tree_plugin.h 88.2 KB
Newer Older
1 2 3
/*
 * Read-Copy Update mechanism for mutual exclusion (tree-based version)
 * Internal non-public definitions that provide either classic
P
Paul E. McKenney 已提交
4
 * or preemptible semantics.
5 6 7 8 9 10 11 12 13 14 15 16
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
17 18
 * along with this program; if not, you can access it online at
 * http://www.gnu.org/licenses/gpl-2.0.html.
19 20 21 22 23 24 25 26
 *
 * Copyright Red Hat, 2009
 * Copyright IBM Corporation, 2009
 *
 * Author: Ingo Molnar <mingo@elte.hu>
 *	   Paul E. McKenney <paulmck@linux.vnet.ibm.com>
 */

27
#include <linux/delay.h>
P
Paul E. McKenney 已提交
28
#include <linux/gfp.h>
29
#include <linux/oom.h>
30
#include <linux/smpboot.h>
31
#include "../time/tick-internal.h"
32

33
#ifdef CONFIG_RCU_BOOST
34

35
#include "../locking/rtmutex_common.h"
36

37 38 39 40 41 42 43 44 45
/*
 * Control variables for per-CPU and per-rcu_node kthreads.  These
 * handle all flavors of RCU.
 */
static DEFINE_PER_CPU(struct task_struct *, rcu_cpu_kthread_task);
DEFINE_PER_CPU(unsigned int, rcu_cpu_kthread_status);
DEFINE_PER_CPU(unsigned int, rcu_cpu_kthread_loops);
DEFINE_PER_CPU(char, rcu_cpu_has_work);

46 47 48 49 50 51 52 53 54 55 56
#else /* #ifdef CONFIG_RCU_BOOST */

/*
 * Some architectures do not define rt_mutexes, but if !CONFIG_RCU_BOOST,
 * all uses are in dead code.  Provide a definition to keep the compiler
 * happy, but add WARN_ON_ONCE() to complain if used in the wrong place.
 * This probably needs to be excluded from -rt builds.
 */
#define rt_mutex_owner(a) ({ WARN_ON_ONCE(1); NULL; })

#endif /* #else #ifdef CONFIG_RCU_BOOST */
57

P
Paul E. McKenney 已提交
58 59 60
#ifdef CONFIG_RCU_NOCB_CPU
static cpumask_var_t rcu_nocb_mask; /* CPUs to have callbacks offloaded. */
static bool have_rcu_nocb_mask;	    /* Was rcu_nocb_mask allocated? */
61
static bool __read_mostly rcu_nocb_poll;    /* Offload kthread are to poll. */
P
Paul E. McKenney 已提交
62 63
#endif /* #ifdef CONFIG_RCU_NOCB_CPU */

64 65 66 67 68 69 70
/*
 * Check the RCU kernel configuration parameters and print informative
 * messages about anything out of the ordinary.  If you like #ifdef, you
 * will love this function.
 */
static void __init rcu_bootup_announce_oddness(void)
{
71 72
	if (IS_ENABLED(CONFIG_RCU_TRACE))
		pr_info("\tRCU debugfs-based tracing is enabled.\n");
73 74
	if ((IS_ENABLED(CONFIG_64BIT) && RCU_FANOUT != 64) ||
	    (!IS_ENABLED(CONFIG_64BIT) && RCU_FANOUT != 32))
75
		pr_info("\tCONFIG_RCU_FANOUT set to non-default value of %d\n",
76
		       RCU_FANOUT);
77
	if (rcu_fanout_exact)
78 79 80 81 82 83 84
		pr_info("\tHierarchical RCU autobalancing is disabled.\n");
	if (IS_ENABLED(CONFIG_RCU_FAST_NO_HZ))
		pr_info("\tRCU dyntick-idle grace-period acceleration is enabled.\n");
	if (IS_ENABLED(CONFIG_PROVE_RCU))
		pr_info("\tRCU lockdep checking is enabled.\n");
	if (IS_ENABLED(CONFIG_RCU_TORTURE_TEST_RUNNABLE))
		pr_info("\tRCU torture testing starts during boot.\n");
85 86
	if (RCU_NUM_LVLS >= 4)
		pr_info("\tFour(or more)-level hierarchy is enabled.\n");
87
	if (RCU_FANOUT_LEAF != 16)
88
		pr_info("\tBuild-time adjustment of leaf fanout to %d.\n",
89 90
			RCU_FANOUT_LEAF);
	if (rcu_fanout_leaf != RCU_FANOUT_LEAF)
91
		pr_info("\tBoot-time adjustment of leaf fanout to %d.\n", rcu_fanout_leaf);
92
	if (nr_cpu_ids != NR_CPUS)
93
		pr_info("\tRCU restricting CPUs from NR_CPUS=%d to nr_cpu_ids=%d.\n", NR_CPUS, nr_cpu_ids);
94 95
	if (IS_ENABLED(CONFIG_RCU_BOOST))
		pr_info("\tRCU kthread priority: %d.\n", kthread_prio);
96 97
}

98
#ifdef CONFIG_PREEMPT_RCU
99

100
RCU_STATE_INITIALIZER(rcu_preempt, 'p', call_rcu);
101
static struct rcu_state *const rcu_state_p = &rcu_preempt_state;
102
static struct rcu_data __percpu *const rcu_data_p = &rcu_preempt_data;
103

104
static int rcu_preempted_readers_exp(struct rcu_node *rnp);
105 106
static void rcu_report_exp_rnp(struct rcu_state *rsp, struct rcu_node *rnp,
			       bool wake);
107

108 109 110
/*
 * Tell them what RCU they are running.
 */
111
static void __init rcu_bootup_announce(void)
112
{
113
	pr_info("Preemptible hierarchical RCU implementation.\n");
114
	rcu_bootup_announce_oddness();
115 116 117
}

/*
P
Paul E. McKenney 已提交
118
 * Record a preemptible-RCU quiescent state for the specified CPU.  Note
119 120 121
 * that this just means that the task currently running on the CPU is
 * not in a quiescent state.  There might be any number of tasks blocked
 * while in an RCU read-side critical section.
122
 *
123 124
 * As with the other rcu_*_qs() functions, callers to this function
 * must disable preemption.
125
 */
126
static void rcu_preempt_qs(void)
127
{
128
	if (!__this_cpu_read(rcu_data_p->passed_quiesce)) {
129
		trace_rcu_grace_period(TPS("rcu_preempt"),
130
				       __this_cpu_read(rcu_data_p->gpnum),
131
				       TPS("cpuqs"));
132
		__this_cpu_write(rcu_data_p->passed_quiesce, 1);
133 134 135
		barrier(); /* Coordinate with rcu_preempt_check_callbacks(). */
		current->rcu_read_unlock_special.b.need_qs = false;
	}
136 137 138
}

/*
139 140 141
 * We have entered the scheduler, and the current task might soon be
 * context-switched away from.  If this task is in an RCU read-side
 * critical section, we will no longer be able to rely on the CPU to
142 143 144 145 146 147
 * record that fact, so we enqueue the task on the blkd_tasks list.
 * The task will dequeue itself when it exits the outermost enclosing
 * RCU read-side critical section.  Therefore, the current grace period
 * cannot be permitted to complete until the blkd_tasks list entries
 * predating the current grace period drain, in other words, until
 * rnp->gp_tasks becomes NULL.
148 149
 *
 * Caller must disable preemption.
150
 */
151
static void rcu_preempt_note_context_switch(void)
152 153
{
	struct task_struct *t = current;
154
	unsigned long flags;
155 156 157
	struct rcu_data *rdp;
	struct rcu_node *rnp;

158
	if (t->rcu_read_lock_nesting > 0 &&
159
	    !t->rcu_read_unlock_special.b.blocked) {
160 161

		/* Possibly blocking in an RCU read-side critical section. */
162
		rdp = this_cpu_ptr(rcu_state_p->rda);
163
		rnp = rdp->mynode;
P
Paul E. McKenney 已提交
164
		raw_spin_lock_irqsave(&rnp->lock, flags);
165
		smp_mb__after_unlock_lock();
166
		t->rcu_read_unlock_special.b.blocked = true;
167
		t->rcu_blocked_node = rnp;
168 169 170 171 172 173 174 175 176

		/*
		 * If this CPU has already checked in, then this task
		 * will hold up the next grace period rather than the
		 * current grace period.  Queue the task accordingly.
		 * If the task is queued for the current grace period
		 * (i.e., this CPU has not yet passed through a quiescent
		 * state for the current grace period), then as long
		 * as that task remains queued, the current grace period
177 178 179 180 181 182
		 * cannot end.  Note that there is some uncertainty as
		 * to exactly when the current grace period started.
		 * We take a conservative approach, which can result
		 * in unnecessarily waiting on tasks that started very
		 * slightly after the current grace period began.  C'est
		 * la vie!!!
183 184 185
		 *
		 * But first, note that the current CPU must still be
		 * on line!
186
		 */
187
		WARN_ON_ONCE((rdp->grpmask & rcu_rnp_online_cpus(rnp)) == 0);
188
		WARN_ON_ONCE(!list_empty(&t->rcu_node_entry));
189 190 191
		if ((rnp->qsmask & rdp->grpmask) && rnp->gp_tasks != NULL) {
			list_add(&t->rcu_node_entry, rnp->gp_tasks->prev);
			rnp->gp_tasks = &t->rcu_node_entry;
192 193
			if (IS_ENABLED(CONFIG_RCU_BOOST) &&
			    rnp->boost_tasks != NULL)
194
				rnp->boost_tasks = rnp->gp_tasks;
195 196 197 198 199
		} else {
			list_add(&t->rcu_node_entry, &rnp->blkd_tasks);
			if (rnp->qsmask & rdp->grpmask)
				rnp->gp_tasks = &t->rcu_node_entry;
		}
200 201 202 203 204
		trace_rcu_preempt_task(rdp->rsp->name,
				       t->pid,
				       (rnp->qsmask & rdp->grpmask)
				       ? rnp->gpnum
				       : rnp->gpnum + 1);
P
Paul E. McKenney 已提交
205
		raw_spin_unlock_irqrestore(&rnp->lock, flags);
206
	} else if (t->rcu_read_lock_nesting < 0 &&
207
		   t->rcu_read_unlock_special.s) {
208 209 210 211 212 213

		/*
		 * Complete exit from RCU read-side critical section on
		 * behalf of preempted instance of __rcu_read_unlock().
		 */
		rcu_read_unlock_special(t);
214 215 216 217 218 219 220 221 222 223 224
	}

	/*
	 * Either we were not in an RCU read-side critical section to
	 * begin with, or we have now recorded that critical section
	 * globally.  Either way, we can now note a quiescent state
	 * for this CPU.  Again, if we were in an RCU read-side critical
	 * section, and if that critical section was blocking the current
	 * grace period, then the fact that the task has been enqueued
	 * means that we continue to block the current grace period.
	 */
225
	rcu_preempt_qs();
226 227
}

228 229 230 231 232
/*
 * Check for preempted RCU readers blocking the current grace period
 * for the specified rcu_node structure.  If the caller needs a reliable
 * answer, it must hold the rcu_node's ->lock.
 */
233
static int rcu_preempt_blocked_readers_cgp(struct rcu_node *rnp)
234
{
235
	return rnp->gp_tasks != NULL;
236 237
}

238 239 240 241 242 243 244 245 246 247 248 249 250 251 252
/*
 * Advance a ->blkd_tasks-list pointer to the next entry, instead
 * returning NULL if at the end of the list.
 */
static struct list_head *rcu_next_node_entry(struct task_struct *t,
					     struct rcu_node *rnp)
{
	struct list_head *np;

	np = t->rcu_node_entry.next;
	if (np == &rnp->blkd_tasks)
		np = NULL;
	return np;
}

253 254 255 256 257 258 259 260 261
/*
 * Return true if the specified rcu_node structure has tasks that were
 * preempted within an RCU read-side critical section.
 */
static bool rcu_preempt_has_tasks(struct rcu_node *rnp)
{
	return !list_empty(&rnp->blkd_tasks);
}

262 263 264 265 266
/*
 * Handle special cases during rcu_read_unlock(), such as needing to
 * notify RCU core processing or task having blocked during the RCU
 * read-side critical section.
 */
267
void rcu_read_unlock_special(struct task_struct *t)
268
{
269 270 271
	bool empty_exp;
	bool empty_norm;
	bool empty_exp_now;
272
	unsigned long flags;
273
	struct list_head *np;
274
	bool drop_boost_mutex = false;
275
	struct rcu_node *rnp;
276
	union rcu_special special;
277 278 279 280 281 282 283 284 285

	/* NMI handlers cannot block and cannot safely manipulate state. */
	if (in_nmi())
		return;

	local_irq_save(flags);

	/*
	 * If RCU core is waiting for this CPU to exit critical section,
286 287
	 * let it know that we have done so.  Because irqs are disabled,
	 * t->rcu_read_unlock_special cannot change.
288 289
	 */
	special = t->rcu_read_unlock_special;
290
	if (special.b.need_qs) {
291
		rcu_preempt_qs();
292
		t->rcu_read_unlock_special.b.need_qs = false;
293
		if (!t->rcu_read_unlock_special.s) {
294 295 296
			local_irq_restore(flags);
			return;
		}
297 298
	}

299
	/* Hardware IRQ handlers cannot block, complain if they get here. */
300 301 302 303 304 305 306
	if (in_irq() || in_serving_softirq()) {
		lockdep_rcu_suspicious(__FILE__, __LINE__,
				       "rcu_read_unlock() from irq or softirq with blocking in critical section!!!\n");
		pr_alert("->rcu_read_unlock_special: %#x (b: %d, nq: %d)\n",
			 t->rcu_read_unlock_special.s,
			 t->rcu_read_unlock_special.b.blocked,
			 t->rcu_read_unlock_special.b.need_qs);
307 308 309 310 311
		local_irq_restore(flags);
		return;
	}

	/* Clean up if blocked during RCU read-side critical section. */
312 313
	if (special.b.blocked) {
		t->rcu_read_unlock_special.b.blocked = false;
314

315
		/*
316 317 318 319 320
		 * Remove this task from the list it blocked on.  The task
		 * now remains queued on the rcu_node corresponding to
		 * the CPU it first blocked on, so the first attempt to
		 * acquire the task's rcu_node's ->lock will succeed.
		 * Keep the loop and add a WARN_ON() out of sheer paranoia.
321 322
		 */
		for (;;) {
323
			rnp = t->rcu_blocked_node;
P
Paul E. McKenney 已提交
324
			raw_spin_lock(&rnp->lock);  /* irqs already disabled. */
325
			smp_mb__after_unlock_lock();
326
			if (rnp == t->rcu_blocked_node)
327
				break;
328
			WARN_ON_ONCE(1);
P
Paul E. McKenney 已提交
329
			raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
330
		}
331
		empty_norm = !rcu_preempt_blocked_readers_cgp(rnp);
332 333
		empty_exp = !rcu_preempted_readers_exp(rnp);
		smp_mb(); /* ensure expedited fastpath sees end of RCU c-s. */
334
		np = rcu_next_node_entry(t, rnp);
335
		list_del_init(&t->rcu_node_entry);
336
		t->rcu_blocked_node = NULL;
337
		trace_rcu_unlock_preempted_task(TPS("rcu_preempt"),
338
						rnp->gpnum, t->pid);
339 340 341 342
		if (&t->rcu_node_entry == rnp->gp_tasks)
			rnp->gp_tasks = np;
		if (&t->rcu_node_entry == rnp->exp_tasks)
			rnp->exp_tasks = np;
343 344 345 346 347 348
		if (IS_ENABLED(CONFIG_RCU_BOOST)) {
			if (&t->rcu_node_entry == rnp->boost_tasks)
				rnp->boost_tasks = np;
			/* Snapshot ->boost_mtx ownership w/rnp->lock held. */
			drop_boost_mutex = rt_mutex_owner(&rnp->boost_mtx) == t;
		}
349 350 351 352

		/*
		 * If this was the last task on the current list, and if
		 * we aren't waiting on any CPUs, report the quiescent state.
353 354
		 * Note that rcu_report_unblock_qs_rnp() releases rnp->lock,
		 * so we must take a snapshot of the expedited state.
355
		 */
356
		empty_exp_now = !rcu_preempted_readers_exp(rnp);
357
		if (!empty_norm && !rcu_preempt_blocked_readers_cgp(rnp)) {
358
			trace_rcu_quiescent_state_report(TPS("preempt_rcu"),
359 360 361 362 363 364
							 rnp->gpnum,
							 0, rnp->qsmask,
							 rnp->level,
							 rnp->grplo,
							 rnp->grphi,
							 !!rnp->gp_tasks);
365
			rcu_report_unblock_qs_rnp(rcu_state_p, rnp, flags);
366
		} else {
367
			raw_spin_unlock_irqrestore(&rnp->lock, flags);
368
		}
369

370
		/* Unboost if we were boosted. */
371
		if (IS_ENABLED(CONFIG_RCU_BOOST) && drop_boost_mutex)
372
			rt_mutex_unlock(&rnp->boost_mtx);
373

374 375 376 377
		/*
		 * If this was the last task on the expedited lists,
		 * then we need to report up the rcu_node hierarchy.
		 */
378
		if (!empty_exp && empty_exp_now)
379
			rcu_report_exp_rnp(rcu_state_p, rnp, true);
380 381
	} else {
		local_irq_restore(flags);
382 383 384
	}
}

385 386 387 388 389 390 391 392 393
/*
 * Dump detailed information for all tasks blocking the current RCU
 * grace period on the specified rcu_node structure.
 */
static void rcu_print_detail_task_stall_rnp(struct rcu_node *rnp)
{
	unsigned long flags;
	struct task_struct *t;

394
	raw_spin_lock_irqsave(&rnp->lock, flags);
395 396 397 398
	if (!rcu_preempt_blocked_readers_cgp(rnp)) {
		raw_spin_unlock_irqrestore(&rnp->lock, flags);
		return;
	}
399
	t = list_entry(rnp->gp_tasks->prev,
400 401 402 403
		       struct task_struct, rcu_node_entry);
	list_for_each_entry_continue(t, &rnp->blkd_tasks, rcu_node_entry)
		sched_show_task(t);
	raw_spin_unlock_irqrestore(&rnp->lock, flags);
404 405 406 407 408 409 410 411 412 413 414 415 416 417 418
}

/*
 * Dump detailed information for all tasks blocking the current RCU
 * grace period.
 */
static void rcu_print_detail_task_stall(struct rcu_state *rsp)
{
	struct rcu_node *rnp = rcu_get_root(rsp);

	rcu_print_detail_task_stall_rnp(rnp);
	rcu_for_each_leaf_node(rsp, rnp)
		rcu_print_detail_task_stall_rnp(rnp);
}

419 420
static void rcu_print_task_stall_begin(struct rcu_node *rnp)
{
421
	pr_err("\tTasks blocked on level-%d rcu_node (CPUs %d-%d):",
422 423 424 425 426
	       rnp->level, rnp->grplo, rnp->grphi);
}

static void rcu_print_task_stall_end(void)
{
427
	pr_cont("\n");
428 429
}

430 431 432 433
/*
 * Scan the current list of tasks blocked within RCU read-side critical
 * sections, printing out the tid of each.
 */
434
static int rcu_print_task_stall(struct rcu_node *rnp)
435 436
{
	struct task_struct *t;
437
	int ndetected = 0;
438

439
	if (!rcu_preempt_blocked_readers_cgp(rnp))
440
		return 0;
441
	rcu_print_task_stall_begin(rnp);
442
	t = list_entry(rnp->gp_tasks->prev,
443
		       struct task_struct, rcu_node_entry);
444
	list_for_each_entry_continue(t, &rnp->blkd_tasks, rcu_node_entry) {
445
		pr_cont(" P%d", t->pid);
446 447
		ndetected++;
	}
448
	rcu_print_task_stall_end();
449
	return ndetected;
450 451
}

452 453 454 455 456 457
/*
 * Check that the list of blocked tasks for the newly completed grace
 * period is in fact empty.  It is a serious bug to complete a grace
 * period that still has RCU readers blocked!  This function must be
 * invoked -before- updating this rnp's ->gpnum, and the rnp's ->lock
 * must be held by the caller.
458 459 460
 *
 * Also, if there are blocked tasks on the list, they automatically
 * block the newly created grace period, so set up ->gp_tasks accordingly.
461 462 463
 */
static void rcu_preempt_check_blocked_tasks(struct rcu_node *rnp)
{
464
	WARN_ON_ONCE(rcu_preempt_blocked_readers_cgp(rnp));
465
	if (rcu_preempt_has_tasks(rnp))
466
		rnp->gp_tasks = rnp->blkd_tasks.next;
467
	WARN_ON_ONCE(rnp->qsmask);
468 469
}

470 471 472 473 474 475 476
/*
 * Check for a quiescent state from the current CPU.  When a task blocks,
 * the task is recorded in the corresponding CPU's rcu_node structure,
 * which is checked elsewhere.
 *
 * Caller must disable hard irqs.
 */
477
static void rcu_preempt_check_callbacks(void)
478 479 480 481
{
	struct task_struct *t = current;

	if (t->rcu_read_lock_nesting == 0) {
482
		rcu_preempt_qs();
483 484
		return;
	}
485
	if (t->rcu_read_lock_nesting > 0 &&
486 487
	    __this_cpu_read(rcu_data_p->qs_pending) &&
	    !__this_cpu_read(rcu_data_p->passed_quiesce))
488
		t->rcu_read_unlock_special.b.need_qs = true;
489 490
}

491 492
#ifdef CONFIG_RCU_BOOST

493 494
static void rcu_preempt_do_callbacks(void)
{
495
	rcu_do_batch(rcu_state_p, this_cpu_ptr(rcu_data_p));
496 497
}

498 499
#endif /* #ifdef CONFIG_RCU_BOOST */

500
/*
P
Paul E. McKenney 已提交
501
 * Queue a preemptible-RCU callback for invocation after a grace period.
502 503 504
 */
void call_rcu(struct rcu_head *head, void (*func)(struct rcu_head *rcu))
{
505
	__call_rcu(head, func, rcu_state_p, -1, 0);
506 507 508
}
EXPORT_SYMBOL_GPL(call_rcu);

509 510 511 512 513
/**
 * synchronize_rcu - wait until a grace period has elapsed.
 *
 * Control will return to the caller some time after a full grace
 * period has elapsed, in other words after all currently executing RCU
514 515 516 517 518
 * read-side critical sections have completed.  Note, however, that
 * upon return from synchronize_rcu(), the caller might well be executing
 * concurrently with new RCU read-side critical sections that began while
 * synchronize_rcu() was waiting.  RCU read-side critical sections are
 * delimited by rcu_read_lock() and rcu_read_unlock(), and may be nested.
519 520 521
 *
 * See the description of synchronize_sched() for more detailed information
 * on memory ordering guarantees.
522 523 524
 */
void synchronize_rcu(void)
{
525 526 527 528
	RCU_LOCKDEP_WARN(lock_is_held(&rcu_bh_lock_map) ||
			 lock_is_held(&rcu_lock_map) ||
			 lock_is_held(&rcu_sched_lock_map),
			 "Illegal synchronize_rcu() in RCU read-side critical section");
529 530
	if (!rcu_scheduler_active)
		return;
531
	if (rcu_gp_is_expedited())
532 533 534
		synchronize_rcu_expedited();
	else
		wait_rcu_gp(call_rcu);
535 536 537
}
EXPORT_SYMBOL_GPL(synchronize_rcu);

538 539 540 541 542 543 544 545 546 547
static DECLARE_WAIT_QUEUE_HEAD(sync_rcu_preempt_exp_wq);

/*
 * Return non-zero if there are any tasks in RCU read-side critical
 * sections blocking the current preemptible-RCU expedited grace period.
 * If there is no preemptible-RCU expedited grace period currently in
 * progress, returns zero unconditionally.
 */
static int rcu_preempted_readers_exp(struct rcu_node *rnp)
{
548
	return rnp->exp_tasks != NULL;
549 550 551 552 553 554 555 556 557
}

/*
 * return non-zero if there is no RCU expedited grace period in progress
 * for the specified rcu_node structure, in other words, if all CPUs and
 * tasks covered by the specified rcu_node structure have done their bit
 * for the current expedited grace period.  Works only for preemptible
 * RCU -- other RCU implementation use other means.
 *
558
 * Caller must hold the root rcu_node's exp_funnel_mutex.
559 560 561 562
 */
static int sync_rcu_preempt_exp_done(struct rcu_node *rnp)
{
	return !rcu_preempted_readers_exp(rnp) &&
563
	       READ_ONCE(rnp->expmask) == 0;
564 565 566 567 568 569 570 571 572 573
}

/*
 * Report the exit from RCU read-side critical section for the last task
 * that queued itself during or before the current expedited preemptible-RCU
 * grace period.  This event is reported either to the rcu_node structure on
 * which the task was queued or to one of that rcu_node structure's ancestors,
 * recursively up the tree.  (Calm down, calm down, we do the recursion
 * iteratively!)
 *
574
 * Caller must hold the root rcu_node's exp_funnel_mutex.
575
 */
576 577
static void rcu_report_exp_rnp(struct rcu_state *rsp, struct rcu_node *rnp,
			       bool wake)
578 579 580 581
{
	unsigned long flags;
	unsigned long mask;

P
Paul E. McKenney 已提交
582
	raw_spin_lock_irqsave(&rnp->lock, flags);
583
	smp_mb__after_unlock_lock();
584
	for (;;) {
585 586
		if (!sync_rcu_preempt_exp_done(rnp)) {
			raw_spin_unlock_irqrestore(&rnp->lock, flags);
587
			break;
588
		}
589
		if (rnp->parent == NULL) {
590
			raw_spin_unlock_irqrestore(&rnp->lock, flags);
591 592
			if (wake) {
				smp_mb(); /* EGP done before wake_up(). */
593
				wake_up(&sync_rcu_preempt_exp_wq);
594
			}
595 596 597
			break;
		}
		mask = rnp->grpmask;
P
Paul E. McKenney 已提交
598
		raw_spin_unlock(&rnp->lock); /* irqs remain disabled */
599
		rnp = rnp->parent;
P
Paul E. McKenney 已提交
600
		raw_spin_lock(&rnp->lock); /* irqs already disabled */
601
		smp_mb__after_unlock_lock();
602 603 604 605 606 607
		rnp->expmask &= ~mask;
	}
}

/*
 * Snapshot the tasks blocking the newly started preemptible-RCU expedited
608 609 610 611
 * grace period for the specified rcu_node structure, phase 1.  If there
 * are such tasks, set the ->expmask bits up the rcu_node tree and also
 * set the ->expmask bits on the leaf rcu_node structures to tell phase 2
 * that work is needed here.
612
 *
613
 * Caller must hold the root rcu_node's exp_funnel_mutex.
614 615
 */
static void
616
sync_rcu_preempt_exp_init1(struct rcu_state *rsp, struct rcu_node *rnp)
617
{
618
	unsigned long flags;
619 620
	unsigned long mask;
	struct rcu_node *rnp_up;
621

622
	raw_spin_lock_irqsave(&rnp->lock, flags);
623
	smp_mb__after_unlock_lock();
624 625
	WARN_ON_ONCE(rnp->expmask);
	WARN_ON_ONCE(rnp->exp_tasks);
626
	if (!rcu_preempt_has_tasks(rnp)) {
627
		/* No blocked tasks, nothing to do. */
628
		raw_spin_unlock_irqrestore(&rnp->lock, flags);
629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655
		return;
	}
	/* Call for Phase 2 and propagate ->expmask bits up the tree. */
	rnp->expmask = 1;
	rnp_up = rnp;
	while (rnp_up->parent) {
		mask = rnp_up->grpmask;
		rnp_up = rnp_up->parent;
		if (rnp_up->expmask & mask)
			break;
		raw_spin_lock(&rnp_up->lock); /* irqs already off */
		smp_mb__after_unlock_lock();
		rnp_up->expmask |= mask;
		raw_spin_unlock(&rnp_up->lock); /* irqs still off */
	}
	raw_spin_unlock_irqrestore(&rnp->lock, flags);
}

/*
 * Snapshot the tasks blocking the newly started preemptible-RCU expedited
 * grace period for the specified rcu_node structure, phase 2.  If the
 * leaf rcu_node structure has its ->expmask field set, check for tasks.
 * If there are some, clear ->expmask and set ->exp_tasks accordingly,
 * then initiate RCU priority boosting.  Otherwise, clear ->expmask and
 * invoke rcu_report_exp_rnp() to clear out the upper-level ->expmask bits,
 * enabling rcu_read_unlock_special() to do the bit-clearing.
 *
656
 * Caller must hold the root rcu_node's exp_funnel_mutex.
657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678
 */
static void
sync_rcu_preempt_exp_init2(struct rcu_state *rsp, struct rcu_node *rnp)
{
	unsigned long flags;

	raw_spin_lock_irqsave(&rnp->lock, flags);
	smp_mb__after_unlock_lock();
	if (!rnp->expmask) {
		/* Phase 1 didn't do anything, so Phase 2 doesn't either. */
		raw_spin_unlock_irqrestore(&rnp->lock, flags);
		return;
	}

	/* Phase 1 is over. */
	rnp->expmask = 0;

	/*
	 * If there are still blocked tasks, set up ->exp_tasks so that
	 * rcu_read_unlock_special() will wake us and then boost them.
	 */
	if (rcu_preempt_has_tasks(rnp)) {
679
		rnp->exp_tasks = rnp->blkd_tasks.next;
680
		rcu_initiate_boost(rnp, flags);  /* releases rnp->lock */
681
		return;
682
	}
683 684 685 686

	/* No longer any blocked tasks, so undo bit setting. */
	raw_spin_unlock_irqrestore(&rnp->lock, flags);
	rcu_report_exp_rnp(rsp, rnp, false);
687 688
}

689 690 691 692 693 694 695 696 697 698 699
/**
 * synchronize_rcu_expedited - Brute-force RCU grace period
 *
 * Wait for an RCU-preempt grace period, but expedite it.  The basic
 * idea is to invoke synchronize_sched_expedited() to push all the tasks to
 * the ->blkd_tasks lists and wait for this list to drain.  This consumes
 * significant time on all CPUs and is unfriendly to real-time workloads,
 * so is thus not recommended for any sort of common-case code.
 * In fact, if you are using synchronize_rcu_expedited() in a loop,
 * please restructure your code to batch your updates, and then Use a
 * single synchronize_rcu() instead.
700 701 702
 */
void synchronize_rcu_expedited(void)
{
703
	struct rcu_node *rnp;
704
	struct rcu_node *rnp_unlock;
705
	struct rcu_state *rsp = rcu_state_p;
706
	unsigned long s;
707

708
	s = rcu_exp_gp_seq_snap(rsp);
709

710 711 712
	rnp_unlock = exp_funnel_lock(rsp, s);
	if (rnp_unlock == NULL)
		return;  /* Someone else did our work for us. */
713

714
	rcu_exp_gp_seq_start(rsp);
715

716
	/* force all RCU readers onto ->blkd_tasks lists. */
717 718
	synchronize_sched_expedited();

719 720 721 722 723 724
	/*
	 * Snapshot current state of ->blkd_tasks lists into ->expmask.
	 * Phase 1 sets bits and phase 2 permits rcu_read_unlock_special()
	 * to start clearing them.  Doing this in one phase leads to
	 * strange races between setting and clearing bits, so just say "no"!
	 */
725
	rcu_for_each_leaf_node(rsp, rnp)
726
		sync_rcu_preempt_exp_init1(rsp, rnp);
727
	rcu_for_each_leaf_node(rsp, rnp)
728
		sync_rcu_preempt_exp_init2(rsp, rnp);
729

730
	/* Wait for snapshotted ->blkd_tasks lists to drain. */
731 732 733 734 735
	rnp = rcu_get_root(rsp);
	wait_event(sync_rcu_preempt_exp_wq,
		   sync_rcu_preempt_exp_done(rnp));

	/* Clean up and exit. */
736
	rcu_exp_gp_seq_end(rsp);
737
	mutex_unlock(&rnp_unlock->exp_funnel_mutex);
738 739 740
}
EXPORT_SYMBOL_GPL(synchronize_rcu_expedited);

741 742
/**
 * rcu_barrier - Wait until all in-flight call_rcu() callbacks complete.
743 744 745 746 747
 *
 * Note that this primitive does not necessarily wait for an RCU grace period
 * to complete.  For example, if there are no RCU callbacks queued anywhere
 * in the system, then rcu_barrier() is within its rights to return
 * immediately, without waiting for anything, much less an RCU grace period.
748 749 750
 */
void rcu_barrier(void)
{
751
	_rcu_barrier(rcu_state_p);
752 753 754
}
EXPORT_SYMBOL_GPL(rcu_barrier);

755
/*
P
Paul E. McKenney 已提交
756
 * Initialize preemptible RCU's state structures.
757 758 759
 */
static void __init __rcu_init_preempt(void)
{
760
	rcu_init_one(rcu_state_p, rcu_data_p);
761 762
}

763 764 765 766 767 768 769 770 771 772 773 774 775 776
/*
 * Check for a task exiting while in a preemptible-RCU read-side
 * critical section, clean up if so.  No need to issue warnings,
 * as debug_check_no_locks_held() already does this if lockdep
 * is enabled.
 */
void exit_rcu(void)
{
	struct task_struct *t = current;

	if (likely(list_empty(&current->rcu_node_entry)))
		return;
	t->rcu_read_lock_nesting = 1;
	barrier();
777
	t->rcu_read_unlock_special.b.blocked = true;
778 779 780
	__rcu_read_unlock();
}

781
#else /* #ifdef CONFIG_PREEMPT_RCU */
782

783
static struct rcu_state *const rcu_state_p = &rcu_sched_state;
784
static struct rcu_data __percpu *const rcu_data_p = &rcu_sched_data;
785

786 787 788
/*
 * Tell them what RCU they are running.
 */
789
static void __init rcu_bootup_announce(void)
790
{
791
	pr_info("Hierarchical RCU implementation.\n");
792
	rcu_bootup_announce_oddness();
793 794
}

795 796 797 798
/*
 * Because preemptible RCU does not exist, we never have to check for
 * CPUs being in quiescent states.
 */
799
static void rcu_preempt_note_context_switch(void)
800 801 802
{
}

803
/*
P
Paul E. McKenney 已提交
804
 * Because preemptible RCU does not exist, there are never any preempted
805 806
 * RCU readers.
 */
807
static int rcu_preempt_blocked_readers_cgp(struct rcu_node *rnp)
808 809 810 811
{
	return 0;
}

812 813 814 815
/*
 * Because there is no preemptible RCU, there can be no readers blocked.
 */
static bool rcu_preempt_has_tasks(struct rcu_node *rnp)
816
{
817
	return false;
818 819
}

820
/*
P
Paul E. McKenney 已提交
821
 * Because preemptible RCU does not exist, we never have to check for
822 823 824 825 826 827
 * tasks blocked within RCU read-side critical sections.
 */
static void rcu_print_detail_task_stall(struct rcu_state *rsp)
{
}

828
/*
P
Paul E. McKenney 已提交
829
 * Because preemptible RCU does not exist, we never have to check for
830 831
 * tasks blocked within RCU read-side critical sections.
 */
832
static int rcu_print_task_stall(struct rcu_node *rnp)
833
{
834
	return 0;
835 836
}

837
/*
P
Paul E. McKenney 已提交
838
 * Because there is no preemptible RCU, there can be no readers blocked,
839 840
 * so there is no need to check for blocked tasks.  So check only for
 * bogus qsmask values.
841 842 843
 */
static void rcu_preempt_check_blocked_tasks(struct rcu_node *rnp)
{
844
	WARN_ON_ONCE(rnp->qsmask);
845 846
}

847
/*
P
Paul E. McKenney 已提交
848
 * Because preemptible RCU does not exist, it never has any callbacks
849 850
 * to check.
 */
851
static void rcu_preempt_check_callbacks(void)
852 853 854
{
}

855 856
/*
 * Wait for an rcu-preempt grace period, but make it happen quickly.
P
Paul E. McKenney 已提交
857
 * But because preemptible RCU does not exist, map to rcu-sched.
858 859 860 861 862 863 864
 */
void synchronize_rcu_expedited(void)
{
	synchronize_sched_expedited();
}
EXPORT_SYMBOL_GPL(synchronize_rcu_expedited);

865
/*
P
Paul E. McKenney 已提交
866
 * Because preemptible RCU does not exist, rcu_barrier() is just
867 868 869 870 871 872 873 874
 * another name for rcu_barrier_sched().
 */
void rcu_barrier(void)
{
	rcu_barrier_sched();
}
EXPORT_SYMBOL_GPL(rcu_barrier);

875
/*
P
Paul E. McKenney 已提交
876
 * Because preemptible RCU does not exist, it need not be initialized.
877 878 879 880 881
 */
static void __init __rcu_init_preempt(void)
{
}

882 883 884 885 886 887 888 889
/*
 * Because preemptible RCU does not exist, tasks cannot possibly exit
 * while in preemptible RCU read-side critical sections.
 */
void exit_rcu(void)
{
}

890
#endif /* #else #ifdef CONFIG_PREEMPT_RCU */
891

892 893
#ifdef CONFIG_RCU_BOOST

894
#include "../locking/rtmutex_common.h"
895

896 897 898 899
#ifdef CONFIG_RCU_TRACE

static void rcu_initiate_boost_trace(struct rcu_node *rnp)
{
900
	if (!rcu_preempt_has_tasks(rnp))
901 902 903 904 905 906 907 908
		rnp->n_balk_blkd_tasks++;
	else if (rnp->exp_tasks == NULL && rnp->gp_tasks == NULL)
		rnp->n_balk_exp_gp_tasks++;
	else if (rnp->gp_tasks != NULL && rnp->boost_tasks != NULL)
		rnp->n_balk_boost_tasks++;
	else if (rnp->gp_tasks != NULL && rnp->qsmask != 0)
		rnp->n_balk_notblocked++;
	else if (rnp->gp_tasks != NULL &&
909
		 ULONG_CMP_LT(jiffies, rnp->boost_time))
910 911 912 913 914 915 916 917 918 919 920 921 922
		rnp->n_balk_notyet++;
	else
		rnp->n_balk_nos++;
}

#else /* #ifdef CONFIG_RCU_TRACE */

static void rcu_initiate_boost_trace(struct rcu_node *rnp)
{
}

#endif /* #else #ifdef CONFIG_RCU_TRACE */

T
Thomas Gleixner 已提交
923 924 925 926 927 928 929 930 931 932
static void rcu_wake_cond(struct task_struct *t, int status)
{
	/*
	 * If the thread is yielding, only wake it when this
	 * is invoked from idle
	 */
	if (status != RCU_KTHREAD_YIELDING || is_idle_task(current))
		wake_up_process(t);
}

933 934 935 936 937 938 939 940 941 942 943 944 945 946
/*
 * Carry out RCU priority boosting on the task indicated by ->exp_tasks
 * or ->boost_tasks, advancing the pointer to the next task in the
 * ->blkd_tasks list.
 *
 * Note that irqs must be enabled: boosting the task can block.
 * Returns 1 if there are more tasks needing to be boosted.
 */
static int rcu_boost(struct rcu_node *rnp)
{
	unsigned long flags;
	struct task_struct *t;
	struct list_head *tb;

947 948
	if (READ_ONCE(rnp->exp_tasks) == NULL &&
	    READ_ONCE(rnp->boost_tasks) == NULL)
949 950 951
		return 0;  /* Nothing left to boost. */

	raw_spin_lock_irqsave(&rnp->lock, flags);
952
	smp_mb__after_unlock_lock();
953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968

	/*
	 * Recheck under the lock: all tasks in need of boosting
	 * might exit their RCU read-side critical sections on their own.
	 */
	if (rnp->exp_tasks == NULL && rnp->boost_tasks == NULL) {
		raw_spin_unlock_irqrestore(&rnp->lock, flags);
		return 0;
	}

	/*
	 * Preferentially boost tasks blocking expedited grace periods.
	 * This cannot starve the normal grace periods because a second
	 * expedited grace period must boost all blocked tasks, including
	 * those blocking the pre-existing normal grace period.
	 */
969
	if (rnp->exp_tasks != NULL) {
970
		tb = rnp->exp_tasks;
971 972
		rnp->n_exp_boosts++;
	} else {
973
		tb = rnp->boost_tasks;
974 975 976
		rnp->n_normal_boosts++;
	}
	rnp->n_tasks_boosted++;
977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994

	/*
	 * We boost task t by manufacturing an rt_mutex that appears to
	 * be held by task t.  We leave a pointer to that rt_mutex where
	 * task t can find it, and task t will release the mutex when it
	 * exits its outermost RCU read-side critical section.  Then
	 * simply acquiring this artificial rt_mutex will boost task
	 * t's priority.  (Thanks to tglx for suggesting this approach!)
	 *
	 * Note that task t must acquire rnp->lock to remove itself from
	 * the ->blkd_tasks list, which it will do from exit() if from
	 * nowhere else.  We therefore are guaranteed that task t will
	 * stay around at least until we drop rnp->lock.  Note that
	 * rnp->lock also resolves races between our priority boosting
	 * and task t's exiting its outermost RCU read-side critical
	 * section.
	 */
	t = container_of(tb, struct task_struct, rcu_node_entry);
995
	rt_mutex_init_proxy_locked(&rnp->boost_mtx, t);
996
	raw_spin_unlock_irqrestore(&rnp->lock, flags);
997 998 999
	/* Lock only for side effect: boosts task t's priority. */
	rt_mutex_lock(&rnp->boost_mtx);
	rt_mutex_unlock(&rnp->boost_mtx);  /* Then keep lockdep happy. */
1000

1001 1002
	return READ_ONCE(rnp->exp_tasks) != NULL ||
	       READ_ONCE(rnp->boost_tasks) != NULL;
1003 1004 1005
}

/*
1006
 * Priority-boosting kthread, one per leaf rcu_node.
1007 1008 1009 1010 1011 1012 1013
 */
static int rcu_boost_kthread(void *arg)
{
	struct rcu_node *rnp = (struct rcu_node *)arg;
	int spincnt = 0;
	int more2boost;

1014
	trace_rcu_utilization(TPS("Start boost kthread@init"));
1015
	for (;;) {
1016
		rnp->boost_kthread_status = RCU_KTHREAD_WAITING;
1017
		trace_rcu_utilization(TPS("End boost kthread@rcu_wait"));
1018
		rcu_wait(rnp->boost_tasks || rnp->exp_tasks);
1019
		trace_rcu_utilization(TPS("Start boost kthread@rcu_wait"));
1020
		rnp->boost_kthread_status = RCU_KTHREAD_RUNNING;
1021 1022 1023 1024 1025 1026
		more2boost = rcu_boost(rnp);
		if (more2boost)
			spincnt++;
		else
			spincnt = 0;
		if (spincnt > 10) {
T
Thomas Gleixner 已提交
1027
			rnp->boost_kthread_status = RCU_KTHREAD_YIELDING;
1028
			trace_rcu_utilization(TPS("End boost kthread@rcu_yield"));
T
Thomas Gleixner 已提交
1029
			schedule_timeout_interruptible(2);
1030
			trace_rcu_utilization(TPS("Start boost kthread@rcu_yield"));
1031 1032 1033
			spincnt = 0;
		}
	}
1034
	/* NOTREACHED */
1035
	trace_rcu_utilization(TPS("End boost kthread@notreached"));
1036 1037 1038 1039 1040 1041 1042 1043 1044
	return 0;
}

/*
 * Check to see if it is time to start boosting RCU readers that are
 * blocking the current grace period, and, if so, tell the per-rcu_node
 * kthread to start boosting them.  If there is an expedited grace
 * period in progress, it is always time to boost.
 *
1045 1046 1047
 * The caller must hold rnp->lock, which this function releases.
 * The ->boost_kthread_task is immortal, so we don't need to worry
 * about it going away.
1048
 */
1049
static void rcu_initiate_boost(struct rcu_node *rnp, unsigned long flags)
1050
	__releases(rnp->lock)
1051 1052 1053
{
	struct task_struct *t;

1054 1055
	if (!rcu_preempt_blocked_readers_cgp(rnp) && rnp->exp_tasks == NULL) {
		rnp->n_balk_exp_gp_tasks++;
1056
		raw_spin_unlock_irqrestore(&rnp->lock, flags);
1057
		return;
1058
	}
1059 1060 1061 1062 1063 1064 1065
	if (rnp->exp_tasks != NULL ||
	    (rnp->gp_tasks != NULL &&
	     rnp->boost_tasks == NULL &&
	     rnp->qsmask == 0 &&
	     ULONG_CMP_GE(jiffies, rnp->boost_time))) {
		if (rnp->exp_tasks == NULL)
			rnp->boost_tasks = rnp->gp_tasks;
1066
		raw_spin_unlock_irqrestore(&rnp->lock, flags);
1067
		t = rnp->boost_kthread_task;
T
Thomas Gleixner 已提交
1068 1069
		if (t)
			rcu_wake_cond(t, rnp->boost_kthread_status);
1070
	} else {
1071
		rcu_initiate_boost_trace(rnp);
1072 1073
		raw_spin_unlock_irqrestore(&rnp->lock, flags);
	}
1074 1075
}

1076 1077 1078 1079 1080 1081 1082 1083 1084
/*
 * Wake up the per-CPU kthread to invoke RCU callbacks.
 */
static void invoke_rcu_callbacks_kthread(void)
{
	unsigned long flags;

	local_irq_save(flags);
	__this_cpu_write(rcu_cpu_has_work, 1);
1085
	if (__this_cpu_read(rcu_cpu_kthread_task) != NULL &&
T
Thomas Gleixner 已提交
1086 1087 1088 1089
	    current != __this_cpu_read(rcu_cpu_kthread_task)) {
		rcu_wake_cond(__this_cpu_read(rcu_cpu_kthread_task),
			      __this_cpu_read(rcu_cpu_kthread_status));
	}
1090 1091 1092
	local_irq_restore(flags);
}

1093 1094 1095 1096 1097 1098
/*
 * Is the current CPU running the RCU-callbacks kthread?
 * Caller must have preemption disabled.
 */
static bool rcu_is_callbacks_kthread(void)
{
1099
	return __this_cpu_read(rcu_cpu_kthread_task) == current;
1100 1101
}

1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116
#define RCU_BOOST_DELAY_JIFFIES DIV_ROUND_UP(CONFIG_RCU_BOOST_DELAY * HZ, 1000)

/*
 * Do priority-boost accounting for the start of a new grace period.
 */
static void rcu_preempt_boost_start_gp(struct rcu_node *rnp)
{
	rnp->boost_time = jiffies + RCU_BOOST_DELAY_JIFFIES;
}

/*
 * Create an RCU-boost kthread for the specified node if one does not
 * already exist.  We only create this kthread for preemptible RCU.
 * Returns zero if all is well, a negated errno otherwise.
 */
1117
static int rcu_spawn_one_boost_kthread(struct rcu_state *rsp,
1118
				       struct rcu_node *rnp)
1119
{
T
Thomas Gleixner 已提交
1120
	int rnp_index = rnp - &rsp->node[0];
1121 1122 1123 1124
	unsigned long flags;
	struct sched_param sp;
	struct task_struct *t;

1125
	if (rcu_state_p != rsp)
1126
		return 0;
T
Thomas Gleixner 已提交
1127

1128
	if (!rcu_scheduler_fully_active || rcu_rnp_online_cpus(rnp) == 0)
T
Thomas Gleixner 已提交
1129 1130
		return 0;

1131
	rsp->boost = 1;
1132 1133 1134
	if (rnp->boost_kthread_task != NULL)
		return 0;
	t = kthread_create(rcu_boost_kthread, (void *)rnp,
1135
			   "rcub/%d", rnp_index);
1136 1137 1138
	if (IS_ERR(t))
		return PTR_ERR(t);
	raw_spin_lock_irqsave(&rnp->lock, flags);
1139
	smp_mb__after_unlock_lock();
1140 1141
	rnp->boost_kthread_task = t;
	raw_spin_unlock_irqrestore(&rnp->lock, flags);
1142
	sp.sched_priority = kthread_prio;
1143
	sched_setscheduler_nocheck(t, SCHED_FIFO, &sp);
1144
	wake_up_process(t); /* get to TASK_INTERRUPTIBLE quickly. */
1145 1146 1147
	return 0;
}

1148 1149
static void rcu_kthread_do_work(void)
{
1150 1151
	rcu_do_batch(&rcu_sched_state, this_cpu_ptr(&rcu_sched_data));
	rcu_do_batch(&rcu_bh_state, this_cpu_ptr(&rcu_bh_data));
1152 1153 1154
	rcu_preempt_do_callbacks();
}

1155
static void rcu_cpu_kthread_setup(unsigned int cpu)
1156 1157 1158
{
	struct sched_param sp;

1159
	sp.sched_priority = kthread_prio;
1160
	sched_setscheduler_nocheck(current, SCHED_FIFO, &sp);
1161 1162
}

1163
static void rcu_cpu_kthread_park(unsigned int cpu)
1164
{
1165
	per_cpu(rcu_cpu_kthread_status, cpu) = RCU_KTHREAD_OFFCPU;
1166 1167
}

1168
static int rcu_cpu_kthread_should_run(unsigned int cpu)
1169
{
1170
	return __this_cpu_read(rcu_cpu_has_work);
1171 1172 1173 1174
}

/*
 * Per-CPU kernel thread that invokes RCU callbacks.  This replaces the
1175 1176
 * RCU softirq used in flavors and configurations of RCU that do not
 * support RCU priority boosting.
1177
 */
1178
static void rcu_cpu_kthread(unsigned int cpu)
1179
{
1180 1181
	unsigned int *statusp = this_cpu_ptr(&rcu_cpu_kthread_status);
	char work, *workp = this_cpu_ptr(&rcu_cpu_has_work);
1182
	int spincnt;
1183

1184
	for (spincnt = 0; spincnt < 10; spincnt++) {
1185
		trace_rcu_utilization(TPS("Start CPU kthread@rcu_wait"));
1186 1187
		local_bh_disable();
		*statusp = RCU_KTHREAD_RUNNING;
1188 1189
		this_cpu_inc(rcu_cpu_kthread_loops);
		local_irq_disable();
1190 1191
		work = *workp;
		*workp = 0;
1192
		local_irq_enable();
1193 1194 1195
		if (work)
			rcu_kthread_do_work();
		local_bh_enable();
1196
		if (*workp == 0) {
1197
			trace_rcu_utilization(TPS("End CPU kthread@rcu_wait"));
1198 1199
			*statusp = RCU_KTHREAD_WAITING;
			return;
1200 1201
		}
	}
1202
	*statusp = RCU_KTHREAD_YIELDING;
1203
	trace_rcu_utilization(TPS("Start CPU kthread@rcu_yield"));
1204
	schedule_timeout_interruptible(2);
1205
	trace_rcu_utilization(TPS("End CPU kthread@rcu_yield"));
1206
	*statusp = RCU_KTHREAD_WAITING;
1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217
}

/*
 * Set the per-rcu_node kthread's affinity to cover all CPUs that are
 * served by the rcu_node in question.  The CPU hotplug lock is still
 * held, so the value of rnp->qsmaskinit will be stable.
 *
 * We don't include outgoingcpu in the affinity set, use -1 if there is
 * no outgoing CPU.  If there are no CPUs left in the affinity set,
 * this function allows the kthread to execute on any CPU.
 */
T
Thomas Gleixner 已提交
1218
static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu)
1219
{
T
Thomas Gleixner 已提交
1220
	struct task_struct *t = rnp->boost_kthread_task;
1221
	unsigned long mask = rcu_rnp_online_cpus(rnp);
1222 1223 1224
	cpumask_var_t cm;
	int cpu;

T
Thomas Gleixner 已提交
1225
	if (!t)
1226
		return;
T
Thomas Gleixner 已提交
1227
	if (!zalloc_cpumask_var(&cm, GFP_KERNEL))
1228 1229 1230 1231
		return;
	for (cpu = rnp->grplo; cpu <= rnp->grphi; cpu++, mask >>= 1)
		if ((mask & 0x1) && cpu != outgoingcpu)
			cpumask_set_cpu(cpu, cm);
1232
	if (cpumask_weight(cm) == 0)
1233
		cpumask_setall(cm);
T
Thomas Gleixner 已提交
1234
	set_cpus_allowed_ptr(t, cm);
1235 1236 1237
	free_cpumask_var(cm);
}

1238 1239 1240 1241 1242 1243 1244 1245
static struct smp_hotplug_thread rcu_cpu_thread_spec = {
	.store			= &rcu_cpu_kthread_task,
	.thread_should_run	= rcu_cpu_kthread_should_run,
	.thread_fn		= rcu_cpu_kthread,
	.thread_comm		= "rcuc/%u",
	.setup			= rcu_cpu_kthread_setup,
	.park			= rcu_cpu_kthread_park,
};
1246 1247

/*
1248
 * Spawn boost kthreads -- called as soon as the scheduler is running.
1249
 */
1250
static void __init rcu_spawn_boost_kthreads(void)
1251 1252
{
	struct rcu_node *rnp;
T
Thomas Gleixner 已提交
1253
	int cpu;
1254

1255
	for_each_possible_cpu(cpu)
1256
		per_cpu(rcu_cpu_has_work, cpu) = 0;
1257
	BUG_ON(smpboot_register_percpu_thread(&rcu_cpu_thread_spec));
1258 1259
	rcu_for_each_leaf_node(rcu_state_p, rnp)
		(void)rcu_spawn_one_boost_kthread(rcu_state_p, rnp);
1260 1261
}

1262
static void rcu_prepare_kthreads(int cpu)
1263
{
1264
	struct rcu_data *rdp = per_cpu_ptr(rcu_state_p->rda, cpu);
1265 1266 1267
	struct rcu_node *rnp = rdp->mynode;

	/* Fire up the incoming CPU's kthread and leaf rcu_node kthread. */
1268
	if (rcu_scheduler_fully_active)
1269
		(void)rcu_spawn_one_boost_kthread(rcu_state_p, rnp);
1270 1271
}

1272 1273
#else /* #ifdef CONFIG_RCU_BOOST */

1274
static void rcu_initiate_boost(struct rcu_node *rnp, unsigned long flags)
1275
	__releases(rnp->lock)
1276
{
1277
	raw_spin_unlock_irqrestore(&rnp->lock, flags);
1278 1279
}

1280
static void invoke_rcu_callbacks_kthread(void)
1281
{
1282
	WARN_ON_ONCE(1);
1283 1284
}

1285 1286 1287 1288 1289
static bool rcu_is_callbacks_kthread(void)
{
	return false;
}

1290 1291 1292 1293
static void rcu_preempt_boost_start_gp(struct rcu_node *rnp)
{
}

T
Thomas Gleixner 已提交
1294
static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu)
1295 1296 1297
{
}

1298
static void __init rcu_spawn_boost_kthreads(void)
1299 1300 1301
{
}

1302
static void rcu_prepare_kthreads(int cpu)
1303 1304 1305
{
}

1306 1307
#endif /* #else #ifdef CONFIG_RCU_BOOST */

1308 1309 1310 1311 1312 1313 1314 1315
#if !defined(CONFIG_RCU_FAST_NO_HZ)

/*
 * Check to see if any future RCU-related work will need to be done
 * by the current CPU, even if none need be done immediately, returning
 * 1 if so.  This function is part of the RCU implementation; it is -not-
 * an exported member of the RCU API.
 *
1316 1317
 * Because we not have RCU_FAST_NO_HZ, just check whether this CPU needs
 * any flavor of RCU.
1318
 */
1319
int rcu_needs_cpu(u64 basemono, u64 *nextevt)
1320
{
1321
	*nextevt = KTIME_MAX;
1322 1323
	return IS_ENABLED(CONFIG_RCU_NOCB_CPU_ALL)
	       ? 0 : rcu_cpu_has_callbacks(NULL);
1324 1325 1326 1327 1328 1329
}

/*
 * Because we do not have RCU_FAST_NO_HZ, don't bother cleaning up
 * after it.
 */
1330
static void rcu_cleanup_after_idle(void)
1331 1332 1333
{
}

1334
/*
1335
 * Do the idle-entry grace-period work, which, because CONFIG_RCU_FAST_NO_HZ=n,
1336 1337
 * is nothing.
 */
1338
static void rcu_prepare_for_idle(void)
1339 1340 1341
{
}

1342 1343 1344 1345 1346 1347 1348 1349
/*
 * Don't bother keeping a running count of the number of RCU callbacks
 * posted because CONFIG_RCU_FAST_NO_HZ=n.
 */
static void rcu_idle_count_callbacks_posted(void)
{
}

1350 1351
#else /* #if !defined(CONFIG_RCU_FAST_NO_HZ) */

1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366
/*
 * This code is invoked when a CPU goes idle, at which point we want
 * to have the CPU do everything required for RCU so that it can enter
 * the energy-efficient dyntick-idle mode.  This is handled by a
 * state machine implemented by rcu_prepare_for_idle() below.
 *
 * The following three proprocessor symbols control this state machine:
 *
 * RCU_IDLE_GP_DELAY gives the number of jiffies that a CPU is permitted
 *	to sleep in dyntick-idle mode with RCU callbacks pending.  This
 *	is sized to be roughly one RCU grace period.  Those energy-efficiency
 *	benchmarkers who might otherwise be tempted to set this to a large
 *	number, be warned: Setting RCU_IDLE_GP_DELAY too high can hang your
 *	system.  And if you are -that- concerned about energy efficiency,
 *	just power the system down and be done with it!
1367 1368 1369
 * RCU_IDLE_LAZY_GP_DELAY gives the number of jiffies that a CPU is
 *	permitted to sleep in dyntick-idle mode with only lazy RCU
 *	callbacks pending.  Setting this too high can OOM your system.
1370 1371 1372 1373 1374
 *
 * The values below work well in practice.  If future workloads require
 * adjustment, they can be converted into kernel config parameters, though
 * making the state machine smarter might be a better option.
 */
1375
#define RCU_IDLE_GP_DELAY 4		/* Roughly one grace period. */
1376
#define RCU_IDLE_LAZY_GP_DELAY (6 * HZ)	/* Roughly six seconds. */
1377

1378 1379 1380 1381
static int rcu_idle_gp_delay = RCU_IDLE_GP_DELAY;
module_param(rcu_idle_gp_delay, int, 0644);
static int rcu_idle_lazy_gp_delay = RCU_IDLE_LAZY_GP_DELAY;
module_param(rcu_idle_lazy_gp_delay, int, 0644);
1382 1383

/*
1384 1385 1386
 * Try to advance callbacks for all flavors of RCU on the current CPU, but
 * only if it has been awhile since the last time we did so.  Afterwards,
 * if there are any callbacks ready for immediate invocation, return true.
1387
 */
1388
static bool __maybe_unused rcu_try_advance_all_cbs(void)
1389
{
1390 1391
	bool cbs_ready = false;
	struct rcu_data *rdp;
1392
	struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
1393 1394
	struct rcu_node *rnp;
	struct rcu_state *rsp;
1395

1396 1397
	/* Exit early if we advanced recently. */
	if (jiffies == rdtp->last_advance_all)
1398
		return false;
1399 1400
	rdtp->last_advance_all = jiffies;

1401 1402 1403
	for_each_rcu_flavor(rsp) {
		rdp = this_cpu_ptr(rsp->rda);
		rnp = rdp->mynode;
1404

1405 1406 1407 1408 1409
		/*
		 * Don't bother checking unless a grace period has
		 * completed since we last checked and there are
		 * callbacks not yet ready to invoke.
		 */
1410
		if ((rdp->completed != rnp->completed ||
1411
		     unlikely(READ_ONCE(rdp->gpwrap))) &&
1412
		    rdp->nxttail[RCU_DONE_TAIL] != rdp->nxttail[RCU_NEXT_TAIL])
1413
			note_gp_changes(rsp, rdp);
1414

1415 1416 1417 1418
		if (cpu_has_callbacks_ready_to_invoke(rdp))
			cbs_ready = true;
	}
	return cbs_ready;
1419 1420
}

1421
/*
1422 1423 1424 1425
 * Allow the CPU to enter dyntick-idle mode unless it has callbacks ready
 * to invoke.  If the CPU has callbacks, try to advance them.  Tell the
 * caller to set the timeout based on whether or not there are non-lazy
 * callbacks.
1426
 *
1427
 * The caller must have disabled interrupts.
1428
 */
1429
int rcu_needs_cpu(u64 basemono, u64 *nextevt)
1430
{
1431
	struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
1432
	unsigned long dj;
1433

1434
	if (IS_ENABLED(CONFIG_RCU_NOCB_CPU_ALL)) {
1435
		*nextevt = KTIME_MAX;
1436 1437 1438
		return 0;
	}

1439 1440 1441
	/* Snapshot to detect later posting of non-lazy callback. */
	rdtp->nonlazy_posted_snap = rdtp->nonlazy_posted;

1442
	/* If no callbacks, RCU doesn't need the CPU. */
1443
	if (!rcu_cpu_has_callbacks(&rdtp->all_lazy)) {
1444
		*nextevt = KTIME_MAX;
1445 1446
		return 0;
	}
1447 1448 1449 1450 1451

	/* Attempt to advance callbacks. */
	if (rcu_try_advance_all_cbs()) {
		/* Some ready to invoke, so initiate later invocation. */
		invoke_rcu_core();
1452 1453
		return 1;
	}
1454 1455 1456
	rdtp->last_accelerate = jiffies;

	/* Request timer delay depending on laziness, and round. */
1457
	if (!rdtp->all_lazy) {
1458
		dj = round_up(rcu_idle_gp_delay + jiffies,
1459
			       rcu_idle_gp_delay) - jiffies;
1460
	} else {
1461
		dj = round_jiffies(rcu_idle_lazy_gp_delay + jiffies) - jiffies;
1462
	}
1463
	*nextevt = basemono + dj * TICK_NSEC;
1464 1465 1466
	return 0;
}

1467
/*
1468 1469 1470 1471 1472 1473
 * Prepare a CPU for idle from an RCU perspective.  The first major task
 * is to sense whether nohz mode has been enabled or disabled via sysfs.
 * The second major task is to check to see if a non-lazy callback has
 * arrived at a CPU that previously had only lazy callbacks.  The third
 * major task is to accelerate (that is, assign grace-period numbers to)
 * any recently arrived callbacks.
1474 1475
 *
 * The caller must have disabled interrupts.
1476
 */
1477
static void rcu_prepare_for_idle(void)
1478
{
1479
	bool needwake;
1480
	struct rcu_data *rdp;
1481
	struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
1482 1483
	struct rcu_node *rnp;
	struct rcu_state *rsp;
1484 1485
	int tne;

1486 1487 1488
	if (IS_ENABLED(CONFIG_RCU_NOCB_CPU_ALL))
		return;

1489
	/* Handle nohz enablement switches conservatively. */
1490
	tne = READ_ONCE(tick_nohz_active);
1491
	if (tne != rdtp->tick_nohz_enabled_snap) {
1492
		if (rcu_cpu_has_callbacks(NULL))
1493 1494 1495 1496 1497 1498
			invoke_rcu_core(); /* force nohz to see update. */
		rdtp->tick_nohz_enabled_snap = tne;
		return;
	}
	if (!tne)
		return;
1499

1500
	/* If this is a no-CBs CPU, no callbacks, just return. */
1501
	if (rcu_is_nocb_cpu(smp_processor_id()))
1502 1503
		return;

1504
	/*
1505 1506 1507
	 * If a non-lazy callback arrived at a CPU having only lazy
	 * callbacks, invoke RCU core for the side-effect of recalculating
	 * idle duration on re-entry to idle.
1508
	 */
1509 1510
	if (rdtp->all_lazy &&
	    rdtp->nonlazy_posted != rdtp->nonlazy_posted_snap) {
1511 1512
		rdtp->all_lazy = false;
		rdtp->nonlazy_posted_snap = rdtp->nonlazy_posted;
1513
		invoke_rcu_core();
1514 1515 1516
		return;
	}

1517
	/*
1518 1519
	 * If we have not yet accelerated this jiffy, accelerate all
	 * callbacks on this CPU.
1520
	 */
1521
	if (rdtp->last_accelerate == jiffies)
1522
		return;
1523 1524
	rdtp->last_accelerate = jiffies;
	for_each_rcu_flavor(rsp) {
1525
		rdp = this_cpu_ptr(rsp->rda);
1526 1527 1528 1529
		if (!*rdp->nxttail[RCU_DONE_TAIL])
			continue;
		rnp = rdp->mynode;
		raw_spin_lock(&rnp->lock); /* irqs already disabled. */
1530
		smp_mb__after_unlock_lock();
1531
		needwake = rcu_accelerate_cbs(rsp, rnp, rdp);
1532
		raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
1533 1534
		if (needwake)
			rcu_gp_kthread_wake(rsp);
1535
	}
1536
}
1537

1538 1539 1540 1541 1542
/*
 * Clean up for exit from idle.  Attempt to advance callbacks based on
 * any grace periods that elapsed while the CPU was idle, and if any
 * callbacks are now ready to invoke, initiate invocation.
 */
1543
static void rcu_cleanup_after_idle(void)
1544
{
1545 1546
	if (IS_ENABLED(CONFIG_RCU_NOCB_CPU_ALL) ||
	    rcu_is_nocb_cpu(smp_processor_id()))
1547
		return;
1548 1549
	if (rcu_try_advance_all_cbs())
		invoke_rcu_core();
1550 1551
}

1552
/*
1553 1554 1555 1556 1557 1558
 * Keep a running count of the number of non-lazy callbacks posted
 * on this CPU.  This running counter (which is never decremented) allows
 * rcu_prepare_for_idle() to detect when something out of the idle loop
 * posts a callback, even if an equal number of callbacks are invoked.
 * Of course, callbacks should only be posted from within a trace event
 * designed to be called from idle or from within RCU_NONIDLE().
1559 1560 1561
 */
static void rcu_idle_count_callbacks_posted(void)
{
1562
	__this_cpu_add(rcu_dynticks.nonlazy_posted, 1);
1563 1564
}

1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593
/*
 * Data for flushing lazy RCU callbacks at OOM time.
 */
static atomic_t oom_callback_count;
static DECLARE_WAIT_QUEUE_HEAD(oom_callback_wq);

/*
 * RCU OOM callback -- decrement the outstanding count and deliver the
 * wake-up if we are the last one.
 */
static void rcu_oom_callback(struct rcu_head *rhp)
{
	if (atomic_dec_and_test(&oom_callback_count))
		wake_up(&oom_callback_wq);
}

/*
 * Post an rcu_oom_notify callback on the current CPU if it has at
 * least one lazy callback.  This will unnecessarily post callbacks
 * to CPUs that already have a non-lazy callback at the end of their
 * callback list, but this is an infrequent operation, so accept some
 * extra overhead to keep things simple.
 */
static void rcu_oom_notify_cpu(void *unused)
{
	struct rcu_state *rsp;
	struct rcu_data *rdp;

	for_each_rcu_flavor(rsp) {
1594
		rdp = raw_cpu_ptr(rsp->rda);
1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615
		if (rdp->qlen_lazy != 0) {
			atomic_inc(&oom_callback_count);
			rsp->call(&rdp->oom_head, rcu_oom_callback);
		}
	}
}

/*
 * If low on memory, ensure that each CPU has a non-lazy callback.
 * This will wake up CPUs that have only lazy callbacks, in turn
 * ensuring that they free up the corresponding memory in a timely manner.
 * Because an uncertain amount of memory will be freed in some uncertain
 * timeframe, we do not claim to have freed anything.
 */
static int rcu_oom_notify(struct notifier_block *self,
			  unsigned long notused, void *nfreed)
{
	int cpu;

	/* Wait for callbacks from earlier instance to complete. */
	wait_event(oom_callback_wq, atomic_read(&oom_callback_count) == 0);
1616
	smp_mb(); /* Ensure callback reuse happens after callback invocation. */
1617 1618 1619 1620 1621 1622 1623 1624 1625

	/*
	 * Prevent premature wakeup: ensure that all increments happen
	 * before there is a chance of the counter reaching zero.
	 */
	atomic_set(&oom_callback_count, 1);

	for_each_online_cpu(cpu) {
		smp_call_function_single(cpu, rcu_oom_notify_cpu, NULL, 1);
1626
		cond_resched_rcu_qs();
1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645
	}

	/* Unconditionally decrement: no need to wake ourselves up. */
	atomic_dec(&oom_callback_count);

	return NOTIFY_OK;
}

static struct notifier_block rcu_oom_nb = {
	.notifier_call = rcu_oom_notify
};

static int __init rcu_register_oom_notifier(void)
{
	register_oom_notifier(&rcu_oom_nb);
	return 0;
}
early_initcall(rcu_register_oom_notifier);

1646
#endif /* #else #if !defined(CONFIG_RCU_FAST_NO_HZ) */
1647 1648 1649 1650 1651

#ifdef CONFIG_RCU_FAST_NO_HZ

static void print_cpu_stall_fast_no_hz(char *cp, int cpu)
{
1652
	struct rcu_dynticks *rdtp = &per_cpu(rcu_dynticks, cpu);
1653
	unsigned long nlpd = rdtp->nonlazy_posted - rdtp->nonlazy_posted_snap;
1654

1655 1656 1657 1658 1659
	sprintf(cp, "last_accelerate: %04lx/%04lx, nonlazy_posted: %ld, %c%c",
		rdtp->last_accelerate & 0xffff, jiffies & 0xffff,
		ulong2long(nlpd),
		rdtp->all_lazy ? 'L' : '.',
		rdtp->tick_nohz_enabled_snap ? '.' : 'D');
1660 1661 1662 1663 1664 1665
}

#else /* #ifdef CONFIG_RCU_FAST_NO_HZ */

static void print_cpu_stall_fast_no_hz(char *cp, int cpu)
{
1666
	*cp = '\0';
1667 1668 1669 1670 1671 1672 1673
}

#endif /* #else #ifdef CONFIG_RCU_FAST_NO_HZ */

/* Initiate the stall-info list. */
static void print_cpu_stall_info_begin(void)
{
1674
	pr_cont("\n");
1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704
}

/*
 * Print out diagnostic information for the specified stalled CPU.
 *
 * If the specified CPU is aware of the current RCU grace period
 * (flavor specified by rsp), then print the number of scheduling
 * clock interrupts the CPU has taken during the time that it has
 * been aware.  Otherwise, print the number of RCU grace periods
 * that this CPU is ignorant of, for example, "1" if the CPU was
 * aware of the previous grace period.
 *
 * Also print out idle and (if CONFIG_RCU_FAST_NO_HZ) idle-entry info.
 */
static void print_cpu_stall_info(struct rcu_state *rsp, int cpu)
{
	char fast_no_hz[72];
	struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
	struct rcu_dynticks *rdtp = rdp->dynticks;
	char *ticks_title;
	unsigned long ticks_value;

	if (rsp->gpnum == rdp->gpnum) {
		ticks_title = "ticks this GP";
		ticks_value = rdp->ticks_this_gp;
	} else {
		ticks_title = "GPs behind";
		ticks_value = rsp->gpnum - rdp->gpnum;
	}
	print_cpu_stall_fast_no_hz(fast_no_hz, cpu);
1705
	pr_err("\t%d: (%lu %s) idle=%03x/%llx/%d softirq=%u/%u fqs=%ld %s\n",
1706 1707 1708
	       cpu, ticks_value, ticks_title,
	       atomic_read(&rdtp->dynticks) & 0xfff,
	       rdtp->dynticks_nesting, rdtp->dynticks_nmi_nesting,
1709
	       rdp->softirq_snap, kstat_softirqs_cpu(RCU_SOFTIRQ, cpu),
1710
	       READ_ONCE(rsp->n_force_qs) - rsp->n_force_qs_gpstart,
1711 1712 1713 1714 1715 1716
	       fast_no_hz);
}

/* Terminate the stall-info list. */
static void print_cpu_stall_info_end(void)
{
1717
	pr_err("\t");
1718 1719 1720 1721 1722 1723
}

/* Zero ->ticks_this_gp for all flavors of RCU. */
static void zero_cpu_stall_ticks(struct rcu_data *rdp)
{
	rdp->ticks_this_gp = 0;
1724
	rdp->softirq_snap = kstat_softirqs_cpu(RCU_SOFTIRQ, smp_processor_id());
1725 1726 1727 1728 1729
}

/* Increment ->ticks_this_gp for all flavors of RCU. */
static void increment_cpu_stall_ticks(void)
{
1730 1731 1732
	struct rcu_state *rsp;

	for_each_rcu_flavor(rsp)
1733
		raw_cpu_inc(rsp->rda->ticks_this_gp);
1734 1735
}

P
Paul E. McKenney 已提交
1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768
#ifdef CONFIG_RCU_NOCB_CPU

/*
 * Offload callback processing from the boot-time-specified set of CPUs
 * specified by rcu_nocb_mask.  For each CPU in the set, there is a
 * kthread created that pulls the callbacks from the corresponding CPU,
 * waits for a grace period to elapse, and invokes the callbacks.
 * The no-CBs CPUs do a wake_up() on their kthread when they insert
 * a callback into any empty list, unless the rcu_nocb_poll boot parameter
 * has been specified, in which case each kthread actively polls its
 * CPU.  (Which isn't so great for energy efficiency, but which does
 * reduce RCU's overhead on that CPU.)
 *
 * This is intended to be used in conjunction with Frederic Weisbecker's
 * adaptive-idle work, which would seriously reduce OS jitter on CPUs
 * running CPU-bound user-mode computations.
 *
 * Offloading of callback processing could also in theory be used as
 * an energy-efficiency measure because CPUs with no RCU callbacks
 * queued are more aggressive about entering dyntick-idle mode.
 */


/* Parse the boot-time rcu_nocb_mask CPU list from the kernel parameters. */
static int __init rcu_nocb_setup(char *str)
{
	alloc_bootmem_cpumask_var(&rcu_nocb_mask);
	have_rcu_nocb_mask = true;
	cpulist_parse(str, rcu_nocb_mask);
	return 1;
}
__setup("rcu_nocbs=", rcu_nocb_setup);

1769 1770 1771 1772 1773 1774 1775
static int __init parse_rcu_nocb_poll(char *arg)
{
	rcu_nocb_poll = 1;
	return 0;
}
early_param("rcu_nocb_poll", parse_rcu_nocb_poll);

1776
/*
1777 1778
 * Wake up any no-CBs CPUs' kthreads that were waiting on the just-ended
 * grace period.
1779
 */
1780
static void rcu_nocb_gp_cleanup(struct rcu_state *rsp, struct rcu_node *rnp)
1781
{
1782
	wake_up_all(&rnp->nocb_gp_wq[rnp->completed & 0x1]);
1783 1784 1785
}

/*
1786
 * Set the root rcu_node structure's ->need_future_gp field
1787 1788 1789 1790 1791
 * based on the sum of those of all rcu_node structures.  This does
 * double-count the root rcu_node structure's requests, but this
 * is necessary to handle the possibility of a rcu_nocb_kthread()
 * having awakened during the time that the rcu_node structures
 * were being updated for the end of the previous grace period.
1792
 */
1793 1794
static void rcu_nocb_gp_set(struct rcu_node *rnp, int nrq)
{
1795
	rnp->need_future_gp[(rnp->completed + 1) & 0x1] += nrq;
1796 1797 1798
}

static void rcu_init_one_nocb(struct rcu_node *rnp)
1799
{
1800 1801
	init_waitqueue_head(&rnp->nocb_gp_wq[0]);
	init_waitqueue_head(&rnp->nocb_gp_wq[1]);
1802 1803
}

1804
#ifndef CONFIG_RCU_NOCB_CPU_ALL
L
Liu Ping Fan 已提交
1805
/* Is the specified CPU a no-CBs CPU? */
1806
bool rcu_is_nocb_cpu(int cpu)
P
Paul E. McKenney 已提交
1807 1808 1809 1810 1811
{
	if (have_rcu_nocb_mask)
		return cpumask_test_cpu(cpu, rcu_nocb_mask);
	return false;
}
1812
#endif /* #ifndef CONFIG_RCU_NOCB_CPU_ALL */
P
Paul E. McKenney 已提交
1813

1814 1815 1816 1817 1818 1819 1820
/*
 * Kick the leader kthread for this NOCB group.
 */
static void wake_nocb_leader(struct rcu_data *rdp, bool force)
{
	struct rcu_data *rdp_leader = rdp->nocb_leader;

1821
	if (!READ_ONCE(rdp_leader->nocb_kthread))
1822
		return;
1823
	if (READ_ONCE(rdp_leader->nocb_leader_sleep) || force) {
1824
		/* Prior smp_mb__after_atomic() orders against prior enqueue. */
1825
		WRITE_ONCE(rdp_leader->nocb_leader_sleep, false);
1826 1827 1828 1829
		wake_up(&rdp_leader->nocb_wq);
	}
}

1830 1831 1832 1833 1834 1835 1836
/*
 * Does the specified CPU need an RCU callback for the specified flavor
 * of rcu_barrier()?
 */
static bool rcu_nocb_cpu_needs_barrier(struct rcu_state *rsp, int cpu)
{
	struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
1837 1838
	unsigned long ret;
#ifdef CONFIG_PROVE_RCU
1839
	struct rcu_head *rhp;
1840
#endif /* #ifdef CONFIG_PROVE_RCU */
1841

1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854
	/*
	 * Check count of all no-CBs callbacks awaiting invocation.
	 * There needs to be a barrier before this function is called,
	 * but associated with a prior determination that no more
	 * callbacks would be posted.  In the worst case, the first
	 * barrier in _rcu_barrier() suffices (but the caller cannot
	 * necessarily rely on this, not a substitute for the caller
	 * getting the concurrency design right!).  There must also be
	 * a barrier between the following load an posting of a callback
	 * (if a callback is in fact needed).  This is associated with an
	 * atomic_inc() in the caller.
	 */
	ret = atomic_long_read(&rdp->nocb_q_count);
1855

1856
#ifdef CONFIG_PROVE_RCU
1857
	rhp = READ_ONCE(rdp->nocb_head);
1858
	if (!rhp)
1859
		rhp = READ_ONCE(rdp->nocb_gp_head);
1860
	if (!rhp)
1861
		rhp = READ_ONCE(rdp->nocb_follower_head);
1862 1863

	/* Having no rcuo kthread but CBs after scheduler starts is bad! */
1864
	if (!READ_ONCE(rdp->nocb_kthread) && rhp &&
1865
	    rcu_scheduler_fully_active) {
1866 1867 1868 1869 1870
		/* RCU callback enqueued before CPU first came online??? */
		pr_err("RCU: Never-onlined no-CBs CPU %d has CB %p\n",
		       cpu, rhp->func);
		WARN_ON_ONCE(1);
	}
1871
#endif /* #ifdef CONFIG_PROVE_RCU */
1872

1873
	return !!ret;
1874 1875
}

P
Paul E. McKenney 已提交
1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886
/*
 * Enqueue the specified string of rcu_head structures onto the specified
 * CPU's no-CBs lists.  The CPU is specified by rdp, the head of the
 * string by rhp, and the tail of the string by rhtp.  The non-lazy/lazy
 * counts are supplied by rhcount and rhcount_lazy.
 *
 * If warranted, also wake up the kthread servicing this CPUs queues.
 */
static void __call_rcu_nocb_enqueue(struct rcu_data *rdp,
				    struct rcu_head *rhp,
				    struct rcu_head **rhtp,
1887 1888
				    int rhcount, int rhcount_lazy,
				    unsigned long flags)
P
Paul E. McKenney 已提交
1889 1890 1891 1892 1893 1894
{
	int len;
	struct rcu_head **old_rhpp;
	struct task_struct *t;

	/* Enqueue the callback on the nocb list and update counts. */
1895 1896
	atomic_long_add(rhcount, &rdp->nocb_q_count);
	/* rcu_barrier() relies on ->nocb_q_count add before xchg. */
P
Paul E. McKenney 已提交
1897
	old_rhpp = xchg(&rdp->nocb_tail, rhtp);
1898
	WRITE_ONCE(*old_rhpp, rhp);
P
Paul E. McKenney 已提交
1899
	atomic_long_add(rhcount_lazy, &rdp->nocb_q_count_lazy);
1900
	smp_mb__after_atomic(); /* Store *old_rhpp before _wake test. */
P
Paul E. McKenney 已提交
1901 1902

	/* If we are not being polled and there is a kthread, awaken it ... */
1903
	t = READ_ONCE(rdp->nocb_kthread);
1904
	if (rcu_nocb_poll || !t) {
1905 1906
		trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
				    TPS("WakeNotPoll"));
P
Paul E. McKenney 已提交
1907
		return;
1908
	}
P
Paul E. McKenney 已提交
1909 1910
	len = atomic_long_read(&rdp->nocb_q_count);
	if (old_rhpp == &rdp->nocb_head) {
1911
		if (!irqs_disabled_flags(flags)) {
1912 1913
			/* ... if queue was empty ... */
			wake_nocb_leader(rdp, false);
1914 1915 1916
			trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
					    TPS("WakeEmpty"));
		} else {
1917
			rdp->nocb_defer_wakeup = RCU_NOGP_WAKE;
1918 1919 1920
			trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
					    TPS("WakeEmptyIsDeferred"));
		}
P
Paul E. McKenney 已提交
1921 1922
		rdp->qlen_last_fqs_check = 0;
	} else if (len > rdp->qlen_last_fqs_check + qhimark) {
1923
		/* ... or if many callbacks queued. */
1924 1925 1926 1927 1928 1929 1930 1931 1932
		if (!irqs_disabled_flags(flags)) {
			wake_nocb_leader(rdp, true);
			trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
					    TPS("WakeOvf"));
		} else {
			rdp->nocb_defer_wakeup = RCU_NOGP_WAKE_FORCE;
			trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
					    TPS("WakeOvfIsDeferred"));
		}
P
Paul E. McKenney 已提交
1933
		rdp->qlen_last_fqs_check = LONG_MAX / 2;
1934 1935
	} else {
		trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, TPS("WakeNot"));
P
Paul E. McKenney 已提交
1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949
	}
	return;
}

/*
 * This is a helper for __call_rcu(), which invokes this when the normal
 * callback queue is inoperable.  If this is not a no-CBs CPU, this
 * function returns failure back to __call_rcu(), which can complain
 * appropriately.
 *
 * Otherwise, this function queues the callback where the corresponding
 * "rcuo" kthread can find it.
 */
static bool __call_rcu_nocb(struct rcu_data *rdp, struct rcu_head *rhp,
1950
			    bool lazy, unsigned long flags)
P
Paul E. McKenney 已提交
1951 1952
{

1953
	if (!rcu_is_nocb_cpu(rdp->cpu))
1954
		return false;
1955
	__call_rcu_nocb_enqueue(rdp, rhp, &rhp->next, 1, lazy, flags);
1956 1957 1958
	if (__is_kfree_rcu_offset((unsigned long)rhp->func))
		trace_rcu_kfree_callback(rdp->rsp->name, rhp,
					 (unsigned long)rhp->func,
1959 1960
					 -atomic_long_read(&rdp->nocb_q_count_lazy),
					 -atomic_long_read(&rdp->nocb_q_count));
1961 1962
	else
		trace_rcu_callback(rdp->rsp->name, rhp,
1963 1964
				   -atomic_long_read(&rdp->nocb_q_count_lazy),
				   -atomic_long_read(&rdp->nocb_q_count));
1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975

	/*
	 * If called from an extended quiescent state with interrupts
	 * disabled, invoke the RCU core in order to allow the idle-entry
	 * deferred-wakeup check to function.
	 */
	if (irqs_disabled_flags(flags) &&
	    !rcu_is_watching() &&
	    cpu_online(smp_processor_id()))
		invoke_rcu_core();

1976
	return true;
P
Paul E. McKenney 已提交
1977 1978 1979 1980 1981 1982 1983
}

/*
 * Adopt orphaned callbacks on a no-CBs CPU, or return 0 if this is
 * not a no-CBs CPU.
 */
static bool __maybe_unused rcu_nocb_adopt_orphan_cbs(struct rcu_state *rsp,
1984 1985
						     struct rcu_data *rdp,
						     unsigned long flags)
P
Paul E. McKenney 已提交
1986 1987 1988 1989 1990
{
	long ql = rsp->qlen;
	long qll = rsp->qlen_lazy;

	/* If this is not a no-CBs CPU, tell the caller to do it the old way. */
1991
	if (!rcu_is_nocb_cpu(smp_processor_id()))
1992
		return false;
P
Paul E. McKenney 已提交
1993 1994 1995 1996 1997 1998
	rsp->qlen = 0;
	rsp->qlen_lazy = 0;

	/* First, enqueue the donelist, if any.  This preserves CB ordering. */
	if (rsp->orphan_donelist != NULL) {
		__call_rcu_nocb_enqueue(rdp, rsp->orphan_donelist,
1999
					rsp->orphan_donetail, ql, qll, flags);
P
Paul E. McKenney 已提交
2000 2001 2002 2003 2004 2005
		ql = qll = 0;
		rsp->orphan_donelist = NULL;
		rsp->orphan_donetail = &rsp->orphan_donelist;
	}
	if (rsp->orphan_nxtlist != NULL) {
		__call_rcu_nocb_enqueue(rdp, rsp->orphan_nxtlist,
2006
					rsp->orphan_nxttail, ql, qll, flags);
P
Paul E. McKenney 已提交
2007 2008 2009 2010
		ql = qll = 0;
		rsp->orphan_nxtlist = NULL;
		rsp->orphan_nxttail = &rsp->orphan_nxtlist;
	}
2011
	return true;
P
Paul E. McKenney 已提交
2012 2013 2014
}

/*
2015 2016
 * If necessary, kick off a new grace period, and either way wait
 * for a subsequent grace period to complete.
P
Paul E. McKenney 已提交
2017
 */
2018
static void rcu_nocb_wait_gp(struct rcu_data *rdp)
P
Paul E. McKenney 已提交
2019
{
2020
	unsigned long c;
2021
	bool d;
2022
	unsigned long flags;
2023
	bool needwake;
2024 2025 2026
	struct rcu_node *rnp = rdp->mynode;

	raw_spin_lock_irqsave(&rnp->lock, flags);
2027
	smp_mb__after_unlock_lock();
2028
	needwake = rcu_start_future_gp(rnp, rdp, &c);
2029
	raw_spin_unlock_irqrestore(&rnp->lock, flags);
2030 2031
	if (needwake)
		rcu_gp_kthread_wake(rdp->rsp);
P
Paul E. McKenney 已提交
2032 2033

	/*
2034 2035
	 * Wait for the grace period.  Do so interruptibly to avoid messing
	 * up the load average.
P
Paul E. McKenney 已提交
2036
	 */
2037
	trace_rcu_future_gp(rnp, rdp, c, TPS("StartWait"));
2038
	for (;;) {
2039 2040
		wait_event_interruptible(
			rnp->nocb_gp_wq[c & 0x1],
2041
			(d = ULONG_CMP_GE(READ_ONCE(rnp->completed), c)));
2042
		if (likely(d))
2043
			break;
2044
		WARN_ON(signal_pending(current));
2045
		trace_rcu_future_gp(rnp, rdp, c, TPS("ResumeWait"));
2046
	}
2047
	trace_rcu_future_gp(rnp, rdp, c, TPS("EndWait"));
2048
	smp_mb(); /* Ensure that CB invocation happens after GP end. */
P
Paul E. McKenney 已提交
2049 2050
}

2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067
/*
 * Leaders come here to wait for additional callbacks to show up.
 * This function does not return until callbacks appear.
 */
static void nocb_leader_wait(struct rcu_data *my_rdp)
{
	bool firsttime = true;
	bool gotcbs;
	struct rcu_data *rdp;
	struct rcu_head **tail;

wait_again:

	/* Wait for callbacks to appear. */
	if (!rcu_nocb_poll) {
		trace_rcu_nocb_wake(my_rdp->rsp->name, my_rdp->cpu, "Sleep");
		wait_event_interruptible(my_rdp->nocb_wq,
2068
				!READ_ONCE(my_rdp->nocb_leader_sleep));
2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081
		/* Memory barrier handled by smp_mb() calls below and repoll. */
	} else if (firsttime) {
		firsttime = false; /* Don't drown trace log with "Poll"! */
		trace_rcu_nocb_wake(my_rdp->rsp->name, my_rdp->cpu, "Poll");
	}

	/*
	 * Each pass through the following loop checks a follower for CBs.
	 * We are our own first follower.  Any CBs found are moved to
	 * nocb_gp_head, where they await a grace period.
	 */
	gotcbs = false;
	for (rdp = my_rdp; rdp; rdp = rdp->nocb_next_follower) {
2082
		rdp->nocb_gp_head = READ_ONCE(rdp->nocb_head);
2083 2084 2085 2086
		if (!rdp->nocb_gp_head)
			continue;  /* No CBs here, try next follower. */

		/* Move callbacks to wait-for-GP list, which is empty. */
2087
		WRITE_ONCE(rdp->nocb_head, NULL);
2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099
		rdp->nocb_gp_tail = xchg(&rdp->nocb_tail, &rdp->nocb_head);
		gotcbs = true;
	}

	/*
	 * If there were no callbacks, sleep a bit, rescan after a
	 * memory barrier, and go retry.
	 */
	if (unlikely(!gotcbs)) {
		if (!rcu_nocb_poll)
			trace_rcu_nocb_wake(my_rdp->rsp->name, my_rdp->cpu,
					    "WokeEmpty");
2100
		WARN_ON(signal_pending(current));
2101 2102 2103
		schedule_timeout_interruptible(1);

		/* Rescan in case we were a victim of memory ordering. */
2104 2105
		my_rdp->nocb_leader_sleep = true;
		smp_mb();  /* Ensure _sleep true before scan. */
2106
		for (rdp = my_rdp; rdp; rdp = rdp->nocb_next_follower)
2107
			if (READ_ONCE(rdp->nocb_head)) {
2108
				/* Found CB, so short-circuit next wait. */
2109
				my_rdp->nocb_leader_sleep = false;
2110 2111 2112 2113 2114 2115 2116 2117 2118
				break;
			}
		goto wait_again;
	}

	/* Wait for one grace period. */
	rcu_nocb_wait_gp(my_rdp);

	/*
2119 2120
	 * We left ->nocb_leader_sleep unset to reduce cache thrashing.
	 * We set it now, but recheck for new callbacks while
2121 2122
	 * traversing our follower list.
	 */
2123 2124
	my_rdp->nocb_leader_sleep = true;
	smp_mb(); /* Ensure _sleep true before scan of ->nocb_head. */
2125 2126 2127

	/* Each pass through the following loop wakes a follower, if needed. */
	for (rdp = my_rdp; rdp; rdp = rdp->nocb_next_follower) {
2128
		if (READ_ONCE(rdp->nocb_head))
2129
			my_rdp->nocb_leader_sleep = false;/* No need to sleep.*/
2130 2131 2132 2133 2134 2135
		if (!rdp->nocb_gp_head)
			continue; /* No CBs, so no need to wake follower. */

		/* Append callbacks to follower's "done" list. */
		tail = xchg(&rdp->nocb_follower_tail, rdp->nocb_gp_tail);
		*tail = rdp->nocb_gp_head;
2136
		smp_mb__after_atomic(); /* Store *tail before wakeup. */
2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163
		if (rdp != my_rdp && tail == &rdp->nocb_follower_head) {
			/*
			 * List was empty, wake up the follower.
			 * Memory barriers supplied by atomic_long_add().
			 */
			wake_up(&rdp->nocb_wq);
		}
	}

	/* If we (the leader) don't have CBs, go wait some more. */
	if (!my_rdp->nocb_follower_head)
		goto wait_again;
}

/*
 * Followers come here to wait for additional callbacks to show up.
 * This function does not return until callbacks appear.
 */
static void nocb_follower_wait(struct rcu_data *rdp)
{
	bool firsttime = true;

	for (;;) {
		if (!rcu_nocb_poll) {
			trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
					    "FollowerSleep");
			wait_event_interruptible(rdp->nocb_wq,
2164
						 READ_ONCE(rdp->nocb_follower_head));
2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176
		} else if (firsttime) {
			/* Don't drown trace log with "Poll"! */
			firsttime = false;
			trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, "Poll");
		}
		if (smp_load_acquire(&rdp->nocb_follower_head)) {
			/* ^^^ Ensure CB invocation follows _head test. */
			return;
		}
		if (!rcu_nocb_poll)
			trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
					    "WokeEmpty");
2177
		WARN_ON(signal_pending(current));
2178 2179 2180 2181
		schedule_timeout_interruptible(1);
	}
}

P
Paul E. McKenney 已提交
2182 2183
/*
 * Per-rcu_data kthread, but only for no-CBs CPUs.  Each kthread invokes
2184 2185 2186
 * callbacks queued by the corresponding no-CBs CPU, however, there is
 * an optional leader-follower relationship so that the grace-period
 * kthreads don't have to do quite so many wakeups.
P
Paul E. McKenney 已提交
2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197
 */
static int rcu_nocb_kthread(void *arg)
{
	int c, cl;
	struct rcu_head *list;
	struct rcu_head *next;
	struct rcu_head **tail;
	struct rcu_data *rdp = arg;

	/* Each pass through this loop invokes one batch of callbacks */
	for (;;) {
2198 2199 2200 2201 2202 2203 2204
		/* Wait for callbacks. */
		if (rdp->nocb_leader == rdp)
			nocb_leader_wait(rdp);
		else
			nocb_follower_wait(rdp);

		/* Pull the ready-to-invoke callbacks onto local list. */
2205
		list = READ_ONCE(rdp->nocb_follower_head);
2206 2207
		BUG_ON(!list);
		trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, "WokeNonEmpty");
2208
		WRITE_ONCE(rdp->nocb_follower_head, NULL);
2209
		tail = xchg(&rdp->nocb_follower_tail, &rdp->nocb_follower_head);
P
Paul E. McKenney 已提交
2210 2211

		/* Each pass through the following loop invokes a callback. */
2212 2213 2214
		trace_rcu_batch_start(rdp->rsp->name,
				      atomic_long_read(&rdp->nocb_q_count_lazy),
				      atomic_long_read(&rdp->nocb_q_count), -1);
P
Paul E. McKenney 已提交
2215 2216 2217 2218 2219
		c = cl = 0;
		while (list) {
			next = list->next;
			/* Wait for enqueuing to complete, if needed. */
			while (next == NULL && &list->next != tail) {
2220 2221
				trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
						    TPS("WaitQueue"));
P
Paul E. McKenney 已提交
2222
				schedule_timeout_interruptible(1);
2223 2224
				trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
						    TPS("WokeQueue"));
P
Paul E. McKenney 已提交
2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235
				next = list->next;
			}
			debug_rcu_head_unqueue(list);
			local_bh_disable();
			if (__rcu_reclaim(rdp->rsp->name, list))
				cl++;
			c++;
			local_bh_enable();
			list = next;
		}
		trace_rcu_batch_end(rdp->rsp->name, c, !!list, 0, 0, 1);
2236 2237 2238
		smp_mb__before_atomic();  /* _add after CB invocation. */
		atomic_long_add(-c, &rdp->nocb_q_count);
		atomic_long_add(-cl, &rdp->nocb_q_count_lazy);
2239
		rdp->n_nocbs_invoked += c;
P
Paul E. McKenney 已提交
2240 2241 2242 2243
	}
	return 0;
}

2244
/* Is a deferred wakeup of rcu_nocb_kthread() required? */
2245
static int rcu_nocb_need_deferred_wakeup(struct rcu_data *rdp)
2246
{
2247
	return READ_ONCE(rdp->nocb_defer_wakeup);
2248 2249 2250 2251 2252
}

/* Do a deferred wakeup of rcu_nocb_kthread(). */
static void do_nocb_deferred_wakeup(struct rcu_data *rdp)
{
2253 2254
	int ndw;

2255 2256
	if (!rcu_nocb_need_deferred_wakeup(rdp))
		return;
2257 2258
	ndw = READ_ONCE(rdp->nocb_defer_wakeup);
	WRITE_ONCE(rdp->nocb_defer_wakeup, RCU_NOGP_WAKE_NOT);
2259 2260
	wake_nocb_leader(rdp, ndw == RCU_NOGP_WAKE_FORCE);
	trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, TPS("DeferredWake"));
2261 2262
}

2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278
void __init rcu_init_nohz(void)
{
	int cpu;
	bool need_rcu_nocb_mask = true;
	struct rcu_state *rsp;

#ifdef CONFIG_RCU_NOCB_CPU_NONE
	need_rcu_nocb_mask = false;
#endif /* #ifndef CONFIG_RCU_NOCB_CPU_NONE */

#if defined(CONFIG_NO_HZ_FULL)
	if (tick_nohz_full_running && cpumask_weight(tick_nohz_full_mask))
		need_rcu_nocb_mask = true;
#endif /* #if defined(CONFIG_NO_HZ_FULL) */

	if (!have_rcu_nocb_mask && need_rcu_nocb_mask) {
2279 2280 2281 2282
		if (!zalloc_cpumask_var(&rcu_nocb_mask, GFP_KERNEL)) {
			pr_info("rcu_nocb_mask allocation failed, callback offloading disabled.\n");
			return;
		}
2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305
		have_rcu_nocb_mask = true;
	}
	if (!have_rcu_nocb_mask)
		return;

#ifdef CONFIG_RCU_NOCB_CPU_ZERO
	pr_info("\tOffload RCU callbacks from CPU 0\n");
	cpumask_set_cpu(0, rcu_nocb_mask);
#endif /* #ifdef CONFIG_RCU_NOCB_CPU_ZERO */
#ifdef CONFIG_RCU_NOCB_CPU_ALL
	pr_info("\tOffload RCU callbacks from all CPUs\n");
	cpumask_copy(rcu_nocb_mask, cpu_possible_mask);
#endif /* #ifdef CONFIG_RCU_NOCB_CPU_ALL */
#if defined(CONFIG_NO_HZ_FULL)
	if (tick_nohz_full_running)
		cpumask_or(rcu_nocb_mask, rcu_nocb_mask, tick_nohz_full_mask);
#endif /* #if defined(CONFIG_NO_HZ_FULL) */

	if (!cpumask_subset(rcu_nocb_mask, cpu_possible_mask)) {
		pr_info("\tNote: kernel parameter 'rcu_nocbs=' contains nonexistent CPUs.\n");
		cpumask_and(rcu_nocb_mask, cpu_possible_mask,
			    rcu_nocb_mask);
	}
2306 2307
	pr_info("\tOffload RCU callbacks from CPUs: %*pbl.\n",
		cpumask_pr_args(rcu_nocb_mask));
2308 2309 2310 2311
	if (rcu_nocb_poll)
		pr_info("\tPoll for callbacks from no-CBs CPUs.\n");

	for_each_rcu_flavor(rsp) {
2312 2313
		for_each_cpu(cpu, rcu_nocb_mask)
			init_nocb_callback_list(per_cpu_ptr(rsp->rda, cpu));
2314
		rcu_organize_nocb_kthreads(rsp);
2315
	}
2316 2317
}

P
Paul E. McKenney 已提交
2318 2319 2320 2321 2322
/* Initialize per-rcu_data variables for no-CBs CPUs. */
static void __init rcu_boot_init_nocb_percpu_data(struct rcu_data *rdp)
{
	rdp->nocb_tail = &rdp->nocb_head;
	init_waitqueue_head(&rdp->nocb_wq);
2323
	rdp->nocb_follower_tail = &rdp->nocb_follower_head;
P
Paul E. McKenney 已提交
2324 2325
}

2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355
/*
 * If the specified CPU is a no-CBs CPU that does not already have its
 * rcuo kthread for the specified RCU flavor, spawn it.  If the CPUs are
 * brought online out of order, this can require re-organizing the
 * leader-follower relationships.
 */
static void rcu_spawn_one_nocb_kthread(struct rcu_state *rsp, int cpu)
{
	struct rcu_data *rdp;
	struct rcu_data *rdp_last;
	struct rcu_data *rdp_old_leader;
	struct rcu_data *rdp_spawn = per_cpu_ptr(rsp->rda, cpu);
	struct task_struct *t;

	/*
	 * If this isn't a no-CBs CPU or if it already has an rcuo kthread,
	 * then nothing to do.
	 */
	if (!rcu_is_nocb_cpu(cpu) || rdp_spawn->nocb_kthread)
		return;

	/* If we didn't spawn the leader first, reorganize! */
	rdp_old_leader = rdp_spawn->nocb_leader;
	if (rdp_old_leader != rdp_spawn && !rdp_old_leader->nocb_kthread) {
		rdp_last = NULL;
		rdp = rdp_old_leader;
		do {
			rdp->nocb_leader = rdp_spawn;
			if (rdp_last && rdp != rdp_spawn)
				rdp_last->nocb_next_follower = rdp;
2356 2357 2358 2359 2360 2361 2362
			if (rdp == rdp_spawn) {
				rdp = rdp->nocb_next_follower;
			} else {
				rdp_last = rdp;
				rdp = rdp->nocb_next_follower;
				rdp_last->nocb_next_follower = NULL;
			}
2363 2364 2365 2366 2367 2368 2369 2370
		} while (rdp);
		rdp_spawn->nocb_next_follower = rdp_old_leader;
	}

	/* Spawn the kthread for this CPU and RCU flavor. */
	t = kthread_run(rcu_nocb_kthread, rdp_spawn,
			"rcuo%c/%d", rsp->abbr, cpu);
	BUG_ON(IS_ERR(t));
2371
	WRITE_ONCE(rdp_spawn->nocb_kthread, t);
2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400
}

/*
 * If the specified CPU is a no-CBs CPU that does not already have its
 * rcuo kthreads, spawn them.
 */
static void rcu_spawn_all_nocb_kthreads(int cpu)
{
	struct rcu_state *rsp;

	if (rcu_scheduler_fully_active)
		for_each_rcu_flavor(rsp)
			rcu_spawn_one_nocb_kthread(rsp, cpu);
}

/*
 * Once the scheduler is running, spawn rcuo kthreads for all online
 * no-CBs CPUs.  This assumes that the early_initcall()s happen before
 * non-boot CPUs come online -- if this changes, we will need to add
 * some mutual exclusion.
 */
static void __init rcu_spawn_nocb_kthreads(void)
{
	int cpu;

	for_each_online_cpu(cpu)
		rcu_spawn_all_nocb_kthreads(cpu);
}

2401 2402 2403 2404 2405
/* How many follower CPU IDs per leader?  Default of -1 for sqrt(nr_cpu_ids). */
static int rcu_nocb_leader_stride = -1;
module_param(rcu_nocb_leader_stride, int, 0444);

/*
2406
 * Initialize leader-follower relationships for all no-CBs CPU.
2407
 */
2408
static void __init rcu_organize_nocb_kthreads(struct rcu_state *rsp)
P
Paul E. McKenney 已提交
2409 2410
{
	int cpu;
2411 2412
	int ls = rcu_nocb_leader_stride;
	int nl = 0;  /* Next leader. */
P
Paul E. McKenney 已提交
2413
	struct rcu_data *rdp;
2414 2415
	struct rcu_data *rdp_leader = NULL;  /* Suppress misguided gcc warn. */
	struct rcu_data *rdp_prev = NULL;
P
Paul E. McKenney 已提交
2416

2417
	if (!have_rcu_nocb_mask)
P
Paul E. McKenney 已提交
2418
		return;
2419 2420 2421 2422 2423 2424 2425 2426 2427
	if (ls == -1) {
		ls = int_sqrt(nr_cpu_ids);
		rcu_nocb_leader_stride = ls;
	}

	/*
	 * Each pass through this loop sets up one rcu_data structure and
	 * spawns one rcu_nocb_kthread().
	 */
P
Paul E. McKenney 已提交
2428 2429
	for_each_cpu(cpu, rcu_nocb_mask) {
		rdp = per_cpu_ptr(rsp->rda, cpu);
2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440
		if (rdp->cpu >= nl) {
			/* New leader, set up for followers & next leader. */
			nl = DIV_ROUND_UP(rdp->cpu + 1, ls) * ls;
			rdp->nocb_leader = rdp;
			rdp_leader = rdp;
		} else {
			/* Another follower, link to previous leader. */
			rdp->nocb_leader = rdp_leader;
			rdp_prev->nocb_next_follower = rdp;
		}
		rdp_prev = rdp;
P
Paul E. McKenney 已提交
2441 2442 2443 2444
	}
}

/* Prevent __call_rcu() from enqueuing callbacks on no-CBs CPUs */
2445
static bool init_nocb_callback_list(struct rcu_data *rdp)
P
Paul E. McKenney 已提交
2446
{
2447
	if (!rcu_is_nocb_cpu(rdp->cpu))
2448
		return false;
2449

2450 2451 2452 2453 2454 2455 2456 2457 2458 2459
	/* If there are early-boot callbacks, move them to nocb lists. */
	if (rdp->nxtlist) {
		rdp->nocb_head = rdp->nxtlist;
		rdp->nocb_tail = rdp->nxttail[RCU_NEXT_TAIL];
		atomic_long_set(&rdp->nocb_q_count, rdp->qlen);
		atomic_long_set(&rdp->nocb_q_count_lazy, rdp->qlen_lazy);
		rdp->nxtlist = NULL;
		rdp->qlen = 0;
		rdp->qlen_lazy = 0;
	}
P
Paul E. McKenney 已提交
2460
	rdp->nxttail[RCU_NEXT_TAIL] = NULL;
2461
	return true;
P
Paul E. McKenney 已提交
2462 2463
}

2464 2465
#else /* #ifdef CONFIG_RCU_NOCB_CPU */

2466 2467 2468 2469 2470 2471
static bool rcu_nocb_cpu_needs_barrier(struct rcu_state *rsp, int cpu)
{
	WARN_ON_ONCE(1); /* Should be dead code. */
	return false;
}

2472
static void rcu_nocb_gp_cleanup(struct rcu_state *rsp, struct rcu_node *rnp)
P
Paul E. McKenney 已提交
2473 2474 2475
{
}

2476 2477 2478 2479 2480 2481 2482
static void rcu_nocb_gp_set(struct rcu_node *rnp, int nrq)
{
}

static void rcu_init_one_nocb(struct rcu_node *rnp)
{
}
P
Paul E. McKenney 已提交
2483 2484

static bool __call_rcu_nocb(struct rcu_data *rdp, struct rcu_head *rhp,
2485
			    bool lazy, unsigned long flags)
P
Paul E. McKenney 已提交
2486
{
2487
	return false;
P
Paul E. McKenney 已提交
2488 2489 2490
}

static bool __maybe_unused rcu_nocb_adopt_orphan_cbs(struct rcu_state *rsp,
2491 2492
						     struct rcu_data *rdp,
						     unsigned long flags)
P
Paul E. McKenney 已提交
2493
{
2494
	return false;
P
Paul E. McKenney 已提交
2495 2496 2497 2498 2499 2500
}

static void __init rcu_boot_init_nocb_percpu_data(struct rcu_data *rdp)
{
}

2501
static int rcu_nocb_need_deferred_wakeup(struct rcu_data *rdp)
2502 2503 2504 2505 2506 2507 2508 2509
{
	return false;
}

static void do_nocb_deferred_wakeup(struct rcu_data *rdp)
{
}

2510 2511 2512 2513 2514
static void rcu_spawn_all_nocb_kthreads(int cpu)
{
}

static void __init rcu_spawn_nocb_kthreads(void)
P
Paul E. McKenney 已提交
2515 2516 2517
{
}

2518
static bool init_nocb_callback_list(struct rcu_data *rdp)
P
Paul E. McKenney 已提交
2519
{
2520
	return false;
P
Paul E. McKenney 已提交
2521 2522 2523
}

#endif /* #else #ifdef CONFIG_RCU_NOCB_CPU */
2524 2525 2526 2527 2528 2529 2530 2531 2532 2533

/*
 * An adaptive-ticks CPU can potentially execute in kernel mode for an
 * arbitrarily long period of time with the scheduling-clock tick turned
 * off.  RCU will be paying attention to this CPU because it is in the
 * kernel, but the CPU cannot be guaranteed to be executing the RCU state
 * machine because the scheduling-clock tick has been disabled.  Therefore,
 * if an adaptive-ticks CPU is failing to respond to the current grace
 * period and has not be idle from an RCU perspective, kick it.
 */
2534
static void __maybe_unused rcu_kick_nohz_cpu(int cpu)
2535 2536 2537 2538 2539 2540
{
#ifdef CONFIG_NO_HZ_FULL
	if (tick_nohz_full_cpu(cpu))
		smp_send_reschedule(cpu);
#endif /* #ifdef CONFIG_NO_HZ_FULL */
}
2541 2542 2543 2544


#ifdef CONFIG_NO_HZ_FULL_SYSIDLE

2545
static int full_sysidle_state;		/* Current system-idle state. */
2546 2547 2548 2549 2550 2551
#define RCU_SYSIDLE_NOT		0	/* Some CPU is not idle. */
#define RCU_SYSIDLE_SHORT	1	/* All CPUs idle for brief period. */
#define RCU_SYSIDLE_LONG	2	/* All CPUs idle for long enough. */
#define RCU_SYSIDLE_FULL	3	/* All CPUs idle, ready for sysidle. */
#define RCU_SYSIDLE_FULL_NOTED	4	/* Actually entered sysidle state. */

2552 2553 2554 2555 2556 2557
/*
 * Invoked to note exit from irq or task transition to idle.  Note that
 * usermode execution does -not- count as idle here!  After all, we want
 * to detect full-system idle states, not RCU quiescent states and grace
 * periods.  The caller must have disabled interrupts.
 */
2558
static void rcu_sysidle_enter(int irq)
2559 2560
{
	unsigned long j;
2561
	struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
2562

2563 2564 2565 2566
	/* If there are no nohz_full= CPUs, no need to track this. */
	if (!tick_nohz_full_enabled())
		return;

2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585
	/* Adjust nesting, check for fully idle. */
	if (irq) {
		rdtp->dynticks_idle_nesting--;
		WARN_ON_ONCE(rdtp->dynticks_idle_nesting < 0);
		if (rdtp->dynticks_idle_nesting != 0)
			return;  /* Still not fully idle. */
	} else {
		if ((rdtp->dynticks_idle_nesting & DYNTICK_TASK_NEST_MASK) ==
		    DYNTICK_TASK_NEST_VALUE) {
			rdtp->dynticks_idle_nesting = 0;
		} else {
			rdtp->dynticks_idle_nesting -= DYNTICK_TASK_NEST_VALUE;
			WARN_ON_ONCE(rdtp->dynticks_idle_nesting < 0);
			return;  /* Still not fully idle. */
		}
	}

	/* Record start of fully idle period. */
	j = jiffies;
2586
	WRITE_ONCE(rdtp->dynticks_idle_jiffies, j);
2587
	smp_mb__before_atomic();
2588
	atomic_inc(&rdtp->dynticks_idle);
2589
	smp_mb__after_atomic();
2590 2591 2592
	WARN_ON_ONCE(atomic_read(&rdtp->dynticks_idle) & 0x1);
}

2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603
/*
 * Unconditionally force exit from full system-idle state.  This is
 * invoked when a normal CPU exits idle, but must be called separately
 * for the timekeeping CPU (tick_do_timer_cpu).  The reason for this
 * is that the timekeeping CPU is permitted to take scheduling-clock
 * interrupts while the system is in system-idle state, and of course
 * rcu_sysidle_exit() has no way of distinguishing a scheduling-clock
 * interrupt from any other type of interrupt.
 */
void rcu_sysidle_force_exit(void)
{
2604
	int oldstate = READ_ONCE(full_sysidle_state);
2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624
	int newoldstate;

	/*
	 * Each pass through the following loop attempts to exit full
	 * system-idle state.  If contention proves to be a problem,
	 * a trylock-based contention tree could be used here.
	 */
	while (oldstate > RCU_SYSIDLE_SHORT) {
		newoldstate = cmpxchg(&full_sysidle_state,
				      oldstate, RCU_SYSIDLE_NOT);
		if (oldstate == newoldstate &&
		    oldstate == RCU_SYSIDLE_FULL_NOTED) {
			rcu_kick_nohz_cpu(tick_do_timer_cpu);
			return; /* We cleared it, done! */
		}
		oldstate = newoldstate;
	}
	smp_mb(); /* Order initial oldstate fetch vs. later non-idle work. */
}

2625 2626 2627 2628 2629
/*
 * Invoked to note entry to irq or task transition from idle.  Note that
 * usermode execution does -not- count as idle here!  The caller must
 * have disabled interrupts.
 */
2630
static void rcu_sysidle_exit(int irq)
2631
{
2632 2633
	struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);

2634 2635 2636 2637
	/* If there are no nohz_full= CPUs, no need to track this. */
	if (!tick_nohz_full_enabled())
		return;

2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659
	/* Adjust nesting, check for already non-idle. */
	if (irq) {
		rdtp->dynticks_idle_nesting++;
		WARN_ON_ONCE(rdtp->dynticks_idle_nesting <= 0);
		if (rdtp->dynticks_idle_nesting != 1)
			return; /* Already non-idle. */
	} else {
		/*
		 * Allow for irq misnesting.  Yes, it really is possible
		 * to enter an irq handler then never leave it, and maybe
		 * also vice versa.  Handle both possibilities.
		 */
		if (rdtp->dynticks_idle_nesting & DYNTICK_TASK_NEST_MASK) {
			rdtp->dynticks_idle_nesting += DYNTICK_TASK_NEST_VALUE;
			WARN_ON_ONCE(rdtp->dynticks_idle_nesting <= 0);
			return; /* Already non-idle. */
		} else {
			rdtp->dynticks_idle_nesting = DYNTICK_TASK_EXIT_IDLE;
		}
	}

	/* Record end of idle period. */
2660
	smp_mb__before_atomic();
2661
	atomic_inc(&rdtp->dynticks_idle);
2662
	smp_mb__after_atomic();
2663
	WARN_ON_ONCE(!(atomic_read(&rdtp->dynticks_idle) & 0x1));
2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682

	/*
	 * If we are the timekeeping CPU, we are permitted to be non-idle
	 * during a system-idle state.  This must be the case, because
	 * the timekeeping CPU has to take scheduling-clock interrupts
	 * during the time that the system is transitioning to full
	 * system-idle state.  This means that the timekeeping CPU must
	 * invoke rcu_sysidle_force_exit() directly if it does anything
	 * more than take a scheduling-clock interrupt.
	 */
	if (smp_processor_id() == tick_do_timer_cpu)
		return;

	/* Update system-idle state: We are clearly no longer fully idle! */
	rcu_sysidle_force_exit();
}

/*
 * Check to see if the current CPU is idle.  Note that usermode execution
2683 2684
 * does not count as idle.  The caller must have disabled interrupts,
 * and must be running on tick_do_timer_cpu.
2685 2686 2687 2688 2689 2690 2691 2692
 */
static void rcu_sysidle_check_cpu(struct rcu_data *rdp, bool *isidle,
				  unsigned long *maxj)
{
	int cur;
	unsigned long j;
	struct rcu_dynticks *rdtp = rdp->dynticks;

2693 2694 2695 2696
	/* If there are no nohz_full= CPUs, don't check system-wide idleness. */
	if (!tick_nohz_full_enabled())
		return;

2697 2698 2699 2700 2701
	/*
	 * If some other CPU has already reported non-idle, if this is
	 * not the flavor of RCU that tracks sysidle state, or if this
	 * is an offline or the timekeeping CPU, nothing to do.
	 */
2702
	if (!*isidle || rdp->rsp != rcu_state_p ||
2703 2704
	    cpu_is_offline(rdp->cpu) || rdp->cpu == tick_do_timer_cpu)
		return;
2705 2706
	/* Verify affinity of current kthread. */
	WARN_ON_ONCE(smp_processor_id() != tick_do_timer_cpu);
2707 2708 2709 2710 2711 2712 2713 2714 2715 2716

	/* Pick up current idle and NMI-nesting counter and check. */
	cur = atomic_read(&rdtp->dynticks_idle);
	if (cur & 0x1) {
		*isidle = false; /* We are not idle! */
		return;
	}
	smp_mb(); /* Read counters before timestamps. */

	/* Pick up timestamps. */
2717
	j = READ_ONCE(rdtp->dynticks_idle_jiffies);
2718 2719 2720 2721 2722 2723 2724 2725 2726 2727
	/* If this CPU entered idle more recently, update maxj timestamp. */
	if (ULONG_CMP_LT(*maxj, j))
		*maxj = j;
}

/*
 * Is this the flavor of RCU that is handling full-system idle?
 */
static bool is_sysidle_rcu_state(struct rcu_state *rsp)
{
2728
	return rsp == rcu_state_p;
2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753
}

/*
 * Return a delay in jiffies based on the number of CPUs, rcu_node
 * leaf fanout, and jiffies tick rate.  The idea is to allow larger
 * systems more time to transition to full-idle state in order to
 * avoid the cache thrashing that otherwise occur on the state variable.
 * Really small systems (less than a couple of tens of CPUs) should
 * instead use a single global atomically incremented counter, and later
 * versions of this will automatically reconfigure themselves accordingly.
 */
static unsigned long rcu_sysidle_delay(void)
{
	if (nr_cpu_ids <= CONFIG_NO_HZ_FULL_SYSIDLE_SMALL)
		return 0;
	return DIV_ROUND_UP(nr_cpu_ids * HZ, rcu_fanout_leaf * 1000);
}

/*
 * Advance the full-system-idle state.  This is invoked when all of
 * the non-timekeeping CPUs are idle.
 */
static void rcu_sysidle(unsigned long j)
{
	/* Check the current state. */
2754
	switch (READ_ONCE(full_sysidle_state)) {
2755 2756 2757
	case RCU_SYSIDLE_NOT:

		/* First time all are idle, so note a short idle period. */
2758
		WRITE_ONCE(full_sysidle_state, RCU_SYSIDLE_SHORT);
2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794
		break;

	case RCU_SYSIDLE_SHORT:

		/*
		 * Idle for a bit, time to advance to next state?
		 * cmpxchg failure means race with non-idle, let them win.
		 */
		if (ULONG_CMP_GE(jiffies, j + rcu_sysidle_delay()))
			(void)cmpxchg(&full_sysidle_state,
				      RCU_SYSIDLE_SHORT, RCU_SYSIDLE_LONG);
		break;

	case RCU_SYSIDLE_LONG:

		/*
		 * Do an additional check pass before advancing to full.
		 * cmpxchg failure means race with non-idle, let them win.
		 */
		if (ULONG_CMP_GE(jiffies, j + rcu_sysidle_delay()))
			(void)cmpxchg(&full_sysidle_state,
				      RCU_SYSIDLE_LONG, RCU_SYSIDLE_FULL);
		break;

	default:
		break;
	}
}

/*
 * Found a non-idle non-timekeeping CPU, so kick the system-idle state
 * back to the beginning.
 */
static void rcu_sysidle_cancel(void)
{
	smp_mb();
2795
	if (full_sysidle_state > RCU_SYSIDLE_SHORT)
2796
		WRITE_ONCE(full_sysidle_state, RCU_SYSIDLE_NOT);
2797 2798 2799 2800 2801 2802 2803 2804 2805
}

/*
 * Update the sysidle state based on the results of a force-quiescent-state
 * scan of the CPUs' dyntick-idle state.
 */
static void rcu_sysidle_report(struct rcu_state *rsp, int isidle,
			       unsigned long maxj, bool gpkt)
{
2806
	if (rsp != rcu_state_p)
2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822
		return;  /* Wrong flavor, ignore. */
	if (gpkt && nr_cpu_ids <= CONFIG_NO_HZ_FULL_SYSIDLE_SMALL)
		return;  /* Running state machine from timekeeping CPU. */
	if (isidle)
		rcu_sysidle(maxj);    /* More idle! */
	else
		rcu_sysidle_cancel(); /* Idle is over. */
}

/*
 * Wrapper for rcu_sysidle_report() when called from the grace-period
 * kthread's context.
 */
static void rcu_sysidle_report_gp(struct rcu_state *rsp, int isidle,
				  unsigned long maxj)
{
2823 2824 2825 2826
	/* If there are no nohz_full= CPUs, no need to track this. */
	if (!tick_nohz_full_enabled())
		return;

2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847
	rcu_sysidle_report(rsp, isidle, maxj, true);
}

/* Callback and function for forcing an RCU grace period. */
struct rcu_sysidle_head {
	struct rcu_head rh;
	int inuse;
};

static void rcu_sysidle_cb(struct rcu_head *rhp)
{
	struct rcu_sysidle_head *rshp;

	/*
	 * The following memory barrier is needed to replace the
	 * memory barriers that would normally be in the memory
	 * allocator.
	 */
	smp_mb();  /* grace period precedes setting inuse. */

	rshp = container_of(rhp, struct rcu_sysidle_head, rh);
2848
	WRITE_ONCE(rshp->inuse, 0);
2849 2850 2851 2852
}

/*
 * Check to see if the system is fully idle, other than the timekeeping CPU.
2853 2854
 * The caller must have disabled interrupts.  This is not intended to be
 * called unless tick_nohz_full_enabled().
2855 2856 2857 2858
 */
bool rcu_sys_is_idle(void)
{
	static struct rcu_sysidle_head rsh;
2859
	int rss = READ_ONCE(full_sysidle_state);
2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879

	if (WARN_ON_ONCE(smp_processor_id() != tick_do_timer_cpu))
		return false;

	/* Handle small-system case by doing a full scan of CPUs. */
	if (nr_cpu_ids <= CONFIG_NO_HZ_FULL_SYSIDLE_SMALL) {
		int oldrss = rss - 1;

		/*
		 * One pass to advance to each state up to _FULL.
		 * Give up if any pass fails to advance the state.
		 */
		while (rss < RCU_SYSIDLE_FULL && oldrss < rss) {
			int cpu;
			bool isidle = true;
			unsigned long maxj = jiffies - ULONG_MAX / 4;
			struct rcu_data *rdp;

			/* Scan all the CPUs looking for nonidle CPUs. */
			for_each_possible_cpu(cpu) {
2880
				rdp = per_cpu_ptr(rcu_state_p->rda, cpu);
2881 2882 2883 2884
				rcu_sysidle_check_cpu(rdp, &isidle, &maxj);
				if (!isidle)
					break;
			}
2885
			rcu_sysidle_report(rcu_state_p, isidle, maxj, false);
2886
			oldrss = rss;
2887
			rss = READ_ONCE(full_sysidle_state);
2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911
		}
	}

	/* If this is the first observation of an idle period, record it. */
	if (rss == RCU_SYSIDLE_FULL) {
		rss = cmpxchg(&full_sysidle_state,
			      RCU_SYSIDLE_FULL, RCU_SYSIDLE_FULL_NOTED);
		return rss == RCU_SYSIDLE_FULL;
	}

	smp_mb(); /* ensure rss load happens before later caller actions. */

	/* If already fully idle, tell the caller (in case of races). */
	if (rss == RCU_SYSIDLE_FULL_NOTED)
		return true;

	/*
	 * If we aren't there yet, and a grace period is not in flight,
	 * initiate a grace period.  Either way, tell the caller that
	 * we are not there yet.  We use an xchg() rather than an assignment
	 * to make up for the memory barriers that would otherwise be
	 * provided by the memory allocator.
	 */
	if (nr_cpu_ids > CONFIG_NO_HZ_FULL_SYSIDLE_SMALL &&
2912
	    !rcu_gp_in_progress(rcu_state_p) &&
2913 2914 2915
	    !rsh.inuse && xchg(&rsh.inuse, 1) == 0)
		call_rcu(&rsh.rh, rcu_sysidle_cb);
	return false;
2916 2917
}

2918 2919 2920 2921 2922 2923 2924 2925 2926 2927
/*
 * Initialize dynticks sysidle state for CPUs coming online.
 */
static void rcu_sysidle_init_percpu_data(struct rcu_dynticks *rdtp)
{
	rdtp->dynticks_idle_nesting = DYNTICK_TASK_NEST_VALUE;
}

#else /* #ifdef CONFIG_NO_HZ_FULL_SYSIDLE */

2928
static void rcu_sysidle_enter(int irq)
2929 2930 2931
{
}

2932
static void rcu_sysidle_exit(int irq)
2933 2934 2935
{
}

2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950
static void rcu_sysidle_check_cpu(struct rcu_data *rdp, bool *isidle,
				  unsigned long *maxj)
{
}

static bool is_sysidle_rcu_state(struct rcu_state *rsp)
{
	return false;
}

static void rcu_sysidle_report_gp(struct rcu_state *rsp, int isidle,
				  unsigned long maxj)
{
}

2951 2952 2953 2954 2955
static void rcu_sysidle_init_percpu_data(struct rcu_dynticks *rdtp)
{
}

#endif /* #else #ifdef CONFIG_NO_HZ_FULL_SYSIDLE */
2956 2957 2958 2959 2960 2961 2962 2963

/*
 * Is this CPU a NO_HZ_FULL CPU that should ignore RCU so that the
 * grace-period kthread will do force_quiescent_state() processing?
 * The idea is to avoid waking up RCU core processing on such a
 * CPU unless the grace period has extended for too long.
 *
 * This code relies on the fact that all NO_HZ_FULL CPUs are also
2964
 * CONFIG_RCU_NOCB_CPU CPUs.
2965 2966 2967 2968 2969 2970
 */
static bool rcu_nohz_full_cpu(struct rcu_state *rsp)
{
#ifdef CONFIG_NO_HZ_FULL
	if (tick_nohz_full_cpu(smp_processor_id()) &&
	    (!rcu_gp_in_progress(rsp) ||
2971
	     ULONG_CMP_LT(jiffies, READ_ONCE(rsp->gp_start) + HZ)))
2972
		return true;
2973
#endif /* #ifdef CONFIG_NO_HZ_FULL */
2974
	return false;
2975
}
2976 2977 2978 2979 2980 2981 2982

/*
 * Bind the grace-period kthread for the sysidle flavor of RCU to the
 * timekeeping CPU.
 */
static void rcu_bind_gp_kthread(void)
{
2983
	int __maybe_unused cpu;
2984

2985
	if (!tick_nohz_full_enabled())
2986
		return;
2987 2988
#ifdef CONFIG_NO_HZ_FULL_SYSIDLE
	cpu = tick_do_timer_cpu;
2989
	if (cpu >= 0 && cpu < nr_cpu_ids)
2990
		set_cpus_allowed_ptr(current, cpumask_of(cpu));
2991
#else /* #ifdef CONFIG_NO_HZ_FULL_SYSIDLE */
2992
	housekeeping_affine(current);
2993
#endif /* #else #ifdef CONFIG_NO_HZ_FULL_SYSIDLE */
2994
}
2995 2996 2997 2998 2999

/* Record the current task on dyntick-idle entry. */
static void rcu_dynticks_task_enter(void)
{
#if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL)
3000
	WRITE_ONCE(current->rcu_tasks_idle_cpu, smp_processor_id());
3001 3002 3003 3004 3005 3006 3007
#endif /* #if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL) */
}

/* Record no current task on dyntick-idle exit. */
static void rcu_dynticks_task_exit(void)
{
#if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL)
3008
	WRITE_ONCE(current->rcu_tasks_idle_cpu, -1);
3009 3010
#endif /* #if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL) */
}