fw-ohci.c 58.4 KB
Newer Older
1 2
/*
 * Driver for OHCI 1394 controllers
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
 *
 * Copyright (C) 2003-2006 Kristian Hoegsberg <krh@bitplanet.net>
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software Foundation,
 * Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
 */

21
#include <linux/compiler.h>
22
#include <linux/delay.h>
A
Andrew Morton 已提交
23
#include <linux/dma-mapping.h>
S
Stefan Richter 已提交
24
#include <linux/gfp.h>
25 26 27
#include <linux/init.h>
#include <linux/interrupt.h>
#include <linux/kernel.h>
A
Al Viro 已提交
28
#include <linux/mm.h>
29 30
#include <linux/module.h>
#include <linux/pci.h>
S
Stefan Richter 已提交
31
#include <linux/spinlock.h>
A
Andrew Morton 已提交
32

S
Stefan Richter 已提交
33
#include <asm/page.h>
34
#include <asm/system.h>
35 36

#include "fw-ohci.h"
37
#include "fw-transaction.h"
38

39 40 41 42 43 44 45 46 47 48 49 50 51
#define DESCRIPTOR_OUTPUT_MORE		0
#define DESCRIPTOR_OUTPUT_LAST		(1 << 12)
#define DESCRIPTOR_INPUT_MORE		(2 << 12)
#define DESCRIPTOR_INPUT_LAST		(3 << 12)
#define DESCRIPTOR_STATUS		(1 << 11)
#define DESCRIPTOR_KEY_IMMEDIATE	(2 << 8)
#define DESCRIPTOR_PING			(1 << 7)
#define DESCRIPTOR_YY			(1 << 6)
#define DESCRIPTOR_NO_IRQ		(0 << 4)
#define DESCRIPTOR_IRQ_ERROR		(1 << 4)
#define DESCRIPTOR_IRQ_ALWAYS		(3 << 4)
#define DESCRIPTOR_BRANCH_ALWAYS	(3 << 2)
#define DESCRIPTOR_WAIT			(3 << 0)
52 53 54 55 56 57 58 59 60 61

struct descriptor {
	__le16 req_count;
	__le16 control;
	__le32 data_address;
	__le32 branch_address;
	__le16 res_count;
	__le16 transfer_status;
} __attribute__((aligned(16)));

62 63 64 65 66 67 68 69 70 71 72 73 74 75
struct db_descriptor {
	__le16 first_size;
	__le16 control;
	__le16 second_req_count;
	__le16 first_req_count;
	__le32 branch_address;
	__le16 second_res_count;
	__le16 first_res_count;
	__le32 reserved0;
	__le32 first_buffer;
	__le32 second_buffer;
	__le32 reserved1;
} __attribute__((aligned(16)));

76 77 78 79
#define CONTROL_SET(regs)	(regs)
#define CONTROL_CLEAR(regs)	((regs) + 4)
#define COMMAND_PTR(regs)	((regs) + 12)
#define CONTEXT_MATCH(regs)	((regs) + 16)
80

81
struct ar_buffer {
82
	struct descriptor descriptor;
83 84 85
	struct ar_buffer *next;
	__le32 data[0];
};
86

87 88 89 90 91
struct ar_context {
	struct fw_ohci *ohci;
	struct ar_buffer *current_buffer;
	struct ar_buffer *last_buffer;
	void *pointer;
92
	u32 regs;
93 94 95
	struct tasklet_struct tasklet;
};

96 97 98 99 100 101
struct context;

typedef int (*descriptor_callback_t)(struct context *ctx,
				     struct descriptor *d,
				     struct descriptor *last);
struct context {
S
Stefan Richter 已提交
102
	struct fw_ohci *ohci;
103
	u32 regs;
S
Stefan Richter 已提交
104

105 106 107 108 109 110 111 112 113 114
	struct descriptor *buffer;
	dma_addr_t buffer_bus;
	size_t buffer_size;
	struct descriptor *head_descriptor;
	struct descriptor *tail_descriptor;
	struct descriptor *tail_descriptor_last;
	struct descriptor *prev_descriptor;

	descriptor_callback_t callback;

S
Stefan Richter 已提交
115
	struct tasklet_struct tasklet;
116 117
};

118 119 120 121 122 123
#define IT_HEADER_SY(v)          ((v) <<  0)
#define IT_HEADER_TCODE(v)       ((v) <<  4)
#define IT_HEADER_CHANNEL(v)     ((v) <<  8)
#define IT_HEADER_TAG(v)         ((v) << 14)
#define IT_HEADER_SPEED(v)       ((v) << 16)
#define IT_HEADER_DATA_LENGTH(v) ((v) << 16)
124 125 126

struct iso_context {
	struct fw_iso_context base;
127
	struct context context;
128 129
	void *header;
	size_t header_length;
130 131 132 133 134 135 136
};

#define CONFIG_ROM_SIZE 1024

struct fw_ohci {
	struct fw_card card;

137
	u32 version;
138 139 140 141
	__iomem char *registers;
	dma_addr_t self_id_bus;
	__le32 *self_id_cpu;
	struct tasklet_struct bus_reset_tasklet;
142
	int node_id;
143 144
	int generation;
	int request_generation;
145
	u32 bus_seconds;
146

147 148 149 150
	/*
	 * Spinlock for accessing fw_ohci data.  Never call out of
	 * this driver with this lock held.
	 */
151 152 153 154 155 156 157 158 159 160 161 162
	spinlock_t lock;
	u32 self_id_buffer[512];

	/* Config rom buffers */
	__be32 *config_rom;
	dma_addr_t config_rom_bus;
	__be32 *next_config_rom;
	dma_addr_t next_config_rom_bus;
	u32 next_header;

	struct ar_context ar_request_ctx;
	struct ar_context ar_response_ctx;
163 164
	struct context at_request_ctx;
	struct context at_response_ctx;
165 166 167 168 169 170 171

	u32 it_context_mask;
	struct iso_context *it_context_list;
	u32 ir_context_mask;
	struct iso_context *ir_context_list;
};

A
Adrian Bunk 已提交
172
static inline struct fw_ohci *fw_ohci(struct fw_card *card)
173 174 175 176
{
	return container_of(card, struct fw_ohci, card);
}

177 178 179 180 181 182
#define IT_CONTEXT_CYCLE_MATCH_ENABLE	0x80000000
#define IR_CONTEXT_BUFFER_FILL		0x80000000
#define IR_CONTEXT_ISOCH_HEADER		0x40000000
#define IR_CONTEXT_CYCLE_MATCH_ENABLE	0x20000000
#define IR_CONTEXT_MULTI_CHANNEL_MODE	0x10000000
#define IR_CONTEXT_DUAL_BUFFER_MODE	0x08000000
183 184 185 186 187 188 189 190 191 192 193 194 195 196 197

#define CONTEXT_RUN	0x8000
#define CONTEXT_WAKE	0x1000
#define CONTEXT_DEAD	0x0800
#define CONTEXT_ACTIVE	0x0400

#define OHCI1394_MAX_AT_REQ_RETRIES	0x2
#define OHCI1394_MAX_AT_RESP_RETRIES	0x2
#define OHCI1394_MAX_PHYS_RESP_RETRIES	0x8

#define FW_OHCI_MAJOR			240
#define OHCI1394_REGISTER_SIZE		0x800
#define OHCI_LOOP_COUNT			500
#define OHCI1394_PCI_HCI_Control	0x40
#define SELF_ID_BUF_SIZE		0x800
198
#define OHCI_TCODE_PHY_PACKET		0x0e
199
#define OHCI_VERSION_1_1		0x010010
200 201
#define ISO_BUFFER_SIZE			(64 * 1024)
#define AT_BUFFER_SIZE			4096
202

203 204
static char ohci_driver_name[] = KBUILD_MODNAME;

A
Adrian Bunk 已提交
205
static inline void reg_write(const struct fw_ohci *ohci, int offset, u32 data)
206 207 208 209
{
	writel(data, ohci->registers + offset);
}

A
Adrian Bunk 已提交
210
static inline u32 reg_read(const struct fw_ohci *ohci, int offset)
211 212 213 214
{
	return readl(ohci->registers + offset);
}

A
Adrian Bunk 已提交
215
static inline void flush_writes(const struct fw_ohci *ohci)
216 217 218 219 220 221 222 223 224 225 226 227 228
{
	/* Do a dummy read to flush writes. */
	reg_read(ohci, OHCI1394_Version);
}

static int
ohci_update_phy_reg(struct fw_card *card, int addr,
		    int clear_bits, int set_bits)
{
	struct fw_ohci *ohci = fw_ohci(card);
	u32 val, old;

	reg_write(ohci, OHCI1394_PhyControl, OHCI1394_PhyControl_Read(addr));
229
	flush_writes(ohci);
230 231 232 233 234 235 236 237 238 239 240 241 242 243 244
	msleep(2);
	val = reg_read(ohci, OHCI1394_PhyControl);
	if ((val & OHCI1394_PhyControl_ReadDone) == 0) {
		fw_error("failed to set phy reg bits.\n");
		return -EBUSY;
	}

	old = OHCI1394_PhyControl_ReadData(val);
	old = (old & ~clear_bits) | set_bits;
	reg_write(ohci, OHCI1394_PhyControl,
		  OHCI1394_PhyControl_Write(addr, old));

	return 0;
}

245
static int ar_context_add_page(struct ar_context *ctx)
246
{
247 248 249 250 251 252 253 254 255 256 257 258 259 260 261
	struct device *dev = ctx->ohci->card.device;
	struct ar_buffer *ab;
	dma_addr_t ab_bus;
	size_t offset;

	ab = (struct ar_buffer *) __get_free_page(GFP_ATOMIC);
	if (ab == NULL)
		return -ENOMEM;

	ab_bus = dma_map_single(dev, ab, PAGE_SIZE, DMA_BIDIRECTIONAL);
	if (dma_mapping_error(ab_bus)) {
		free_page((unsigned long) ab);
		return -ENOMEM;
	}

262
	memset(&ab->descriptor, 0, sizeof(ab->descriptor));
263 264 265
	ab->descriptor.control        = cpu_to_le16(DESCRIPTOR_INPUT_MORE |
						    DESCRIPTOR_STATUS |
						    DESCRIPTOR_BRANCH_ALWAYS);
266 267 268 269 270 271 272 273
	offset = offsetof(struct ar_buffer, data);
	ab->descriptor.req_count      = cpu_to_le16(PAGE_SIZE - offset);
	ab->descriptor.data_address   = cpu_to_le32(ab_bus + offset);
	ab->descriptor.res_count      = cpu_to_le16(PAGE_SIZE - offset);
	ab->descriptor.branch_address = 0;

	dma_sync_single_for_device(dev, ab_bus, PAGE_SIZE, DMA_BIDIRECTIONAL);

274
	ctx->last_buffer->descriptor.branch_address = cpu_to_le32(ab_bus | 1);
275 276 277
	ctx->last_buffer->next = ab;
	ctx->last_buffer = ab;

278
	reg_write(ctx->ohci, CONTROL_SET(ctx->regs), CONTEXT_WAKE);
279
	flush_writes(ctx->ohci);
280 281

	return 0;
282 283
}

284
static __le32 *handle_ar_packet(struct ar_context *ctx, __le32 *buffer)
285 286
{
	struct fw_ohci *ohci = ctx->ohci;
287 288 289
	struct fw_packet p;
	u32 status, length, tcode;

290 291 292
	p.header[0] = le32_to_cpu(buffer[0]);
	p.header[1] = le32_to_cpu(buffer[1]);
	p.header[2] = le32_to_cpu(buffer[2]);
293 294 295 296 297

	tcode = (p.header[0] >> 4) & 0x0f;
	switch (tcode) {
	case TCODE_WRITE_QUADLET_REQUEST:
	case TCODE_READ_QUADLET_RESPONSE:
298
		p.header[3] = (__force __u32) buffer[3];
299
		p.header_length = 16;
300
		p.payload_length = 0;
301 302 303
		break;

	case TCODE_READ_BLOCK_REQUEST :
304 305 306 307 308 309
		p.header[3] = le32_to_cpu(buffer[3]);
		p.header_length = 16;
		p.payload_length = 0;
		break;

	case TCODE_WRITE_BLOCK_REQUEST:
310 311 312
	case TCODE_READ_BLOCK_RESPONSE:
	case TCODE_LOCK_REQUEST:
	case TCODE_LOCK_RESPONSE:
313
		p.header[3] = le32_to_cpu(buffer[3]);
314
		p.header_length = 16;
315
		p.payload_length = p.header[3] >> 16;
316 317 318 319
		break;

	case TCODE_WRITE_RESPONSE:
	case TCODE_READ_QUADLET_REQUEST:
320
	case OHCI_TCODE_PHY_PACKET:
321
		p.header_length = 12;
322
		p.payload_length = 0;
323 324
		break;
	}
325

326 327 328 329 330 331 332 333 334 335
	p.payload = (void *) buffer + p.header_length;

	/* FIXME: What to do about evt_* errors? */
	length = (p.header_length + p.payload_length + 3) / 4;
	status = le32_to_cpu(buffer[length]);

	p.ack        = ((status >> 16) & 0x1f) - 16;
	p.speed      = (status >> 21) & 0x7;
	p.timestamp  = status & 0xffff;
	p.generation = ohci->request_generation;
336

337 338
	/*
	 * The OHCI bus reset handler synthesizes a phy packet with
339 340 341 342 343
	 * the new generation number when a bus reset happens (see
	 * section 8.4.2.3).  This helps us determine when a request
	 * was received and make sure we send the response in the same
	 * generation.  We only need this for requests; for responses
	 * we use the unique tlabel for finding the matching
344 345
	 * request.
	 */
346

347
	if (p.ack + 16 == 0x09)
348
		ohci->request_generation = (buffer[2] >> 16) & 0xff;
349
	else if (ctx == &ohci->ar_request_ctx)
350
		fw_core_handle_request(&ohci->card, &p);
351
	else
352
		fw_core_handle_response(&ohci->card, &p);
353

354 355
	return buffer + length + 1;
}
356

357 358 359 360 361 362 363 364 365 366 367 368 369 370
static void ar_context_tasklet(unsigned long data)
{
	struct ar_context *ctx = (struct ar_context *)data;
	struct fw_ohci *ohci = ctx->ohci;
	struct ar_buffer *ab;
	struct descriptor *d;
	void *buffer, *end;

	ab = ctx->current_buffer;
	d = &ab->descriptor;

	if (d->res_count == 0) {
		size_t size, rest, offset;

371 372
		/*
		 * This descriptor is finished and we may have a
373
		 * packet split across this and the next buffer. We
374 375
		 * reuse the page for reassembling the split packet.
		 */
376 377 378

		offset = offsetof(struct ar_buffer, data);
		dma_unmap_single(ohci->card.device,
379 380
			le32_to_cpu(ab->descriptor.data_address) - offset,
			PAGE_SIZE, DMA_BIDIRECTIONAL);
381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405

		buffer = ab;
		ab = ab->next;
		d = &ab->descriptor;
		size = buffer + PAGE_SIZE - ctx->pointer;
		rest = le16_to_cpu(d->req_count) - le16_to_cpu(d->res_count);
		memmove(buffer, ctx->pointer, size);
		memcpy(buffer + size, ab->data, rest);
		ctx->current_buffer = ab;
		ctx->pointer = (void *) ab->data + rest;
		end = buffer + size + rest;

		while (buffer < end)
			buffer = handle_ar_packet(ctx, buffer);

		free_page((unsigned long)buffer);
		ar_context_add_page(ctx);
	} else {
		buffer = ctx->pointer;
		ctx->pointer = end =
			(void *) ab + PAGE_SIZE - le16_to_cpu(d->res_count);

		while (buffer < end)
			buffer = handle_ar_packet(ctx, buffer);
	}
406 407 408
}

static int
409
ar_context_init(struct ar_context *ctx, struct fw_ohci *ohci, u32 regs)
410
{
411
	struct ar_buffer ab;
412

413 414 415
	ctx->regs        = regs;
	ctx->ohci        = ohci;
	ctx->last_buffer = &ab;
416 417
	tasklet_init(&ctx->tasklet, ar_context_tasklet, (unsigned long)ctx);

418 419 420 421 422
	ar_context_add_page(ctx);
	ar_context_add_page(ctx);
	ctx->current_buffer = ab.next;
	ctx->pointer = ctx->current_buffer->data;

423 424 425 426 427 428 429 430 431 432
	return 0;
}

static void ar_context_run(struct ar_context *ctx)
{
	struct ar_buffer *ab = ctx->current_buffer;
	dma_addr_t ab_bus;
	size_t offset;

	offset = offsetof(struct ar_buffer, data);
433
	ab_bus = le32_to_cpu(ab->descriptor.data_address) - offset;
434 435

	reg_write(ctx->ohci, COMMAND_PTR(ctx->regs), ab_bus | 1);
436
	reg_write(ctx->ohci, CONTROL_SET(ctx->regs), CONTEXT_RUN);
437
	flush_writes(ctx->ohci);
438
}
S
Stefan Richter 已提交
439

440 441 442 443 444 445 446 447 448 449 450 451 452 453 454
static struct descriptor *
find_branch_descriptor(struct descriptor *d, int z)
{
	int b, key;

	b   = (le16_to_cpu(d->control) & DESCRIPTOR_BRANCH_ALWAYS) >> 2;
	key = (le16_to_cpu(d->control) & DESCRIPTOR_KEY_IMMEDIATE) >> 8;

	/* figure out which descriptor the branch address goes in */
	if (z == 2 && (b == 3 || key == 2))
		return d;
	else
		return d + z - 1;
}

455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471
static void context_tasklet(unsigned long data)
{
	struct context *ctx = (struct context *) data;
	struct fw_ohci *ohci = ctx->ohci;
	struct descriptor *d, *last;
	u32 address;
	int z;

	dma_sync_single_for_cpu(ohci->card.device, ctx->buffer_bus,
				ctx->buffer_size, DMA_TO_DEVICE);

	d    = ctx->tail_descriptor;
	last = ctx->tail_descriptor_last;

	while (last->branch_address != 0) {
		address = le32_to_cpu(last->branch_address);
		z = address & 0xf;
472
		d = ctx->buffer + (address - ctx->buffer_bus) / sizeof(*d);
473
		last = find_branch_descriptor(d, z);
474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510

		if (!ctx->callback(ctx, d, last))
			break;

		ctx->tail_descriptor      = d;
		ctx->tail_descriptor_last = last;
	}
}

static int
context_init(struct context *ctx, struct fw_ohci *ohci,
	     size_t buffer_size, u32 regs,
	     descriptor_callback_t callback)
{
	ctx->ohci = ohci;
	ctx->regs = regs;
	ctx->buffer_size = buffer_size;
	ctx->buffer = kmalloc(buffer_size, GFP_KERNEL);
	if (ctx->buffer == NULL)
		return -ENOMEM;

	tasklet_init(&ctx->tasklet, context_tasklet, (unsigned long)ctx);
	ctx->callback = callback;

	ctx->buffer_bus =
		dma_map_single(ohci->card.device, ctx->buffer,
			       buffer_size, DMA_TO_DEVICE);
	if (dma_mapping_error(ctx->buffer_bus)) {
		kfree(ctx->buffer);
		return -ENOMEM;
	}

	ctx->head_descriptor      = ctx->buffer;
	ctx->prev_descriptor      = ctx->buffer;
	ctx->tail_descriptor      = ctx->buffer;
	ctx->tail_descriptor_last = ctx->buffer;

511 512
	/*
	 * We put a dummy descriptor in the buffer that has a NULL
513 514 515
	 * branch address and looks like it's been sent.  That way we
	 * have a descriptor to append DMA programs to.  Also, the
	 * ring buffer invariant is that it always has at least one
516 517
	 * element so that head == tail means buffer full.
	 */
518

519
	memset(ctx->head_descriptor, 0, sizeof(*ctx->head_descriptor));
520
	ctx->head_descriptor->control = cpu_to_le16(DESCRIPTOR_OUTPUT_LAST);
521 522 523 524 525 526
	ctx->head_descriptor->transfer_status = cpu_to_le16(0x8011);
	ctx->head_descriptor++;

	return 0;
}

527
static void
528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543
context_release(struct context *ctx)
{
	struct fw_card *card = &ctx->ohci->card;

	dma_unmap_single(card->device, ctx->buffer_bus,
			 ctx->buffer_size, DMA_TO_DEVICE);
	kfree(ctx->buffer);
}

static struct descriptor *
context_get_descriptors(struct context *ctx, int z, dma_addr_t *d_bus)
{
	struct descriptor *d, *tail, *end;

	d = ctx->head_descriptor;
	tail = ctx->tail_descriptor;
544
	end = ctx->buffer + ctx->buffer_size / sizeof(*d);
545 546 547 548 549 550 551 552 553 554 555 556 557

	if (d + z <= tail) {
		goto has_space;
	} else if (d > tail && d + z <= end) {
		goto has_space;
	} else if (d > tail && ctx->buffer + z <= tail) {
		d = ctx->buffer;
		goto has_space;
	}

	return NULL;

 has_space:
558 559
	memset(d, 0, z * sizeof(*d));
	*d_bus = ctx->buffer_bus + (d - ctx->buffer) * sizeof(*d);
560 561 562 563

	return d;
}

564
static void context_run(struct context *ctx, u32 extra)
565 566 567
{
	struct fw_ohci *ohci = ctx->ohci;

568
	reg_write(ohci, COMMAND_PTR(ctx->regs),
569
		  le32_to_cpu(ctx->tail_descriptor_last->branch_address));
570 571
	reg_write(ohci, CONTROL_CLEAR(ctx->regs), ~0);
	reg_write(ohci, CONTROL_SET(ctx->regs), CONTEXT_RUN | extra);
572 573 574 575 576 577 578 579
	flush_writes(ohci);
}

static void context_append(struct context *ctx,
			   struct descriptor *d, int z, int extra)
{
	dma_addr_t d_bus;

580
	d_bus = ctx->buffer_bus + (d - ctx->buffer) * sizeof(*d);
581 582 583

	ctx->head_descriptor = d + z + extra;
	ctx->prev_descriptor->branch_address = cpu_to_le32(d_bus | z);
584
	ctx->prev_descriptor = find_branch_descriptor(d, z);
585 586 587 588

	dma_sync_single_for_device(ctx->ohci->card.device, ctx->buffer_bus,
				   ctx->buffer_size, DMA_TO_DEVICE);

589
	reg_write(ctx->ohci, CONTROL_SET(ctx->regs), CONTEXT_WAKE);
590 591 592 593 594 595
	flush_writes(ctx->ohci);
}

static void context_stop(struct context *ctx)
{
	u32 reg;
596
	int i;
597

598
	reg_write(ctx->ohci, CONTROL_CLEAR(ctx->regs), CONTEXT_RUN);
599
	flush_writes(ctx->ohci);
600

601
	for (i = 0; i < 10; i++) {
602
		reg = reg_read(ctx->ohci, CONTROL_SET(ctx->regs));
603 604 605 606
		if ((reg & CONTEXT_ACTIVE) == 0)
			break;

		fw_notify("context_stop: still active (0x%08x)\n", reg);
607
		mdelay(1);
608
	}
609
}
610

611 612 613
struct driver_data {
	struct fw_packet *packet;
};
614

615 616
/*
 * This function apppends a packet to the DMA queue for transmission.
617
 * Must always be called with the ochi->lock held to ensure proper
618 619
 * generation handling and locking around packet queue manipulation.
 */
620 621
static int
at_context_queue_packet(struct context *ctx, struct fw_packet *packet)
622 623
{
	struct fw_ohci *ohci = ctx->ohci;
624
	dma_addr_t d_bus, uninitialized_var(payload_bus);
625 626 627
	struct driver_data *driver_data;
	struct descriptor *d, *last;
	__le32 *header;
628
	int z, tcode;
629
	u32 reg;
630

631 632 633 634
	d = context_get_descriptors(ctx, 4, &d_bus);
	if (d == NULL) {
		packet->ack = RCODE_SEND_ERROR;
		return -1;
635 636
	}

637
	d[0].control   = cpu_to_le16(DESCRIPTOR_KEY_IMMEDIATE);
638 639
	d[0].res_count = cpu_to_le16(packet->timestamp);

640 641
	/*
	 * The DMA format for asyncronous link packets is different
642 643
	 * from the IEEE1394 layout, so shift the fields around
	 * accordingly.  If header_length is 8, it's a PHY packet, to
644 645
	 * which we need to prepend an extra quadlet.
	 */
646 647

	header = (__le32 *) &d[1];
648
	if (packet->header_length > 8) {
649 650 651 652 653
		header[0] = cpu_to_le32((packet->header[0] & 0xffff) |
					(packet->speed << 16));
		header[1] = cpu_to_le32((packet->header[1] & 0xffff) |
					(packet->header[0] & 0xffff0000));
		header[2] = cpu_to_le32(packet->header[2]);
654 655 656

		tcode = (packet->header[0] >> 4) & 0x0f;
		if (TCODE_IS_BLOCK_PACKET(tcode))
657
			header[3] = cpu_to_le32(packet->header[3]);
658
		else
659 660 661
			header[3] = (__force __le32) packet->header[3];

		d[0].req_count = cpu_to_le16(packet->header_length);
662
	} else {
663 664 665 666 667
		header[0] = cpu_to_le32((OHCI1394_phy_tcode << 4) |
					(packet->speed << 16));
		header[1] = cpu_to_le32(packet->header[0]);
		header[2] = cpu_to_le32(packet->header[1]);
		d[0].req_count = cpu_to_le16(12);
668 669
	}

670 671
	driver_data = (struct driver_data *) &d[3];
	driver_data->packet = packet;
672
	packet->driver_data = driver_data;
673

674 675 676 677 678 679 680 681 682 683 684 685 686
	if (packet->payload_length > 0) {
		payload_bus =
			dma_map_single(ohci->card.device, packet->payload,
				       packet->payload_length, DMA_TO_DEVICE);
		if (dma_mapping_error(payload_bus)) {
			packet->ack = RCODE_SEND_ERROR;
			return -1;
		}

		d[2].req_count    = cpu_to_le16(packet->payload_length);
		d[2].data_address = cpu_to_le32(payload_bus);
		last = &d[2];
		z = 3;
687
	} else {
688 689
		last = &d[0];
		z = 2;
690 691
	}

692 693 694
	last->control |= cpu_to_le16(DESCRIPTOR_OUTPUT_LAST |
				     DESCRIPTOR_IRQ_ALWAYS |
				     DESCRIPTOR_BRANCH_ALWAYS);
695

696 697
	/* FIXME: Document how the locking works. */
	if (ohci->generation != packet->generation) {
698 699 700
		if (packet->payload_length > 0)
			dma_unmap_single(ohci->card.device, payload_bus,
					 packet->payload_length, DMA_TO_DEVICE);
701 702 703 704 705
		packet->ack = RCODE_GENERATION;
		return -1;
	}

	context_append(ctx, d, z, 4 - z);
706

707
	/* If the context isn't already running, start it up. */
708
	reg = reg_read(ctx->ohci, CONTROL_SET(ctx->regs));
709
	if ((reg & CONTEXT_RUN) == 0)
710 711 712
		context_run(ctx, 0);

	return 0;
713 714
}

715 716 717
static int handle_at_packet(struct context *context,
			    struct descriptor *d,
			    struct descriptor *last)
718
{
719
	struct driver_data *driver_data;
720
	struct fw_packet *packet;
721 722
	struct fw_ohci *ohci = context->ohci;
	dma_addr_t payload_bus;
723 724
	int evt;

725 726 727
	if (last->transfer_status == 0)
		/* This descriptor isn't done yet, stop iteration. */
		return 0;
728

729 730 731 732 733
	driver_data = (struct driver_data *) &d[3];
	packet = driver_data->packet;
	if (packet == NULL)
		/* This packet was cancelled, just continue. */
		return 1;
734

735 736 737
	payload_bus = le32_to_cpu(last->data_address);
	if (payload_bus != 0)
		dma_unmap_single(ohci->card.device, payload_bus,
738 739
				 packet->payload_length, DMA_TO_DEVICE);

740 741
	evt = le16_to_cpu(last->transfer_status) & 0x1f;
	packet->timestamp = le16_to_cpu(last->res_count);
742

743 744 745 746 747
	switch (evt) {
	case OHCI1394_evt_timeout:
		/* Async response transmit timed out. */
		packet->ack = RCODE_CANCELLED;
		break;
748

749
	case OHCI1394_evt_flushed:
750 751 752 753
		/*
		 * The packet was flushed should give same error as
		 * when we try to use a stale generation count.
		 */
754 755
		packet->ack = RCODE_GENERATION;
		break;
756

757
	case OHCI1394_evt_missing_ack:
758 759 760 761
		/*
		 * Using a valid (current) generation count, but the
		 * node is not on the bus or not sending acks.
		 */
762 763
		packet->ack = RCODE_NO_ACK;
		break;
764

765 766 767 768 769 770 771 772 773
	case ACK_COMPLETE + 0x10:
	case ACK_PENDING + 0x10:
	case ACK_BUSY_X + 0x10:
	case ACK_BUSY_A + 0x10:
	case ACK_BUSY_B + 0x10:
	case ACK_DATA_ERROR + 0x10:
	case ACK_TYPE_ERROR + 0x10:
		packet->ack = evt - 0x10;
		break;
774

775 776 777 778
	default:
		packet->ack = RCODE_SEND_ERROR;
		break;
	}
779

780
	packet->callback(packet, &ohci->card, packet->ack);
781

782
	return 1;
783 784
}

785 786 787 788 789
#define HEADER_GET_DESTINATION(q)	(((q) >> 16) & 0xffff)
#define HEADER_GET_TCODE(q)		(((q) >> 4) & 0x0f)
#define HEADER_GET_OFFSET_HIGH(q)	(((q) >> 0) & 0xffff)
#define HEADER_GET_DATA_LENGTH(q)	(((q) >> 16) & 0xffff)
#define HEADER_GET_EXTENDED_TCODE(q)	(((q) >> 0) & 0xffff)
790 791 792 793 794 795 796

static void
handle_local_rom(struct fw_ohci *ohci, struct fw_packet *packet, u32 csr)
{
	struct fw_packet response;
	int tcode, length, i;

797
	tcode = HEADER_GET_TCODE(packet->header[0]);
798
	if (TCODE_IS_BLOCK_PACKET(tcode))
799
		length = HEADER_GET_DATA_LENGTH(packet->header[3]);
800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825
	else
		length = 4;

	i = csr - CSR_CONFIG_ROM;
	if (i + length > CONFIG_ROM_SIZE) {
		fw_fill_response(&response, packet->header,
				 RCODE_ADDRESS_ERROR, NULL, 0);
	} else if (!TCODE_IS_READ_REQUEST(tcode)) {
		fw_fill_response(&response, packet->header,
				 RCODE_TYPE_ERROR, NULL, 0);
	} else {
		fw_fill_response(&response, packet->header, RCODE_COMPLETE,
				 (void *) ohci->config_rom + i, length);
	}

	fw_core_handle_response(&ohci->card, &response);
}

static void
handle_local_lock(struct fw_ohci *ohci, struct fw_packet *packet, u32 csr)
{
	struct fw_packet response;
	int tcode, length, ext_tcode, sel;
	__be32 *payload, lock_old;
	u32 lock_arg, lock_data;

826 827
	tcode = HEADER_GET_TCODE(packet->header[0]);
	length = HEADER_GET_DATA_LENGTH(packet->header[3]);
828
	payload = packet->payload;
829
	ext_tcode = HEADER_GET_EXTENDED_TCODE(packet->header[3]);
830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854

	if (tcode == TCODE_LOCK_REQUEST &&
	    ext_tcode == EXTCODE_COMPARE_SWAP && length == 8) {
		lock_arg = be32_to_cpu(payload[0]);
		lock_data = be32_to_cpu(payload[1]);
	} else if (tcode == TCODE_READ_QUADLET_REQUEST) {
		lock_arg = 0;
		lock_data = 0;
	} else {
		fw_fill_response(&response, packet->header,
				 RCODE_TYPE_ERROR, NULL, 0);
		goto out;
	}

	sel = (csr - CSR_BUS_MANAGER_ID) / 4;
	reg_write(ohci, OHCI1394_CSRData, lock_data);
	reg_write(ohci, OHCI1394_CSRCompareData, lock_arg);
	reg_write(ohci, OHCI1394_CSRControl, sel);

	if (reg_read(ohci, OHCI1394_CSRControl) & 0x80000000)
		lock_old = cpu_to_be32(reg_read(ohci, OHCI1394_CSRData));
	else
		fw_notify("swap not done yet\n");

	fw_fill_response(&response, packet->header,
855
			 RCODE_COMPLETE, &lock_old, sizeof(lock_old));
856 857 858 859 860
 out:
	fw_core_handle_response(&ohci->card, &response);
}

static void
861
handle_local_request(struct context *ctx, struct fw_packet *packet)
862 863 864 865
{
	u64 offset;
	u32 csr;

866 867 868 869
	if (ctx == &ctx->ohci->at_request_ctx) {
		packet->ack = ACK_PENDING;
		packet->callback(packet, &ctx->ohci->card, packet->ack);
	}
870 871 872

	offset =
		((unsigned long long)
873
		 HEADER_GET_OFFSET_HIGH(packet->header[1]) << 32) |
874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893
		packet->header[2];
	csr = offset - CSR_REGISTER_BASE;

	/* Handle config rom reads. */
	if (csr >= CSR_CONFIG_ROM && csr < CSR_CONFIG_ROM_END)
		handle_local_rom(ctx->ohci, packet, csr);
	else switch (csr) {
	case CSR_BUS_MANAGER_ID:
	case CSR_BANDWIDTH_AVAILABLE:
	case CSR_CHANNELS_AVAILABLE_HI:
	case CSR_CHANNELS_AVAILABLE_LO:
		handle_local_lock(ctx->ohci, packet, csr);
		break;
	default:
		if (ctx == &ctx->ohci->at_request_ctx)
			fw_core_handle_request(&ctx->ohci->card, packet);
		else
			fw_core_handle_response(&ctx->ohci->card, packet);
		break;
	}
894 895 896 897 898

	if (ctx == &ctx->ohci->at_response_ctx) {
		packet->ack = ACK_COMPLETE;
		packet->callback(packet, &ctx->ohci->card, packet->ack);
	}
899
}
900

901
static void
902
at_context_transmit(struct context *ctx, struct fw_packet *packet)
903 904
{
	unsigned long flags;
905
	int retval;
906 907 908

	spin_lock_irqsave(&ctx->ohci->lock, flags);

909
	if (HEADER_GET_DESTINATION(packet->header[0]) == ctx->ohci->node_id &&
910
	    ctx->ohci->generation == packet->generation) {
911 912 913
		spin_unlock_irqrestore(&ctx->ohci->lock, flags);
		handle_local_request(ctx, packet);
		return;
914
	}
915

916
	retval = at_context_queue_packet(ctx, packet);
917 918
	spin_unlock_irqrestore(&ctx->ohci->lock, flags);

919 920
	if (retval < 0)
		packet->callback(packet, &ctx->ohci->card, packet->ack);
921

922 923 924 925 926
}

static void bus_reset_tasklet(unsigned long data)
{
	struct fw_ohci *ohci = (struct fw_ohci *)data;
927
	int self_id_count, i, j, reg;
928 929
	int generation, new_generation;
	unsigned long flags;
930 931
	void *free_rom = NULL;
	dma_addr_t free_rom_bus = 0;
932 933 934

	reg = reg_read(ohci, OHCI1394_NodeID);
	if (!(reg & OHCI1394_NodeID_idValid)) {
935
		fw_notify("node ID not valid, new bus reset in progress\n");
936 937
		return;
	}
938 939 940 941 942 943
	if ((reg & OHCI1394_NodeID_nodeNumber) == 63) {
		fw_notify("malconfigured bus\n");
		return;
	}
	ohci->node_id = reg & (OHCI1394_NodeID_busNumber |
			       OHCI1394_NodeID_nodeNumber);
944

945 946
	/*
	 * The count in the SelfIDCount register is the number of
947 948
	 * bytes in the self ID receive buffer.  Since we also receive
	 * the inverted quadlets and a header quadlet, we shift one
949 950
	 * bit extra to get the actual number of self IDs.
	 */
951 952 953

	self_id_count = (reg_read(ohci, OHCI1394_SelfIDCount) >> 3) & 0x3ff;
	generation = (le32_to_cpu(ohci->self_id_cpu[0]) >> 16) & 0xff;
954
	rmb();
955 956 957 958 959 960

	for (i = 1, j = 0; j < self_id_count; i += 2, j++) {
		if (ohci->self_id_cpu[i] != ~ohci->self_id_cpu[i + 1])
			fw_error("inconsistent self IDs\n");
		ohci->self_id_buffer[j] = le32_to_cpu(ohci->self_id_cpu[i]);
	}
961
	rmb();
962

963 964
	/*
	 * Check the consistency of the self IDs we just read.  The
965 966 967 968 969 970 971 972 973
	 * problem we face is that a new bus reset can start while we
	 * read out the self IDs from the DMA buffer. If this happens,
	 * the DMA buffer will be overwritten with new self IDs and we
	 * will read out inconsistent data.  The OHCI specification
	 * (section 11.2) recommends a technique similar to
	 * linux/seqlock.h, where we remember the generation of the
	 * self IDs in the buffer before reading them out and compare
	 * it to the current generation after reading them out.  If
	 * the two generations match we know we have a consistent set
974 975
	 * of self IDs.
	 */
976 977 978 979 980 981 982 983 984 985 986 987

	new_generation = (reg_read(ohci, OHCI1394_SelfIDCount) >> 16) & 0xff;
	if (new_generation != generation) {
		fw_notify("recursive bus reset detected, "
			  "discarding self ids\n");
		return;
	}

	/* FIXME: Document how the locking works. */
	spin_lock_irqsave(&ohci->lock, flags);

	ohci->generation = generation;
988 989
	context_stop(&ohci->at_request_ctx);
	context_stop(&ohci->at_response_ctx);
990 991
	reg_write(ohci, OHCI1394_IntEventClear, OHCI1394_busReset);

992 993
	/*
	 * This next bit is unrelated to the AT context stuff but we
994 995 996 997
	 * have to do it under the spinlock also.  If a new config rom
	 * was set up before this reset, the old one is now no longer
	 * in use and we can free it. Update the config rom pointers
	 * to point to the current config rom and clear the
998 999
	 * next_config_rom pointer so a new udpate can take place.
	 */
1000 1001

	if (ohci->next_config_rom != NULL) {
1002 1003 1004 1005
		if (ohci->next_config_rom != ohci->config_rom) {
			free_rom      = ohci->config_rom;
			free_rom_bus  = ohci->config_rom_bus;
		}
1006 1007 1008 1009
		ohci->config_rom      = ohci->next_config_rom;
		ohci->config_rom_bus  = ohci->next_config_rom_bus;
		ohci->next_config_rom = NULL;

1010 1011
		/*
		 * Restore config_rom image and manually update
1012 1013
		 * config_rom registers.  Writing the header quadlet
		 * will indicate that the config rom is ready, so we
1014 1015
		 * do that last.
		 */
1016 1017 1018 1019 1020 1021 1022 1023
		reg_write(ohci, OHCI1394_BusOptions,
			  be32_to_cpu(ohci->config_rom[2]));
		ohci->config_rom[0] = cpu_to_be32(ohci->next_header);
		reg_write(ohci, OHCI1394_ConfigROMhdr, ohci->next_header);
	}

	spin_unlock_irqrestore(&ohci->lock, flags);

1024 1025 1026 1027
	if (free_rom)
		dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
				  free_rom, free_rom_bus);

1028
	fw_core_handle_bus_reset(&ohci->card, ohci->node_id, generation,
1029 1030 1031 1032 1033 1034
				 self_id_count, ohci->self_id_buffer);
}

static irqreturn_t irq_handler(int irq, void *data)
{
	struct fw_ohci *ohci = data;
1035
	u32 event, iso_event, cycle_time;
1036 1037 1038 1039
	int i;

	event = reg_read(ohci, OHCI1394_IntEventClear);

1040
	if (!event || !~event)
1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059
		return IRQ_NONE;

	reg_write(ohci, OHCI1394_IntEventClear, event);

	if (event & OHCI1394_selfIDComplete)
		tasklet_schedule(&ohci->bus_reset_tasklet);

	if (event & OHCI1394_RQPkt)
		tasklet_schedule(&ohci->ar_request_ctx.tasklet);

	if (event & OHCI1394_RSPkt)
		tasklet_schedule(&ohci->ar_response_ctx.tasklet);

	if (event & OHCI1394_reqTxComplete)
		tasklet_schedule(&ohci->at_request_ctx.tasklet);

	if (event & OHCI1394_respTxComplete)
		tasklet_schedule(&ohci->at_response_ctx.tasklet);

1060
	iso_event = reg_read(ohci, OHCI1394_IsoRecvIntEventClear);
1061 1062 1063 1064
	reg_write(ohci, OHCI1394_IsoRecvIntEventClear, iso_event);

	while (iso_event) {
		i = ffs(iso_event) - 1;
1065
		tasklet_schedule(&ohci->ir_context_list[i].context.tasklet);
1066 1067 1068
		iso_event &= ~(1 << i);
	}

1069
	iso_event = reg_read(ohci, OHCI1394_IsoXmitIntEventClear);
1070 1071 1072 1073
	reg_write(ohci, OHCI1394_IsoXmitIntEventClear, iso_event);

	while (iso_event) {
		i = ffs(iso_event) - 1;
1074
		tasklet_schedule(&ohci->it_context_list[i].context.tasklet);
1075 1076 1077
		iso_event &= ~(1 << i);
	}

1078 1079 1080
	if (unlikely(event & OHCI1394_postedWriteErr))
		fw_error("PCI posted write error\n");

1081 1082 1083 1084 1085 1086
	if (event & OHCI1394_cycle64Seconds) {
		cycle_time = reg_read(ohci, OHCI1394_IsochronousCycleTimer);
		if ((cycle_time & 0x80000000) == 0)
			ohci->bus_seconds++;
	}

1087 1088 1089
	return IRQ_HANDLED;
}

1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105
static int software_reset(struct fw_ohci *ohci)
{
	int i;

	reg_write(ohci, OHCI1394_HCControlSet, OHCI1394_HCControl_softReset);

	for (i = 0; i < OHCI_LOOP_COUNT; i++) {
		if ((reg_read(ohci, OHCI1394_HCControlSet) &
		     OHCI1394_HCControl_softReset) == 0)
			return 0;
		msleep(1);
	}

	return -EBUSY;
}

1106 1107 1108 1109 1110
static int ohci_enable(struct fw_card *card, u32 *config_rom, size_t length)
{
	struct fw_ohci *ohci = fw_ohci(card);
	struct pci_dev *dev = to_pci_dev(card->device);

1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153
	if (software_reset(ohci)) {
		fw_error("Failed to reset ohci card.\n");
		return -EBUSY;
	}

	/*
	 * Now enable LPS, which we need in order to start accessing
	 * most of the registers.  In fact, on some cards (ALI M5251),
	 * accessing registers in the SClk domain without LPS enabled
	 * will lock up the machine.  Wait 50msec to make sure we have
	 * full link enabled.
	 */
	reg_write(ohci, OHCI1394_HCControlSet,
		  OHCI1394_HCControl_LPS |
		  OHCI1394_HCControl_postedWriteEnable);
	flush_writes(ohci);
	msleep(50);

	reg_write(ohci, OHCI1394_HCControlClear,
		  OHCI1394_HCControl_noByteSwapData);

	reg_write(ohci, OHCI1394_LinkControlSet,
		  OHCI1394_LinkControl_rcvSelfID |
		  OHCI1394_LinkControl_cycleTimerEnable |
		  OHCI1394_LinkControl_cycleMaster);

	reg_write(ohci, OHCI1394_ATRetries,
		  OHCI1394_MAX_AT_REQ_RETRIES |
		  (OHCI1394_MAX_AT_RESP_RETRIES << 4) |
		  (OHCI1394_MAX_PHYS_RESP_RETRIES << 8));

	ar_context_run(&ohci->ar_request_ctx);
	ar_context_run(&ohci->ar_response_ctx);

	reg_write(ohci, OHCI1394_SelfIDBuffer, ohci->self_id_bus);
	reg_write(ohci, OHCI1394_PhyUpperBound, 0x00010000);
	reg_write(ohci, OHCI1394_IntEventClear, ~0);
	reg_write(ohci, OHCI1394_IntMaskClear, ~0);
	reg_write(ohci, OHCI1394_IntMaskSet,
		  OHCI1394_selfIDComplete |
		  OHCI1394_RQPkt | OHCI1394_RSPkt |
		  OHCI1394_reqTxComplete | OHCI1394_respTxComplete |
		  OHCI1394_isochRx | OHCI1394_isochTx |
1154 1155
		  OHCI1394_postedWriteErr | OHCI1394_cycle64Seconds |
		  OHCI1394_masterIntEnable);
1156 1157 1158 1159 1160 1161

	/* Activate link_on bit and contender bit in our self ID packets.*/
	if (ohci_update_phy_reg(card, 4, 0,
				PHY_LINK_ACTIVE | PHY_CONTENDER) < 0)
		return -EIO;

1162 1163
	/*
	 * When the link is not yet enabled, the atomic config rom
1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180
	 * update mechanism described below in ohci_set_config_rom()
	 * is not active.  We have to update ConfigRomHeader and
	 * BusOptions manually, and the write to ConfigROMmap takes
	 * effect immediately.  We tie this to the enabling of the
	 * link, so we have a valid config rom before enabling - the
	 * OHCI requires that ConfigROMhdr and BusOptions have valid
	 * values before enabling.
	 *
	 * However, when the ConfigROMmap is written, some controllers
	 * always read back quadlets 0 and 2 from the config rom to
	 * the ConfigRomHeader and BusOptions registers on bus reset.
	 * They shouldn't do that in this initial case where the link
	 * isn't enabled.  This means we have to use the same
	 * workaround here, setting the bus header to 0 and then write
	 * the right values in the bus reset tasklet.
	 */

1181 1182 1183 1184 1185 1186 1187
	if (config_rom) {
		ohci->next_config_rom =
			dma_alloc_coherent(ohci->card.device, CONFIG_ROM_SIZE,
					   &ohci->next_config_rom_bus,
					   GFP_KERNEL);
		if (ohci->next_config_rom == NULL)
			return -ENOMEM;
1188

1189 1190 1191 1192 1193 1194 1195 1196 1197 1198
		memset(ohci->next_config_rom, 0, CONFIG_ROM_SIZE);
		fw_memcpy_to_be32(ohci->next_config_rom, config_rom, length * 4);
	} else {
		/*
		 * In the suspend case, config_rom is NULL, which
		 * means that we just reuse the old config rom.
		 */
		ohci->next_config_rom = ohci->config_rom;
		ohci->next_config_rom_bus = ohci->config_rom_bus;
	}
1199

1200
	ohci->next_header = be32_to_cpu(ohci->next_config_rom[0]);
1201 1202
	ohci->next_config_rom[0] = 0;
	reg_write(ohci, OHCI1394_ConfigROMhdr, 0);
1203 1204
	reg_write(ohci, OHCI1394_BusOptions,
		  be32_to_cpu(ohci->next_config_rom[2]));
1205 1206 1207 1208 1209
	reg_write(ohci, OHCI1394_ConfigROMmap, ohci->next_config_rom_bus);

	reg_write(ohci, OHCI1394_AsReqFilterHiSet, 0x80000000);

	if (request_irq(dev->irq, irq_handler,
1210
			IRQF_SHARED, ohci_driver_name, ohci)) {
1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222
		fw_error("Failed to allocate shared interrupt %d.\n",
			 dev->irq);
		dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
				  ohci->config_rom, ohci->config_rom_bus);
		return -EIO;
	}

	reg_write(ohci, OHCI1394_HCControlSet,
		  OHCI1394_HCControl_linkEnable |
		  OHCI1394_HCControl_BIBimageValid);
	flush_writes(ohci);

1223 1224 1225 1226
	/*
	 * We are ready to go, initiate bus reset to finish the
	 * initialization.
	 */
1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237

	fw_core_initiate_bus_reset(&ohci->card, 1);

	return 0;
}

static int
ohci_set_config_rom(struct fw_card *card, u32 *config_rom, size_t length)
{
	struct fw_ohci *ohci;
	unsigned long flags;
1238
	int retval = -EBUSY;
1239 1240 1241 1242 1243
	__be32 *next_config_rom;
	dma_addr_t next_config_rom_bus;

	ohci = fw_ohci(card);

1244 1245
	/*
	 * When the OHCI controller is enabled, the config rom update
1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291
	 * mechanism is a bit tricky, but easy enough to use.  See
	 * section 5.5.6 in the OHCI specification.
	 *
	 * The OHCI controller caches the new config rom address in a
	 * shadow register (ConfigROMmapNext) and needs a bus reset
	 * for the changes to take place.  When the bus reset is
	 * detected, the controller loads the new values for the
	 * ConfigRomHeader and BusOptions registers from the specified
	 * config rom and loads ConfigROMmap from the ConfigROMmapNext
	 * shadow register. All automatically and atomically.
	 *
	 * Now, there's a twist to this story.  The automatic load of
	 * ConfigRomHeader and BusOptions doesn't honor the
	 * noByteSwapData bit, so with a be32 config rom, the
	 * controller will load be32 values in to these registers
	 * during the atomic update, even on litte endian
	 * architectures.  The workaround we use is to put a 0 in the
	 * header quadlet; 0 is endian agnostic and means that the
	 * config rom isn't ready yet.  In the bus reset tasklet we
	 * then set up the real values for the two registers.
	 *
	 * We use ohci->lock to avoid racing with the code that sets
	 * ohci->next_config_rom to NULL (see bus_reset_tasklet).
	 */

	next_config_rom =
		dma_alloc_coherent(ohci->card.device, CONFIG_ROM_SIZE,
				   &next_config_rom_bus, GFP_KERNEL);
	if (next_config_rom == NULL)
		return -ENOMEM;

	spin_lock_irqsave(&ohci->lock, flags);

	if (ohci->next_config_rom == NULL) {
		ohci->next_config_rom = next_config_rom;
		ohci->next_config_rom_bus = next_config_rom_bus;

		memset(ohci->next_config_rom, 0, CONFIG_ROM_SIZE);
		fw_memcpy_to_be32(ohci->next_config_rom, config_rom,
				  length * 4);

		ohci->next_header = config_rom[0];
		ohci->next_config_rom[0] = 0;

		reg_write(ohci, OHCI1394_ConfigROMmap,
			  ohci->next_config_rom_bus);
1292
		retval = 0;
1293 1294 1295 1296
	}

	spin_unlock_irqrestore(&ohci->lock, flags);

1297 1298
	/*
	 * Now initiate a bus reset to have the changes take
1299 1300 1301
	 * effect. We clean up the old config rom memory and DMA
	 * mappings in the bus reset tasklet, since the OHCI
	 * controller could need to access it before the bus reset
1302 1303
	 * takes effect.
	 */
1304 1305
	if (retval == 0)
		fw_core_initiate_bus_reset(&ohci->card, 1);
1306 1307 1308
	else
		dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
				  next_config_rom, next_config_rom_bus);
1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326

	return retval;
}

static void ohci_send_request(struct fw_card *card, struct fw_packet *packet)
{
	struct fw_ohci *ohci = fw_ohci(card);

	at_context_transmit(&ohci->at_request_ctx, packet);
}

static void ohci_send_response(struct fw_card *card, struct fw_packet *packet)
{
	struct fw_ohci *ohci = fw_ohci(card);

	at_context_transmit(&ohci->at_response_ctx, packet);
}

1327 1328 1329
static int ohci_cancel_packet(struct fw_card *card, struct fw_packet *packet)
{
	struct fw_ohci *ohci = fw_ohci(card);
1330 1331 1332
	struct context *ctx = &ohci->at_request_ctx;
	struct driver_data *driver_data = packet->driver_data;
	int retval = -ENOENT;
1333

1334
	tasklet_disable(&ctx->tasklet);
1335

1336 1337
	if (packet->ack != 0)
		goto out;
1338

1339 1340 1341 1342
	driver_data->packet = NULL;
	packet->ack = RCODE_CANCELLED;
	packet->callback(packet, &ohci->card, packet->ack);
	retval = 0;
1343

1344 1345
 out:
	tasklet_enable(&ctx->tasklet);
1346

1347
	return retval;
1348 1349
}

1350 1351 1352 1353 1354
static int
ohci_enable_phys_dma(struct fw_card *card, int node_id, int generation)
{
	struct fw_ohci *ohci = fw_ohci(card);
	unsigned long flags;
1355
	int n, retval = 0;
1356

1357 1358 1359 1360
	/*
	 * FIXME:  Make sure this bitmask is cleared when we clear the busReset
	 * interrupt bit.  Clear physReqResourceAllBuses on bus reset.
	 */
1361 1362 1363 1364 1365 1366 1367 1368

	spin_lock_irqsave(&ohci->lock, flags);

	if (ohci->generation != generation) {
		retval = -ESTALE;
		goto out;
	}

1369 1370 1371 1372
	/*
	 * Note, if the node ID contains a non-local bus ID, physical DMA is
	 * enabled for _all_ nodes on remote buses.
	 */
1373 1374 1375 1376 1377 1378 1379

	n = (node_id & 0xffc0) == LOCAL_BUS ? node_id & 0x3f : 63;
	if (n < 32)
		reg_write(ohci, OHCI1394_PhyReqFilterLoSet, 1 << n);
	else
		reg_write(ohci, OHCI1394_PhyReqFilterHiSet, 1 << (n - 32));

1380 1381
	flush_writes(ohci);
 out:
1382
	spin_unlock_irqrestore(&ohci->lock, flags);
1383 1384
	return retval;
}
S
Stefan Richter 已提交
1385

1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398
static u64
ohci_get_bus_time(struct fw_card *card)
{
	struct fw_ohci *ohci = fw_ohci(card);
	u32 cycle_time;
	u64 bus_time;

	cycle_time = reg_read(ohci, OHCI1394_IsochronousCycleTimer);
	bus_time = ((u64) ohci->bus_seconds << 32) | cycle_time;

	return bus_time;
}

1399 1400 1401
static int handle_ir_dualbuffer_packet(struct context *context,
				       struct descriptor *d,
				       struct descriptor *last)
1402
{
1403 1404 1405
	struct iso_context *ctx =
		container_of(context, struct iso_context, context);
	struct db_descriptor *db = (struct db_descriptor *) d;
1406
	__le32 *ir_header;
1407
	size_t header_length;
1408 1409
	void *p, *end;
	int i;
1410

1411 1412 1413 1414
	if (db->first_res_count > 0 && db->second_res_count > 0)
		/* This descriptor isn't done yet, stop iteration. */
		return 0;

1415 1416 1417 1418 1419 1420 1421
	header_length = le16_to_cpu(db->first_req_count) -
		le16_to_cpu(db->first_res_count);

	i = ctx->header_length;
	p = db + 1;
	end = p + header_length;
	while (p < end && i + ctx->base.header_size <= PAGE_SIZE) {
1422 1423
		/*
		 * The iso header is byteswapped to little endian by
1424 1425 1426
		 * the controller, but the remaining header quadlets
		 * are big endian.  We want to present all the headers
		 * as big endian, so we have to swap the first
1427 1428
		 * quadlet.
		 */
1429 1430
		*(u32 *) (ctx->header + i) = __swab32(*(u32 *) (p + 4));
		memcpy(ctx->header + i + 4, p + 8, ctx->base.header_size - 4);
1431 1432 1433 1434 1435
		i += ctx->base.header_size;
		p += ctx->base.header_size + 4;
	}

	ctx->header_length = i;
1436

1437
	if (le16_to_cpu(db->control) & DESCRIPTOR_IRQ_ALWAYS) {
1438 1439 1440
		ir_header = (__le32 *) (db + 1);
		ctx->base.callback(&ctx->base,
				   le32_to_cpu(ir_header[0]) & 0xffff,
1441
				   ctx->header_length, ctx->header,
1442
				   ctx->base.callback_data);
1443 1444
		ctx->header_length = 0;
	}
1445

1446
	return 1;
1447 1448
}

1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499
static int handle_ir_packet_per_buffer(struct context *context,
				       struct descriptor *d,
				       struct descriptor *last)
{
	struct iso_context *ctx =
		container_of(context, struct iso_context, context);
	struct descriptor *pd = d + 1;
	__le32 *ir_header;
	size_t header_length;
	void *p, *end;
	int i, z;

	if (pd->res_count == pd->req_count)
		/* Descriptor(s) not done yet, stop iteration */
		return 0;

	header_length = le16_to_cpu(d->req_count);

	i   = ctx->header_length;
	z   = le32_to_cpu(pd->branch_address) & 0xf;
	p   = d + z;
	end = p + header_length;

	while (p < end && i + ctx->base.header_size <= PAGE_SIZE) {
		/*
		 * The iso header is byteswapped to little endian by
		 * the controller, but the remaining header quadlets
		 * are big endian.  We want to present all the headers
		 * as big endian, so we have to swap the first quadlet.
		 */
		*(u32 *) (ctx->header + i) = __swab32(*(u32 *) (p + 4));
		memcpy(ctx->header + i + 4, p + 8, ctx->base.header_size - 4);
		i += ctx->base.header_size;
		p += ctx->base.header_size + 4;
	}

	ctx->header_length = i;

	if (le16_to_cpu(pd->control) & DESCRIPTOR_IRQ_ALWAYS) {
		ir_header = (__le32 *) (d + z);
		ctx->base.callback(&ctx->base,
				   le32_to_cpu(ir_header[0]) & 0xffff,
				   ctx->header_length, ctx->header,
				   ctx->base.callback_data);
		ctx->header_length = 0;
	}


	return 1;
}

1500 1501 1502
static int handle_it_packet(struct context *context,
			    struct descriptor *d,
			    struct descriptor *last)
1503
{
1504 1505
	struct iso_context *ctx =
		container_of(context, struct iso_context, context);
S
Stefan Richter 已提交
1506

1507 1508 1509 1510
	if (last->transfer_status == 0)
		/* This descriptor isn't done yet, stop iteration. */
		return 0;

1511
	if (le16_to_cpu(last->control) & DESCRIPTOR_IRQ_ALWAYS)
1512 1513
		ctx->base.callback(&ctx->base, le16_to_cpu(last->res_count),
				   0, NULL, ctx->base.callback_data);
1514 1515

	return 1;
1516 1517
}

1518
static struct fw_iso_context *
1519
ohci_allocate_iso_context(struct fw_card *card, int type, size_t header_size)
1520 1521 1522
{
	struct fw_ohci *ohci = fw_ohci(card);
	struct iso_context *ctx, *list;
1523
	descriptor_callback_t callback;
1524
	u32 *mask, regs;
1525
	unsigned long flags;
1526
	int index, retval = -ENOMEM;
1527 1528 1529 1530

	if (type == FW_ISO_CONTEXT_TRANSMIT) {
		mask = &ohci->it_context_mask;
		list = ohci->it_context_list;
1531
		callback = handle_it_packet;
1532
	} else {
S
Stefan Richter 已提交
1533 1534
		mask = &ohci->ir_context_mask;
		list = ohci->ir_context_list;
1535 1536 1537 1538
		if (ohci->version >= OHCI_VERSION_1_1)
			callback = handle_ir_dualbuffer_packet;
		else
			callback = handle_ir_packet_per_buffer;
1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549
	}

	spin_lock_irqsave(&ohci->lock, flags);
	index = ffs(*mask) - 1;
	if (index >= 0)
		*mask &= ~(1 << index);
	spin_unlock_irqrestore(&ohci->lock, flags);

	if (index < 0)
		return ERR_PTR(-EBUSY);

S
Stefan Richter 已提交
1550 1551 1552 1553 1554
	if (type == FW_ISO_CONTEXT_TRANSMIT)
		regs = OHCI1394_IsoXmitContextBase(index);
	else
		regs = OHCI1394_IsoRcvContextBase(index);

1555
	ctx = &list[index];
1556
	memset(ctx, 0, sizeof(*ctx));
1557 1558 1559 1560 1561
	ctx->header_length = 0;
	ctx->header = (void *) __get_free_page(GFP_KERNEL);
	if (ctx->header == NULL)
		goto out;

1562
	retval = context_init(&ctx->context, ohci, ISO_BUFFER_SIZE,
1563
			      regs, callback);
1564 1565
	if (retval < 0)
		goto out_with_header;
1566 1567

	return &ctx->base;
1568 1569 1570 1571 1572 1573 1574 1575 1576

 out_with_header:
	free_page((unsigned long)ctx->header);
 out:
	spin_lock_irqsave(&ohci->lock, flags);
	*mask |= 1 << index;
	spin_unlock_irqrestore(&ohci->lock, flags);

	return ERR_PTR(retval);
1577 1578
}

1579 1580
static int ohci_start_iso(struct fw_iso_context *base,
			  s32 cycle, u32 sync, u32 tags)
1581
{
S
Stefan Richter 已提交
1582
	struct iso_context *ctx = container_of(base, struct iso_context, base);
1583
	struct fw_ohci *ohci = ctx->context.ohci;
1584
	u32 control, match;
1585 1586
	int index;

1587 1588
	if (ctx->base.type == FW_ISO_CONTEXT_TRANSMIT) {
		index = ctx - ohci->it_context_list;
1589 1590 1591
		match = 0;
		if (cycle >= 0)
			match = IT_CONTEXT_CYCLE_MATCH_ENABLE |
1592
				(cycle & 0x7fff) << 16;
1593

1594 1595
		reg_write(ohci, OHCI1394_IsoXmitIntEventClear, 1 << index);
		reg_write(ohci, OHCI1394_IsoXmitIntMaskSet, 1 << index);
1596
		context_run(&ctx->context, match);
1597 1598
	} else {
		index = ctx - ohci->ir_context_list;
1599 1600 1601
		control = IR_CONTEXT_ISOCH_HEADER;
		if (ohci->version >= OHCI_VERSION_1_1)
			control |= IR_CONTEXT_DUAL_BUFFER_MODE;
1602 1603 1604 1605 1606
		match = (tags << 28) | (sync << 8) | ctx->base.channel;
		if (cycle >= 0) {
			match |= (cycle & 0x07fff) << 12;
			control |= IR_CONTEXT_CYCLE_MATCH_ENABLE;
		}
1607

1608 1609
		reg_write(ohci, OHCI1394_IsoRecvIntEventClear, 1 << index);
		reg_write(ohci, OHCI1394_IsoRecvIntMaskSet, 1 << index);
1610
		reg_write(ohci, CONTEXT_MATCH(ctx->context.regs), match);
1611
		context_run(&ctx->context, control);
1612
	}
1613 1614 1615 1616

	return 0;
}

1617 1618 1619
static int ohci_stop_iso(struct fw_iso_context *base)
{
	struct fw_ohci *ohci = fw_ohci(base->card);
S
Stefan Richter 已提交
1620
	struct iso_context *ctx = container_of(base, struct iso_context, base);
1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635
	int index;

	if (ctx->base.type == FW_ISO_CONTEXT_TRANSMIT) {
		index = ctx - ohci->it_context_list;
		reg_write(ohci, OHCI1394_IsoXmitIntMaskClear, 1 << index);
	} else {
		index = ctx - ohci->ir_context_list;
		reg_write(ohci, OHCI1394_IsoRecvIntMaskClear, 1 << index);
	}
	flush_writes(ohci);
	context_stop(&ctx->context);

	return 0;
}

1636 1637 1638
static void ohci_free_iso_context(struct fw_iso_context *base)
{
	struct fw_ohci *ohci = fw_ohci(base->card);
S
Stefan Richter 已提交
1639
	struct iso_context *ctx = container_of(base, struct iso_context, base);
1640 1641 1642
	unsigned long flags;
	int index;

1643 1644
	ohci_stop_iso(base);
	context_release(&ctx->context);
1645
	free_page((unsigned long)ctx->header);
1646

1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660
	spin_lock_irqsave(&ohci->lock, flags);

	if (ctx->base.type == FW_ISO_CONTEXT_TRANSMIT) {
		index = ctx - ohci->it_context_list;
		ohci->it_context_mask |= 1 << index;
	} else {
		index = ctx - ohci->ir_context_list;
		ohci->ir_context_mask |= 1 << index;
	}

	spin_unlock_irqrestore(&ohci->lock, flags);
}

static int
1661 1662 1663 1664
ohci_queue_iso_transmit(struct fw_iso_context *base,
			struct fw_iso_packet *packet,
			struct fw_iso_buffer *buffer,
			unsigned long payload)
1665
{
S
Stefan Richter 已提交
1666
	struct iso_context *ctx = container_of(base, struct iso_context, base);
1667
	struct descriptor *d, *last, *pd;
1668 1669
	struct fw_iso_packet *p;
	__le32 *header;
1670
	dma_addr_t d_bus, page_bus;
1671 1672
	u32 z, header_z, payload_z, irq;
	u32 payload_index, payload_end_index, next_page_index;
1673
	int page, end_page, i, length, offset;
1674

1675 1676 1677 1678
	/*
	 * FIXME: Cycle lost behavior should be configurable: lose
	 * packet, retransmit or terminate..
	 */
1679 1680

	p = packet;
1681
	payload_index = payload;
1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699

	if (p->skip)
		z = 1;
	else
		z = 2;
	if (p->header_length > 0)
		z++;

	/* Determine the first page the payload isn't contained in. */
	end_page = PAGE_ALIGN(payload_index + p->payload_length) >> PAGE_SHIFT;
	if (p->payload_length > 0)
		payload_z = end_page - (payload_index >> PAGE_SHIFT);
	else
		payload_z = 0;

	z += payload_z;

	/* Get header size in number of descriptors. */
1700
	header_z = DIV_ROUND_UP(p->header_length, sizeof(*d));
1701

1702 1703 1704
	d = context_get_descriptors(&ctx->context, z + header_z, &d_bus);
	if (d == NULL)
		return -ENOMEM;
1705 1706

	if (!p->skip) {
1707
		d[0].control   = cpu_to_le16(DESCRIPTOR_KEY_IMMEDIATE);
1708 1709 1710
		d[0].req_count = cpu_to_le16(8);

		header = (__le32 *) &d[1];
1711 1712 1713 1714 1715
		header[0] = cpu_to_le32(IT_HEADER_SY(p->sy) |
					IT_HEADER_TAG(p->tag) |
					IT_HEADER_TCODE(TCODE_STREAM_DATA) |
					IT_HEADER_CHANNEL(ctx->base.channel) |
					IT_HEADER_SPEED(ctx->base.speed));
1716
		header[1] =
1717
			cpu_to_le32(IT_HEADER_DATA_LENGTH(p->header_length +
1718 1719 1720 1721 1722
							  p->payload_length));
	}

	if (p->header_length > 0) {
		d[2].req_count    = cpu_to_le16(p->header_length);
1723
		d[2].data_address = cpu_to_le32(d_bus + z * sizeof(*d));
1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735
		memcpy(&d[z], p->header, p->header_length);
	}

	pd = d + z - payload_z;
	payload_end_index = payload_index + p->payload_length;
	for (i = 0; i < payload_z; i++) {
		page               = payload_index >> PAGE_SHIFT;
		offset             = payload_index & ~PAGE_MASK;
		next_page_index    = (page + 1) << PAGE_SHIFT;
		length             =
			min(next_page_index, payload_end_index) - payload_index;
		pd[i].req_count    = cpu_to_le16(length);
1736 1737 1738

		page_bus = page_private(buffer->pages[page]);
		pd[i].data_address = cpu_to_le32(page_bus + offset);
1739 1740 1741 1742 1743

		payload_index += length;
	}

	if (p->interrupt)
1744
		irq = DESCRIPTOR_IRQ_ALWAYS;
1745
	else
1746
		irq = DESCRIPTOR_NO_IRQ;
1747

1748
	last = z == 2 ? d : d + z - 1;
1749 1750 1751
	last->control |= cpu_to_le16(DESCRIPTOR_OUTPUT_LAST |
				     DESCRIPTOR_STATUS |
				     DESCRIPTOR_BRANCH_ALWAYS |
1752
				     irq);
1753

1754
	context_append(&ctx->context, d, z, header_z);
1755 1756 1757

	return 0;
}
S
Stefan Richter 已提交
1758

1759
static int
1760 1761 1762 1763
ohci_queue_iso_receive_dualbuffer(struct fw_iso_context *base,
				  struct fw_iso_packet *packet,
				  struct fw_iso_buffer *buffer,
				  unsigned long payload)
1764 1765 1766 1767 1768 1769 1770
{
	struct iso_context *ctx = container_of(base, struct iso_context, base);
	struct db_descriptor *db = NULL;
	struct descriptor *d;
	struct fw_iso_packet *p;
	dma_addr_t d_bus, page_bus;
	u32 z, header_z, length, rest;
1771
	int page, offset, packet_count, header_size;
S
Stefan Richter 已提交
1772

1773 1774 1775 1776
	/*
	 * FIXME: Cycle lost behavior should be configurable: lose
	 * packet, retransmit or terminate..
	 */
1777

1778 1779 1780 1781 1782 1783
	if (packet->skip) {
		d = context_get_descriptors(&ctx->context, 2, &d_bus);
		if (d == NULL)
			return -ENOMEM;

		db = (struct db_descriptor *) d;
1784 1785 1786
		db->control = cpu_to_le16(DESCRIPTOR_STATUS |
					  DESCRIPTOR_BRANCH_ALWAYS |
					  DESCRIPTOR_WAIT);
1787 1788 1789
		db->first_size = cpu_to_le16(ctx->base.header_size + 4);
		context_append(&ctx->context, d, 2, 0);
	}
1790

1791 1792 1793
	p = packet;
	z = 2;

1794 1795 1796 1797
	/*
	 * The OHCI controller puts the status word in the header
	 * buffer too, so we need 4 extra bytes per packet.
	 */
1798 1799 1800
	packet_count = p->header_length / ctx->base.header_size;
	header_size = packet_count * (ctx->base.header_size + 4);

1801
	/* Get header size in number of descriptors. */
1802
	header_z = DIV_ROUND_UP(header_size, sizeof(*d));
1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814
	page     = payload >> PAGE_SHIFT;
	offset   = payload & ~PAGE_MASK;
	rest     = p->payload_length;

	/* FIXME: make packet-per-buffer/dual-buffer a context option */
	while (rest > 0) {
		d = context_get_descriptors(&ctx->context,
					    z + header_z, &d_bus);
		if (d == NULL)
			return -ENOMEM;

		db = (struct db_descriptor *) d;
1815 1816
		db->control = cpu_to_le16(DESCRIPTOR_STATUS |
					  DESCRIPTOR_BRANCH_ALWAYS);
1817 1818
		db->first_size = cpu_to_le16(ctx->base.header_size + 4);
		db->first_req_count = cpu_to_le16(header_size);
1819
		db->first_res_count = db->first_req_count;
1820
		db->first_buffer = cpu_to_le32(d_bus + sizeof(*db));
S
Stefan Richter 已提交
1821

1822 1823 1824 1825 1826
		if (offset + rest < PAGE_SIZE)
			length = rest;
		else
			length = PAGE_SIZE - offset;

1827 1828
		db->second_req_count = cpu_to_le16(length);
		db->second_res_count = db->second_req_count;
1829 1830 1831
		page_bus = page_private(buffer->pages[page]);
		db->second_buffer = cpu_to_le32(page_bus + offset);

1832
		if (p->interrupt && length == rest)
1833
			db->control |= cpu_to_le16(DESCRIPTOR_IRQ_ALWAYS);
1834

1835 1836 1837 1838 1839 1840
		context_append(&ctx->context, d, z, header_z);
		offset = (offset + length) & ~PAGE_MASK;
		rest -= length;
		page++;
	}

1841 1842
	return 0;
}
1843

1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918
static int
ohci_queue_iso_receive_packet_per_buffer(struct fw_iso_context *base,
					 struct fw_iso_packet *packet,
					 struct fw_iso_buffer *buffer,
					 unsigned long payload)
{
	struct iso_context *ctx = container_of(base, struct iso_context, base);
	struct descriptor *d = NULL, *pd = NULL;
	struct fw_iso_packet *p;
	dma_addr_t d_bus, page_bus;
	u32 z, header_z, rest;
	int i, page, offset, packet_count, header_size;

	if (packet->skip) {
		d = context_get_descriptors(&ctx->context, 1, &d_bus);
		if (d == NULL)
			return -ENOMEM;

		d->control = cpu_to_le16(DESCRIPTOR_STATUS |
					 DESCRIPTOR_INPUT_LAST |
					 DESCRIPTOR_BRANCH_ALWAYS |
					 DESCRIPTOR_WAIT);
		context_append(&ctx->context, d, 1, 0);
	}

	/* one descriptor for header, one for payload */
	/* FIXME: handle cases where we need multiple desc. for payload */
	z = 2;
	p = packet;

	/*
	 * The OHCI controller puts the status word in the
	 * buffer too, so we need 4 extra bytes per packet.
	 */
	packet_count = p->header_length / ctx->base.header_size;
	header_size  = packet_count * (ctx->base.header_size + 4);

	/* Get header size in number of descriptors. */
	header_z = DIV_ROUND_UP(header_size, sizeof(*d));
	page     = payload >> PAGE_SHIFT;
	offset   = payload & ~PAGE_MASK;
	rest     = p->payload_length;

	for (i = 0; i < packet_count; i++) {
		/* d points to the header descriptor */
		d = context_get_descriptors(&ctx->context,
					    z + header_z, &d_bus);
		if (d == NULL)
			return -ENOMEM;

		d->control      = cpu_to_le16(DESCRIPTOR_INPUT_MORE);
		d->req_count    = cpu_to_le16(header_size);
		d->res_count    = d->req_count;
		d->data_address = cpu_to_le32(d_bus + (z * sizeof(*d)));

		/* pd points to the payload descriptor */
		pd = d + 1;
		pd->control = cpu_to_le16(DESCRIPTOR_STATUS |
					  DESCRIPTOR_INPUT_LAST |
					  DESCRIPTOR_BRANCH_ALWAYS);
		if (p->interrupt)
			pd->control |= cpu_to_le16(DESCRIPTOR_IRQ_ALWAYS);

		pd->req_count = cpu_to_le16(rest);
		pd->res_count = pd->req_count;

		page_bus = page_private(buffer->pages[page]);
		pd->data_address = cpu_to_le32(page_bus + offset);

		context_append(&ctx->context, d, z, header_z);
	}

	return 0;
}

1919 1920 1921 1922 1923 1924
static int
ohci_queue_iso(struct fw_iso_context *base,
	       struct fw_iso_packet *packet,
	       struct fw_iso_buffer *buffer,
	       unsigned long payload)
{
1925 1926
	struct iso_context *ctx = container_of(base, struct iso_context, base);

1927 1928
	if (base->type == FW_ISO_CONTEXT_TRANSMIT)
		return ohci_queue_iso_transmit(base, packet, buffer, payload);
1929
	else if (ctx->context.ohci->version >= OHCI_VERSION_1_1)
1930 1931
		return ohci_queue_iso_receive_dualbuffer(base, packet,
							 buffer, payload);
1932
	else
1933 1934 1935
		return ohci_queue_iso_receive_packet_per_buffer(base, packet,
								buffer,
								payload);
1936 1937
}

1938
static const struct fw_card_driver ohci_driver = {
1939 1940 1941 1942 1943 1944
	.name			= ohci_driver_name,
	.enable			= ohci_enable,
	.update_phy_reg		= ohci_update_phy_reg,
	.set_config_rom		= ohci_set_config_rom,
	.send_request		= ohci_send_request,
	.send_response		= ohci_send_response,
1945
	.cancel_packet		= ohci_cancel_packet,
1946
	.enable_phys_dma	= ohci_enable_phys_dma,
1947
	.get_bus_time		= ohci_get_bus_time,
1948 1949 1950 1951

	.allocate_iso_context	= ohci_allocate_iso_context,
	.free_iso_context	= ohci_free_iso_context,
	.queue_iso		= ohci_queue_iso,
1952
	.start_iso		= ohci_start_iso,
1953
	.stop_iso		= ohci_stop_iso,
1954 1955 1956 1957 1958 1959
};

static int __devinit
pci_probe(struct pci_dev *dev, const struct pci_device_id *ent)
{
	struct fw_ohci *ohci;
1960
	u32 bus_options, max_receive, link_speed;
1961
	u64 guid;
1962
	int err;
1963 1964
	size_t size;

1965
	ohci = kzalloc(sizeof(*ohci), GFP_KERNEL);
1966 1967 1968 1969 1970 1971 1972
	if (ohci == NULL) {
		fw_error("Could not malloc fw_ohci data.\n");
		return -ENOMEM;
	}

	fw_card_initialize(&ohci->card, &ohci_driver, &dev->dev);

1973 1974
	err = pci_enable_device(dev);
	if (err) {
1975
		fw_error("Failed to enable OHCI hardware.\n");
1976
		goto fail_put_card;
1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987
	}

	pci_set_master(dev);
	pci_write_config_dword(dev, OHCI1394_PCI_HCI_Control, 0);
	pci_set_drvdata(dev, ohci);

	spin_lock_init(&ohci->lock);

	tasklet_init(&ohci->bus_reset_tasklet,
		     bus_reset_tasklet, (unsigned long)ohci);

1988 1989
	err = pci_request_region(dev, 0, ohci_driver_name);
	if (err) {
1990
		fw_error("MMIO resource unavailable\n");
1991
		goto fail_disable;
1992 1993 1994 1995 1996
	}

	ohci->registers = pci_iomap(dev, 0, OHCI1394_REGISTER_SIZE);
	if (ohci->registers == NULL) {
		fw_error("Failed to remap registers\n");
1997 1998
		err = -ENXIO;
		goto fail_iomem;
1999 2000 2001 2002 2003 2004 2005 2006
	}

	ar_context_init(&ohci->ar_request_ctx, ohci,
			OHCI1394_AsReqRcvContextControlSet);

	ar_context_init(&ohci->ar_response_ctx, ohci,
			OHCI1394_AsRspRcvContextControlSet);

2007 2008
	context_init(&ohci->at_request_ctx, ohci, AT_BUFFER_SIZE,
		     OHCI1394_AsReqTrContextControlSet, handle_at_packet);
2009

2010 2011
	context_init(&ohci->at_response_ctx, ohci, AT_BUFFER_SIZE,
		     OHCI1394_AsRspTrContextControlSet, handle_at_packet);
2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026

	reg_write(ohci, OHCI1394_IsoRecvIntMaskSet, ~0);
	ohci->it_context_mask = reg_read(ohci, OHCI1394_IsoRecvIntMaskSet);
	reg_write(ohci, OHCI1394_IsoRecvIntMaskClear, ~0);
	size = sizeof(struct iso_context) * hweight32(ohci->it_context_mask);
	ohci->it_context_list = kzalloc(size, GFP_KERNEL);

	reg_write(ohci, OHCI1394_IsoXmitIntMaskSet, ~0);
	ohci->ir_context_mask = reg_read(ohci, OHCI1394_IsoXmitIntMaskSet);
	reg_write(ohci, OHCI1394_IsoXmitIntMaskClear, ~0);
	size = sizeof(struct iso_context) * hweight32(ohci->ir_context_mask);
	ohci->ir_context_list = kzalloc(size, GFP_KERNEL);

	if (ohci->it_context_list == NULL || ohci->ir_context_list == NULL) {
		fw_error("Out of memory for it/ir contexts.\n");
2027 2028
		err = -ENOMEM;
		goto fail_registers;
2029 2030 2031 2032 2033 2034 2035 2036 2037
	}

	/* self-id dma buffer allocation */
	ohci->self_id_cpu = dma_alloc_coherent(ohci->card.device,
					       SELF_ID_BUF_SIZE,
					       &ohci->self_id_bus,
					       GFP_KERNEL);
	if (ohci->self_id_cpu == NULL) {
		fw_error("Out of memory for self ID buffer.\n");
2038 2039
		err = -ENOMEM;
		goto fail_registers;
2040 2041 2042 2043 2044 2045 2046 2047
	}

	bus_options = reg_read(ohci, OHCI1394_BusOptions);
	max_receive = (bus_options >> 12) & 0xf;
	link_speed = bus_options & 0x7;
	guid = ((u64) reg_read(ohci, OHCI1394_GUIDHi) << 32) |
		reg_read(ohci, OHCI1394_GUIDLo);

2048 2049 2050
	err = fw_card_add(&ohci->card, max_receive, link_speed, guid);
	if (err < 0)
		goto fail_self_id;
2051

2052
	ohci->version = reg_read(ohci, OHCI1394_Version) & 0x00ff00ff;
2053
	fw_notify("Added fw-ohci device %s, OHCI version %x.%x\n",
2054
		  dev->dev.bus_id, ohci->version >> 16, ohci->version & 0xff);
2055
	return 0;
2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071

 fail_self_id:
	dma_free_coherent(ohci->card.device, SELF_ID_BUF_SIZE,
			  ohci->self_id_cpu, ohci->self_id_bus);
 fail_registers:
	kfree(ohci->it_context_list);
	kfree(ohci->ir_context_list);
	pci_iounmap(dev, ohci->registers);
 fail_iomem:
	pci_release_region(dev, 0);
 fail_disable:
	pci_disable_device(dev);
 fail_put_card:
	fw_card_put(&ohci->card);

	return err;
2072 2073 2074 2075 2076 2077 2078
}

static void pci_remove(struct pci_dev *dev)
{
	struct fw_ohci *ohci;

	ohci = pci_get_drvdata(dev);
2079 2080
	reg_write(ohci, OHCI1394_IntMaskClear, ~0);
	flush_writes(ohci);
2081 2082
	fw_core_remove_card(&ohci->card);

2083 2084 2085 2086
	/*
	 * FIXME: Fail all pending packets here, now that the upper
	 * layers can't queue any more.
	 */
2087 2088 2089

	software_reset(ohci);
	free_irq(dev->irq, ohci);
2090 2091 2092 2093 2094 2095 2096 2097
	dma_free_coherent(ohci->card.device, SELF_ID_BUF_SIZE,
			  ohci->self_id_cpu, ohci->self_id_bus);
	kfree(ohci->it_context_list);
	kfree(ohci->ir_context_list);
	pci_iounmap(dev, ohci->registers);
	pci_release_region(dev, 0);
	pci_disable_device(dev);
	fw_card_put(&ohci->card);
2098 2099 2100 2101

	fw_notify("Removed fw-ohci device.\n");
}

2102 2103 2104 2105 2106 2107 2108 2109 2110 2111
#ifdef CONFIG_PM
static int pci_suspend(struct pci_dev *pdev, pm_message_t state)
{
	struct fw_ohci *ohci = pci_get_drvdata(pdev);
	int err;

	software_reset(ohci);
	free_irq(pdev->irq, ohci);
	err = pci_save_state(pdev);
	if (err) {
2112
		fw_error("pci_save_state failed\n");
2113 2114 2115
		return err;
	}
	err = pci_set_power_state(pdev, pci_choose_state(pdev, state));
2116 2117
	if (err)
		fw_error("pci_set_power_state failed with %d\n", err);
2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130

	return 0;
}

static int pci_resume(struct pci_dev *pdev)
{
	struct fw_ohci *ohci = pci_get_drvdata(pdev);
	int err;

	pci_set_power_state(pdev, PCI_D0);
	pci_restore_state(pdev);
	err = pci_enable_device(pdev);
	if (err) {
2131
		fw_error("pci_enable_device failed\n");
2132 2133 2134
		return err;
	}

2135
	return ohci_enable(&ohci->card, NULL, 0);
2136 2137 2138
}
#endif

2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150
static struct pci_device_id pci_table[] = {
	{ PCI_DEVICE_CLASS(PCI_CLASS_SERIAL_FIREWIRE_OHCI, ~0) },
	{ }
};

MODULE_DEVICE_TABLE(pci, pci_table);

static struct pci_driver fw_ohci_pci_driver = {
	.name		= ohci_driver_name,
	.id_table	= pci_table,
	.probe		= pci_probe,
	.remove		= pci_remove,
2151 2152 2153 2154
#ifdef CONFIG_PM
	.resume		= pci_resume,
	.suspend	= pci_suspend,
#endif
2155 2156 2157 2158 2159 2160
};

MODULE_AUTHOR("Kristian Hoegsberg <krh@bitplanet.net>");
MODULE_DESCRIPTION("Driver for PCI OHCI IEEE1394 controllers");
MODULE_LICENSE("GPL");

2161 2162 2163 2164 2165
/* Provide a module alias so root-on-sbp2 initrds don't break. */
#ifndef CONFIG_IEEE1394_OHCI1394_MODULE
MODULE_ALIAS("ohci1394");
#endif

2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177
static int __init fw_ohci_init(void)
{
	return pci_register_driver(&fw_ohci_pci_driver);
}

static void __exit fw_ohci_cleanup(void)
{
	pci_unregister_driver(&fw_ohci_pci_driver);
}

module_init(fw_ohci_init);
module_exit(fw_ohci_cleanup);