fw-ohci.c 58.6 KB
Newer Older
1 2
/*
 * Driver for OHCI 1394 controllers
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
 *
 * Copyright (C) 2003-2006 Kristian Hoegsberg <krh@bitplanet.net>
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software Foundation,
 * Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
 */

21
#include <linux/compiler.h>
22
#include <linux/delay.h>
A
Andrew Morton 已提交
23
#include <linux/dma-mapping.h>
S
Stefan Richter 已提交
24
#include <linux/gfp.h>
25 26 27
#include <linux/init.h>
#include <linux/interrupt.h>
#include <linux/kernel.h>
A
Al Viro 已提交
28
#include <linux/mm.h>
29 30
#include <linux/module.h>
#include <linux/pci.h>
S
Stefan Richter 已提交
31
#include <linux/spinlock.h>
A
Andrew Morton 已提交
32

S
Stefan Richter 已提交
33
#include <asm/page.h>
34
#include <asm/system.h>
35 36

#include "fw-ohci.h"
37
#include "fw-transaction.h"
38

39 40 41 42 43 44 45 46 47 48 49 50 51
#define DESCRIPTOR_OUTPUT_MORE		0
#define DESCRIPTOR_OUTPUT_LAST		(1 << 12)
#define DESCRIPTOR_INPUT_MORE		(2 << 12)
#define DESCRIPTOR_INPUT_LAST		(3 << 12)
#define DESCRIPTOR_STATUS		(1 << 11)
#define DESCRIPTOR_KEY_IMMEDIATE	(2 << 8)
#define DESCRIPTOR_PING			(1 << 7)
#define DESCRIPTOR_YY			(1 << 6)
#define DESCRIPTOR_NO_IRQ		(0 << 4)
#define DESCRIPTOR_IRQ_ERROR		(1 << 4)
#define DESCRIPTOR_IRQ_ALWAYS		(3 << 4)
#define DESCRIPTOR_BRANCH_ALWAYS	(3 << 2)
#define DESCRIPTOR_WAIT			(3 << 0)
52 53 54 55 56 57 58 59 60 61

struct descriptor {
	__le16 req_count;
	__le16 control;
	__le32 data_address;
	__le32 branch_address;
	__le16 res_count;
	__le16 transfer_status;
} __attribute__((aligned(16)));

62 63 64 65 66 67 68 69 70 71 72 73 74 75
struct db_descriptor {
	__le16 first_size;
	__le16 control;
	__le16 second_req_count;
	__le16 first_req_count;
	__le32 branch_address;
	__le16 second_res_count;
	__le16 first_res_count;
	__le32 reserved0;
	__le32 first_buffer;
	__le32 second_buffer;
	__le32 reserved1;
} __attribute__((aligned(16)));

76 77 78 79
#define CONTROL_SET(regs)	(regs)
#define CONTROL_CLEAR(regs)	((regs) + 4)
#define COMMAND_PTR(regs)	((regs) + 12)
#define CONTEXT_MATCH(regs)	((regs) + 16)
80

81
struct ar_buffer {
82
	struct descriptor descriptor;
83 84 85
	struct ar_buffer *next;
	__le32 data[0];
};
86

87 88 89 90 91
struct ar_context {
	struct fw_ohci *ohci;
	struct ar_buffer *current_buffer;
	struct ar_buffer *last_buffer;
	void *pointer;
92
	u32 regs;
93 94 95
	struct tasklet_struct tasklet;
};

96 97 98 99 100 101
struct context;

typedef int (*descriptor_callback_t)(struct context *ctx,
				     struct descriptor *d,
				     struct descriptor *last);
struct context {
S
Stefan Richter 已提交
102
	struct fw_ohci *ohci;
103
	u32 regs;
S
Stefan Richter 已提交
104

105 106 107 108 109 110 111 112 113 114
	struct descriptor *buffer;
	dma_addr_t buffer_bus;
	size_t buffer_size;
	struct descriptor *head_descriptor;
	struct descriptor *tail_descriptor;
	struct descriptor *tail_descriptor_last;
	struct descriptor *prev_descriptor;

	descriptor_callback_t callback;

S
Stefan Richter 已提交
115
	struct tasklet_struct tasklet;
116 117
};

118 119 120 121 122 123
#define IT_HEADER_SY(v)          ((v) <<  0)
#define IT_HEADER_TCODE(v)       ((v) <<  4)
#define IT_HEADER_CHANNEL(v)     ((v) <<  8)
#define IT_HEADER_TAG(v)         ((v) << 14)
#define IT_HEADER_SPEED(v)       ((v) << 16)
#define IT_HEADER_DATA_LENGTH(v) ((v) << 16)
124 125 126

struct iso_context {
	struct fw_iso_context base;
127
	struct context context;
128
	int excess_bytes;
129 130
	void *header;
	size_t header_length;
131 132 133 134 135 136 137
};

#define CONFIG_ROM_SIZE 1024

struct fw_ohci {
	struct fw_card card;

138
	u32 version;
139 140 141 142
	__iomem char *registers;
	dma_addr_t self_id_bus;
	__le32 *self_id_cpu;
	struct tasklet_struct bus_reset_tasklet;
143
	int node_id;
144 145
	int generation;
	int request_generation;
146
	u32 bus_seconds;
147

148 149 150 151
	/*
	 * Spinlock for accessing fw_ohci data.  Never call out of
	 * this driver with this lock held.
	 */
152 153 154 155 156 157 158 159 160 161 162 163
	spinlock_t lock;
	u32 self_id_buffer[512];

	/* Config rom buffers */
	__be32 *config_rom;
	dma_addr_t config_rom_bus;
	__be32 *next_config_rom;
	dma_addr_t next_config_rom_bus;
	u32 next_header;

	struct ar_context ar_request_ctx;
	struct ar_context ar_response_ctx;
164 165
	struct context at_request_ctx;
	struct context at_response_ctx;
166 167 168 169 170 171 172

	u32 it_context_mask;
	struct iso_context *it_context_list;
	u32 ir_context_mask;
	struct iso_context *ir_context_list;
};

A
Adrian Bunk 已提交
173
static inline struct fw_ohci *fw_ohci(struct fw_card *card)
174 175 176 177
{
	return container_of(card, struct fw_ohci, card);
}

178 179 180 181 182 183
#define IT_CONTEXT_CYCLE_MATCH_ENABLE	0x80000000
#define IR_CONTEXT_BUFFER_FILL		0x80000000
#define IR_CONTEXT_ISOCH_HEADER		0x40000000
#define IR_CONTEXT_CYCLE_MATCH_ENABLE	0x20000000
#define IR_CONTEXT_MULTI_CHANNEL_MODE	0x10000000
#define IR_CONTEXT_DUAL_BUFFER_MODE	0x08000000
184 185 186 187 188 189 190 191 192 193 194 195 196 197 198

#define CONTEXT_RUN	0x8000
#define CONTEXT_WAKE	0x1000
#define CONTEXT_DEAD	0x0800
#define CONTEXT_ACTIVE	0x0400

#define OHCI1394_MAX_AT_REQ_RETRIES	0x2
#define OHCI1394_MAX_AT_RESP_RETRIES	0x2
#define OHCI1394_MAX_PHYS_RESP_RETRIES	0x8

#define FW_OHCI_MAJOR			240
#define OHCI1394_REGISTER_SIZE		0x800
#define OHCI_LOOP_COUNT			500
#define OHCI1394_PCI_HCI_Control	0x40
#define SELF_ID_BUF_SIZE		0x800
199
#define OHCI_TCODE_PHY_PACKET		0x0e
200
#define OHCI_VERSION_1_1		0x010010
201 202
#define ISO_BUFFER_SIZE			(64 * 1024)
#define AT_BUFFER_SIZE			4096
203

204 205
static char ohci_driver_name[] = KBUILD_MODNAME;

A
Adrian Bunk 已提交
206
static inline void reg_write(const struct fw_ohci *ohci, int offset, u32 data)
207 208 209 210
{
	writel(data, ohci->registers + offset);
}

A
Adrian Bunk 已提交
211
static inline u32 reg_read(const struct fw_ohci *ohci, int offset)
212 213 214 215
{
	return readl(ohci->registers + offset);
}

A
Adrian Bunk 已提交
216
static inline void flush_writes(const struct fw_ohci *ohci)
217 218 219 220 221 222 223 224 225 226 227 228 229
{
	/* Do a dummy read to flush writes. */
	reg_read(ohci, OHCI1394_Version);
}

static int
ohci_update_phy_reg(struct fw_card *card, int addr,
		    int clear_bits, int set_bits)
{
	struct fw_ohci *ohci = fw_ohci(card);
	u32 val, old;

	reg_write(ohci, OHCI1394_PhyControl, OHCI1394_PhyControl_Read(addr));
230
	flush_writes(ohci);
231 232 233 234 235 236 237 238 239 240 241 242 243 244 245
	msleep(2);
	val = reg_read(ohci, OHCI1394_PhyControl);
	if ((val & OHCI1394_PhyControl_ReadDone) == 0) {
		fw_error("failed to set phy reg bits.\n");
		return -EBUSY;
	}

	old = OHCI1394_PhyControl_ReadData(val);
	old = (old & ~clear_bits) | set_bits;
	reg_write(ohci, OHCI1394_PhyControl,
		  OHCI1394_PhyControl_Write(addr, old));

	return 0;
}

246
static int ar_context_add_page(struct ar_context *ctx)
247
{
248 249 250 251 252 253 254 255 256 257 258 259 260 261 262
	struct device *dev = ctx->ohci->card.device;
	struct ar_buffer *ab;
	dma_addr_t ab_bus;
	size_t offset;

	ab = (struct ar_buffer *) __get_free_page(GFP_ATOMIC);
	if (ab == NULL)
		return -ENOMEM;

	ab_bus = dma_map_single(dev, ab, PAGE_SIZE, DMA_BIDIRECTIONAL);
	if (dma_mapping_error(ab_bus)) {
		free_page((unsigned long) ab);
		return -ENOMEM;
	}

263
	memset(&ab->descriptor, 0, sizeof(ab->descriptor));
264 265 266
	ab->descriptor.control        = cpu_to_le16(DESCRIPTOR_INPUT_MORE |
						    DESCRIPTOR_STATUS |
						    DESCRIPTOR_BRANCH_ALWAYS);
267 268 269 270 271 272 273 274
	offset = offsetof(struct ar_buffer, data);
	ab->descriptor.req_count      = cpu_to_le16(PAGE_SIZE - offset);
	ab->descriptor.data_address   = cpu_to_le32(ab_bus + offset);
	ab->descriptor.res_count      = cpu_to_le16(PAGE_SIZE - offset);
	ab->descriptor.branch_address = 0;

	dma_sync_single_for_device(dev, ab_bus, PAGE_SIZE, DMA_BIDIRECTIONAL);

275
	ctx->last_buffer->descriptor.branch_address = cpu_to_le32(ab_bus | 1);
276 277 278
	ctx->last_buffer->next = ab;
	ctx->last_buffer = ab;

279
	reg_write(ctx->ohci, CONTROL_SET(ctx->regs), CONTEXT_WAKE);
280
	flush_writes(ctx->ohci);
281 282

	return 0;
283 284
}

285
static __le32 *handle_ar_packet(struct ar_context *ctx, __le32 *buffer)
286 287
{
	struct fw_ohci *ohci = ctx->ohci;
288 289 290
	struct fw_packet p;
	u32 status, length, tcode;

291 292 293
	p.header[0] = le32_to_cpu(buffer[0]);
	p.header[1] = le32_to_cpu(buffer[1]);
	p.header[2] = le32_to_cpu(buffer[2]);
294 295 296 297 298

	tcode = (p.header[0] >> 4) & 0x0f;
	switch (tcode) {
	case TCODE_WRITE_QUADLET_REQUEST:
	case TCODE_READ_QUADLET_RESPONSE:
299
		p.header[3] = (__force __u32) buffer[3];
300
		p.header_length = 16;
301
		p.payload_length = 0;
302 303 304
		break;

	case TCODE_READ_BLOCK_REQUEST :
305 306 307 308 309 310
		p.header[3] = le32_to_cpu(buffer[3]);
		p.header_length = 16;
		p.payload_length = 0;
		break;

	case TCODE_WRITE_BLOCK_REQUEST:
311 312 313
	case TCODE_READ_BLOCK_RESPONSE:
	case TCODE_LOCK_REQUEST:
	case TCODE_LOCK_RESPONSE:
314
		p.header[3] = le32_to_cpu(buffer[3]);
315
		p.header_length = 16;
316
		p.payload_length = p.header[3] >> 16;
317 318 319 320
		break;

	case TCODE_WRITE_RESPONSE:
	case TCODE_READ_QUADLET_REQUEST:
321
	case OHCI_TCODE_PHY_PACKET:
322
		p.header_length = 12;
323
		p.payload_length = 0;
324 325
		break;
	}
326

327 328 329 330 331 332 333 334 335 336
	p.payload = (void *) buffer + p.header_length;

	/* FIXME: What to do about evt_* errors? */
	length = (p.header_length + p.payload_length + 3) / 4;
	status = le32_to_cpu(buffer[length]);

	p.ack        = ((status >> 16) & 0x1f) - 16;
	p.speed      = (status >> 21) & 0x7;
	p.timestamp  = status & 0xffff;
	p.generation = ohci->request_generation;
337

338 339
	/*
	 * The OHCI bus reset handler synthesizes a phy packet with
340 341 342 343 344
	 * the new generation number when a bus reset happens (see
	 * section 8.4.2.3).  This helps us determine when a request
	 * was received and make sure we send the response in the same
	 * generation.  We only need this for requests; for responses
	 * we use the unique tlabel for finding the matching
345 346
	 * request.
	 */
347

348
	if (p.ack + 16 == 0x09)
349
		ohci->request_generation = (buffer[2] >> 16) & 0xff;
350
	else if (ctx == &ohci->ar_request_ctx)
351
		fw_core_handle_request(&ohci->card, &p);
352
	else
353
		fw_core_handle_response(&ohci->card, &p);
354

355 356
	return buffer + length + 1;
}
357

358 359 360 361 362 363 364 365 366 367 368 369 370 371
static void ar_context_tasklet(unsigned long data)
{
	struct ar_context *ctx = (struct ar_context *)data;
	struct fw_ohci *ohci = ctx->ohci;
	struct ar_buffer *ab;
	struct descriptor *d;
	void *buffer, *end;

	ab = ctx->current_buffer;
	d = &ab->descriptor;

	if (d->res_count == 0) {
		size_t size, rest, offset;

372 373
		/*
		 * This descriptor is finished and we may have a
374
		 * packet split across this and the next buffer. We
375 376
		 * reuse the page for reassembling the split packet.
		 */
377 378 379

		offset = offsetof(struct ar_buffer, data);
		dma_unmap_single(ohci->card.device,
380 381
			le32_to_cpu(ab->descriptor.data_address) - offset,
			PAGE_SIZE, DMA_BIDIRECTIONAL);
382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406

		buffer = ab;
		ab = ab->next;
		d = &ab->descriptor;
		size = buffer + PAGE_SIZE - ctx->pointer;
		rest = le16_to_cpu(d->req_count) - le16_to_cpu(d->res_count);
		memmove(buffer, ctx->pointer, size);
		memcpy(buffer + size, ab->data, rest);
		ctx->current_buffer = ab;
		ctx->pointer = (void *) ab->data + rest;
		end = buffer + size + rest;

		while (buffer < end)
			buffer = handle_ar_packet(ctx, buffer);

		free_page((unsigned long)buffer);
		ar_context_add_page(ctx);
	} else {
		buffer = ctx->pointer;
		ctx->pointer = end =
			(void *) ab + PAGE_SIZE - le16_to_cpu(d->res_count);

		while (buffer < end)
			buffer = handle_ar_packet(ctx, buffer);
	}
407 408 409
}

static int
410
ar_context_init(struct ar_context *ctx, struct fw_ohci *ohci, u32 regs)
411
{
412
	struct ar_buffer ab;
413

414 415 416
	ctx->regs        = regs;
	ctx->ohci        = ohci;
	ctx->last_buffer = &ab;
417 418
	tasklet_init(&ctx->tasklet, ar_context_tasklet, (unsigned long)ctx);

419 420 421 422 423
	ar_context_add_page(ctx);
	ar_context_add_page(ctx);
	ctx->current_buffer = ab.next;
	ctx->pointer = ctx->current_buffer->data;

424 425 426 427 428 429 430 431 432 433
	return 0;
}

static void ar_context_run(struct ar_context *ctx)
{
	struct ar_buffer *ab = ctx->current_buffer;
	dma_addr_t ab_bus;
	size_t offset;

	offset = offsetof(struct ar_buffer, data);
434
	ab_bus = le32_to_cpu(ab->descriptor.data_address) - offset;
435 436

	reg_write(ctx->ohci, COMMAND_PTR(ctx->regs), ab_bus | 1);
437
	reg_write(ctx->ohci, CONTROL_SET(ctx->regs), CONTEXT_RUN);
438
	flush_writes(ctx->ohci);
439
}
S
Stefan Richter 已提交
440

441 442 443 444 445 446 447 448 449 450 451 452 453 454 455
static struct descriptor *
find_branch_descriptor(struct descriptor *d, int z)
{
	int b, key;

	b   = (le16_to_cpu(d->control) & DESCRIPTOR_BRANCH_ALWAYS) >> 2;
	key = (le16_to_cpu(d->control) & DESCRIPTOR_KEY_IMMEDIATE) >> 8;

	/* figure out which descriptor the branch address goes in */
	if (z == 2 && (b == 3 || key == 2))
		return d;
	else
		return d + z - 1;
}

456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472
static void context_tasklet(unsigned long data)
{
	struct context *ctx = (struct context *) data;
	struct fw_ohci *ohci = ctx->ohci;
	struct descriptor *d, *last;
	u32 address;
	int z;

	dma_sync_single_for_cpu(ohci->card.device, ctx->buffer_bus,
				ctx->buffer_size, DMA_TO_DEVICE);

	d    = ctx->tail_descriptor;
	last = ctx->tail_descriptor_last;

	while (last->branch_address != 0) {
		address = le32_to_cpu(last->branch_address);
		z = address & 0xf;
473
		d = ctx->buffer + (address - ctx->buffer_bus) / sizeof(*d);
474
		last = find_branch_descriptor(d, z);
475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511

		if (!ctx->callback(ctx, d, last))
			break;

		ctx->tail_descriptor      = d;
		ctx->tail_descriptor_last = last;
	}
}

static int
context_init(struct context *ctx, struct fw_ohci *ohci,
	     size_t buffer_size, u32 regs,
	     descriptor_callback_t callback)
{
	ctx->ohci = ohci;
	ctx->regs = regs;
	ctx->buffer_size = buffer_size;
	ctx->buffer = kmalloc(buffer_size, GFP_KERNEL);
	if (ctx->buffer == NULL)
		return -ENOMEM;

	tasklet_init(&ctx->tasklet, context_tasklet, (unsigned long)ctx);
	ctx->callback = callback;

	ctx->buffer_bus =
		dma_map_single(ohci->card.device, ctx->buffer,
			       buffer_size, DMA_TO_DEVICE);
	if (dma_mapping_error(ctx->buffer_bus)) {
		kfree(ctx->buffer);
		return -ENOMEM;
	}

	ctx->head_descriptor      = ctx->buffer;
	ctx->prev_descriptor      = ctx->buffer;
	ctx->tail_descriptor      = ctx->buffer;
	ctx->tail_descriptor_last = ctx->buffer;

512 513
	/*
	 * We put a dummy descriptor in the buffer that has a NULL
514 515 516
	 * branch address and looks like it's been sent.  That way we
	 * have a descriptor to append DMA programs to.  Also, the
	 * ring buffer invariant is that it always has at least one
517 518
	 * element so that head == tail means buffer full.
	 */
519

520
	memset(ctx->head_descriptor, 0, sizeof(*ctx->head_descriptor));
521
	ctx->head_descriptor->control = cpu_to_le16(DESCRIPTOR_OUTPUT_LAST);
522 523 524 525 526 527
	ctx->head_descriptor->transfer_status = cpu_to_le16(0x8011);
	ctx->head_descriptor++;

	return 0;
}

528
static void
529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544
context_release(struct context *ctx)
{
	struct fw_card *card = &ctx->ohci->card;

	dma_unmap_single(card->device, ctx->buffer_bus,
			 ctx->buffer_size, DMA_TO_DEVICE);
	kfree(ctx->buffer);
}

static struct descriptor *
context_get_descriptors(struct context *ctx, int z, dma_addr_t *d_bus)
{
	struct descriptor *d, *tail, *end;

	d = ctx->head_descriptor;
	tail = ctx->tail_descriptor;
545
	end = ctx->buffer + ctx->buffer_size / sizeof(*d);
546 547 548 549 550 551 552 553 554 555 556 557 558

	if (d + z <= tail) {
		goto has_space;
	} else if (d > tail && d + z <= end) {
		goto has_space;
	} else if (d > tail && ctx->buffer + z <= tail) {
		d = ctx->buffer;
		goto has_space;
	}

	return NULL;

 has_space:
559 560
	memset(d, 0, z * sizeof(*d));
	*d_bus = ctx->buffer_bus + (d - ctx->buffer) * sizeof(*d);
561 562 563 564

	return d;
}

565
static void context_run(struct context *ctx, u32 extra)
566 567 568
{
	struct fw_ohci *ohci = ctx->ohci;

569
	reg_write(ohci, COMMAND_PTR(ctx->regs),
570
		  le32_to_cpu(ctx->tail_descriptor_last->branch_address));
571 572
	reg_write(ohci, CONTROL_CLEAR(ctx->regs), ~0);
	reg_write(ohci, CONTROL_SET(ctx->regs), CONTEXT_RUN | extra);
573 574 575 576 577 578 579 580
	flush_writes(ohci);
}

static void context_append(struct context *ctx,
			   struct descriptor *d, int z, int extra)
{
	dma_addr_t d_bus;

581
	d_bus = ctx->buffer_bus + (d - ctx->buffer) * sizeof(*d);
582 583 584

	ctx->head_descriptor = d + z + extra;
	ctx->prev_descriptor->branch_address = cpu_to_le32(d_bus | z);
585
	ctx->prev_descriptor = find_branch_descriptor(d, z);
586 587 588 589

	dma_sync_single_for_device(ctx->ohci->card.device, ctx->buffer_bus,
				   ctx->buffer_size, DMA_TO_DEVICE);

590
	reg_write(ctx->ohci, CONTROL_SET(ctx->regs), CONTEXT_WAKE);
591 592 593 594 595 596
	flush_writes(ctx->ohci);
}

static void context_stop(struct context *ctx)
{
	u32 reg;
597
	int i;
598

599
	reg_write(ctx->ohci, CONTROL_CLEAR(ctx->regs), CONTEXT_RUN);
600
	flush_writes(ctx->ohci);
601

602
	for (i = 0; i < 10; i++) {
603
		reg = reg_read(ctx->ohci, CONTROL_SET(ctx->regs));
604 605 606 607
		if ((reg & CONTEXT_ACTIVE) == 0)
			break;

		fw_notify("context_stop: still active (0x%08x)\n", reg);
608
		mdelay(1);
609
	}
610
}
611

612 613 614
struct driver_data {
	struct fw_packet *packet;
};
615

616 617
/*
 * This function apppends a packet to the DMA queue for transmission.
618
 * Must always be called with the ochi->lock held to ensure proper
619 620
 * generation handling and locking around packet queue manipulation.
 */
621 622
static int
at_context_queue_packet(struct context *ctx, struct fw_packet *packet)
623 624
{
	struct fw_ohci *ohci = ctx->ohci;
625
	dma_addr_t d_bus, uninitialized_var(payload_bus);
626 627 628
	struct driver_data *driver_data;
	struct descriptor *d, *last;
	__le32 *header;
629
	int z, tcode;
630
	u32 reg;
631

632 633 634 635
	d = context_get_descriptors(ctx, 4, &d_bus);
	if (d == NULL) {
		packet->ack = RCODE_SEND_ERROR;
		return -1;
636 637
	}

638
	d[0].control   = cpu_to_le16(DESCRIPTOR_KEY_IMMEDIATE);
639 640
	d[0].res_count = cpu_to_le16(packet->timestamp);

641 642
	/*
	 * The DMA format for asyncronous link packets is different
643 644
	 * from the IEEE1394 layout, so shift the fields around
	 * accordingly.  If header_length is 8, it's a PHY packet, to
645 646
	 * which we need to prepend an extra quadlet.
	 */
647 648

	header = (__le32 *) &d[1];
649
	if (packet->header_length > 8) {
650 651 652 653 654
		header[0] = cpu_to_le32((packet->header[0] & 0xffff) |
					(packet->speed << 16));
		header[1] = cpu_to_le32((packet->header[1] & 0xffff) |
					(packet->header[0] & 0xffff0000));
		header[2] = cpu_to_le32(packet->header[2]);
655 656 657

		tcode = (packet->header[0] >> 4) & 0x0f;
		if (TCODE_IS_BLOCK_PACKET(tcode))
658
			header[3] = cpu_to_le32(packet->header[3]);
659
		else
660 661 662
			header[3] = (__force __le32) packet->header[3];

		d[0].req_count = cpu_to_le16(packet->header_length);
663
	} else {
664 665 666 667 668
		header[0] = cpu_to_le32((OHCI1394_phy_tcode << 4) |
					(packet->speed << 16));
		header[1] = cpu_to_le32(packet->header[0]);
		header[2] = cpu_to_le32(packet->header[1]);
		d[0].req_count = cpu_to_le16(12);
669 670
	}

671 672
	driver_data = (struct driver_data *) &d[3];
	driver_data->packet = packet;
673
	packet->driver_data = driver_data;
674

675 676 677 678 679 680 681 682 683 684 685 686 687
	if (packet->payload_length > 0) {
		payload_bus =
			dma_map_single(ohci->card.device, packet->payload,
				       packet->payload_length, DMA_TO_DEVICE);
		if (dma_mapping_error(payload_bus)) {
			packet->ack = RCODE_SEND_ERROR;
			return -1;
		}

		d[2].req_count    = cpu_to_le16(packet->payload_length);
		d[2].data_address = cpu_to_le32(payload_bus);
		last = &d[2];
		z = 3;
688
	} else {
689 690
		last = &d[0];
		z = 2;
691 692
	}

693 694 695
	last->control |= cpu_to_le16(DESCRIPTOR_OUTPUT_LAST |
				     DESCRIPTOR_IRQ_ALWAYS |
				     DESCRIPTOR_BRANCH_ALWAYS);
696

697 698
	/* FIXME: Document how the locking works. */
	if (ohci->generation != packet->generation) {
699 700 701
		if (packet->payload_length > 0)
			dma_unmap_single(ohci->card.device, payload_bus,
					 packet->payload_length, DMA_TO_DEVICE);
702 703 704 705 706
		packet->ack = RCODE_GENERATION;
		return -1;
	}

	context_append(ctx, d, z, 4 - z);
707

708
	/* If the context isn't already running, start it up. */
709
	reg = reg_read(ctx->ohci, CONTROL_SET(ctx->regs));
710
	if ((reg & CONTEXT_RUN) == 0)
711 712 713
		context_run(ctx, 0);

	return 0;
714 715
}

716 717 718
static int handle_at_packet(struct context *context,
			    struct descriptor *d,
			    struct descriptor *last)
719
{
720
	struct driver_data *driver_data;
721
	struct fw_packet *packet;
722 723
	struct fw_ohci *ohci = context->ohci;
	dma_addr_t payload_bus;
724 725
	int evt;

726 727 728
	if (last->transfer_status == 0)
		/* This descriptor isn't done yet, stop iteration. */
		return 0;
729

730 731 732 733 734
	driver_data = (struct driver_data *) &d[3];
	packet = driver_data->packet;
	if (packet == NULL)
		/* This packet was cancelled, just continue. */
		return 1;
735

736 737 738
	payload_bus = le32_to_cpu(last->data_address);
	if (payload_bus != 0)
		dma_unmap_single(ohci->card.device, payload_bus,
739 740
				 packet->payload_length, DMA_TO_DEVICE);

741 742
	evt = le16_to_cpu(last->transfer_status) & 0x1f;
	packet->timestamp = le16_to_cpu(last->res_count);
743

744 745 746 747 748
	switch (evt) {
	case OHCI1394_evt_timeout:
		/* Async response transmit timed out. */
		packet->ack = RCODE_CANCELLED;
		break;
749

750
	case OHCI1394_evt_flushed:
751 752 753 754
		/*
		 * The packet was flushed should give same error as
		 * when we try to use a stale generation count.
		 */
755 756
		packet->ack = RCODE_GENERATION;
		break;
757

758
	case OHCI1394_evt_missing_ack:
759 760 761 762
		/*
		 * Using a valid (current) generation count, but the
		 * node is not on the bus or not sending acks.
		 */
763 764
		packet->ack = RCODE_NO_ACK;
		break;
765

766 767 768 769 770 771 772 773 774
	case ACK_COMPLETE + 0x10:
	case ACK_PENDING + 0x10:
	case ACK_BUSY_X + 0x10:
	case ACK_BUSY_A + 0x10:
	case ACK_BUSY_B + 0x10:
	case ACK_DATA_ERROR + 0x10:
	case ACK_TYPE_ERROR + 0x10:
		packet->ack = evt - 0x10;
		break;
775

776 777 778 779
	default:
		packet->ack = RCODE_SEND_ERROR;
		break;
	}
780

781
	packet->callback(packet, &ohci->card, packet->ack);
782

783
	return 1;
784 785
}

786 787 788 789 790
#define HEADER_GET_DESTINATION(q)	(((q) >> 16) & 0xffff)
#define HEADER_GET_TCODE(q)		(((q) >> 4) & 0x0f)
#define HEADER_GET_OFFSET_HIGH(q)	(((q) >> 0) & 0xffff)
#define HEADER_GET_DATA_LENGTH(q)	(((q) >> 16) & 0xffff)
#define HEADER_GET_EXTENDED_TCODE(q)	(((q) >> 0) & 0xffff)
791 792 793 794 795 796 797

static void
handle_local_rom(struct fw_ohci *ohci, struct fw_packet *packet, u32 csr)
{
	struct fw_packet response;
	int tcode, length, i;

798
	tcode = HEADER_GET_TCODE(packet->header[0]);
799
	if (TCODE_IS_BLOCK_PACKET(tcode))
800
		length = HEADER_GET_DATA_LENGTH(packet->header[3]);
801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826
	else
		length = 4;

	i = csr - CSR_CONFIG_ROM;
	if (i + length > CONFIG_ROM_SIZE) {
		fw_fill_response(&response, packet->header,
				 RCODE_ADDRESS_ERROR, NULL, 0);
	} else if (!TCODE_IS_READ_REQUEST(tcode)) {
		fw_fill_response(&response, packet->header,
				 RCODE_TYPE_ERROR, NULL, 0);
	} else {
		fw_fill_response(&response, packet->header, RCODE_COMPLETE,
				 (void *) ohci->config_rom + i, length);
	}

	fw_core_handle_response(&ohci->card, &response);
}

static void
handle_local_lock(struct fw_ohci *ohci, struct fw_packet *packet, u32 csr)
{
	struct fw_packet response;
	int tcode, length, ext_tcode, sel;
	__be32 *payload, lock_old;
	u32 lock_arg, lock_data;

827 828
	tcode = HEADER_GET_TCODE(packet->header[0]);
	length = HEADER_GET_DATA_LENGTH(packet->header[3]);
829
	payload = packet->payload;
830
	ext_tcode = HEADER_GET_EXTENDED_TCODE(packet->header[3]);
831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855

	if (tcode == TCODE_LOCK_REQUEST &&
	    ext_tcode == EXTCODE_COMPARE_SWAP && length == 8) {
		lock_arg = be32_to_cpu(payload[0]);
		lock_data = be32_to_cpu(payload[1]);
	} else if (tcode == TCODE_READ_QUADLET_REQUEST) {
		lock_arg = 0;
		lock_data = 0;
	} else {
		fw_fill_response(&response, packet->header,
				 RCODE_TYPE_ERROR, NULL, 0);
		goto out;
	}

	sel = (csr - CSR_BUS_MANAGER_ID) / 4;
	reg_write(ohci, OHCI1394_CSRData, lock_data);
	reg_write(ohci, OHCI1394_CSRCompareData, lock_arg);
	reg_write(ohci, OHCI1394_CSRControl, sel);

	if (reg_read(ohci, OHCI1394_CSRControl) & 0x80000000)
		lock_old = cpu_to_be32(reg_read(ohci, OHCI1394_CSRData));
	else
		fw_notify("swap not done yet\n");

	fw_fill_response(&response, packet->header,
856
			 RCODE_COMPLETE, &lock_old, sizeof(lock_old));
857 858 859 860 861
 out:
	fw_core_handle_response(&ohci->card, &response);
}

static void
862
handle_local_request(struct context *ctx, struct fw_packet *packet)
863 864 865 866
{
	u64 offset;
	u32 csr;

867 868 869 870
	if (ctx == &ctx->ohci->at_request_ctx) {
		packet->ack = ACK_PENDING;
		packet->callback(packet, &ctx->ohci->card, packet->ack);
	}
871 872 873

	offset =
		((unsigned long long)
874
		 HEADER_GET_OFFSET_HIGH(packet->header[1]) << 32) |
875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894
		packet->header[2];
	csr = offset - CSR_REGISTER_BASE;

	/* Handle config rom reads. */
	if (csr >= CSR_CONFIG_ROM && csr < CSR_CONFIG_ROM_END)
		handle_local_rom(ctx->ohci, packet, csr);
	else switch (csr) {
	case CSR_BUS_MANAGER_ID:
	case CSR_BANDWIDTH_AVAILABLE:
	case CSR_CHANNELS_AVAILABLE_HI:
	case CSR_CHANNELS_AVAILABLE_LO:
		handle_local_lock(ctx->ohci, packet, csr);
		break;
	default:
		if (ctx == &ctx->ohci->at_request_ctx)
			fw_core_handle_request(&ctx->ohci->card, packet);
		else
			fw_core_handle_response(&ctx->ohci->card, packet);
		break;
	}
895 896 897 898 899

	if (ctx == &ctx->ohci->at_response_ctx) {
		packet->ack = ACK_COMPLETE;
		packet->callback(packet, &ctx->ohci->card, packet->ack);
	}
900
}
901

902
static void
903
at_context_transmit(struct context *ctx, struct fw_packet *packet)
904 905
{
	unsigned long flags;
906
	int retval;
907 908 909

	spin_lock_irqsave(&ctx->ohci->lock, flags);

910
	if (HEADER_GET_DESTINATION(packet->header[0]) == ctx->ohci->node_id &&
911
	    ctx->ohci->generation == packet->generation) {
912 913 914
		spin_unlock_irqrestore(&ctx->ohci->lock, flags);
		handle_local_request(ctx, packet);
		return;
915
	}
916

917
	retval = at_context_queue_packet(ctx, packet);
918 919
	spin_unlock_irqrestore(&ctx->ohci->lock, flags);

920 921
	if (retval < 0)
		packet->callback(packet, &ctx->ohci->card, packet->ack);
922

923 924 925 926 927
}

static void bus_reset_tasklet(unsigned long data)
{
	struct fw_ohci *ohci = (struct fw_ohci *)data;
928
	int self_id_count, i, j, reg;
929 930
	int generation, new_generation;
	unsigned long flags;
931 932
	void *free_rom = NULL;
	dma_addr_t free_rom_bus = 0;
933 934 935

	reg = reg_read(ohci, OHCI1394_NodeID);
	if (!(reg & OHCI1394_NodeID_idValid)) {
936
		fw_notify("node ID not valid, new bus reset in progress\n");
937 938
		return;
	}
939 940 941 942 943 944
	if ((reg & OHCI1394_NodeID_nodeNumber) == 63) {
		fw_notify("malconfigured bus\n");
		return;
	}
	ohci->node_id = reg & (OHCI1394_NodeID_busNumber |
			       OHCI1394_NodeID_nodeNumber);
945

946 947
	/*
	 * The count in the SelfIDCount register is the number of
948 949
	 * bytes in the self ID receive buffer.  Since we also receive
	 * the inverted quadlets and a header quadlet, we shift one
950 951
	 * bit extra to get the actual number of self IDs.
	 */
952 953 954

	self_id_count = (reg_read(ohci, OHCI1394_SelfIDCount) >> 3) & 0x3ff;
	generation = (le32_to_cpu(ohci->self_id_cpu[0]) >> 16) & 0xff;
955
	rmb();
956 957 958 959 960 961

	for (i = 1, j = 0; j < self_id_count; i += 2, j++) {
		if (ohci->self_id_cpu[i] != ~ohci->self_id_cpu[i + 1])
			fw_error("inconsistent self IDs\n");
		ohci->self_id_buffer[j] = le32_to_cpu(ohci->self_id_cpu[i]);
	}
962
	rmb();
963

964 965
	/*
	 * Check the consistency of the self IDs we just read.  The
966 967 968 969 970 971 972 973 974
	 * problem we face is that a new bus reset can start while we
	 * read out the self IDs from the DMA buffer. If this happens,
	 * the DMA buffer will be overwritten with new self IDs and we
	 * will read out inconsistent data.  The OHCI specification
	 * (section 11.2) recommends a technique similar to
	 * linux/seqlock.h, where we remember the generation of the
	 * self IDs in the buffer before reading them out and compare
	 * it to the current generation after reading them out.  If
	 * the two generations match we know we have a consistent set
975 976
	 * of self IDs.
	 */
977 978 979 980 981 982 983 984 985 986 987 988

	new_generation = (reg_read(ohci, OHCI1394_SelfIDCount) >> 16) & 0xff;
	if (new_generation != generation) {
		fw_notify("recursive bus reset detected, "
			  "discarding self ids\n");
		return;
	}

	/* FIXME: Document how the locking works. */
	spin_lock_irqsave(&ohci->lock, flags);

	ohci->generation = generation;
989 990
	context_stop(&ohci->at_request_ctx);
	context_stop(&ohci->at_response_ctx);
991 992
	reg_write(ohci, OHCI1394_IntEventClear, OHCI1394_busReset);

993 994
	/*
	 * This next bit is unrelated to the AT context stuff but we
995 996 997 998
	 * have to do it under the spinlock also.  If a new config rom
	 * was set up before this reset, the old one is now no longer
	 * in use and we can free it. Update the config rom pointers
	 * to point to the current config rom and clear the
999 1000
	 * next_config_rom pointer so a new udpate can take place.
	 */
1001 1002

	if (ohci->next_config_rom != NULL) {
1003 1004 1005 1006
		if (ohci->next_config_rom != ohci->config_rom) {
			free_rom      = ohci->config_rom;
			free_rom_bus  = ohci->config_rom_bus;
		}
1007 1008 1009 1010
		ohci->config_rom      = ohci->next_config_rom;
		ohci->config_rom_bus  = ohci->next_config_rom_bus;
		ohci->next_config_rom = NULL;

1011 1012
		/*
		 * Restore config_rom image and manually update
1013 1014
		 * config_rom registers.  Writing the header quadlet
		 * will indicate that the config rom is ready, so we
1015 1016
		 * do that last.
		 */
1017 1018 1019 1020 1021 1022 1023 1024
		reg_write(ohci, OHCI1394_BusOptions,
			  be32_to_cpu(ohci->config_rom[2]));
		ohci->config_rom[0] = cpu_to_be32(ohci->next_header);
		reg_write(ohci, OHCI1394_ConfigROMhdr, ohci->next_header);
	}

	spin_unlock_irqrestore(&ohci->lock, flags);

1025 1026 1027 1028
	if (free_rom)
		dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
				  free_rom, free_rom_bus);

1029
	fw_core_handle_bus_reset(&ohci->card, ohci->node_id, generation,
1030 1031 1032 1033 1034 1035
				 self_id_count, ohci->self_id_buffer);
}

static irqreturn_t irq_handler(int irq, void *data)
{
	struct fw_ohci *ohci = data;
1036
	u32 event, iso_event, cycle_time;
1037 1038 1039 1040
	int i;

	event = reg_read(ohci, OHCI1394_IntEventClear);

1041
	if (!event || !~event)
1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060
		return IRQ_NONE;

	reg_write(ohci, OHCI1394_IntEventClear, event);

	if (event & OHCI1394_selfIDComplete)
		tasklet_schedule(&ohci->bus_reset_tasklet);

	if (event & OHCI1394_RQPkt)
		tasklet_schedule(&ohci->ar_request_ctx.tasklet);

	if (event & OHCI1394_RSPkt)
		tasklet_schedule(&ohci->ar_response_ctx.tasklet);

	if (event & OHCI1394_reqTxComplete)
		tasklet_schedule(&ohci->at_request_ctx.tasklet);

	if (event & OHCI1394_respTxComplete)
		tasklet_schedule(&ohci->at_response_ctx.tasklet);

1061
	iso_event = reg_read(ohci, OHCI1394_IsoRecvIntEventClear);
1062 1063 1064 1065
	reg_write(ohci, OHCI1394_IsoRecvIntEventClear, iso_event);

	while (iso_event) {
		i = ffs(iso_event) - 1;
1066
		tasklet_schedule(&ohci->ir_context_list[i].context.tasklet);
1067 1068 1069
		iso_event &= ~(1 << i);
	}

1070
	iso_event = reg_read(ohci, OHCI1394_IsoXmitIntEventClear);
1071 1072 1073 1074
	reg_write(ohci, OHCI1394_IsoXmitIntEventClear, iso_event);

	while (iso_event) {
		i = ffs(iso_event) - 1;
1075
		tasklet_schedule(&ohci->it_context_list[i].context.tasklet);
1076 1077 1078
		iso_event &= ~(1 << i);
	}

1079 1080 1081
	if (unlikely(event & OHCI1394_postedWriteErr))
		fw_error("PCI posted write error\n");

1082 1083 1084 1085 1086 1087
	if (event & OHCI1394_cycle64Seconds) {
		cycle_time = reg_read(ohci, OHCI1394_IsochronousCycleTimer);
		if ((cycle_time & 0x80000000) == 0)
			ohci->bus_seconds++;
	}

1088 1089 1090
	return IRQ_HANDLED;
}

1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106
static int software_reset(struct fw_ohci *ohci)
{
	int i;

	reg_write(ohci, OHCI1394_HCControlSet, OHCI1394_HCControl_softReset);

	for (i = 0; i < OHCI_LOOP_COUNT; i++) {
		if ((reg_read(ohci, OHCI1394_HCControlSet) &
		     OHCI1394_HCControl_softReset) == 0)
			return 0;
		msleep(1);
	}

	return -EBUSY;
}

1107 1108 1109 1110 1111
static int ohci_enable(struct fw_card *card, u32 *config_rom, size_t length)
{
	struct fw_ohci *ohci = fw_ohci(card);
	struct pci_dev *dev = to_pci_dev(card->device);

1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154
	if (software_reset(ohci)) {
		fw_error("Failed to reset ohci card.\n");
		return -EBUSY;
	}

	/*
	 * Now enable LPS, which we need in order to start accessing
	 * most of the registers.  In fact, on some cards (ALI M5251),
	 * accessing registers in the SClk domain without LPS enabled
	 * will lock up the machine.  Wait 50msec to make sure we have
	 * full link enabled.
	 */
	reg_write(ohci, OHCI1394_HCControlSet,
		  OHCI1394_HCControl_LPS |
		  OHCI1394_HCControl_postedWriteEnable);
	flush_writes(ohci);
	msleep(50);

	reg_write(ohci, OHCI1394_HCControlClear,
		  OHCI1394_HCControl_noByteSwapData);

	reg_write(ohci, OHCI1394_LinkControlSet,
		  OHCI1394_LinkControl_rcvSelfID |
		  OHCI1394_LinkControl_cycleTimerEnable |
		  OHCI1394_LinkControl_cycleMaster);

	reg_write(ohci, OHCI1394_ATRetries,
		  OHCI1394_MAX_AT_REQ_RETRIES |
		  (OHCI1394_MAX_AT_RESP_RETRIES << 4) |
		  (OHCI1394_MAX_PHYS_RESP_RETRIES << 8));

	ar_context_run(&ohci->ar_request_ctx);
	ar_context_run(&ohci->ar_response_ctx);

	reg_write(ohci, OHCI1394_SelfIDBuffer, ohci->self_id_bus);
	reg_write(ohci, OHCI1394_PhyUpperBound, 0x00010000);
	reg_write(ohci, OHCI1394_IntEventClear, ~0);
	reg_write(ohci, OHCI1394_IntMaskClear, ~0);
	reg_write(ohci, OHCI1394_IntMaskSet,
		  OHCI1394_selfIDComplete |
		  OHCI1394_RQPkt | OHCI1394_RSPkt |
		  OHCI1394_reqTxComplete | OHCI1394_respTxComplete |
		  OHCI1394_isochRx | OHCI1394_isochTx |
1155 1156
		  OHCI1394_postedWriteErr | OHCI1394_cycle64Seconds |
		  OHCI1394_masterIntEnable);
1157 1158 1159 1160 1161 1162

	/* Activate link_on bit and contender bit in our self ID packets.*/
	if (ohci_update_phy_reg(card, 4, 0,
				PHY_LINK_ACTIVE | PHY_CONTENDER) < 0)
		return -EIO;

1163 1164
	/*
	 * When the link is not yet enabled, the atomic config rom
1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181
	 * update mechanism described below in ohci_set_config_rom()
	 * is not active.  We have to update ConfigRomHeader and
	 * BusOptions manually, and the write to ConfigROMmap takes
	 * effect immediately.  We tie this to the enabling of the
	 * link, so we have a valid config rom before enabling - the
	 * OHCI requires that ConfigROMhdr and BusOptions have valid
	 * values before enabling.
	 *
	 * However, when the ConfigROMmap is written, some controllers
	 * always read back quadlets 0 and 2 from the config rom to
	 * the ConfigRomHeader and BusOptions registers on bus reset.
	 * They shouldn't do that in this initial case where the link
	 * isn't enabled.  This means we have to use the same
	 * workaround here, setting the bus header to 0 and then write
	 * the right values in the bus reset tasklet.
	 */

1182 1183 1184 1185 1186 1187 1188
	if (config_rom) {
		ohci->next_config_rom =
			dma_alloc_coherent(ohci->card.device, CONFIG_ROM_SIZE,
					   &ohci->next_config_rom_bus,
					   GFP_KERNEL);
		if (ohci->next_config_rom == NULL)
			return -ENOMEM;
1189

1190 1191 1192 1193 1194 1195 1196 1197 1198 1199
		memset(ohci->next_config_rom, 0, CONFIG_ROM_SIZE);
		fw_memcpy_to_be32(ohci->next_config_rom, config_rom, length * 4);
	} else {
		/*
		 * In the suspend case, config_rom is NULL, which
		 * means that we just reuse the old config rom.
		 */
		ohci->next_config_rom = ohci->config_rom;
		ohci->next_config_rom_bus = ohci->config_rom_bus;
	}
1200

1201
	ohci->next_header = be32_to_cpu(ohci->next_config_rom[0]);
1202 1203
	ohci->next_config_rom[0] = 0;
	reg_write(ohci, OHCI1394_ConfigROMhdr, 0);
1204 1205
	reg_write(ohci, OHCI1394_BusOptions,
		  be32_to_cpu(ohci->next_config_rom[2]));
1206 1207 1208 1209 1210
	reg_write(ohci, OHCI1394_ConfigROMmap, ohci->next_config_rom_bus);

	reg_write(ohci, OHCI1394_AsReqFilterHiSet, 0x80000000);

	if (request_irq(dev->irq, irq_handler,
1211
			IRQF_SHARED, ohci_driver_name, ohci)) {
1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223
		fw_error("Failed to allocate shared interrupt %d.\n",
			 dev->irq);
		dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
				  ohci->config_rom, ohci->config_rom_bus);
		return -EIO;
	}

	reg_write(ohci, OHCI1394_HCControlSet,
		  OHCI1394_HCControl_linkEnable |
		  OHCI1394_HCControl_BIBimageValid);
	flush_writes(ohci);

1224 1225 1226 1227
	/*
	 * We are ready to go, initiate bus reset to finish the
	 * initialization.
	 */
1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238

	fw_core_initiate_bus_reset(&ohci->card, 1);

	return 0;
}

static int
ohci_set_config_rom(struct fw_card *card, u32 *config_rom, size_t length)
{
	struct fw_ohci *ohci;
	unsigned long flags;
1239
	int retval = -EBUSY;
1240 1241 1242 1243 1244
	__be32 *next_config_rom;
	dma_addr_t next_config_rom_bus;

	ohci = fw_ohci(card);

1245 1246
	/*
	 * When the OHCI controller is enabled, the config rom update
1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292
	 * mechanism is a bit tricky, but easy enough to use.  See
	 * section 5.5.6 in the OHCI specification.
	 *
	 * The OHCI controller caches the new config rom address in a
	 * shadow register (ConfigROMmapNext) and needs a bus reset
	 * for the changes to take place.  When the bus reset is
	 * detected, the controller loads the new values for the
	 * ConfigRomHeader and BusOptions registers from the specified
	 * config rom and loads ConfigROMmap from the ConfigROMmapNext
	 * shadow register. All automatically and atomically.
	 *
	 * Now, there's a twist to this story.  The automatic load of
	 * ConfigRomHeader and BusOptions doesn't honor the
	 * noByteSwapData bit, so with a be32 config rom, the
	 * controller will load be32 values in to these registers
	 * during the atomic update, even on litte endian
	 * architectures.  The workaround we use is to put a 0 in the
	 * header quadlet; 0 is endian agnostic and means that the
	 * config rom isn't ready yet.  In the bus reset tasklet we
	 * then set up the real values for the two registers.
	 *
	 * We use ohci->lock to avoid racing with the code that sets
	 * ohci->next_config_rom to NULL (see bus_reset_tasklet).
	 */

	next_config_rom =
		dma_alloc_coherent(ohci->card.device, CONFIG_ROM_SIZE,
				   &next_config_rom_bus, GFP_KERNEL);
	if (next_config_rom == NULL)
		return -ENOMEM;

	spin_lock_irqsave(&ohci->lock, flags);

	if (ohci->next_config_rom == NULL) {
		ohci->next_config_rom = next_config_rom;
		ohci->next_config_rom_bus = next_config_rom_bus;

		memset(ohci->next_config_rom, 0, CONFIG_ROM_SIZE);
		fw_memcpy_to_be32(ohci->next_config_rom, config_rom,
				  length * 4);

		ohci->next_header = config_rom[0];
		ohci->next_config_rom[0] = 0;

		reg_write(ohci, OHCI1394_ConfigROMmap,
			  ohci->next_config_rom_bus);
1293
		retval = 0;
1294 1295 1296 1297
	}

	spin_unlock_irqrestore(&ohci->lock, flags);

1298 1299
	/*
	 * Now initiate a bus reset to have the changes take
1300 1301 1302
	 * effect. We clean up the old config rom memory and DMA
	 * mappings in the bus reset tasklet, since the OHCI
	 * controller could need to access it before the bus reset
1303 1304
	 * takes effect.
	 */
1305 1306
	if (retval == 0)
		fw_core_initiate_bus_reset(&ohci->card, 1);
1307 1308 1309
	else
		dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
				  next_config_rom, next_config_rom_bus);
1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327

	return retval;
}

static void ohci_send_request(struct fw_card *card, struct fw_packet *packet)
{
	struct fw_ohci *ohci = fw_ohci(card);

	at_context_transmit(&ohci->at_request_ctx, packet);
}

static void ohci_send_response(struct fw_card *card, struct fw_packet *packet)
{
	struct fw_ohci *ohci = fw_ohci(card);

	at_context_transmit(&ohci->at_response_ctx, packet);
}

1328 1329 1330
static int ohci_cancel_packet(struct fw_card *card, struct fw_packet *packet)
{
	struct fw_ohci *ohci = fw_ohci(card);
1331 1332 1333
	struct context *ctx = &ohci->at_request_ctx;
	struct driver_data *driver_data = packet->driver_data;
	int retval = -ENOENT;
1334

1335
	tasklet_disable(&ctx->tasklet);
1336

1337 1338
	if (packet->ack != 0)
		goto out;
1339

1340 1341 1342 1343
	driver_data->packet = NULL;
	packet->ack = RCODE_CANCELLED;
	packet->callback(packet, &ohci->card, packet->ack);
	retval = 0;
1344

1345 1346
 out:
	tasklet_enable(&ctx->tasklet);
1347

1348
	return retval;
1349 1350
}

1351 1352 1353 1354 1355
static int
ohci_enable_phys_dma(struct fw_card *card, int node_id, int generation)
{
	struct fw_ohci *ohci = fw_ohci(card);
	unsigned long flags;
1356
	int n, retval = 0;
1357

1358 1359 1360 1361
	/*
	 * FIXME:  Make sure this bitmask is cleared when we clear the busReset
	 * interrupt bit.  Clear physReqResourceAllBuses on bus reset.
	 */
1362 1363 1364 1365 1366 1367 1368 1369

	spin_lock_irqsave(&ohci->lock, flags);

	if (ohci->generation != generation) {
		retval = -ESTALE;
		goto out;
	}

1370 1371 1372 1373
	/*
	 * Note, if the node ID contains a non-local bus ID, physical DMA is
	 * enabled for _all_ nodes on remote buses.
	 */
1374 1375 1376 1377 1378 1379 1380

	n = (node_id & 0xffc0) == LOCAL_BUS ? node_id & 0x3f : 63;
	if (n < 32)
		reg_write(ohci, OHCI1394_PhyReqFilterLoSet, 1 << n);
	else
		reg_write(ohci, OHCI1394_PhyReqFilterHiSet, 1 << (n - 32));

1381 1382
	flush_writes(ohci);
 out:
1383
	spin_unlock_irqrestore(&ohci->lock, flags);
1384 1385
	return retval;
}
S
Stefan Richter 已提交
1386

1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399
static u64
ohci_get_bus_time(struct fw_card *card)
{
	struct fw_ohci *ohci = fw_ohci(card);
	u32 cycle_time;
	u64 bus_time;

	cycle_time = reg_read(ohci, OHCI1394_IsochronousCycleTimer);
	bus_time = ((u64) ohci->bus_seconds << 32) | cycle_time;

	return bus_time;
}

1400 1401 1402
static int handle_ir_dualbuffer_packet(struct context *context,
				       struct descriptor *d,
				       struct descriptor *last)
1403
{
1404 1405 1406
	struct iso_context *ctx =
		container_of(context, struct iso_context, context);
	struct db_descriptor *db = (struct db_descriptor *) d;
1407
	__le32 *ir_header;
1408
	size_t header_length;
1409 1410
	void *p, *end;
	int i;
1411

1412 1413 1414 1415 1416 1417 1418
	if (db->first_res_count > 0 && db->second_res_count > 0) {
		if (ctx->excess_bytes <= le16_to_cpu(db->second_req_count)) {
			/* This descriptor isn't done yet, stop iteration. */
			return 0;
		}
		ctx->excess_bytes -= le16_to_cpu(db->second_req_count);
	}
1419

1420 1421 1422 1423 1424 1425 1426
	header_length = le16_to_cpu(db->first_req_count) -
		le16_to_cpu(db->first_res_count);

	i = ctx->header_length;
	p = db + 1;
	end = p + header_length;
	while (p < end && i + ctx->base.header_size <= PAGE_SIZE) {
1427 1428
		/*
		 * The iso header is byteswapped to little endian by
1429 1430 1431
		 * the controller, but the remaining header quadlets
		 * are big endian.  We want to present all the headers
		 * as big endian, so we have to swap the first
1432 1433
		 * quadlet.
		 */
1434 1435
		*(u32 *) (ctx->header + i) = __swab32(*(u32 *) (p + 4));
		memcpy(ctx->header + i + 4, p + 8, ctx->base.header_size - 4);
1436
		i += ctx->base.header_size;
1437 1438
		ctx->excess_bytes +=
			(le32_to_cpu(*(u32 *)(p + 4)) >> 16) & 0xffff;
1439 1440 1441
		p += ctx->base.header_size + 4;
	}
	ctx->header_length = i;
1442

1443 1444 1445
	ctx->excess_bytes -= le16_to_cpu(db->second_req_count) -
		le16_to_cpu(db->second_res_count);

1446
	if (le16_to_cpu(db->control) & DESCRIPTOR_IRQ_ALWAYS) {
1447 1448 1449
		ir_header = (__le32 *) (db + 1);
		ctx->base.callback(&ctx->base,
				   le32_to_cpu(ir_header[0]) & 0xffff,
1450
				   ctx->header_length, ctx->header,
1451
				   ctx->base.callback_data);
1452 1453
		ctx->header_length = 0;
	}
1454

1455
	return 1;
1456 1457
}

1458 1459 1460 1461 1462 1463
static int handle_ir_packet_per_buffer(struct context *context,
				       struct descriptor *d,
				       struct descriptor *last)
{
	struct iso_context *ctx =
		container_of(context, struct iso_context, context);
1464
	struct descriptor *pd;
1465
	__le32 *ir_header;
1466 1467
	void *p;
	int i;
1468

1469 1470 1471 1472 1473
	for (pd = d; pd <= last; pd++) {
		if (pd->transfer_status)
			break;
	}
	if (pd > last)
1474 1475 1476 1477
		/* Descriptor(s) not done yet, stop iteration */
		return 0;

	i   = ctx->header_length;
1478
	p   = last + 1;
1479

1480 1481
	if (ctx->base.header_size > 0 &&
			i + ctx->base.header_size <= PAGE_SIZE) {
1482 1483 1484 1485 1486 1487 1488 1489
		/*
		 * The iso header is byteswapped to little endian by
		 * the controller, but the remaining header quadlets
		 * are big endian.  We want to present all the headers
		 * as big endian, so we have to swap the first quadlet.
		 */
		*(u32 *) (ctx->header + i) = __swab32(*(u32 *) (p + 4));
		memcpy(ctx->header + i + 4, p + 8, ctx->base.header_size - 4);
1490
		ctx->header_length += ctx->base.header_size;
1491 1492
	}

1493 1494
	if (le16_to_cpu(last->control) & DESCRIPTOR_IRQ_ALWAYS) {
		ir_header = (__le32 *) p;
1495 1496 1497 1498 1499 1500 1501 1502 1503 1504
		ctx->base.callback(&ctx->base,
				   le32_to_cpu(ir_header[0]) & 0xffff,
				   ctx->header_length, ctx->header,
				   ctx->base.callback_data);
		ctx->header_length = 0;
	}

	return 1;
}

1505 1506 1507
static int handle_it_packet(struct context *context,
			    struct descriptor *d,
			    struct descriptor *last)
1508
{
1509 1510
	struct iso_context *ctx =
		container_of(context, struct iso_context, context);
S
Stefan Richter 已提交
1511

1512 1513 1514 1515
	if (last->transfer_status == 0)
		/* This descriptor isn't done yet, stop iteration. */
		return 0;

1516
	if (le16_to_cpu(last->control) & DESCRIPTOR_IRQ_ALWAYS)
1517 1518
		ctx->base.callback(&ctx->base, le16_to_cpu(last->res_count),
				   0, NULL, ctx->base.callback_data);
1519 1520

	return 1;
1521 1522
}

1523
static struct fw_iso_context *
1524
ohci_allocate_iso_context(struct fw_card *card, int type, size_t header_size)
1525 1526 1527
{
	struct fw_ohci *ohci = fw_ohci(card);
	struct iso_context *ctx, *list;
1528
	descriptor_callback_t callback;
1529
	u32 *mask, regs;
1530
	unsigned long flags;
1531
	int index, retval = -ENOMEM;
1532 1533 1534 1535

	if (type == FW_ISO_CONTEXT_TRANSMIT) {
		mask = &ohci->it_context_mask;
		list = ohci->it_context_list;
1536
		callback = handle_it_packet;
1537
	} else {
S
Stefan Richter 已提交
1538 1539
		mask = &ohci->ir_context_mask;
		list = ohci->ir_context_list;
1540 1541 1542 1543
		if (ohci->version >= OHCI_VERSION_1_1)
			callback = handle_ir_dualbuffer_packet;
		else
			callback = handle_ir_packet_per_buffer;
1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554
	}

	spin_lock_irqsave(&ohci->lock, flags);
	index = ffs(*mask) - 1;
	if (index >= 0)
		*mask &= ~(1 << index);
	spin_unlock_irqrestore(&ohci->lock, flags);

	if (index < 0)
		return ERR_PTR(-EBUSY);

S
Stefan Richter 已提交
1555 1556 1557 1558 1559
	if (type == FW_ISO_CONTEXT_TRANSMIT)
		regs = OHCI1394_IsoXmitContextBase(index);
	else
		regs = OHCI1394_IsoRcvContextBase(index);

1560
	ctx = &list[index];
1561
	memset(ctx, 0, sizeof(*ctx));
1562 1563 1564 1565 1566
	ctx->header_length = 0;
	ctx->header = (void *) __get_free_page(GFP_KERNEL);
	if (ctx->header == NULL)
		goto out;

1567
	retval = context_init(&ctx->context, ohci, ISO_BUFFER_SIZE,
1568
			      regs, callback);
1569 1570
	if (retval < 0)
		goto out_with_header;
1571 1572

	return &ctx->base;
1573 1574 1575 1576 1577 1578 1579 1580 1581

 out_with_header:
	free_page((unsigned long)ctx->header);
 out:
	spin_lock_irqsave(&ohci->lock, flags);
	*mask |= 1 << index;
	spin_unlock_irqrestore(&ohci->lock, flags);

	return ERR_PTR(retval);
1582 1583
}

1584 1585
static int ohci_start_iso(struct fw_iso_context *base,
			  s32 cycle, u32 sync, u32 tags)
1586
{
S
Stefan Richter 已提交
1587
	struct iso_context *ctx = container_of(base, struct iso_context, base);
1588
	struct fw_ohci *ohci = ctx->context.ohci;
1589
	u32 control, match;
1590 1591
	int index;

1592 1593
	if (ctx->base.type == FW_ISO_CONTEXT_TRANSMIT) {
		index = ctx - ohci->it_context_list;
1594 1595 1596
		match = 0;
		if (cycle >= 0)
			match = IT_CONTEXT_CYCLE_MATCH_ENABLE |
1597
				(cycle & 0x7fff) << 16;
1598

1599 1600
		reg_write(ohci, OHCI1394_IsoXmitIntEventClear, 1 << index);
		reg_write(ohci, OHCI1394_IsoXmitIntMaskSet, 1 << index);
1601
		context_run(&ctx->context, match);
1602 1603
	} else {
		index = ctx - ohci->ir_context_list;
1604 1605 1606
		control = IR_CONTEXT_ISOCH_HEADER;
		if (ohci->version >= OHCI_VERSION_1_1)
			control |= IR_CONTEXT_DUAL_BUFFER_MODE;
1607 1608 1609 1610 1611
		match = (tags << 28) | (sync << 8) | ctx->base.channel;
		if (cycle >= 0) {
			match |= (cycle & 0x07fff) << 12;
			control |= IR_CONTEXT_CYCLE_MATCH_ENABLE;
		}
1612

1613 1614
		reg_write(ohci, OHCI1394_IsoRecvIntEventClear, 1 << index);
		reg_write(ohci, OHCI1394_IsoRecvIntMaskSet, 1 << index);
1615
		reg_write(ohci, CONTEXT_MATCH(ctx->context.regs), match);
1616
		context_run(&ctx->context, control);
1617
	}
1618 1619 1620 1621

	return 0;
}

1622 1623 1624
static int ohci_stop_iso(struct fw_iso_context *base)
{
	struct fw_ohci *ohci = fw_ohci(base->card);
S
Stefan Richter 已提交
1625
	struct iso_context *ctx = container_of(base, struct iso_context, base);
1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640
	int index;

	if (ctx->base.type == FW_ISO_CONTEXT_TRANSMIT) {
		index = ctx - ohci->it_context_list;
		reg_write(ohci, OHCI1394_IsoXmitIntMaskClear, 1 << index);
	} else {
		index = ctx - ohci->ir_context_list;
		reg_write(ohci, OHCI1394_IsoRecvIntMaskClear, 1 << index);
	}
	flush_writes(ohci);
	context_stop(&ctx->context);

	return 0;
}

1641 1642 1643
static void ohci_free_iso_context(struct fw_iso_context *base)
{
	struct fw_ohci *ohci = fw_ohci(base->card);
S
Stefan Richter 已提交
1644
	struct iso_context *ctx = container_of(base, struct iso_context, base);
1645 1646 1647
	unsigned long flags;
	int index;

1648 1649
	ohci_stop_iso(base);
	context_release(&ctx->context);
1650
	free_page((unsigned long)ctx->header);
1651

1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665
	spin_lock_irqsave(&ohci->lock, flags);

	if (ctx->base.type == FW_ISO_CONTEXT_TRANSMIT) {
		index = ctx - ohci->it_context_list;
		ohci->it_context_mask |= 1 << index;
	} else {
		index = ctx - ohci->ir_context_list;
		ohci->ir_context_mask |= 1 << index;
	}

	spin_unlock_irqrestore(&ohci->lock, flags);
}

static int
1666 1667 1668 1669
ohci_queue_iso_transmit(struct fw_iso_context *base,
			struct fw_iso_packet *packet,
			struct fw_iso_buffer *buffer,
			unsigned long payload)
1670
{
S
Stefan Richter 已提交
1671
	struct iso_context *ctx = container_of(base, struct iso_context, base);
1672
	struct descriptor *d, *last, *pd;
1673 1674
	struct fw_iso_packet *p;
	__le32 *header;
1675
	dma_addr_t d_bus, page_bus;
1676 1677
	u32 z, header_z, payload_z, irq;
	u32 payload_index, payload_end_index, next_page_index;
1678
	int page, end_page, i, length, offset;
1679

1680 1681 1682 1683
	/*
	 * FIXME: Cycle lost behavior should be configurable: lose
	 * packet, retransmit or terminate..
	 */
1684 1685

	p = packet;
1686
	payload_index = payload;
1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704

	if (p->skip)
		z = 1;
	else
		z = 2;
	if (p->header_length > 0)
		z++;

	/* Determine the first page the payload isn't contained in. */
	end_page = PAGE_ALIGN(payload_index + p->payload_length) >> PAGE_SHIFT;
	if (p->payload_length > 0)
		payload_z = end_page - (payload_index >> PAGE_SHIFT);
	else
		payload_z = 0;

	z += payload_z;

	/* Get header size in number of descriptors. */
1705
	header_z = DIV_ROUND_UP(p->header_length, sizeof(*d));
1706

1707 1708 1709
	d = context_get_descriptors(&ctx->context, z + header_z, &d_bus);
	if (d == NULL)
		return -ENOMEM;
1710 1711

	if (!p->skip) {
1712
		d[0].control   = cpu_to_le16(DESCRIPTOR_KEY_IMMEDIATE);
1713 1714 1715
		d[0].req_count = cpu_to_le16(8);

		header = (__le32 *) &d[1];
1716 1717 1718 1719 1720
		header[0] = cpu_to_le32(IT_HEADER_SY(p->sy) |
					IT_HEADER_TAG(p->tag) |
					IT_HEADER_TCODE(TCODE_STREAM_DATA) |
					IT_HEADER_CHANNEL(ctx->base.channel) |
					IT_HEADER_SPEED(ctx->base.speed));
1721
		header[1] =
1722
			cpu_to_le32(IT_HEADER_DATA_LENGTH(p->header_length +
1723 1724 1725 1726 1727
							  p->payload_length));
	}

	if (p->header_length > 0) {
		d[2].req_count    = cpu_to_le16(p->header_length);
1728
		d[2].data_address = cpu_to_le32(d_bus + z * sizeof(*d));
1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740
		memcpy(&d[z], p->header, p->header_length);
	}

	pd = d + z - payload_z;
	payload_end_index = payload_index + p->payload_length;
	for (i = 0; i < payload_z; i++) {
		page               = payload_index >> PAGE_SHIFT;
		offset             = payload_index & ~PAGE_MASK;
		next_page_index    = (page + 1) << PAGE_SHIFT;
		length             =
			min(next_page_index, payload_end_index) - payload_index;
		pd[i].req_count    = cpu_to_le16(length);
1741 1742 1743

		page_bus = page_private(buffer->pages[page]);
		pd[i].data_address = cpu_to_le32(page_bus + offset);
1744 1745 1746 1747 1748

		payload_index += length;
	}

	if (p->interrupt)
1749
		irq = DESCRIPTOR_IRQ_ALWAYS;
1750
	else
1751
		irq = DESCRIPTOR_NO_IRQ;
1752

1753
	last = z == 2 ? d : d + z - 1;
1754 1755 1756
	last->control |= cpu_to_le16(DESCRIPTOR_OUTPUT_LAST |
				     DESCRIPTOR_STATUS |
				     DESCRIPTOR_BRANCH_ALWAYS |
1757
				     irq);
1758

1759
	context_append(&ctx->context, d, z, header_z);
1760 1761 1762

	return 0;
}
S
Stefan Richter 已提交
1763

1764
static int
1765 1766 1767 1768
ohci_queue_iso_receive_dualbuffer(struct fw_iso_context *base,
				  struct fw_iso_packet *packet,
				  struct fw_iso_buffer *buffer,
				  unsigned long payload)
1769 1770 1771 1772 1773 1774 1775
{
	struct iso_context *ctx = container_of(base, struct iso_context, base);
	struct db_descriptor *db = NULL;
	struct descriptor *d;
	struct fw_iso_packet *p;
	dma_addr_t d_bus, page_bus;
	u32 z, header_z, length, rest;
1776
	int page, offset, packet_count, header_size;
S
Stefan Richter 已提交
1777

1778 1779 1780 1781
	/*
	 * FIXME: Cycle lost behavior should be configurable: lose
	 * packet, retransmit or terminate..
	 */
1782 1783 1784 1785

	p = packet;
	z = 2;

1786 1787 1788 1789
	/*
	 * The OHCI controller puts the status word in the header
	 * buffer too, so we need 4 extra bytes per packet.
	 */
1790 1791 1792
	packet_count = p->header_length / ctx->base.header_size;
	header_size = packet_count * (ctx->base.header_size + 4);

1793
	/* Get header size in number of descriptors. */
1794
	header_z = DIV_ROUND_UP(header_size, sizeof(*d));
1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806
	page     = payload >> PAGE_SHIFT;
	offset   = payload & ~PAGE_MASK;
	rest     = p->payload_length;

	/* FIXME: make packet-per-buffer/dual-buffer a context option */
	while (rest > 0) {
		d = context_get_descriptors(&ctx->context,
					    z + header_z, &d_bus);
		if (d == NULL)
			return -ENOMEM;

		db = (struct db_descriptor *) d;
1807 1808
		db->control = cpu_to_le16(DESCRIPTOR_STATUS |
					  DESCRIPTOR_BRANCH_ALWAYS);
1809
		db->first_size = cpu_to_le16(ctx->base.header_size + 4);
1810 1811 1812 1813 1814 1815
		if (p->skip && rest == p->payload_length) {
			db->control |= cpu_to_le16(DESCRIPTOR_WAIT);
			db->first_req_count = db->first_size;
		} else {
			db->first_req_count = cpu_to_le16(header_size);
		}
1816
		db->first_res_count = db->first_req_count;
1817
		db->first_buffer = cpu_to_le32(d_bus + sizeof(*db));
S
Stefan Richter 已提交
1818

1819 1820 1821
		if (p->skip && rest == p->payload_length)
			length = 4;
		else if (offset + rest < PAGE_SIZE)
1822 1823 1824 1825
			length = rest;
		else
			length = PAGE_SIZE - offset;

1826 1827
		db->second_req_count = cpu_to_le16(length);
		db->second_res_count = db->second_req_count;
1828 1829 1830
		page_bus = page_private(buffer->pages[page]);
		db->second_buffer = cpu_to_le32(page_bus + offset);

1831
		if (p->interrupt && length == rest)
1832
			db->control |= cpu_to_le16(DESCRIPTOR_IRQ_ALWAYS);
1833

1834 1835 1836
		context_append(&ctx->context, d, z, header_z);
		offset = (offset + length) & ~PAGE_MASK;
		rest -= length;
1837 1838
		if (offset == 0)
			page++;
1839 1840
	}

1841 1842
	return 0;
}
1843

1844 1845 1846 1847 1848 1849 1850 1851
static int
ohci_queue_iso_receive_packet_per_buffer(struct fw_iso_context *base,
					 struct fw_iso_packet *packet,
					 struct fw_iso_buffer *buffer,
					 unsigned long payload)
{
	struct iso_context *ctx = container_of(base, struct iso_context, base);
	struct descriptor *d = NULL, *pd = NULL;
1852
	struct fw_iso_packet *p = packet;
1853 1854
	dma_addr_t d_bus, page_bus;
	u32 z, header_z, rest;
1855 1856
	int i, j, length;
	int page, offset, packet_count, header_size, payload_per_buffer;
1857 1858 1859 1860 1861 1862

	/*
	 * The OHCI controller puts the status word in the
	 * buffer too, so we need 4 extra bytes per packet.
	 */
	packet_count = p->header_length / ctx->base.header_size;
1863
	header_size  = ctx->base.header_size + 4;
1864 1865 1866 1867 1868

	/* Get header size in number of descriptors. */
	header_z = DIV_ROUND_UP(header_size, sizeof(*d));
	page     = payload >> PAGE_SHIFT;
	offset   = payload & ~PAGE_MASK;
1869
	payload_per_buffer = p->payload_length / packet_count;
1870 1871 1872

	for (i = 0; i < packet_count; i++) {
		/* d points to the header descriptor */
1873
		z = DIV_ROUND_UP(payload_per_buffer + offset, PAGE_SIZE) + 1;
1874
		d = context_get_descriptors(&ctx->context,
1875
				z + header_z, &d_bus);
1876 1877 1878
		if (d == NULL)
			return -ENOMEM;

1879 1880 1881 1882
		d->control      = cpu_to_le16(DESCRIPTOR_STATUS |
					      DESCRIPTOR_INPUT_MORE);
		if (p->skip && i == 0)
			d->control |= cpu_to_le16(DESCRIPTOR_WAIT);
1883 1884
		d->req_count    = cpu_to_le16(header_size);
		d->res_count    = d->req_count;
1885
		d->transfer_status = 0;
1886 1887
		d->data_address = cpu_to_le32(d_bus + (z * sizeof(*d)));

1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909
		rest = payload_per_buffer;
		for (j = 1; j < z; j++) {
			pd = d + j;
			pd->control = cpu_to_le16(DESCRIPTOR_STATUS |
						  DESCRIPTOR_INPUT_MORE);

			if (offset + rest < PAGE_SIZE)
				length = rest;
			else
				length = PAGE_SIZE - offset;
			pd->req_count = cpu_to_le16(length);
			pd->res_count = pd->req_count;
			pd->transfer_status = 0;

			page_bus = page_private(buffer->pages[page]);
			pd->data_address = cpu_to_le32(page_bus + offset);

			offset = (offset + length) & ~PAGE_MASK;
			rest -= length;
			if (offset == 0)
				page++;
		}
1910 1911 1912
		pd->control = cpu_to_le16(DESCRIPTOR_STATUS |
					  DESCRIPTOR_INPUT_LAST |
					  DESCRIPTOR_BRANCH_ALWAYS);
1913
		if (p->interrupt && i == packet_count - 1)
1914 1915 1916 1917 1918 1919 1920 1921
			pd->control |= cpu_to_le16(DESCRIPTOR_IRQ_ALWAYS);

		context_append(&ctx->context, d, z, header_z);
	}

	return 0;
}

1922 1923 1924 1925 1926 1927
static int
ohci_queue_iso(struct fw_iso_context *base,
	       struct fw_iso_packet *packet,
	       struct fw_iso_buffer *buffer,
	       unsigned long payload)
{
1928 1929
	struct iso_context *ctx = container_of(base, struct iso_context, base);

1930 1931
	if (base->type == FW_ISO_CONTEXT_TRANSMIT)
		return ohci_queue_iso_transmit(base, packet, buffer, payload);
1932
	else if (ctx->context.ohci->version >= OHCI_VERSION_1_1)
1933 1934
		return ohci_queue_iso_receive_dualbuffer(base, packet,
							 buffer, payload);
1935
	else
1936 1937 1938
		return ohci_queue_iso_receive_packet_per_buffer(base, packet,
								buffer,
								payload);
1939 1940
}

1941
static const struct fw_card_driver ohci_driver = {
1942 1943 1944 1945 1946 1947
	.name			= ohci_driver_name,
	.enable			= ohci_enable,
	.update_phy_reg		= ohci_update_phy_reg,
	.set_config_rom		= ohci_set_config_rom,
	.send_request		= ohci_send_request,
	.send_response		= ohci_send_response,
1948
	.cancel_packet		= ohci_cancel_packet,
1949
	.enable_phys_dma	= ohci_enable_phys_dma,
1950
	.get_bus_time		= ohci_get_bus_time,
1951 1952 1953 1954

	.allocate_iso_context	= ohci_allocate_iso_context,
	.free_iso_context	= ohci_free_iso_context,
	.queue_iso		= ohci_queue_iso,
1955
	.start_iso		= ohci_start_iso,
1956
	.stop_iso		= ohci_stop_iso,
1957 1958 1959 1960 1961 1962
};

static int __devinit
pci_probe(struct pci_dev *dev, const struct pci_device_id *ent)
{
	struct fw_ohci *ohci;
1963
	u32 bus_options, max_receive, link_speed;
1964
	u64 guid;
1965
	int err;
1966 1967
	size_t size;

1968
	ohci = kzalloc(sizeof(*ohci), GFP_KERNEL);
1969 1970 1971 1972 1973 1974 1975
	if (ohci == NULL) {
		fw_error("Could not malloc fw_ohci data.\n");
		return -ENOMEM;
	}

	fw_card_initialize(&ohci->card, &ohci_driver, &dev->dev);

1976 1977
	err = pci_enable_device(dev);
	if (err) {
1978
		fw_error("Failed to enable OHCI hardware.\n");
1979
		goto fail_put_card;
1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990
	}

	pci_set_master(dev);
	pci_write_config_dword(dev, OHCI1394_PCI_HCI_Control, 0);
	pci_set_drvdata(dev, ohci);

	spin_lock_init(&ohci->lock);

	tasklet_init(&ohci->bus_reset_tasklet,
		     bus_reset_tasklet, (unsigned long)ohci);

1991 1992
	err = pci_request_region(dev, 0, ohci_driver_name);
	if (err) {
1993
		fw_error("MMIO resource unavailable\n");
1994
		goto fail_disable;
1995 1996 1997 1998 1999
	}

	ohci->registers = pci_iomap(dev, 0, OHCI1394_REGISTER_SIZE);
	if (ohci->registers == NULL) {
		fw_error("Failed to remap registers\n");
2000 2001
		err = -ENXIO;
		goto fail_iomem;
2002 2003 2004 2005 2006 2007 2008 2009
	}

	ar_context_init(&ohci->ar_request_ctx, ohci,
			OHCI1394_AsReqRcvContextControlSet);

	ar_context_init(&ohci->ar_response_ctx, ohci,
			OHCI1394_AsRspRcvContextControlSet);

2010 2011
	context_init(&ohci->at_request_ctx, ohci, AT_BUFFER_SIZE,
		     OHCI1394_AsReqTrContextControlSet, handle_at_packet);
2012

2013 2014
	context_init(&ohci->at_response_ctx, ohci, AT_BUFFER_SIZE,
		     OHCI1394_AsRspTrContextControlSet, handle_at_packet);
2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029

	reg_write(ohci, OHCI1394_IsoRecvIntMaskSet, ~0);
	ohci->it_context_mask = reg_read(ohci, OHCI1394_IsoRecvIntMaskSet);
	reg_write(ohci, OHCI1394_IsoRecvIntMaskClear, ~0);
	size = sizeof(struct iso_context) * hweight32(ohci->it_context_mask);
	ohci->it_context_list = kzalloc(size, GFP_KERNEL);

	reg_write(ohci, OHCI1394_IsoXmitIntMaskSet, ~0);
	ohci->ir_context_mask = reg_read(ohci, OHCI1394_IsoXmitIntMaskSet);
	reg_write(ohci, OHCI1394_IsoXmitIntMaskClear, ~0);
	size = sizeof(struct iso_context) * hweight32(ohci->ir_context_mask);
	ohci->ir_context_list = kzalloc(size, GFP_KERNEL);

	if (ohci->it_context_list == NULL || ohci->ir_context_list == NULL) {
		fw_error("Out of memory for it/ir contexts.\n");
2030 2031
		err = -ENOMEM;
		goto fail_registers;
2032 2033 2034 2035 2036 2037 2038 2039 2040
	}

	/* self-id dma buffer allocation */
	ohci->self_id_cpu = dma_alloc_coherent(ohci->card.device,
					       SELF_ID_BUF_SIZE,
					       &ohci->self_id_bus,
					       GFP_KERNEL);
	if (ohci->self_id_cpu == NULL) {
		fw_error("Out of memory for self ID buffer.\n");
2041 2042
		err = -ENOMEM;
		goto fail_registers;
2043 2044 2045 2046 2047 2048 2049 2050
	}

	bus_options = reg_read(ohci, OHCI1394_BusOptions);
	max_receive = (bus_options >> 12) & 0xf;
	link_speed = bus_options & 0x7;
	guid = ((u64) reg_read(ohci, OHCI1394_GUIDHi) << 32) |
		reg_read(ohci, OHCI1394_GUIDLo);

2051 2052 2053
	err = fw_card_add(&ohci->card, max_receive, link_speed, guid);
	if (err < 0)
		goto fail_self_id;
2054

2055
	ohci->version = reg_read(ohci, OHCI1394_Version) & 0x00ff00ff;
2056
	fw_notify("Added fw-ohci device %s, OHCI version %x.%x\n",
2057
		  dev->dev.bus_id, ohci->version >> 16, ohci->version & 0xff);
2058
	return 0;
2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074

 fail_self_id:
	dma_free_coherent(ohci->card.device, SELF_ID_BUF_SIZE,
			  ohci->self_id_cpu, ohci->self_id_bus);
 fail_registers:
	kfree(ohci->it_context_list);
	kfree(ohci->ir_context_list);
	pci_iounmap(dev, ohci->registers);
 fail_iomem:
	pci_release_region(dev, 0);
 fail_disable:
	pci_disable_device(dev);
 fail_put_card:
	fw_card_put(&ohci->card);

	return err;
2075 2076 2077 2078 2079 2080 2081
}

static void pci_remove(struct pci_dev *dev)
{
	struct fw_ohci *ohci;

	ohci = pci_get_drvdata(dev);
2082 2083
	reg_write(ohci, OHCI1394_IntMaskClear, ~0);
	flush_writes(ohci);
2084 2085
	fw_core_remove_card(&ohci->card);

2086 2087 2088 2089
	/*
	 * FIXME: Fail all pending packets here, now that the upper
	 * layers can't queue any more.
	 */
2090 2091 2092

	software_reset(ohci);
	free_irq(dev->irq, ohci);
2093 2094 2095 2096 2097 2098 2099 2100
	dma_free_coherent(ohci->card.device, SELF_ID_BUF_SIZE,
			  ohci->self_id_cpu, ohci->self_id_bus);
	kfree(ohci->it_context_list);
	kfree(ohci->ir_context_list);
	pci_iounmap(dev, ohci->registers);
	pci_release_region(dev, 0);
	pci_disable_device(dev);
	fw_card_put(&ohci->card);
2101 2102 2103 2104

	fw_notify("Removed fw-ohci device.\n");
}

2105 2106 2107 2108 2109 2110 2111 2112 2113 2114
#ifdef CONFIG_PM
static int pci_suspend(struct pci_dev *pdev, pm_message_t state)
{
	struct fw_ohci *ohci = pci_get_drvdata(pdev);
	int err;

	software_reset(ohci);
	free_irq(pdev->irq, ohci);
	err = pci_save_state(pdev);
	if (err) {
2115
		fw_error("pci_save_state failed\n");
2116 2117 2118
		return err;
	}
	err = pci_set_power_state(pdev, pci_choose_state(pdev, state));
2119 2120
	if (err)
		fw_error("pci_set_power_state failed with %d\n", err);
2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133

	return 0;
}

static int pci_resume(struct pci_dev *pdev)
{
	struct fw_ohci *ohci = pci_get_drvdata(pdev);
	int err;

	pci_set_power_state(pdev, PCI_D0);
	pci_restore_state(pdev);
	err = pci_enable_device(pdev);
	if (err) {
2134
		fw_error("pci_enable_device failed\n");
2135 2136 2137
		return err;
	}

2138
	return ohci_enable(&ohci->card, NULL, 0);
2139 2140 2141
}
#endif

2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153
static struct pci_device_id pci_table[] = {
	{ PCI_DEVICE_CLASS(PCI_CLASS_SERIAL_FIREWIRE_OHCI, ~0) },
	{ }
};

MODULE_DEVICE_TABLE(pci, pci_table);

static struct pci_driver fw_ohci_pci_driver = {
	.name		= ohci_driver_name,
	.id_table	= pci_table,
	.probe		= pci_probe,
	.remove		= pci_remove,
2154 2155 2156 2157
#ifdef CONFIG_PM
	.resume		= pci_resume,
	.suspend	= pci_suspend,
#endif
2158 2159 2160 2161 2162 2163
};

MODULE_AUTHOR("Kristian Hoegsberg <krh@bitplanet.net>");
MODULE_DESCRIPTION("Driver for PCI OHCI IEEE1394 controllers");
MODULE_LICENSE("GPL");

2164 2165 2166 2167 2168
/* Provide a module alias so root-on-sbp2 initrds don't break. */
#ifndef CONFIG_IEEE1394_OHCI1394_MODULE
MODULE_ALIAS("ohci1394");
#endif

2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180
static int __init fw_ohci_init(void)
{
	return pci_register_driver(&fw_ohci_pci_driver);
}

static void __exit fw_ohci_cleanup(void)
{
	pci_unregister_driver(&fw_ohci_pci_driver);
}

module_init(fw_ohci_init);
module_exit(fw_ohci_cleanup);