback_count) == 0);
1664
	smp_mb(); /* Ensure callback reuse happens after callback invocation. */
1665 1666 1667 1668 1669 1670 1671 1672 1673 1674

	/*
	 * Prevent premature wakeup: ensure that all increments happen
	 * before there is a chance of the counter reaching zero.
	 */
	atomic_set(&oom_callback_count, 1);

	get_online_cpus();
	for_each_online_cpu(cpu) {
		smp_call_function_single(cpu, rcu_oom_notify_cpu, NULL, 1);
1675
		cond_resched_rcu_qs();
1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695
	}
	put_online_cpus();

	/* Unconditionally decrement: no need to wake ourselves up. */
	atomic_dec(&oom_callback_count);

	return NOTIFY_OK;
}

static struct notifier_block rcu_oom_nb = {
	.notifier_call = rcu_oom_notify
};

static int __init rcu_register_oom_notifier(void)
{
	register_oom_notifier(&rcu_oom_nb);
	return 0;
}
early_initcall(rcu_register_oom_notifier);

1696
#endif /* #else #if !defined(CONFIG_RCU_FAST_NO_HZ) */
1697 1698 1699 1700 1701 1702 1703

#ifdef CONFIG_RCU_CPU_STALL_INFO

#ifdef CONFIG_RCU_FAST_NO_HZ

static void print_cpu_stall_fast_no_hz(char *cp, int cpu)
{
1704
	struct rcu_dynticks *rdtp = &per_cpu(rcu_dynticks, cpu);
1705
	unsigned long nlpd = rdtp->nonlazy_posted - rdtp->nonlazy_posted_snap;
1706

1707 1708 1709 1710 1711
	sprintf(cp, "last_accelerate: %04lx/%04lx, nonlazy_posted: %ld, %c%c",
		rdtp->last_accelerate & 0xffff, jiffies & 0xffff,
		ulong2long(nlpd),
		rdtp->all_lazy ? 'L' : '.',
		rdtp->tick_nohz_enabled_snap ? '.' : 'D');
1712 1713 1714 1715 1716 1717
}

#else /* #ifdef CONFIG_RCU_FAST_NO_HZ */

static void print_cpu_stall_fast_no_hz(char *cp, int cpu)
{
1718
	*cp = '\0';
1719 1720 1721 1722 1723 1724 1725
}

#endif /* #else #ifdef CONFIG_RCU_FAST_NO_HZ */

/* Initiate the stall-info list. */
static void print_cpu_stall_info_begin(void)
{
1726
	pr_cont("\n");
1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756
}

/*
 * Print out diagnostic information for the specified stalled CPU.
 *
 * If the specified CPU is aware of the current RCU grace period
 * (flavor specified by rsp), then print the number of scheduling
 * clock interrupts the CPU has taken during the time that it has
 * been aware.  Otherwise, print the number of RCU grace periods
 * that this CPU is ignorant of, for example, "1" if the CPU was
 * aware of the previous grace period.
 *
 * Also print out idle and (if CONFIG_RCU_FAST_NO_HZ) idle-entry info.
 */
static void print_cpu_stall_info(struct rcu_state *rsp, int cpu)
{
	char fast_no_hz[72];
	struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
	struct rcu_dynticks *rdtp = rdp->dynticks;
	char *ticks_title;
	unsigned long ticks_value;

	if (rsp->gpnum == rdp->gpnum) {
		ticks_title = "ticks this GP";
		ticks_value = rdp->ticks_this_gp;
	} else {
		ticks_title = "GPs behind";
		ticks_value = rsp->gpnum - rdp->gpnum;
	}
	print_cpu_stall_fast_no_hz(fast_no_hz, cpu);
1757
	pr_err("\t%d: (%lu %s) idle=%03x/%llx/%d softirq=%u/%u fqs=%ld %s\n",
1758 1759 1760
	       cpu, ticks_value, ticks_title,
	       atomic_read(&rdtp->dynticks) & 0xfff,
	       rdtp->dynticks_nesting, rdtp->dynticks_nmi_nesting,
1761
	       rdp->softirq_snap, kstat_softirqs_cpu(RCU_SOFTIRQ, cpu),
1762
	       READ_ONCE(rsp->n_force_qs) - rsp->n_force_qs_gpstart,
1763 1764 1765 1766 1767 1768
	       fast_no_hz);
}

/* Terminate the stall-info list. */
static void print_cpu_stall_info_end(void)
{
1769
	pr_err("\t");
1770 1771 1772 1773 1774 1775
}

/* Zero ->ticks_this_gp for all flavors of RCU. */
static void zero_cpu_stall_ticks(struct rcu_data *rdp)
{
	rdp->ticks_this_gp = 0;
1776
	rdp->softirq_snap = kstat_softirqs_cpu(RCU_SOFTIRQ, smp_processor_id());
1777 1778 1779 1780 1781
}

/* Increment ->ticks_this_gp for all flavors of RCU. */
static void increment_cpu_stall_ticks(void)
{
1782 1783 1784
	struct rcu_state *rsp;

	for_each_rcu_flavor(rsp)
1785
		raw_cpu_inc(rsp->rda->ticks_this_gp);
1786 1787 1788 1789 1790 1791
}

#else /* #ifdef CONFIG_RCU_CPU_STALL_INFO */

static void print_cpu_stall_info_begin(void)
{
1792
	pr_cont(" {");
1793 1794 1795 1796
}

static void print_cpu_stall_info(struct rcu_state *rsp, int cpu)
{
1797
	pr_cont(" %d", cpu);
1798 1799 1800 1801
}

static void print_cpu_stall_info_end(void)
{
1802
	pr_cont("} ");
1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813
}

static void zero_cpu_stall_ticks(struct rcu_data *rdp)
{
}

static void increment_cpu_stall_ticks(void)
{
}

#endif /* #else #ifdef CONFIG_RCU_CPU_STALL_INFO */
P
Paul E. McKenney 已提交
1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847

#ifdef CONFIG_RCU_NOCB_CPU

/*
 * Offload callback processing from the boot-time-specified set of CPUs
 * specified by rcu_nocb_mask.  For each CPU in the set, there is a
 * kthread created that pulls the callbacks from the corresponding CPU,
 * waits for a grace period to elapse, and invokes the callbacks.
 * The no-CBs CPUs do a wake_up() on their kthread when they insert
 * a callback into any empty list, unless the rcu_nocb_poll boot parameter
 * has been specified, in which case each kthread actively polls its
 * CPU.  (Which isn't so great for energy efficiency, but which does
 * reduce RCU's overhead on that CPU.)
 *
 * This is intended to be used in conjunction with Frederic Weisbecker's
 * adaptive-idle work, which would seriously reduce OS jitter on CPUs
 * running CPU-bound user-mode computations.
 *
 * Offloading of callback processing could also in theory be used as
 * an energy-efficiency measure because CPUs with no RCU callbacks
 * queued are more aggressive about entering dyntick-idle mode.
 */


/* Parse the boot-time rcu_nocb_mask CPU list from the kernel parameters. */
static int __init rcu_nocb_setup(char *str)
{
	alloc_bootmem_cpumask_var(&rcu_nocb_mask);
	have_rcu_nocb_mask = true;
	cpulist_parse(str, rcu_nocb_mask);
	return 1;
}
__setup("rcu_nocbs=", rcu_nocb_setup);

1848 1849 1850 1851 1852 1853 1854
static int __init parse_rcu_nocb_poll(char *arg)
{
	rcu_nocb_poll = 1;
	return 0;
}
early_param("rcu_nocb_poll", parse_rcu_nocb_poll);

1855
/*
1856 1857
 * Wake up any no-CBs CPUs' kthreads that were waiting on the just-ended
 * grace period.
1858
 */
1859
static void rcu_nocb_gp_cleanup(struct rcu_state *rsp, struct rcu_node *rnp)
1860
{
1861
	wake_up_all(&rnp->nocb_gp_wq[rnp->completed & 0x1]);
1862 1863 1864
}

/*
1865
 * Set the root rcu_node structure's ->need_future_gp field
1866 1867 1868 1869 1870
 * based on the sum of those of all rcu_node structures.  This does
 * double-count the root rcu_node structure's requests, but this
 * is necessary to handle the possibility of a rcu_nocb_kthread()
 * having awakened during the time that the rcu_node structures
 * were being updated for the end of the previous grace period.
1871
 */
1872 1873
static void rcu_nocb_gp_set(struct rcu_node *rnp, int nrq)
{
1874
	rnp->need_future_gp[(rnp->completed + 1) & 0x1] += nrq;
1875 1876 1877
}

static void rcu_init_one_nocb(struct rcu_node *rnp)
1878
{
1879 1880
	init_waitqueue_head(&rnp->nocb_gp_wq[0]);
	init_waitqueue_head(&rnp->nocb_gp_wq[1]);
1881 1882
}

1883
#ifndef CONFIG_RCU_NOCB_CPU_ALL
L
Liu Ping Fan 已提交
1884
/* Is the specified CPU a no-CBs CPU? */
1885
bool rcu_is_nocb_cpu(int cpu)
P
Paul E. McKenney 已提交
1886 1887 1888 1889 1890
{
	if (have_rcu_nocb_mask)
		return cpumask_test_cpu(cpu, rcu_nocb_mask);
	return false;
}
1891
#endif /* #ifndef CONFIG_RCU_NOCB_CPU_ALL */
P
Paul E. McKenney 已提交
1892

1893 1894 1895 1896 1897 1898 1899
/*
 * Kick the leader kthread for this NOCB group.
 */
static void wake_nocb_leader(struct rcu_data *rdp, bool force)
{
	struct rcu_data *rdp_leader = rdp->nocb_leader;

1900
	if (!READ_ONCE(rdp_leader->nocb_kthread))
1901
		return;
1902
	if (READ_ONCE(rdp_leader->nocb_leader_sleep) || force) {
1903
		/* Prior smp_mb__after_atomic() orders against prior enqueue. */
1904
		WRITE_ONCE(rdp_leader->nocb_leader_sleep, false);
1905 1906 1907 1908
		wake_up(&rdp_leader->nocb_wq);
	}
}

1909 1910 1911 1912 1913 1914 1915
/*
 * Does the specified CPU need an RCU callback for the specified flavor
 * of rcu_barrier()?
 */
static bool rcu_nocb_cpu_needs_barrier(struct rcu_state *rsp, int cpu)
{
	struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
1916 1917
	unsigned long ret;
#ifdef CONFIG_PROVE_RCU
1918
	struct rcu_head *rhp;
1919
#endif /* #ifdef CONFIG_PROVE_RCU */
1920

1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933
	/*
	 * Check count of all no-CBs callbacks awaiting invocation.
	 * There needs to be a barrier before this function is called,
	 * but associated with a prior determination that no more
	 * callbacks would be posted.  In the worst case, the first
	 * barrier in _rcu_barrier() suffices (but the caller cannot
	 * necessarily rely on this, not a substitute for the caller
	 * getting the concurrency design right!).  There must also be
	 * a barrier between the following load an posting of a callback
	 * (if a callback is in fact needed).  This is associated with an
	 * atomic_inc() in the caller.
	 */
	ret = atomic_long_read(&rdp->nocb_q_count);
1934

1935
#ifdef CONFIG_PROVE_RCU
1936
	rhp = READ_ONCE(rdp->nocb_head);
1937
	if (!rhp)
1938
		rhp = READ_ONCE(rdp->nocb_gp_head);
1939
	if (!rhp)
1940
		rhp = READ_ONCE(rdp->nocb_follower_head);
1941 1942

	/* Having no rcuo kthread but CBs after scheduler starts is bad! */
1943
	if (!READ_ONCE(rdp->nocb_kthread) && rhp &&
1944
	    rcu_scheduler_fully_active) {
1945 1946 1947 1948 1949
		/* RCU callback enqueued before CPU first came online??? */
		pr_err("RCU: Never-onlined no-CBs CPU %d has CB %p\n",
		       cpu, rhp->func);
		WARN_ON_ONCE(1);
	}
1950
#endif /* #ifdef CONFIG_PROVE_RCU */
1951

1952
	return !!ret;
1953 1954
}

P
Paul E. McKenney 已提交
1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965
/*
 * Enqueue the specified string of rcu_head structures onto the specified
 * CPU's no-CBs lists.  The CPU is specified by rdp, the head of the
 * string by rhp, and the tail of the string by rhtp.  The non-lazy/lazy
 * counts are supplied by rhcount and rhcount_lazy.
 *
 * If warranted, also wake up the kthread servicing this CPUs queues.
 */
static void __call_rcu_nocb_enqueue(struct rcu_data *rdp,
				    struct rcu_head *rhp,
				    struct rcu_head **rhtp,
1966 1967
				    int rhcount, int rhcount_lazy,
				    unsigned long flags)
P
Paul E. McKenney 已提交
1968 1969 1970 1971 1972 1973
{
	int len;
	struct rcu_head **old_rhpp;
	struct task_struct *t;

	/* Enqueue the callback on the nocb list and update counts. */
1974 1975
	atomic_long_add(rhcount, &rdp->nocb_q_count);
	/* rcu_barrier() relies on ->nocb_q_count add before xchg. */
P
Paul E. McKenney 已提交
1976
	old_rhpp = xchg(&rdp->nocb_tail, rhtp);
1977
	WRITE_ONCE(*old_rhpp, rhp);
P
Paul E. McKenney 已提交
1978
	atomic_long_add(rhcount_lazy, &rdp->nocb_q_count_lazy);
1979
	smp_mb__after_atomic(); /* Store *old_rhpp before _wake test. */
P
Paul E. McKenney 已提交
1980 1981

	/* If we are not being polled and there is a kthread, awaken it ... */
1982
	t = READ_ONCE(rdp->nocb_kthread);
1983
	if (rcu_nocb_poll || !t) {
1984 1985
		trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
				    TPS("WakeNotPoll"));
P
Paul E. McKenney 已提交
1986
		return;
1987
	}
P
Paul E. McKenney 已提交
1988 1989
	len = atomic_long_read(&rdp->nocb_q_count);
	if (old_rhpp == &rdp->nocb_head) {
1990
		if (!irqs_disabled_flags(flags)) {
1991 1992
			/* ... if queue was empty ... */
			wake_nocb_leader(rdp, false);
1993 1994 1995
			trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
					    TPS("WakeEmpty"));
		} else {
1996
			rdp->nocb_defer_wakeup = RCU_NOGP_WAKE;
1997 1998 1999
			trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
					    TPS("WakeEmptyIsDeferred"));
		}
P
Paul E. McKenney 已提交
2000 2001
		rdp->qlen_last_fqs_check = 0;
	} else if (len > rdp->qlen_last_fqs_check + qhimark) {
2002
		/* ... or if many callbacks queued. */
2003 2004 2005 2006 2007 2008 2009 2010 2011
		if (!irqs_disabled_flags(flags)) {
			wake_nocb_leader(rdp, true);
			trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
					    TPS("WakeOvf"));
		} else {
			rdp->nocb_defer_wakeup = RCU_NOGP_WAKE_FORCE;
			trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
					    TPS("WakeOvfIsDeferred"));
		}
P
Paul E. McKenney 已提交
2012
		rdp->qlen_last_fqs_check = LONG_MAX / 2;
2013 2014
	} else {
		trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, TPS("WakeNot"));
P
Paul E. McKenney 已提交
2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028
	}
	return;
}

/*
 * This is a helper for __call_rcu(), which invokes this when the normal
 * callback queue is inoperable.  If this is not a no-CBs CPU, this
 * function returns failure back to __call_rcu(), which can complain
 * appropriately.
 *
 * Otherwise, this function queues the callback where the corresponding
 * "rcuo" kthread can find it.
 */
static bool __call_rcu_nocb(struct rcu_data *rdp, struct rcu_head *rhp,
2029
			    bool lazy, unsigned long flags)
P
Paul E. McKenney 已提交
2030 2031
{

2032
	if (!rcu_is_nocb_cpu(rdp->cpu))
2033
		return false;
2034
	__call_rcu_nocb_enqueue(rdp, rhp, &rhp->next, 1, lazy, flags);
2035 2036 2037
	if (__is_kfree_rcu_offset((unsigned long)rhp->func))
		trace_rcu_kfree_callback(rdp->rsp->name, rhp,
					 (unsigned long)rhp->func,
2038 2039
					 -atomic_long_read(&rdp->nocb_q_count_lazy),
					 -atomic_long_read(&rdp->nocb_q_count));
2040 2041
	else
		trace_rcu_callback(rdp->rsp->name, rhp,
2042 2043
				   -atomic_long_read(&rdp->nocb_q_count_lazy),
				   -atomic_long_read(&rdp->nocb_q_count));
2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054

	/*
	 * If called from an extended quiescent state with interrupts
	 * disabled, invoke the RCU core in order to allow the idle-entry
	 * deferred-wakeup check to function.
	 */
	if (irqs_disabled_flags(flags) &&
	    !rcu_is_watching() &&
	    cpu_online(smp_processor_id()))
		invoke_rcu_core();

2055
	return true;
P
Paul E. McKenney 已提交
2056 2057 2058 2059 2060 2061 2062
}

/*
 * Adopt orphaned callbacks on a no-CBs CPU, or return 0 if this is
 * not a no-CBs CPU.
 */
static bool __maybe_unused rcu_nocb_adopt_orphan_cbs(struct rcu_state *rsp,
2063 2064
						     struct rcu_data *rdp,
						     unsigned long flags)
P
Paul E. McKenney 已提交
2065 2066 2067 2068 2069
{
	long ql = rsp->qlen;
	long qll = rsp->qlen_lazy;

	/* If this is not a no-CBs CPU, tell the caller to do it the old way. */
2070
	if (!rcu_is_nocb_cpu(smp_processor_id()))
2071
		return false;
P
Paul E. McKenney 已提交
2072 2073 2074 2075 2076 2077
	rsp->qlen = 0;
	rsp->qlen_lazy = 0;

	/* First, enqueue the donelist, if any.  This preserves CB ordering. */
	if (rsp->orphan_donelist != NULL) {
		__call_rcu_nocb_enqueue(rdp, rsp->orphan_donelist,
2078
					rsp->orphan_donetail, ql, qll, flags);
P
Paul E. McKenney 已提交
2079 2080 2081 2082 2083 2084
		ql = qll = 0;
		rsp->orphan_donelist = NULL;
		rsp->orphan_donetail = &rsp->orphan_donelist;
	}
	if (rsp->orphan_nxtlist != NULL) {
		__call_rcu_nocb_enqueue(rdp, rsp->orphan_nxtlist,
2085
					rsp->orphan_nxttail, ql, qll, flags);
P
Paul E. McKenney 已提交
2086 2087 2088 2089
		ql = qll = 0;
		rsp->orphan_nxtlist = NULL;
		rsp->orphan_nxttail = &rsp->orphan_nxtlist;
	}
2090
	return true;
P
Paul E. McKenney 已提交
2091 2092 2093
}

/*
2094 2095
 * If necessary, kick off a new grace period, and either way wait
 * for a subsequent grace period to complete.
P
Paul E. McKenney 已提交
2096
 */
2097
static void rcu_nocb_wait_gp(struct rcu_data *rdp)
P
Paul E. McKenney 已提交
2098
{
2099
	unsigned long c;
2100
	bool d;
2101
	unsigned long flags;
2102
	bool needwake;
2103 2104 2105
	struct rcu_node *rnp = rdp->mynode;

	raw_spin_lock_irqsave(&rnp->lock, flags);
2106
	smp_mb__after_unlock_lock();
2107
	needwake = rcu_start_future_gp(rnp, rdp, &c);
2108
	raw_spin_unlock_irqrestore(&rnp->lock, flags);
2109 2110
	if (needwake)
		rcu_gp_kthread_wake(rdp->rsp);
P
Paul E. McKenney 已提交
2111 2112

	/*
2113 2114
	 * Wait for the grace period.  Do so interruptibly to avoid messing
	 * up the load average.
P
Paul E. McKenney 已提交
2115
	 */
2116
	trace_rcu_future_gp(rnp, rdp, c, TPS("StartWait"));
2117
	for (;;) {
2118 2119
		wait_event_interruptible(
			rnp->nocb_gp_wq[c & 0x1],
2120
			(d = ULONG_CMP_GE(READ_ONCE(rnp->completed), c)));
2121
		if (likely(d))
2122
			break;
2123
		WARN_ON(signal_pending(current));
2124
		trace_rcu_future_gp(rnp, rdp, c, TPS("ResumeWait"));
2125
	}
2126
	trace_rcu_future_gp(rnp, rdp, c, TPS("EndWait"));
2127
	smp_mb(); /* Ensure that CB invocation happens after GP end. */
P
Paul E. McKenney 已提交
2128 2129
}

2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146
/*
 * Leaders come here to wait for additional callbacks to show up.
 * This function does not return until callbacks appear.
 */
static void nocb_leader_wait(struct rcu_data *my_rdp)
{
	bool firsttime = true;
	bool gotcbs;
	struct rcu_data *rdp;
	struct rcu_head **tail;

wait_again:

	/* Wait for callbacks to appear. */
	if (!rcu_nocb_poll) {
		trace_rcu_nocb_wake(my_rdp->rsp->name, my_rdp->cpu, "Sleep");
		wait_event_interruptible(my_rdp->nocb_wq,
2147
				!READ_ONCE(my_rdp->nocb_leader_sleep));
2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160
		/* Memory barrier handled by smp_mb() calls below and repoll. */
	} else if (firsttime) {
		firsttime = false; /* Don't drown trace log with "Poll"! */
		trace_rcu_nocb_wake(my_rdp->rsp->name, my_rdp->cpu, "Poll");
	}

	/*
	 * Each pass through the following loop checks a follower for CBs.
	 * We are our own first follower.  Any CBs found are moved to
	 * nocb_gp_head, where they await a grace period.
	 */
	gotcbs = false;
	for (rdp = my_rdp; rdp; rdp = rdp->nocb_next_follower) {
2161
		rdp->nocb_gp_head = READ_ONCE(rdp->nocb_head);
2162 2163 2164 2165
		if (!rdp->nocb_gp_head)
			continue;  /* No CBs here, try next follower. */

		/* Move callbacks to wait-for-GP list, which is empty. */
2166
		WRITE_ONCE(rdp->nocb_head, NULL);
2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178
		rdp->nocb_gp_tail = xchg(&rdp->nocb_tail, &rdp->nocb_head);
		gotcbs = true;
	}

	/*
	 * If there were no callbacks, sleep a bit, rescan after a
	 * memory barrier, and go retry.
	 */
	if (unlikely(!gotcbs)) {
		if (!rcu_nocb_poll)
			trace_rcu_nocb_wake(my_rdp->rsp->name, my_rdp->cpu,
					    "WokeEmpty");
2179
		WARN_ON(signal_pending(current));
2180 2181 2182
		schedule_timeout_interruptible(1);

		/* Rescan in case we were a victim of memory ordering. */
2183 2184
		my_rdp->nocb_leader_sleep = true;
		smp_mb();  /* Ensure _sleep true before scan. */
2185
		for (rdp = my_rdp; rdp; rdp = rdp->nocb_next_follower)
2186
			if (READ_ONCE(rdp->nocb_head)) {
2187
				/* Found CB, so short-circuit next wait. */
2188
				my_rdp->nocb_leader_sleep = false;
2189 2190 2191 2192 2193 2194 2195 2196 2197
				break;
			}
		goto wait_again;
	}

	/* Wait for one grace period. */
	rcu_nocb_wait_gp(my_rdp);

	/*
2198 2199
	 * We left ->nocb_leader_sleep unset to reduce cache thrashing.
	 * We set it now, but recheck for new callbacks while
2200 2201
	 * traversing our follower list.
	 */
2202 2203
	my_rdp->nocb_leader_sleep = true;
	smp_mb(); /* Ensure _sleep true before scan of ->nocb_head. */
2204 2205 2206

	/* Each pass through the following loop wakes a follower, if needed. */
	for (rdp = my_rdp; rdp; rdp = rdp->nocb_next_follower) {
2207
		if (READ_ONCE(rdp->nocb_head))
2208
			my_rdp->nocb_leader_sleep = false;/* No need to sleep.*/
2209 2210 2211 2212 2213 2214
		if (!rdp->nocb_gp_head)
			continue; /* No CBs, so no need to wake follower. */

		/* Append callbacks to follower's "done" list. */
		tail = xchg(&rdp->nocb_follower_tail, rdp->nocb_gp_tail);
		*tail = rdp->nocb_gp_head;
2215
		smp_mb__after_atomic(); /* Store *tail before wakeup. */
2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242
		if (rdp != my_rdp && tail == &rdp->nocb_follower_head) {
			/*
			 * List was empty, wake up the follower.
			 * Memory barriers supplied by atomic_long_add().
			 */
			wake_up(&rdp->nocb_wq);
		}
	}

	/* If we (the leader) don't have CBs, go wait some more. */
	if (!my_rdp->nocb_follower_head)
		goto wait_again;
}

/*
 * Followers come here to wait for additional callbacks to show up.
 * This function does not return until callbacks appear.
 */
static void nocb_follower_wait(struct rcu_data *rdp)
{
	bool firsttime = true;

	for (;;) {
		if (!rcu_nocb_poll) {
			trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
					    "FollowerSleep");
			wait_event_interruptible(rdp->nocb_wq,
2243
						 READ_ONCE(rdp->nocb_follower_head));
2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255
		} else if (firsttime) {
			/* Don't drown trace log with "Poll"! */
			firsttime = false;
			trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, "Poll");
		}
		if (smp_load_acquire(&rdp->nocb_follower_head)) {
			/* ^^^ Ensure CB invocation follows _head test. */
			return;
		}
		if (!rcu_nocb_poll)
			trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
					    "WokeEmpty");
2256
		WARN_ON(signal_pending(current));
2257 2258 2259 2260
		schedule_timeout_interruptible(1);
	}
}

P
Paul E. McKenney 已提交
2261 2262
/*
 * Per-rcu_data kthread, but only for no-CBs CPUs.  Each kthread invokes
2263 2264 2265
 * callbacks queued by the corresponding no-CBs CPU, however, there is
 * an optional leader-follower relationship so that the grace-period
 * kthreads don't have to do quite so many wakeups.
P
Paul E. McKenney 已提交
2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276
 */
static int rcu_nocb_kthread(void *arg)
{
	int c, cl;
	struct rcu_head *list;
	struct rcu_head *next;
	struct rcu_head **tail;
	struct rcu_data *rdp = arg;

	/* Each pass through this loop invokes one batch of callbacks */
	for (;;) {
2277 2278 2279 2280 2281 2282 2283
		/* Wait for callbacks. */
		if (rdp->nocb_leader == rdp)
			nocb_leader_wait(rdp);
		else
			nocb_follower_wait(rdp);

		/* Pull the ready-to-invoke callbacks onto local list. */
2284
		list = READ_ONCE(rdp->nocb_follower_head);
2285 2286
		BUG_ON(!list);
		trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, "WokeNonEmpty");
2287
		WRITE_ONCE(rdp->nocb_follower_head, NULL);
2288
		tail = xchg(&rdp->nocb_follower_tail, &rdp->nocb_follower_head);
P
Paul E. McKenney 已提交
2289 2290

		/* Each pass through the following loop invokes a callback. */
2291 2292 2293
		trace_rcu_batch_start(rdp->rsp->name,
				      atomic_long_read(&rdp->nocb_q_count_lazy),
				      atomic_long_read(&rdp->nocb_q_count), -1);
P
Paul E. McKenney 已提交
2294 2295 2296 2297 2298
		c = cl = 0;
		while (list) {
			next = list->next;
			/* Wait for enqueuing to complete, if needed. */
			while (next == NULL && &list->next != tail) {
2299 2300
				trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
						    TPS("WaitQueue"));
P
Paul E. McKenney 已提交
2301
				schedule_timeout_interruptible(1);
2302 2303
				trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
						    TPS("WokeQueue"));
P
Paul E. McKenney 已提交
2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314
				next = list->next;
			}
			debug_rcu_head_unqueue(list);
			local_bh_disable();
			if (__rcu_reclaim(rdp->rsp->name, list))
				cl++;
			c++;
			local_bh_enable();
			list = next;
		}
		trace_rcu_batch_end(rdp->rsp->name, c, !!list, 0, 0, 1);
2315 2316 2317
		smp_mb__before_atomic();  /* _add after CB invocation. */
		atomic_long_add(-c, &rdp->nocb_q_count);
		atomic_long_add(-cl, &rdp->nocb_q_count_lazy);
2318
		rdp->n_nocbs_invoked += c;
P
Paul E. McKenney 已提交
2319 2320 2321 2322
	}
	return 0;
}

2323
/* Is a deferred wakeup of rcu_nocb_kthread() required? */
2324
static int rcu_nocb_need_deferred_wakeup(struct rcu_data *rdp)
2325
{
2326
	return READ_ONCE(rdp->nocb_defer_wakeup);
2327 2328 2329 2330 2331
}

/* Do a deferred wakeup of rcu_nocb_kthread(). */
static void do_nocb_deferred_wakeup(struct rcu_data *rdp)
{
2332 2333
	int ndw;

2334 2335
	if (!rcu_nocb_need_deferred_wakeup(rdp))
		return;
2336 2337
	ndw = READ_ONCE(rdp->nocb_defer_wakeup);
	WRITE_ONCE(rdp->nocb_defer_wakeup, RCU_NOGP_WAKE_NOT);
2338 2339
	wake_nocb_leader(rdp, ndw == RCU_NOGP_WAKE_FORCE);
	trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, TPS("DeferredWake"));
2340 2341
}

2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357
void __init rcu_init_nohz(void)
{
	int cpu;
	bool need_rcu_nocb_mask = true;
	struct rcu_state *rsp;

#ifdef CONFIG_RCU_NOCB_CPU_NONE
	need_rcu_nocb_mask = false;
#endif /* #ifndef CONFIG_RCU_NOCB_CPU_NONE */

#if defined(CONFIG_NO_HZ_FULL)
	if (tick_nohz_full_running && cpumask_weight(tick_nohz_full_mask))
		need_rcu_nocb_mask = true;
#endif /* #if defined(CONFIG_NO_HZ_FULL) */

	if (!have_rcu_nocb_mask && need_rcu_nocb_mask) {
2358 2359 2360 2361
		if (!zalloc_cpumask_var(&rcu_nocb_mask, GFP_KERNEL)) {
			pr_info("rcu_nocb_mask allocation failed, callback offloading disabled.\n");
			return;
		}
2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384
		have_rcu_nocb_mask = true;
	}
	if (!have_rcu_nocb_mask)
		return;

#ifdef CONFIG_RCU_NOCB_CPU_ZERO
	pr_info("\tOffload RCU callbacks from CPU 0\n");
	cpumask_set_cpu(0, rcu_nocb_mask);
#endif /* #ifdef CONFIG_RCU_NOCB_CPU_ZERO */
#ifdef CONFIG_RCU_NOCB_CPU_ALL
	pr_info("\tOffload RCU callbacks from all CPUs\n");
	cpumask_copy(rcu_nocb_mask, cpu_possible_mask);
#endif /* #ifdef CONFIG_RCU_NOCB_CPU_ALL */
#if defined(CONFIG_NO_HZ_FULL)
	if (tick_nohz_full_running)
		cpumask_or(rcu_nocb_mask, rcu_nocb_mask, tick_nohz_full_mask);
#endif /* #if defined(CONFIG_NO_HZ_FULL) */

	if (!cpumask_subset(rcu_nocb_mask, cpu_possible_mask)) {
		pr_info("\tNote: kernel parameter 'rcu_nocbs=' contains nonexistent CPUs.\n");
		cpumask_and(rcu_nocb_mask, cpu_possible_mask,
			    rcu_nocb_mask);
	}
2385 2386
	pr_info("\tOffload RCU callbacks from CPUs: %*pbl.\n",
		cpumask_pr_args(rcu_nocb_mask));
2387 2388 2389 2390
	if (rcu_nocb_poll)
		pr_info("\tPoll for callbacks from no-CBs CPUs.\n");

	for_each_rcu_flavor(rsp) {
2391 2392
		for_each_cpu(cpu, rcu_nocb_mask)
			init_nocb_callback_list(per_cpu_ptr(rsp->rda, cpu));
2393
		rcu_organize_nocb_kthreads(rsp);
2394
	}
2395 2396
}

P
Paul E. McKenney 已提交
2397 2398 2399 2400 2401
/* Initialize per-rcu_data variables for no-CBs CPUs. */
static void __init rcu_boot_init_nocb_percpu_data(struct rcu_data *rdp)
{
	rdp->nocb_tail = &rdp->nocb_head;
	init_waitqueue_head(&rdp->nocb_wq);
2402
	rdp->nocb_follower_tail = &rdp->nocb_follower_head;
P
Paul E. McKenney 已提交
2403 2404
}

2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434
/*
 * If the specified CPU is a no-CBs CPU that does not already have its
 * rcuo kthread for the specified RCU flavor, spawn it.  If the CPUs are
 * brought online out of order, this can require re-organizing the
 * leader-follower relationships.
 */
static void rcu_spawn_one_nocb_kthread(struct rcu_state *rsp, int cpu)
{
	struct rcu_data *rdp;
	struct rcu_data *rdp_last;
	struct rcu_data *rdp_old_leader;
	struct rcu_data *rdp_spawn = per_cpu_ptr(rsp->rda, cpu);
	struct task_struct *t;

	/*
	 * If this isn't a no-CBs CPU or if it already has an rcuo kthread,
	 * then nothing to do.
	 */
	if (!rcu_is_nocb_cpu(cpu) || rdp_spawn->nocb_kthread)
		return;

	/* If we didn't spawn the leader first, reorganize! */
	rdp_old_leader = rdp_spawn->nocb_leader;
	if (rdp_old_leader != rdp_spawn && !rdp_old_leader->nocb_kthread) {
		rdp_last = NULL;
		rdp = rdp_old_leader;
		do {
			rdp->nocb_leader = rdp_spawn;
			if (rdp_last && rdp != rdp_spawn)
				rdp_last->nocb_next_follower = rdp;
2435 2436 2437 2438 2439 2440 2441
			if (rdp == rdp_spawn) {
				rdp = rdp->nocb_next_follower;
			} else {
				rdp_last = rdp;
				rdp = rdp->nocb_next_follower;
				rdp_last->nocb_next_follower = NULL;
			}
2442 2443 2444 2445 2446 2447 2448 2449
		} while (rdp);
		rdp_spawn->nocb_next_follower = rdp_old_leader;
	}

	/* Spawn the kthread for this CPU and RCU flavor. */
	t = kthread_run(rcu_nocb_kthread, rdp_spawn,
			"rcuo%c/%d", rsp->abbr, cpu);
	BUG_ON(IS_ERR(t));
2450
	WRITE_ONCE(rdp_spawn->nocb_kthread, t);
2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479
}

/*
 * If the specified CPU is a no-CBs CPU that does not already have its
 * rcuo kthreads, spawn them.
 */
static void rcu_spawn_all_nocb_kthreads(int cpu)
{
	struct rcu_state *rsp;

	if (rcu_scheduler_fully_active)
		for_each_rcu_flavor(rsp)
			rcu_spawn_one_nocb_kthread(rsp, cpu);
}

/*
 * Once the scheduler is running, spawn rcuo kthreads for all online
 * no-CBs CPUs.  This assumes that the early_initcall()s happen before
 * non-boot CPUs come online -- if this changes, we will need to add
 * some mutual exclusion.
 */
static void __init rcu_spawn_nocb_kthreads(void)
{
	int cpu;

	for_each_online_cpu(cpu)
		rcu_spawn_all_nocb_kthreads(cpu);
}

2480 2481 2482 2483 2484
/* How many follower CPU IDs per leader?  Default of -1 for sqrt(nr_cpu_ids). */
static int rcu_nocb_leader_stride = -1;
module_param(rcu_nocb_leader_stride, int, 0444);

/*
2485
 * Initialize leader-follower relationships for all no-CBs CPU.
2486
 */
2487
static void __init rcu_organize_nocb_kthreads(struct rcu_state *rsp)
P
Paul E. McKenney 已提交
2488 2489
{
	int cpu;
2490 2491
	int ls = rcu_nocb_leader_stride;
	int nl = 0;  /* Next leader. */
P
Paul E. McKenney 已提交
2492
	struct rcu_data *rdp;
2493 2494
	struct rcu_data *rdp_leader = NULL;  /* Suppress misguided gcc warn. */
	struct rcu_data *rdp_prev = NULL;
P
Paul E. McKenney 已提交
2495

2496
	if (!have_rcu_nocb_mask)
P
Paul E. McKenney 已提交
2497
		return;
2498 2499 2500 2501 2502 2503 2504 2505 2506
	if (ls == -1) {
		ls = int_sqrt(nr_cpu_ids);
		rcu_nocb_leader_stride = ls;
	}

	/*
	 * Each pass through this loop sets up one rcu_data structure and
	 * spawns one rcu_nocb_kthread().
	 */
P
Paul E. McKenney 已提交
2507 2508
	for_each_cpu(cpu, rcu_nocb_mask) {
		rdp = per_cpu_ptr(rsp->rda, cpu);
2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519
		if (rdp->cpu >= nl) {
			/* New leader, set up for followers & next leader. */
			nl = DIV_ROUND_UP(rdp->cpu + 1, ls) * ls;
			rdp->nocb_leader = rdp;
			rdp_leader = rdp;
		} else {
			/* Another follower, link to previous leader. */
			rdp->nocb_leader = rdp_leader;
			rdp_prev->nocb_next_follower = rdp;
		}
		rdp_prev = rdp;
P
Paul E. McKenney 已提交
2520 2521 2522 2523
	}
}

/* Prevent __call_rcu() from enqueuing callbacks on no-CBs CPUs */
2524
static bool init_nocb_callback_list(struct rcu_data *rdp)
P
Paul E. McKenney 已提交
2525
{
2526
	if (!rcu_is_nocb_cpu(rdp->cpu))
2527
		return false;
2528

2529 2530 2531 2532 2533 2534 2535 2536 2537 2538
	/* If there are early-boot callbacks, move them to nocb lists. */
	if (rdp->nxtlist) {
		rdp->nocb_head = rdp->nxtlist;
		rdp->nocb_tail = rdp->nxttail[RCU_NEXT_TAIL];
		atomic_long_set(&rdp->nocb_q_count, rdp->qlen);
		atomic_long_set(&rdp->nocb_q_count_lazy, rdp->qlen_lazy);
		rdp->nxtlist = NULL;
		rdp->qlen = 0;
		rdp->qlen_lazy = 0;
	}
P
Paul E. McKenney 已提交
2539
	rdp->nxttail[RCU_NEXT_TAIL] = NULL;
2540
	return true;
P
Paul E. McKenney 已提交
2541 2542
}

2543 2544
#else /* #ifdef CONFIG_RCU_NOCB_CPU */

2545 2546 2547 2548 2549 2550
static bool rcu_nocb_cpu_needs_barrier(struct rcu_state *rsp, int cpu)
{
	WARN_ON_ONCE(1); /* Should be dead code. */
	return false;
}

2551
static void rcu_nocb_gp_cleanup(struct rcu_state *rsp, struct rcu_node *rnp)
P
Paul E. McKenney 已提交
2552 2553 2554
{
}

2555 2556 2557 2558 2559 2560 2561
static void rcu_nocb_gp_set(struct rcu_node *rnp, int nrq)
{
}

static void rcu_init_one_nocb(struct rcu_node *rnp)
{
}
P
Paul E. McKenney 已提交
2562 2563

static bool __call_rcu_nocb(struct rcu_data *rdp, struct rcu_head *rhp,
2564
			    bool lazy, unsigned long flags)
P
Paul E. McKenney 已提交
2565
{
2566
	return false;
P
Paul E. McKenney 已提交
2567 2568 2569
}

static bool __maybe_unused rcu_nocb_adopt_orphan_cbs(struct rcu_state *rsp,
2570 2571
						     struct rcu_data *rdp,
						     unsigned long flags)
P
Paul E. McKenney 已提交
2572
{
2573
	return false;
P
Paul E. McKenney 已提交
2574 2575 2576 2577 2578 2579
}

static void __init rcu_boot_init_nocb_percpu_data(struct rcu_data *rdp)
{
}

2580
static int rcu_nocb_need_deferred_wakeup(struct rcu_data *rdp)
2581 2582 2583 2584 2585 2586 2587 2588
{
	return false;
}

static void do_nocb_deferred_wakeup(struct rcu_data *rdp)
{
}

2589 2590 2591 2592 2593
static void rcu_spawn_all_nocb_kthreads(int cpu)
{
}

static void __init rcu_spawn_nocb_kthreads(void)
P
Paul E. McKenney 已提交
2594 2595 2596
{
}

2597
static bool init_nocb_callback_list(struct rcu_data *rdp)
P
Paul E. McKenney 已提交
2598
{
2599
	return false;
P
Paul E. McKenney 已提交
2600 2601 2602
}

#endif /* #else #ifdef CONFIG_RCU_NOCB_CPU */
2603 2604 2605 2606 2607 2608 2609 2610 2611 2612

/*
 * An adaptive-ticks CPU can potentially execute in kernel mode for an
 * arbitrarily long period of time with the scheduling-clock tick turned
 * off.  RCU will be paying attention to this CPU because it is in the
 * kernel, but the CPU cannot be guaranteed to be executing the RCU state
 * machine because the scheduling-clock tick has been disabled.  Therefore,
 * if an adaptive-ticks CPU is failing to respond to the current grace
 * period and has not be idle from an RCU perspective, kick it.
 */
2613
static void __maybe_unused rcu_kick_nohz_cpu(int cpu)
2614 2615 2616 2617 2618 2619
{
#ifdef CONFIG_NO_HZ_FULL
	if (tick_nohz_full_cpu(cpu))
		smp_send_reschedule(cpu);
#endif /* #ifdef CONFIG_NO_HZ_FULL */
}
2620 2621 2622 2623


#ifdef CONFIG_NO_HZ_FULL_SYSIDLE

2624
static int full_sysidle_state;		/* Current system-idle state. */
2625 2626 2627 2628 2629 2630
#define RCU_SYSIDLE_NOT		0	/* Some CPU is not idle. */
#define RCU_SYSIDLE_SHORT	1	/* All CPUs idle for brief period. */
#define RCU_SYSIDLE_LONG	2	/* All CPUs idle for long enough. */
#define RCU_SYSIDLE_FULL	3	/* All CPUs idle, ready for sysidle. */
#define RCU_SYSIDLE_FULL_NOTED	4	/* Actually entered sysidle state. */

2631 2632 2633 2634 2635 2636
/*
 * Invoked to note exit from irq or task transition to idle.  Note that
 * usermode execution does -not- count as idle here!  After all, we want
 * to detect full-system idle states, not RCU quiescent states and grace
 * periods.  The caller must have disabled interrupts.
 */
2637
static void rcu_sysidle_enter(int irq)
2638 2639
{
	unsigned long j;
2640
	struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
2641

2642 2643 2644 2645
	/* If there are no nohz_full= CPUs, no need to track this. */
	if (!tick_nohz_full_enabled())
		return;

2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664
	/* Adjust nesting, check for fully idle. */
	if (irq) {
		rdtp->dynticks_idle_nesting--;
		WARN_ON_ONCE(rdtp->dynticks_idle_nesting < 0);
		if (rdtp->dynticks_idle_nesting != 0)
			return;  /* Still not fully idle. */
	} else {
		if ((rdtp->dynticks_idle_nesting & DYNTICK_TASK_NEST_MASK) ==
		    DYNTICK_TASK_NEST_VALUE) {
			rdtp->dynticks_idle_nesting = 0;
		} else {
			rdtp->dynticks_idle_nesting -= DYNTICK_TASK_NEST_VALUE;
			WARN_ON_ONCE(rdtp->dynticks_idle_nesting < 0);
			return;  /* Still not fully idle. */
		}
	}

	/* Record start of fully idle period. */
	j = jiffies;
2665
	WRITE_ONCE(rdtp->dynticks_idle_jiffies, j);
2666
	smp_mb__before_atomic();
2667
	atomic_inc(&rdtp->dynticks_idle);
2668
	smp_mb__after_atomic();
2669 2670 2671
	WARN_ON_ONCE(atomic_read(&rdtp->dynticks_idle) & 0x1);
}

2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682
/*
 * Unconditionally force exit from full system-idle state.  This is
 * invoked when a normal CPU exits idle, but must be called separately
 * for the timekeeping CPU (tick_do_timer_cpu).  The reason for this
 * is that the timekeeping CPU is permitted to take scheduling-clock
 * interrupts while the system is in system-idle state, and of course
 * rcu_sysidle_exit() has no way of distinguishing a scheduling-clock
 * interrupt from any other type of interrupt.
 */
void rcu_sysidle_force_exit(void)
{
2683
	int oldstate = READ_ONCE(full_sysidle_state);
2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703
	int newoldstate;

	/*
	 * Each pass through the following loop attempts to exit full
	 * system-idle state.  If contention proves to be a problem,
	 * a trylock-based contention tree could be used here.
	 */
	while (oldstate > RCU_SYSIDLE_SHORT) {
		newoldstate = cmpxchg(&full_sysidle_state,
				      oldstate, RCU_SYSIDLE_NOT);
		if (oldstate == newoldstate &&
		    oldstate == RCU_SYSIDLE_FULL_NOTED) {
			rcu_kick_nohz_cpu(tick_do_timer_cpu);
			return; /* We cleared it, done! */
		}
		oldstate = newoldstate;
	}
	smp_mb(); /* Order initial oldstate fetch vs. later non-idle work. */
}

2704 2705 2706 2707 2708
/*
 * Invoked to note entry to irq or task transition from idle.  Note that
 * usermode execution does -not- count as idle here!  The caller must
 * have disabled interrupts.
 */
2709
static void rcu_sysidle_exit(int irq)
2710
{
2711 2712
	struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);

2713 2714 2715 2716
	/* If there are no nohz_full= CPUs, no need to track this. */
	if (!tick_nohz_full_enabled())
		return;

2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738
	/* Adjust nesting, check for already non-idle. */
	if (irq) {
		rdtp->dynticks_idle_nesting++;
		WARN_ON_ONCE(rdtp->dynticks_idle_nesting <= 0);
		if (rdtp->dynticks_idle_nesting != 1)
			return; /* Already non-idle. */
	} else {
		/*
		 * Allow for irq misnesting.  Yes, it really is possible
		 * to enter an irq handler then never leave it, and maybe
		 * also vice versa.  Handle both possibilities.
		 */
		if (rdtp->dynticks_idle_nesting & DYNTICK_TASK_NEST_MASK) {
			rdtp->dynticks_idle_nesting += DYNTICK_TASK_NEST_VALUE;
			WARN_ON_ONCE(rdtp->dynticks_idle_nesting <= 0);
			return; /* Already non-idle. */
		} else {
			rdtp->dynticks_idle_nesting = DYNTICK_TASK_EXIT_IDLE;
		}
	}

	/* Record end of idle period. */
2739
	smp_mb__before_atomic();
2740
	atomic_inc(&rdtp->dynticks_idle);
2741
	smp_mb__after_atomic();
2742
	WARN_ON_ONCE(!(atomic_read(&rdtp->dynticks_idle) & 0x1));
2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761

	/*
	 * If we are the timekeeping CPU, we are permitted to be non-idle
	 * during a system-idle state.  This must be the case, because
	 * the timekeeping CPU has to take scheduling-clock interrupts
	 * during the time that the system is transitioning to full
	 * system-idle state.  This means that the timekeeping CPU must
	 * invoke rcu_sysidle_force_exit() directly if it does anything
	 * more than take a scheduling-clock interrupt.
	 */
	if (smp_processor_id() == tick_do_timer_cpu)
		return;

	/* Update system-idle state: We are clearly no longer fully idle! */
	rcu_sysidle_force_exit();
}

/*
 * Check to see if the current CPU is idle.  Note that usermode execution
2762 2763
 * does not count as idle.  The caller must have disabled interrupts,
 * and must be running on tick_do_timer_cpu.
2764 2765 2766 2767 2768 2769 2770 2771
 */
static void rcu_sysidle_check_cpu(struct rcu_data *rdp, bool *isidle,
				  unsigned long *maxj)
{
	int cur;
	unsigned long j;
	struct rcu_dynticks *rdtp = rdp->dynticks;

2772 2773 2774 2775
	/* If there are no nohz_full= CPUs, don't check system-wide idleness. */
	if (!tick_nohz_full_enabled())
		return;

2776 2777 2778 2779 2780
	/*
	 * If some other CPU has already reported non-idle, if this is
	 * not the flavor of RCU that tracks sysidle state, or if this
	 * is an offline or the timekeeping CPU, nothing to do.
	 */
2781
	if (!*isidle || rdp->rsp != rcu_state_p ||
2782 2783
	    cpu_is_offline(rdp->cpu) || rdp->cpu == tick_do_timer_cpu)
		return;
2784 2785
	/* Verify affinity of current kthread. */
	WARN_ON_ONCE(smp_processor_id() != tick_do_timer_cpu);
2786 2787 2788 2789 2790 2791 2792 2793 2794 2795

	/* Pick up current idle and NMI-nesting counter and check. */
	cur = atomic_read(&rdtp->dynticks_idle);
	if (cur & 0x1) {
		*isidle = false; /* We are not idle! */
		return;
	}
	smp_mb(); /* Read counters before timestamps. */

	/* Pick up timestamps. */
2796
	j = READ_ONCE(rdtp->dynticks_idle_jiffies);
2797 2798 2799 2800 2801 2802 2803 2804 2805 2806
	/* If this CPU entered idle more recently, update maxj timestamp. */
	if (ULONG_CMP_LT(*maxj, j))
		*maxj = j;
}

/*
 * Is this the flavor of RCU that is handling full-system idle?
 */
static bool is_sysidle_rcu_state(struct rcu_state *rsp)
{
2807
	return rsp == rcu_state_p;
2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832
}

/*
 * Return a delay in jiffies based on the number of CPUs, rcu_node
 * leaf fanout, and jiffies tick rate.  The idea is to allow larger
 * systems more time to transition to full-idle state in order to
 * avoid the cache thrashing that otherwise occur on the state variable.
 * Really small systems (less than a couple of tens of CPUs) should
 * instead use a single global atomically incremented counter, and later
 * versions of this will automatically reconfigure themselves accordingly.
 */
static unsigned long rcu_sysidle_delay(void)
{
	if (nr_cpu_ids <= CONFIG_NO_HZ_FULL_SYSIDLE_SMALL)
		return 0;
	return DIV_ROUND_UP(nr_cpu_ids * HZ, rcu_fanout_leaf * 1000);
}

/*
 * Advance the full-system-idle state.  This is invoked when all of
 * the non-timekeeping CPUs are idle.
 */
static void rcu_sysidle(unsigned long j)
{
	/* Check the current state. */
2833
	switch (READ_ONCE(full_sysidle_state)) {
2834 2835 2836
	case RCU_SYSIDLE_NOT:

		/* First time all are idle, so note a short idle period. */
2837
		WRITE_ONCE(full_sysidle_state, RCU_SYSIDLE_SHORT);
2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873
		break;

	case RCU_SYSIDLE_SHORT:

		/*
		 * Idle for a bit, time to advance to next state?
		 * cmpxchg failure means race with non-idle, let them win.
		 */
		if (ULONG_CMP_GE(jiffies, j + rcu_sysidle_delay()))
			(void)cmpxchg(&full_sysidle_state,
				      RCU_SYSIDLE_SHORT, RCU_SYSIDLE_LONG);
		break;

	case RCU_SYSIDLE_LONG:

		/*
		 * Do an additional check pass before advancing to full.
		 * cmpxchg failure means race with non-idle, let them win.
		 */
		if (ULONG_CMP_GE(jiffies, j + rcu_sysidle_delay()))
			(void)cmpxchg(&full_sysidle_state,
				      RCU_SYSIDLE_LONG, RCU_SYSIDLE_FULL);
		break;

	default:
		break;
	}
}

/*
 * Found a non-idle non-timekeeping CPU, so kick the system-idle state
 * back to the beginning.
 */
static void rcu_sysidle_cancel(void)
{
	smp_mb();
2874
	if (full_sysidle_state > RCU_SYSIDLE_SHORT)
2875
		WRITE_ONCE(full_sysidle_state, RCU_SYSIDLE_NOT);
2876 2877 2878 2879 2880 2881 2882 2883 2884
}

/*
 * Update the sysidle state based on the results of a force-quiescent-state
 * scan of the CPUs' dyntick-idle state.
 */
static void rcu_sysidle_report(struct rcu_state *rsp, int isidle,
			       unsigned long maxj, bool gpkt)
{
2885
	if (rsp != rcu_state_p)
2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901
		return;  /* Wrong flavor, ignore. */
	if (gpkt && nr_cpu_ids <= CONFIG_NO_HZ_FULL_SYSIDLE_SMALL)
		return;  /* Running state machine from timekeeping CPU. */
	if (isidle)
		rcu_sysidle(maxj);    /* More idle! */
	else
		rcu_sysidle_cancel(); /* Idle is over. */
}

/*
 * Wrapper for rcu_sysidle_report() when called from the grace-period
 * kthread's context.
 */
static void rcu_sysidle_report_gp(struct rcu_state *rsp, int isidle,
				  unsigned long maxj)
{
2902 2903 2904 2905
	/* If there are no nohz_full= CPUs, no need to track this. */
	if (!tick_nohz_full_enabled())
		return;

2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926
	rcu_sysidle_report(rsp, isidle, maxj, true);
}

/* Callback and function for forcing an RCU grace period. */
struct rcu_sysidle_head {
	struct rcu_head rh;
	int inuse;
};

static void rcu_sysidle_cb(struct rcu_head *rhp)
{
	struct rcu_sysidle_head *rshp;

	/*
	 * The following memory barrier is needed to replace the
	 * memory barriers that would normally be in the memory
	 * allocator.
	 */
	smp_mb();  /* grace period precedes setting inuse. */

	rshp = container_of(rhp, struct rcu_sysidle_head, rh);
2927
	WRITE_ONCE(rshp->inuse, 0);
2928 2929 2930 2931
}

/*
 * Check to see if the system is fully idle, other than the timekeeping CPU.
2932 2933
 * The caller must have disabled interrupts.  This is not intended to be
 * called unless tick_nohz_full_enabled().
2934 2935 2936 2937
 */
bool rcu_sys_is_idle(void)
{
	static struct rcu_sysidle_head rsh;
2938
	int rss = READ_ONCE(full_sysidle_state);
2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958

	if (WARN_ON_ONCE(smp_processor_id() != tick_do_timer_cpu))
		return false;

	/* Handle small-system case by doing a full scan of CPUs. */
	if (nr_cpu_ids <= CONFIG_NO_HZ_FULL_SYSIDLE_SMALL) {
		int oldrss = rss - 1;

		/*
		 * One pass to advance to each state up to _FULL.
		 * Give up if any pass fails to advance the state.
		 */
		while (rss < RCU_SYSIDLE_FULL && oldrss < rss) {
			int cpu;
			bool isidle = true;
			unsigned long maxj = jiffies - ULONG_MAX / 4;
			struct rcu_data *rdp;

			/* Scan all the CPUs looking for nonidle CPUs. */
			for_each_possible_cpu(cpu) {
2959
				rdp = per_cpu_ptr(rcu_state_p->rda, cpu);
2960 2961 2962 2963
				rcu_sysidle_check_cpu(rdp, &isidle, &maxj);
				if (!isidle)
					break;
			}
2964
			rcu_sysidle_report(rcu_state_p, isidle, maxj, false);
2965
			oldrss = rss;
2966
			rss = READ_ONCE(full_sysidle_state);
2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990
		}
	}

	/* If this is the first observation of an idle period, record it. */
	if (rss == RCU_SYSIDLE_FULL) {
		rss = cmpxchg(&full_sysidle_state,
			      RCU_SYSIDLE_FULL, RCU_SYSIDLE_FULL_NOTED);
		return rss == RCU_SYSIDLE_FULL;
	}

	smp_mb(); /* ensure rss load happens before later caller actions. */

	/* If already fully idle, tell the caller (in case of races). */
	if (rss == RCU_SYSIDLE_FULL_NOTED)
		return true;

	/*
	 * If we aren't there yet, and a grace period is not in flight,
	 * initiate a grace period.  Either way, tell the caller that
	 * we are not there yet.  We use an xchg() rather than an assignment
	 * to make up for the memory barriers that would otherwise be
	 * provided by the memory allocator.
	 */
	if (nr_cpu_ids > CONFIG_NO_HZ_FULL_SYSIDLE_SMALL &&
2991
	    !rcu_gp_in_progress(rcu_state_p) &&
2992 2993 2994
	    !rsh.inuse && xchg(&rsh.inuse, 1) == 0)
		call_rcu(&rsh.rh, rcu_sysidle_cb);
	return false;
2995 2996
}

2997 2998 2999 3000 3001 3002 3003 3004 3005 3006
/*
 * Initialize dynticks sysidle state for CPUs coming online.
 */
static void rcu_sysidle_init_percpu_data(struct rcu_dynticks *rdtp)
{
	rdtp->dynticks_idle_nesting = DYNTICK_TASK_NEST_VALUE;
}

#else /* #ifdef CONFIG_NO_HZ_FULL_SYSIDLE */

3007
static void rcu_sysidle_enter(int irq)
3008 3009 3010
{
}

3011
static void rcu_sysidle_exit(int irq)
3012 3013 3014
{
}

3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029
static void rcu_sysidle_check_cpu(struct rcu_data *rdp, bool *isidle,
				  unsigned long *maxj)
{
}

static bool is_sysidle_rcu_state(struct rcu_state *rsp)
{
	return false;
}

static void rcu_sysidle_report_gp(struct rcu_state *rsp, int isidle,
				  unsigned long maxj)
{
}

3030 3031 3032 3033 3034
static void rcu_sysidle_init_percpu_data(struct rcu_dynticks *rdtp)
{
}

#endif /* #else #ifdef CONFIG_NO_HZ_FULL_SYSIDLE */
3035 3036 3037 3038 3039 3040 3041 3042

/*
 * Is this CPU a NO_HZ_FULL CPU that should ignore RCU so that the
 * grace-period kthread will do force_quiescent_state() processing?
 * The idea is to avoid waking up RCU core processing on such a
 * CPU unless the grace period has extended for too long.
 *
 * This code relies on the fact that all NO_HZ_FULL CPUs are also
3043
 * CONFIG_RCU_NOCB_CPU CPUs.
3044 3045 3046 3047 3048 3049
 */
static bool rcu_nohz_full_cpu(struct rcu_state *rsp)
{
#ifdef CONFIG_NO_HZ_FULL
	if (tick_nohz_full_cpu(smp_processor_id()) &&
	    (!rcu_gp_in_progress(rsp) ||
3050
	     ULONG_CMP_LT(jiffies, READ_ONCE(rsp->gp_start) + HZ)))
3051 3052 3053 3054
		return 1;
#endif /* #ifdef CONFIG_NO_HZ_FULL */
	return 0;
}
3055 3056 3057 3058 3059 3060 3061

/*
 * Bind the grace-period kthread for the sysidle flavor of RCU to the
 * timekeeping CPU.
 */
static void rcu_bind_gp_kthread(void)
{
3062
	int __maybe_unused cpu;
3063

3064
	if (!tick_nohz_full_enabled())
3065
		return;
3066 3067
#ifdef CONFIG_NO_HZ_FULL_SYSIDLE
	cpu = tick_do_timer_cpu;
3068
	if (cpu >= 0 && cpu < nr_cpu_ids)
3069
		set_cpus_allowed_ptr(current, cpumask_of(cpu));
3070
#else /* #ifdef CONFIG_NO_HZ_FULL_SYSIDLE */
3071
	housekeeping_affine(current);
3072
#endif /* #else #ifdef CONFIG_NO_HZ_FULL_SYSIDLE */
3073
}
3074 3075 3076 3077 3078

/* Record the current task on dyntick-idle entry. */
static void rcu_dynticks_task_enter(void)
{
#if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL)
3079
	WRITE_ONCE(current->rcu_tasks_idle_cpu, smp_processor_id());
3080 3081 3082 3083 3084 3085 3086
#endif /* #if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL) */
}

/* Record no current task on dyntick-idle exit. */
static void rcu_dynticks_task_exit(void)
{
#if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL)
3087
	WRITE_ONCE(current->rcu_tasks_idle_cpu, -1);
3088 3089
#endif /* #if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL) */
}