fw-ohci.c 70.9 KB
Newer Older
1 2
/*
 * Driver for OHCI 1394 controllers
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
 *
 * Copyright (C) 2003-2006 Kristian Hoegsberg <krh@bitplanet.net>
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software Foundation,
 * Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
 */

21
#include <linux/compiler.h>
22
#include <linux/delay.h>
A
Andrew Morton 已提交
23
#include <linux/dma-mapping.h>
S
Stefan Richter 已提交
24
#include <linux/gfp.h>
25 26 27
#include <linux/init.h>
#include <linux/interrupt.h>
#include <linux/kernel.h>
A
Al Viro 已提交
28
#include <linux/mm.h>
29
#include <linux/module.h>
30
#include <linux/moduleparam.h>
31
#include <linux/pci.h>
S
Stefan Richter 已提交
32
#include <linux/spinlock.h>
A
Andrew Morton 已提交
33

S
Stefan Richter 已提交
34
#include <asm/page.h>
35
#include <asm/system.h>
36

37 38 39 40
#ifdef CONFIG_PPC_PMAC
#include <asm/pmac_feature.h>
#endif

41
#include "fw-ohci.h"
42
#include "fw-transaction.h"
43

44 45 46 47 48 49 50 51 52 53 54 55 56
#define DESCRIPTOR_OUTPUT_MORE		0
#define DESCRIPTOR_OUTPUT_LAST		(1 << 12)
#define DESCRIPTOR_INPUT_MORE		(2 << 12)
#define DESCRIPTOR_INPUT_LAST		(3 << 12)
#define DESCRIPTOR_STATUS		(1 << 11)
#define DESCRIPTOR_KEY_IMMEDIATE	(2 << 8)
#define DESCRIPTOR_PING			(1 << 7)
#define DESCRIPTOR_YY			(1 << 6)
#define DESCRIPTOR_NO_IRQ		(0 << 4)
#define DESCRIPTOR_IRQ_ERROR		(1 << 4)
#define DESCRIPTOR_IRQ_ALWAYS		(3 << 4)
#define DESCRIPTOR_BRANCH_ALWAYS	(3 << 2)
#define DESCRIPTOR_WAIT			(3 << 0)
57 58 59 60 61 62 63 64 65 66

struct descriptor {
	__le16 req_count;
	__le16 control;
	__le32 data_address;
	__le32 branch_address;
	__le16 res_count;
	__le16 transfer_status;
} __attribute__((aligned(16)));

67 68 69 70 71 72 73 74 75 76 77 78 79 80
struct db_descriptor {
	__le16 first_size;
	__le16 control;
	__le16 second_req_count;
	__le16 first_req_count;
	__le32 branch_address;
	__le16 second_res_count;
	__le16 first_res_count;
	__le32 reserved0;
	__le32 first_buffer;
	__le32 second_buffer;
	__le32 reserved1;
} __attribute__((aligned(16)));

81 82 83 84
#define CONTROL_SET(regs)	(regs)
#define CONTROL_CLEAR(regs)	((regs) + 4)
#define COMMAND_PTR(regs)	((regs) + 12)
#define CONTEXT_MATCH(regs)	((regs) + 16)
85

86
struct ar_buffer {
87
	struct descriptor descriptor;
88 89 90
	struct ar_buffer *next;
	__le32 data[0];
};
91

92 93 94 95 96
struct ar_context {
	struct fw_ohci *ohci;
	struct ar_buffer *current_buffer;
	struct ar_buffer *last_buffer;
	void *pointer;
97
	u32 regs;
98 99 100
	struct tasklet_struct tasklet;
};

101 102 103 104 105
struct context;

typedef int (*descriptor_callback_t)(struct context *ctx,
				     struct descriptor *d,
				     struct descriptor *last);
106 107 108 109 110 111 112 113 114 115 116 117 118

/*
 * A buffer that contains a block of DMA-able coherent memory used for
 * storing a portion of a DMA descriptor program.
 */
struct descriptor_buffer {
	struct list_head list;
	dma_addr_t buffer_bus;
	size_t buffer_size;
	size_t used;
	struct descriptor buffer[0];
};

119
struct context {
S
Stefan Richter 已提交
120
	struct fw_ohci *ohci;
121
	u32 regs;
122
	int total_allocation;
S
Stefan Richter 已提交
123

124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147
	/*
	 * List of page-sized buffers for storing DMA descriptors.
	 * Head of list contains buffers in use and tail of list contains
	 * free buffers.
	 */
	struct list_head buffer_list;

	/*
	 * Pointer to a buffer inside buffer_list that contains the tail
	 * end of the current DMA program.
	 */
	struct descriptor_buffer *buffer_tail;

	/*
	 * The descriptor containing the branch address of the first
	 * descriptor that has not yet been filled by the device.
	 */
	struct descriptor *last;

	/*
	 * The last descriptor in the DMA program.  It contains the branch
	 * address that must be updated upon appending a new descriptor.
	 */
	struct descriptor *prev;
148 149 150

	descriptor_callback_t callback;

S
Stefan Richter 已提交
151
	struct tasklet_struct tasklet;
152 153
};

154 155 156 157 158 159
#define IT_HEADER_SY(v)          ((v) <<  0)
#define IT_HEADER_TCODE(v)       ((v) <<  4)
#define IT_HEADER_CHANNEL(v)     ((v) <<  8)
#define IT_HEADER_TAG(v)         ((v) << 14)
#define IT_HEADER_SPEED(v)       ((v) << 16)
#define IT_HEADER_DATA_LENGTH(v) ((v) << 16)
160 161 162

struct iso_context {
	struct fw_iso_context base;
163
	struct context context;
164
	int excess_bytes;
165 166
	void *header;
	size_t header_length;
167 168 169 170 171 172 173
};

#define CONFIG_ROM_SIZE 1024

struct fw_ohci {
	struct fw_card card;

174
	u32 version;
175 176 177 178
	__iomem char *registers;
	dma_addr_t self_id_bus;
	__le32 *self_id_cpu;
	struct tasklet_struct bus_reset_tasklet;
179
	int node_id;
180
	int generation;
181
	int request_generation;	/* for timestamping incoming requests */
182
	u32 bus_seconds;
183
	bool old_uninorth;
184
	bool bus_reset_packet_quirk;
185

186 187 188 189
	/*
	 * Spinlock for accessing fw_ohci data.  Never call out of
	 * this driver with this lock held.
	 */
190 191 192 193 194 195 196 197 198 199 200 201
	spinlock_t lock;
	u32 self_id_buffer[512];

	/* Config rom buffers */
	__be32 *config_rom;
	dma_addr_t config_rom_bus;
	__be32 *next_config_rom;
	dma_addr_t next_config_rom_bus;
	u32 next_header;

	struct ar_context ar_request_ctx;
	struct ar_context ar_response_ctx;
202 203
	struct context at_request_ctx;
	struct context at_response_ctx;
204 205 206 207 208 209 210

	u32 it_context_mask;
	struct iso_context *it_context_list;
	u32 ir_context_mask;
	struct iso_context *ir_context_list;
};

A
Adrian Bunk 已提交
211
static inline struct fw_ohci *fw_ohci(struct fw_card *card)
212 213 214 215
{
	return container_of(card, struct fw_ohci, card);
}

216 217 218 219 220 221
#define IT_CONTEXT_CYCLE_MATCH_ENABLE	0x80000000
#define IR_CONTEXT_BUFFER_FILL		0x80000000
#define IR_CONTEXT_ISOCH_HEADER		0x40000000
#define IR_CONTEXT_CYCLE_MATCH_ENABLE	0x20000000
#define IR_CONTEXT_MULTI_CHANNEL_MODE	0x10000000
#define IR_CONTEXT_DUAL_BUFFER_MODE	0x08000000
222 223 224 225 226 227 228 229 230 231 232 233 234 235 236

#define CONTEXT_RUN	0x8000
#define CONTEXT_WAKE	0x1000
#define CONTEXT_DEAD	0x0800
#define CONTEXT_ACTIVE	0x0400

#define OHCI1394_MAX_AT_REQ_RETRIES	0x2
#define OHCI1394_MAX_AT_RESP_RETRIES	0x2
#define OHCI1394_MAX_PHYS_RESP_RETRIES	0x8

#define FW_OHCI_MAJOR			240
#define OHCI1394_REGISTER_SIZE		0x800
#define OHCI_LOOP_COUNT			500
#define OHCI1394_PCI_HCI_Control	0x40
#define SELF_ID_BUF_SIZE		0x800
237
#define OHCI_TCODE_PHY_PACKET		0x0e
238
#define OHCI_VERSION_1_1		0x010010
239

240 241
static char ohci_driver_name[] = KBUILD_MODNAME;

242 243
#ifdef CONFIG_FIREWIRE_OHCI_DEBUG

244
#define OHCI_PARAM_DEBUG_AT_AR		1
245
#define OHCI_PARAM_DEBUG_SELFIDS	2
246 247
#define OHCI_PARAM_DEBUG_IRQS		4
#define OHCI_PARAM_DEBUG_BUSRESETS	8 /* only effective before chip init */
248 249 250 251 252

static int param_debug;
module_param_named(debug, param_debug, int, 0644);
MODULE_PARM_DESC(debug, "Verbose logging (default = 0"
	", AT/AR events = "	__stringify(OHCI_PARAM_DEBUG_AT_AR)
253 254 255
	", self-IDs = "		__stringify(OHCI_PARAM_DEBUG_SELFIDS)
	", IRQs = "		__stringify(OHCI_PARAM_DEBUG_IRQS)
	", busReset events = "	__stringify(OHCI_PARAM_DEBUG_BUSRESETS)
256 257 258 259
	", or a combination, or all = -1)");

static void log_irqs(u32 evt)
{
260 261 262 263 264 265
	if (likely(!(param_debug &
			(OHCI_PARAM_DEBUG_IRQS | OHCI_PARAM_DEBUG_BUSRESETS))))
		return;

	if (!(param_debug & OHCI_PARAM_DEBUG_IRQS) &&
	    !(evt & OHCI1394_busReset))
266 267
		return;

268 269
	printk(KERN_DEBUG KBUILD_MODNAME ": IRQ "
	       "%08x%s%s%s%s%s%s%s%s%s%s%s%s%s\n",
270 271 272 273 274 275 276 277 278 279 280
	       evt,
	       evt & OHCI1394_selfIDComplete	? " selfID"		: "",
	       evt & OHCI1394_RQPkt		? " AR_req"		: "",
	       evt & OHCI1394_RSPkt		? " AR_resp"		: "",
	       evt & OHCI1394_reqTxComplete	? " AT_req"		: "",
	       evt & OHCI1394_respTxComplete	? " AT_resp"		: "",
	       evt & OHCI1394_isochRx		? " IR"			: "",
	       evt & OHCI1394_isochTx		? " IT"			: "",
	       evt & OHCI1394_postedWriteErr	? " postedWriteErr"	: "",
	       evt & OHCI1394_cycleTooLong	? " cycleTooLong"	: "",
	       evt & OHCI1394_cycle64Seconds	? " cycle64Seconds"	: "",
281
	       evt & OHCI1394_regAccessFail	? " regAccessFail"	: "",
282
	       evt & OHCI1394_busReset		? " busReset"		: "",
283 284 285 286
	       evt & ~(OHCI1394_selfIDComplete | OHCI1394_RQPkt |
		       OHCI1394_RSPkt | OHCI1394_reqTxComplete |
		       OHCI1394_respTxComplete | OHCI1394_isochRx |
		       OHCI1394_isochTx | OHCI1394_postedWriteErr |
287
		       OHCI1394_cycleTooLong | OHCI1394_cycle64Seconds |
288
		       OHCI1394_regAccessFail | OHCI1394_busReset)
289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305
						? " ?"			: "");
}

static const char *speed[] = {
	[0] = "S100", [1] = "S200", [2] = "S400",    [3] = "beta",
};
static const char *power[] = {
	[0] = "+0W",  [1] = "+15W", [2] = "+30W",    [3] = "+45W",
	[4] = "-3W",  [5] = " ?W",  [6] = "-3..-6W", [7] = "-3..-10W",
};
static const char port[] = { '.', '-', 'p', 'c', };

static char _p(u32 *s, int shift)
{
	return port[*s >> shift & 3];
}

306
static void log_selfids(int node_id, int generation, int self_id_count, u32 *s)
307 308 309 310
{
	if (likely(!(param_debug & OHCI_PARAM_DEBUG_SELFIDS)))
		return;

311 312
	printk(KERN_DEBUG KBUILD_MODNAME ": %d selfIDs, generation %d, "
	       "local node ID %04x\n", self_id_count, generation, node_id);
313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374

	for (; self_id_count--; ++s)
		if ((*s & 1 << 23) == 0)
			printk(KERN_DEBUG "selfID 0: %08x, phy %d [%c%c%c] "
			       "%s gc=%d %s %s%s%s\n",
			       *s, *s >> 24 & 63, _p(s, 6), _p(s, 4), _p(s, 2),
			       speed[*s >> 14 & 3], *s >> 16 & 63,
			       power[*s >> 8 & 7], *s >> 22 & 1 ? "L" : "",
			       *s >> 11 & 1 ? "c" : "", *s & 2 ? "i" : "");
		else
			printk(KERN_DEBUG "selfID n: %08x, phy %d "
			       "[%c%c%c%c%c%c%c%c]\n",
			       *s, *s >> 24 & 63,
			       _p(s, 16), _p(s, 14), _p(s, 12), _p(s, 10),
			       _p(s,  8), _p(s,  6), _p(s,  4), _p(s,  2));
}

static const char *evts[] = {
	[0x00] = "evt_no_status",	[0x01] = "-reserved-",
	[0x02] = "evt_long_packet",	[0x03] = "evt_missing_ack",
	[0x04] = "evt_underrun",	[0x05] = "evt_overrun",
	[0x06] = "evt_descriptor_read",	[0x07] = "evt_data_read",
	[0x08] = "evt_data_write",	[0x09] = "evt_bus_reset",
	[0x0a] = "evt_timeout",		[0x0b] = "evt_tcode_err",
	[0x0c] = "-reserved-",		[0x0d] = "-reserved-",
	[0x0e] = "evt_unknown",		[0x0f] = "evt_flushed",
	[0x10] = "-reserved-",		[0x11] = "ack_complete",
	[0x12] = "ack_pending ",	[0x13] = "-reserved-",
	[0x14] = "ack_busy_X",		[0x15] = "ack_busy_A",
	[0x16] = "ack_busy_B",		[0x17] = "-reserved-",
	[0x18] = "-reserved-",		[0x19] = "-reserved-",
	[0x1a] = "-reserved-",		[0x1b] = "ack_tardy",
	[0x1c] = "-reserved-",		[0x1d] = "ack_data_error",
	[0x1e] = "ack_type_error",	[0x1f] = "-reserved-",
	[0x20] = "pending/cancelled",
};
static const char *tcodes[] = {
	[0x0] = "QW req",		[0x1] = "BW req",
	[0x2] = "W resp",		[0x3] = "-reserved-",
	[0x4] = "QR req",		[0x5] = "BR req",
	[0x6] = "QR resp",		[0x7] = "BR resp",
	[0x8] = "cycle start",		[0x9] = "Lk req",
	[0xa] = "async stream packet",	[0xb] = "Lk resp",
	[0xc] = "-reserved-",		[0xd] = "-reserved-",
	[0xe] = "link internal",	[0xf] = "-reserved-",
};
static const char *phys[] = {
	[0x0] = "phy config packet",	[0x1] = "link-on packet",
	[0x2] = "self-id packet",	[0x3] = "-reserved-",
};

static void log_ar_at_event(char dir, int speed, u32 *header, int evt)
{
	int tcode = header[0] >> 4 & 0xf;
	char specific[12];

	if (likely(!(param_debug & OHCI_PARAM_DEBUG_AT_AR)))
		return;

	if (unlikely(evt >= ARRAY_SIZE(evts)))
			evt = 0x1f;

375 376 377 378 379 380
	if (evt == OHCI1394_evt_bus_reset) {
		printk(KERN_DEBUG "A%c evt_bus_reset, generation %d\n",
		       dir, (header[2] >> 16) & 0xff);
		return;
	}

381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426
	if (header[0] == ~header[1]) {
		printk(KERN_DEBUG "A%c %s, %s, %08x\n",
		       dir, evts[evt], phys[header[0] >> 30 & 0x3],
		       header[0]);
		return;
	}

	switch (tcode) {
	case 0x0: case 0x6: case 0x8:
		snprintf(specific, sizeof(specific), " = %08x",
			 be32_to_cpu((__force __be32)header[3]));
		break;
	case 0x1: case 0x5: case 0x7: case 0x9: case 0xb:
		snprintf(specific, sizeof(specific), " %x,%x",
			 header[3] >> 16, header[3] & 0xffff);
		break;
	default:
		specific[0] = '\0';
	}

	switch (tcode) {
	case 0xe: case 0xa:
		printk(KERN_DEBUG "A%c %s, %s\n",
		       dir, evts[evt], tcodes[tcode]);
		break;
	case 0x0: case 0x1: case 0x4: case 0x5: case 0x9:
		printk(KERN_DEBUG "A%c spd %x tl %02x, "
		       "%04x -> %04x, %s, "
		       "%s, %04x%08x%s\n",
		       dir, speed, header[0] >> 10 & 0x3f,
		       header[1] >> 16, header[0] >> 16, evts[evt],
		       tcodes[tcode], header[1] & 0xffff, header[2], specific);
		break;
	default:
		printk(KERN_DEBUG "A%c spd %x tl %02x, "
		       "%04x -> %04x, %s, "
		       "%s%s\n",
		       dir, speed, header[0] >> 10 & 0x3f,
		       header[1] >> 16, header[0] >> 16, evts[evt],
		       tcodes[tcode], specific);
	}
}

#else

#define log_irqs(evt)
427
#define log_selfids(node_id, generation, self_id_count, sid)
428 429 430 431
#define log_ar_at_event(dir, speed, header, evt)

#endif /* CONFIG_FIREWIRE_OHCI_DEBUG */

A
Adrian Bunk 已提交
432
static inline void reg_write(const struct fw_ohci *ohci, int offset, u32 data)
433 434 435 436
{
	writel(data, ohci->registers + offset);
}

A
Adrian Bunk 已提交
437
static inline u32 reg_read(const struct fw_ohci *ohci, int offset)
438 439 440 441
{
	return readl(ohci->registers + offset);
}

A
Adrian Bunk 已提交
442
static inline void flush_writes(const struct fw_ohci *ohci)
443 444 445 446 447 448 449 450 451 452 453 454 455
{
	/* Do a dummy read to flush writes. */
	reg_read(ohci, OHCI1394_Version);
}

static int
ohci_update_phy_reg(struct fw_card *card, int addr,
		    int clear_bits, int set_bits)
{
	struct fw_ohci *ohci = fw_ohci(card);
	u32 val, old;

	reg_write(ohci, OHCI1394_PhyControl, OHCI1394_PhyControl_Read(addr));
456
	flush_writes(ohci);
457 458 459 460 461 462 463 464 465 466 467 468 469 470 471
	msleep(2);
	val = reg_read(ohci, OHCI1394_PhyControl);
	if ((val & OHCI1394_PhyControl_ReadDone) == 0) {
		fw_error("failed to set phy reg bits.\n");
		return -EBUSY;
	}

	old = OHCI1394_PhyControl_ReadData(val);
	old = (old & ~clear_bits) | set_bits;
	reg_write(ohci, OHCI1394_PhyControl,
		  OHCI1394_PhyControl_Write(addr, old));

	return 0;
}

472
static int ar_context_add_page(struct ar_context *ctx)
473
{
474 475
	struct device *dev = ctx->ohci->card.device;
	struct ar_buffer *ab;
476
	dma_addr_t uninitialized_var(ab_bus);
477 478
	size_t offset;

479
	ab = dma_alloc_coherent(dev, PAGE_SIZE, &ab_bus, GFP_ATOMIC);
480 481 482
	if (ab == NULL)
		return -ENOMEM;

483
	memset(&ab->descriptor, 0, sizeof(ab->descriptor));
484 485 486
	ab->descriptor.control        = cpu_to_le16(DESCRIPTOR_INPUT_MORE |
						    DESCRIPTOR_STATUS |
						    DESCRIPTOR_BRANCH_ALWAYS);
487 488 489 490 491 492
	offset = offsetof(struct ar_buffer, data);
	ab->descriptor.req_count      = cpu_to_le16(PAGE_SIZE - offset);
	ab->descriptor.data_address   = cpu_to_le32(ab_bus + offset);
	ab->descriptor.res_count      = cpu_to_le16(PAGE_SIZE - offset);
	ab->descriptor.branch_address = 0;

493
	ctx->last_buffer->descriptor.branch_address = cpu_to_le32(ab_bus | 1);
494 495 496
	ctx->last_buffer->next = ab;
	ctx->last_buffer = ab;

497
	reg_write(ctx->ohci, CONTROL_SET(ctx->regs), CONTEXT_WAKE);
498
	flush_writes(ctx->ohci);
499 500

	return 0;
501 502
}

503 504 505 506 507 508 509
#if defined(CONFIG_PPC_PMAC) && defined(CONFIG_PPC32)
#define cond_le32_to_cpu(v) \
	(ohci->old_uninorth ? (__force __u32)(v) : le32_to_cpu(v))
#else
#define cond_le32_to_cpu(v) le32_to_cpu(v)
#endif

510
static __le32 *handle_ar_packet(struct ar_context *ctx, __le32 *buffer)
511 512
{
	struct fw_ohci *ohci = ctx->ohci;
513 514
	struct fw_packet p;
	u32 status, length, tcode;
515
	int evt;
516

517 518 519
	p.header[0] = cond_le32_to_cpu(buffer[0]);
	p.header[1] = cond_le32_to_cpu(buffer[1]);
	p.header[2] = cond_le32_to_cpu(buffer[2]);
520 521 522 523 524

	tcode = (p.header[0] >> 4) & 0x0f;
	switch (tcode) {
	case TCODE_WRITE_QUADLET_REQUEST:
	case TCODE_READ_QUADLET_RESPONSE:
525
		p.header[3] = (__force __u32) buffer[3];
526
		p.header_length = 16;
527
		p.payload_length = 0;
528 529 530
		break;

	case TCODE_READ_BLOCK_REQUEST :
531
		p.header[3] = cond_le32_to_cpu(buffer[3]);
532 533 534 535 536
		p.header_length = 16;
		p.payload_length = 0;
		break;

	case TCODE_WRITE_BLOCK_REQUEST:
537 538 539
	case TCODE_READ_BLOCK_RESPONSE:
	case TCODE_LOCK_REQUEST:
	case TCODE_LOCK_RESPONSE:
540
		p.header[3] = cond_le32_to_cpu(buffer[3]);
541
		p.header_length = 16;
542
		p.payload_length = p.header[3] >> 16;
543 544 545 546
		break;

	case TCODE_WRITE_RESPONSE:
	case TCODE_READ_QUADLET_REQUEST:
547
	case OHCI_TCODE_PHY_PACKET:
548
		p.header_length = 12;
549
		p.payload_length = 0;
550
		break;
551 552 553 554 555

	default:
		/* FIXME: Stop context, discard everything, and restart? */
		p.header_length = 0;
		p.payload_length = 0;
556
	}
557

558 559 560 561
	p.payload = (void *) buffer + p.header_length;

	/* FIXME: What to do about evt_* errors? */
	length = (p.header_length + p.payload_length + 3) / 4;
562
	status = cond_le32_to_cpu(buffer[length]);
563
	evt    = (status >> 16) & 0x1f;
564

565
	p.ack        = evt - 16;
566 567 568
	p.speed      = (status >> 21) & 0x7;
	p.timestamp  = status & 0xffff;
	p.generation = ohci->request_generation;
569

570
	log_ar_at_event('R', p.speed, p.header, evt);
571

572 573
	/*
	 * The OHCI bus reset handler synthesizes a phy packet with
574 575 576 577 578
	 * the new generation number when a bus reset happens (see
	 * section 8.4.2.3).  This helps us determine when a request
	 * was received and make sure we send the response in the same
	 * generation.  We only need this for requests; for responses
	 * we use the unique tlabel for finding the matching
579
	 * request.
580 581 582 583
	 *
	 * Alas some chips sometimes emit bus reset packets with a
	 * wrong generation.  We set the correct generation for these
	 * at a slightly incorrect time (in bus_reset_tasklet).
584
	 */
585 586 587 588
	if (evt == OHCI1394_evt_bus_reset) {
		if (!ohci->bus_reset_packet_quirk)
			ohci->request_generation = (p.header[2] >> 16) & 0xff;
	} else if (ctx == &ohci->ar_request_ctx) {
589
		fw_core_handle_request(&ohci->card, &p);
590
	} else {
591
		fw_core_handle_response(&ohci->card, &p);
592
	}
593

594 595
	return buffer + length + 1;
}
596

597 598 599 600 601 602 603 604 605 606 607 608 609
static void ar_context_tasklet(unsigned long data)
{
	struct ar_context *ctx = (struct ar_context *)data;
	struct fw_ohci *ohci = ctx->ohci;
	struct ar_buffer *ab;
	struct descriptor *d;
	void *buffer, *end;

	ab = ctx->current_buffer;
	d = &ab->descriptor;

	if (d->res_count == 0) {
		size_t size, rest, offset;
610 611
		dma_addr_t start_bus;
		void *start;
612

613 614
		/*
		 * This descriptor is finished and we may have a
615
		 * packet split across this and the next buffer. We
616 617
		 * reuse the page for reassembling the split packet.
		 */
618 619

		offset = offsetof(struct ar_buffer, data);
620 621
		start = buffer = ab;
		start_bus = le32_to_cpu(ab->descriptor.data_address) - offset;
622 623 624 625 626 627 628 629 630 631 632 633 634 635

		ab = ab->next;
		d = &ab->descriptor;
		size = buffer + PAGE_SIZE - ctx->pointer;
		rest = le16_to_cpu(d->req_count) - le16_to_cpu(d->res_count);
		memmove(buffer, ctx->pointer, size);
		memcpy(buffer + size, ab->data, rest);
		ctx->current_buffer = ab;
		ctx->pointer = (void *) ab->data + rest;
		end = buffer + size + rest;

		while (buffer < end)
			buffer = handle_ar_packet(ctx, buffer);

636
		dma_free_coherent(ohci->card.device, PAGE_SIZE,
637
				  start, start_bus);
638 639 640 641 642 643 644 645 646
		ar_context_add_page(ctx);
	} else {
		buffer = ctx->pointer;
		ctx->pointer = end =
			(void *) ab + PAGE_SIZE - le16_to_cpu(d->res_count);

		while (buffer < end)
			buffer = handle_ar_packet(ctx, buffer);
	}
647 648 649
}

static int
650
ar_context_init(struct ar_context *ctx, struct fw_ohci *ohci, u32 regs)
651
{
652
	struct ar_buffer ab;
653

654 655 656
	ctx->regs        = regs;
	ctx->ohci        = ohci;
	ctx->last_buffer = &ab;
657 658
	tasklet_init(&ctx->tasklet, ar_context_tasklet, (unsigned long)ctx);

659 660 661 662 663
	ar_context_add_page(ctx);
	ar_context_add_page(ctx);
	ctx->current_buffer = ab.next;
	ctx->pointer = ctx->current_buffer->data;

664 665 666 667 668 669 670 671 672 673
	return 0;
}

static void ar_context_run(struct ar_context *ctx)
{
	struct ar_buffer *ab = ctx->current_buffer;
	dma_addr_t ab_bus;
	size_t offset;

	offset = offsetof(struct ar_buffer, data);
674
	ab_bus = le32_to_cpu(ab->descriptor.data_address) - offset;
675 676

	reg_write(ctx->ohci, COMMAND_PTR(ctx->regs), ab_bus | 1);
677
	reg_write(ctx->ohci, CONTROL_SET(ctx->regs), CONTEXT_RUN);
678
	flush_writes(ctx->ohci);
679
}
S
Stefan Richter 已提交
680

681 682 683 684 685 686 687 688 689 690 691 692 693 694 695
static struct descriptor *
find_branch_descriptor(struct descriptor *d, int z)
{
	int b, key;

	b   = (le16_to_cpu(d->control) & DESCRIPTOR_BRANCH_ALWAYS) >> 2;
	key = (le16_to_cpu(d->control) & DESCRIPTOR_KEY_IMMEDIATE) >> 8;

	/* figure out which descriptor the branch address goes in */
	if (z == 2 && (b == 3 || key == 2))
		return d;
	else
		return d + z - 1;
}

696 697 698 699 700 701
static void context_tasklet(unsigned long data)
{
	struct context *ctx = (struct context *) data;
	struct descriptor *d, *last;
	u32 address;
	int z;
702
	struct descriptor_buffer *desc;
703

704 705 706
	desc = list_entry(ctx->buffer_list.next,
			struct descriptor_buffer, list);
	last = ctx->last;
707
	while (last->branch_address != 0) {
708
		struct descriptor_buffer *old_desc = desc;
709 710
		address = le32_to_cpu(last->branch_address);
		z = address & 0xf;
711 712 713 714 715 716 717 718 719
		address &= ~0xf;

		/* If the branch address points to a buffer outside of the
		 * current buffer, advance to the next buffer. */
		if (address < desc->buffer_bus ||
				address >= desc->buffer_bus + desc->used)
			desc = list_entry(desc->list.next,
					struct descriptor_buffer, list);
		d = desc->buffer + (address - desc->buffer_bus) / sizeof(*d);
720
		last = find_branch_descriptor(d, z);
721 722 723 724

		if (!ctx->callback(ctx, d, last))
			break;

725 726 727 728 729 730 731 732 733 734
		if (old_desc != desc) {
			/* If we've advanced to the next buffer, move the
			 * previous buffer to the free list. */
			unsigned long flags;
			old_desc->used = 0;
			spin_lock_irqsave(&ctx->ohci->lock, flags);
			list_move_tail(&old_desc->list, &ctx->buffer_list);
			spin_unlock_irqrestore(&ctx->ohci->lock, flags);
		}
		ctx->last = last;
735 736 737
	}
}

738 739 740 741 742 743 744 745
/*
 * Allocate a new buffer and add it to the list of free buffers for this
 * context.  Must be called with ohci->lock held.
 */
static int
context_add_buffer(struct context *ctx)
{
	struct descriptor_buffer *desc;
746
	dma_addr_t uninitialized_var(bus_addr);
747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771
	int offset;

	/*
	 * 16MB of descriptors should be far more than enough for any DMA
	 * program.  This will catch run-away userspace or DoS attacks.
	 */
	if (ctx->total_allocation >= 16*1024*1024)
		return -ENOMEM;

	desc = dma_alloc_coherent(ctx->ohci->card.device, PAGE_SIZE,
			&bus_addr, GFP_ATOMIC);
	if (!desc)
		return -ENOMEM;

	offset = (void *)&desc->buffer - (void *)desc;
	desc->buffer_size = PAGE_SIZE - offset;
	desc->buffer_bus = bus_addr + offset;
	desc->used = 0;

	list_add_tail(&desc->list, &ctx->buffer_list);
	ctx->total_allocation += PAGE_SIZE;

	return 0;
}

772 773
static int
context_init(struct context *ctx, struct fw_ohci *ohci,
774
	     u32 regs, descriptor_callback_t callback)
775 776 777
{
	ctx->ohci = ohci;
	ctx->regs = regs;
778 779 780 781
	ctx->total_allocation = 0;

	INIT_LIST_HEAD(&ctx->buffer_list);
	if (context_add_buffer(ctx) < 0)
782 783
		return -ENOMEM;

784 785 786
	ctx->buffer_tail = list_entry(ctx->buffer_list.next,
			struct descriptor_buffer, list);

787 788 789
	tasklet_init(&ctx->tasklet, context_tasklet, (unsigned long)ctx);
	ctx->callback = callback;

790 791
	/*
	 * We put a dummy descriptor in the buffer that has a NULL
792
	 * branch address and looks like it's been sent.  That way we
793
	 * have a descriptor to append DMA programs to.
794
	 */
795 796 797 798 799 800
	memset(ctx->buffer_tail->buffer, 0, sizeof(*ctx->buffer_tail->buffer));
	ctx->buffer_tail->buffer->control = cpu_to_le16(DESCRIPTOR_OUTPUT_LAST);
	ctx->buffer_tail->buffer->transfer_status = cpu_to_le16(0x8011);
	ctx->buffer_tail->used += sizeof(*ctx->buffer_tail->buffer);
	ctx->last = ctx->buffer_tail->buffer;
	ctx->prev = ctx->buffer_tail->buffer;
801 802 803 804

	return 0;
}

805
static void
806 807 808
context_release(struct context *ctx)
{
	struct fw_card *card = &ctx->ohci->card;
809
	struct descriptor_buffer *desc, *tmp;
810

811 812 813 814
	list_for_each_entry_safe(desc, tmp, &ctx->buffer_list, list)
		dma_free_coherent(card->device, PAGE_SIZE, desc,
			desc->buffer_bus -
			((void *)&desc->buffer - (void *)desc));
815 816
}

817
/* Must be called with ohci->lock held */
818 819 820
static struct descriptor *
context_get_descriptors(struct context *ctx, int z, dma_addr_t *d_bus)
{
821 822 823 824 825 826 827 828 829
	struct descriptor *d = NULL;
	struct descriptor_buffer *desc = ctx->buffer_tail;

	if (z * sizeof(*d) > desc->buffer_size)
		return NULL;

	if (z * sizeof(*d) > desc->buffer_size - desc->used) {
		/* No room for the descriptor in this buffer, so advance to the
		 * next one. */
830

831 832 833 834 835 836 837 838 839 840
		if (desc->list.next == &ctx->buffer_list) {
			/* If there is no free buffer next in the list,
			 * allocate one. */
			if (context_add_buffer(ctx) < 0)
				return NULL;
		}
		desc = list_entry(desc->list.next,
				struct descriptor_buffer, list);
		ctx->buffer_tail = desc;
	}
841

842
	d = desc->buffer + desc->used / sizeof(*d);
843
	memset(d, 0, z * sizeof(*d));
844
	*d_bus = desc->buffer_bus + desc->used;
845 846 847 848

	return d;
}

849
static void context_run(struct context *ctx, u32 extra)
850 851 852
{
	struct fw_ohci *ohci = ctx->ohci;

853
	reg_write(ohci, COMMAND_PTR(ctx->regs),
854
		  le32_to_cpu(ctx->last->branch_address));
855 856
	reg_write(ohci, CONTROL_CLEAR(ctx->regs), ~0);
	reg_write(ohci, CONTROL_SET(ctx->regs), CONTEXT_RUN | extra);
857 858 859 860 861 862 863
	flush_writes(ohci);
}

static void context_append(struct context *ctx,
			   struct descriptor *d, int z, int extra)
{
	dma_addr_t d_bus;
864
	struct descriptor_buffer *desc = ctx->buffer_tail;
865

866
	d_bus = desc->buffer_bus + (d - desc->buffer) * sizeof(*d);
867

868 869 870
	desc->used += (z + extra) * sizeof(*d);
	ctx->prev->branch_address = cpu_to_le32(d_bus | z);
	ctx->prev = find_branch_descriptor(d, z);
871

872
	reg_write(ctx->ohci, CONTROL_SET(ctx->regs), CONTEXT_WAKE);
873 874 875 876 877 878
	flush_writes(ctx->ohci);
}

static void context_stop(struct context *ctx)
{
	u32 reg;
879
	int i;
880

881
	reg_write(ctx->ohci, CONTROL_CLEAR(ctx->regs), CONTEXT_RUN);
882
	flush_writes(ctx->ohci);
883

884
	for (i = 0; i < 10; i++) {
885
		reg = reg_read(ctx->ohci, CONTROL_SET(ctx->regs));
886 887 888 889
		if ((reg & CONTEXT_ACTIVE) == 0)
			break;

		fw_notify("context_stop: still active (0x%08x)\n", reg);
890
		mdelay(1);
891
	}
892
}
893

894 895 896
struct driver_data {
	struct fw_packet *packet;
};
897

898 899
/*
 * This function apppends a packet to the DMA queue for transmission.
900
 * Must always be called with the ochi->lock held to ensure proper
901 902
 * generation handling and locking around packet queue manipulation.
 */
903 904
static int
at_context_queue_packet(struct context *ctx, struct fw_packet *packet)
905 906
{
	struct fw_ohci *ohci = ctx->ohci;
907
	dma_addr_t d_bus, uninitialized_var(payload_bus);
908 909 910
	struct driver_data *driver_data;
	struct descriptor *d, *last;
	__le32 *header;
911
	int z, tcode;
912
	u32 reg;
913

914 915 916 917
	d = context_get_descriptors(ctx, 4, &d_bus);
	if (d == NULL) {
		packet->ack = RCODE_SEND_ERROR;
		return -1;
918 919
	}

920
	d[0].control   = cpu_to_le16(DESCRIPTOR_KEY_IMMEDIATE);
921 922
	d[0].res_count = cpu_to_le16(packet->timestamp);

923 924
	/*
	 * The DMA format for asyncronous link packets is different
925 926
	 * from the IEEE1394 layout, so shift the fields around
	 * accordingly.  If header_length is 8, it's a PHY packet, to
927 928
	 * which we need to prepend an extra quadlet.
	 */
929 930

	header = (__le32 *) &d[1];
931
	if (packet->header_length > 8) {
932 933 934 935 936
		header[0] = cpu_to_le32((packet->header[0] & 0xffff) |
					(packet->speed << 16));
		header[1] = cpu_to_le32((packet->header[1] & 0xffff) |
					(packet->header[0] & 0xffff0000));
		header[2] = cpu_to_le32(packet->header[2]);
937 938 939

		tcode = (packet->header[0] >> 4) & 0x0f;
		if (TCODE_IS_BLOCK_PACKET(tcode))
940
			header[3] = cpu_to_le32(packet->header[3]);
941
		else
942 943 944
			header[3] = (__force __le32) packet->header[3];

		d[0].req_count = cpu_to_le16(packet->header_length);
945
	} else {
946 947 948 949 950
		header[0] = cpu_to_le32((OHCI1394_phy_tcode << 4) |
					(packet->speed << 16));
		header[1] = cpu_to_le32(packet->header[0]);
		header[2] = cpu_to_le32(packet->header[1]);
		d[0].req_count = cpu_to_le16(12);
951 952
	}

953 954
	driver_data = (struct driver_data *) &d[3];
	driver_data->packet = packet;
955
	packet->driver_data = driver_data;
956

957 958 959 960 961 962 963 964 965 966 967 968 969
	if (packet->payload_length > 0) {
		payload_bus =
			dma_map_single(ohci->card.device, packet->payload,
				       packet->payload_length, DMA_TO_DEVICE);
		if (dma_mapping_error(payload_bus)) {
			packet->ack = RCODE_SEND_ERROR;
			return -1;
		}

		d[2].req_count    = cpu_to_le16(packet->payload_length);
		d[2].data_address = cpu_to_le32(payload_bus);
		last = &d[2];
		z = 3;
970
	} else {
971 972
		last = &d[0];
		z = 2;
973 974
	}

975 976 977
	last->control |= cpu_to_le16(DESCRIPTOR_OUTPUT_LAST |
				     DESCRIPTOR_IRQ_ALWAYS |
				     DESCRIPTOR_BRANCH_ALWAYS);
978

979 980 981 982 983 984 985 986 987 988 989 990 991
	/*
	 * If the controller and packet generations don't match, we need to
	 * bail out and try again.  If IntEvent.busReset is set, the AT context
	 * is halted, so appending to the context and trying to run it is
	 * futile.  Most controllers do the right thing and just flush the AT
	 * queue (per section 7.2.3.2 of the OHCI 1.1 specification), but
	 * some controllers (like a JMicron JMB381 PCI-e) misbehave and wind
	 * up stalling out.  So we just bail out in software and try again
	 * later, and everyone is happy.
	 * FIXME: Document how the locking works.
	 */
	if (ohci->generation != packet->generation ||
	    reg_read(ohci, OHCI1394_IntEventSet) & OHCI1394_busReset) {
992 993 994
		if (packet->payload_length > 0)
			dma_unmap_single(ohci->card.device, payload_bus,
					 packet->payload_length, DMA_TO_DEVICE);
995 996 997 998 999
		packet->ack = RCODE_GENERATION;
		return -1;
	}

	context_append(ctx, d, z, 4 - z);
1000

1001
	/* If the context isn't already running, start it up. */
1002
	reg = reg_read(ctx->ohci, CONTROL_SET(ctx->regs));
1003
	if ((reg & CONTEXT_RUN) == 0)
1004 1005 1006
		context_run(ctx, 0);

	return 0;
1007 1008
}

1009 1010 1011
static int handle_at_packet(struct context *context,
			    struct descriptor *d,
			    struct descriptor *last)
1012
{
1013
	struct driver_data *driver_data;
1014
	struct fw_packet *packet;
1015 1016
	struct fw_ohci *ohci = context->ohci;
	dma_addr_t payload_bus;
1017 1018
	int evt;

1019 1020 1021
	if (last->transfer_status == 0)
		/* This descriptor isn't done yet, stop iteration. */
		return 0;
1022

1023 1024 1025 1026 1027
	driver_data = (struct driver_data *) &d[3];
	packet = driver_data->packet;
	if (packet == NULL)
		/* This packet was cancelled, just continue. */
		return 1;
1028

1029 1030 1031
	payload_bus = le32_to_cpu(last->data_address);
	if (payload_bus != 0)
		dma_unmap_single(ohci->card.device, payload_bus,
1032 1033
				 packet->payload_length, DMA_TO_DEVICE);

1034 1035
	evt = le16_to_cpu(last->transfer_status) & 0x1f;
	packet->timestamp = le16_to_cpu(last->res_count);
1036

1037 1038
	log_ar_at_event('T', packet->speed, packet->header, evt);

1039 1040 1041 1042 1043
	switch (evt) {
	case OHCI1394_evt_timeout:
		/* Async response transmit timed out. */
		packet->ack = RCODE_CANCELLED;
		break;
1044

1045
	case OHCI1394_evt_flushed:
1046 1047 1048 1049
		/*
		 * The packet was flushed should give same error as
		 * when we try to use a stale generation count.
		 */
1050 1051
		packet->ack = RCODE_GENERATION;
		break;
1052

1053
	case OHCI1394_evt_missing_ack:
1054 1055 1056 1057
		/*
		 * Using a valid (current) generation count, but the
		 * node is not on the bus or not sending acks.
		 */
1058 1059
		packet->ack = RCODE_NO_ACK;
		break;
1060

1061 1062 1063 1064 1065 1066 1067 1068 1069
	case ACK_COMPLETE + 0x10:
	case ACK_PENDING + 0x10:
	case ACK_BUSY_X + 0x10:
	case ACK_BUSY_A + 0x10:
	case ACK_BUSY_B + 0x10:
	case ACK_DATA_ERROR + 0x10:
	case ACK_TYPE_ERROR + 0x10:
		packet->ack = evt - 0x10;
		break;
1070

1071 1072 1073 1074
	default:
		packet->ack = RCODE_SEND_ERROR;
		break;
	}
1075

1076
	packet->callback(packet, &ohci->card, packet->ack);
1077

1078
	return 1;
1079 1080
}

1081 1082 1083 1084 1085
#define HEADER_GET_DESTINATION(q)	(((q) >> 16) & 0xffff)
#define HEADER_GET_TCODE(q)		(((q) >> 4) & 0x0f)
#define HEADER_GET_OFFSET_HIGH(q)	(((q) >> 0) & 0xffff)
#define HEADER_GET_DATA_LENGTH(q)	(((q) >> 16) & 0xffff)
#define HEADER_GET_EXTENDED_TCODE(q)	(((q) >> 0) & 0xffff)
1086 1087 1088 1089 1090 1091 1092

static void
handle_local_rom(struct fw_ohci *ohci, struct fw_packet *packet, u32 csr)
{
	struct fw_packet response;
	int tcode, length, i;

1093
	tcode = HEADER_GET_TCODE(packet->header[0]);
1094
	if (TCODE_IS_BLOCK_PACKET(tcode))
1095
		length = HEADER_GET_DATA_LENGTH(packet->header[3]);
1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121
	else
		length = 4;

	i = csr - CSR_CONFIG_ROM;
	if (i + length > CONFIG_ROM_SIZE) {
		fw_fill_response(&response, packet->header,
				 RCODE_ADDRESS_ERROR, NULL, 0);
	} else if (!TCODE_IS_READ_REQUEST(tcode)) {
		fw_fill_response(&response, packet->header,
				 RCODE_TYPE_ERROR, NULL, 0);
	} else {
		fw_fill_response(&response, packet->header, RCODE_COMPLETE,
				 (void *) ohci->config_rom + i, length);
	}

	fw_core_handle_response(&ohci->card, &response);
}

static void
handle_local_lock(struct fw_ohci *ohci, struct fw_packet *packet, u32 csr)
{
	struct fw_packet response;
	int tcode, length, ext_tcode, sel;
	__be32 *payload, lock_old;
	u32 lock_arg, lock_data;

1122 1123
	tcode = HEADER_GET_TCODE(packet->header[0]);
	length = HEADER_GET_DATA_LENGTH(packet->header[3]);
1124
	payload = packet->payload;
1125
	ext_tcode = HEADER_GET_EXTENDED_TCODE(packet->header[3]);
1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150

	if (tcode == TCODE_LOCK_REQUEST &&
	    ext_tcode == EXTCODE_COMPARE_SWAP && length == 8) {
		lock_arg = be32_to_cpu(payload[0]);
		lock_data = be32_to_cpu(payload[1]);
	} else if (tcode == TCODE_READ_QUADLET_REQUEST) {
		lock_arg = 0;
		lock_data = 0;
	} else {
		fw_fill_response(&response, packet->header,
				 RCODE_TYPE_ERROR, NULL, 0);
		goto out;
	}

	sel = (csr - CSR_BUS_MANAGER_ID) / 4;
	reg_write(ohci, OHCI1394_CSRData, lock_data);
	reg_write(ohci, OHCI1394_CSRCompareData, lock_arg);
	reg_write(ohci, OHCI1394_CSRControl, sel);

	if (reg_read(ohci, OHCI1394_CSRControl) & 0x80000000)
		lock_old = cpu_to_be32(reg_read(ohci, OHCI1394_CSRData));
	else
		fw_notify("swap not done yet\n");

	fw_fill_response(&response, packet->header,
1151
			 RCODE_COMPLETE, &lock_old, sizeof(lock_old));
1152 1153 1154 1155 1156
 out:
	fw_core_handle_response(&ohci->card, &response);
}

static void
1157
handle_local_request(struct context *ctx, struct fw_packet *packet)
1158 1159 1160 1161
{
	u64 offset;
	u32 csr;

1162 1163 1164 1165
	if (ctx == &ctx->ohci->at_request_ctx) {
		packet->ack = ACK_PENDING;
		packet->callback(packet, &ctx->ohci->card, packet->ack);
	}
1166 1167 1168

	offset =
		((unsigned long long)
1169
		 HEADER_GET_OFFSET_HIGH(packet->header[1]) << 32) |
1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189
		packet->header[2];
	csr = offset - CSR_REGISTER_BASE;

	/* Handle config rom reads. */
	if (csr >= CSR_CONFIG_ROM && csr < CSR_CONFIG_ROM_END)
		handle_local_rom(ctx->ohci, packet, csr);
	else switch (csr) {
	case CSR_BUS_MANAGER_ID:
	case CSR_BANDWIDTH_AVAILABLE:
	case CSR_CHANNELS_AVAILABLE_HI:
	case CSR_CHANNELS_AVAILABLE_LO:
		handle_local_lock(ctx->ohci, packet, csr);
		break;
	default:
		if (ctx == &ctx->ohci->at_request_ctx)
			fw_core_handle_request(&ctx->ohci->card, packet);
		else
			fw_core_handle_response(&ctx->ohci->card, packet);
		break;
	}
1190 1191 1192 1193 1194

	if (ctx == &ctx->ohci->at_response_ctx) {
		packet->ack = ACK_COMPLETE;
		packet->callback(packet, &ctx->ohci->card, packet->ack);
	}
1195
}
1196

1197
static void
1198
at_context_transmit(struct context *ctx, struct fw_packet *packet)
1199 1200
{
	unsigned long flags;
1201
	int retval;
1202 1203 1204

	spin_lock_irqsave(&ctx->ohci->lock, flags);

1205
	if (HEADER_GET_DESTINATION(packet->header[0]) == ctx->ohci->node_id &&
1206
	    ctx->ohci->generation == packet->generation) {
1207 1208 1209
		spin_unlock_irqrestore(&ctx->ohci->lock, flags);
		handle_local_request(ctx, packet);
		return;
1210
	}
1211

1212
	retval = at_context_queue_packet(ctx, packet);
1213 1214
	spin_unlock_irqrestore(&ctx->ohci->lock, flags);

1215 1216
	if (retval < 0)
		packet->callback(packet, &ctx->ohci->card, packet->ack);
1217

1218 1219 1220 1221 1222
}

static void bus_reset_tasklet(unsigned long data)
{
	struct fw_ohci *ohci = (struct fw_ohci *)data;
1223
	int self_id_count, i, j, reg;
1224 1225
	int generation, new_generation;
	unsigned long flags;
1226 1227
	void *free_rom = NULL;
	dma_addr_t free_rom_bus = 0;
1228 1229 1230

	reg = reg_read(ohci, OHCI1394_NodeID);
	if (!(reg & OHCI1394_NodeID_idValid)) {
1231
		fw_notify("node ID not valid, new bus reset in progress\n");
1232 1233
		return;
	}
1234 1235 1236 1237 1238 1239
	if ((reg & OHCI1394_NodeID_nodeNumber) == 63) {
		fw_notify("malconfigured bus\n");
		return;
	}
	ohci->node_id = reg & (OHCI1394_NodeID_busNumber |
			       OHCI1394_NodeID_nodeNumber);
1240

1241 1242 1243 1244 1245
	reg = reg_read(ohci, OHCI1394_SelfIDCount);
	if (reg & OHCI1394_SelfIDCount_selfIDError) {
		fw_notify("inconsistent self IDs\n");
		return;
	}
1246 1247
	/*
	 * The count in the SelfIDCount register is the number of
1248 1249
	 * bytes in the self ID receive buffer.  Since we also receive
	 * the inverted quadlets and a header quadlet, we shift one
1250 1251
	 * bit extra to get the actual number of self IDs.
	 */
1252
	self_id_count = (reg >> 3) & 0x3ff;
1253 1254 1255 1256
	if (self_id_count == 0) {
		fw_notify("inconsistent self IDs\n");
		return;
	}
1257
	generation = (cond_le32_to_cpu(ohci->self_id_cpu[0]) >> 16) & 0xff;
1258
	rmb();
1259 1260

	for (i = 1, j = 0; j < self_id_count; i += 2, j++) {
1261 1262 1263 1264
		if (ohci->self_id_cpu[i] != ~ohci->self_id_cpu[i + 1]) {
			fw_notify("inconsistent self IDs\n");
			return;
		}
1265 1266
		ohci->self_id_buffer[j] =
				cond_le32_to_cpu(ohci->self_id_cpu[i]);
1267
	}
1268
	rmb();
1269

1270 1271
	/*
	 * Check the consistency of the self IDs we just read.  The
1272 1273 1274 1275 1276 1277 1278 1279 1280
	 * problem we face is that a new bus reset can start while we
	 * read out the self IDs from the DMA buffer. If this happens,
	 * the DMA buffer will be overwritten with new self IDs and we
	 * will read out inconsistent data.  The OHCI specification
	 * (section 11.2) recommends a technique similar to
	 * linux/seqlock.h, where we remember the generation of the
	 * self IDs in the buffer before reading them out and compare
	 * it to the current generation after reading them out.  If
	 * the two generations match we know we have a consistent set
1281 1282
	 * of self IDs.
	 */
1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294

	new_generation = (reg_read(ohci, OHCI1394_SelfIDCount) >> 16) & 0xff;
	if (new_generation != generation) {
		fw_notify("recursive bus reset detected, "
			  "discarding self ids\n");
		return;
	}

	/* FIXME: Document how the locking works. */
	spin_lock_irqsave(&ohci->lock, flags);

	ohci->generation = generation;
1295 1296
	context_stop(&ohci->at_request_ctx);
	context_stop(&ohci->at_response_ctx);
1297 1298
	reg_write(ohci, OHCI1394_IntEventClear, OHCI1394_busReset);

1299 1300 1301
	if (ohci->bus_reset_packet_quirk)
		ohci->request_generation = generation;

1302 1303
	/*
	 * This next bit is unrelated to the AT context stuff but we
1304 1305 1306 1307
	 * have to do it under the spinlock also.  If a new config rom
	 * was set up before this reset, the old one is now no longer
	 * in use and we can free it. Update the config rom pointers
	 * to point to the current config rom and clear the
1308 1309
	 * next_config_rom pointer so a new udpate can take place.
	 */
1310 1311

	if (ohci->next_config_rom != NULL) {
1312 1313 1314 1315
		if (ohci->next_config_rom != ohci->config_rom) {
			free_rom      = ohci->config_rom;
			free_rom_bus  = ohci->config_rom_bus;
		}
1316 1317 1318 1319
		ohci->config_rom      = ohci->next_config_rom;
		ohci->config_rom_bus  = ohci->next_config_rom_bus;
		ohci->next_config_rom = NULL;

1320 1321
		/*
		 * Restore config_rom image and manually update
1322 1323
		 * config_rom registers.  Writing the header quadlet
		 * will indicate that the config rom is ready, so we
1324 1325
		 * do that last.
		 */
1326 1327 1328 1329 1330 1331
		reg_write(ohci, OHCI1394_BusOptions,
			  be32_to_cpu(ohci->config_rom[2]));
		ohci->config_rom[0] = cpu_to_be32(ohci->next_header);
		reg_write(ohci, OHCI1394_ConfigROMhdr, ohci->next_header);
	}

1332 1333 1334 1335 1336
#ifdef CONFIG_FIREWIRE_OHCI_REMOTE_DMA
	reg_write(ohci, OHCI1394_PhyReqFilterHiSet, ~0);
	reg_write(ohci, OHCI1394_PhyReqFilterLoSet, ~0);
#endif

1337 1338
	spin_unlock_irqrestore(&ohci->lock, flags);

1339 1340 1341 1342
	if (free_rom)
		dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
				  free_rom, free_rom_bus);

1343 1344
	log_selfids(ohci->node_id, generation,
		    self_id_count, ohci->self_id_buffer);
1345

1346
	fw_core_handle_bus_reset(&ohci->card, ohci->node_id, generation,
1347 1348 1349 1350 1351 1352
				 self_id_count, ohci->self_id_buffer);
}

static irqreturn_t irq_handler(int irq, void *data)
{
	struct fw_ohci *ohci = data;
1353
	u32 event, iso_event, cycle_time;
1354 1355 1356 1357
	int i;

	event = reg_read(ohci, OHCI1394_IntEventClear);

1358
	if (!event || !~event)
1359 1360
		return IRQ_NONE;

1361 1362
	/* busReset must not be cleared yet, see OHCI 1.1 clause 7.2.3.2 */
	reg_write(ohci, OHCI1394_IntEventClear, event & ~OHCI1394_busReset);
1363
	log_irqs(event);
1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379

	if (event & OHCI1394_selfIDComplete)
		tasklet_schedule(&ohci->bus_reset_tasklet);

	if (event & OHCI1394_RQPkt)
		tasklet_schedule(&ohci->ar_request_ctx.tasklet);

	if (event & OHCI1394_RSPkt)
		tasklet_schedule(&ohci->ar_response_ctx.tasklet);

	if (event & OHCI1394_reqTxComplete)
		tasklet_schedule(&ohci->at_request_ctx.tasklet);

	if (event & OHCI1394_respTxComplete)
		tasklet_schedule(&ohci->at_response_ctx.tasklet);

1380
	iso_event = reg_read(ohci, OHCI1394_IsoRecvIntEventClear);
1381 1382 1383 1384
	reg_write(ohci, OHCI1394_IsoRecvIntEventClear, iso_event);

	while (iso_event) {
		i = ffs(iso_event) - 1;
1385
		tasklet_schedule(&ohci->ir_context_list[i].context.tasklet);
1386 1387 1388
		iso_event &= ~(1 << i);
	}

1389
	iso_event = reg_read(ohci, OHCI1394_IsoXmitIntEventClear);
1390 1391 1392 1393
	reg_write(ohci, OHCI1394_IsoXmitIntEventClear, iso_event);

	while (iso_event) {
		i = ffs(iso_event) - 1;
1394
		tasklet_schedule(&ohci->it_context_list[i].context.tasklet);
1395 1396 1397
		iso_event &= ~(1 << i);
	}

1398 1399 1400 1401
	if (unlikely(event & OHCI1394_regAccessFail))
		fw_error("Register access failure - "
			 "please notify linux1394-devel@lists.sf.net\n");

1402 1403 1404
	if (unlikely(event & OHCI1394_postedWriteErr))
		fw_error("PCI posted write error\n");

1405 1406 1407 1408 1409 1410 1411
	if (unlikely(event & OHCI1394_cycleTooLong)) {
		if (printk_ratelimit())
			fw_notify("isochronous cycle too long\n");
		reg_write(ohci, OHCI1394_LinkControlSet,
			  OHCI1394_LinkControl_cycleMaster);
	}

1412 1413 1414 1415 1416 1417
	if (event & OHCI1394_cycle64Seconds) {
		cycle_time = reg_read(ohci, OHCI1394_IsochronousCycleTimer);
		if ((cycle_time & 0x80000000) == 0)
			ohci->bus_seconds++;
	}

1418 1419 1420
	return IRQ_HANDLED;
}

1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436
static int software_reset(struct fw_ohci *ohci)
{
	int i;

	reg_write(ohci, OHCI1394_HCControlSet, OHCI1394_HCControl_softReset);

	for (i = 0; i < OHCI_LOOP_COUNT; i++) {
		if ((reg_read(ohci, OHCI1394_HCControlSet) &
		     OHCI1394_HCControl_softReset) == 0)
			return 0;
		msleep(1);
	}

	return -EBUSY;
}

1437 1438 1439 1440
static int ohci_enable(struct fw_card *card, u32 *config_rom, size_t length)
{
	struct fw_ohci *ohci = fw_ohci(card);
	struct pci_dev *dev = to_pci_dev(card->device);
1441 1442
	u32 lps;
	int i;
1443

1444 1445 1446 1447 1448 1449 1450 1451 1452 1453
	if (software_reset(ohci)) {
		fw_error("Failed to reset ohci card.\n");
		return -EBUSY;
	}

	/*
	 * Now enable LPS, which we need in order to start accessing
	 * most of the registers.  In fact, on some cards (ALI M5251),
	 * accessing registers in the SClk domain without LPS enabled
	 * will lock up the machine.  Wait 50msec to make sure we have
1454 1455
	 * full link enabled.  However, with some cards (well, at least
	 * a JMicron PCIe card), we have to try again sometimes.
1456 1457 1458 1459 1460
	 */
	reg_write(ohci, OHCI1394_HCControlSet,
		  OHCI1394_HCControl_LPS |
		  OHCI1394_HCControl_postedWriteEnable);
	flush_writes(ohci);
1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471

	for (lps = 0, i = 0; !lps && i < 3; i++) {
		msleep(50);
		lps = reg_read(ohci, OHCI1394_HCControlSet) &
		      OHCI1394_HCControl_LPS;
	}

	if (!lps) {
		fw_error("Failed to set Link Power Status\n");
		return -EIO;
	}
1472 1473 1474 1475

	reg_write(ohci, OHCI1394_HCControlClear,
		  OHCI1394_HCControl_noByteSwapData);

1476
	reg_write(ohci, OHCI1394_SelfIDBuffer, ohci->self_id_bus);
1477 1478
	reg_write(ohci, OHCI1394_LinkControlClear,
		  OHCI1394_LinkControl_rcvPhyPkt);
1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499
	reg_write(ohci, OHCI1394_LinkControlSet,
		  OHCI1394_LinkControl_rcvSelfID |
		  OHCI1394_LinkControl_cycleTimerEnable |
		  OHCI1394_LinkControl_cycleMaster);

	reg_write(ohci, OHCI1394_ATRetries,
		  OHCI1394_MAX_AT_REQ_RETRIES |
		  (OHCI1394_MAX_AT_RESP_RETRIES << 4) |
		  (OHCI1394_MAX_PHYS_RESP_RETRIES << 8));

	ar_context_run(&ohci->ar_request_ctx);
	ar_context_run(&ohci->ar_response_ctx);

	reg_write(ohci, OHCI1394_PhyUpperBound, 0x00010000);
	reg_write(ohci, OHCI1394_IntEventClear, ~0);
	reg_write(ohci, OHCI1394_IntMaskClear, ~0);
	reg_write(ohci, OHCI1394_IntMaskSet,
		  OHCI1394_selfIDComplete |
		  OHCI1394_RQPkt | OHCI1394_RSPkt |
		  OHCI1394_reqTxComplete | OHCI1394_respTxComplete |
		  OHCI1394_isochRx | OHCI1394_isochTx |
1500
		  OHCI1394_postedWriteErr | OHCI1394_cycleTooLong |
1501 1502
		  OHCI1394_cycle64Seconds | OHCI1394_regAccessFail |
		  OHCI1394_masterIntEnable);
1503 1504
	if (param_debug & OHCI_PARAM_DEBUG_BUSRESETS)
		reg_write(ohci, OHCI1394_IntMaskSet, OHCI1394_busReset);
1505 1506 1507 1508 1509 1510

	/* Activate link_on bit and contender bit in our self ID packets.*/
	if (ohci_update_phy_reg(card, 4, 0,
				PHY_LINK_ACTIVE | PHY_CONTENDER) < 0)
		return -EIO;

1511 1512
	/*
	 * When the link is not yet enabled, the atomic config rom
1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529
	 * update mechanism described below in ohci_set_config_rom()
	 * is not active.  We have to update ConfigRomHeader and
	 * BusOptions manually, and the write to ConfigROMmap takes
	 * effect immediately.  We tie this to the enabling of the
	 * link, so we have a valid config rom before enabling - the
	 * OHCI requires that ConfigROMhdr and BusOptions have valid
	 * values before enabling.
	 *
	 * However, when the ConfigROMmap is written, some controllers
	 * always read back quadlets 0 and 2 from the config rom to
	 * the ConfigRomHeader and BusOptions registers on bus reset.
	 * They shouldn't do that in this initial case where the link
	 * isn't enabled.  This means we have to use the same
	 * workaround here, setting the bus header to 0 and then write
	 * the right values in the bus reset tasklet.
	 */

1530 1531 1532 1533 1534 1535 1536
	if (config_rom) {
		ohci->next_config_rom =
			dma_alloc_coherent(ohci->card.device, CONFIG_ROM_SIZE,
					   &ohci->next_config_rom_bus,
					   GFP_KERNEL);
		if (ohci->next_config_rom == NULL)
			return -ENOMEM;
1537

1538 1539 1540 1541 1542 1543 1544 1545 1546 1547
		memset(ohci->next_config_rom, 0, CONFIG_ROM_SIZE);
		fw_memcpy_to_be32(ohci->next_config_rom, config_rom, length * 4);
	} else {
		/*
		 * In the suspend case, config_rom is NULL, which
		 * means that we just reuse the old config rom.
		 */
		ohci->next_config_rom = ohci->config_rom;
		ohci->next_config_rom_bus = ohci->config_rom_bus;
	}
1548

1549
	ohci->next_header = be32_to_cpu(ohci->next_config_rom[0]);
1550 1551
	ohci->next_config_rom[0] = 0;
	reg_write(ohci, OHCI1394_ConfigROMhdr, 0);
1552 1553
	reg_write(ohci, OHCI1394_BusOptions,
		  be32_to_cpu(ohci->next_config_rom[2]));
1554 1555 1556 1557 1558
	reg_write(ohci, OHCI1394_ConfigROMmap, ohci->next_config_rom_bus);

	reg_write(ohci, OHCI1394_AsReqFilterHiSet, 0x80000000);

	if (request_irq(dev->irq, irq_handler,
1559
			IRQF_SHARED, ohci_driver_name, ohci)) {
1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571
		fw_error("Failed to allocate shared interrupt %d.\n",
			 dev->irq);
		dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
				  ohci->config_rom, ohci->config_rom_bus);
		return -EIO;
	}

	reg_write(ohci, OHCI1394_HCControlSet,
		  OHCI1394_HCControl_linkEnable |
		  OHCI1394_HCControl_BIBimageValid);
	flush_writes(ohci);

1572 1573 1574 1575
	/*
	 * We are ready to go, initiate bus reset to finish the
	 * initialization.
	 */
1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586

	fw_core_initiate_bus_reset(&ohci->card, 1);

	return 0;
}

static int
ohci_set_config_rom(struct fw_card *card, u32 *config_rom, size_t length)
{
	struct fw_ohci *ohci;
	unsigned long flags;
1587
	int retval = -EBUSY;
1588
	__be32 *next_config_rom;
1589
	dma_addr_t uninitialized_var(next_config_rom_bus);
1590 1591 1592

	ohci = fw_ohci(card);

1593 1594
	/*
	 * When the OHCI controller is enabled, the config rom update
1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640
	 * mechanism is a bit tricky, but easy enough to use.  See
	 * section 5.5.6 in the OHCI specification.
	 *
	 * The OHCI controller caches the new config rom address in a
	 * shadow register (ConfigROMmapNext) and needs a bus reset
	 * for the changes to take place.  When the bus reset is
	 * detected, the controller loads the new values for the
	 * ConfigRomHeader and BusOptions registers from the specified
	 * config rom and loads ConfigROMmap from the ConfigROMmapNext
	 * shadow register. All automatically and atomically.
	 *
	 * Now, there's a twist to this story.  The automatic load of
	 * ConfigRomHeader and BusOptions doesn't honor the
	 * noByteSwapData bit, so with a be32 config rom, the
	 * controller will load be32 values in to these registers
	 * during the atomic update, even on litte endian
	 * architectures.  The workaround we use is to put a 0 in the
	 * header quadlet; 0 is endian agnostic and means that the
	 * config rom isn't ready yet.  In the bus reset tasklet we
	 * then set up the real values for the two registers.
	 *
	 * We use ohci->lock to avoid racing with the code that sets
	 * ohci->next_config_rom to NULL (see bus_reset_tasklet).
	 */

	next_config_rom =
		dma_alloc_coherent(ohci->card.device, CONFIG_ROM_SIZE,
				   &next_config_rom_bus, GFP_KERNEL);
	if (next_config_rom == NULL)
		return -ENOMEM;

	spin_lock_irqsave(&ohci->lock, flags);

	if (ohci->next_config_rom == NULL) {
		ohci->next_config_rom = next_config_rom;
		ohci->next_config_rom_bus = next_config_rom_bus;

		memset(ohci->next_config_rom, 0, CONFIG_ROM_SIZE);
		fw_memcpy_to_be32(ohci->next_config_rom, config_rom,
				  length * 4);

		ohci->next_header = config_rom[0];
		ohci->next_config_rom[0] = 0;

		reg_write(ohci, OHCI1394_ConfigROMmap,
			  ohci->next_config_rom_bus);
1641
		retval = 0;
1642 1643 1644 1645
	}

	spin_unlock_irqrestore(&ohci->lock, flags);

1646 1647
	/*
	 * Now initiate a bus reset to have the changes take
1648 1649 1650
	 * effect. We clean up the old config rom memory and DMA
	 * mappings in the bus reset tasklet, since the OHCI
	 * controller could need to access it before the bus reset
1651 1652
	 * takes effect.
	 */
1653 1654
	if (retval == 0)
		fw_core_initiate_bus_reset(&ohci->card, 1);
1655 1656 1657
	else
		dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
				  next_config_rom, next_config_rom_bus);
1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675

	return retval;
}

static void ohci_send_request(struct fw_card *card, struct fw_packet *packet)
{
	struct fw_ohci *ohci = fw_ohci(card);

	at_context_transmit(&ohci->at_request_ctx, packet);
}

static void ohci_send_response(struct fw_card *card, struct fw_packet *packet)
{
	struct fw_ohci *ohci = fw_ohci(card);

	at_context_transmit(&ohci->at_response_ctx, packet);
}

1676 1677 1678
static int ohci_cancel_packet(struct fw_card *card, struct fw_packet *packet)
{
	struct fw_ohci *ohci = fw_ohci(card);
1679 1680 1681
	struct context *ctx = &ohci->at_request_ctx;
	struct driver_data *driver_data = packet->driver_data;
	int retval = -ENOENT;
1682

1683
	tasklet_disable(&ctx->tasklet);
1684

1685 1686
	if (packet->ack != 0)
		goto out;
1687

1688
	log_ar_at_event('T', packet->speed, packet->header, 0x20);
1689 1690 1691 1692
	driver_data->packet = NULL;
	packet->ack = RCODE_CANCELLED;
	packet->callback(packet, &ohci->card, packet->ack);
	retval = 0;
1693

1694 1695
 out:
	tasklet_enable(&ctx->tasklet);
1696

1697
	return retval;
1698 1699
}

1700 1701 1702
static int
ohci_enable_phys_dma(struct fw_card *card, int node_id, int generation)
{
1703 1704 1705
#ifdef CONFIG_FIREWIRE_OHCI_REMOTE_DMA
	return 0;
#else
1706 1707
	struct fw_ohci *ohci = fw_ohci(card);
	unsigned long flags;
1708
	int n, retval = 0;
1709

1710 1711 1712 1713
	/*
	 * FIXME:  Make sure this bitmask is cleared when we clear the busReset
	 * interrupt bit.  Clear physReqResourceAllBuses on bus reset.
	 */
1714 1715 1716 1717 1718 1719 1720 1721

	spin_lock_irqsave(&ohci->lock, flags);

	if (ohci->generation != generation) {
		retval = -ESTALE;
		goto out;
	}

1722 1723 1724 1725
	/*
	 * Note, if the node ID contains a non-local bus ID, physical DMA is
	 * enabled for _all_ nodes on remote buses.
	 */
1726 1727 1728 1729 1730 1731 1732

	n = (node_id & 0xffc0) == LOCAL_BUS ? node_id & 0x3f : 63;
	if (n < 32)
		reg_write(ohci, OHCI1394_PhyReqFilterLoSet, 1 << n);
	else
		reg_write(ohci, OHCI1394_PhyReqFilterHiSet, 1 << (n - 32));

1733 1734
	flush_writes(ohci);
 out:
1735
	spin_unlock_irqrestore(&ohci->lock, flags);
1736
	return retval;
1737
#endif /* CONFIG_FIREWIRE_OHCI_REMOTE_DMA */
1738
}
S
Stefan Richter 已提交
1739

1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752
static u64
ohci_get_bus_time(struct fw_card *card)
{
	struct fw_ohci *ohci = fw_ohci(card);
	u32 cycle_time;
	u64 bus_time;

	cycle_time = reg_read(ohci, OHCI1394_IsochronousCycleTimer);
	bus_time = ((u64) ohci->bus_seconds << 32) | cycle_time;

	return bus_time;
}

1753 1754 1755
static int handle_ir_dualbuffer_packet(struct context *context,
				       struct descriptor *d,
				       struct descriptor *last)
1756
{
1757 1758 1759
	struct iso_context *ctx =
		container_of(context, struct iso_context, context);
	struct db_descriptor *db = (struct db_descriptor *) d;
1760
	__le32 *ir_header;
1761
	size_t header_length;
1762 1763
	void *p, *end;
	int i;
1764

S
Stefan Richter 已提交
1765
	if (db->first_res_count != 0 && db->second_res_count != 0) {
1766 1767 1768 1769 1770 1771
		if (ctx->excess_bytes <= le16_to_cpu(db->second_req_count)) {
			/* This descriptor isn't done yet, stop iteration. */
			return 0;
		}
		ctx->excess_bytes -= le16_to_cpu(db->second_req_count);
	}
1772

1773 1774 1775 1776 1777 1778 1779
	header_length = le16_to_cpu(db->first_req_count) -
		le16_to_cpu(db->first_res_count);

	i = ctx->header_length;
	p = db + 1;
	end = p + header_length;
	while (p < end && i + ctx->base.header_size <= PAGE_SIZE) {
1780 1781
		/*
		 * The iso header is byteswapped to little endian by
1782 1783 1784
		 * the controller, but the remaining header quadlets
		 * are big endian.  We want to present all the headers
		 * as big endian, so we have to swap the first
1785 1786
		 * quadlet.
		 */
1787 1788
		*(u32 *) (ctx->header + i) = __swab32(*(u32 *) (p + 4));
		memcpy(ctx->header + i + 4, p + 8, ctx->base.header_size - 4);
1789
		i += ctx->base.header_size;
1790
		ctx->excess_bytes +=
S
Stefan Richter 已提交
1791
			(le32_to_cpu(*(__le32 *)(p + 4)) >> 16) & 0xffff;
1792 1793 1794
		p += ctx->base.header_size + 4;
	}
	ctx->header_length = i;
1795

1796 1797 1798
	ctx->excess_bytes -= le16_to_cpu(db->second_req_count) -
		le16_to_cpu(db->second_res_count);

1799
	if (le16_to_cpu(db->control) & DESCRIPTOR_IRQ_ALWAYS) {
1800 1801 1802
		ir_header = (__le32 *) (db + 1);
		ctx->base.callback(&ctx->base,
				   le32_to_cpu(ir_header[0]) & 0xffff,
1803
				   ctx->header_length, ctx->header,
1804
				   ctx->base.callback_data);
1805 1806
		ctx->header_length = 0;
	}
1807

1808
	return 1;
1809 1810
}

1811 1812 1813 1814 1815 1816
static int handle_ir_packet_per_buffer(struct context *context,
				       struct descriptor *d,
				       struct descriptor *last)
{
	struct iso_context *ctx =
		container_of(context, struct iso_context, context);
1817
	struct descriptor *pd;
1818
	__le32 *ir_header;
1819 1820
	void *p;
	int i;
1821

1822 1823 1824 1825 1826
	for (pd = d; pd <= last; pd++) {
		if (pd->transfer_status)
			break;
	}
	if (pd > last)
1827 1828 1829 1830
		/* Descriptor(s) not done yet, stop iteration */
		return 0;

	i   = ctx->header_length;
1831
	p   = last + 1;
1832

1833 1834
	if (ctx->base.header_size > 0 &&
			i + ctx->base.header_size <= PAGE_SIZE) {
1835 1836 1837 1838 1839 1840 1841 1842
		/*
		 * The iso header is byteswapped to little endian by
		 * the controller, but the remaining header quadlets
		 * are big endian.  We want to present all the headers
		 * as big endian, so we have to swap the first quadlet.
		 */
		*(u32 *) (ctx->header + i) = __swab32(*(u32 *) (p + 4));
		memcpy(ctx->header + i + 4, p + 8, ctx->base.header_size - 4);
1843
		ctx->header_length += ctx->base.header_size;
1844 1845
	}

1846 1847
	if (le16_to_cpu(last->control) & DESCRIPTOR_IRQ_ALWAYS) {
		ir_header = (__le32 *) p;
1848 1849 1850 1851 1852 1853 1854 1855 1856 1857
		ctx->base.callback(&ctx->base,
				   le32_to_cpu(ir_header[0]) & 0xffff,
				   ctx->header_length, ctx->header,
				   ctx->base.callback_data);
		ctx->header_length = 0;
	}

	return 1;
}

1858 1859 1860
static int handle_it_packet(struct context *context,
			    struct descriptor *d,
			    struct descriptor *last)
1861
{
1862 1863
	struct iso_context *ctx =
		container_of(context, struct iso_context, context);
S
Stefan Richter 已提交
1864

1865 1866 1867 1868
	if (last->transfer_status == 0)
		/* This descriptor isn't done yet, stop iteration. */
		return 0;

1869
	if (le16_to_cpu(last->control) & DESCRIPTOR_IRQ_ALWAYS)
1870 1871
		ctx->base.callback(&ctx->base, le16_to_cpu(last->res_count),
				   0, NULL, ctx->base.callback_data);
1872 1873

	return 1;
1874 1875
}

1876
static struct fw_iso_context *
1877
ohci_allocate_iso_context(struct fw_card *card, int type, size_t header_size)
1878 1879 1880
{
	struct fw_ohci *ohci = fw_ohci(card);
	struct iso_context *ctx, *list;
1881
	descriptor_callback_t callback;
1882
	u32 *mask, regs;
1883
	unsigned long flags;
1884
	int index, retval = -ENOMEM;
1885 1886 1887 1888

	if (type == FW_ISO_CONTEXT_TRANSMIT) {
		mask = &ohci->it_context_mask;
		list = ohci->it_context_list;
1889
		callback = handle_it_packet;
1890
	} else {
S
Stefan Richter 已提交
1891 1892
		mask = &ohci->ir_context_mask;
		list = ohci->ir_context_list;
1893 1894 1895 1896
		if (ohci->version >= OHCI_VERSION_1_1)
			callback = handle_ir_dualbuffer_packet;
		else
			callback = handle_ir_packet_per_buffer;
1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907
	}

	spin_lock_irqsave(&ohci->lock, flags);
	index = ffs(*mask) - 1;
	if (index >= 0)
		*mask &= ~(1 << index);
	spin_unlock_irqrestore(&ohci->lock, flags);

	if (index < 0)
		return ERR_PTR(-EBUSY);

S
Stefan Richter 已提交
1908 1909 1910 1911 1912
	if (type == FW_ISO_CONTEXT_TRANSMIT)
		regs = OHCI1394_IsoXmitContextBase(index);
	else
		regs = OHCI1394_IsoRcvContextBase(index);

1913
	ctx = &list[index];
1914
	memset(ctx, 0, sizeof(*ctx));
1915 1916 1917 1918 1919
	ctx->header_length = 0;
	ctx->header = (void *) __get_free_page(GFP_KERNEL);
	if (ctx->header == NULL)
		goto out;

1920
	retval = context_init(&ctx->context, ohci, regs, callback);
1921 1922
	if (retval < 0)
		goto out_with_header;
1923 1924

	return &ctx->base;
1925 1926 1927 1928 1929 1930 1931 1932 1933

 out_with_header:
	free_page((unsigned long)ctx->header);
 out:
	spin_lock_irqsave(&ohci->lock, flags);
	*mask |= 1 << index;
	spin_unlock_irqrestore(&ohci->lock, flags);

	return ERR_PTR(retval);
1934 1935
}

1936 1937
static int ohci_start_iso(struct fw_iso_context *base,
			  s32 cycle, u32 sync, u32 tags)
1938
{
S
Stefan Richter 已提交
1939
	struct iso_context *ctx = container_of(base, struct iso_context, base);
1940
	struct fw_ohci *ohci = ctx->context.ohci;
1941
	u32 control, match;
1942 1943
	int index;

1944 1945
	if (ctx->base.type == FW_ISO_CONTEXT_TRANSMIT) {
		index = ctx - ohci->it_context_list;
1946 1947 1948
		match = 0;
		if (cycle >= 0)
			match = IT_CONTEXT_CYCLE_MATCH_ENABLE |
1949
				(cycle & 0x7fff) << 16;
1950

1951 1952
		reg_write(ohci, OHCI1394_IsoXmitIntEventClear, 1 << index);
		reg_write(ohci, OHCI1394_IsoXmitIntMaskSet, 1 << index);
1953
		context_run(&ctx->context, match);
1954 1955
	} else {
		index = ctx - ohci->ir_context_list;
1956 1957 1958
		control = IR_CONTEXT_ISOCH_HEADER;
		if (ohci->version >= OHCI_VERSION_1_1)
			control |= IR_CONTEXT_DUAL_BUFFER_MODE;
1959 1960 1961 1962 1963
		match = (tags << 28) | (sync << 8) | ctx->base.channel;
		if (cycle >= 0) {
			match |= (cycle & 0x07fff) << 12;
			control |= IR_CONTEXT_CYCLE_MATCH_ENABLE;
		}
1964

1965 1966
		reg_write(ohci, OHCI1394_IsoRecvIntEventClear, 1 << index);
		reg_write(ohci, OHCI1394_IsoRecvIntMaskSet, 1 << index);
1967
		reg_write(ohci, CONTEXT_MATCH(ctx->context.regs), match);
1968
		context_run(&ctx->context, control);
1969
	}
1970 1971 1972 1973

	return 0;
}

1974 1975 1976
static int ohci_stop_iso(struct fw_iso_context *base)
{
	struct fw_ohci *ohci = fw_ohci(base->card);
S
Stefan Richter 已提交
1977
	struct iso_context *ctx = container_of(base, struct iso_context, base);
1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992
	int index;

	if (ctx->base.type == FW_ISO_CONTEXT_TRANSMIT) {
		index = ctx - ohci->it_context_list;
		reg_write(ohci, OHCI1394_IsoXmitIntMaskClear, 1 << index);
	} else {
		index = ctx - ohci->ir_context_list;
		reg_write(ohci, OHCI1394_IsoRecvIntMaskClear, 1 << index);
	}
	flush_writes(ohci);
	context_stop(&ctx->context);

	return 0;
}

1993 1994 1995
static void ohci_free_iso_context(struct fw_iso_context *base)
{
	struct fw_ohci *ohci = fw_ohci(base->card);
S
Stefan Richter 已提交
1996
	struct iso_context *ctx = container_of(base, struct iso_context, base);
1997 1998 1999
	unsigned long flags;
	int index;

2000 2001
	ohci_stop_iso(base);
	context_release(&ctx->context);
2002
	free_page((unsigned long)ctx->header);
2003

2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017
	spin_lock_irqsave(&ohci->lock, flags);

	if (ctx->base.type == FW_ISO_CONTEXT_TRANSMIT) {
		index = ctx - ohci->it_context_list;
		ohci->it_context_mask |= 1 << index;
	} else {
		index = ctx - ohci->ir_context_list;
		ohci->ir_context_mask |= 1 << index;
	}

	spin_unlock_irqrestore(&ohci->lock, flags);
}

static int
2018 2019 2020 2021
ohci_queue_iso_transmit(struct fw_iso_context *base,
			struct fw_iso_packet *packet,
			struct fw_iso_buffer *buffer,
			unsigned long payload)
2022
{
S
Stefan Richter 已提交
2023
	struct iso_context *ctx = container_of(base, struct iso_context, base);
2024
	struct descriptor *d, *last, *pd;
2025 2026
	struct fw_iso_packet *p;
	__le32 *header;
2027
	dma_addr_t d_bus, page_bus;
2028 2029
	u32 z, header_z, payload_z, irq;
	u32 payload_index, payload_end_index, next_page_index;
2030
	int page, end_page, i, length, offset;
2031

2032 2033 2034 2035
	/*
	 * FIXME: Cycle lost behavior should be configurable: lose
	 * packet, retransmit or terminate..
	 */
2036 2037

	p = packet;
2038
	payload_index = payload;
2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056

	if (p->skip)
		z = 1;
	else
		z = 2;
	if (p->header_length > 0)
		z++;

	/* Determine the first page the payload isn't contained in. */
	end_page = PAGE_ALIGN(payload_index + p->payload_length) >> PAGE_SHIFT;
	if (p->payload_length > 0)
		payload_z = end_page - (payload_index >> PAGE_SHIFT);
	else
		payload_z = 0;

	z += payload_z;

	/* Get header size in number of descriptors. */
2057
	header_z = DIV_ROUND_UP(p->header_length, sizeof(*d));
2058

2059 2060 2061
	d = context_get_descriptors(&ctx->context, z + header_z, &d_bus);
	if (d == NULL)
		return -ENOMEM;
2062 2063

	if (!p->skip) {
2064
		d[0].control   = cpu_to_le16(DESCRIPTOR_KEY_IMMEDIATE);
2065 2066 2067
		d[0].req_count = cpu_to_le16(8);

		header = (__le32 *) &d[1];
2068 2069 2070 2071 2072
		header[0] = cpu_to_le32(IT_HEADER_SY(p->sy) |
					IT_HEADER_TAG(p->tag) |
					IT_HEADER_TCODE(TCODE_STREAM_DATA) |
					IT_HEADER_CHANNEL(ctx->base.channel) |
					IT_HEADER_SPEED(ctx->base.speed));
2073
		header[1] =
2074
			cpu_to_le32(IT_HEADER_DATA_LENGTH(p->header_length +
2075 2076 2077 2078 2079
							  p->payload_length));
	}

	if (p->header_length > 0) {
		d[2].req_count    = cpu_to_le16(p->header_length);
2080
		d[2].data_address = cpu_to_le32(d_bus + z * sizeof(*d));
2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092
		memcpy(&d[z], p->header, p->header_length);
	}

	pd = d + z - payload_z;
	payload_end_index = payload_index + p->payload_length;
	for (i = 0; i < payload_z; i++) {
		page               = payload_index >> PAGE_SHIFT;
		offset             = payload_index & ~PAGE_MASK;
		next_page_index    = (page + 1) << PAGE_SHIFT;
		length             =
			min(next_page_index, payload_end_index) - payload_index;
		pd[i].req_count    = cpu_to_le16(length);
2093 2094 2095

		page_bus = page_private(buffer->pages[page]);
		pd[i].data_address = cpu_to_le32(page_bus + offset);
2096 2097 2098 2099 2100

		payload_index += length;
	}

	if (p->interrupt)
2101
		irq = DESCRIPTOR_IRQ_ALWAYS;
2102
	else
2103
		irq = DESCRIPTOR_NO_IRQ;
2104

2105
	last = z == 2 ? d : d + z - 1;
2106 2107 2108
	last->control |= cpu_to_le16(DESCRIPTOR_OUTPUT_LAST |
				     DESCRIPTOR_STATUS |
				     DESCRIPTOR_BRANCH_ALWAYS |
2109
				     irq);
2110

2111
	context_append(&ctx->context, d, z, header_z);
2112 2113 2114

	return 0;
}
S
Stefan Richter 已提交
2115

2116
static int
2117 2118 2119 2120
ohci_queue_iso_receive_dualbuffer(struct fw_iso_context *base,
				  struct fw_iso_packet *packet,
				  struct fw_iso_buffer *buffer,
				  unsigned long payload)
2121 2122 2123 2124 2125 2126 2127
{
	struct iso_context *ctx = container_of(base, struct iso_context, base);
	struct db_descriptor *db = NULL;
	struct descriptor *d;
	struct fw_iso_packet *p;
	dma_addr_t d_bus, page_bus;
	u32 z, header_z, length, rest;
2128
	int page, offset, packet_count, header_size;
S
Stefan Richter 已提交
2129

2130 2131 2132 2133
	/*
	 * FIXME: Cycle lost behavior should be configurable: lose
	 * packet, retransmit or terminate..
	 */
2134 2135 2136 2137

	p = packet;
	z = 2;

2138 2139 2140 2141
	/*
	 * The OHCI controller puts the status word in the header
	 * buffer too, so we need 4 extra bytes per packet.
	 */
2142 2143 2144
	packet_count = p->header_length / ctx->base.header_size;
	header_size = packet_count * (ctx->base.header_size + 4);

2145
	/* Get header size in number of descriptors. */
2146
	header_z = DIV_ROUND_UP(header_size, sizeof(*d));
2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158
	page     = payload >> PAGE_SHIFT;
	offset   = payload & ~PAGE_MASK;
	rest     = p->payload_length;

	/* FIXME: make packet-per-buffer/dual-buffer a context option */
	while (rest > 0) {
		d = context_get_descriptors(&ctx->context,
					    z + header_z, &d_bus);
		if (d == NULL)
			return -ENOMEM;

		db = (struct db_descriptor *) d;
2159 2160
		db->control = cpu_to_le16(DESCRIPTOR_STATUS |
					  DESCRIPTOR_BRANCH_ALWAYS);
2161
		db->first_size = cpu_to_le16(ctx->base.header_size + 4);
2162 2163 2164 2165 2166 2167
		if (p->skip && rest == p->payload_length) {
			db->control |= cpu_to_le16(DESCRIPTOR_WAIT);
			db->first_req_count = db->first_size;
		} else {
			db->first_req_count = cpu_to_le16(header_size);
		}
2168
		db->first_res_count = db->first_req_count;
2169
		db->first_buffer = cpu_to_le32(d_bus + sizeof(*db));
S
Stefan Richter 已提交
2170

2171 2172 2173
		if (p->skip && rest == p->payload_length)
			length = 4;
		else if (offset + rest < PAGE_SIZE)
2174 2175 2176 2177
			length = rest;
		else
			length = PAGE_SIZE - offset;

2178 2179
		db->second_req_count = cpu_to_le16(length);
		db->second_res_count = db->second_req_count;
2180 2181 2182
		page_bus = page_private(buffer->pages[page]);
		db->second_buffer = cpu_to_le32(page_bus + offset);

2183
		if (p->interrupt && length == rest)
2184
			db->control |= cpu_to_le16(DESCRIPTOR_IRQ_ALWAYS);
2185

2186 2187 2188
		context_append(&ctx->context, d, z, header_z);
		offset = (offset + length) & ~PAGE_MASK;
		rest -= length;
2189 2190
		if (offset == 0)
			page++;
2191 2192
	}

2193 2194
	return 0;
}
2195

2196 2197 2198 2199 2200 2201 2202 2203
static int
ohci_queue_iso_receive_packet_per_buffer(struct fw_iso_context *base,
					 struct fw_iso_packet *packet,
					 struct fw_iso_buffer *buffer,
					 unsigned long payload)
{
	struct iso_context *ctx = container_of(base, struct iso_context, base);
	struct descriptor *d = NULL, *pd = NULL;
2204
	struct fw_iso_packet *p = packet;
2205 2206
	dma_addr_t d_bus, page_bus;
	u32 z, header_z, rest;
2207 2208
	int i, j, length;
	int page, offset, packet_count, header_size, payload_per_buffer;
2209 2210 2211 2212 2213 2214

	/*
	 * The OHCI controller puts the status word in the
	 * buffer too, so we need 4 extra bytes per packet.
	 */
	packet_count = p->header_length / ctx->base.header_size;
2215
	header_size  = ctx->base.header_size + 4;
2216 2217 2218 2219 2220

	/* Get header size in number of descriptors. */
	header_z = DIV_ROUND_UP(header_size, sizeof(*d));
	page     = payload >> PAGE_SHIFT;
	offset   = payload & ~PAGE_MASK;
2221
	payload_per_buffer = p->payload_length / packet_count;
2222 2223 2224

	for (i = 0; i < packet_count; i++) {
		/* d points to the header descriptor */
2225
		z = DIV_ROUND_UP(payload_per_buffer + offset, PAGE_SIZE) + 1;
2226
		d = context_get_descriptors(&ctx->context,
2227
				z + header_z, &d_bus);
2228 2229 2230
		if (d == NULL)
			return -ENOMEM;

2231 2232 2233 2234
		d->control      = cpu_to_le16(DESCRIPTOR_STATUS |
					      DESCRIPTOR_INPUT_MORE);
		if (p->skip && i == 0)
			d->control |= cpu_to_le16(DESCRIPTOR_WAIT);
2235 2236
		d->req_count    = cpu_to_le16(header_size);
		d->res_count    = d->req_count;
2237
		d->transfer_status = 0;
2238 2239
		d->data_address = cpu_to_le32(d_bus + (z * sizeof(*d)));

2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261
		rest = payload_per_buffer;
		for (j = 1; j < z; j++) {
			pd = d + j;
			pd->control = cpu_to_le16(DESCRIPTOR_STATUS |
						  DESCRIPTOR_INPUT_MORE);

			if (offset + rest < PAGE_SIZE)
				length = rest;
			else
				length = PAGE_SIZE - offset;
			pd->req_count = cpu_to_le16(length);
			pd->res_count = pd->req_count;
			pd->transfer_status = 0;

			page_bus = page_private(buffer->pages[page]);
			pd->data_address = cpu_to_le32(page_bus + offset);

			offset = (offset + length) & ~PAGE_MASK;
			rest -= length;
			if (offset == 0)
				page++;
		}
2262 2263 2264
		pd->control = cpu_to_le16(DESCRIPTOR_STATUS |
					  DESCRIPTOR_INPUT_LAST |
					  DESCRIPTOR_BRANCH_ALWAYS);
2265
		if (p->interrupt && i == packet_count - 1)
2266 2267 2268 2269 2270 2271 2272 2273
			pd->control |= cpu_to_le16(DESCRIPTOR_IRQ_ALWAYS);

		context_append(&ctx->context, d, z, header_z);
	}

	return 0;
}

2274 2275 2276 2277 2278 2279
static int
ohci_queue_iso(struct fw_iso_context *base,
	       struct fw_iso_packet *packet,
	       struct fw_iso_buffer *buffer,
	       unsigned long payload)
{
2280
	struct iso_context *ctx = container_of(base, struct iso_context, base);
2281 2282
	unsigned long flags;
	int retval;
2283

2284
	spin_lock_irqsave(&ctx->context.ohci->lock, flags);
2285
	if (base->type == FW_ISO_CONTEXT_TRANSMIT)
2286
		retval = ohci_queue_iso_transmit(base, packet, buffer, payload);
2287
	else if (ctx->context.ohci->version >= OHCI_VERSION_1_1)
2288
		retval = ohci_queue_iso_receive_dualbuffer(base, packet,
2289
							 buffer, payload);
2290
	else
2291
		retval = ohci_queue_iso_receive_packet_per_buffer(base, packet,
2292 2293
								buffer,
								payload);
2294 2295 2296
	spin_unlock_irqrestore(&ctx->context.ohci->lock, flags);

	return retval;
2297 2298
}

2299
static const struct fw_card_driver ohci_driver = {
2300 2301 2302 2303 2304 2305
	.name			= ohci_driver_name,
	.enable			= ohci_enable,
	.update_phy_reg		= ohci_update_phy_reg,
	.set_config_rom		= ohci_set_config_rom,
	.send_request		= ohci_send_request,
	.send_response		= ohci_send_response,
2306
	.cancel_packet		= ohci_cancel_packet,
2307
	.enable_phys_dma	= ohci_enable_phys_dma,
2308
	.get_bus_time		= ohci_get_bus_time,
2309 2310 2311 2312

	.allocate_iso_context	= ohci_allocate_iso_context,
	.free_iso_context	= ohci_free_iso_context,
	.queue_iso		= ohci_queue_iso,
2313
	.start_iso		= ohci_start_iso,
2314
	.stop_iso		= ohci_stop_iso,
2315 2316
};

2317
#ifdef CONFIG_PPC_PMAC
2318 2319
static void ohci_pmac_on(struct pci_dev *dev)
{
2320 2321 2322 2323 2324 2325 2326 2327
	if (machine_is(powermac)) {
		struct device_node *ofn = pci_device_to_OF_node(dev);

		if (ofn) {
			pmac_call_feature(PMAC_FTR_1394_CABLE_POWER, ofn, 0, 1);
			pmac_call_feature(PMAC_FTR_1394_ENABLE, ofn, 0, 1);
		}
	}
2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343
}

static void ohci_pmac_off(struct pci_dev *dev)
{
	if (machine_is(powermac)) {
		struct device_node *ofn = pci_device_to_OF_node(dev);

		if (ofn) {
			pmac_call_feature(PMAC_FTR_1394_ENABLE, ofn, 0, 0);
			pmac_call_feature(PMAC_FTR_1394_CABLE_POWER, ofn, 0, 0);
		}
	}
}
#else
#define ohci_pmac_on(dev)
#define ohci_pmac_off(dev)
2344 2345
#endif /* CONFIG_PPC_PMAC */

2346 2347 2348 2349 2350 2351 2352 2353 2354
static int __devinit
pci_probe(struct pci_dev *dev, const struct pci_device_id *ent)
{
	struct fw_ohci *ohci;
	u32 bus_options, max_receive, link_speed;
	u64 guid;
	int err;
	size_t size;

2355
	ohci = kzalloc(sizeof(*ohci), GFP_KERNEL);
2356 2357 2358 2359 2360 2361 2362
	if (ohci == NULL) {
		fw_error("Could not malloc fw_ohci data.\n");
		return -ENOMEM;
	}

	fw_card_initialize(&ohci->card, &ohci_driver, &dev->dev);

2363 2364
	ohci_pmac_on(dev);

2365 2366
	err = pci_enable_device(dev);
	if (err) {
2367
		fw_error("Failed to enable OHCI hardware.\n");
2368
		goto fail_free;
2369 2370 2371 2372 2373 2374
	}

	pci_set_master(dev);
	pci_write_config_dword(dev, OHCI1394_PCI_HCI_Control, 0);
	pci_set_drvdata(dev, ohci);

2375 2376 2377 2378
#if defined(CONFIG_PPC_PMAC) && defined(CONFIG_PPC32)
	ohci->old_uninorth = dev->vendor == PCI_VENDOR_ID_APPLE &&
			     dev->device == PCI_DEVICE_ID_APPLE_UNI_N_FW;
#endif
2379 2380
	ohci->bus_reset_packet_quirk = dev->vendor == PCI_VENDOR_ID_TI;

2381 2382 2383 2384 2385
	spin_lock_init(&ohci->lock);

	tasklet_init(&ohci->bus_reset_tasklet,
		     bus_reset_tasklet, (unsigned long)ohci);

2386 2387
	err = pci_request_region(dev, 0, ohci_driver_name);
	if (err) {
2388
		fw_error("MMIO resource unavailable\n");
2389
		goto fail_disable;
2390 2391 2392 2393 2394
	}

	ohci->registers = pci_iomap(dev, 0, OHCI1394_REGISTER_SIZE);
	if (ohci->registers == NULL) {
		fw_error("Failed to remap registers\n");
2395 2396
		err = -ENXIO;
		goto fail_iomem;
2397 2398 2399 2400 2401 2402 2403 2404
	}

	ar_context_init(&ohci->ar_request_ctx, ohci,
			OHCI1394_AsReqRcvContextControlSet);

	ar_context_init(&ohci->ar_response_ctx, ohci,
			OHCI1394_AsRspRcvContextControlSet);

2405
	context_init(&ohci->at_request_ctx, ohci,
2406
		     OHCI1394_AsReqTrContextControlSet, handle_at_packet);
2407

2408
	context_init(&ohci->at_response_ctx, ohci,
2409
		     OHCI1394_AsRspTrContextControlSet, handle_at_packet);
2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424

	reg_write(ohci, OHCI1394_IsoRecvIntMaskSet, ~0);
	ohci->it_context_mask = reg_read(ohci, OHCI1394_IsoRecvIntMaskSet);
	reg_write(ohci, OHCI1394_IsoRecvIntMaskClear, ~0);
	size = sizeof(struct iso_context) * hweight32(ohci->it_context_mask);
	ohci->it_context_list = kzalloc(size, GFP_KERNEL);

	reg_write(ohci, OHCI1394_IsoXmitIntMaskSet, ~0);
	ohci->ir_context_mask = reg_read(ohci, OHCI1394_IsoXmitIntMaskSet);
	reg_write(ohci, OHCI1394_IsoXmitIntMaskClear, ~0);
	size = sizeof(struct iso_context) * hweight32(ohci->ir_context_mask);
	ohci->ir_context_list = kzalloc(size, GFP_KERNEL);

	if (ohci->it_context_list == NULL || ohci->ir_context_list == NULL) {
		fw_error("Out of memory for it/ir contexts.\n");
2425 2426
		err = -ENOMEM;
		goto fail_registers;
2427 2428 2429 2430 2431 2432 2433 2434 2435
	}

	/* self-id dma buffer allocation */
	ohci->self_id_cpu = dma_alloc_coherent(ohci->card.device,
					       SELF_ID_BUF_SIZE,
					       &ohci->self_id_bus,
					       GFP_KERNEL);
	if (ohci->self_id_cpu == NULL) {
		fw_error("Out of memory for self ID buffer.\n");
2436 2437
		err = -ENOMEM;
		goto fail_registers;
2438 2439 2440 2441 2442 2443 2444 2445
	}

	bus_options = reg_read(ohci, OHCI1394_BusOptions);
	max_receive = (bus_options >> 12) & 0xf;
	link_speed = bus_options & 0x7;
	guid = ((u64) reg_read(ohci, OHCI1394_GUIDHi) << 32) |
		reg_read(ohci, OHCI1394_GUIDLo);

2446 2447 2448
	err = fw_card_add(&ohci->card, max_receive, link_speed, guid);
	if (err < 0)
		goto fail_self_id;
2449

2450
	ohci->version = reg_read(ohci, OHCI1394_Version) & 0x00ff00ff;
2451
	fw_notify("Added fw-ohci device %s, OHCI version %x.%x\n",
2452
		  dev->dev.bus_id, ohci->version >> 16, ohci->version & 0xff);
2453
	return 0;
2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465

 fail_self_id:
	dma_free_coherent(ohci->card.device, SELF_ID_BUF_SIZE,
			  ohci->self_id_cpu, ohci->self_id_bus);
 fail_registers:
	kfree(ohci->it_context_list);
	kfree(ohci->ir_context_list);
	pci_iounmap(dev, ohci->registers);
 fail_iomem:
	pci_release_region(dev, 0);
 fail_disable:
	pci_disable_device(dev);
2466 2467
 fail_free:
	kfree(&ohci->card);
2468
	ohci_pmac_off(dev);
2469 2470

	return err;
2471 2472 2473 2474 2475 2476 2477
}

static void pci_remove(struct pci_dev *dev)
{
	struct fw_ohci *ohci;

	ohci = pci_get_drvdata(dev);
2478 2479
	reg_write(ohci, OHCI1394_IntMaskClear, ~0);
	flush_writes(ohci);
2480 2481
	fw_core_remove_card(&ohci->card);

2482 2483 2484 2485
	/*
	 * FIXME: Fail all pending packets here, now that the upper
	 * layers can't queue any more.
	 */
2486 2487 2488

	software_reset(ohci);
	free_irq(dev->irq, ohci);
2489 2490 2491 2492 2493 2494 2495
	dma_free_coherent(ohci->card.device, SELF_ID_BUF_SIZE,
			  ohci->self_id_cpu, ohci->self_id_bus);
	kfree(ohci->it_context_list);
	kfree(ohci->ir_context_list);
	pci_iounmap(dev, ohci->registers);
	pci_release_region(dev, 0);
	pci_disable_device(dev);
2496
	kfree(&ohci->card);
2497
	ohci_pmac_off(dev);
2498

2499 2500 2501
	fw_notify("Removed fw-ohci device.\n");
}

2502
#ifdef CONFIG_PM
2503
static int pci_suspend(struct pci_dev *dev, pm_message_t state)
2504
{
2505
	struct fw_ohci *ohci = pci_get_drvdata(dev);
2506 2507 2508
	int err;

	software_reset(ohci);
2509 2510
	free_irq(dev->irq, ohci);
	err = pci_save_state(dev);
2511
	if (err) {
2512
		fw_error("pci_save_state failed\n");
2513 2514
		return err;
	}
2515
	err = pci_set_power_state(dev, pci_choose_state(dev, state));
2516 2517
	if (err)
		fw_error("pci_set_power_state failed with %d\n", err);
2518
	ohci_pmac_off(dev);
2519

2520 2521 2522
	return 0;
}

2523
static int pci_resume(struct pci_dev *dev)
2524
{
2525
	struct fw_ohci *ohci = pci_get_drvdata(dev);
2526 2527
	int err;

2528 2529 2530 2531
	ohci_pmac_on(dev);
	pci_set_power_state(dev, PCI_D0);
	pci_restore_state(dev);
	err = pci_enable_device(dev);
2532
	if (err) {
2533
		fw_error("pci_enable_device failed\n");
2534 2535 2536
		return err;
	}

2537
	return ohci_enable(&ohci->card, NULL, 0);
2538 2539 2540
}
#endif

2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552
static struct pci_device_id pci_table[] = {
	{ PCI_DEVICE_CLASS(PCI_CLASS_SERIAL_FIREWIRE_OHCI, ~0) },
	{ }
};

MODULE_DEVICE_TABLE(pci, pci_table);

static struct pci_driver fw_ohci_pci_driver = {
	.name		= ohci_driver_name,
	.id_table	= pci_table,
	.probe		= pci_probe,
	.remove		= pci_remove,
2553 2554 2555 2556
#ifdef CONFIG_PM
	.resume		= pci_resume,
	.suspend	= pci_suspend,
#endif
2557 2558 2559 2560 2561 2562
};

MODULE_AUTHOR("Kristian Hoegsberg <krh@bitplanet.net>");
MODULE_DESCRIPTION("Driver for PCI OHCI IEEE1394 controllers");
MODULE_LICENSE("GPL");

2563 2564 2565 2566 2567
/* Provide a module alias so root-on-sbp2 initrds don't break. */
#ifndef CONFIG_IEEE1394_OHCI1394_MODULE
MODULE_ALIAS("ohci1394");
#endif

2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579
static int __init fw_ohci_init(void)
{
	return pci_register_driver(&fw_ohci_pci_driver);
}

static void __exit fw_ohci_cleanup(void)
{
	pci_unregister_driver(&fw_ohci_pci_driver);
}

module_init(fw_ohci_init);
module_exit(fw_ohci_cleanup);