fw-ohci.c 62.2 KB
Newer Older
1 2
/*
 * Driver for OHCI 1394 controllers
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
 *
 * Copyright (C) 2003-2006 Kristian Hoegsberg <krh@bitplanet.net>
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software Foundation,
 * Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
 */

21
#include <linux/compiler.h>
22
#include <linux/delay.h>
A
Andrew Morton 已提交
23
#include <linux/dma-mapping.h>
S
Stefan Richter 已提交
24
#include <linux/gfp.h>
25 26 27
#include <linux/init.h>
#include <linux/interrupt.h>
#include <linux/kernel.h>
A
Al Viro 已提交
28
#include <linux/mm.h>
29 30
#include <linux/module.h>
#include <linux/pci.h>
S
Stefan Richter 已提交
31
#include <linux/spinlock.h>
A
Andrew Morton 已提交
32

S
Stefan Richter 已提交
33
#include <asm/page.h>
34
#include <asm/system.h>
35

36 37 38 39
#ifdef CONFIG_PPC_PMAC
#include <asm/pmac_feature.h>
#endif

40
#include "fw-ohci.h"
41
#include "fw-transaction.h"
42

43 44 45 46 47 48 49 50 51 52 53 54 55
#define DESCRIPTOR_OUTPUT_MORE		0
#define DESCRIPTOR_OUTPUT_LAST		(1 << 12)
#define DESCRIPTOR_INPUT_MORE		(2 << 12)
#define DESCRIPTOR_INPUT_LAST		(3 << 12)
#define DESCRIPTOR_STATUS		(1 << 11)
#define DESCRIPTOR_KEY_IMMEDIATE	(2 << 8)
#define DESCRIPTOR_PING			(1 << 7)
#define DESCRIPTOR_YY			(1 << 6)
#define DESCRIPTOR_NO_IRQ		(0 << 4)
#define DESCRIPTOR_IRQ_ERROR		(1 << 4)
#define DESCRIPTOR_IRQ_ALWAYS		(3 << 4)
#define DESCRIPTOR_BRANCH_ALWAYS	(3 << 2)
#define DESCRIPTOR_WAIT			(3 << 0)
56 57 58 59 60 61 62 63 64 65

struct descriptor {
	__le16 req_count;
	__le16 control;
	__le32 data_address;
	__le32 branch_address;
	__le16 res_count;
	__le16 transfer_status;
} __attribute__((aligned(16)));

66 67 68 69 70 71 72 73 74 75 76 77 78 79
struct db_descriptor {
	__le16 first_size;
	__le16 control;
	__le16 second_req_count;
	__le16 first_req_count;
	__le32 branch_address;
	__le16 second_res_count;
	__le16 first_res_count;
	__le32 reserved0;
	__le32 first_buffer;
	__le32 second_buffer;
	__le32 reserved1;
} __attribute__((aligned(16)));

80 81 82 83
#define CONTROL_SET(regs)	(regs)
#define CONTROL_CLEAR(regs)	((regs) + 4)
#define COMMAND_PTR(regs)	((regs) + 12)
#define CONTEXT_MATCH(regs)	((regs) + 16)
84

85
struct ar_buffer {
86
	struct descriptor descriptor;
87 88 89
	struct ar_buffer *next;
	__le32 data[0];
};
90

91 92 93 94 95
struct ar_context {
	struct fw_ohci *ohci;
	struct ar_buffer *current_buffer;
	struct ar_buffer *last_buffer;
	void *pointer;
96
	u32 regs;
97 98 99
	struct tasklet_struct tasklet;
};

100 101 102 103 104
struct context;

typedef int (*descriptor_callback_t)(struct context *ctx,
				     struct descriptor *d,
				     struct descriptor *last);
105 106 107 108 109 110 111 112 113 114 115 116 117

/*
 * A buffer that contains a block of DMA-able coherent memory used for
 * storing a portion of a DMA descriptor program.
 */
struct descriptor_buffer {
	struct list_head list;
	dma_addr_t buffer_bus;
	size_t buffer_size;
	size_t used;
	struct descriptor buffer[0];
};

118
struct context {
S
Stefan Richter 已提交
119
	struct fw_ohci *ohci;
120
	u32 regs;
121
	int total_allocation;
S
Stefan Richter 已提交
122

123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146
	/*
	 * List of page-sized buffers for storing DMA descriptors.
	 * Head of list contains buffers in use and tail of list contains
	 * free buffers.
	 */
	struct list_head buffer_list;

	/*
	 * Pointer to a buffer inside buffer_list that contains the tail
	 * end of the current DMA program.
	 */
	struct descriptor_buffer *buffer_tail;

	/*
	 * The descriptor containing the branch address of the first
	 * descriptor that has not yet been filled by the device.
	 */
	struct descriptor *last;

	/*
	 * The last descriptor in the DMA program.  It contains the branch
	 * address that must be updated upon appending a new descriptor.
	 */
	struct descriptor *prev;
147 148 149

	descriptor_callback_t callback;

S
Stefan Richter 已提交
150
	struct tasklet_struct tasklet;
151 152
};

153 154 155 156 157 158
#define IT_HEADER_SY(v)          ((v) <<  0)
#define IT_HEADER_TCODE(v)       ((v) <<  4)
#define IT_HEADER_CHANNEL(v)     ((v) <<  8)
#define IT_HEADER_TAG(v)         ((v) << 14)
#define IT_HEADER_SPEED(v)       ((v) << 16)
#define IT_HEADER_DATA_LENGTH(v) ((v) << 16)
159 160 161

struct iso_context {
	struct fw_iso_context base;
162
	struct context context;
163
	int excess_bytes;
164 165
	void *header;
	size_t header_length;
166 167 168 169 170 171 172
};

#define CONFIG_ROM_SIZE 1024

struct fw_ohci {
	struct fw_card card;

173
	u32 version;
174 175 176 177
	__iomem char *registers;
	dma_addr_t self_id_bus;
	__le32 *self_id_cpu;
	struct tasklet_struct bus_reset_tasklet;
178
	int node_id;
179 180
	int generation;
	int request_generation;
181
	u32 bus_seconds;
182
	bool old_uninorth;
183

184 185 186 187
	/*
	 * Spinlock for accessing fw_ohci data.  Never call out of
	 * this driver with this lock held.
	 */
188 189 190 191 192 193 194 195 196 197 198 199
	spinlock_t lock;
	u32 self_id_buffer[512];

	/* Config rom buffers */
	__be32 *config_rom;
	dma_addr_t config_rom_bus;
	__be32 *next_config_rom;
	dma_addr_t next_config_rom_bus;
	u32 next_header;

	struct ar_context ar_request_ctx;
	struct ar_context ar_response_ctx;
200 201
	struct context at_request_ctx;
	struct context at_response_ctx;
202 203 204 205 206 207 208

	u32 it_context_mask;
	struct iso_context *it_context_list;
	u32 ir_context_mask;
	struct iso_context *ir_context_list;
};

A
Adrian Bunk 已提交
209
static inline struct fw_ohci *fw_ohci(struct fw_card *card)
210 211 212 213
{
	return container_of(card, struct fw_ohci, card);
}

214 215 216 217 218 219
#define IT_CONTEXT_CYCLE_MATCH_ENABLE	0x80000000
#define IR_CONTEXT_BUFFER_FILL		0x80000000
#define IR_CONTEXT_ISOCH_HEADER		0x40000000
#define IR_CONTEXT_CYCLE_MATCH_ENABLE	0x20000000
#define IR_CONTEXT_MULTI_CHANNEL_MODE	0x10000000
#define IR_CONTEXT_DUAL_BUFFER_MODE	0x08000000
220 221 222 223 224 225 226 227 228 229 230 231 232 233 234

#define CONTEXT_RUN	0x8000
#define CONTEXT_WAKE	0x1000
#define CONTEXT_DEAD	0x0800
#define CONTEXT_ACTIVE	0x0400

#define OHCI1394_MAX_AT_REQ_RETRIES	0x2
#define OHCI1394_MAX_AT_RESP_RETRIES	0x2
#define OHCI1394_MAX_PHYS_RESP_RETRIES	0x8

#define FW_OHCI_MAJOR			240
#define OHCI1394_REGISTER_SIZE		0x800
#define OHCI_LOOP_COUNT			500
#define OHCI1394_PCI_HCI_Control	0x40
#define SELF_ID_BUF_SIZE		0x800
235
#define OHCI_TCODE_PHY_PACKET		0x0e
236
#define OHCI_VERSION_1_1		0x010010
237

238 239
static char ohci_driver_name[] = KBUILD_MODNAME;

A
Adrian Bunk 已提交
240
static inline void reg_write(const struct fw_ohci *ohci, int offset, u32 data)
241 242 243 244
{
	writel(data, ohci->registers + offset);
}

A
Adrian Bunk 已提交
245
static inline u32 reg_read(const struct fw_ohci *ohci, int offset)
246 247 248 249
{
	return readl(ohci->registers + offset);
}

A
Adrian Bunk 已提交
250
static inline void flush_writes(const struct fw_ohci *ohci)
251 252 253 254 255 256 257 258 259 260 261 262 263
{
	/* Do a dummy read to flush writes. */
	reg_read(ohci, OHCI1394_Version);
}

static int
ohci_update_phy_reg(struct fw_card *card, int addr,
		    int clear_bits, int set_bits)
{
	struct fw_ohci *ohci = fw_ohci(card);
	u32 val, old;

	reg_write(ohci, OHCI1394_PhyControl, OHCI1394_PhyControl_Read(addr));
264
	flush_writes(ohci);
265 266 267 268 269 270 271 272 273 274 275 276 277 278 279
	msleep(2);
	val = reg_read(ohci, OHCI1394_PhyControl);
	if ((val & OHCI1394_PhyControl_ReadDone) == 0) {
		fw_error("failed to set phy reg bits.\n");
		return -EBUSY;
	}

	old = OHCI1394_PhyControl_ReadData(val);
	old = (old & ~clear_bits) | set_bits;
	reg_write(ohci, OHCI1394_PhyControl,
		  OHCI1394_PhyControl_Write(addr, old));

	return 0;
}

280
static int ar_context_add_page(struct ar_context *ctx)
281
{
282 283
	struct device *dev = ctx->ohci->card.device;
	struct ar_buffer *ab;
284
	dma_addr_t uninitialized_var(ab_bus);
285 286
	size_t offset;

287
	ab = dma_alloc_coherent(dev, PAGE_SIZE, &ab_bus, GFP_ATOMIC);
288 289 290
	if (ab == NULL)
		return -ENOMEM;

291
	memset(&ab->descriptor, 0, sizeof(ab->descriptor));
292 293 294
	ab->descriptor.control        = cpu_to_le16(DESCRIPTOR_INPUT_MORE |
						    DESCRIPTOR_STATUS |
						    DESCRIPTOR_BRANCH_ALWAYS);
295 296 297 298 299 300
	offset = offsetof(struct ar_buffer, data);
	ab->descriptor.req_count      = cpu_to_le16(PAGE_SIZE - offset);
	ab->descriptor.data_address   = cpu_to_le32(ab_bus + offset);
	ab->descriptor.res_count      = cpu_to_le16(PAGE_SIZE - offset);
	ab->descriptor.branch_address = 0;

301
	ctx->last_buffer->descriptor.branch_address = cpu_to_le32(ab_bus | 1);
302 303 304
	ctx->last_buffer->next = ab;
	ctx->last_buffer = ab;

305
	reg_write(ctx->ohci, CONTROL_SET(ctx->regs), CONTEXT_WAKE);
306
	flush_writes(ctx->ohci);
307 308

	return 0;
309 310
}

311 312 313 314 315 316 317
#if defined(CONFIG_PPC_PMAC) && defined(CONFIG_PPC32)
#define cond_le32_to_cpu(v) \
	(ohci->old_uninorth ? (__force __u32)(v) : le32_to_cpu(v))
#else
#define cond_le32_to_cpu(v) le32_to_cpu(v)
#endif

318
static __le32 *handle_ar_packet(struct ar_context *ctx, __le32 *buffer)
319 320
{
	struct fw_ohci *ohci = ctx->ohci;
321 322 323
	struct fw_packet p;
	u32 status, length, tcode;

324 325 326
	p.header[0] = cond_le32_to_cpu(buffer[0]);
	p.header[1] = cond_le32_to_cpu(buffer[1]);
	p.header[2] = cond_le32_to_cpu(buffer[2]);
327 328 329 330 331

	tcode = (p.header[0] >> 4) & 0x0f;
	switch (tcode) {
	case TCODE_WRITE_QUADLET_REQUEST:
	case TCODE_READ_QUADLET_RESPONSE:
332
		p.header[3] = (__force __u32) buffer[3];
333
		p.header_length = 16;
334
		p.payload_length = 0;
335 336 337
		break;

	case TCODE_READ_BLOCK_REQUEST :
338
		p.header[3] = cond_le32_to_cpu(buffer[3]);
339 340 341 342 343
		p.header_length = 16;
		p.payload_length = 0;
		break;

	case TCODE_WRITE_BLOCK_REQUEST:
344 345 346
	case TCODE_READ_BLOCK_RESPONSE:
	case TCODE_LOCK_REQUEST:
	case TCODE_LOCK_RESPONSE:
347
		p.header[3] = cond_le32_to_cpu(buffer[3]);
348
		p.header_length = 16;
349
		p.payload_length = p.header[3] >> 16;
350 351 352 353
		break;

	case TCODE_WRITE_RESPONSE:
	case TCODE_READ_QUADLET_REQUEST:
354
	case OHCI_TCODE_PHY_PACKET:
355
		p.header_length = 12;
356
		p.payload_length = 0;
357 358
		break;
	}
359

360 361 362 363
	p.payload = (void *) buffer + p.header_length;

	/* FIXME: What to do about evt_* errors? */
	length = (p.header_length + p.payload_length + 3) / 4;
364
	status = cond_le32_to_cpu(buffer[length]);
365 366 367 368 369

	p.ack        = ((status >> 16) & 0x1f) - 16;
	p.speed      = (status >> 21) & 0x7;
	p.timestamp  = status & 0xffff;
	p.generation = ohci->request_generation;
370

371 372
	/*
	 * The OHCI bus reset handler synthesizes a phy packet with
373 374 375 376 377
	 * the new generation number when a bus reset happens (see
	 * section 8.4.2.3).  This helps us determine when a request
	 * was received and make sure we send the response in the same
	 * generation.  We only need this for requests; for responses
	 * we use the unique tlabel for finding the matching
378 379
	 * request.
	 */
380

381
	if (p.ack + 16 == 0x09)
S
Stefan Richter 已提交
382
		ohci->request_generation = (p.header[2] >> 16) & 0xff;
383
	else if (ctx == &ohci->ar_request_ctx)
384
		fw_core_handle_request(&ohci->card, &p);
385
	else
386
		fw_core_handle_response(&ohci->card, &p);
387

388 389
	return buffer + length + 1;
}
390

391 392 393 394 395 396 397 398 399 400 401 402 403
static void ar_context_tasklet(unsigned long data)
{
	struct ar_context *ctx = (struct ar_context *)data;
	struct fw_ohci *ohci = ctx->ohci;
	struct ar_buffer *ab;
	struct descriptor *d;
	void *buffer, *end;

	ab = ctx->current_buffer;
	d = &ab->descriptor;

	if (d->res_count == 0) {
		size_t size, rest, offset;
404 405
		dma_addr_t start_bus;
		void *start;
406

407 408
		/*
		 * This descriptor is finished and we may have a
409
		 * packet split across this and the next buffer. We
410 411
		 * reuse the page for reassembling the split packet.
		 */
412 413

		offset = offsetof(struct ar_buffer, data);
414 415
		start = buffer = ab;
		start_bus = le32_to_cpu(ab->descriptor.data_address) - offset;
416 417 418 419 420 421 422 423 424 425 426 427 428 429

		ab = ab->next;
		d = &ab->descriptor;
		size = buffer + PAGE_SIZE - ctx->pointer;
		rest = le16_to_cpu(d->req_count) - le16_to_cpu(d->res_count);
		memmove(buffer, ctx->pointer, size);
		memcpy(buffer + size, ab->data, rest);
		ctx->current_buffer = ab;
		ctx->pointer = (void *) ab->data + rest;
		end = buffer + size + rest;

		while (buffer < end)
			buffer = handle_ar_packet(ctx, buffer);

430
		dma_free_coherent(ohci->card.device, PAGE_SIZE,
431
				  start, start_bus);
432 433 434 435 436 437 438 439 440
		ar_context_add_page(ctx);
	} else {
		buffer = ctx->pointer;
		ctx->pointer = end =
			(void *) ab + PAGE_SIZE - le16_to_cpu(d->res_count);

		while (buffer < end)
			buffer = handle_ar_packet(ctx, buffer);
	}
441 442 443
}

static int
444
ar_context_init(struct ar_context *ctx, struct fw_ohci *ohci, u32 regs)
445
{
446
	struct ar_buffer ab;
447

448 449 450
	ctx->regs        = regs;
	ctx->ohci        = ohci;
	ctx->last_buffer = &ab;
451 452
	tasklet_init(&ctx->tasklet, ar_context_tasklet, (unsigned long)ctx);

453 454 455 456 457
	ar_context_add_page(ctx);
	ar_context_add_page(ctx);
	ctx->current_buffer = ab.next;
	ctx->pointer = ctx->current_buffer->data;

458 459 460 461 462 463 464 465 466 467
	return 0;
}

static void ar_context_run(struct ar_context *ctx)
{
	struct ar_buffer *ab = ctx->current_buffer;
	dma_addr_t ab_bus;
	size_t offset;

	offset = offsetof(struct ar_buffer, data);
468
	ab_bus = le32_to_cpu(ab->descriptor.data_address) - offset;
469 470

	reg_write(ctx->ohci, COMMAND_PTR(ctx->regs), ab_bus | 1);
471
	reg_write(ctx->ohci, CONTROL_SET(ctx->regs), CONTEXT_RUN);
472
	flush_writes(ctx->ohci);
473
}
S
Stefan Richter 已提交
474

475 476 477 478 479 480 481 482 483 484 485 486 487 488 489
static struct descriptor *
find_branch_descriptor(struct descriptor *d, int z)
{
	int b, key;

	b   = (le16_to_cpu(d->control) & DESCRIPTOR_BRANCH_ALWAYS) >> 2;
	key = (le16_to_cpu(d->control) & DESCRIPTOR_KEY_IMMEDIATE) >> 8;

	/* figure out which descriptor the branch address goes in */
	if (z == 2 && (b == 3 || key == 2))
		return d;
	else
		return d + z - 1;
}

490 491 492 493 494 495
static void context_tasklet(unsigned long data)
{
	struct context *ctx = (struct context *) data;
	struct descriptor *d, *last;
	u32 address;
	int z;
496
	struct descriptor_buffer *desc;
497

498 499 500
	desc = list_entry(ctx->buffer_list.next,
			struct descriptor_buffer, list);
	last = ctx->last;
501
	while (last->branch_address != 0) {
502
		struct descriptor_buffer *old_desc = desc;
503 504
		address = le32_to_cpu(last->branch_address);
		z = address & 0xf;
505 506 507 508 509 510 511 512 513
		address &= ~0xf;

		/* If the branch address points to a buffer outside of the
		 * current buffer, advance to the next buffer. */
		if (address < desc->buffer_bus ||
				address >= desc->buffer_bus + desc->used)
			desc = list_entry(desc->list.next,
					struct descriptor_buffer, list);
		d = desc->buffer + (address - desc->buffer_bus) / sizeof(*d);
514
		last = find_branch_descriptor(d, z);
515 516 517 518

		if (!ctx->callback(ctx, d, last))
			break;

519 520 521 522 523 524 525 526 527 528
		if (old_desc != desc) {
			/* If we've advanced to the next buffer, move the
			 * previous buffer to the free list. */
			unsigned long flags;
			old_desc->used = 0;
			spin_lock_irqsave(&ctx->ohci->lock, flags);
			list_move_tail(&old_desc->list, &ctx->buffer_list);
			spin_unlock_irqrestore(&ctx->ohci->lock, flags);
		}
		ctx->last = last;
529 530 531
	}
}

532 533 534 535 536 537 538 539
/*
 * Allocate a new buffer and add it to the list of free buffers for this
 * context.  Must be called with ohci->lock held.
 */
static int
context_add_buffer(struct context *ctx)
{
	struct descriptor_buffer *desc;
540
	dma_addr_t uninitialized_var(bus_addr);
541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565
	int offset;

	/*
	 * 16MB of descriptors should be far more than enough for any DMA
	 * program.  This will catch run-away userspace or DoS attacks.
	 */
	if (ctx->total_allocation >= 16*1024*1024)
		return -ENOMEM;

	desc = dma_alloc_coherent(ctx->ohci->card.device, PAGE_SIZE,
			&bus_addr, GFP_ATOMIC);
	if (!desc)
		return -ENOMEM;

	offset = (void *)&desc->buffer - (void *)desc;
	desc->buffer_size = PAGE_SIZE - offset;
	desc->buffer_bus = bus_addr + offset;
	desc->used = 0;

	list_add_tail(&desc->list, &ctx->buffer_list);
	ctx->total_allocation += PAGE_SIZE;

	return 0;
}

566 567
static int
context_init(struct context *ctx, struct fw_ohci *ohci,
568
	     u32 regs, descriptor_callback_t callback)
569 570 571
{
	ctx->ohci = ohci;
	ctx->regs = regs;
572 573 574 575
	ctx->total_allocation = 0;

	INIT_LIST_HEAD(&ctx->buffer_list);
	if (context_add_buffer(ctx) < 0)
576 577
		return -ENOMEM;

578 579 580
	ctx->buffer_tail = list_entry(ctx->buffer_list.next,
			struct descriptor_buffer, list);

581 582 583
	tasklet_init(&ctx->tasklet, context_tasklet, (unsigned long)ctx);
	ctx->callback = callback;

584 585
	/*
	 * We put a dummy descriptor in the buffer that has a NULL
586
	 * branch address and looks like it's been sent.  That way we
587
	 * have a descriptor to append DMA programs to.
588
	 */
589 590 591 592 593 594
	memset(ctx->buffer_tail->buffer, 0, sizeof(*ctx->buffer_tail->buffer));
	ctx->buffer_tail->buffer->control = cpu_to_le16(DESCRIPTOR_OUTPUT_LAST);
	ctx->buffer_tail->buffer->transfer_status = cpu_to_le16(0x8011);
	ctx->buffer_tail->used += sizeof(*ctx->buffer_tail->buffer);
	ctx->last = ctx->buffer_tail->buffer;
	ctx->prev = ctx->buffer_tail->buffer;
595 596 597 598

	return 0;
}

599
static void
600 601 602
context_release(struct context *ctx)
{
	struct fw_card *card = &ctx->ohci->card;
603
	struct descriptor_buffer *desc, *tmp;
604

605 606 607 608
	list_for_each_entry_safe(desc, tmp, &ctx->buffer_list, list)
		dma_free_coherent(card->device, PAGE_SIZE, desc,
			desc->buffer_bus -
			((void *)&desc->buffer - (void *)desc));
609 610
}

611
/* Must be called with ohci->lock held */
612 613 614
static struct descriptor *
context_get_descriptors(struct context *ctx, int z, dma_addr_t *d_bus)
{
615 616 617 618 619 620 621 622 623
	struct descriptor *d = NULL;
	struct descriptor_buffer *desc = ctx->buffer_tail;

	if (z * sizeof(*d) > desc->buffer_size)
		return NULL;

	if (z * sizeof(*d) > desc->buffer_size - desc->used) {
		/* No room for the descriptor in this buffer, so advance to the
		 * next one. */
624

625 626 627 628 629 630 631 632 633 634
		if (desc->list.next == &ctx->buffer_list) {
			/* If there is no free buffer next in the list,
			 * allocate one. */
			if (context_add_buffer(ctx) < 0)
				return NULL;
		}
		desc = list_entry(desc->list.next,
				struct descriptor_buffer, list);
		ctx->buffer_tail = desc;
	}
635

636
	d = desc->buffer + desc->used / sizeof(*d);
637
	memset(d, 0, z * sizeof(*d));
638
	*d_bus = desc->buffer_bus + desc->used;
639 640 641 642

	return d;
}

643
static void context_run(struct context *ctx, u32 extra)
644 645 646
{
	struct fw_ohci *ohci = ctx->ohci;

647
	reg_write(ohci, COMMAND_PTR(ctx->regs),
648
		  le32_to_cpu(ctx->last->branch_address));
649 650
	reg_write(ohci, CONTROL_CLEAR(ctx->regs), ~0);
	reg_write(ohci, CONTROL_SET(ctx->regs), CONTEXT_RUN | extra);
651 652 653 654 655 656 657
	flush_writes(ohci);
}

static void context_append(struct context *ctx,
			   struct descriptor *d, int z, int extra)
{
	dma_addr_t d_bus;
658
	struct descriptor_buffer *desc = ctx->buffer_tail;
659

660
	d_bus = desc->buffer_bus + (d - desc->buffer) * sizeof(*d);
661

662 663 664
	desc->used += (z + extra) * sizeof(*d);
	ctx->prev->branch_address = cpu_to_le32(d_bus | z);
	ctx->prev = find_branch_descriptor(d, z);
665

666
	reg_write(ctx->ohci, CONTROL_SET(ctx->regs), CONTEXT_WAKE);
667 668 669 670 671 672
	flush_writes(ctx->ohci);
}

static void context_stop(struct context *ctx)
{
	u32 reg;
673
	int i;
674

675
	reg_write(ctx->ohci, CONTROL_CLEAR(ctx->regs), CONTEXT_RUN);
676
	flush_writes(ctx->ohci);
677

678
	for (i = 0; i < 10; i++) {
679
		reg = reg_read(ctx->ohci, CONTROL_SET(ctx->regs));
680 681 682 683
		if ((reg & CONTEXT_ACTIVE) == 0)
			break;

		fw_notify("context_stop: still active (0x%08x)\n", reg);
684
		mdelay(1);
685
	}
686
}
687

688 689 690
struct driver_data {
	struct fw_packet *packet;
};
691

692 693
/*
 * This function apppends a packet to the DMA queue for transmission.
694
 * Must always be called with the ochi->lock held to ensure proper
695 696
 * generation handling and locking around packet queue manipulation.
 */
697 698
static int
at_context_queue_packet(struct context *ctx, struct fw_packet *packet)
699 700
{
	struct fw_ohci *ohci = ctx->ohci;
701
	dma_addr_t d_bus, uninitialized_var(payload_bus);
702 703 704
	struct driver_data *driver_data;
	struct descriptor *d, *last;
	__le32 *header;
705
	int z, tcode;
706
	u32 reg;
707

708 709 710 711
	d = context_get_descriptors(ctx, 4, &d_bus);
	if (d == NULL) {
		packet->ack = RCODE_SEND_ERROR;
		return -1;
712 713
	}

714
	d[0].control   = cpu_to_le16(DESCRIPTOR_KEY_IMMEDIATE);
715 716
	d[0].res_count = cpu_to_le16(packet->timestamp);

717 718
	/*
	 * The DMA format for asyncronous link packets is different
719 720
	 * from the IEEE1394 layout, so shift the fields around
	 * accordingly.  If header_length is 8, it's a PHY packet, to
721 722
	 * which we need to prepend an extra quadlet.
	 */
723 724

	header = (__le32 *) &d[1];
725
	if (packet->header_length > 8) {
726 727 728 729 730
		header[0] = cpu_to_le32((packet->header[0] & 0xffff) |
					(packet->speed << 16));
		header[1] = cpu_to_le32((packet->header[1] & 0xffff) |
					(packet->header[0] & 0xffff0000));
		header[2] = cpu_to_le32(packet->header[2]);
731 732 733

		tcode = (packet->header[0] >> 4) & 0x0f;
		if (TCODE_IS_BLOCK_PACKET(tcode))
734
			header[3] = cpu_to_le32(packet->header[3]);
735
		else
736 737 738
			header[3] = (__force __le32) packet->header[3];

		d[0].req_count = cpu_to_le16(packet->header_length);
739
	} else {
740 741 742 743 744
		header[0] = cpu_to_le32((OHCI1394_phy_tcode << 4) |
					(packet->speed << 16));
		header[1] = cpu_to_le32(packet->header[0]);
		header[2] = cpu_to_le32(packet->header[1]);
		d[0].req_count = cpu_to_le16(12);
745 746
	}

747 748
	driver_data = (struct driver_data *) &d[3];
	driver_data->packet = packet;
749
	packet->driver_data = driver_data;
750

751 752 753 754 755 756 757 758 759 760 761 762 763
	if (packet->payload_length > 0) {
		payload_bus =
			dma_map_single(ohci->card.device, packet->payload,
				       packet->payload_length, DMA_TO_DEVICE);
		if (dma_mapping_error(payload_bus)) {
			packet->ack = RCODE_SEND_ERROR;
			return -1;
		}

		d[2].req_count    = cpu_to_le16(packet->payload_length);
		d[2].data_address = cpu_to_le32(payload_bus);
		last = &d[2];
		z = 3;
764
	} else {
765 766
		last = &d[0];
		z = 2;
767 768
	}

769 770 771
	last->control |= cpu_to_le16(DESCRIPTOR_OUTPUT_LAST |
				     DESCRIPTOR_IRQ_ALWAYS |
				     DESCRIPTOR_BRANCH_ALWAYS);
772

773 774
	/* FIXME: Document how the locking works. */
	if (ohci->generation != packet->generation) {
775 776 777
		if (packet->payload_length > 0)
			dma_unmap_single(ohci->card.device, payload_bus,
					 packet->payload_length, DMA_TO_DEVICE);
778 779 780 781 782
		packet->ack = RCODE_GENERATION;
		return -1;
	}

	context_append(ctx, d, z, 4 - z);
783

784
	/* If the context isn't already running, start it up. */
785
	reg = reg_read(ctx->ohci, CONTROL_SET(ctx->regs));
786
	if ((reg & CONTEXT_RUN) == 0)
787 788 789
		context_run(ctx, 0);

	return 0;
790 791
}

792 793 794
static int handle_at_packet(struct context *context,
			    struct descriptor *d,
			    struct descriptor *last)
795
{
796
	struct driver_data *driver_data;
797
	struct fw_packet *packet;
798 799
	struct fw_ohci *ohci = context->ohci;
	dma_addr_t payload_bus;
800 801
	int evt;

802 803 804
	if (last->transfer_status == 0)
		/* This descriptor isn't done yet, stop iteration. */
		return 0;
805

806 807 808 809 810
	driver_data = (struct driver_data *) &d[3];
	packet = driver_data->packet;
	if (packet == NULL)
		/* This packet was cancelled, just continue. */
		return 1;
811

812 813 814
	payload_bus = le32_to_cpu(last->data_address);
	if (payload_bus != 0)
		dma_unmap_single(ohci->card.device, payload_bus,
815 816
				 packet->payload_length, DMA_TO_DEVICE);

817 818
	evt = le16_to_cpu(last->transfer_status) & 0x1f;
	packet->timestamp = le16_to_cpu(last->res_count);
819

820 821 822 823 824
	switch (evt) {
	case OHCI1394_evt_timeout:
		/* Async response transmit timed out. */
		packet->ack = RCODE_CANCELLED;
		break;
825

826
	case OHCI1394_evt_flushed:
827 828 829 830
		/*
		 * The packet was flushed should give same error as
		 * when we try to use a stale generation count.
		 */
831 832
		packet->ack = RCODE_GENERATION;
		break;
833

834
	case OHCI1394_evt_missing_ack:
835 836 837 838
		/*
		 * Using a valid (current) generation count, but the
		 * node is not on the bus or not sending acks.
		 */
839 840
		packet->ack = RCODE_NO_ACK;
		break;
841

842 843 844 845 846 847 848 849 850
	case ACK_COMPLETE + 0x10:
	case ACK_PENDING + 0x10:
	case ACK_BUSY_X + 0x10:
	case ACK_BUSY_A + 0x10:
	case ACK_BUSY_B + 0x10:
	case ACK_DATA_ERROR + 0x10:
	case ACK_TYPE_ERROR + 0x10:
		packet->ack = evt - 0x10;
		break;
851

852 853 854 855
	default:
		packet->ack = RCODE_SEND_ERROR;
		break;
	}
856

857
	packet->callback(packet, &ohci->card, packet->ack);
858

859
	return 1;
860 861
}

862 863 864 865 866
#define HEADER_GET_DESTINATION(q)	(((q) >> 16) & 0xffff)
#define HEADER_GET_TCODE(q)		(((q) >> 4) & 0x0f)
#define HEADER_GET_OFFSET_HIGH(q)	(((q) >> 0) & 0xffff)
#define HEADER_GET_DATA_LENGTH(q)	(((q) >> 16) & 0xffff)
#define HEADER_GET_EXTENDED_TCODE(q)	(((q) >> 0) & 0xffff)
867 868 869 870 871 872 873

static void
handle_local_rom(struct fw_ohci *ohci, struct fw_packet *packet, u32 csr)
{
	struct fw_packet response;
	int tcode, length, i;

874
	tcode = HEADER_GET_TCODE(packet->header[0]);
875
	if (TCODE_IS_BLOCK_PACKET(tcode))
876
		length = HEADER_GET_DATA_LENGTH(packet->header[3]);
877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902
	else
		length = 4;

	i = csr - CSR_CONFIG_ROM;
	if (i + length > CONFIG_ROM_SIZE) {
		fw_fill_response(&response, packet->header,
				 RCODE_ADDRESS_ERROR, NULL, 0);
	} else if (!TCODE_IS_READ_REQUEST(tcode)) {
		fw_fill_response(&response, packet->header,
				 RCODE_TYPE_ERROR, NULL, 0);
	} else {
		fw_fill_response(&response, packet->header, RCODE_COMPLETE,
				 (void *) ohci->config_rom + i, length);
	}

	fw_core_handle_response(&ohci->card, &response);
}

static void
handle_local_lock(struct fw_ohci *ohci, struct fw_packet *packet, u32 csr)
{
	struct fw_packet response;
	int tcode, length, ext_tcode, sel;
	__be32 *payload, lock_old;
	u32 lock_arg, lock_data;

903 904
	tcode = HEADER_GET_TCODE(packet->header[0]);
	length = HEADER_GET_DATA_LENGTH(packet->header[3]);
905
	payload = packet->payload;
906
	ext_tcode = HEADER_GET_EXTENDED_TCODE(packet->header[3]);
907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931

	if (tcode == TCODE_LOCK_REQUEST &&
	    ext_tcode == EXTCODE_COMPARE_SWAP && length == 8) {
		lock_arg = be32_to_cpu(payload[0]);
		lock_data = be32_to_cpu(payload[1]);
	} else if (tcode == TCODE_READ_QUADLET_REQUEST) {
		lock_arg = 0;
		lock_data = 0;
	} else {
		fw_fill_response(&response, packet->header,
				 RCODE_TYPE_ERROR, NULL, 0);
		goto out;
	}

	sel = (csr - CSR_BUS_MANAGER_ID) / 4;
	reg_write(ohci, OHCI1394_CSRData, lock_data);
	reg_write(ohci, OHCI1394_CSRCompareData, lock_arg);
	reg_write(ohci, OHCI1394_CSRControl, sel);

	if (reg_read(ohci, OHCI1394_CSRControl) & 0x80000000)
		lock_old = cpu_to_be32(reg_read(ohci, OHCI1394_CSRData));
	else
		fw_notify("swap not done yet\n");

	fw_fill_response(&response, packet->header,
932
			 RCODE_COMPLETE, &lock_old, sizeof(lock_old));
933 934 935 936 937
 out:
	fw_core_handle_response(&ohci->card, &response);
}

static void
938
handle_local_request(struct context *ctx, struct fw_packet *packet)
939 940 941 942
{
	u64 offset;
	u32 csr;

943 944 945 946
	if (ctx == &ctx->ohci->at_request_ctx) {
		packet->ack = ACK_PENDING;
		packet->callback(packet, &ctx->ohci->card, packet->ack);
	}
947 948 949

	offset =
		((unsigned long long)
950
		 HEADER_GET_OFFSET_HIGH(packet->header[1]) << 32) |
951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970
		packet->header[2];
	csr = offset - CSR_REGISTER_BASE;

	/* Handle config rom reads. */
	if (csr >= CSR_CONFIG_ROM && csr < CSR_CONFIG_ROM_END)
		handle_local_rom(ctx->ohci, packet, csr);
	else switch (csr) {
	case CSR_BUS_MANAGER_ID:
	case CSR_BANDWIDTH_AVAILABLE:
	case CSR_CHANNELS_AVAILABLE_HI:
	case CSR_CHANNELS_AVAILABLE_LO:
		handle_local_lock(ctx->ohci, packet, csr);
		break;
	default:
		if (ctx == &ctx->ohci->at_request_ctx)
			fw_core_handle_request(&ctx->ohci->card, packet);
		else
			fw_core_handle_response(&ctx->ohci->card, packet);
		break;
	}
971 972 973 974 975

	if (ctx == &ctx->ohci->at_response_ctx) {
		packet->ack = ACK_COMPLETE;
		packet->callback(packet, &ctx->ohci->card, packet->ack);
	}
976
}
977

978
static void
979
at_context_transmit(struct context *ctx, struct fw_packet *packet)
980 981
{
	unsigned long flags;
982
	int retval;
983 984 985

	spin_lock_irqsave(&ctx->ohci->lock, flags);

986
	if (HEADER_GET_DESTINATION(packet->header[0]) == ctx->ohci->node_id &&
987
	    ctx->ohci->generation == packet->generation) {
988 989 990
		spin_unlock_irqrestore(&ctx->ohci->lock, flags);
		handle_local_request(ctx, packet);
		return;
991
	}
992

993
	retval = at_context_queue_packet(ctx, packet);
994 995
	spin_unlock_irqrestore(&ctx->ohci->lock, flags);

996 997
	if (retval < 0)
		packet->callback(packet, &ctx->ohci->card, packet->ack);
998

999 1000 1001 1002 1003
}

static void bus_reset_tasklet(unsigned long data)
{
	struct fw_ohci *ohci = (struct fw_ohci *)data;
1004
	int self_id_count, i, j, reg;
1005 1006
	int generation, new_generation;
	unsigned long flags;
1007 1008
	void *free_rom = NULL;
	dma_addr_t free_rom_bus = 0;
1009 1010 1011

	reg = reg_read(ohci, OHCI1394_NodeID);
	if (!(reg & OHCI1394_NodeID_idValid)) {
1012
		fw_notify("node ID not valid, new bus reset in progress\n");
1013 1014
		return;
	}
1015 1016 1017 1018 1019 1020
	if ((reg & OHCI1394_NodeID_nodeNumber) == 63) {
		fw_notify("malconfigured bus\n");
		return;
	}
	ohci->node_id = reg & (OHCI1394_NodeID_busNumber |
			       OHCI1394_NodeID_nodeNumber);
1021

1022 1023
	/*
	 * The count in the SelfIDCount register is the number of
1024 1025
	 * bytes in the self ID receive buffer.  Since we also receive
	 * the inverted quadlets and a header quadlet, we shift one
1026 1027
	 * bit extra to get the actual number of self IDs.
	 */
1028 1029

	self_id_count = (reg_read(ohci, OHCI1394_SelfIDCount) >> 3) & 0x3ff;
1030
	generation = (cond_le32_to_cpu(ohci->self_id_cpu[0]) >> 16) & 0xff;
1031
	rmb();
1032 1033 1034 1035

	for (i = 1, j = 0; j < self_id_count; i += 2, j++) {
		if (ohci->self_id_cpu[i] != ~ohci->self_id_cpu[i + 1])
			fw_error("inconsistent self IDs\n");
1036 1037
		ohci->self_id_buffer[j] =
				cond_le32_to_cpu(ohci->self_id_cpu[i]);
1038
	}
1039
	rmb();
1040

1041 1042
	/*
	 * Check the consistency of the self IDs we just read.  The
1043 1044 1045 1046 1047 1048 1049 1050 1051
	 * problem we face is that a new bus reset can start while we
	 * read out the self IDs from the DMA buffer. If this happens,
	 * the DMA buffer will be overwritten with new self IDs and we
	 * will read out inconsistent data.  The OHCI specification
	 * (section 11.2) recommends a technique similar to
	 * linux/seqlock.h, where we remember the generation of the
	 * self IDs in the buffer before reading them out and compare
	 * it to the current generation after reading them out.  If
	 * the two generations match we know we have a consistent set
1052 1053
	 * of self IDs.
	 */
1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065

	new_generation = (reg_read(ohci, OHCI1394_SelfIDCount) >> 16) & 0xff;
	if (new_generation != generation) {
		fw_notify("recursive bus reset detected, "
			  "discarding self ids\n");
		return;
	}

	/* FIXME: Document how the locking works. */
	spin_lock_irqsave(&ohci->lock, flags);

	ohci->generation = generation;
1066 1067
	context_stop(&ohci->at_request_ctx);
	context_stop(&ohci->at_response_ctx);
1068 1069
	reg_write(ohci, OHCI1394_IntEventClear, OHCI1394_busReset);

1070 1071
	/*
	 * This next bit is unrelated to the AT context stuff but we
1072 1073 1074 1075
	 * have to do it under the spinlock also.  If a new config rom
	 * was set up before this reset, the old one is now no longer
	 * in use and we can free it. Update the config rom pointers
	 * to point to the current config rom and clear the
1076 1077
	 * next_config_rom pointer so a new udpate can take place.
	 */
1078 1079

	if (ohci->next_config_rom != NULL) {
1080 1081 1082 1083
		if (ohci->next_config_rom != ohci->config_rom) {
			free_rom      = ohci->config_rom;
			free_rom_bus  = ohci->config_rom_bus;
		}
1084 1085 1086 1087
		ohci->config_rom      = ohci->next_config_rom;
		ohci->config_rom_bus  = ohci->next_config_rom_bus;
		ohci->next_config_rom = NULL;

1088 1089
		/*
		 * Restore config_rom image and manually update
1090 1091
		 * config_rom registers.  Writing the header quadlet
		 * will indicate that the config rom is ready, so we
1092 1093
		 * do that last.
		 */
1094 1095 1096 1097 1098 1099
		reg_write(ohci, OHCI1394_BusOptions,
			  be32_to_cpu(ohci->config_rom[2]));
		ohci->config_rom[0] = cpu_to_be32(ohci->next_header);
		reg_write(ohci, OHCI1394_ConfigROMhdr, ohci->next_header);
	}

1100 1101 1102 1103 1104
#ifdef CONFIG_FIREWIRE_OHCI_REMOTE_DMA
	reg_write(ohci, OHCI1394_PhyReqFilterHiSet, ~0);
	reg_write(ohci, OHCI1394_PhyReqFilterLoSet, ~0);
#endif

1105 1106
	spin_unlock_irqrestore(&ohci->lock, flags);

1107 1108 1109 1110
	if (free_rom)
		dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
				  free_rom, free_rom_bus);

1111
	fw_core_handle_bus_reset(&ohci->card, ohci->node_id, generation,
1112 1113 1114 1115 1116 1117
				 self_id_count, ohci->self_id_buffer);
}

static irqreturn_t irq_handler(int irq, void *data)
{
	struct fw_ohci *ohci = data;
1118
	u32 event, iso_event, cycle_time;
1119 1120 1121 1122
	int i;

	event = reg_read(ohci, OHCI1394_IntEventClear);

1123
	if (!event || !~event)
1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142
		return IRQ_NONE;

	reg_write(ohci, OHCI1394_IntEventClear, event);

	if (event & OHCI1394_selfIDComplete)
		tasklet_schedule(&ohci->bus_reset_tasklet);

	if (event & OHCI1394_RQPkt)
		tasklet_schedule(&ohci->ar_request_ctx.tasklet);

	if (event & OHCI1394_RSPkt)
		tasklet_schedule(&ohci->ar_response_ctx.tasklet);

	if (event & OHCI1394_reqTxComplete)
		tasklet_schedule(&ohci->at_request_ctx.tasklet);

	if (event & OHCI1394_respTxComplete)
		tasklet_schedule(&ohci->at_response_ctx.tasklet);

1143
	iso_event = reg_read(ohci, OHCI1394_IsoRecvIntEventClear);
1144 1145 1146 1147
	reg_write(ohci, OHCI1394_IsoRecvIntEventClear, iso_event);

	while (iso_event) {
		i = ffs(iso_event) - 1;
1148
		tasklet_schedule(&ohci->ir_context_list[i].context.tasklet);
1149 1150 1151
		iso_event &= ~(1 << i);
	}

1152
	iso_event = reg_read(ohci, OHCI1394_IsoXmitIntEventClear);
1153 1154 1155 1156
	reg_write(ohci, OHCI1394_IsoXmitIntEventClear, iso_event);

	while (iso_event) {
		i = ffs(iso_event) - 1;
1157
		tasklet_schedule(&ohci->it_context_list[i].context.tasklet);
1158 1159 1160
		iso_event &= ~(1 << i);
	}

1161 1162 1163
	if (unlikely(event & OHCI1394_postedWriteErr))
		fw_error("PCI posted write error\n");

1164 1165 1166 1167 1168 1169 1170
	if (unlikely(event & OHCI1394_cycleTooLong)) {
		if (printk_ratelimit())
			fw_notify("isochronous cycle too long\n");
		reg_write(ohci, OHCI1394_LinkControlSet,
			  OHCI1394_LinkControl_cycleMaster);
	}

1171 1172 1173 1174 1175 1176
	if (event & OHCI1394_cycle64Seconds) {
		cycle_time = reg_read(ohci, OHCI1394_IsochronousCycleTimer);
		if ((cycle_time & 0x80000000) == 0)
			ohci->bus_seconds++;
	}

1177 1178 1179
	return IRQ_HANDLED;
}

1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195
static int software_reset(struct fw_ohci *ohci)
{
	int i;

	reg_write(ohci, OHCI1394_HCControlSet, OHCI1394_HCControl_softReset);

	for (i = 0; i < OHCI_LOOP_COUNT; i++) {
		if ((reg_read(ohci, OHCI1394_HCControlSet) &
		     OHCI1394_HCControl_softReset) == 0)
			return 0;
		msleep(1);
	}

	return -EBUSY;
}

1196 1197 1198 1199 1200
static int ohci_enable(struct fw_card *card, u32 *config_rom, size_t length)
{
	struct fw_ohci *ohci = fw_ohci(card);
	struct pci_dev *dev = to_pci_dev(card->device);

1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243
	if (software_reset(ohci)) {
		fw_error("Failed to reset ohci card.\n");
		return -EBUSY;
	}

	/*
	 * Now enable LPS, which we need in order to start accessing
	 * most of the registers.  In fact, on some cards (ALI M5251),
	 * accessing registers in the SClk domain without LPS enabled
	 * will lock up the machine.  Wait 50msec to make sure we have
	 * full link enabled.
	 */
	reg_write(ohci, OHCI1394_HCControlSet,
		  OHCI1394_HCControl_LPS |
		  OHCI1394_HCControl_postedWriteEnable);
	flush_writes(ohci);
	msleep(50);

	reg_write(ohci, OHCI1394_HCControlClear,
		  OHCI1394_HCControl_noByteSwapData);

	reg_write(ohci, OHCI1394_LinkControlSet,
		  OHCI1394_LinkControl_rcvSelfID |
		  OHCI1394_LinkControl_cycleTimerEnable |
		  OHCI1394_LinkControl_cycleMaster);

	reg_write(ohci, OHCI1394_ATRetries,
		  OHCI1394_MAX_AT_REQ_RETRIES |
		  (OHCI1394_MAX_AT_RESP_RETRIES << 4) |
		  (OHCI1394_MAX_PHYS_RESP_RETRIES << 8));

	ar_context_run(&ohci->ar_request_ctx);
	ar_context_run(&ohci->ar_response_ctx);

	reg_write(ohci, OHCI1394_SelfIDBuffer, ohci->self_id_bus);
	reg_write(ohci, OHCI1394_PhyUpperBound, 0x00010000);
	reg_write(ohci, OHCI1394_IntEventClear, ~0);
	reg_write(ohci, OHCI1394_IntMaskClear, ~0);
	reg_write(ohci, OHCI1394_IntMaskSet,
		  OHCI1394_selfIDComplete |
		  OHCI1394_RQPkt | OHCI1394_RSPkt |
		  OHCI1394_reqTxComplete | OHCI1394_respTxComplete |
		  OHCI1394_isochRx | OHCI1394_isochTx |
1244 1245
		  OHCI1394_postedWriteErr | OHCI1394_cycleTooLong |
		  OHCI1394_cycle64Seconds | OHCI1394_masterIntEnable);
1246 1247 1248 1249 1250 1251

	/* Activate link_on bit and contender bit in our self ID packets.*/
	if (ohci_update_phy_reg(card, 4, 0,
				PHY_LINK_ACTIVE | PHY_CONTENDER) < 0)
		return -EIO;

1252 1253
	/*
	 * When the link is not yet enabled, the atomic config rom
1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270
	 * update mechanism described below in ohci_set_config_rom()
	 * is not active.  We have to update ConfigRomHeader and
	 * BusOptions manually, and the write to ConfigROMmap takes
	 * effect immediately.  We tie this to the enabling of the
	 * link, so we have a valid config rom before enabling - the
	 * OHCI requires that ConfigROMhdr and BusOptions have valid
	 * values before enabling.
	 *
	 * However, when the ConfigROMmap is written, some controllers
	 * always read back quadlets 0 and 2 from the config rom to
	 * the ConfigRomHeader and BusOptions registers on bus reset.
	 * They shouldn't do that in this initial case where the link
	 * isn't enabled.  This means we have to use the same
	 * workaround here, setting the bus header to 0 and then write
	 * the right values in the bus reset tasklet.
	 */

1271 1272 1273 1274 1275 1276 1277
	if (config_rom) {
		ohci->next_config_rom =
			dma_alloc_coherent(ohci->card.device, CONFIG_ROM_SIZE,
					   &ohci->next_config_rom_bus,
					   GFP_KERNEL);
		if (ohci->next_config_rom == NULL)
			return -ENOMEM;
1278

1279 1280 1281 1282 1283 1284 1285 1286 1287 1288
		memset(ohci->next_config_rom, 0, CONFIG_ROM_SIZE);
		fw_memcpy_to_be32(ohci->next_config_rom, config_rom, length * 4);
	} else {
		/*
		 * In the suspend case, config_rom is NULL, which
		 * means that we just reuse the old config rom.
		 */
		ohci->next_config_rom = ohci->config_rom;
		ohci->next_config_rom_bus = ohci->config_rom_bus;
	}
1289

1290
	ohci->next_header = be32_to_cpu(ohci->next_config_rom[0]);
1291 1292
	ohci->next_config_rom[0] = 0;
	reg_write(ohci, OHCI1394_ConfigROMhdr, 0);
1293 1294
	reg_write(ohci, OHCI1394_BusOptions,
		  be32_to_cpu(ohci->next_config_rom[2]));
1295 1296 1297 1298 1299
	reg_write(ohci, OHCI1394_ConfigROMmap, ohci->next_config_rom_bus);

	reg_write(ohci, OHCI1394_AsReqFilterHiSet, 0x80000000);

	if (request_irq(dev->irq, irq_handler,
1300
			IRQF_SHARED, ohci_driver_name, ohci)) {
1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312
		fw_error("Failed to allocate shared interrupt %d.\n",
			 dev->irq);
		dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
				  ohci->config_rom, ohci->config_rom_bus);
		return -EIO;
	}

	reg_write(ohci, OHCI1394_HCControlSet,
		  OHCI1394_HCControl_linkEnable |
		  OHCI1394_HCControl_BIBimageValid);
	flush_writes(ohci);

1313 1314 1315 1316
	/*
	 * We are ready to go, initiate bus reset to finish the
	 * initialization.
	 */
1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327

	fw_core_initiate_bus_reset(&ohci->card, 1);

	return 0;
}

static int
ohci_set_config_rom(struct fw_card *card, u32 *config_rom, size_t length)
{
	struct fw_ohci *ohci;
	unsigned long flags;
1328
	int retval = -EBUSY;
1329
	__be32 *next_config_rom;
1330
	dma_addr_t uninitialized_var(next_config_rom_bus);
1331 1332 1333

	ohci = fw_ohci(card);

1334 1335
	/*
	 * When the OHCI controller is enabled, the config rom update
1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381
	 * mechanism is a bit tricky, but easy enough to use.  See
	 * section 5.5.6 in the OHCI specification.
	 *
	 * The OHCI controller caches the new config rom address in a
	 * shadow register (ConfigROMmapNext) and needs a bus reset
	 * for the changes to take place.  When the bus reset is
	 * detected, the controller loads the new values for the
	 * ConfigRomHeader and BusOptions registers from the specified
	 * config rom and loads ConfigROMmap from the ConfigROMmapNext
	 * shadow register. All automatically and atomically.
	 *
	 * Now, there's a twist to this story.  The automatic load of
	 * ConfigRomHeader and BusOptions doesn't honor the
	 * noByteSwapData bit, so with a be32 config rom, the
	 * controller will load be32 values in to these registers
	 * during the atomic update, even on litte endian
	 * architectures.  The workaround we use is to put a 0 in the
	 * header quadlet; 0 is endian agnostic and means that the
	 * config rom isn't ready yet.  In the bus reset tasklet we
	 * then set up the real values for the two registers.
	 *
	 * We use ohci->lock to avoid racing with the code that sets
	 * ohci->next_config_rom to NULL (see bus_reset_tasklet).
	 */

	next_config_rom =
		dma_alloc_coherent(ohci->card.device, CONFIG_ROM_SIZE,
				   &next_config_rom_bus, GFP_KERNEL);
	if (next_config_rom == NULL)
		return -ENOMEM;

	spin_lock_irqsave(&ohci->lock, flags);

	if (ohci->next_config_rom == NULL) {
		ohci->next_config_rom = next_config_rom;
		ohci->next_config_rom_bus = next_config_rom_bus;

		memset(ohci->next_config_rom, 0, CONFIG_ROM_SIZE);
		fw_memcpy_to_be32(ohci->next_config_rom, config_rom,
				  length * 4);

		ohci->next_header = config_rom[0];
		ohci->next_config_rom[0] = 0;

		reg_write(ohci, OHCI1394_ConfigROMmap,
			  ohci->next_config_rom_bus);
1382
		retval = 0;
1383 1384 1385 1386
	}

	spin_unlock_irqrestore(&ohci->lock, flags);

1387 1388
	/*
	 * Now initiate a bus reset to have the changes take
1389 1390 1391
	 * effect. We clean up the old config rom memory and DMA
	 * mappings in the bus reset tasklet, since the OHCI
	 * controller could need to access it before the bus reset
1392 1393
	 * takes effect.
	 */
1394 1395
	if (retval == 0)
		fw_core_initiate_bus_reset(&ohci->card, 1);
1396 1397 1398
	else
		dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
				  next_config_rom, next_config_rom_bus);
1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416

	return retval;
}

static void ohci_send_request(struct fw_card *card, struct fw_packet *packet)
{
	struct fw_ohci *ohci = fw_ohci(card);

	at_context_transmit(&ohci->at_request_ctx, packet);
}

static void ohci_send_response(struct fw_card *card, struct fw_packet *packet)
{
	struct fw_ohci *ohci = fw_ohci(card);

	at_context_transmit(&ohci->at_response_ctx, packet);
}

1417 1418 1419
static int ohci_cancel_packet(struct fw_card *card, struct fw_packet *packet)
{
	struct fw_ohci *ohci = fw_ohci(card);
1420 1421 1422
	struct context *ctx = &ohci->at_request_ctx;
	struct driver_data *driver_data = packet->driver_data;
	int retval = -ENOENT;
1423

1424
	tasklet_disable(&ctx->tasklet);
1425

1426 1427
	if (packet->ack != 0)
		goto out;
1428

1429 1430 1431 1432
	driver_data->packet = NULL;
	packet->ack = RCODE_CANCELLED;
	packet->callback(packet, &ohci->card, packet->ack);
	retval = 0;
1433

1434 1435
 out:
	tasklet_enable(&ctx->tasklet);
1436

1437
	return retval;
1438 1439
}

1440 1441 1442
static int
ohci_enable_phys_dma(struct fw_card *card, int node_id, int generation)
{
1443 1444 1445
#ifdef CONFIG_FIREWIRE_OHCI_REMOTE_DMA
	return 0;
#else
1446 1447
	struct fw_ohci *ohci = fw_ohci(card);
	unsigned long flags;
1448
	int n, retval = 0;
1449

1450 1451 1452 1453
	/*
	 * FIXME:  Make sure this bitmask is cleared when we clear the busReset
	 * interrupt bit.  Clear physReqResourceAllBuses on bus reset.
	 */
1454 1455 1456 1457 1458 1459 1460 1461

	spin_lock_irqsave(&ohci->lock, flags);

	if (ohci->generation != generation) {
		retval = -ESTALE;
		goto out;
	}

1462 1463 1464 1465
	/*
	 * Note, if the node ID contains a non-local bus ID, physical DMA is
	 * enabled for _all_ nodes on remote buses.
	 */
1466 1467 1468 1469 1470 1471 1472

	n = (node_id & 0xffc0) == LOCAL_BUS ? node_id & 0x3f : 63;
	if (n < 32)
		reg_write(ohci, OHCI1394_PhyReqFilterLoSet, 1 << n);
	else
		reg_write(ohci, OHCI1394_PhyReqFilterHiSet, 1 << (n - 32));

1473 1474
	flush_writes(ohci);
 out:
1475
	spin_unlock_irqrestore(&ohci->lock, flags);
1476
	return retval;
1477
#endif /* CONFIG_FIREWIRE_OHCI_REMOTE_DMA */
1478
}
S
Stefan Richter 已提交
1479

1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492
static u64
ohci_get_bus_time(struct fw_card *card)
{
	struct fw_ohci *ohci = fw_ohci(card);
	u32 cycle_time;
	u64 bus_time;

	cycle_time = reg_read(ohci, OHCI1394_IsochronousCycleTimer);
	bus_time = ((u64) ohci->bus_seconds << 32) | cycle_time;

	return bus_time;
}

1493 1494 1495
static int handle_ir_dualbuffer_packet(struct context *context,
				       struct descriptor *d,
				       struct descriptor *last)
1496
{
1497 1498 1499
	struct iso_context *ctx =
		container_of(context, struct iso_context, context);
	struct db_descriptor *db = (struct db_descriptor *) d;
1500
	__le32 *ir_header;
1501
	size_t header_length;
1502 1503
	void *p, *end;
	int i;
1504

S
Stefan Richter 已提交
1505
	if (db->first_res_count != 0 && db->second_res_count != 0) {
1506 1507 1508 1509 1510 1511
		if (ctx->excess_bytes <= le16_to_cpu(db->second_req_count)) {
			/* This descriptor isn't done yet, stop iteration. */
			return 0;
		}
		ctx->excess_bytes -= le16_to_cpu(db->second_req_count);
	}
1512

1513 1514 1515 1516 1517 1518 1519
	header_length = le16_to_cpu(db->first_req_count) -
		le16_to_cpu(db->first_res_count);

	i = ctx->header_length;
	p = db + 1;
	end = p + header_length;
	while (p < end && i + ctx->base.header_size <= PAGE_SIZE) {
1520 1521
		/*
		 * The iso header is byteswapped to little endian by
1522 1523 1524
		 * the controller, but the remaining header quadlets
		 * are big endian.  We want to present all the headers
		 * as big endian, so we have to swap the first
1525 1526
		 * quadlet.
		 */
1527 1528
		*(u32 *) (ctx->header + i) = __swab32(*(u32 *) (p + 4));
		memcpy(ctx->header + i + 4, p + 8, ctx->base.header_size - 4);
1529
		i += ctx->base.header_size;
1530
		ctx->excess_bytes +=
S
Stefan Richter 已提交
1531
			(le32_to_cpu(*(__le32 *)(p + 4)) >> 16) & 0xffff;
1532 1533 1534
		p += ctx->base.header_size + 4;
	}
	ctx->header_length = i;
1535

1536 1537 1538
	ctx->excess_bytes -= le16_to_cpu(db->second_req_count) -
		le16_to_cpu(db->second_res_count);

1539
	if (le16_to_cpu(db->control) & DESCRIPTOR_IRQ_ALWAYS) {
1540 1541 1542
		ir_header = (__le32 *) (db + 1);
		ctx->base.callback(&ctx->base,
				   le32_to_cpu(ir_header[0]) & 0xffff,
1543
				   ctx->header_length, ctx->header,
1544
				   ctx->base.callback_data);
1545 1546
		ctx->header_length = 0;
	}
1547

1548
	return 1;
1549 1550
}

1551 1552 1553 1554 1555 1556
static int handle_ir_packet_per_buffer(struct context *context,
				       struct descriptor *d,
				       struct descriptor *last)
{
	struct iso_context *ctx =
		container_of(context, struct iso_context, context);
1557
	struct descriptor *pd;
1558
	__le32 *ir_header;
1559 1560
	void *p;
	int i;
1561

1562 1563 1564 1565 1566
	for (pd = d; pd <= last; pd++) {
		if (pd->transfer_status)
			break;
	}
	if (pd > last)
1567 1568 1569 1570
		/* Descriptor(s) not done yet, stop iteration */
		return 0;

	i   = ctx->header_length;
1571
	p   = last + 1;
1572

1573 1574
	if (ctx->base.header_size > 0 &&
			i + ctx->base.header_size <= PAGE_SIZE) {
1575 1576 1577 1578 1579 1580 1581 1582
		/*
		 * The iso header is byteswapped to little endian by
		 * the controller, but the remaining header quadlets
		 * are big endian.  We want to present all the headers
		 * as big endian, so we have to swap the first quadlet.
		 */
		*(u32 *) (ctx->header + i) = __swab32(*(u32 *) (p + 4));
		memcpy(ctx->header + i + 4, p + 8, ctx->base.header_size - 4);
1583
		ctx->header_length += ctx->base.header_size;
1584 1585
	}

1586 1587
	if (le16_to_cpu(last->control) & DESCRIPTOR_IRQ_ALWAYS) {
		ir_header = (__le32 *) p;
1588 1589 1590 1591 1592 1593 1594 1595 1596 1597
		ctx->base.callback(&ctx->base,
				   le32_to_cpu(ir_header[0]) & 0xffff,
				   ctx->header_length, ctx->header,
				   ctx->base.callback_data);
		ctx->header_length = 0;
	}

	return 1;
}

1598 1599 1600
static int handle_it_packet(struct context *context,
			    struct descriptor *d,
			    struct descriptor *last)
1601
{
1602 1603
	struct iso_context *ctx =
		container_of(context, struct iso_context, context);
S
Stefan Richter 已提交
1604

1605 1606 1607 1608
	if (last->transfer_status == 0)
		/* This descriptor isn't done yet, stop iteration. */
		return 0;

1609
	if (le16_to_cpu(last->control) & DESCRIPTOR_IRQ_ALWAYS)
1610 1611
		ctx->base.callback(&ctx->base, le16_to_cpu(last->res_count),
				   0, NULL, ctx->base.callback_data);
1612 1613

	return 1;
1614 1615
}

1616
static struct fw_iso_context *
1617
ohci_allocate_iso_context(struct fw_card *card, int type, size_t header_size)
1618 1619 1620
{
	struct fw_ohci *ohci = fw_ohci(card);
	struct iso_context *ctx, *list;
1621
	descriptor_callback_t callback;
1622
	u32 *mask, regs;
1623
	unsigned long flags;
1624
	int index, retval = -ENOMEM;
1625 1626 1627 1628

	if (type == FW_ISO_CONTEXT_TRANSMIT) {
		mask = &ohci->it_context_mask;
		list = ohci->it_context_list;
1629
		callback = handle_it_packet;
1630
	} else {
S
Stefan Richter 已提交
1631 1632
		mask = &ohci->ir_context_mask;
		list = ohci->ir_context_list;
1633 1634 1635 1636
		if (ohci->version >= OHCI_VERSION_1_1)
			callback = handle_ir_dualbuffer_packet;
		else
			callback = handle_ir_packet_per_buffer;
1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647
	}

	spin_lock_irqsave(&ohci->lock, flags);
	index = ffs(*mask) - 1;
	if (index >= 0)
		*mask &= ~(1 << index);
	spin_unlock_irqrestore(&ohci->lock, flags);

	if (index < 0)
		return ERR_PTR(-EBUSY);

S
Stefan Richter 已提交
1648 1649 1650 1651 1652
	if (type == FW_ISO_CONTEXT_TRANSMIT)
		regs = OHCI1394_IsoXmitContextBase(index);
	else
		regs = OHCI1394_IsoRcvContextBase(index);

1653
	ctx = &list[index];
1654
	memset(ctx, 0, sizeof(*ctx));
1655 1656 1657 1658 1659
	ctx->header_length = 0;
	ctx->header = (void *) __get_free_page(GFP_KERNEL);
	if (ctx->header == NULL)
		goto out;

1660
	retval = context_init(&ctx->context, ohci, regs, callback);
1661 1662
	if (retval < 0)
		goto out_with_header;
1663 1664

	return &ctx->base;
1665 1666 1667 1668 1669 1670 1671 1672 1673

 out_with_header:
	free_page((unsigned long)ctx->header);
 out:
	spin_lock_irqsave(&ohci->lock, flags);
	*mask |= 1 << index;
	spin_unlock_irqrestore(&ohci->lock, flags);

	return ERR_PTR(retval);
1674 1675
}

1676 1677
static int ohci_start_iso(struct fw_iso_context *base,
			  s32 cycle, u32 sync, u32 tags)
1678
{
S
Stefan Richter 已提交
1679
	struct iso_context *ctx = container_of(base, struct iso_context, base);
1680
	struct fw_ohci *ohci = ctx->context.ohci;
1681
	u32 control, match;
1682 1683
	int index;

1684 1685
	if (ctx->base.type == FW_ISO_CONTEXT_TRANSMIT) {
		index = ctx - ohci->it_context_list;
1686 1687 1688
		match = 0;
		if (cycle >= 0)
			match = IT_CONTEXT_CYCLE_MATCH_ENABLE |
1689
				(cycle & 0x7fff) << 16;
1690

1691 1692
		reg_write(ohci, OHCI1394_IsoXmitIntEventClear, 1 << index);
		reg_write(ohci, OHCI1394_IsoXmitIntMaskSet, 1 << index);
1693
		context_run(&ctx->context, match);
1694 1695
	} else {
		index = ctx - ohci->ir_context_list;
1696 1697 1698
		control = IR_CONTEXT_ISOCH_HEADER;
		if (ohci->version >= OHCI_VERSION_1_1)
			control |= IR_CONTEXT_DUAL_BUFFER_MODE;
1699 1700 1701 1702 1703
		match = (tags << 28) | (sync << 8) | ctx->base.channel;
		if (cycle >= 0) {
			match |= (cycle & 0x07fff) << 12;
			control |= IR_CONTEXT_CYCLE_MATCH_ENABLE;
		}
1704

1705 1706
		reg_write(ohci, OHCI1394_IsoRecvIntEventClear, 1 << index);
		reg_write(ohci, OHCI1394_IsoRecvIntMaskSet, 1 << index);
1707
		reg_write(ohci, CONTEXT_MATCH(ctx->context.regs), match);
1708
		context_run(&ctx->context, control);
1709
	}
1710 1711 1712 1713

	return 0;
}

1714 1715 1716
static int ohci_stop_iso(struct fw_iso_context *base)
{
	struct fw_ohci *ohci = fw_ohci(base->card);
S
Stefan Richter 已提交
1717
	struct iso_context *ctx = container_of(base, struct iso_context, base);
1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732
	int index;

	if (ctx->base.type == FW_ISO_CONTEXT_TRANSMIT) {
		index = ctx - ohci->it_context_list;
		reg_write(ohci, OHCI1394_IsoXmitIntMaskClear, 1 << index);
	} else {
		index = ctx - ohci->ir_context_list;
		reg_write(ohci, OHCI1394_IsoRecvIntMaskClear, 1 << index);
	}
	flush_writes(ohci);
	context_stop(&ctx->context);

	return 0;
}

1733 1734 1735
static void ohci_free_iso_context(struct fw_iso_context *base)
{
	struct fw_ohci *ohci = fw_ohci(base->card);
S
Stefan Richter 已提交
1736
	struct iso_context *ctx = container_of(base, struct iso_context, base);
1737 1738 1739
	unsigned long flags;
	int index;

1740 1741
	ohci_stop_iso(base);
	context_release(&ctx->context);
1742
	free_page((unsigned long)ctx->header);
1743

1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757
	spin_lock_irqsave(&ohci->lock, flags);

	if (ctx->base.type == FW_ISO_CONTEXT_TRANSMIT) {
		index = ctx - ohci->it_context_list;
		ohci->it_context_mask |= 1 << index;
	} else {
		index = ctx - ohci->ir_context_list;
		ohci->ir_context_mask |= 1 << index;
	}

	spin_unlock_irqrestore(&ohci->lock, flags);
}

static int
1758 1759 1760 1761
ohci_queue_iso_transmit(struct fw_iso_context *base,
			struct fw_iso_packet *packet,
			struct fw_iso_buffer *buffer,
			unsigned long payload)
1762
{
S
Stefan Richter 已提交
1763
	struct iso_context *ctx = container_of(base, struct iso_context, base);
1764
	struct descriptor *d, *last, *pd;
1765 1766
	struct fw_iso_packet *p;
	__le32 *header;
1767
	dma_addr_t d_bus, page_bus;
1768 1769
	u32 z, header_z, payload_z, irq;
	u32 payload_index, payload_end_index, next_page_index;
1770
	int page, end_page, i, length, offset;
1771

1772 1773 1774 1775
	/*
	 * FIXME: Cycle lost behavior should be configurable: lose
	 * packet, retransmit or terminate..
	 */
1776 1777

	p = packet;
1778
	payload_index = payload;
1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796

	if (p->skip)
		z = 1;
	else
		z = 2;
	if (p->header_length > 0)
		z++;

	/* Determine the first page the payload isn't contained in. */
	end_page = PAGE_ALIGN(payload_index + p->payload_length) >> PAGE_SHIFT;
	if (p->payload_length > 0)
		payload_z = end_page - (payload_index >> PAGE_SHIFT);
	else
		payload_z = 0;

	z += payload_z;

	/* Get header size in number of descriptors. */
1797
	header_z = DIV_ROUND_UP(p->header_length, sizeof(*d));
1798

1799 1800 1801
	d = context_get_descriptors(&ctx->context, z + header_z, &d_bus);
	if (d == NULL)
		return -ENOMEM;
1802 1803

	if (!p->skip) {
1804
		d[0].control   = cpu_to_le16(DESCRIPTOR_KEY_IMMEDIATE);
1805 1806 1807
		d[0].req_count = cpu_to_le16(8);

		header = (__le32 *) &d[1];
1808 1809 1810 1811 1812
		header[0] = cpu_to_le32(IT_HEADER_SY(p->sy) |
					IT_HEADER_TAG(p->tag) |
					IT_HEADER_TCODE(TCODE_STREAM_DATA) |
					IT_HEADER_CHANNEL(ctx->base.channel) |
					IT_HEADER_SPEED(ctx->base.speed));
1813
		header[1] =
1814
			cpu_to_le32(IT_HEADER_DATA_LENGTH(p->header_length +
1815 1816 1817 1818 1819
							  p->payload_length));
	}

	if (p->header_length > 0) {
		d[2].req_count    = cpu_to_le16(p->header_length);
1820
		d[2].data_address = cpu_to_le32(d_bus + z * sizeof(*d));
1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832
		memcpy(&d[z], p->header, p->header_length);
	}

	pd = d + z - payload_z;
	payload_end_index = payload_index + p->payload_length;
	for (i = 0; i < payload_z; i++) {
		page               = payload_index >> PAGE_SHIFT;
		offset             = payload_index & ~PAGE_MASK;
		next_page_index    = (page + 1) << PAGE_SHIFT;
		length             =
			min(next_page_index, payload_end_index) - payload_index;
		pd[i].req_count    = cpu_to_le16(length);
1833 1834 1835

		page_bus = page_private(buffer->pages[page]);
		pd[i].data_address = cpu_to_le32(page_bus + offset);
1836 1837 1838 1839 1840

		payload_index += length;
	}

	if (p->interrupt)
1841
		irq = DESCRIPTOR_IRQ_ALWAYS;
1842
	else
1843
		irq = DESCRIPTOR_NO_IRQ;
1844

1845
	last = z == 2 ? d : d + z - 1;
1846 1847 1848
	last->control |= cpu_to_le16(DESCRIPTOR_OUTPUT_LAST |
				     DESCRIPTOR_STATUS |
				     DESCRIPTOR_BRANCH_ALWAYS |
1849
				     irq);
1850

1851
	context_append(&ctx->context, d, z, header_z);
1852 1853 1854

	return 0;
}
S
Stefan Richter 已提交
1855

1856
static int
1857 1858 1859 1860
ohci_queue_iso_receive_dualbuffer(struct fw_iso_context *base,
				  struct fw_iso_packet *packet,
				  struct fw_iso_buffer *buffer,
				  unsigned long payload)
1861 1862 1863 1864 1865 1866 1867
{
	struct iso_context *ctx = container_of(base, struct iso_context, base);
	struct db_descriptor *db = NULL;
	struct descriptor *d;
	struct fw_iso_packet *p;
	dma_addr_t d_bus, page_bus;
	u32 z, header_z, length, rest;
1868
	int page, offset, packet_count, header_size;
S
Stefan Richter 已提交
1869

1870 1871 1872 1873
	/*
	 * FIXME: Cycle lost behavior should be configurable: lose
	 * packet, retransmit or terminate..
	 */
1874 1875 1876 1877

	p = packet;
	z = 2;

1878 1879 1880 1881
	/*
	 * The OHCI controller puts the status word in the header
	 * buffer too, so we need 4 extra bytes per packet.
	 */
1882 1883 1884
	packet_count = p->header_length / ctx->base.header_size;
	header_size = packet_count * (ctx->base.header_size + 4);

1885
	/* Get header size in number of descriptors. */
1886
	header_z = DIV_ROUND_UP(header_size, sizeof(*d));
1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898
	page     = payload >> PAGE_SHIFT;
	offset   = payload & ~PAGE_MASK;
	rest     = p->payload_length;

	/* FIXME: make packet-per-buffer/dual-buffer a context option */
	while (rest > 0) {
		d = context_get_descriptors(&ctx->context,
					    z + header_z, &d_bus);
		if (d == NULL)
			return -ENOMEM;

		db = (struct db_descriptor *) d;
1899 1900
		db->control = cpu_to_le16(DESCRIPTOR_STATUS |
					  DESCRIPTOR_BRANCH_ALWAYS);
1901
		db->first_size = cpu_to_le16(ctx->base.header_size + 4);
1902 1903 1904 1905 1906 1907
		if (p->skip && rest == p->payload_length) {
			db->control |= cpu_to_le16(DESCRIPTOR_WAIT);
			db->first_req_count = db->first_size;
		} else {
			db->first_req_count = cpu_to_le16(header_size);
		}
1908
		db->first_res_count = db->first_req_count;
1909
		db->first_buffer = cpu_to_le32(d_bus + sizeof(*db));
S
Stefan Richter 已提交
1910

1911 1912 1913
		if (p->skip && rest == p->payload_length)
			length = 4;
		else if (offset + rest < PAGE_SIZE)
1914 1915 1916 1917
			length = rest;
		else
			length = PAGE_SIZE - offset;

1918 1919
		db->second_req_count = cpu_to_le16(length);
		db->second_res_count = db->second_req_count;
1920 1921 1922
		page_bus = page_private(buffer->pages[page]);
		db->second_buffer = cpu_to_le32(page_bus + offset);

1923
		if (p->interrupt && length == rest)
1924
			db->control |= cpu_to_le16(DESCRIPTOR_IRQ_ALWAYS);
1925

1926 1927 1928
		context_append(&ctx->context, d, z, header_z);
		offset = (offset + length) & ~PAGE_MASK;
		rest -= length;
1929 1930
		if (offset == 0)
			page++;
1931 1932
	}

1933 1934
	return 0;
}
1935

1936 1937 1938 1939 1940 1941 1942 1943
static int
ohci_queue_iso_receive_packet_per_buffer(struct fw_iso_context *base,
					 struct fw_iso_packet *packet,
					 struct fw_iso_buffer *buffer,
					 unsigned long payload)
{
	struct iso_context *ctx = container_of(base, struct iso_context, base);
	struct descriptor *d = NULL, *pd = NULL;
1944
	struct fw_iso_packet *p = packet;
1945 1946
	dma_addr_t d_bus, page_bus;
	u32 z, header_z, rest;
1947 1948
	int i, j, length;
	int page, offset, packet_count, header_size, payload_per_buffer;
1949 1950 1951 1952 1953 1954

	/*
	 * The OHCI controller puts the status word in the
	 * buffer too, so we need 4 extra bytes per packet.
	 */
	packet_count = p->header_length / ctx->base.header_size;
1955
	header_size  = ctx->base.header_size + 4;
1956 1957 1958 1959 1960

	/* Get header size in number of descriptors. */
	header_z = DIV_ROUND_UP(header_size, sizeof(*d));
	page     = payload >> PAGE_SHIFT;
	offset   = payload & ~PAGE_MASK;
1961
	payload_per_buffer = p->payload_length / packet_count;
1962 1963 1964

	for (i = 0; i < packet_count; i++) {
		/* d points to the header descriptor */
1965
		z = DIV_ROUND_UP(payload_per_buffer + offset, PAGE_SIZE) + 1;
1966
		d = context_get_descriptors(&ctx->context,
1967
				z + header_z, &d_bus);
1968 1969 1970
		if (d == NULL)
			return -ENOMEM;

1971 1972 1973 1974
		d->control      = cpu_to_le16(DESCRIPTOR_STATUS |
					      DESCRIPTOR_INPUT_MORE);
		if (p->skip && i == 0)
			d->control |= cpu_to_le16(DESCRIPTOR_WAIT);
1975 1976
		d->req_count    = cpu_to_le16(header_size);
		d->res_count    = d->req_count;
1977
		d->transfer_status = 0;
1978 1979
		d->data_address = cpu_to_le32(d_bus + (z * sizeof(*d)));

1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001
		rest = payload_per_buffer;
		for (j = 1; j < z; j++) {
			pd = d + j;
			pd->control = cpu_to_le16(DESCRIPTOR_STATUS |
						  DESCRIPTOR_INPUT_MORE);

			if (offset + rest < PAGE_SIZE)
				length = rest;
			else
				length = PAGE_SIZE - offset;
			pd->req_count = cpu_to_le16(length);
			pd->res_count = pd->req_count;
			pd->transfer_status = 0;

			page_bus = page_private(buffer->pages[page]);
			pd->data_address = cpu_to_le32(page_bus + offset);

			offset = (offset + length) & ~PAGE_MASK;
			rest -= length;
			if (offset == 0)
				page++;
		}
2002 2003 2004
		pd->control = cpu_to_le16(DESCRIPTOR_STATUS |
					  DESCRIPTOR_INPUT_LAST |
					  DESCRIPTOR_BRANCH_ALWAYS);
2005
		if (p->interrupt && i == packet_count - 1)
2006 2007 2008 2009 2010 2011 2012 2013
			pd->control |= cpu_to_le16(DESCRIPTOR_IRQ_ALWAYS);

		context_append(&ctx->context, d, z, header_z);
	}

	return 0;
}

2014 2015 2016 2017 2018 2019
static int
ohci_queue_iso(struct fw_iso_context *base,
	       struct fw_iso_packet *packet,
	       struct fw_iso_buffer *buffer,
	       unsigned long payload)
{
2020
	struct iso_context *ctx = container_of(base, struct iso_context, base);
2021 2022
	unsigned long flags;
	int retval;
2023

2024
	spin_lock_irqsave(&ctx->context.ohci->lock, flags);
2025
	if (base->type == FW_ISO_CONTEXT_TRANSMIT)
2026
		retval = ohci_queue_iso_transmit(base, packet, buffer, payload);
2027
	else if (ctx->context.ohci->version >= OHCI_VERSION_1_1)
2028
		retval = ohci_queue_iso_receive_dualbuffer(base, packet,
2029
							 buffer, payload);
2030
	else
2031
		retval = ohci_queue_iso_receive_packet_per_buffer(base, packet,
2032 2033
								buffer,
								payload);
2034 2035 2036
	spin_unlock_irqrestore(&ctx->context.ohci->lock, flags);

	return retval;
2037 2038
}

2039
static const struct fw_card_driver ohci_driver = {
2040 2041 2042 2043 2044 2045
	.name			= ohci_driver_name,
	.enable			= ohci_enable,
	.update_phy_reg		= ohci_update_phy_reg,
	.set_config_rom		= ohci_set_config_rom,
	.send_request		= ohci_send_request,
	.send_response		= ohci_send_response,
2046
	.cancel_packet		= ohci_cancel_packet,
2047
	.enable_phys_dma	= ohci_enable_phys_dma,
2048
	.get_bus_time		= ohci_get_bus_time,
2049 2050 2051 2052

	.allocate_iso_context	= ohci_allocate_iso_context,
	.free_iso_context	= ohci_free_iso_context,
	.queue_iso		= ohci_queue_iso,
2053
	.start_iso		= ohci_start_iso,
2054
	.stop_iso		= ohci_stop_iso,
2055 2056
};

2057
#ifdef CONFIG_PPC_PMAC
2058 2059
static void ohci_pmac_on(struct pci_dev *dev)
{
2060 2061 2062 2063 2064 2065 2066 2067
	if (machine_is(powermac)) {
		struct device_node *ofn = pci_device_to_OF_node(dev);

		if (ofn) {
			pmac_call_feature(PMAC_FTR_1394_CABLE_POWER, ofn, 0, 1);
			pmac_call_feature(PMAC_FTR_1394_ENABLE, ofn, 0, 1);
		}
	}
2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083
}

static void ohci_pmac_off(struct pci_dev *dev)
{
	if (machine_is(powermac)) {
		struct device_node *ofn = pci_device_to_OF_node(dev);

		if (ofn) {
			pmac_call_feature(PMAC_FTR_1394_ENABLE, ofn, 0, 0);
			pmac_call_feature(PMAC_FTR_1394_CABLE_POWER, ofn, 0, 0);
		}
	}
}
#else
#define ohci_pmac_on(dev)
#define ohci_pmac_off(dev)
2084 2085
#endif /* CONFIG_PPC_PMAC */

2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096
static int __devinit
pci_probe(struct pci_dev *dev, const struct pci_device_id *ent)
{
	struct fw_ohci *ohci;
	u32 bus_options, max_receive, link_speed;
	u64 guid;
	int err;
	size_t size;

	ohci_pmac_on(dev);

2097
	ohci = kzalloc(sizeof(*ohci), GFP_KERNEL);
2098 2099 2100 2101 2102 2103 2104
	if (ohci == NULL) {
		fw_error("Could not malloc fw_ohci data.\n");
		return -ENOMEM;
	}

	fw_card_initialize(&ohci->card, &ohci_driver, &dev->dev);

2105 2106
	err = pci_enable_device(dev);
	if (err) {
2107
		fw_error("Failed to enable OHCI hardware.\n");
2108
		goto fail_free;
2109 2110 2111 2112 2113 2114
	}

	pci_set_master(dev);
	pci_write_config_dword(dev, OHCI1394_PCI_HCI_Control, 0);
	pci_set_drvdata(dev, ohci);

2115 2116 2117 2118
#if defined(CONFIG_PPC_PMAC) && defined(CONFIG_PPC32)
	ohci->old_uninorth = dev->vendor == PCI_VENDOR_ID_APPLE &&
			     dev->device == PCI_DEVICE_ID_APPLE_UNI_N_FW;
#endif
2119 2120 2121 2122 2123
	spin_lock_init(&ohci->lock);

	tasklet_init(&ohci->bus_reset_tasklet,
		     bus_reset_tasklet, (unsigned long)ohci);

2124 2125
	err = pci_request_region(dev, 0, ohci_driver_name);
	if (err) {
2126
		fw_error("MMIO resource unavailable\n");
2127
		goto fail_disable;
2128 2129 2130 2131 2132
	}

	ohci->registers = pci_iomap(dev, 0, OHCI1394_REGISTER_SIZE);
	if (ohci->registers == NULL) {
		fw_error("Failed to remap registers\n");
2133 2134
		err = -ENXIO;
		goto fail_iomem;
2135 2136 2137 2138 2139 2140 2141 2142
	}

	ar_context_init(&ohci->ar_request_ctx, ohci,
			OHCI1394_AsReqRcvContextControlSet);

	ar_context_init(&ohci->ar_response_ctx, ohci,
			OHCI1394_AsRspRcvContextControlSet);

2143
	context_init(&ohci->at_request_ctx, ohci,
2144
		     OHCI1394_AsReqTrContextControlSet, handle_at_packet);
2145

2146
	context_init(&ohci->at_response_ctx, ohci,
2147
		     OHCI1394_AsRspTrContextControlSet, handle_at_packet);
2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162

	reg_write(ohci, OHCI1394_IsoRecvIntMaskSet, ~0);
	ohci->it_context_mask = reg_read(ohci, OHCI1394_IsoRecvIntMaskSet);
	reg_write(ohci, OHCI1394_IsoRecvIntMaskClear, ~0);
	size = sizeof(struct iso_context) * hweight32(ohci->it_context_mask);
	ohci->it_context_list = kzalloc(size, GFP_KERNEL);

	reg_write(ohci, OHCI1394_IsoXmitIntMaskSet, ~0);
	ohci->ir_context_mask = reg_read(ohci, OHCI1394_IsoXmitIntMaskSet);
	reg_write(ohci, OHCI1394_IsoXmitIntMaskClear, ~0);
	size = sizeof(struct iso_context) * hweight32(ohci->ir_context_mask);
	ohci->ir_context_list = kzalloc(size, GFP_KERNEL);

	if (ohci->it_context_list == NULL || ohci->ir_context_list == NULL) {
		fw_error("Out of memory for it/ir contexts.\n");
2163 2164
		err = -ENOMEM;
		goto fail_registers;
2165 2166 2167 2168 2169 2170 2171 2172 2173
	}

	/* self-id dma buffer allocation */
	ohci->self_id_cpu = dma_alloc_coherent(ohci->card.device,
					       SELF_ID_BUF_SIZE,
					       &ohci->self_id_bus,
					       GFP_KERNEL);
	if (ohci->self_id_cpu == NULL) {
		fw_error("Out of memory for self ID buffer.\n");
2174 2175
		err = -ENOMEM;
		goto fail_registers;
2176 2177 2178 2179 2180 2181 2182 2183
	}

	bus_options = reg_read(ohci, OHCI1394_BusOptions);
	max_receive = (bus_options >> 12) & 0xf;
	link_speed = bus_options & 0x7;
	guid = ((u64) reg_read(ohci, OHCI1394_GUIDHi) << 32) |
		reg_read(ohci, OHCI1394_GUIDLo);

2184 2185 2186
	err = fw_card_add(&ohci->card, max_receive, link_speed, guid);
	if (err < 0)
		goto fail_self_id;
2187

2188
	ohci->version = reg_read(ohci, OHCI1394_Version) & 0x00ff00ff;
2189
	fw_notify("Added fw-ohci device %s, OHCI version %x.%x\n",
2190
		  dev->dev.bus_id, ohci->version >> 16, ohci->version & 0xff);
2191
	return 0;
2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203

 fail_self_id:
	dma_free_coherent(ohci->card.device, SELF_ID_BUF_SIZE,
			  ohci->self_id_cpu, ohci->self_id_bus);
 fail_registers:
	kfree(ohci->it_context_list);
	kfree(ohci->ir_context_list);
	pci_iounmap(dev, ohci->registers);
 fail_iomem:
	pci_release_region(dev, 0);
 fail_disable:
	pci_disable_device(dev);
2204 2205
 fail_free:
	kfree(&ohci->card);
2206 2207

	return err;
2208 2209 2210 2211 2212 2213 2214
}

static void pci_remove(struct pci_dev *dev)
{
	struct fw_ohci *ohci;

	ohci = pci_get_drvdata(dev);
2215 2216
	reg_write(ohci, OHCI1394_IntMaskClear, ~0);
	flush_writes(ohci);
2217 2218
	fw_core_remove_card(&ohci->card);

2219 2220 2221 2222
	/*
	 * FIXME: Fail all pending packets here, now that the upper
	 * layers can't queue any more.
	 */
2223 2224 2225

	software_reset(ohci);
	free_irq(dev->irq, ohci);
2226 2227 2228 2229 2230 2231 2232
	dma_free_coherent(ohci->card.device, SELF_ID_BUF_SIZE,
			  ohci->self_id_cpu, ohci->self_id_bus);
	kfree(ohci->it_context_list);
	kfree(ohci->ir_context_list);
	pci_iounmap(dev, ohci->registers);
	pci_release_region(dev, 0);
	pci_disable_device(dev);
2233
	kfree(&ohci->card);
2234
	ohci_pmac_off(dev);
2235

2236 2237 2238
	fw_notify("Removed fw-ohci device.\n");
}

2239
#ifdef CONFIG_PM
2240
static int pci_suspend(struct pci_dev *dev, pm_message_t state)
2241
{
2242
	struct fw_ohci *ohci = pci_get_drvdata(dev);
2243 2244 2245
	int err;

	software_reset(ohci);
2246 2247
	free_irq(dev->irq, ohci);
	err = pci_save_state(dev);
2248
	if (err) {
2249
		fw_error("pci_save_state failed\n");
2250 2251
		return err;
	}
2252
	err = pci_set_power_state(dev, pci_choose_state(dev, state));
2253 2254
	if (err)
		fw_error("pci_set_power_state failed with %d\n", err);
2255
	ohci_pmac_off(dev);
2256

2257 2258 2259
	return 0;
}

2260
static int pci_resume(struct pci_dev *dev)
2261
{
2262
	struct fw_ohci *ohci = pci_get_drvdata(dev);
2263 2264
	int err;

2265 2266 2267 2268
	ohci_pmac_on(dev);
	pci_set_power_state(dev, PCI_D0);
	pci_restore_state(dev);
	err = pci_enable_device(dev);
2269
	if (err) {
2270
		fw_error("pci_enable_device failed\n");
2271 2272 2273
		return err;
	}

2274
	return ohci_enable(&ohci->card, NULL, 0);
2275 2276 2277
}
#endif

2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289
static struct pci_device_id pci_table[] = {
	{ PCI_DEVICE_CLASS(PCI_CLASS_SERIAL_FIREWIRE_OHCI, ~0) },
	{ }
};

MODULE_DEVICE_TABLE(pci, pci_table);

static struct pci_driver fw_ohci_pci_driver = {
	.name		= ohci_driver_name,
	.id_table	= pci_table,
	.probe		= pci_probe,
	.remove		= pci_remove,
2290 2291 2292 2293
#ifdef CONFIG_PM
	.resume		= pci_resume,
	.suspend	= pci_suspend,
#endif
2294 2295 2296 2297 2298 2299
};

MODULE_AUTHOR("Kristian Hoegsberg <krh@bitplanet.net>");
MODULE_DESCRIPTION("Driver for PCI OHCI IEEE1394 controllers");
MODULE_LICENSE("GPL");

2300 2301 2302 2303 2304
/* Provide a module alias so root-on-sbp2 initrds don't break. */
#ifndef CONFIG_IEEE1394_OHCI1394_MODULE
MODULE_ALIAS("ohci1394");
#endif

2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316
static int __init fw_ohci_init(void)
{
	return pci_register_driver(&fw_ohci_pci_driver);
}

static void __exit fw_ohci_cleanup(void)
{
	pci_unregister_driver(&fw_ohci_pci_driver);
}

module_init(fw_ohci_init);
module_exit(fw_ohci_cleanup);