fw-ohci.c 70.7 KB
Newer Older
1 2
/*
 * Driver for OHCI 1394 controllers
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
 *
 * Copyright (C) 2003-2006 Kristian Hoegsberg <krh@bitplanet.net>
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software Foundation,
 * Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
 */

21
#include <linux/compiler.h>
22
#include <linux/delay.h>
A
Andrew Morton 已提交
23
#include <linux/dma-mapping.h>
S
Stefan Richter 已提交
24
#include <linux/gfp.h>
25 26 27
#include <linux/init.h>
#include <linux/interrupt.h>
#include <linux/kernel.h>
A
Al Viro 已提交
28
#include <linux/mm.h>
29
#include <linux/module.h>
30
#include <linux/moduleparam.h>
31
#include <linux/pci.h>
S
Stefan Richter 已提交
32
#include <linux/spinlock.h>
A
Andrew Morton 已提交
33

S
Stefan Richter 已提交
34
#include <asm/page.h>
35
#include <asm/system.h>
36

37 38 39 40
#ifdef CONFIG_PPC_PMAC
#include <asm/pmac_feature.h>
#endif

41
#include "fw-ohci.h"
42
#include "fw-transaction.h"
43

44 45 46 47 48 49 50 51 52 53 54 55 56
#define DESCRIPTOR_OUTPUT_MORE		0
#define DESCRIPTOR_OUTPUT_LAST		(1 << 12)
#define DESCRIPTOR_INPUT_MORE		(2 << 12)
#define DESCRIPTOR_INPUT_LAST		(3 << 12)
#define DESCRIPTOR_STATUS		(1 << 11)
#define DESCRIPTOR_KEY_IMMEDIATE	(2 << 8)
#define DESCRIPTOR_PING			(1 << 7)
#define DESCRIPTOR_YY			(1 << 6)
#define DESCRIPTOR_NO_IRQ		(0 << 4)
#define DESCRIPTOR_IRQ_ERROR		(1 << 4)
#define DESCRIPTOR_IRQ_ALWAYS		(3 << 4)
#define DESCRIPTOR_BRANCH_ALWAYS	(3 << 2)
#define DESCRIPTOR_WAIT			(3 << 0)
57 58 59 60 61 62 63 64 65 66

struct descriptor {
	__le16 req_count;
	__le16 control;
	__le32 data_address;
	__le32 branch_address;
	__le16 res_count;
	__le16 transfer_status;
} __attribute__((aligned(16)));

67 68 69 70 71 72 73 74 75 76 77 78 79 80
struct db_descriptor {
	__le16 first_size;
	__le16 control;
	__le16 second_req_count;
	__le16 first_req_count;
	__le32 branch_address;
	__le16 second_res_count;
	__le16 first_res_count;
	__le32 reserved0;
	__le32 first_buffer;
	__le32 second_buffer;
	__le32 reserved1;
} __attribute__((aligned(16)));

81 82 83 84
#define CONTROL_SET(regs)	(regs)
#define CONTROL_CLEAR(regs)	((regs) + 4)
#define COMMAND_PTR(regs)	((regs) + 12)
#define CONTEXT_MATCH(regs)	((regs) + 16)
85

86
struct ar_buffer {
87
	struct descriptor descriptor;
88 89 90
	struct ar_buffer *next;
	__le32 data[0];
};
91

92 93 94 95 96
struct ar_context {
	struct fw_ohci *ohci;
	struct ar_buffer *current_buffer;
	struct ar_buffer *last_buffer;
	void *pointer;
97
	u32 regs;
98 99 100
	struct tasklet_struct tasklet;
};

101 102 103 104 105
struct context;

typedef int (*descriptor_callback_t)(struct context *ctx,
				     struct descriptor *d,
				     struct descriptor *last);
106 107 108 109 110 111 112 113 114 115 116 117 118

/*
 * A buffer that contains a block of DMA-able coherent memory used for
 * storing a portion of a DMA descriptor program.
 */
struct descriptor_buffer {
	struct list_head list;
	dma_addr_t buffer_bus;
	size_t buffer_size;
	size_t used;
	struct descriptor buffer[0];
};

119
struct context {
S
Stefan Richter 已提交
120
	struct fw_ohci *ohci;
121
	u32 regs;
122
	int total_allocation;
S
Stefan Richter 已提交
123

124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147
	/*
	 * List of page-sized buffers for storing DMA descriptors.
	 * Head of list contains buffers in use and tail of list contains
	 * free buffers.
	 */
	struct list_head buffer_list;

	/*
	 * Pointer to a buffer inside buffer_list that contains the tail
	 * end of the current DMA program.
	 */
	struct descriptor_buffer *buffer_tail;

	/*
	 * The descriptor containing the branch address of the first
	 * descriptor that has not yet been filled by the device.
	 */
	struct descriptor *last;

	/*
	 * The last descriptor in the DMA program.  It contains the branch
	 * address that must be updated upon appending a new descriptor.
	 */
	struct descriptor *prev;
148 149 150

	descriptor_callback_t callback;

S
Stefan Richter 已提交
151
	struct tasklet_struct tasklet;
152 153
};

154 155 156 157 158 159
#define IT_HEADER_SY(v)          ((v) <<  0)
#define IT_HEADER_TCODE(v)       ((v) <<  4)
#define IT_HEADER_CHANNEL(v)     ((v) <<  8)
#define IT_HEADER_TAG(v)         ((v) << 14)
#define IT_HEADER_SPEED(v)       ((v) << 16)
#define IT_HEADER_DATA_LENGTH(v) ((v) << 16)
160 161 162

struct iso_context {
	struct fw_iso_context base;
163
	struct context context;
164
	int excess_bytes;
165 166
	void *header;
	size_t header_length;
167 168 169 170 171 172 173
};

#define CONFIG_ROM_SIZE 1024

struct fw_ohci {
	struct fw_card card;

174
	u32 version;
175 176 177 178
	__iomem char *registers;
	dma_addr_t self_id_bus;
	__le32 *self_id_cpu;
	struct tasklet_struct bus_reset_tasklet;
179
	int node_id;
180
	int generation;
181
	int request_generation;	/* for timestamping incoming requests */
182
	u32 bus_seconds;
183
	bool old_uninorth;
184
	bool bus_reset_packet_quirk;
185

186 187 188 189
	/*
	 * Spinlock for accessing fw_ohci data.  Never call out of
	 * this driver with this lock held.
	 */
190 191 192 193 194 195 196 197 198 199 200 201
	spinlock_t lock;
	u32 self_id_buffer[512];

	/* Config rom buffers */
	__be32 *config_rom;
	dma_addr_t config_rom_bus;
	__be32 *next_config_rom;
	dma_addr_t next_config_rom_bus;
	u32 next_header;

	struct ar_context ar_request_ctx;
	struct ar_context ar_response_ctx;
202 203
	struct context at_request_ctx;
	struct context at_response_ctx;
204 205 206 207 208 209 210

	u32 it_context_mask;
	struct iso_context *it_context_list;
	u32 ir_context_mask;
	struct iso_context *ir_context_list;
};

A
Adrian Bunk 已提交
211
static inline struct fw_ohci *fw_ohci(struct fw_card *card)
212 213 214 215
{
	return container_of(card, struct fw_ohci, card);
}

216 217 218 219 220 221
#define IT_CONTEXT_CYCLE_MATCH_ENABLE	0x80000000
#define IR_CONTEXT_BUFFER_FILL		0x80000000
#define IR_CONTEXT_ISOCH_HEADER		0x40000000
#define IR_CONTEXT_CYCLE_MATCH_ENABLE	0x20000000
#define IR_CONTEXT_MULTI_CHANNEL_MODE	0x10000000
#define IR_CONTEXT_DUAL_BUFFER_MODE	0x08000000
222 223 224 225 226 227 228 229 230 231 232 233 234 235 236

#define CONTEXT_RUN	0x8000
#define CONTEXT_WAKE	0x1000
#define CONTEXT_DEAD	0x0800
#define CONTEXT_ACTIVE	0x0400

#define OHCI1394_MAX_AT_REQ_RETRIES	0x2
#define OHCI1394_MAX_AT_RESP_RETRIES	0x2
#define OHCI1394_MAX_PHYS_RESP_RETRIES	0x8

#define FW_OHCI_MAJOR			240
#define OHCI1394_REGISTER_SIZE		0x800
#define OHCI_LOOP_COUNT			500
#define OHCI1394_PCI_HCI_Control	0x40
#define SELF_ID_BUF_SIZE		0x800
237
#define OHCI_TCODE_PHY_PACKET		0x0e
238
#define OHCI_VERSION_1_1		0x010010
239

240 241
static char ohci_driver_name[] = KBUILD_MODNAME;

242 243
#ifdef CONFIG_FIREWIRE_OHCI_DEBUG

244
#define OHCI_PARAM_DEBUG_AT_AR		1
245
#define OHCI_PARAM_DEBUG_SELFIDS	2
246 247
#define OHCI_PARAM_DEBUG_IRQS		4
#define OHCI_PARAM_DEBUG_BUSRESETS	8 /* only effective before chip init */
248 249 250 251 252

static int param_debug;
module_param_named(debug, param_debug, int, 0644);
MODULE_PARM_DESC(debug, "Verbose logging (default = 0"
	", AT/AR events = "	__stringify(OHCI_PARAM_DEBUG_AT_AR)
253 254 255
	", self-IDs = "		__stringify(OHCI_PARAM_DEBUG_SELFIDS)
	", IRQs = "		__stringify(OHCI_PARAM_DEBUG_IRQS)
	", busReset events = "	__stringify(OHCI_PARAM_DEBUG_BUSRESETS)
256 257 258 259
	", or a combination, or all = -1)");

static void log_irqs(u32 evt)
{
260 261 262 263 264 265
	if (likely(!(param_debug &
			(OHCI_PARAM_DEBUG_IRQS | OHCI_PARAM_DEBUG_BUSRESETS))))
		return;

	if (!(param_debug & OHCI_PARAM_DEBUG_IRQS) &&
	    !(evt & OHCI1394_busReset))
266 267
		return;

268 269
	printk(KERN_DEBUG KBUILD_MODNAME ": IRQ "
	       "%08x%s%s%s%s%s%s%s%s%s%s%s%s%s\n",
270 271 272 273 274 275 276 277 278 279 280
	       evt,
	       evt & OHCI1394_selfIDComplete	? " selfID"		: "",
	       evt & OHCI1394_RQPkt		? " AR_req"		: "",
	       evt & OHCI1394_RSPkt		? " AR_resp"		: "",
	       evt & OHCI1394_reqTxComplete	? " AT_req"		: "",
	       evt & OHCI1394_respTxComplete	? " AT_resp"		: "",
	       evt & OHCI1394_isochRx		? " IR"			: "",
	       evt & OHCI1394_isochTx		? " IT"			: "",
	       evt & OHCI1394_postedWriteErr	? " postedWriteErr"	: "",
	       evt & OHCI1394_cycleTooLong	? " cycleTooLong"	: "",
	       evt & OHCI1394_cycle64Seconds	? " cycle64Seconds"	: "",
281
	       evt & OHCI1394_regAccessFail	? " regAccessFail"	: "",
282
	       evt & OHCI1394_busReset		? " busReset"		: "",
283 284 285 286
	       evt & ~(OHCI1394_selfIDComplete | OHCI1394_RQPkt |
		       OHCI1394_RSPkt | OHCI1394_reqTxComplete |
		       OHCI1394_respTxComplete | OHCI1394_isochRx |
		       OHCI1394_isochTx | OHCI1394_postedWriteErr |
287
		       OHCI1394_cycleTooLong | OHCI1394_cycle64Seconds |
288
		       OHCI1394_regAccessFail | OHCI1394_busReset)
289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305
						? " ?"			: "");
}

static const char *speed[] = {
	[0] = "S100", [1] = "S200", [2] = "S400",    [3] = "beta",
};
static const char *power[] = {
	[0] = "+0W",  [1] = "+15W", [2] = "+30W",    [3] = "+45W",
	[4] = "-3W",  [5] = " ?W",  [6] = "-3..-6W", [7] = "-3..-10W",
};
static const char port[] = { '.', '-', 'p', 'c', };

static char _p(u32 *s, int shift)
{
	return port[*s >> shift & 3];
}

306
static void log_selfids(int node_id, int generation, int self_id_count, u32 *s)
307 308 309 310
{
	if (likely(!(param_debug & OHCI_PARAM_DEBUG_SELFIDS)))
		return;

311 312
	printk(KERN_DEBUG KBUILD_MODNAME ": %d selfIDs, generation %d, "
	       "local node ID %04x\n", self_id_count, generation, node_id);
313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374

	for (; self_id_count--; ++s)
		if ((*s & 1 << 23) == 0)
			printk(KERN_DEBUG "selfID 0: %08x, phy %d [%c%c%c] "
			       "%s gc=%d %s %s%s%s\n",
			       *s, *s >> 24 & 63, _p(s, 6), _p(s, 4), _p(s, 2),
			       speed[*s >> 14 & 3], *s >> 16 & 63,
			       power[*s >> 8 & 7], *s >> 22 & 1 ? "L" : "",
			       *s >> 11 & 1 ? "c" : "", *s & 2 ? "i" : "");
		else
			printk(KERN_DEBUG "selfID n: %08x, phy %d "
			       "[%c%c%c%c%c%c%c%c]\n",
			       *s, *s >> 24 & 63,
			       _p(s, 16), _p(s, 14), _p(s, 12), _p(s, 10),
			       _p(s,  8), _p(s,  6), _p(s,  4), _p(s,  2));
}

static const char *evts[] = {
	[0x00] = "evt_no_status",	[0x01] = "-reserved-",
	[0x02] = "evt_long_packet",	[0x03] = "evt_missing_ack",
	[0x04] = "evt_underrun",	[0x05] = "evt_overrun",
	[0x06] = "evt_descriptor_read",	[0x07] = "evt_data_read",
	[0x08] = "evt_data_write",	[0x09] = "evt_bus_reset",
	[0x0a] = "evt_timeout",		[0x0b] = "evt_tcode_err",
	[0x0c] = "-reserved-",		[0x0d] = "-reserved-",
	[0x0e] = "evt_unknown",		[0x0f] = "evt_flushed",
	[0x10] = "-reserved-",		[0x11] = "ack_complete",
	[0x12] = "ack_pending ",	[0x13] = "-reserved-",
	[0x14] = "ack_busy_X",		[0x15] = "ack_busy_A",
	[0x16] = "ack_busy_B",		[0x17] = "-reserved-",
	[0x18] = "-reserved-",		[0x19] = "-reserved-",
	[0x1a] = "-reserved-",		[0x1b] = "ack_tardy",
	[0x1c] = "-reserved-",		[0x1d] = "ack_data_error",
	[0x1e] = "ack_type_error",	[0x1f] = "-reserved-",
	[0x20] = "pending/cancelled",
};
static const char *tcodes[] = {
	[0x0] = "QW req",		[0x1] = "BW req",
	[0x2] = "W resp",		[0x3] = "-reserved-",
	[0x4] = "QR req",		[0x5] = "BR req",
	[0x6] = "QR resp",		[0x7] = "BR resp",
	[0x8] = "cycle start",		[0x9] = "Lk req",
	[0xa] = "async stream packet",	[0xb] = "Lk resp",
	[0xc] = "-reserved-",		[0xd] = "-reserved-",
	[0xe] = "link internal",	[0xf] = "-reserved-",
};
static const char *phys[] = {
	[0x0] = "phy config packet",	[0x1] = "link-on packet",
	[0x2] = "self-id packet",	[0x3] = "-reserved-",
};

static void log_ar_at_event(char dir, int speed, u32 *header, int evt)
{
	int tcode = header[0] >> 4 & 0xf;
	char specific[12];

	if (likely(!(param_debug & OHCI_PARAM_DEBUG_AT_AR)))
		return;

	if (unlikely(evt >= ARRAY_SIZE(evts)))
			evt = 0x1f;

375 376 377 378 379 380
	if (evt == OHCI1394_evt_bus_reset) {
		printk(KERN_DEBUG "A%c evt_bus_reset, generation %d\n",
		       dir, (header[2] >> 16) & 0xff);
		return;
	}

381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426
	if (header[0] == ~header[1]) {
		printk(KERN_DEBUG "A%c %s, %s, %08x\n",
		       dir, evts[evt], phys[header[0] >> 30 & 0x3],
		       header[0]);
		return;
	}

	switch (tcode) {
	case 0x0: case 0x6: case 0x8:
		snprintf(specific, sizeof(specific), " = %08x",
			 be32_to_cpu((__force __be32)header[3]));
		break;
	case 0x1: case 0x5: case 0x7: case 0x9: case 0xb:
		snprintf(specific, sizeof(specific), " %x,%x",
			 header[3] >> 16, header[3] & 0xffff);
		break;
	default:
		specific[0] = '\0';
	}

	switch (tcode) {
	case 0xe: case 0xa:
		printk(KERN_DEBUG "A%c %s, %s\n",
		       dir, evts[evt], tcodes[tcode]);
		break;
	case 0x0: case 0x1: case 0x4: case 0x5: case 0x9:
		printk(KERN_DEBUG "A%c spd %x tl %02x, "
		       "%04x -> %04x, %s, "
		       "%s, %04x%08x%s\n",
		       dir, speed, header[0] >> 10 & 0x3f,
		       header[1] >> 16, header[0] >> 16, evts[evt],
		       tcodes[tcode], header[1] & 0xffff, header[2], specific);
		break;
	default:
		printk(KERN_DEBUG "A%c spd %x tl %02x, "
		       "%04x -> %04x, %s, "
		       "%s%s\n",
		       dir, speed, header[0] >> 10 & 0x3f,
		       header[1] >> 16, header[0] >> 16, evts[evt],
		       tcodes[tcode], specific);
	}
}

#else

#define log_irqs(evt)
427
#define log_selfids(node_id, generation, self_id_count, sid)
428 429 430 431
#define log_ar_at_event(dir, speed, header, evt)

#endif /* CONFIG_FIREWIRE_OHCI_DEBUG */

A
Adrian Bunk 已提交
432
static inline void reg_write(const struct fw_ohci *ohci, int offset, u32 data)
433 434 435 436
{
	writel(data, ohci->registers + offset);
}

A
Adrian Bunk 已提交
437
static inline u32 reg_read(const struct fw_ohci *ohci, int offset)
438 439 440 441
{
	return readl(ohci->registers + offset);
}

A
Adrian Bunk 已提交
442
static inline void flush_writes(const struct fw_ohci *ohci)
443 444 445 446 447 448 449 450 451 452 453 454 455
{
	/* Do a dummy read to flush writes. */
	reg_read(ohci, OHCI1394_Version);
}

static int
ohci_update_phy_reg(struct fw_card *card, int addr,
		    int clear_bits, int set_bits)
{
	struct fw_ohci *ohci = fw_ohci(card);
	u32 val, old;

	reg_write(ohci, OHCI1394_PhyControl, OHCI1394_PhyControl_Read(addr));
456
	flush_writes(ohci);
457 458 459 460 461 462 463 464 465 466 467 468 469 470 471
	msleep(2);
	val = reg_read(ohci, OHCI1394_PhyControl);
	if ((val & OHCI1394_PhyControl_ReadDone) == 0) {
		fw_error("failed to set phy reg bits.\n");
		return -EBUSY;
	}

	old = OHCI1394_PhyControl_ReadData(val);
	old = (old & ~clear_bits) | set_bits;
	reg_write(ohci, OHCI1394_PhyControl,
		  OHCI1394_PhyControl_Write(addr, old));

	return 0;
}

472
static int ar_context_add_page(struct ar_context *ctx)
473
{
474 475
	struct device *dev = ctx->ohci->card.device;
	struct ar_buffer *ab;
476
	dma_addr_t uninitialized_var(ab_bus);
477 478
	size_t offset;

479
	ab = dma_alloc_coherent(dev, PAGE_SIZE, &ab_bus, GFP_ATOMIC);
480 481 482
	if (ab == NULL)
		return -ENOMEM;

483
	memset(&ab->descriptor, 0, sizeof(ab->descriptor));
484 485 486
	ab->descriptor.control        = cpu_to_le16(DESCRIPTOR_INPUT_MORE |
						    DESCRIPTOR_STATUS |
						    DESCRIPTOR_BRANCH_ALWAYS);
487 488 489 490 491 492
	offset = offsetof(struct ar_buffer, data);
	ab->descriptor.req_count      = cpu_to_le16(PAGE_SIZE - offset);
	ab->descriptor.data_address   = cpu_to_le32(ab_bus + offset);
	ab->descriptor.res_count      = cpu_to_le16(PAGE_SIZE - offset);
	ab->descriptor.branch_address = 0;

493
	ctx->last_buffer->descriptor.branch_address = cpu_to_le32(ab_bus | 1);
494 495 496
	ctx->last_buffer->next = ab;
	ctx->last_buffer = ab;

497
	reg_write(ctx->ohci, CONTROL_SET(ctx->regs), CONTEXT_WAKE);
498
	flush_writes(ctx->ohci);
499 500

	return 0;
501 502
}

503 504 505 506 507 508 509
#if defined(CONFIG_PPC_PMAC) && defined(CONFIG_PPC32)
#define cond_le32_to_cpu(v) \
	(ohci->old_uninorth ? (__force __u32)(v) : le32_to_cpu(v))
#else
#define cond_le32_to_cpu(v) le32_to_cpu(v)
#endif

510
static __le32 *handle_ar_packet(struct ar_context *ctx, __le32 *buffer)
511 512
{
	struct fw_ohci *ohci = ctx->ohci;
513 514
	struct fw_packet p;
	u32 status, length, tcode;
515
	int evt;
516

517 518 519
	p.header[0] = cond_le32_to_cpu(buffer[0]);
	p.header[1] = cond_le32_to_cpu(buffer[1]);
	p.header[2] = cond_le32_to_cpu(buffer[2]);
520 521 522 523 524

	tcode = (p.header[0] >> 4) & 0x0f;
	switch (tcode) {
	case TCODE_WRITE_QUADLET_REQUEST:
	case TCODE_READ_QUADLET_RESPONSE:
525
		p.header[3] = (__force __u32) buffer[3];
526
		p.header_length = 16;
527
		p.payload_length = 0;
528 529 530
		break;

	case TCODE_READ_BLOCK_REQUEST :
531
		p.header[3] = cond_le32_to_cpu(buffer[3]);
532 533 534 535 536
		p.header_length = 16;
		p.payload_length = 0;
		break;

	case TCODE_WRITE_BLOCK_REQUEST:
537 538 539
	case TCODE_READ_BLOCK_RESPONSE:
	case TCODE_LOCK_REQUEST:
	case TCODE_LOCK_RESPONSE:
540
		p.header[3] = cond_le32_to_cpu(buffer[3]);
541
		p.header_length = 16;
542
		p.payload_length = p.header[3] >> 16;
543 544 545 546
		break;

	case TCODE_WRITE_RESPONSE:
	case TCODE_READ_QUADLET_REQUEST:
547
	case OHCI_TCODE_PHY_PACKET:
548
		p.header_length = 12;
549
		p.payload_length = 0;
550 551
		break;
	}
552

553 554 555 556
	p.payload = (void *) buffer + p.header_length;

	/* FIXME: What to do about evt_* errors? */
	length = (p.header_length + p.payload_length + 3) / 4;
557
	status = cond_le32_to_cpu(buffer[length]);
558
	evt    = (status >> 16) & 0x1f;
559

560
	p.ack        = evt - 16;
561 562 563
	p.speed      = (status >> 21) & 0x7;
	p.timestamp  = status & 0xffff;
	p.generation = ohci->request_generation;
564

565
	log_ar_at_event('R', p.speed, p.header, evt);
566

567 568
	/*
	 * The OHCI bus reset handler synthesizes a phy packet with
569 570 571 572 573
	 * the new generation number when a bus reset happens (see
	 * section 8.4.2.3).  This helps us determine when a request
	 * was received and make sure we send the response in the same
	 * generation.  We only need this for requests; for responses
	 * we use the unique tlabel for finding the matching
574
	 * request.
575 576 577 578
	 *
	 * Alas some chips sometimes emit bus reset packets with a
	 * wrong generation.  We set the correct generation for these
	 * at a slightly incorrect time (in bus_reset_tasklet).
579
	 */
580 581 582 583
	if (evt == OHCI1394_evt_bus_reset) {
		if (!ohci->bus_reset_packet_quirk)
			ohci->request_generation = (p.header[2] >> 16) & 0xff;
	} else if (ctx == &ohci->ar_request_ctx) {
584
		fw_core_handle_request(&ohci->card, &p);
585
	} else {
586
		fw_core_handle_response(&ohci->card, &p);
587
	}
588

589 590
	return buffer + length + 1;
}
591

592 593 594 595 596 597 598 599 600 601 602 603 604
static void ar_context_tasklet(unsigned long data)
{
	struct ar_context *ctx = (struct ar_context *)data;
	struct fw_ohci *ohci = ctx->ohci;
	struct ar_buffer *ab;
	struct descriptor *d;
	void *buffer, *end;

	ab = ctx->current_buffer;
	d = &ab->descriptor;

	if (d->res_count == 0) {
		size_t size, rest, offset;
605 606
		dma_addr_t start_bus;
		void *start;
607

608 609
		/*
		 * This descriptor is finished and we may have a
610
		 * packet split across this and the next buffer. We
611 612
		 * reuse the page for reassembling the split packet.
		 */
613 614

		offset = offsetof(struct ar_buffer, data);
615 616
		start = buffer = ab;
		start_bus = le32_to_cpu(ab->descriptor.data_address) - offset;
617 618 619 620 621 622 623 624 625 626 627 628 629 630

		ab = ab->next;
		d = &ab->descriptor;
		size = buffer + PAGE_SIZE - ctx->pointer;
		rest = le16_to_cpu(d->req_count) - le16_to_cpu(d->res_count);
		memmove(buffer, ctx->pointer, size);
		memcpy(buffer + size, ab->data, rest);
		ctx->current_buffer = ab;
		ctx->pointer = (void *) ab->data + rest;
		end = buffer + size + rest;

		while (buffer < end)
			buffer = handle_ar_packet(ctx, buffer);

631
		dma_free_coherent(ohci->card.device, PAGE_SIZE,
632
				  start, start_bus);
633 634 635 636 637 638 639 640 641
		ar_context_add_page(ctx);
	} else {
		buffer = ctx->pointer;
		ctx->pointer = end =
			(void *) ab + PAGE_SIZE - le16_to_cpu(d->res_count);

		while (buffer < end)
			buffer = handle_ar_packet(ctx, buffer);
	}
642 643 644
}

static int
645
ar_context_init(struct ar_context *ctx, struct fw_ohci *ohci, u32 regs)
646
{
647
	struct ar_buffer ab;
648

649 650 651
	ctx->regs        = regs;
	ctx->ohci        = ohci;
	ctx->last_buffer = &ab;
652 653
	tasklet_init(&ctx->tasklet, ar_context_tasklet, (unsigned long)ctx);

654 655 656 657 658
	ar_context_add_page(ctx);
	ar_context_add_page(ctx);
	ctx->current_buffer = ab.next;
	ctx->pointer = ctx->current_buffer->data;

659 660 661 662 663 664 665 666 667 668
	return 0;
}

static void ar_context_run(struct ar_context *ctx)
{
	struct ar_buffer *ab = ctx->current_buffer;
	dma_addr_t ab_bus;
	size_t offset;

	offset = offsetof(struct ar_buffer, data);
669
	ab_bus = le32_to_cpu(ab->descriptor.data_address) - offset;
670 671

	reg_write(ctx->ohci, COMMAND_PTR(ctx->regs), ab_bus | 1);
672
	reg_write(ctx->ohci, CONTROL_SET(ctx->regs), CONTEXT_RUN);
673
	flush_writes(ctx->ohci);
674
}
S
Stefan Richter 已提交
675

676 677 678 679 680 681 682 683 684 685 686 687 688 689 690
static struct descriptor *
find_branch_descriptor(struct descriptor *d, int z)
{
	int b, key;

	b   = (le16_to_cpu(d->control) & DESCRIPTOR_BRANCH_ALWAYS) >> 2;
	key = (le16_to_cpu(d->control) & DESCRIPTOR_KEY_IMMEDIATE) >> 8;

	/* figure out which descriptor the branch address goes in */
	if (z == 2 && (b == 3 || key == 2))
		return d;
	else
		return d + z - 1;
}

691 692 693 694 695 696
static void context_tasklet(unsigned long data)
{
	struct context *ctx = (struct context *) data;
	struct descriptor *d, *last;
	u32 address;
	int z;
697
	struct descriptor_buffer *desc;
698

699 700 701
	desc = list_entry(ctx->buffer_list.next,
			struct descriptor_buffer, list);
	last = ctx->last;
702
	while (last->branch_address != 0) {
703
		struct descriptor_buffer *old_desc = desc;
704 705
		address = le32_to_cpu(last->branch_address);
		z = address & 0xf;
706 707 708 709 710 711 712 713 714
		address &= ~0xf;

		/* If the branch address points to a buffer outside of the
		 * current buffer, advance to the next buffer. */
		if (address < desc->buffer_bus ||
				address >= desc->buffer_bus + desc->used)
			desc = list_entry(desc->list.next,
					struct descriptor_buffer, list);
		d = desc->buffer + (address - desc->buffer_bus) / sizeof(*d);
715
		last = find_branch_descriptor(d, z);
716 717 718 719

		if (!ctx->callback(ctx, d, last))
			break;

720 721 722 723 724 725 726 727 728 729
		if (old_desc != desc) {
			/* If we've advanced to the next buffer, move the
			 * previous buffer to the free list. */
			unsigned long flags;
			old_desc->used = 0;
			spin_lock_irqsave(&ctx->ohci->lock, flags);
			list_move_tail(&old_desc->list, &ctx->buffer_list);
			spin_unlock_irqrestore(&ctx->ohci->lock, flags);
		}
		ctx->last = last;
730 731 732
	}
}

733 734 735 736 737 738 739 740
/*
 * Allocate a new buffer and add it to the list of free buffers for this
 * context.  Must be called with ohci->lock held.
 */
static int
context_add_buffer(struct context *ctx)
{
	struct descriptor_buffer *desc;
741
	dma_addr_t uninitialized_var(bus_addr);
742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766
	int offset;

	/*
	 * 16MB of descriptors should be far more than enough for any DMA
	 * program.  This will catch run-away userspace or DoS attacks.
	 */
	if (ctx->total_allocation >= 16*1024*1024)
		return -ENOMEM;

	desc = dma_alloc_coherent(ctx->ohci->card.device, PAGE_SIZE,
			&bus_addr, GFP_ATOMIC);
	if (!desc)
		return -ENOMEM;

	offset = (void *)&desc->buffer - (void *)desc;
	desc->buffer_size = PAGE_SIZE - offset;
	desc->buffer_bus = bus_addr + offset;
	desc->used = 0;

	list_add_tail(&desc->list, &ctx->buffer_list);
	ctx->total_allocation += PAGE_SIZE;

	return 0;
}

767 768
static int
context_init(struct context *ctx, struct fw_ohci *ohci,
769
	     u32 regs, descriptor_callback_t callback)
770 771 772
{
	ctx->ohci = ohci;
	ctx->regs = regs;
773 774 775 776
	ctx->total_allocation = 0;

	INIT_LIST_HEAD(&ctx->buffer_list);
	if (context_add_buffer(ctx) < 0)
777 778
		return -ENOMEM;

779 780 781
	ctx->buffer_tail = list_entry(ctx->buffer_list.next,
			struct descriptor_buffer, list);

782 783 784
	tasklet_init(&ctx->tasklet, context_tasklet, (unsigned long)ctx);
	ctx->callback = callback;

785 786
	/*
	 * We put a dummy descriptor in the buffer that has a NULL
787
	 * branch address and looks like it's been sent.  That way we
788
	 * have a descriptor to append DMA programs to.
789
	 */
790 791 792 793 794 795
	memset(ctx->buffer_tail->buffer, 0, sizeof(*ctx->buffer_tail->buffer));
	ctx->buffer_tail->buffer->control = cpu_to_le16(DESCRIPTOR_OUTPUT_LAST);
	ctx->buffer_tail->buffer->transfer_status = cpu_to_le16(0x8011);
	ctx->buffer_tail->used += sizeof(*ctx->buffer_tail->buffer);
	ctx->last = ctx->buffer_tail->buffer;
	ctx->prev = ctx->buffer_tail->buffer;
796 797 798 799

	return 0;
}

800
static void
801 802 803
context_release(struct context *ctx)
{
	struct fw_card *card = &ctx->ohci->card;
804
	struct descriptor_buffer *desc, *tmp;
805

806 807 808 809
	list_for_each_entry_safe(desc, tmp, &ctx->buffer_list, list)
		dma_free_coherent(card->device, PAGE_SIZE, desc,
			desc->buffer_bus -
			((void *)&desc->buffer - (void *)desc));
810 811
}

812
/* Must be called with ohci->lock held */
813 814 815
static struct descriptor *
context_get_descriptors(struct context *ctx, int z, dma_addr_t *d_bus)
{
816 817 818 819 820 821 822 823 824
	struct descriptor *d = NULL;
	struct descriptor_buffer *desc = ctx->buffer_tail;

	if (z * sizeof(*d) > desc->buffer_size)
		return NULL;

	if (z * sizeof(*d) > desc->buffer_size - desc->used) {
		/* No room for the descriptor in this buffer, so advance to the
		 * next one. */
825

826 827 828 829 830 831 832 833 834 835
		if (desc->list.next == &ctx->buffer_list) {
			/* If there is no free buffer next in the list,
			 * allocate one. */
			if (context_add_buffer(ctx) < 0)
				return NULL;
		}
		desc = list_entry(desc->list.next,
				struct descriptor_buffer, list);
		ctx->buffer_tail = desc;
	}
836

837
	d = desc->buffer + desc->used / sizeof(*d);
838
	memset(d, 0, z * sizeof(*d));
839
	*d_bus = desc->buffer_bus + desc->used;
840 841 842 843

	return d;
}

844
static void context_run(struct context *ctx, u32 extra)
845 846 847
{
	struct fw_ohci *ohci = ctx->ohci;

848
	reg_write(ohci, COMMAND_PTR(ctx->regs),
849
		  le32_to_cpu(ctx->last->branch_address));
850 851
	reg_write(ohci, CONTROL_CLEAR(ctx->regs), ~0);
	reg_write(ohci, CONTROL_SET(ctx->regs), CONTEXT_RUN | extra);
852 853 854 855 856 857 858
	flush_writes(ohci);
}

static void context_append(struct context *ctx,
			   struct descriptor *d, int z, int extra)
{
	dma_addr_t d_bus;
859
	struct descriptor_buffer *desc = ctx->buffer_tail;
860

861
	d_bus = desc->buffer_bus + (d - desc->buffer) * sizeof(*d);
862

863 864 865
	desc->used += (z + extra) * sizeof(*d);
	ctx->prev->branch_address = cpu_to_le32(d_bus | z);
	ctx->prev = find_branch_descriptor(d, z);
866

867
	reg_write(ctx->ohci, CONTROL_SET(ctx->regs), CONTEXT_WAKE);
868 869 870 871 872 873
	flush_writes(ctx->ohci);
}

static void context_stop(struct context *ctx)
{
	u32 reg;
874
	int i;
875

876
	reg_write(ctx->ohci, CONTROL_CLEAR(ctx->regs), CONTEXT_RUN);
877
	flush_writes(ctx->ohci);
878

879
	for (i = 0; i < 10; i++) {
880
		reg = reg_read(ctx->ohci, CONTROL_SET(ctx->regs));
881 882 883 884
		if ((reg & CONTEXT_ACTIVE) == 0)
			break;

		fw_notify("context_stop: still active (0x%08x)\n", reg);
885
		mdelay(1);
886
	}
887
}
888

889 890 891
struct driver_data {
	struct fw_packet *packet;
};
892

893 894
/*
 * This function apppends a packet to the DMA queue for transmission.
895
 * Must always be called with the ochi->lock held to ensure proper
896 897
 * generation handling and locking around packet queue manipulation.
 */
898 899
static int
at_context_queue_packet(struct context *ctx, struct fw_packet *packet)
900 901
{
	struct fw_ohci *ohci = ctx->ohci;
902
	dma_addr_t d_bus, uninitialized_var(payload_bus);
903 904 905
	struct driver_data *driver_data;
	struct descriptor *d, *last;
	__le32 *header;
906
	int z, tcode;
907
	u32 reg;
908

909 910 911 912
	d = context_get_descriptors(ctx, 4, &d_bus);
	if (d == NULL) {
		packet->ack = RCODE_SEND_ERROR;
		return -1;
913 914
	}

915
	d[0].control   = cpu_to_le16(DESCRIPTOR_KEY_IMMEDIATE);
916 917
	d[0].res_count = cpu_to_le16(packet->timestamp);

918 919
	/*
	 * The DMA format for asyncronous link packets is different
920 921
	 * from the IEEE1394 layout, so shift the fields around
	 * accordingly.  If header_length is 8, it's a PHY packet, to
922 923
	 * which we need to prepend an extra quadlet.
	 */
924 925

	header = (__le32 *) &d[1];
926
	if (packet->header_length > 8) {
927 928 929 930 931
		header[0] = cpu_to_le32((packet->header[0] & 0xffff) |
					(packet->speed << 16));
		header[1] = cpu_to_le32((packet->header[1] & 0xffff) |
					(packet->header[0] & 0xffff0000));
		header[2] = cpu_to_le32(packet->header[2]);
932 933 934

		tcode = (packet->header[0] >> 4) & 0x0f;
		if (TCODE_IS_BLOCK_PACKET(tcode))
935
			header[3] = cpu_to_le32(packet->header[3]);
936
		else
937 938 939
			header[3] = (__force __le32) packet->header[3];

		d[0].req_count = cpu_to_le16(packet->header_length);
940
	} else {
941 942 943 944 945
		header[0] = cpu_to_le32((OHCI1394_phy_tcode << 4) |
					(packet->speed << 16));
		header[1] = cpu_to_le32(packet->header[0]);
		header[2] = cpu_to_le32(packet->header[1]);
		d[0].req_count = cpu_to_le16(12);
946 947
	}

948 949
	driver_data = (struct driver_data *) &d[3];
	driver_data->packet = packet;
950
	packet->driver_data = driver_data;
951

952 953 954 955 956 957 958 959 960 961 962 963 964
	if (packet->payload_length > 0) {
		payload_bus =
			dma_map_single(ohci->card.device, packet->payload,
				       packet->payload_length, DMA_TO_DEVICE);
		if (dma_mapping_error(payload_bus)) {
			packet->ack = RCODE_SEND_ERROR;
			return -1;
		}

		d[2].req_count    = cpu_to_le16(packet->payload_length);
		d[2].data_address = cpu_to_le32(payload_bus);
		last = &d[2];
		z = 3;
965
	} else {
966 967
		last = &d[0];
		z = 2;
968 969
	}

970 971 972
	last->control |= cpu_to_le16(DESCRIPTOR_OUTPUT_LAST |
				     DESCRIPTOR_IRQ_ALWAYS |
				     DESCRIPTOR_BRANCH_ALWAYS);
973

974 975 976 977 978 979 980 981 982 983 984 985 986
	/*
	 * If the controller and packet generations don't match, we need to
	 * bail out and try again.  If IntEvent.busReset is set, the AT context
	 * is halted, so appending to the context and trying to run it is
	 * futile.  Most controllers do the right thing and just flush the AT
	 * queue (per section 7.2.3.2 of the OHCI 1.1 specification), but
	 * some controllers (like a JMicron JMB381 PCI-e) misbehave and wind
	 * up stalling out.  So we just bail out in software and try again
	 * later, and everyone is happy.
	 * FIXME: Document how the locking works.
	 */
	if (ohci->generation != packet->generation ||
	    reg_read(ohci, OHCI1394_IntEventSet) & OHCI1394_busReset) {
987 988 989
		if (packet->payload_length > 0)
			dma_unmap_single(ohci->card.device, payload_bus,
					 packet->payload_length, DMA_TO_DEVICE);
990 991 992 993 994
		packet->ack = RCODE_GENERATION;
		return -1;
	}

	context_append(ctx, d, z, 4 - z);
995

996
	/* If the context isn't already running, start it up. */
997
	reg = reg_read(ctx->ohci, CONTROL_SET(ctx->regs));
998
	if ((reg & CONTEXT_RUN) == 0)
999 1000 1001
		context_run(ctx, 0);

	return 0;
1002 1003
}

1004 1005 1006
static int handle_at_packet(struct context *context,
			    struct descriptor *d,
			    struct descriptor *last)
1007
{
1008
	struct driver_data *driver_data;
1009
	struct fw_packet *packet;
1010 1011
	struct fw_ohci *ohci = context->ohci;
	dma_addr_t payload_bus;
1012 1013
	int evt;

1014 1015 1016
	if (last->transfer_status == 0)
		/* This descriptor isn't done yet, stop iteration. */
		return 0;
1017

1018 1019 1020 1021 1022
	driver_data = (struct driver_data *) &d[3];
	packet = driver_data->packet;
	if (packet == NULL)
		/* This packet was cancelled, just continue. */
		return 1;
1023

1024 1025 1026
	payload_bus = le32_to_cpu(last->data_address);
	if (payload_bus != 0)
		dma_unmap_single(ohci->card.device, payload_bus,
1027 1028
				 packet->payload_length, DMA_TO_DEVICE);

1029 1030
	evt = le16_to_cpu(last->transfer_status) & 0x1f;
	packet->timestamp = le16_to_cpu(last->res_count);
1031

1032 1033
	log_ar_at_event('T', packet->speed, packet->header, evt);

1034 1035 1036 1037 1038
	switch (evt) {
	case OHCI1394_evt_timeout:
		/* Async response transmit timed out. */
		packet->ack = RCODE_CANCELLED;
		break;
1039

1040
	case OHCI1394_evt_flushed:
1041 1042 1043 1044
		/*
		 * The packet was flushed should give same error as
		 * when we try to use a stale generation count.
		 */
1045 1046
		packet->ack = RCODE_GENERATION;
		break;
1047

1048
	case OHCI1394_evt_missing_ack:
1049 1050 1051 1052
		/*
		 * Using a valid (current) generation count, but the
		 * node is not on the bus or not sending acks.
		 */
1053 1054
		packet->ack = RCODE_NO_ACK;
		break;
1055

1056 1057 1058 1059 1060 1061 1062 1063 1064
	case ACK_COMPLETE + 0x10:
	case ACK_PENDING + 0x10:
	case ACK_BUSY_X + 0x10:
	case ACK_BUSY_A + 0x10:
	case ACK_BUSY_B + 0x10:
	case ACK_DATA_ERROR + 0x10:
	case ACK_TYPE_ERROR + 0x10:
		packet->ack = evt - 0x10;
		break;
1065

1066 1067 1068 1069
	default:
		packet->ack = RCODE_SEND_ERROR;
		break;
	}
1070

1071
	packet->callback(packet, &ohci->card, packet->ack);
1072

1073
	return 1;
1074 1075
}

1076 1077 1078 1079 1080
#define HEADER_GET_DESTINATION(q)	(((q) >> 16) & 0xffff)
#define HEADER_GET_TCODE(q)		(((q) >> 4) & 0x0f)
#define HEADER_GET_OFFSET_HIGH(q)	(((q) >> 0) & 0xffff)
#define HEADER_GET_DATA_LENGTH(q)	(((q) >> 16) & 0xffff)
#define HEADER_GET_EXTENDED_TCODE(q)	(((q) >> 0) & 0xffff)
1081 1082 1083 1084 1085 1086 1087

static void
handle_local_rom(struct fw_ohci *ohci, struct fw_packet *packet, u32 csr)
{
	struct fw_packet response;
	int tcode, length, i;

1088
	tcode = HEADER_GET_TCODE(packet->header[0]);
1089
	if (TCODE_IS_BLOCK_PACKET(tcode))
1090
		length = HEADER_GET_DATA_LENGTH(packet->header[3]);
1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116
	else
		length = 4;

	i = csr - CSR_CONFIG_ROM;
	if (i + length > CONFIG_ROM_SIZE) {
		fw_fill_response(&response, packet->header,
				 RCODE_ADDRESS_ERROR, NULL, 0);
	} else if (!TCODE_IS_READ_REQUEST(tcode)) {
		fw_fill_response(&response, packet->header,
				 RCODE_TYPE_ERROR, NULL, 0);
	} else {
		fw_fill_response(&response, packet->header, RCODE_COMPLETE,
				 (void *) ohci->config_rom + i, length);
	}

	fw_core_handle_response(&ohci->card, &response);
}

static void
handle_local_lock(struct fw_ohci *ohci, struct fw_packet *packet, u32 csr)
{
	struct fw_packet response;
	int tcode, length, ext_tcode, sel;
	__be32 *payload, lock_old;
	u32 lock_arg, lock_data;

1117 1118
	tcode = HEADER_GET_TCODE(packet->header[0]);
	length = HEADER_GET_DATA_LENGTH(packet->header[3]);
1119
	payload = packet->payload;
1120
	ext_tcode = HEADER_GET_EXTENDED_TCODE(packet->header[3]);
1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145

	if (tcode == TCODE_LOCK_REQUEST &&
	    ext_tcode == EXTCODE_COMPARE_SWAP && length == 8) {
		lock_arg = be32_to_cpu(payload[0]);
		lock_data = be32_to_cpu(payload[1]);
	} else if (tcode == TCODE_READ_QUADLET_REQUEST) {
		lock_arg = 0;
		lock_data = 0;
	} else {
		fw_fill_response(&response, packet->header,
				 RCODE_TYPE_ERROR, NULL, 0);
		goto out;
	}

	sel = (csr - CSR_BUS_MANAGER_ID) / 4;
	reg_write(ohci, OHCI1394_CSRData, lock_data);
	reg_write(ohci, OHCI1394_CSRCompareData, lock_arg);
	reg_write(ohci, OHCI1394_CSRControl, sel);

	if (reg_read(ohci, OHCI1394_CSRControl) & 0x80000000)
		lock_old = cpu_to_be32(reg_read(ohci, OHCI1394_CSRData));
	else
		fw_notify("swap not done yet\n");

	fw_fill_response(&response, packet->header,
1146
			 RCODE_COMPLETE, &lock_old, sizeof(lock_old));
1147 1148 1149 1150 1151
 out:
	fw_core_handle_response(&ohci->card, &response);
}

static void
1152
handle_local_request(struct context *ctx, struct fw_packet *packet)
1153 1154 1155 1156
{
	u64 offset;
	u32 csr;

1157 1158 1159 1160
	if (ctx == &ctx->ohci->at_request_ctx) {
		packet->ack = ACK_PENDING;
		packet->callback(packet, &ctx->ohci->card, packet->ack);
	}
1161 1162 1163

	offset =
		((unsigned long long)
1164
		 HEADER_GET_OFFSET_HIGH(packet->header[1]) << 32) |
1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184
		packet->header[2];
	csr = offset - CSR_REGISTER_BASE;

	/* Handle config rom reads. */
	if (csr >= CSR_CONFIG_ROM && csr < CSR_CONFIG_ROM_END)
		handle_local_rom(ctx->ohci, packet, csr);
	else switch (csr) {
	case CSR_BUS_MANAGER_ID:
	case CSR_BANDWIDTH_AVAILABLE:
	case CSR_CHANNELS_AVAILABLE_HI:
	case CSR_CHANNELS_AVAILABLE_LO:
		handle_local_lock(ctx->ohci, packet, csr);
		break;
	default:
		if (ctx == &ctx->ohci->at_request_ctx)
			fw_core_handle_request(&ctx->ohci->card, packet);
		else
			fw_core_handle_response(&ctx->ohci->card, packet);
		break;
	}
1185 1186 1187 1188 1189

	if (ctx == &ctx->ohci->at_response_ctx) {
		packet->ack = ACK_COMPLETE;
		packet->callback(packet, &ctx->ohci->card, packet->ack);
	}
1190
}
1191

1192
static void
1193
at_context_transmit(struct context *ctx, struct fw_packet *packet)
1194 1195
{
	unsigned long flags;
1196
	int retval;
1197 1198 1199

	spin_lock_irqsave(&ctx->ohci->lock, flags);

1200
	if (HEADER_GET_DESTINATION(packet->header[0]) == ctx->ohci->node_id &&
1201
	    ctx->ohci->generation == packet->generation) {
1202 1203 1204
		spin_unlock_irqrestore(&ctx->ohci->lock, flags);
		handle_local_request(ctx, packet);
		return;
1205
	}
1206

1207
	retval = at_context_queue_packet(ctx, packet);
1208 1209
	spin_unlock_irqrestore(&ctx->ohci->lock, flags);

1210 1211
	if (retval < 0)
		packet->callback(packet, &ctx->ohci->card, packet->ack);
1212

1213 1214 1215 1216 1217
}

static void bus_reset_tasklet(unsigned long data)
{
	struct fw_ohci *ohci = (struct fw_ohci *)data;
1218
	int self_id_count, i, j, reg;
1219 1220
	int generation, new_generation;
	unsigned long flags;
1221 1222
	void *free_rom = NULL;
	dma_addr_t free_rom_bus = 0;
1223 1224 1225

	reg = reg_read(ohci, OHCI1394_NodeID);
	if (!(reg & OHCI1394_NodeID_idValid)) {
1226
		fw_notify("node ID not valid, new bus reset in progress\n");
1227 1228
		return;
	}
1229 1230 1231 1232 1233 1234
	if ((reg & OHCI1394_NodeID_nodeNumber) == 63) {
		fw_notify("malconfigured bus\n");
		return;
	}
	ohci->node_id = reg & (OHCI1394_NodeID_busNumber |
			       OHCI1394_NodeID_nodeNumber);
1235

1236 1237 1238 1239 1240
	reg = reg_read(ohci, OHCI1394_SelfIDCount);
	if (reg & OHCI1394_SelfIDCount_selfIDError) {
		fw_notify("inconsistent self IDs\n");
		return;
	}
1241 1242
	/*
	 * The count in the SelfIDCount register is the number of
1243 1244
	 * bytes in the self ID receive buffer.  Since we also receive
	 * the inverted quadlets and a header quadlet, we shift one
1245 1246
	 * bit extra to get the actual number of self IDs.
	 */
1247
	self_id_count = (reg >> 3) & 0x3ff;
1248 1249 1250 1251
	if (self_id_count == 0) {
		fw_notify("inconsistent self IDs\n");
		return;
	}
1252
	generation = (cond_le32_to_cpu(ohci->self_id_cpu[0]) >> 16) & 0xff;
1253
	rmb();
1254 1255

	for (i = 1, j = 0; j < self_id_count; i += 2, j++) {
1256 1257 1258 1259
		if (ohci->self_id_cpu[i] != ~ohci->self_id_cpu[i + 1]) {
			fw_notify("inconsistent self IDs\n");
			return;
		}
1260 1261
		ohci->self_id_buffer[j] =
				cond_le32_to_cpu(ohci->self_id_cpu[i]);
1262
	}
1263
	rmb();
1264

1265 1266
	/*
	 * Check the consistency of the self IDs we just read.  The
1267 1268 1269 1270 1271 1272 1273 1274 1275
	 * problem we face is that a new bus reset can start while we
	 * read out the self IDs from the DMA buffer. If this happens,
	 * the DMA buffer will be overwritten with new self IDs and we
	 * will read out inconsistent data.  The OHCI specification
	 * (section 11.2) recommends a technique similar to
	 * linux/seqlock.h, where we remember the generation of the
	 * self IDs in the buffer before reading them out and compare
	 * it to the current generation after reading them out.  If
	 * the two generations match we know we have a consistent set
1276 1277
	 * of self IDs.
	 */
1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289

	new_generation = (reg_read(ohci, OHCI1394_SelfIDCount) >> 16) & 0xff;
	if (new_generation != generation) {
		fw_notify("recursive bus reset detected, "
			  "discarding self ids\n");
		return;
	}

	/* FIXME: Document how the locking works. */
	spin_lock_irqsave(&ohci->lock, flags);

	ohci->generation = generation;
1290 1291
	context_stop(&ohci->at_request_ctx);
	context_stop(&ohci->at_response_ctx);
1292 1293
	reg_write(ohci, OHCI1394_IntEventClear, OHCI1394_busReset);

1294 1295 1296
	if (ohci->bus_reset_packet_quirk)
		ohci->request_generation = generation;

1297 1298
	/*
	 * This next bit is unrelated to the AT context stuff but we
1299 1300 1301 1302
	 * have to do it under the spinlock also.  If a new config rom
	 * was set up before this reset, the old one is now no longer
	 * in use and we can free it. Update the config rom pointers
	 * to point to the current config rom and clear the
1303 1304
	 * next_config_rom pointer so a new udpate can take place.
	 */
1305 1306

	if (ohci->next_config_rom != NULL) {
1307 1308 1309 1310
		if (ohci->next_config_rom != ohci->config_rom) {
			free_rom      = ohci->config_rom;
			free_rom_bus  = ohci->config_rom_bus;
		}
1311 1312 1313 1314
		ohci->config_rom      = ohci->next_config_rom;
		ohci->config_rom_bus  = ohci->next_config_rom_bus;
		ohci->next_config_rom = NULL;

1315 1316
		/*
		 * Restore config_rom image and manually update
1317 1318
		 * config_rom registers.  Writing the header quadlet
		 * will indicate that the config rom is ready, so we
1319 1320
		 * do that last.
		 */
1321 1322 1323 1324 1325 1326
		reg_write(ohci, OHCI1394_BusOptions,
			  be32_to_cpu(ohci->config_rom[2]));
		ohci->config_rom[0] = cpu_to_be32(ohci->next_header);
		reg_write(ohci, OHCI1394_ConfigROMhdr, ohci->next_header);
	}

1327 1328 1329 1330 1331
#ifdef CONFIG_FIREWIRE_OHCI_REMOTE_DMA
	reg_write(ohci, OHCI1394_PhyReqFilterHiSet, ~0);
	reg_write(ohci, OHCI1394_PhyReqFilterLoSet, ~0);
#endif

1332 1333
	spin_unlock_irqrestore(&ohci->lock, flags);

1334 1335 1336 1337
	if (free_rom)
		dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
				  free_rom, free_rom_bus);

1338 1339
	log_selfids(ohci->node_id, generation,
		    self_id_count, ohci->self_id_buffer);
1340

1341
	fw_core_handle_bus_reset(&ohci->card, ohci->node_id, generation,
1342 1343 1344 1345 1346 1347
				 self_id_count, ohci->self_id_buffer);
}

static irqreturn_t irq_handler(int irq, void *data)
{
	struct fw_ohci *ohci = data;
1348
	u32 event, iso_event, cycle_time;
1349 1350 1351 1352
	int i;

	event = reg_read(ohci, OHCI1394_IntEventClear);

1353
	if (!event || !~event)
1354 1355
		return IRQ_NONE;

1356 1357
	/* busReset must not be cleared yet, see OHCI 1.1 clause 7.2.3.2 */
	reg_write(ohci, OHCI1394_IntEventClear, event & ~OHCI1394_busReset);
1358
	log_irqs(event);
1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374

	if (event & OHCI1394_selfIDComplete)
		tasklet_schedule(&ohci->bus_reset_tasklet);

	if (event & OHCI1394_RQPkt)
		tasklet_schedule(&ohci->ar_request_ctx.tasklet);

	if (event & OHCI1394_RSPkt)
		tasklet_schedule(&ohci->ar_response_ctx.tasklet);

	if (event & OHCI1394_reqTxComplete)
		tasklet_schedule(&ohci->at_request_ctx.tasklet);

	if (event & OHCI1394_respTxComplete)
		tasklet_schedule(&ohci->at_response_ctx.tasklet);

1375
	iso_event = reg_read(ohci, OHCI1394_IsoRecvIntEventClear);
1376 1377 1378 1379
	reg_write(ohci, OHCI1394_IsoRecvIntEventClear, iso_event);

	while (iso_event) {
		i = ffs(iso_event) - 1;
1380
		tasklet_schedule(&ohci->ir_context_list[i].context.tasklet);
1381 1382 1383
		iso_event &= ~(1 << i);
	}

1384
	iso_event = reg_read(ohci, OHCI1394_IsoXmitIntEventClear);
1385 1386 1387 1388
	reg_write(ohci, OHCI1394_IsoXmitIntEventClear, iso_event);

	while (iso_event) {
		i = ffs(iso_event) - 1;
1389
		tasklet_schedule(&ohci->it_context_list[i].context.tasklet);
1390 1391 1392
		iso_event &= ~(1 << i);
	}

1393 1394 1395 1396
	if (unlikely(event & OHCI1394_regAccessFail))
		fw_error("Register access failure - "
			 "please notify linux1394-devel@lists.sf.net\n");

1397 1398 1399
	if (unlikely(event & OHCI1394_postedWriteErr))
		fw_error("PCI posted write error\n");

1400 1401 1402 1403 1404 1405 1406
	if (unlikely(event & OHCI1394_cycleTooLong)) {
		if (printk_ratelimit())
			fw_notify("isochronous cycle too long\n");
		reg_write(ohci, OHCI1394_LinkControlSet,
			  OHCI1394_LinkControl_cycleMaster);
	}

1407 1408 1409 1410 1411 1412
	if (event & OHCI1394_cycle64Seconds) {
		cycle_time = reg_read(ohci, OHCI1394_IsochronousCycleTimer);
		if ((cycle_time & 0x80000000) == 0)
			ohci->bus_seconds++;
	}

1413 1414 1415
	return IRQ_HANDLED;
}

1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431
static int software_reset(struct fw_ohci *ohci)
{
	int i;

	reg_write(ohci, OHCI1394_HCControlSet, OHCI1394_HCControl_softReset);

	for (i = 0; i < OHCI_LOOP_COUNT; i++) {
		if ((reg_read(ohci, OHCI1394_HCControlSet) &
		     OHCI1394_HCControl_softReset) == 0)
			return 0;
		msleep(1);
	}

	return -EBUSY;
}

1432 1433 1434 1435
static int ohci_enable(struct fw_card *card, u32 *config_rom, size_t length)
{
	struct fw_ohci *ohci = fw_ohci(card);
	struct pci_dev *dev = to_pci_dev(card->device);
1436 1437
	u32 lps;
	int i;
1438

1439 1440 1441 1442 1443 1444 1445 1446 1447 1448
	if (software_reset(ohci)) {
		fw_error("Failed to reset ohci card.\n");
		return -EBUSY;
	}

	/*
	 * Now enable LPS, which we need in order to start accessing
	 * most of the registers.  In fact, on some cards (ALI M5251),
	 * accessing registers in the SClk domain without LPS enabled
	 * will lock up the machine.  Wait 50msec to make sure we have
1449 1450
	 * full link enabled.  However, with some cards (well, at least
	 * a JMicron PCIe card), we have to try again sometimes.
1451 1452 1453 1454 1455
	 */
	reg_write(ohci, OHCI1394_HCControlSet,
		  OHCI1394_HCControl_LPS |
		  OHCI1394_HCControl_postedWriteEnable);
	flush_writes(ohci);
1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466

	for (lps = 0, i = 0; !lps && i < 3; i++) {
		msleep(50);
		lps = reg_read(ohci, OHCI1394_HCControlSet) &
		      OHCI1394_HCControl_LPS;
	}

	if (!lps) {
		fw_error("Failed to set Link Power Status\n");
		return -EIO;
	}
1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492

	reg_write(ohci, OHCI1394_HCControlClear,
		  OHCI1394_HCControl_noByteSwapData);

	reg_write(ohci, OHCI1394_LinkControlSet,
		  OHCI1394_LinkControl_rcvSelfID |
		  OHCI1394_LinkControl_cycleTimerEnable |
		  OHCI1394_LinkControl_cycleMaster);

	reg_write(ohci, OHCI1394_ATRetries,
		  OHCI1394_MAX_AT_REQ_RETRIES |
		  (OHCI1394_MAX_AT_RESP_RETRIES << 4) |
		  (OHCI1394_MAX_PHYS_RESP_RETRIES << 8));

	ar_context_run(&ohci->ar_request_ctx);
	ar_context_run(&ohci->ar_response_ctx);

	reg_write(ohci, OHCI1394_SelfIDBuffer, ohci->self_id_bus);
	reg_write(ohci, OHCI1394_PhyUpperBound, 0x00010000);
	reg_write(ohci, OHCI1394_IntEventClear, ~0);
	reg_write(ohci, OHCI1394_IntMaskClear, ~0);
	reg_write(ohci, OHCI1394_IntMaskSet,
		  OHCI1394_selfIDComplete |
		  OHCI1394_RQPkt | OHCI1394_RSPkt |
		  OHCI1394_reqTxComplete | OHCI1394_respTxComplete |
		  OHCI1394_isochRx | OHCI1394_isochTx |
1493
		  OHCI1394_postedWriteErr | OHCI1394_cycleTooLong |
1494 1495
		  OHCI1394_cycle64Seconds | OHCI1394_regAccessFail |
		  OHCI1394_masterIntEnable);
1496 1497
	if (param_debug & OHCI_PARAM_DEBUG_BUSRESETS)
		reg_write(ohci, OHCI1394_IntMaskSet, OHCI1394_busReset);
1498 1499 1500 1501 1502 1503

	/* Activate link_on bit and contender bit in our self ID packets.*/
	if (ohci_update_phy_reg(card, 4, 0,
				PHY_LINK_ACTIVE | PHY_CONTENDER) < 0)
		return -EIO;

1504 1505
	/*
	 * When the link is not yet enabled, the atomic config rom
1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522
	 * update mechanism described below in ohci_set_config_rom()
	 * is not active.  We have to update ConfigRomHeader and
	 * BusOptions manually, and the write to ConfigROMmap takes
	 * effect immediately.  We tie this to the enabling of the
	 * link, so we have a valid config rom before enabling - the
	 * OHCI requires that ConfigROMhdr and BusOptions have valid
	 * values before enabling.
	 *
	 * However, when the ConfigROMmap is written, some controllers
	 * always read back quadlets 0 and 2 from the config rom to
	 * the ConfigRomHeader and BusOptions registers on bus reset.
	 * They shouldn't do that in this initial case where the link
	 * isn't enabled.  This means we have to use the same
	 * workaround here, setting the bus header to 0 and then write
	 * the right values in the bus reset tasklet.
	 */

1523 1524 1525 1526 1527 1528 1529
	if (config_rom) {
		ohci->next_config_rom =
			dma_alloc_coherent(ohci->card.device, CONFIG_ROM_SIZE,
					   &ohci->next_config_rom_bus,
					   GFP_KERNEL);
		if (ohci->next_config_rom == NULL)
			return -ENOMEM;
1530

1531 1532 1533 1534 1535 1536 1537 1538 1539 1540
		memset(ohci->next_config_rom, 0, CONFIG_ROM_SIZE);
		fw_memcpy_to_be32(ohci->next_config_rom, config_rom, length * 4);
	} else {
		/*
		 * In the suspend case, config_rom is NULL, which
		 * means that we just reuse the old config rom.
		 */
		ohci->next_config_rom = ohci->config_rom;
		ohci->next_config_rom_bus = ohci->config_rom_bus;
	}
1541

1542
	ohci->next_header = be32_to_cpu(ohci->next_config_rom[0]);
1543 1544
	ohci->next_config_rom[0] = 0;
	reg_write(ohci, OHCI1394_ConfigROMhdr, 0);
1545 1546
	reg_write(ohci, OHCI1394_BusOptions,
		  be32_to_cpu(ohci->next_config_rom[2]));
1547 1548 1549 1550 1551
	reg_write(ohci, OHCI1394_ConfigROMmap, ohci->next_config_rom_bus);

	reg_write(ohci, OHCI1394_AsReqFilterHiSet, 0x80000000);

	if (request_irq(dev->irq, irq_handler,
1552
			IRQF_SHARED, ohci_driver_name, ohci)) {
1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564
		fw_error("Failed to allocate shared interrupt %d.\n",
			 dev->irq);
		dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
				  ohci->config_rom, ohci->config_rom_bus);
		return -EIO;
	}

	reg_write(ohci, OHCI1394_HCControlSet,
		  OHCI1394_HCControl_linkEnable |
		  OHCI1394_HCControl_BIBimageValid);
	flush_writes(ohci);

1565 1566 1567 1568
	/*
	 * We are ready to go, initiate bus reset to finish the
	 * initialization.
	 */
1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579

	fw_core_initiate_bus_reset(&ohci->card, 1);

	return 0;
}

static int
ohci_set_config_rom(struct fw_card *card, u32 *config_rom, size_t length)
{
	struct fw_ohci *ohci;
	unsigned long flags;
1580
	int retval = -EBUSY;
1581
	__be32 *next_config_rom;
1582
	dma_addr_t uninitialized_var(next_config_rom_bus);
1583 1584 1585

	ohci = fw_ohci(card);

1586 1587
	/*
	 * When the OHCI controller is enabled, the config rom update
1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633
	 * mechanism is a bit tricky, but easy enough to use.  See
	 * section 5.5.6 in the OHCI specification.
	 *
	 * The OHCI controller caches the new config rom address in a
	 * shadow register (ConfigROMmapNext) and needs a bus reset
	 * for the changes to take place.  When the bus reset is
	 * detected, the controller loads the new values for the
	 * ConfigRomHeader and BusOptions registers from the specified
	 * config rom and loads ConfigROMmap from the ConfigROMmapNext
	 * shadow register. All automatically and atomically.
	 *
	 * Now, there's a twist to this story.  The automatic load of
	 * ConfigRomHeader and BusOptions doesn't honor the
	 * noByteSwapData bit, so with a be32 config rom, the
	 * controller will load be32 values in to these registers
	 * during the atomic update, even on litte endian
	 * architectures.  The workaround we use is to put a 0 in the
	 * header quadlet; 0 is endian agnostic and means that the
	 * config rom isn't ready yet.  In the bus reset tasklet we
	 * then set up the real values for the two registers.
	 *
	 * We use ohci->lock to avoid racing with the code that sets
	 * ohci->next_config_rom to NULL (see bus_reset_tasklet).
	 */

	next_config_rom =
		dma_alloc_coherent(ohci->card.device, CONFIG_ROM_SIZE,
				   &next_config_rom_bus, GFP_KERNEL);
	if (next_config_rom == NULL)
		return -ENOMEM;

	spin_lock_irqsave(&ohci->lock, flags);

	if (ohci->next_config_rom == NULL) {
		ohci->next_config_rom = next_config_rom;
		ohci->next_config_rom_bus = next_config_rom_bus;

		memset(ohci->next_config_rom, 0, CONFIG_ROM_SIZE);
		fw_memcpy_to_be32(ohci->next_config_rom, config_rom,
				  length * 4);

		ohci->next_header = config_rom[0];
		ohci->next_config_rom[0] = 0;

		reg_write(ohci, OHCI1394_ConfigROMmap,
			  ohci->next_config_rom_bus);
1634
		retval = 0;
1635 1636 1637 1638
	}

	spin_unlock_irqrestore(&ohci->lock, flags);

1639 1640
	/*
	 * Now initiate a bus reset to have the changes take
1641 1642 1643
	 * effect. We clean up the old config rom memory and DMA
	 * mappings in the bus reset tasklet, since the OHCI
	 * controller could need to access it before the bus reset
1644 1645
	 * takes effect.
	 */
1646 1647
	if (retval == 0)
		fw_core_initiate_bus_reset(&ohci->card, 1);
1648 1649 1650
	else
		dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
				  next_config_rom, next_config_rom_bus);
1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668

	return retval;
}

static void ohci_send_request(struct fw_card *card, struct fw_packet *packet)
{
	struct fw_ohci *ohci = fw_ohci(card);

	at_context_transmit(&ohci->at_request_ctx, packet);
}

static void ohci_send_response(struct fw_card *card, struct fw_packet *packet)
{
	struct fw_ohci *ohci = fw_ohci(card);

	at_context_transmit(&ohci->at_response_ctx, packet);
}

1669 1670 1671
static int ohci_cancel_packet(struct fw_card *card, struct fw_packet *packet)
{
	struct fw_ohci *ohci = fw_ohci(card);
1672 1673 1674
	struct context *ctx = &ohci->at_request_ctx;
	struct driver_data *driver_data = packet->driver_data;
	int retval = -ENOENT;
1675

1676
	tasklet_disable(&ctx->tasklet);
1677

1678 1679
	if (packet->ack != 0)
		goto out;
1680

1681
	log_ar_at_event('T', packet->speed, packet->header, 0x20);
1682 1683 1684 1685
	driver_data->packet = NULL;
	packet->ack = RCODE_CANCELLED;
	packet->callback(packet, &ohci->card, packet->ack);
	retval = 0;
1686

1687 1688
 out:
	tasklet_enable(&ctx->tasklet);
1689

1690
	return retval;
1691 1692
}

1693 1694 1695
static int
ohci_enable_phys_dma(struct fw_card *card, int node_id, int generation)
{
1696 1697 1698
#ifdef CONFIG_FIREWIRE_OHCI_REMOTE_DMA
	return 0;
#else
1699 1700
	struct fw_ohci *ohci = fw_ohci(card);
	unsigned long flags;
1701
	int n, retval = 0;
1702

1703 1704 1705 1706
	/*
	 * FIXME:  Make sure this bitmask is cleared when we clear the busReset
	 * interrupt bit.  Clear physReqResourceAllBuses on bus reset.
	 */
1707 1708 1709 1710 1711 1712 1713 1714

	spin_lock_irqsave(&ohci->lock, flags);

	if (ohci->generation != generation) {
		retval = -ESTALE;
		goto out;
	}

1715 1716 1717 1718
	/*
	 * Note, if the node ID contains a non-local bus ID, physical DMA is
	 * enabled for _all_ nodes on remote buses.
	 */
1719 1720 1721 1722 1723 1724 1725

	n = (node_id & 0xffc0) == LOCAL_BUS ? node_id & 0x3f : 63;
	if (n < 32)
		reg_write(ohci, OHCI1394_PhyReqFilterLoSet, 1 << n);
	else
		reg_write(ohci, OHCI1394_PhyReqFilterHiSet, 1 << (n - 32));

1726 1727
	flush_writes(ohci);
 out:
1728
	spin_unlock_irqrestore(&ohci->lock, flags);
1729
	return retval;
1730
#endif /* CONFIG_FIREWIRE_OHCI_REMOTE_DMA */
1731
}
S
Stefan Richter 已提交
1732

1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745
static u64
ohci_get_bus_time(struct fw_card *card)
{
	struct fw_ohci *ohci = fw_ohci(card);
	u32 cycle_time;
	u64 bus_time;

	cycle_time = reg_read(ohci, OHCI1394_IsochronousCycleTimer);
	bus_time = ((u64) ohci->bus_seconds << 32) | cycle_time;

	return bus_time;
}

1746 1747 1748
static int handle_ir_dualbuffer_packet(struct context *context,
				       struct descriptor *d,
				       struct descriptor *last)
1749
{
1750 1751 1752
	struct iso_context *ctx =
		container_of(context, struct iso_context, context);
	struct db_descriptor *db = (struct db_descriptor *) d;
1753
	__le32 *ir_header;
1754
	size_t header_length;
1755 1756
	void *p, *end;
	int i;
1757

S
Stefan Richter 已提交
1758
	if (db->first_res_count != 0 && db->second_res_count != 0) {
1759 1760 1761 1762 1763 1764
		if (ctx->excess_bytes <= le16_to_cpu(db->second_req_count)) {
			/* This descriptor isn't done yet, stop iteration. */
			return 0;
		}
		ctx->excess_bytes -= le16_to_cpu(db->second_req_count);
	}
1765

1766 1767 1768 1769 1770 1771 1772
	header_length = le16_to_cpu(db->first_req_count) -
		le16_to_cpu(db->first_res_count);

	i = ctx->header_length;
	p = db + 1;
	end = p + header_length;
	while (p < end && i + ctx->base.header_size <= PAGE_SIZE) {
1773 1774
		/*
		 * The iso header is byteswapped to little endian by
1775 1776 1777
		 * the controller, but the remaining header quadlets
		 * are big endian.  We want to present all the headers
		 * as big endian, so we have to swap the first
1778 1779
		 * quadlet.
		 */
1780 1781
		*(u32 *) (ctx->header + i) = __swab32(*(u32 *) (p + 4));
		memcpy(ctx->header + i + 4, p + 8, ctx->base.header_size - 4);
1782
		i += ctx->base.header_size;
1783
		ctx->excess_bytes +=
S
Stefan Richter 已提交
1784
			(le32_to_cpu(*(__le32 *)(p + 4)) >> 16) & 0xffff;
1785 1786 1787
		p += ctx->base.header_size + 4;
	}
	ctx->header_length = i;
1788

1789 1790 1791
	ctx->excess_bytes -= le16_to_cpu(db->second_req_count) -
		le16_to_cpu(db->second_res_count);

1792
	if (le16_to_cpu(db->control) & DESCRIPTOR_IRQ_ALWAYS) {
1793 1794 1795
		ir_header = (__le32 *) (db + 1);
		ctx->base.callback(&ctx->base,
				   le32_to_cpu(ir_header[0]) & 0xffff,
1796
				   ctx->header_length, ctx->header,
1797
				   ctx->base.callback_data);
1798 1799
		ctx->header_length = 0;
	}
1800

1801
	return 1;
1802 1803
}

1804 1805 1806 1807 1808 1809
static int handle_ir_packet_per_buffer(struct context *context,
				       struct descriptor *d,
				       struct descriptor *last)
{
	struct iso_context *ctx =
		container_of(context, struct iso_context, context);
1810
	struct descriptor *pd;
1811
	__le32 *ir_header;
1812 1813
	void *p;
	int i;
1814

1815 1816 1817 1818 1819
	for (pd = d; pd <= last; pd++) {
		if (pd->transfer_status)
			break;
	}
	if (pd > last)
1820 1821 1822 1823
		/* Descriptor(s) not done yet, stop iteration */
		return 0;

	i   = ctx->header_length;
1824
	p   = last + 1;
1825

1826 1827
	if (ctx->base.header_size > 0 &&
			i + ctx->base.header_size <= PAGE_SIZE) {
1828 1829 1830 1831 1832 1833 1834 1835
		/*
		 * The iso header is byteswapped to little endian by
		 * the controller, but the remaining header quadlets
		 * are big endian.  We want to present all the headers
		 * as big endian, so we have to swap the first quadlet.
		 */
		*(u32 *) (ctx->header + i) = __swab32(*(u32 *) (p + 4));
		memcpy(ctx->header + i + 4, p + 8, ctx->base.header_size - 4);
1836
		ctx->header_length += ctx->base.header_size;
1837 1838
	}

1839 1840
	if (le16_to_cpu(last->control) & DESCRIPTOR_IRQ_ALWAYS) {
		ir_header = (__le32 *) p;
1841 1842 1843 1844 1845 1846 1847 1848 1849 1850
		ctx->base.callback(&ctx->base,
				   le32_to_cpu(ir_header[0]) & 0xffff,
				   ctx->header_length, ctx->header,
				   ctx->base.callback_data);
		ctx->header_length = 0;
	}

	return 1;
}

1851 1852 1853
static int handle_it_packet(struct context *context,
			    struct descriptor *d,
			    struct descriptor *last)
1854
{
1855 1856
	struct iso_context *ctx =
		container_of(context, struct iso_context, context);
S
Stefan Richter 已提交
1857

1858 1859 1860 1861
	if (last->transfer_status == 0)
		/* This descriptor isn't done yet, stop iteration. */
		return 0;

1862
	if (le16_to_cpu(last->control) & DESCRIPTOR_IRQ_ALWAYS)
1863 1864
		ctx->base.callback(&ctx->base, le16_to_cpu(last->res_count),
				   0, NULL, ctx->base.callback_data);
1865 1866

	return 1;
1867 1868
}

1869
static struct fw_iso_context *
1870
ohci_allocate_iso_context(struct fw_card *card, int type, size_t header_size)
1871 1872 1873
{
	struct fw_ohci *ohci = fw_ohci(card);
	struct iso_context *ctx, *list;
1874
	descriptor_callback_t callback;
1875
	u32 *mask, regs;
1876
	unsigned long flags;
1877
	int index, retval = -ENOMEM;
1878 1879 1880 1881

	if (type == FW_ISO_CONTEXT_TRANSMIT) {
		mask = &ohci->it_context_mask;
		list = ohci->it_context_list;
1882
		callback = handle_it_packet;
1883
	} else {
S
Stefan Richter 已提交
1884 1885
		mask = &ohci->ir_context_mask;
		list = ohci->ir_context_list;
1886 1887 1888 1889
		if (ohci->version >= OHCI_VERSION_1_1)
			callback = handle_ir_dualbuffer_packet;
		else
			callback = handle_ir_packet_per_buffer;
1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900
	}

	spin_lock_irqsave(&ohci->lock, flags);
	index = ffs(*mask) - 1;
	if (index >= 0)
		*mask &= ~(1 << index);
	spin_unlock_irqrestore(&ohci->lock, flags);

	if (index < 0)
		return ERR_PTR(-EBUSY);

S
Stefan Richter 已提交
1901 1902 1903 1904 1905
	if (type == FW_ISO_CONTEXT_TRANSMIT)
		regs = OHCI1394_IsoXmitContextBase(index);
	else
		regs = OHCI1394_IsoRcvContextBase(index);

1906
	ctx = &list[index];
1907
	memset(ctx, 0, sizeof(*ctx));
1908 1909 1910 1911 1912
	ctx->header_length = 0;
	ctx->header = (void *) __get_free_page(GFP_KERNEL);
	if (ctx->header == NULL)
		goto out;

1913
	retval = context_init(&ctx->context, ohci, regs, callback);
1914 1915
	if (retval < 0)
		goto out_with_header;
1916 1917

	return &ctx->base;
1918 1919 1920 1921 1922 1923 1924 1925 1926

 out_with_header:
	free_page((unsigned long)ctx->header);
 out:
	spin_lock_irqsave(&ohci->lock, flags);
	*mask |= 1 << index;
	spin_unlock_irqrestore(&ohci->lock, flags);

	return ERR_PTR(retval);
1927 1928
}

1929 1930
static int ohci_start_iso(struct fw_iso_context *base,
			  s32 cycle, u32 sync, u32 tags)
1931
{
S
Stefan Richter 已提交
1932
	struct iso_context *ctx = container_of(base, struct iso_context, base);
1933
	struct fw_ohci *ohci = ctx->context.ohci;
1934
	u32 control, match;
1935 1936
	int index;

1937 1938
	if (ctx->base.type == FW_ISO_CONTEXT_TRANSMIT) {
		index = ctx - ohci->it_context_list;
1939 1940 1941
		match = 0;
		if (cycle >= 0)
			match = IT_CONTEXT_CYCLE_MATCH_ENABLE |
1942
				(cycle & 0x7fff) << 16;
1943

1944 1945
		reg_write(ohci, OHCI1394_IsoXmitIntEventClear, 1 << index);
		reg_write(ohci, OHCI1394_IsoXmitIntMaskSet, 1 << index);
1946
		context_run(&ctx->context, match);
1947 1948
	} else {
		index = ctx - ohci->ir_context_list;
1949 1950 1951
		control = IR_CONTEXT_ISOCH_HEADER;
		if (ohci->version >= OHCI_VERSION_1_1)
			control |= IR_CONTEXT_DUAL_BUFFER_MODE;
1952 1953 1954 1955 1956
		match = (tags << 28) | (sync << 8) | ctx->base.channel;
		if (cycle >= 0) {
			match |= (cycle & 0x07fff) << 12;
			control |= IR_CONTEXT_CYCLE_MATCH_ENABLE;
		}
1957

1958 1959
		reg_write(ohci, OHCI1394_IsoRecvIntEventClear, 1 << index);
		reg_write(ohci, OHCI1394_IsoRecvIntMaskSet, 1 << index);
1960
		reg_write(ohci, CONTEXT_MATCH(ctx->context.regs), match);
1961
		context_run(&ctx->context, control);
1962
	}
1963 1964 1965 1966

	return 0;
}

1967 1968 1969
static int ohci_stop_iso(struct fw_iso_context *base)
{
	struct fw_ohci *ohci = fw_ohci(base->card);
S
Stefan Richter 已提交
1970
	struct iso_context *ctx = container_of(base, struct iso_context, base);
1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985
	int index;

	if (ctx->base.type == FW_ISO_CONTEXT_TRANSMIT) {
		index = ctx - ohci->it_context_list;
		reg_write(ohci, OHCI1394_IsoXmitIntMaskClear, 1 << index);
	} else {
		index = ctx - ohci->ir_context_list;
		reg_write(ohci, OHCI1394_IsoRecvIntMaskClear, 1 << index);
	}
	flush_writes(ohci);
	context_stop(&ctx->context);

	return 0;
}

1986 1987 1988
static void ohci_free_iso_context(struct fw_iso_context *base)
{
	struct fw_ohci *ohci = fw_ohci(base->card);
S
Stefan Richter 已提交
1989
	struct iso_context *ctx = container_of(base, struct iso_context, base);
1990 1991 1992
	unsigned long flags;
	int index;

1993 1994
	ohci_stop_iso(base);
	context_release(&ctx->context);
1995
	free_page((unsigned long)ctx->header);
1996

1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010
	spin_lock_irqsave(&ohci->lock, flags);

	if (ctx->base.type == FW_ISO_CONTEXT_TRANSMIT) {
		index = ctx - ohci->it_context_list;
		ohci->it_context_mask |= 1 << index;
	} else {
		index = ctx - ohci->ir_context_list;
		ohci->ir_context_mask |= 1 << index;
	}

	spin_unlock_irqrestore(&ohci->lock, flags);
}

static int
2011 2012 2013 2014
ohci_queue_iso_transmit(struct fw_iso_context *base,
			struct fw_iso_packet *packet,
			struct fw_iso_buffer *buffer,
			unsigned long payload)
2015
{
S
Stefan Richter 已提交
2016
	struct iso_context *ctx = container_of(base, struct iso_context, base);
2017
	struct descriptor *d, *last, *pd;
2018 2019
	struct fw_iso_packet *p;
	__le32 *header;
2020
	dma_addr_t d_bus, page_bus;
2021 2022
	u32 z, header_z, payload_z, irq;
	u32 payload_index, payload_end_index, next_page_index;
2023
	int page, end_page, i, length, offset;
2024

2025 2026 2027 2028
	/*
	 * FIXME: Cycle lost behavior should be configurable: lose
	 * packet, retransmit or terminate..
	 */
2029 2030

	p = packet;
2031
	payload_index = payload;
2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049

	if (p->skip)
		z = 1;
	else
		z = 2;
	if (p->header_length > 0)
		z++;

	/* Determine the first page the payload isn't contained in. */
	end_page = PAGE_ALIGN(payload_index + p->payload_length) >> PAGE_SHIFT;
	if (p->payload_length > 0)
		payload_z = end_page - (payload_index >> PAGE_SHIFT);
	else
		payload_z = 0;

	z += payload_z;

	/* Get header size in number of descriptors. */
2050
	header_z = DIV_ROUND_UP(p->header_length, sizeof(*d));
2051

2052 2053 2054
	d = context_get_descriptors(&ctx->context, z + header_z, &d_bus);
	if (d == NULL)
		return -ENOMEM;
2055 2056

	if (!p->skip) {
2057
		d[0].control   = cpu_to_le16(DESCRIPTOR_KEY_IMMEDIATE);
2058 2059 2060
		d[0].req_count = cpu_to_le16(8);

		header = (__le32 *) &d[1];
2061 2062 2063 2064 2065
		header[0] = cpu_to_le32(IT_HEADER_SY(p->sy) |
					IT_HEADER_TAG(p->tag) |
					IT_HEADER_TCODE(TCODE_STREAM_DATA) |
					IT_HEADER_CHANNEL(ctx->base.channel) |
					IT_HEADER_SPEED(ctx->base.speed));
2066
		header[1] =
2067
			cpu_to_le32(IT_HEADER_DATA_LENGTH(p->header_length +
2068 2069 2070 2071 2072
							  p->payload_length));
	}

	if (p->header_length > 0) {
		d[2].req_count    = cpu_to_le16(p->header_length);
2073
		d[2].data_address = cpu_to_le32(d_bus + z * sizeof(*d));
2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085
		memcpy(&d[z], p->header, p->header_length);
	}

	pd = d + z - payload_z;
	payload_end_index = payload_index + p->payload_length;
	for (i = 0; i < payload_z; i++) {
		page               = payload_index >> PAGE_SHIFT;
		offset             = payload_index & ~PAGE_MASK;
		next_page_index    = (page + 1) << PAGE_SHIFT;
		length             =
			min(next_page_index, payload_end_index) - payload_index;
		pd[i].req_count    = cpu_to_le16(length);
2086 2087 2088

		page_bus = page_private(buffer->pages[page]);
		pd[i].data_address = cpu_to_le32(page_bus + offset);
2089 2090 2091 2092 2093

		payload_index += length;
	}

	if (p->interrupt)
2094
		irq = DESCRIPTOR_IRQ_ALWAYS;
2095
	else
2096
		irq = DESCRIPTOR_NO_IRQ;
2097

2098
	last = z == 2 ? d : d + z - 1;
2099 2100 2101
	last->control |= cpu_to_le16(DESCRIPTOR_OUTPUT_LAST |
				     DESCRIPTOR_STATUS |
				     DESCRIPTOR_BRANCH_ALWAYS |
2102
				     irq);
2103

2104
	context_append(&ctx->context, d, z, header_z);
2105 2106 2107

	return 0;
}
S
Stefan Richter 已提交
2108

2109
static int
2110 2111 2112 2113
ohci_queue_iso_receive_dualbuffer(struct fw_iso_context *base,
				  struct fw_iso_packet *packet,
				  struct fw_iso_buffer *buffer,
				  unsigned long payload)
2114 2115 2116 2117 2118 2119 2120
{
	struct iso_context *ctx = container_of(base, struct iso_context, base);
	struct db_descriptor *db = NULL;
	struct descriptor *d;
	struct fw_iso_packet *p;
	dma_addr_t d_bus, page_bus;
	u32 z, header_z, length, rest;
2121
	int page, offset, packet_count, header_size;
S
Stefan Richter 已提交
2122

2123 2124 2125 2126
	/*
	 * FIXME: Cycle lost behavior should be configurable: lose
	 * packet, retransmit or terminate..
	 */
2127 2128 2129 2130

	p = packet;
	z = 2;

2131 2132 2133 2134
	/*
	 * The OHCI controller puts the status word in the header
	 * buffer too, so we need 4 extra bytes per packet.
	 */
2135 2136 2137
	packet_count = p->header_length / ctx->base.header_size;
	header_size = packet_count * (ctx->base.header_size + 4);

2138
	/* Get header size in number of descriptors. */
2139
	header_z = DIV_ROUND_UP(header_size, sizeof(*d));
2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151
	page     = payload >> PAGE_SHIFT;
	offset   = payload & ~PAGE_MASK;
	rest     = p->payload_length;

	/* FIXME: make packet-per-buffer/dual-buffer a context option */
	while (rest > 0) {
		d = context_get_descriptors(&ctx->context,
					    z + header_z, &d_bus);
		if (d == NULL)
			return -ENOMEM;

		db = (struct db_descriptor *) d;
2152 2153
		db->control = cpu_to_le16(DESCRIPTOR_STATUS |
					  DESCRIPTOR_BRANCH_ALWAYS);
2154
		db->first_size = cpu_to_le16(ctx->base.header_size + 4);
2155 2156 2157 2158 2159 2160
		if (p->skip && rest == p->payload_length) {
			db->control |= cpu_to_le16(DESCRIPTOR_WAIT);
			db->first_req_count = db->first_size;
		} else {
			db->first_req_count = cpu_to_le16(header_size);
		}
2161
		db->first_res_count = db->first_req_count;
2162
		db->first_buffer = cpu_to_le32(d_bus + sizeof(*db));
S
Stefan Richter 已提交
2163

2164 2165 2166
		if (p->skip && rest == p->payload_length)
			length = 4;
		else if (offset + rest < PAGE_SIZE)
2167 2168 2169 2170
			length = rest;
		else
			length = PAGE_SIZE - offset;

2171 2172
		db->second_req_count = cpu_to_le16(length);
		db->second_res_count = db->second_req_count;
2173 2174 2175
		page_bus = page_private(buffer->pages[page]);
		db->second_buffer = cpu_to_le32(page_bus + offset);

2176
		if (p->interrupt && length == rest)
2177
			db->control |= cpu_to_le16(DESCRIPTOR_IRQ_ALWAYS);
2178

2179 2180 2181
		context_append(&ctx->context, d, z, header_z);
		offset = (offset + length) & ~PAGE_MASK;
		rest -= length;
2182 2183
		if (offset == 0)
			page++;
2184 2185
	}

2186 2187
	return 0;
}
2188

2189 2190 2191 2192 2193 2194 2195 2196
static int
ohci_queue_iso_receive_packet_per_buffer(struct fw_iso_context *base,
					 struct fw_iso_packet *packet,
					 struct fw_iso_buffer *buffer,
					 unsigned long payload)
{
	struct iso_context *ctx = container_of(base, struct iso_context, base);
	struct descriptor *d = NULL, *pd = NULL;
2197
	struct fw_iso_packet *p = packet;
2198 2199
	dma_addr_t d_bus, page_bus;
	u32 z, header_z, rest;
2200 2201
	int i, j, length;
	int page, offset, packet_count, header_size, payload_per_buffer;
2202 2203 2204 2205 2206 2207

	/*
	 * The OHCI controller puts the status word in the
	 * buffer too, so we need 4 extra bytes per packet.
	 */
	packet_count = p->header_length / ctx->base.header_size;
2208
	header_size  = ctx->base.header_size + 4;
2209 2210 2211 2212 2213

	/* Get header size in number of descriptors. */
	header_z = DIV_ROUND_UP(header_size, sizeof(*d));
	page     = payload >> PAGE_SHIFT;
	offset   = payload & ~PAGE_MASK;
2214
	payload_per_buffer = p->payload_length / packet_count;
2215 2216 2217

	for (i = 0; i < packet_count; i++) {
		/* d points to the header descriptor */
2218
		z = DIV_ROUND_UP(payload_per_buffer + offset, PAGE_SIZE) + 1;
2219
		d = context_get_descriptors(&ctx->context,
2220
				z + header_z, &d_bus);
2221 2222 2223
		if (d == NULL)
			return -ENOMEM;

2224 2225 2226 2227
		d->control      = cpu_to_le16(DESCRIPTOR_STATUS |
					      DESCRIPTOR_INPUT_MORE);
		if (p->skip && i == 0)
			d->control |= cpu_to_le16(DESCRIPTOR_WAIT);
2228 2229
		d->req_count    = cpu_to_le16(header_size);
		d->res_count    = d->req_count;
2230
		d->transfer_status = 0;
2231 2232
		d->data_address = cpu_to_le32(d_bus + (z * sizeof(*d)));

2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254
		rest = payload_per_buffer;
		for (j = 1; j < z; j++) {
			pd = d + j;
			pd->control = cpu_to_le16(DESCRIPTOR_STATUS |
						  DESCRIPTOR_INPUT_MORE);

			if (offset + rest < PAGE_SIZE)
				length = rest;
			else
				length = PAGE_SIZE - offset;
			pd->req_count = cpu_to_le16(length);
			pd->res_count = pd->req_count;
			pd->transfer_status = 0;

			page_bus = page_private(buffer->pages[page]);
			pd->data_address = cpu_to_le32(page_bus + offset);

			offset = (offset + length) & ~PAGE_MASK;
			rest -= length;
			if (offset == 0)
				page++;
		}
2255 2256 2257
		pd->control = cpu_to_le16(DESCRIPTOR_STATUS |
					  DESCRIPTOR_INPUT_LAST |
					  DESCRIPTOR_BRANCH_ALWAYS);
2258
		if (p->interrupt && i == packet_count - 1)
2259 2260 2261 2262 2263 2264 2265 2266
			pd->control |= cpu_to_le16(DESCRIPTOR_IRQ_ALWAYS);

		context_append(&ctx->context, d, z, header_z);
	}

	return 0;
}

2267 2268 2269 2270 2271 2272
static int
ohci_queue_iso(struct fw_iso_context *base,
	       struct fw_iso_packet *packet,
	       struct fw_iso_buffer *buffer,
	       unsigned long payload)
{
2273
	struct iso_context *ctx = container_of(base, struct iso_context, base);
2274 2275
	unsigned long flags;
	int retval;
2276

2277
	spin_lock_irqsave(&ctx->context.ohci->lock, flags);
2278
	if (base->type == FW_ISO_CONTEXT_TRANSMIT)
2279
		retval = ohci_queue_iso_transmit(base, packet, buffer, payload);
2280
	else if (ctx->context.ohci->version >= OHCI_VERSION_1_1)
2281
		retval = ohci_queue_iso_receive_dualbuffer(base, packet,
2282
							 buffer, payload);
2283
	else
2284
		retval = ohci_queue_iso_receive_packet_per_buffer(base, packet,
2285 2286
								buffer,
								payload);
2287 2288 2289
	spin_unlock_irqrestore(&ctx->context.ohci->lock, flags);

	return retval;
2290 2291
}

2292
static const struct fw_card_driver ohci_driver = {
2293 2294 2295 2296 2297 2298
	.name			= ohci_driver_name,
	.enable			= ohci_enable,
	.update_phy_reg		= ohci_update_phy_reg,
	.set_config_rom		= ohci_set_config_rom,
	.send_request		= ohci_send_request,
	.send_response		= ohci_send_response,
2299
	.cancel_packet		= ohci_cancel_packet,
2300
	.enable_phys_dma	= ohci_enable_phys_dma,
2301
	.get_bus_time		= ohci_get_bus_time,
2302 2303 2304 2305

	.allocate_iso_context	= ohci_allocate_iso_context,
	.free_iso_context	= ohci_free_iso_context,
	.queue_iso		= ohci_queue_iso,
2306
	.start_iso		= ohci_start_iso,
2307
	.stop_iso		= ohci_stop_iso,
2308 2309
};

2310
#ifdef CONFIG_PPC_PMAC
2311 2312
static void ohci_pmac_on(struct pci_dev *dev)
{
2313 2314 2315 2316 2317 2318 2319 2320
	if (machine_is(powermac)) {
		struct device_node *ofn = pci_device_to_OF_node(dev);

		if (ofn) {
			pmac_call_feature(PMAC_FTR_1394_CABLE_POWER, ofn, 0, 1);
			pmac_call_feature(PMAC_FTR_1394_ENABLE, ofn, 0, 1);
		}
	}
2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336
}

static void ohci_pmac_off(struct pci_dev *dev)
{
	if (machine_is(powermac)) {
		struct device_node *ofn = pci_device_to_OF_node(dev);

		if (ofn) {
			pmac_call_feature(PMAC_FTR_1394_ENABLE, ofn, 0, 0);
			pmac_call_feature(PMAC_FTR_1394_CABLE_POWER, ofn, 0, 0);
		}
	}
}
#else
#define ohci_pmac_on(dev)
#define ohci_pmac_off(dev)
2337 2338
#endif /* CONFIG_PPC_PMAC */

2339 2340 2341 2342 2343 2344 2345 2346 2347
static int __devinit
pci_probe(struct pci_dev *dev, const struct pci_device_id *ent)
{
	struct fw_ohci *ohci;
	u32 bus_options, max_receive, link_speed;
	u64 guid;
	int err;
	size_t size;

2348
	ohci = kzalloc(sizeof(*ohci), GFP_KERNEL);
2349 2350 2351 2352 2353 2354 2355
	if (ohci == NULL) {
		fw_error("Could not malloc fw_ohci data.\n");
		return -ENOMEM;
	}

	fw_card_initialize(&ohci->card, &ohci_driver, &dev->dev);

2356 2357
	ohci_pmac_on(dev);

2358 2359
	err = pci_enable_device(dev);
	if (err) {
2360
		fw_error("Failed to enable OHCI hardware.\n");
2361
		goto fail_free;
2362 2363 2364 2365 2366 2367
	}

	pci_set_master(dev);
	pci_write_config_dword(dev, OHCI1394_PCI_HCI_Control, 0);
	pci_set_drvdata(dev, ohci);

2368 2369 2370 2371
#if defined(CONFIG_PPC_PMAC) && defined(CONFIG_PPC32)
	ohci->old_uninorth = dev->vendor == PCI_VENDOR_ID_APPLE &&
			     dev->device == PCI_DEVICE_ID_APPLE_UNI_N_FW;
#endif
2372 2373
	ohci->bus_reset_packet_quirk = dev->vendor == PCI_VENDOR_ID_TI;

2374 2375 2376 2377 2378
	spin_lock_init(&ohci->lock);

	tasklet_init(&ohci->bus_reset_tasklet,
		     bus_reset_tasklet, (unsigned long)ohci);

2379 2380
	err = pci_request_region(dev, 0, ohci_driver_name);
	if (err) {
2381
		fw_error("MMIO resource unavailable\n");
2382
		goto fail_disable;
2383 2384 2385 2386 2387
	}

	ohci->registers = pci_iomap(dev, 0, OHCI1394_REGISTER_SIZE);
	if (ohci->registers == NULL) {
		fw_error("Failed to remap registers\n");
2388 2389
		err = -ENXIO;
		goto fail_iomem;
2390 2391 2392 2393 2394 2395 2396 2397
	}

	ar_context_init(&ohci->ar_request_ctx, ohci,
			OHCI1394_AsReqRcvContextControlSet);

	ar_context_init(&ohci->ar_response_ctx, ohci,
			OHCI1394_AsRspRcvContextControlSet);

2398
	context_init(&ohci->at_request_ctx, ohci,
2399
		     OHCI1394_AsReqTrContextControlSet, handle_at_packet);
2400

2401
	context_init(&ohci->at_response_ctx, ohci,
2402
		     OHCI1394_AsRspTrContextControlSet, handle_at_packet);
2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417

	reg_write(ohci, OHCI1394_IsoRecvIntMaskSet, ~0);
	ohci->it_context_mask = reg_read(ohci, OHCI1394_IsoRecvIntMaskSet);
	reg_write(ohci, OHCI1394_IsoRecvIntMaskClear, ~0);
	size = sizeof(struct iso_context) * hweight32(ohci->it_context_mask);
	ohci->it_context_list = kzalloc(size, GFP_KERNEL);

	reg_write(ohci, OHCI1394_IsoXmitIntMaskSet, ~0);
	ohci->ir_context_mask = reg_read(ohci, OHCI1394_IsoXmitIntMaskSet);
	reg_write(ohci, OHCI1394_IsoXmitIntMaskClear, ~0);
	size = sizeof(struct iso_context) * hweight32(ohci->ir_context_mask);
	ohci->ir_context_list = kzalloc(size, GFP_KERNEL);

	if (ohci->it_context_list == NULL || ohci->ir_context_list == NULL) {
		fw_error("Out of memory for it/ir contexts.\n");
2418 2419
		err = -ENOMEM;
		goto fail_registers;
2420 2421 2422 2423 2424 2425 2426 2427 2428
	}

	/* self-id dma buffer allocation */
	ohci->self_id_cpu = dma_alloc_coherent(ohci->card.device,
					       SELF_ID_BUF_SIZE,
					       &ohci->self_id_bus,
					       GFP_KERNEL);
	if (ohci->self_id_cpu == NULL) {
		fw_error("Out of memory for self ID buffer.\n");
2429 2430
		err = -ENOMEM;
		goto fail_registers;
2431 2432 2433 2434 2435 2436 2437 2438
	}

	bus_options = reg_read(ohci, OHCI1394_BusOptions);
	max_receive = (bus_options >> 12) & 0xf;
	link_speed = bus_options & 0x7;
	guid = ((u64) reg_read(ohci, OHCI1394_GUIDHi) << 32) |
		reg_read(ohci, OHCI1394_GUIDLo);

2439 2440 2441
	err = fw_card_add(&ohci->card, max_receive, link_speed, guid);
	if (err < 0)
		goto fail_self_id;
2442

2443
	ohci->version = reg_read(ohci, OHCI1394_Version) & 0x00ff00ff;
2444
	fw_notify("Added fw-ohci device %s, OHCI version %x.%x\n",
2445
		  dev->dev.bus_id, ohci->version >> 16, ohci->version & 0xff);
2446
	return 0;
2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458

 fail_self_id:
	dma_free_coherent(ohci->card.device, SELF_ID_BUF_SIZE,
			  ohci->self_id_cpu, ohci->self_id_bus);
 fail_registers:
	kfree(ohci->it_context_list);
	kfree(ohci->ir_context_list);
	pci_iounmap(dev, ohci->registers);
 fail_iomem:
	pci_release_region(dev, 0);
 fail_disable:
	pci_disable_device(dev);
2459 2460
 fail_free:
	kfree(&ohci->card);
2461
	ohci_pmac_off(dev);
2462 2463

	return err;
2464 2465 2466 2467 2468 2469 2470
}

static void pci_remove(struct pci_dev *dev)
{
	struct fw_ohci *ohci;

	ohci = pci_get_drvdata(dev);
2471 2472
	reg_write(ohci, OHCI1394_IntMaskClear, ~0);
	flush_writes(ohci);
2473 2474
	fw_core_remove_card(&ohci->card);

2475 2476 2477 2478
	/*
	 * FIXME: Fail all pending packets here, now that the upper
	 * layers can't queue any more.
	 */
2479 2480 2481

	software_reset(ohci);
	free_irq(dev->irq, ohci);
2482 2483 2484 2485 2486 2487 2488
	dma_free_coherent(ohci->card.device, SELF_ID_BUF_SIZE,
			  ohci->self_id_cpu, ohci->self_id_bus);
	kfree(ohci->it_context_list);
	kfree(ohci->ir_context_list);
	pci_iounmap(dev, ohci->registers);
	pci_release_region(dev, 0);
	pci_disable_device(dev);
2489
	kfree(&ohci->card);
2490
	ohci_pmac_off(dev);
2491

2492 2493 2494
	fw_notify("Removed fw-ohci device.\n");
}

2495
#ifdef CONFIG_PM
2496
static int pci_suspend(struct pci_dev *dev, pm_message_t state)
2497
{
2498
	struct fw_ohci *ohci = pci_get_drvdata(dev);
2499 2500 2501
	int err;

	software_reset(ohci);
2502 2503
	free_irq(dev->irq, ohci);
	err = pci_save_state(dev);
2504
	if (err) {
2505
		fw_error("pci_save_state failed\n");
2506 2507
		return err;
	}
2508
	err = pci_set_power_state(dev, pci_choose_state(dev, state));
2509 2510
	if (err)
		fw_error("pci_set_power_state failed with %d\n", err);
2511
	ohci_pmac_off(dev);
2512

2513 2514 2515
	return 0;
}

2516
static int pci_resume(struct pci_dev *dev)
2517
{
2518
	struct fw_ohci *ohci = pci_get_drvdata(dev);
2519 2520
	int err;

2521 2522 2523 2524
	ohci_pmac_on(dev);
	pci_set_power_state(dev, PCI_D0);
	pci_restore_state(dev);
	err = pci_enable_device(dev);
2525
	if (err) {
2526
		fw_error("pci_enable_device failed\n");
2527 2528 2529
		return err;
	}

2530
	return ohci_enable(&ohci->card, NULL, 0);
2531 2532 2533
}
#endif

2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545
static struct pci_device_id pci_table[] = {
	{ PCI_DEVICE_CLASS(PCI_CLASS_SERIAL_FIREWIRE_OHCI, ~0) },
	{ }
};

MODULE_DEVICE_TABLE(pci, pci_table);

static struct pci_driver fw_ohci_pci_driver = {
	.name		= ohci_driver_name,
	.id_table	= pci_table,
	.probe		= pci_probe,
	.remove		= pci_remove,
2546 2547 2548 2549
#ifdef CONFIG_PM
	.resume		= pci_resume,
	.suspend	= pci_suspend,
#endif
2550 2551 2552 2553 2554 2555
};

MODULE_AUTHOR("Kristian Hoegsberg <krh@bitplanet.net>");
MODULE_DESCRIPTION("Driver for PCI OHCI IEEE1394 controllers");
MODULE_LICENSE("GPL");

2556 2557 2558 2559 2560
/* Provide a module alias so root-on-sbp2 initrds don't break. */
#ifndef CONFIG_IEEE1394_OHCI1394_MODULE
MODULE_ALIAS("ohci1394");
#endif

2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572
static int __init fw_ohci_init(void)
{
	return pci_register_driver(&fw_ohci_pci_driver);
}

static void __exit fw_ohci_cleanup(void)
{
	pci_unregister_driver(&fw_ohci_pci_driver);
}

module_init(fw_ohci_init);
module_exit(fw_ohci_cleanup);