fw-ohci.c 60.9 KB
Newer Older
1 2
/*
 * Driver for OHCI 1394 controllers
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
 *
 * Copyright (C) 2003-2006 Kristian Hoegsberg <krh@bitplanet.net>
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software Foundation,
 * Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
 */

21
#include <linux/compiler.h>
22
#include <linux/delay.h>
A
Andrew Morton 已提交
23
#include <linux/dma-mapping.h>
S
Stefan Richter 已提交
24
#include <linux/gfp.h>
25 26 27
#include <linux/init.h>
#include <linux/interrupt.h>
#include <linux/kernel.h>
A
Al Viro 已提交
28
#include <linux/mm.h>
29 30
#include <linux/module.h>
#include <linux/pci.h>
S
Stefan Richter 已提交
31
#include <linux/spinlock.h>
A
Andrew Morton 已提交
32

S
Stefan Richter 已提交
33
#include <asm/page.h>
34
#include <asm/system.h>
35 36

#include "fw-ohci.h"
37
#include "fw-transaction.h"
38

39 40 41 42 43 44 45 46 47 48 49 50 51
#define DESCRIPTOR_OUTPUT_MORE		0
#define DESCRIPTOR_OUTPUT_LAST		(1 << 12)
#define DESCRIPTOR_INPUT_MORE		(2 << 12)
#define DESCRIPTOR_INPUT_LAST		(3 << 12)
#define DESCRIPTOR_STATUS		(1 << 11)
#define DESCRIPTOR_KEY_IMMEDIATE	(2 << 8)
#define DESCRIPTOR_PING			(1 << 7)
#define DESCRIPTOR_YY			(1 << 6)
#define DESCRIPTOR_NO_IRQ		(0 << 4)
#define DESCRIPTOR_IRQ_ERROR		(1 << 4)
#define DESCRIPTOR_IRQ_ALWAYS		(3 << 4)
#define DESCRIPTOR_BRANCH_ALWAYS	(3 << 2)
#define DESCRIPTOR_WAIT			(3 << 0)
52 53 54 55 56 57 58 59 60 61

struct descriptor {
	__le16 req_count;
	__le16 control;
	__le32 data_address;
	__le32 branch_address;
	__le16 res_count;
	__le16 transfer_status;
} __attribute__((aligned(16)));

62 63 64 65 66 67 68 69 70 71 72 73 74 75
struct db_descriptor {
	__le16 first_size;
	__le16 control;
	__le16 second_req_count;
	__le16 first_req_count;
	__le32 branch_address;
	__le16 second_res_count;
	__le16 first_res_count;
	__le32 reserved0;
	__le32 first_buffer;
	__le32 second_buffer;
	__le32 reserved1;
} __attribute__((aligned(16)));

76 77 78 79
#define CONTROL_SET(regs)	(regs)
#define CONTROL_CLEAR(regs)	((regs) + 4)
#define COMMAND_PTR(regs)	((regs) + 12)
#define CONTEXT_MATCH(regs)	((regs) + 16)
80

81
struct ar_buffer {
82
	struct descriptor descriptor;
83 84 85
	struct ar_buffer *next;
	__le32 data[0];
};
86

87 88 89 90 91
struct ar_context {
	struct fw_ohci *ohci;
	struct ar_buffer *current_buffer;
	struct ar_buffer *last_buffer;
	void *pointer;
92
	u32 regs;
93 94 95
	struct tasklet_struct tasklet;
};

96 97 98 99 100
struct context;

typedef int (*descriptor_callback_t)(struct context *ctx,
				     struct descriptor *d,
				     struct descriptor *last);
101 102 103 104 105 106 107 108 109 110 111 112 113

/*
 * A buffer that contains a block of DMA-able coherent memory used for
 * storing a portion of a DMA descriptor program.
 */
struct descriptor_buffer {
	struct list_head list;
	dma_addr_t buffer_bus;
	size_t buffer_size;
	size_t used;
	struct descriptor buffer[0];
};

114
struct context {
S
Stefan Richter 已提交
115
	struct fw_ohci *ohci;
116
	u32 regs;
117
	int total_allocation;
S
Stefan Richter 已提交
118

119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142
	/*
	 * List of page-sized buffers for storing DMA descriptors.
	 * Head of list contains buffers in use and tail of list contains
	 * free buffers.
	 */
	struct list_head buffer_list;

	/*
	 * Pointer to a buffer inside buffer_list that contains the tail
	 * end of the current DMA program.
	 */
	struct descriptor_buffer *buffer_tail;

	/*
	 * The descriptor containing the branch address of the first
	 * descriptor that has not yet been filled by the device.
	 */
	struct descriptor *last;

	/*
	 * The last descriptor in the DMA program.  It contains the branch
	 * address that must be updated upon appending a new descriptor.
	 */
	struct descriptor *prev;
143 144 145

	descriptor_callback_t callback;

S
Stefan Richter 已提交
146
	struct tasklet_struct tasklet;
147 148
};

149 150 151 152 153 154
#define IT_HEADER_SY(v)          ((v) <<  0)
#define IT_HEADER_TCODE(v)       ((v) <<  4)
#define IT_HEADER_CHANNEL(v)     ((v) <<  8)
#define IT_HEADER_TAG(v)         ((v) << 14)
#define IT_HEADER_SPEED(v)       ((v) << 16)
#define IT_HEADER_DATA_LENGTH(v) ((v) << 16)
155 156 157

struct iso_context {
	struct fw_iso_context base;
158
	struct context context;
159
	int excess_bytes;
160 161
	void *header;
	size_t header_length;
162 163 164 165 166 167 168
};

#define CONFIG_ROM_SIZE 1024

struct fw_ohci {
	struct fw_card card;

169
	u32 version;
170 171 172 173
	__iomem char *registers;
	dma_addr_t self_id_bus;
	__le32 *self_id_cpu;
	struct tasklet_struct bus_reset_tasklet;
174
	int node_id;
175 176
	int generation;
	int request_generation;
177
	u32 bus_seconds;
178

179 180 181 182
	/*
	 * Spinlock for accessing fw_ohci data.  Never call out of
	 * this driver with this lock held.
	 */
183 184 185 186 187 188 189 190 191 192 193 194
	spinlock_t lock;
	u32 self_id_buffer[512];

	/* Config rom buffers */
	__be32 *config_rom;
	dma_addr_t config_rom_bus;
	__be32 *next_config_rom;
	dma_addr_t next_config_rom_bus;
	u32 next_header;

	struct ar_context ar_request_ctx;
	struct ar_context ar_response_ctx;
195 196
	struct context at_request_ctx;
	struct context at_response_ctx;
197 198 199 200 201 202 203

	u32 it_context_mask;
	struct iso_context *it_context_list;
	u32 ir_context_mask;
	struct iso_context *ir_context_list;
};

A
Adrian Bunk 已提交
204
static inline struct fw_ohci *fw_ohci(struct fw_card *card)
205 206 207 208
{
	return container_of(card, struct fw_ohci, card);
}

209 210 211 212 213 214
#define IT_CONTEXT_CYCLE_MATCH_ENABLE	0x80000000
#define IR_CONTEXT_BUFFER_FILL		0x80000000
#define IR_CONTEXT_ISOCH_HEADER		0x40000000
#define IR_CONTEXT_CYCLE_MATCH_ENABLE	0x20000000
#define IR_CONTEXT_MULTI_CHANNEL_MODE	0x10000000
#define IR_CONTEXT_DUAL_BUFFER_MODE	0x08000000
215 216 217 218 219 220 221 222 223 224 225 226 227 228 229

#define CONTEXT_RUN	0x8000
#define CONTEXT_WAKE	0x1000
#define CONTEXT_DEAD	0x0800
#define CONTEXT_ACTIVE	0x0400

#define OHCI1394_MAX_AT_REQ_RETRIES	0x2
#define OHCI1394_MAX_AT_RESP_RETRIES	0x2
#define OHCI1394_MAX_PHYS_RESP_RETRIES	0x8

#define FW_OHCI_MAJOR			240
#define OHCI1394_REGISTER_SIZE		0x800
#define OHCI_LOOP_COUNT			500
#define OHCI1394_PCI_HCI_Control	0x40
#define SELF_ID_BUF_SIZE		0x800
230
#define OHCI_TCODE_PHY_PACKET		0x0e
231
#define OHCI_VERSION_1_1		0x010010
232

233 234
static char ohci_driver_name[] = KBUILD_MODNAME;

A
Adrian Bunk 已提交
235
static inline void reg_write(const struct fw_ohci *ohci, int offset, u32 data)
236 237 238 239
{
	writel(data, ohci->registers + offset);
}

A
Adrian Bunk 已提交
240
static inline u32 reg_read(const struct fw_ohci *ohci, int offset)
241 242 243 244
{
	return readl(ohci->registers + offset);
}

A
Adrian Bunk 已提交
245
static inline void flush_writes(const struct fw_ohci *ohci)
246 247 248 249 250 251 252 253 254 255 256 257 258
{
	/* Do a dummy read to flush writes. */
	reg_read(ohci, OHCI1394_Version);
}

static int
ohci_update_phy_reg(struct fw_card *card, int addr,
		    int clear_bits, int set_bits)
{
	struct fw_ohci *ohci = fw_ohci(card);
	u32 val, old;

	reg_write(ohci, OHCI1394_PhyControl, OHCI1394_PhyControl_Read(addr));
259
	flush_writes(ohci);
260 261 262 263 264 265 266 267 268 269 270 271 272 273 274
	msleep(2);
	val = reg_read(ohci, OHCI1394_PhyControl);
	if ((val & OHCI1394_PhyControl_ReadDone) == 0) {
		fw_error("failed to set phy reg bits.\n");
		return -EBUSY;
	}

	old = OHCI1394_PhyControl_ReadData(val);
	old = (old & ~clear_bits) | set_bits;
	reg_write(ohci, OHCI1394_PhyControl,
		  OHCI1394_PhyControl_Write(addr, old));

	return 0;
}

275
static int ar_context_add_page(struct ar_context *ctx)
276
{
277 278 279 280 281 282 283 284 285 286 287 288 289 290 291
	struct device *dev = ctx->ohci->card.device;
	struct ar_buffer *ab;
	dma_addr_t ab_bus;
	size_t offset;

	ab = (struct ar_buffer *) __get_free_page(GFP_ATOMIC);
	if (ab == NULL)
		return -ENOMEM;

	ab_bus = dma_map_single(dev, ab, PAGE_SIZE, DMA_BIDIRECTIONAL);
	if (dma_mapping_error(ab_bus)) {
		free_page((unsigned long) ab);
		return -ENOMEM;
	}

292
	memset(&ab->descriptor, 0, sizeof(ab->descriptor));
293 294 295
	ab->descriptor.control        = cpu_to_le16(DESCRIPTOR_INPUT_MORE |
						    DESCRIPTOR_STATUS |
						    DESCRIPTOR_BRANCH_ALWAYS);
296 297 298 299 300 301 302 303
	offset = offsetof(struct ar_buffer, data);
	ab->descriptor.req_count      = cpu_to_le16(PAGE_SIZE - offset);
	ab->descriptor.data_address   = cpu_to_le32(ab_bus + offset);
	ab->descriptor.res_count      = cpu_to_le16(PAGE_SIZE - offset);
	ab->descriptor.branch_address = 0;

	dma_sync_single_for_device(dev, ab_bus, PAGE_SIZE, DMA_BIDIRECTIONAL);

304
	ctx->last_buffer->descriptor.branch_address = cpu_to_le32(ab_bus | 1);
305 306 307
	ctx->last_buffer->next = ab;
	ctx->last_buffer = ab;

308
	reg_write(ctx->ohci, CONTROL_SET(ctx->regs), CONTEXT_WAKE);
309
	flush_writes(ctx->ohci);
310 311

	return 0;
312 313
}

314
static __le32 *handle_ar_packet(struct ar_context *ctx, __le32 *buffer)
315 316
{
	struct fw_ohci *ohci = ctx->ohci;
317 318 319
	struct fw_packet p;
	u32 status, length, tcode;

320 321 322
	p.header[0] = le32_to_cpu(buffer[0]);
	p.header[1] = le32_to_cpu(buffer[1]);
	p.header[2] = le32_to_cpu(buffer[2]);
323 324 325 326 327

	tcode = (p.header[0] >> 4) & 0x0f;
	switch (tcode) {
	case TCODE_WRITE_QUADLET_REQUEST:
	case TCODE_READ_QUADLET_RESPONSE:
328
		p.header[3] = (__force __u32) buffer[3];
329
		p.header_length = 16;
330
		p.payload_length = 0;
331 332 333
		break;

	case TCODE_READ_BLOCK_REQUEST :
334 335 336 337 338 339
		p.header[3] = le32_to_cpu(buffer[3]);
		p.header_length = 16;
		p.payload_length = 0;
		break;

	case TCODE_WRITE_BLOCK_REQUEST:
340 341 342
	case TCODE_READ_BLOCK_RESPONSE:
	case TCODE_LOCK_REQUEST:
	case TCODE_LOCK_RESPONSE:
343
		p.header[3] = le32_to_cpu(buffer[3]);
344
		p.header_length = 16;
345
		p.payload_length = p.header[3] >> 16;
346 347 348 349
		break;

	case TCODE_WRITE_RESPONSE:
	case TCODE_READ_QUADLET_REQUEST:
350
	case OHCI_TCODE_PHY_PACKET:
351
		p.header_length = 12;
352
		p.payload_length = 0;
353 354
		break;
	}
355

356 357 358 359 360 361 362 363 364 365
	p.payload = (void *) buffer + p.header_length;

	/* FIXME: What to do about evt_* errors? */
	length = (p.header_length + p.payload_length + 3) / 4;
	status = le32_to_cpu(buffer[length]);

	p.ack        = ((status >> 16) & 0x1f) - 16;
	p.speed      = (status >> 21) & 0x7;
	p.timestamp  = status & 0xffff;
	p.generation = ohci->request_generation;
366

367 368
	/*
	 * The OHCI bus reset handler synthesizes a phy packet with
369 370 371 372 373
	 * the new generation number when a bus reset happens (see
	 * section 8.4.2.3).  This helps us determine when a request
	 * was received and make sure we send the response in the same
	 * generation.  We only need this for requests; for responses
	 * we use the unique tlabel for finding the matching
374 375
	 * request.
	 */
376

377
	if (p.ack + 16 == 0x09)
S
Stefan Richter 已提交
378
		ohci->request_generation = (p.header[2] >> 16) & 0xff;
379
	else if (ctx == &ohci->ar_request_ctx)
380
		fw_core_handle_request(&ohci->card, &p);
381
	else
382
		fw_core_handle_response(&ohci->card, &p);
383

384 385
	return buffer + length + 1;
}
386

387 388 389 390 391 392 393 394 395 396 397 398 399 400
static void ar_context_tasklet(unsigned long data)
{
	struct ar_context *ctx = (struct ar_context *)data;
	struct fw_ohci *ohci = ctx->ohci;
	struct ar_buffer *ab;
	struct descriptor *d;
	void *buffer, *end;

	ab = ctx->current_buffer;
	d = &ab->descriptor;

	if (d->res_count == 0) {
		size_t size, rest, offset;

401 402
		/*
		 * This descriptor is finished and we may have a
403
		 * packet split across this and the next buffer. We
404 405
		 * reuse the page for reassembling the split packet.
		 */
406 407 408

		offset = offsetof(struct ar_buffer, data);
		dma_unmap_single(ohci->card.device,
409 410
			le32_to_cpu(ab->descriptor.data_address) - offset,
			PAGE_SIZE, DMA_BIDIRECTIONAL);
411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435

		buffer = ab;
		ab = ab->next;
		d = &ab->descriptor;
		size = buffer + PAGE_SIZE - ctx->pointer;
		rest = le16_to_cpu(d->req_count) - le16_to_cpu(d->res_count);
		memmove(buffer, ctx->pointer, size);
		memcpy(buffer + size, ab->data, rest);
		ctx->current_buffer = ab;
		ctx->pointer = (void *) ab->data + rest;
		end = buffer + size + rest;

		while (buffer < end)
			buffer = handle_ar_packet(ctx, buffer);

		free_page((unsigned long)buffer);
		ar_context_add_page(ctx);
	} else {
		buffer = ctx->pointer;
		ctx->pointer = end =
			(void *) ab + PAGE_SIZE - le16_to_cpu(d->res_count);

		while (buffer < end)
			buffer = handle_ar_packet(ctx, buffer);
	}
436 437 438
}

static int
439
ar_context_init(struct ar_context *ctx, struct fw_ohci *ohci, u32 regs)
440
{
441
	struct ar_buffer ab;
442

443 444 445
	ctx->regs        = regs;
	ctx->ohci        = ohci;
	ctx->last_buffer = &ab;
446 447
	tasklet_init(&ctx->tasklet, ar_context_tasklet, (unsigned long)ctx);

448 449 450 451 452
	ar_context_add_page(ctx);
	ar_context_add_page(ctx);
	ctx->current_buffer = ab.next;
	ctx->pointer = ctx->current_buffer->data;

453 454 455 456 457 458 459 460 461 462
	return 0;
}

static void ar_context_run(struct ar_context *ctx)
{
	struct ar_buffer *ab = ctx->current_buffer;
	dma_addr_t ab_bus;
	size_t offset;

	offset = offsetof(struct ar_buffer, data);
463
	ab_bus = le32_to_cpu(ab->descriptor.data_address) - offset;
464 465

	reg_write(ctx->ohci, COMMAND_PTR(ctx->regs), ab_bus | 1);
466
	reg_write(ctx->ohci, CONTROL_SET(ctx->regs), CONTEXT_RUN);
467
	flush_writes(ctx->ohci);
468
}
S
Stefan Richter 已提交
469

470 471 472 473 474 475 476 477 478 479 480 481 482 483 484
static struct descriptor *
find_branch_descriptor(struct descriptor *d, int z)
{
	int b, key;

	b   = (le16_to_cpu(d->control) & DESCRIPTOR_BRANCH_ALWAYS) >> 2;
	key = (le16_to_cpu(d->control) & DESCRIPTOR_KEY_IMMEDIATE) >> 8;

	/* figure out which descriptor the branch address goes in */
	if (z == 2 && (b == 3 || key == 2))
		return d;
	else
		return d + z - 1;
}

485 486 487 488 489 490
static void context_tasklet(unsigned long data)
{
	struct context *ctx = (struct context *) data;
	struct descriptor *d, *last;
	u32 address;
	int z;
491
	struct descriptor_buffer *desc;
492

493 494 495
	desc = list_entry(ctx->buffer_list.next,
			struct descriptor_buffer, list);
	last = ctx->last;
496
	while (last->branch_address != 0) {
497
		struct descriptor_buffer *old_desc = desc;
498 499
		address = le32_to_cpu(last->branch_address);
		z = address & 0xf;
500 501 502 503 504 505 506 507 508
		address &= ~0xf;

		/* If the branch address points to a buffer outside of the
		 * current buffer, advance to the next buffer. */
		if (address < desc->buffer_bus ||
				address >= desc->buffer_bus + desc->used)
			desc = list_entry(desc->list.next,
					struct descriptor_buffer, list);
		d = desc->buffer + (address - desc->buffer_bus) / sizeof(*d);
509
		last = find_branch_descriptor(d, z);
510 511 512 513

		if (!ctx->callback(ctx, d, last))
			break;

514 515 516 517 518 519 520 521 522 523
		if (old_desc != desc) {
			/* If we've advanced to the next buffer, move the
			 * previous buffer to the free list. */
			unsigned long flags;
			old_desc->used = 0;
			spin_lock_irqsave(&ctx->ohci->lock, flags);
			list_move_tail(&old_desc->list, &ctx->buffer_list);
			spin_unlock_irqrestore(&ctx->ohci->lock, flags);
		}
		ctx->last = last;
524 525 526
	}
}

527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560
/*
 * Allocate a new buffer and add it to the list of free buffers for this
 * context.  Must be called with ohci->lock held.
 */
static int
context_add_buffer(struct context *ctx)
{
	struct descriptor_buffer *desc;
	dma_addr_t bus_addr;
	int offset;

	/*
	 * 16MB of descriptors should be far more than enough for any DMA
	 * program.  This will catch run-away userspace or DoS attacks.
	 */
	if (ctx->total_allocation >= 16*1024*1024)
		return -ENOMEM;

	desc = dma_alloc_coherent(ctx->ohci->card.device, PAGE_SIZE,
			&bus_addr, GFP_ATOMIC);
	if (!desc)
		return -ENOMEM;

	offset = (void *)&desc->buffer - (void *)desc;
	desc->buffer_size = PAGE_SIZE - offset;
	desc->buffer_bus = bus_addr + offset;
	desc->used = 0;

	list_add_tail(&desc->list, &ctx->buffer_list);
	ctx->total_allocation += PAGE_SIZE;

	return 0;
}

561 562
static int
context_init(struct context *ctx, struct fw_ohci *ohci,
563
	     u32 regs, descriptor_callback_t callback)
564 565 566
{
	ctx->ohci = ohci;
	ctx->regs = regs;
567 568 569 570
	ctx->total_allocation = 0;

	INIT_LIST_HEAD(&ctx->buffer_list);
	if (context_add_buffer(ctx) < 0)
571 572
		return -ENOMEM;

573 574 575
	ctx->buffer_tail = list_entry(ctx->buffer_list.next,
			struct descriptor_buffer, list);

576 577 578
	tasklet_init(&ctx->tasklet, context_tasklet, (unsigned long)ctx);
	ctx->callback = callback;

579 580
	/*
	 * We put a dummy descriptor in the buffer that has a NULL
581
	 * branch address and looks like it's been sent.  That way we
582
	 * have a descriptor to append DMA programs to.
583
	 */
584 585 586 587 588 589
	memset(ctx->buffer_tail->buffer, 0, sizeof(*ctx->buffer_tail->buffer));
	ctx->buffer_tail->buffer->control = cpu_to_le16(DESCRIPTOR_OUTPUT_LAST);
	ctx->buffer_tail->buffer->transfer_status = cpu_to_le16(0x8011);
	ctx->buffer_tail->used += sizeof(*ctx->buffer_tail->buffer);
	ctx->last = ctx->buffer_tail->buffer;
	ctx->prev = ctx->buffer_tail->buffer;
590 591 592 593

	return 0;
}

594
static void
595 596 597
context_release(struct context *ctx)
{
	struct fw_card *card = &ctx->ohci->card;
598
	struct descriptor_buffer *desc, *tmp;
599

600 601 602 603
	list_for_each_entry_safe(desc, tmp, &ctx->buffer_list, list)
		dma_free_coherent(card->device, PAGE_SIZE, desc,
			desc->buffer_bus -
			((void *)&desc->buffer - (void *)desc));
604 605
}

606
/* Must be called with ohci->lock held */
607 608 609
static struct descriptor *
context_get_descriptors(struct context *ctx, int z, dma_addr_t *d_bus)
{
610 611 612 613 614 615 616 617 618
	struct descriptor *d = NULL;
	struct descriptor_buffer *desc = ctx->buffer_tail;

	if (z * sizeof(*d) > desc->buffer_size)
		return NULL;

	if (z * sizeof(*d) > desc->buffer_size - desc->used) {
		/* No room for the descriptor in this buffer, so advance to the
		 * next one. */
619

620 621 622 623 624 625 626 627 628 629
		if (desc->list.next == &ctx->buffer_list) {
			/* If there is no free buffer next in the list,
			 * allocate one. */
			if (context_add_buffer(ctx) < 0)
				return NULL;
		}
		desc = list_entry(desc->list.next,
				struct descriptor_buffer, list);
		ctx->buffer_tail = desc;
	}
630

631
	d = desc->buffer + desc->used / sizeof(*d);
632
	memset(d, 0, z * sizeof(*d));
633
	*d_bus = desc->buffer_bus + desc->used;
634 635 636 637

	return d;
}

638
static void context_run(struct context *ctx, u32 extra)
639 640 641
{
	struct fw_ohci *ohci = ctx->ohci;

642
	reg_write(ohci, COMMAND_PTR(ctx->regs),
643
		  le32_to_cpu(ctx->last->branch_address));
644 645
	reg_write(ohci, CONTROL_CLEAR(ctx->regs), ~0);
	reg_write(ohci, CONTROL_SET(ctx->regs), CONTEXT_RUN | extra);
646 647 648 649 650 651 652
	flush_writes(ohci);
}

static void context_append(struct context *ctx,
			   struct descriptor *d, int z, int extra)
{
	dma_addr_t d_bus;
653
	struct descriptor_buffer *desc = ctx->buffer_tail;
654

655
	d_bus = desc->buffer_bus + (d - desc->buffer) * sizeof(*d);
656

657 658 659
	desc->used += (z + extra) * sizeof(*d);
	ctx->prev->branch_address = cpu_to_le32(d_bus | z);
	ctx->prev = find_branch_descriptor(d, z);
660

661
	reg_write(ctx->ohci, CONTROL_SET(ctx->regs), CONTEXT_WAKE);
662 663 664 665 666 667
	flush_writes(ctx->ohci);
}

static void context_stop(struct context *ctx)
{
	u32 reg;
668
	int i;
669

670
	reg_write(ctx->ohci, CONTROL_CLEAR(ctx->regs), CONTEXT_RUN);
671
	flush_writes(ctx->ohci);
672

673
	for (i = 0; i < 10; i++) {
674
		reg = reg_read(ctx->ohci, CONTROL_SET(ctx->regs));
675 676 677 678
		if ((reg & CONTEXT_ACTIVE) == 0)
			break;

		fw_notify("context_stop: still active (0x%08x)\n", reg);
679
		mdelay(1);
680
	}
681
}
682

683 684 685
struct driver_data {
	struct fw_packet *packet;
};
686

687 688
/*
 * This function apppends a packet to the DMA queue for transmission.
689
 * Must always be called with the ochi->lock held to ensure proper
690 691
 * generation handling and locking around packet queue manipulation.
 */
692 693
static int
at_context_queue_packet(struct context *ctx, struct fw_packet *packet)
694 695
{
	struct fw_ohci *ohci = ctx->ohci;
696
	dma_addr_t d_bus, uninitialized_var(payload_bus);
697 698 699
	struct driver_data *driver_data;
	struct descriptor *d, *last;
	__le32 *header;
700
	int z, tcode;
701
	u32 reg;
702

703 704 705 706
	d = context_get_descriptors(ctx, 4, &d_bus);
	if (d == NULL) {
		packet->ack = RCODE_SEND_ERROR;
		return -1;
707 708
	}

709
	d[0].control   = cpu_to_le16(DESCRIPTOR_KEY_IMMEDIATE);
710 711
	d[0].res_count = cpu_to_le16(packet->timestamp);

712 713
	/*
	 * The DMA format for asyncronous link packets is different
714 715
	 * from the IEEE1394 layout, so shift the fields around
	 * accordingly.  If header_length is 8, it's a PHY packet, to
716 717
	 * which we need to prepend an extra quadlet.
	 */
718 719

	header = (__le32 *) &d[1];
720
	if (packet->header_length > 8) {
721 722 723 724 725
		header[0] = cpu_to_le32((packet->header[0] & 0xffff) |
					(packet->speed << 16));
		header[1] = cpu_to_le32((packet->header[1] & 0xffff) |
					(packet->header[0] & 0xffff0000));
		header[2] = cpu_to_le32(packet->header[2]);
726 727 728

		tcode = (packet->header[0] >> 4) & 0x0f;
		if (TCODE_IS_BLOCK_PACKET(tcode))
729
			header[3] = cpu_to_le32(packet->header[3]);
730
		else
731 732 733
			header[3] = (__force __le32) packet->header[3];

		d[0].req_count = cpu_to_le16(packet->header_length);
734
	} else {
735 736 737 738 739
		header[0] = cpu_to_le32((OHCI1394_phy_tcode << 4) |
					(packet->speed << 16));
		header[1] = cpu_to_le32(packet->header[0]);
		header[2] = cpu_to_le32(packet->header[1]);
		d[0].req_count = cpu_to_le16(12);
740 741
	}

742 743
	driver_data = (struct driver_data *) &d[3];
	driver_data->packet = packet;
744
	packet->driver_data = driver_data;
745

746 747 748 749 750 751 752 753 754 755 756 757 758
	if (packet->payload_length > 0) {
		payload_bus =
			dma_map_single(ohci->card.device, packet->payload,
				       packet->payload_length, DMA_TO_DEVICE);
		if (dma_mapping_error(payload_bus)) {
			packet->ack = RCODE_SEND_ERROR;
			return -1;
		}

		d[2].req_count    = cpu_to_le16(packet->payload_length);
		d[2].data_address = cpu_to_le32(payload_bus);
		last = &d[2];
		z = 3;
759
	} else {
760 761
		last = &d[0];
		z = 2;
762 763
	}

764 765 766
	last->control |= cpu_to_le16(DESCRIPTOR_OUTPUT_LAST |
				     DESCRIPTOR_IRQ_ALWAYS |
				     DESCRIPTOR_BRANCH_ALWAYS);
767

768 769
	/* FIXME: Document how the locking works. */
	if (ohci->generation != packet->generation) {
770 771 772
		if (packet->payload_length > 0)
			dma_unmap_single(ohci->card.device, payload_bus,
					 packet->payload_length, DMA_TO_DEVICE);
773 774 775 776 777
		packet->ack = RCODE_GENERATION;
		return -1;
	}

	context_append(ctx, d, z, 4 - z);
778

779
	/* If the context isn't already running, start it up. */
780
	reg = reg_read(ctx->ohci, CONTROL_SET(ctx->regs));
781
	if ((reg & CONTEXT_RUN) == 0)
782 783 784
		context_run(ctx, 0);

	return 0;
785 786
}

787 788 789
static int handle_at_packet(struct context *context,
			    struct descriptor *d,
			    struct descriptor *last)
790
{
791
	struct driver_data *driver_data;
792
	struct fw_packet *packet;
793 794
	struct fw_ohci *ohci = context->ohci;
	dma_addr_t payload_bus;
795 796
	int evt;

797 798 799
	if (last->transfer_status == 0)
		/* This descriptor isn't done yet, stop iteration. */
		return 0;
800

801 802 803 804 805
	driver_data = (struct driver_data *) &d[3];
	packet = driver_data->packet;
	if (packet == NULL)
		/* This packet was cancelled, just continue. */
		return 1;
806

807 808 809
	payload_bus = le32_to_cpu(last->data_address);
	if (payload_bus != 0)
		dma_unmap_single(ohci->card.device, payload_bus,
810 811
				 packet->payload_length, DMA_TO_DEVICE);

812 813
	evt = le16_to_cpu(last->transfer_status) & 0x1f;
	packet->timestamp = le16_to_cpu(last->res_count);
814

815 816 817 818 819
	switch (evt) {
	case OHCI1394_evt_timeout:
		/* Async response transmit timed out. */
		packet->ack = RCODE_CANCELLED;
		break;
820

821
	case OHCI1394_evt_flushed:
822 823 824 825
		/*
		 * The packet was flushed should give same error as
		 * when we try to use a stale generation count.
		 */
826 827
		packet->ack = RCODE_GENERATION;
		break;
828

829
	case OHCI1394_evt_missing_ack:
830 831 832 833
		/*
		 * Using a valid (current) generation count, but the
		 * node is not on the bus or not sending acks.
		 */
834 835
		packet->ack = RCODE_NO_ACK;
		break;
836

837 838 839 840 841 842 843 844 845
	case ACK_COMPLETE + 0x10:
	case ACK_PENDING + 0x10:
	case ACK_BUSY_X + 0x10:
	case ACK_BUSY_A + 0x10:
	case ACK_BUSY_B + 0x10:
	case ACK_DATA_ERROR + 0x10:
	case ACK_TYPE_ERROR + 0x10:
		packet->ack = evt - 0x10;
		break;
846

847 848 849 850
	default:
		packet->ack = RCODE_SEND_ERROR;
		break;
	}
851

852
	packet->callback(packet, &ohci->card, packet->ack);
853

854
	return 1;
855 856
}

857 858 859 860 861
#define HEADER_GET_DESTINATION(q)	(((q) >> 16) & 0xffff)
#define HEADER_GET_TCODE(q)		(((q) >> 4) & 0x0f)
#define HEADER_GET_OFFSET_HIGH(q)	(((q) >> 0) & 0xffff)
#define HEADER_GET_DATA_LENGTH(q)	(((q) >> 16) & 0xffff)
#define HEADER_GET_EXTENDED_TCODE(q)	(((q) >> 0) & 0xffff)
862 863 864 865 866 867 868

static void
handle_local_rom(struct fw_ohci *ohci, struct fw_packet *packet, u32 csr)
{
	struct fw_packet response;
	int tcode, length, i;

869
	tcode = HEADER_GET_TCODE(packet->header[0]);
870
	if (TCODE_IS_BLOCK_PACKET(tcode))
871
		length = HEADER_GET_DATA_LENGTH(packet->header[3]);
872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897
	else
		length = 4;

	i = csr - CSR_CONFIG_ROM;
	if (i + length > CONFIG_ROM_SIZE) {
		fw_fill_response(&response, packet->header,
				 RCODE_ADDRESS_ERROR, NULL, 0);
	} else if (!TCODE_IS_READ_REQUEST(tcode)) {
		fw_fill_response(&response, packet->header,
				 RCODE_TYPE_ERROR, NULL, 0);
	} else {
		fw_fill_response(&response, packet->header, RCODE_COMPLETE,
				 (void *) ohci->config_rom + i, length);
	}

	fw_core_handle_response(&ohci->card, &response);
}

static void
handle_local_lock(struct fw_ohci *ohci, struct fw_packet *packet, u32 csr)
{
	struct fw_packet response;
	int tcode, length, ext_tcode, sel;
	__be32 *payload, lock_old;
	u32 lock_arg, lock_data;

898 899
	tcode = HEADER_GET_TCODE(packet->header[0]);
	length = HEADER_GET_DATA_LENGTH(packet->header[3]);
900
	payload = packet->payload;
901
	ext_tcode = HEADER_GET_EXTENDED_TCODE(packet->header[3]);
902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926

	if (tcode == TCODE_LOCK_REQUEST &&
	    ext_tcode == EXTCODE_COMPARE_SWAP && length == 8) {
		lock_arg = be32_to_cpu(payload[0]);
		lock_data = be32_to_cpu(payload[1]);
	} else if (tcode == TCODE_READ_QUADLET_REQUEST) {
		lock_arg = 0;
		lock_data = 0;
	} else {
		fw_fill_response(&response, packet->header,
				 RCODE_TYPE_ERROR, NULL, 0);
		goto out;
	}

	sel = (csr - CSR_BUS_MANAGER_ID) / 4;
	reg_write(ohci, OHCI1394_CSRData, lock_data);
	reg_write(ohci, OHCI1394_CSRCompareData, lock_arg);
	reg_write(ohci, OHCI1394_CSRControl, sel);

	if (reg_read(ohci, OHCI1394_CSRControl) & 0x80000000)
		lock_old = cpu_to_be32(reg_read(ohci, OHCI1394_CSRData));
	else
		fw_notify("swap not done yet\n");

	fw_fill_response(&response, packet->header,
927
			 RCODE_COMPLETE, &lock_old, sizeof(lock_old));
928 929 930 931 932
 out:
	fw_core_handle_response(&ohci->card, &response);
}

static void
933
handle_local_request(struct context *ctx, struct fw_packet *packet)
934 935 936 937
{
	u64 offset;
	u32 csr;

938 939 940 941
	if (ctx == &ctx->ohci->at_request_ctx) {
		packet->ack = ACK_PENDING;
		packet->callback(packet, &ctx->ohci->card, packet->ack);
	}
942 943 944

	offset =
		((unsigned long long)
945
		 HEADER_GET_OFFSET_HIGH(packet->header[1]) << 32) |
946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965
		packet->header[2];
	csr = offset - CSR_REGISTER_BASE;

	/* Handle config rom reads. */
	if (csr >= CSR_CONFIG_ROM && csr < CSR_CONFIG_ROM_END)
		handle_local_rom(ctx->ohci, packet, csr);
	else switch (csr) {
	case CSR_BUS_MANAGER_ID:
	case CSR_BANDWIDTH_AVAILABLE:
	case CSR_CHANNELS_AVAILABLE_HI:
	case CSR_CHANNELS_AVAILABLE_LO:
		handle_local_lock(ctx->ohci, packet, csr);
		break;
	default:
		if (ctx == &ctx->ohci->at_request_ctx)
			fw_core_handle_request(&ctx->ohci->card, packet);
		else
			fw_core_handle_response(&ctx->ohci->card, packet);
		break;
	}
966 967 968 969 970

	if (ctx == &ctx->ohci->at_response_ctx) {
		packet->ack = ACK_COMPLETE;
		packet->callback(packet, &ctx->ohci->card, packet->ack);
	}
971
}
972

973
static void
974
at_context_transmit(struct context *ctx, struct fw_packet *packet)
975 976
{
	unsigned long flags;
977
	int retval;
978 979 980

	spin_lock_irqsave(&ctx->ohci->lock, flags);

981
	if (HEADER_GET_DESTINATION(packet->header[0]) == ctx->ohci->node_id &&
982
	    ctx->ohci->generation == packet->generation) {
983 984 985
		spin_unlock_irqrestore(&ctx->ohci->lock, flags);
		handle_local_request(ctx, packet);
		return;
986
	}
987

988
	retval = at_context_queue_packet(ctx, packet);
989 990
	spin_unlock_irqrestore(&ctx->ohci->lock, flags);

991 992
	if (retval < 0)
		packet->callback(packet, &ctx->ohci->card, packet->ack);
993

994 995 996 997 998
}

static void bus_reset_tasklet(unsigned long data)
{
	struct fw_ohci *ohci = (struct fw_ohci *)data;
999
	int self_id_count, i, j, reg;
1000 1001
	int generation, new_generation;
	unsigned long flags;
1002 1003
	void *free_rom = NULL;
	dma_addr_t free_rom_bus = 0;
1004 1005 1006

	reg = reg_read(ohci, OHCI1394_NodeID);
	if (!(reg & OHCI1394_NodeID_idValid)) {
1007
		fw_notify("node ID not valid, new bus reset in progress\n");
1008 1009
		return;
	}
1010 1011 1012 1013 1014 1015
	if ((reg & OHCI1394_NodeID_nodeNumber) == 63) {
		fw_notify("malconfigured bus\n");
		return;
	}
	ohci->node_id = reg & (OHCI1394_NodeID_busNumber |
			       OHCI1394_NodeID_nodeNumber);
1016

1017 1018
	/*
	 * The count in the SelfIDCount register is the number of
1019 1020
	 * bytes in the self ID receive buffer.  Since we also receive
	 * the inverted quadlets and a header quadlet, we shift one
1021 1022
	 * bit extra to get the actual number of self IDs.
	 */
1023 1024 1025

	self_id_count = (reg_read(ohci, OHCI1394_SelfIDCount) >> 3) & 0x3ff;
	generation = (le32_to_cpu(ohci->self_id_cpu[0]) >> 16) & 0xff;
1026
	rmb();
1027 1028 1029 1030 1031 1032

	for (i = 1, j = 0; j < self_id_count; i += 2, j++) {
		if (ohci->self_id_cpu[i] != ~ohci->self_id_cpu[i + 1])
			fw_error("inconsistent self IDs\n");
		ohci->self_id_buffer[j] = le32_to_cpu(ohci->self_id_cpu[i]);
	}
1033
	rmb();
1034

1035 1036
	/*
	 * Check the consistency of the self IDs we just read.  The
1037 1038 1039 1040 1041 1042 1043 1044 1045
	 * problem we face is that a new bus reset can start while we
	 * read out the self IDs from the DMA buffer. If this happens,
	 * the DMA buffer will be overwritten with new self IDs and we
	 * will read out inconsistent data.  The OHCI specification
	 * (section 11.2) recommends a technique similar to
	 * linux/seqlock.h, where we remember the generation of the
	 * self IDs in the buffer before reading them out and compare
	 * it to the current generation after reading them out.  If
	 * the two generations match we know we have a consistent set
1046 1047
	 * of self IDs.
	 */
1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059

	new_generation = (reg_read(ohci, OHCI1394_SelfIDCount) >> 16) & 0xff;
	if (new_generation != generation) {
		fw_notify("recursive bus reset detected, "
			  "discarding self ids\n");
		return;
	}

	/* FIXME: Document how the locking works. */
	spin_lock_irqsave(&ohci->lock, flags);

	ohci->generation = generation;
1060 1061
	context_stop(&ohci->at_request_ctx);
	context_stop(&ohci->at_response_ctx);
1062 1063
	reg_write(ohci, OHCI1394_IntEventClear, OHCI1394_busReset);

1064 1065
	/*
	 * This next bit is unrelated to the AT context stuff but we
1066 1067 1068 1069
	 * have to do it under the spinlock also.  If a new config rom
	 * was set up before this reset, the old one is now no longer
	 * in use and we can free it. Update the config rom pointers
	 * to point to the current config rom and clear the
1070 1071
	 * next_config_rom pointer so a new udpate can take place.
	 */
1072 1073

	if (ohci->next_config_rom != NULL) {
1074 1075 1076 1077
		if (ohci->next_config_rom != ohci->config_rom) {
			free_rom      = ohci->config_rom;
			free_rom_bus  = ohci->config_rom_bus;
		}
1078 1079 1080 1081
		ohci->config_rom      = ohci->next_config_rom;
		ohci->config_rom_bus  = ohci->next_config_rom_bus;
		ohci->next_config_rom = NULL;

1082 1083
		/*
		 * Restore config_rom image and manually update
1084 1085
		 * config_rom registers.  Writing the header quadlet
		 * will indicate that the config rom is ready, so we
1086 1087
		 * do that last.
		 */
1088 1089 1090 1091 1092 1093 1094 1095
		reg_write(ohci, OHCI1394_BusOptions,
			  be32_to_cpu(ohci->config_rom[2]));
		ohci->config_rom[0] = cpu_to_be32(ohci->next_header);
		reg_write(ohci, OHCI1394_ConfigROMhdr, ohci->next_header);
	}

	spin_unlock_irqrestore(&ohci->lock, flags);

1096 1097 1098 1099
	if (free_rom)
		dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
				  free_rom, free_rom_bus);

1100
	fw_core_handle_bus_reset(&ohci->card, ohci->node_id, generation,
1101 1102 1103 1104 1105 1106
				 self_id_count, ohci->self_id_buffer);
}

static irqreturn_t irq_handler(int irq, void *data)
{
	struct fw_ohci *ohci = data;
1107
	u32 event, iso_event, cycle_time;
1108 1109 1110 1111
	int i;

	event = reg_read(ohci, OHCI1394_IntEventClear);

1112
	if (!event || !~event)
1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131
		return IRQ_NONE;

	reg_write(ohci, OHCI1394_IntEventClear, event);

	if (event & OHCI1394_selfIDComplete)
		tasklet_schedule(&ohci->bus_reset_tasklet);

	if (event & OHCI1394_RQPkt)
		tasklet_schedule(&ohci->ar_request_ctx.tasklet);

	if (event & OHCI1394_RSPkt)
		tasklet_schedule(&ohci->ar_response_ctx.tasklet);

	if (event & OHCI1394_reqTxComplete)
		tasklet_schedule(&ohci->at_request_ctx.tasklet);

	if (event & OHCI1394_respTxComplete)
		tasklet_schedule(&ohci->at_response_ctx.tasklet);

1132
	iso_event = reg_read(ohci, OHCI1394_IsoRecvIntEventClear);
1133 1134 1135 1136
	reg_write(ohci, OHCI1394_IsoRecvIntEventClear, iso_event);

	while (iso_event) {
		i = ffs(iso_event) - 1;
1137
		tasklet_schedule(&ohci->ir_context_list[i].context.tasklet);
1138 1139 1140
		iso_event &= ~(1 << i);
	}

1141
	iso_event = reg_read(ohci, OHCI1394_IsoXmitIntEventClear);
1142 1143 1144 1145
	reg_write(ohci, OHCI1394_IsoXmitIntEventClear, iso_event);

	while (iso_event) {
		i = ffs(iso_event) - 1;
1146
		tasklet_schedule(&ohci->it_context_list[i].context.tasklet);
1147 1148 1149
		iso_event &= ~(1 << i);
	}

1150 1151 1152
	if (unlikely(event & OHCI1394_postedWriteErr))
		fw_error("PCI posted write error\n");

1153 1154 1155 1156 1157 1158 1159
	if (unlikely(event & OHCI1394_cycleTooLong)) {
		if (printk_ratelimit())
			fw_notify("isochronous cycle too long\n");
		reg_write(ohci, OHCI1394_LinkControlSet,
			  OHCI1394_LinkControl_cycleMaster);
	}

1160 1161 1162 1163 1164 1165
	if (event & OHCI1394_cycle64Seconds) {
		cycle_time = reg_read(ohci, OHCI1394_IsochronousCycleTimer);
		if ((cycle_time & 0x80000000) == 0)
			ohci->bus_seconds++;
	}

1166 1167 1168
	return IRQ_HANDLED;
}

1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184
static int software_reset(struct fw_ohci *ohci)
{
	int i;

	reg_write(ohci, OHCI1394_HCControlSet, OHCI1394_HCControl_softReset);

	for (i = 0; i < OHCI_LOOP_COUNT; i++) {
		if ((reg_read(ohci, OHCI1394_HCControlSet) &
		     OHCI1394_HCControl_softReset) == 0)
			return 0;
		msleep(1);
	}

	return -EBUSY;
}

1185 1186 1187 1188 1189
static int ohci_enable(struct fw_card *card, u32 *config_rom, size_t length)
{
	struct fw_ohci *ohci = fw_ohci(card);
	struct pci_dev *dev = to_pci_dev(card->device);

1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232
	if (software_reset(ohci)) {
		fw_error("Failed to reset ohci card.\n");
		return -EBUSY;
	}

	/*
	 * Now enable LPS, which we need in order to start accessing
	 * most of the registers.  In fact, on some cards (ALI M5251),
	 * accessing registers in the SClk domain without LPS enabled
	 * will lock up the machine.  Wait 50msec to make sure we have
	 * full link enabled.
	 */
	reg_write(ohci, OHCI1394_HCControlSet,
		  OHCI1394_HCControl_LPS |
		  OHCI1394_HCControl_postedWriteEnable);
	flush_writes(ohci);
	msleep(50);

	reg_write(ohci, OHCI1394_HCControlClear,
		  OHCI1394_HCControl_noByteSwapData);

	reg_write(ohci, OHCI1394_LinkControlSet,
		  OHCI1394_LinkControl_rcvSelfID |
		  OHCI1394_LinkControl_cycleTimerEnable |
		  OHCI1394_LinkControl_cycleMaster);

	reg_write(ohci, OHCI1394_ATRetries,
		  OHCI1394_MAX_AT_REQ_RETRIES |
		  (OHCI1394_MAX_AT_RESP_RETRIES << 4) |
		  (OHCI1394_MAX_PHYS_RESP_RETRIES << 8));

	ar_context_run(&ohci->ar_request_ctx);
	ar_context_run(&ohci->ar_response_ctx);

	reg_write(ohci, OHCI1394_SelfIDBuffer, ohci->self_id_bus);
	reg_write(ohci, OHCI1394_PhyUpperBound, 0x00010000);
	reg_write(ohci, OHCI1394_IntEventClear, ~0);
	reg_write(ohci, OHCI1394_IntMaskClear, ~0);
	reg_write(ohci, OHCI1394_IntMaskSet,
		  OHCI1394_selfIDComplete |
		  OHCI1394_RQPkt | OHCI1394_RSPkt |
		  OHCI1394_reqTxComplete | OHCI1394_respTxComplete |
		  OHCI1394_isochRx | OHCI1394_isochTx |
1233 1234
		  OHCI1394_postedWriteErr | OHCI1394_cycleTooLong |
		  OHCI1394_cycle64Seconds | OHCI1394_masterIntEnable);
1235 1236 1237 1238 1239 1240

	/* Activate link_on bit and contender bit in our self ID packets.*/
	if (ohci_update_phy_reg(card, 4, 0,
				PHY_LINK_ACTIVE | PHY_CONTENDER) < 0)
		return -EIO;

1241 1242
	/*
	 * When the link is not yet enabled, the atomic config rom
1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259
	 * update mechanism described below in ohci_set_config_rom()
	 * is not active.  We have to update ConfigRomHeader and
	 * BusOptions manually, and the write to ConfigROMmap takes
	 * effect immediately.  We tie this to the enabling of the
	 * link, so we have a valid config rom before enabling - the
	 * OHCI requires that ConfigROMhdr and BusOptions have valid
	 * values before enabling.
	 *
	 * However, when the ConfigROMmap is written, some controllers
	 * always read back quadlets 0 and 2 from the config rom to
	 * the ConfigRomHeader and BusOptions registers on bus reset.
	 * They shouldn't do that in this initial case where the link
	 * isn't enabled.  This means we have to use the same
	 * workaround here, setting the bus header to 0 and then write
	 * the right values in the bus reset tasklet.
	 */

1260 1261 1262 1263 1264 1265 1266
	if (config_rom) {
		ohci->next_config_rom =
			dma_alloc_coherent(ohci->card.device, CONFIG_ROM_SIZE,
					   &ohci->next_config_rom_bus,
					   GFP_KERNEL);
		if (ohci->next_config_rom == NULL)
			return -ENOMEM;
1267

1268 1269 1270 1271 1272 1273 1274 1275 1276 1277
		memset(ohci->next_config_rom, 0, CONFIG_ROM_SIZE);
		fw_memcpy_to_be32(ohci->next_config_rom, config_rom, length * 4);
	} else {
		/*
		 * In the suspend case, config_rom is NULL, which
		 * means that we just reuse the old config rom.
		 */
		ohci->next_config_rom = ohci->config_rom;
		ohci->next_config_rom_bus = ohci->config_rom_bus;
	}
1278

1279
	ohci->next_header = be32_to_cpu(ohci->next_config_rom[0]);
1280 1281
	ohci->next_config_rom[0] = 0;
	reg_write(ohci, OHCI1394_ConfigROMhdr, 0);
1282 1283
	reg_write(ohci, OHCI1394_BusOptions,
		  be32_to_cpu(ohci->next_config_rom[2]));
1284 1285 1286 1287 1288
	reg_write(ohci, OHCI1394_ConfigROMmap, ohci->next_config_rom_bus);

	reg_write(ohci, OHCI1394_AsReqFilterHiSet, 0x80000000);

	if (request_irq(dev->irq, irq_handler,
1289
			IRQF_SHARED, ohci_driver_name, ohci)) {
1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301
		fw_error("Failed to allocate shared interrupt %d.\n",
			 dev->irq);
		dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
				  ohci->config_rom, ohci->config_rom_bus);
		return -EIO;
	}

	reg_write(ohci, OHCI1394_HCControlSet,
		  OHCI1394_HCControl_linkEnable |
		  OHCI1394_HCControl_BIBimageValid);
	flush_writes(ohci);

1302 1303 1304 1305
	/*
	 * We are ready to go, initiate bus reset to finish the
	 * initialization.
	 */
1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316

	fw_core_initiate_bus_reset(&ohci->card, 1);

	return 0;
}

static int
ohci_set_config_rom(struct fw_card *card, u32 *config_rom, size_t length)
{
	struct fw_ohci *ohci;
	unsigned long flags;
1317
	int retval = -EBUSY;
1318 1319 1320 1321 1322
	__be32 *next_config_rom;
	dma_addr_t next_config_rom_bus;

	ohci = fw_ohci(card);

1323 1324
	/*
	 * When the OHCI controller is enabled, the config rom update
1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370
	 * mechanism is a bit tricky, but easy enough to use.  See
	 * section 5.5.6 in the OHCI specification.
	 *
	 * The OHCI controller caches the new config rom address in a
	 * shadow register (ConfigROMmapNext) and needs a bus reset
	 * for the changes to take place.  When the bus reset is
	 * detected, the controller loads the new values for the
	 * ConfigRomHeader and BusOptions registers from the specified
	 * config rom and loads ConfigROMmap from the ConfigROMmapNext
	 * shadow register. All automatically and atomically.
	 *
	 * Now, there's a twist to this story.  The automatic load of
	 * ConfigRomHeader and BusOptions doesn't honor the
	 * noByteSwapData bit, so with a be32 config rom, the
	 * controller will load be32 values in to these registers
	 * during the atomic update, even on litte endian
	 * architectures.  The workaround we use is to put a 0 in the
	 * header quadlet; 0 is endian agnostic and means that the
	 * config rom isn't ready yet.  In the bus reset tasklet we
	 * then set up the real values for the two registers.
	 *
	 * We use ohci->lock to avoid racing with the code that sets
	 * ohci->next_config_rom to NULL (see bus_reset_tasklet).
	 */

	next_config_rom =
		dma_alloc_coherent(ohci->card.device, CONFIG_ROM_SIZE,
				   &next_config_rom_bus, GFP_KERNEL);
	if (next_config_rom == NULL)
		return -ENOMEM;

	spin_lock_irqsave(&ohci->lock, flags);

	if (ohci->next_config_rom == NULL) {
		ohci->next_config_rom = next_config_rom;
		ohci->next_config_rom_bus = next_config_rom_bus;

		memset(ohci->next_config_rom, 0, CONFIG_ROM_SIZE);
		fw_memcpy_to_be32(ohci->next_config_rom, config_rom,
				  length * 4);

		ohci->next_header = config_rom[0];
		ohci->next_config_rom[0] = 0;

		reg_write(ohci, OHCI1394_ConfigROMmap,
			  ohci->next_config_rom_bus);
1371
		retval = 0;
1372 1373 1374 1375
	}

	spin_unlock_irqrestore(&ohci->lock, flags);

1376 1377
	/*
	 * Now initiate a bus reset to have the changes take
1378 1379 1380
	 * effect. We clean up the old config rom memory and DMA
	 * mappings in the bus reset tasklet, since the OHCI
	 * controller could need to access it before the bus reset
1381 1382
	 * takes effect.
	 */
1383 1384
	if (retval == 0)
		fw_core_initiate_bus_reset(&ohci->card, 1);
1385 1386 1387
	else
		dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
				  next_config_rom, next_config_rom_bus);
1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405

	return retval;
}

static void ohci_send_request(struct fw_card *card, struct fw_packet *packet)
{
	struct fw_ohci *ohci = fw_ohci(card);

	at_context_transmit(&ohci->at_request_ctx, packet);
}

static void ohci_send_response(struct fw_card *card, struct fw_packet *packet)
{
	struct fw_ohci *ohci = fw_ohci(card);

	at_context_transmit(&ohci->at_response_ctx, packet);
}

1406 1407 1408
static int ohci_cancel_packet(struct fw_card *card, struct fw_packet *packet)
{
	struct fw_ohci *ohci = fw_ohci(card);
1409 1410 1411
	struct context *ctx = &ohci->at_request_ctx;
	struct driver_data *driver_data = packet->driver_data;
	int retval = -ENOENT;
1412

1413
	tasklet_disable(&ctx->tasklet);
1414

1415 1416
	if (packet->ack != 0)
		goto out;
1417

1418 1419 1420 1421
	driver_data->packet = NULL;
	packet->ack = RCODE_CANCELLED;
	packet->callback(packet, &ohci->card, packet->ack);
	retval = 0;
1422

1423 1424
 out:
	tasklet_enable(&ctx->tasklet);
1425

1426
	return retval;
1427 1428
}

1429 1430 1431 1432 1433
static int
ohci_enable_phys_dma(struct fw_card *card, int node_id, int generation)
{
	struct fw_ohci *ohci = fw_ohci(card);
	unsigned long flags;
1434
	int n, retval = 0;
1435

1436 1437 1438 1439
	/*
	 * FIXME:  Make sure this bitmask is cleared when we clear the busReset
	 * interrupt bit.  Clear physReqResourceAllBuses on bus reset.
	 */
1440 1441 1442 1443 1444 1445 1446 1447

	spin_lock_irqsave(&ohci->lock, flags);

	if (ohci->generation != generation) {
		retval = -ESTALE;
		goto out;
	}

1448 1449 1450 1451
	/*
	 * Note, if the node ID contains a non-local bus ID, physical DMA is
	 * enabled for _all_ nodes on remote buses.
	 */
1452 1453 1454 1455 1456 1457 1458

	n = (node_id & 0xffc0) == LOCAL_BUS ? node_id & 0x3f : 63;
	if (n < 32)
		reg_write(ohci, OHCI1394_PhyReqFilterLoSet, 1 << n);
	else
		reg_write(ohci, OHCI1394_PhyReqFilterHiSet, 1 << (n - 32));

1459 1460
	flush_writes(ohci);
 out:
1461
	spin_unlock_irqrestore(&ohci->lock, flags);
1462 1463
	return retval;
}
S
Stefan Richter 已提交
1464

1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477
static u64
ohci_get_bus_time(struct fw_card *card)
{
	struct fw_ohci *ohci = fw_ohci(card);
	u32 cycle_time;
	u64 bus_time;

	cycle_time = reg_read(ohci, OHCI1394_IsochronousCycleTimer);
	bus_time = ((u64) ohci->bus_seconds << 32) | cycle_time;

	return bus_time;
}

1478 1479 1480
static int handle_ir_dualbuffer_packet(struct context *context,
				       struct descriptor *d,
				       struct descriptor *last)
1481
{
1482 1483 1484
	struct iso_context *ctx =
		container_of(context, struct iso_context, context);
	struct db_descriptor *db = (struct db_descriptor *) d;
1485
	__le32 *ir_header;
1486
	size_t header_length;
1487 1488
	void *p, *end;
	int i;
1489

1490 1491 1492 1493 1494 1495 1496
	if (db->first_res_count > 0 && db->second_res_count > 0) {
		if (ctx->excess_bytes <= le16_to_cpu(db->second_req_count)) {
			/* This descriptor isn't done yet, stop iteration. */
			return 0;
		}
		ctx->excess_bytes -= le16_to_cpu(db->second_req_count);
	}
1497

1498 1499 1500 1501 1502 1503 1504
	header_length = le16_to_cpu(db->first_req_count) -
		le16_to_cpu(db->first_res_count);

	i = ctx->header_length;
	p = db + 1;
	end = p + header_length;
	while (p < end && i + ctx->base.header_size <= PAGE_SIZE) {
1505 1506
		/*
		 * The iso header is byteswapped to little endian by
1507 1508 1509
		 * the controller, but the remaining header quadlets
		 * are big endian.  We want to present all the headers
		 * as big endian, so we have to swap the first
1510 1511
		 * quadlet.
		 */
1512 1513
		*(u32 *) (ctx->header + i) = __swab32(*(u32 *) (p + 4));
		memcpy(ctx->header + i + 4, p + 8, ctx->base.header_size - 4);
1514
		i += ctx->base.header_size;
1515 1516
		ctx->excess_bytes +=
			(le32_to_cpu(*(u32 *)(p + 4)) >> 16) & 0xffff;
1517 1518 1519
		p += ctx->base.header_size + 4;
	}
	ctx->header_length = i;
1520

1521 1522 1523
	ctx->excess_bytes -= le16_to_cpu(db->second_req_count) -
		le16_to_cpu(db->second_res_count);

1524
	if (le16_to_cpu(db->control) & DESCRIPTOR_IRQ_ALWAYS) {
1525 1526 1527
		ir_header = (__le32 *) (db + 1);
		ctx->base.callback(&ctx->base,
				   le32_to_cpu(ir_header[0]) & 0xffff,
1528
				   ctx->header_length, ctx->header,
1529
				   ctx->base.callback_data);
1530 1531
		ctx->header_length = 0;
	}
1532

1533
	return 1;
1534 1535
}

1536 1537 1538 1539 1540 1541
static int handle_ir_packet_per_buffer(struct context *context,
				       struct descriptor *d,
				       struct descriptor *last)
{
	struct iso_context *ctx =
		container_of(context, struct iso_context, context);
1542
	struct descriptor *pd;
1543
	__le32 *ir_header;
1544 1545
	void *p;
	int i;
1546

1547 1548 1549 1550 1551
	for (pd = d; pd <= last; pd++) {
		if (pd->transfer_status)
			break;
	}
	if (pd > last)
1552 1553 1554 1555
		/* Descriptor(s) not done yet, stop iteration */
		return 0;

	i   = ctx->header_length;
1556
	p   = last + 1;
1557

1558 1559
	if (ctx->base.header_size > 0 &&
			i + ctx->base.header_size <= PAGE_SIZE) {
1560 1561 1562 1563 1564 1565 1566 1567
		/*
		 * The iso header is byteswapped to little endian by
		 * the controller, but the remaining header quadlets
		 * are big endian.  We want to present all the headers
		 * as big endian, so we have to swap the first quadlet.
		 */
		*(u32 *) (ctx->header + i) = __swab32(*(u32 *) (p + 4));
		memcpy(ctx->header + i + 4, p + 8, ctx->base.header_size - 4);
1568
		ctx->header_length += ctx->base.header_size;
1569 1570
	}

1571 1572
	if (le16_to_cpu(last->control) & DESCRIPTOR_IRQ_ALWAYS) {
		ir_header = (__le32 *) p;
1573 1574 1575 1576 1577 1578 1579 1580 1581 1582
		ctx->base.callback(&ctx->base,
				   le32_to_cpu(ir_header[0]) & 0xffff,
				   ctx->header_length, ctx->header,
				   ctx->base.callback_data);
		ctx->header_length = 0;
	}

	return 1;
}

1583 1584 1585
static int handle_it_packet(struct context *context,
			    struct descriptor *d,
			    struct descriptor *last)
1586
{
1587 1588
	struct iso_context *ctx =
		container_of(context, struct iso_context, context);
S
Stefan Richter 已提交
1589

1590 1591 1592 1593
	if (last->transfer_status == 0)
		/* This descriptor isn't done yet, stop iteration. */
		return 0;

1594
	if (le16_to_cpu(last->control) & DESCRIPTOR_IRQ_ALWAYS)
1595 1596
		ctx->base.callback(&ctx->base, le16_to_cpu(last->res_count),
				   0, NULL, ctx->base.callback_data);
1597 1598

	return 1;
1599 1600
}

1601
static struct fw_iso_context *
1602
ohci_allocate_iso_context(struct fw_card *card, int type, size_t header_size)
1603 1604 1605
{
	struct fw_ohci *ohci = fw_ohci(card);
	struct iso_context *ctx, *list;
1606
	descriptor_callback_t callback;
1607
	u32 *mask, regs;
1608
	unsigned long flags;
1609
	int index, retval = -ENOMEM;
1610 1611 1612 1613

	if (type == FW_ISO_CONTEXT_TRANSMIT) {
		mask = &ohci->it_context_mask;
		list = ohci->it_context_list;
1614
		callback = handle_it_packet;
1615
	} else {
S
Stefan Richter 已提交
1616 1617
		mask = &ohci->ir_context_mask;
		list = ohci->ir_context_list;
1618 1619 1620 1621
		if (ohci->version >= OHCI_VERSION_1_1)
			callback = handle_ir_dualbuffer_packet;
		else
			callback = handle_ir_packet_per_buffer;
1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632
	}

	spin_lock_irqsave(&ohci->lock, flags);
	index = ffs(*mask) - 1;
	if (index >= 0)
		*mask &= ~(1 << index);
	spin_unlock_irqrestore(&ohci->lock, flags);

	if (index < 0)
		return ERR_PTR(-EBUSY);

S
Stefan Richter 已提交
1633 1634 1635 1636 1637
	if (type == FW_ISO_CONTEXT_TRANSMIT)
		regs = OHCI1394_IsoXmitContextBase(index);
	else
		regs = OHCI1394_IsoRcvContextBase(index);

1638
	ctx = &list[index];
1639
	memset(ctx, 0, sizeof(*ctx));
1640 1641 1642 1643 1644
	ctx->header_length = 0;
	ctx->header = (void *) __get_free_page(GFP_KERNEL);
	if (ctx->header == NULL)
		goto out;

1645
	retval = context_init(&ctx->context, ohci, regs, callback);
1646 1647
	if (retval < 0)
		goto out_with_header;
1648 1649

	return &ctx->base;
1650 1651 1652 1653 1654 1655 1656 1657 1658

 out_with_header:
	free_page((unsigned long)ctx->header);
 out:
	spin_lock_irqsave(&ohci->lock, flags);
	*mask |= 1 << index;
	spin_unlock_irqrestore(&ohci->lock, flags);

	return ERR_PTR(retval);
1659 1660
}

1661 1662
static int ohci_start_iso(struct fw_iso_context *base,
			  s32 cycle, u32 sync, u32 tags)
1663
{
S
Stefan Richter 已提交
1664
	struct iso_context *ctx = container_of(base, struct iso_context, base);
1665
	struct fw_ohci *ohci = ctx->context.ohci;
1666
	u32 control, match;
1667 1668
	int index;

1669 1670
	if (ctx->base.type == FW_ISO_CONTEXT_TRANSMIT) {
		index = ctx - ohci->it_context_list;
1671 1672 1673
		match = 0;
		if (cycle >= 0)
			match = IT_CONTEXT_CYCLE_MATCH_ENABLE |
1674
				(cycle & 0x7fff) << 16;
1675

1676 1677
		reg_write(ohci, OHCI1394_IsoXmitIntEventClear, 1 << index);
		reg_write(ohci, OHCI1394_IsoXmitIntMaskSet, 1 << index);
1678
		context_run(&ctx->context, match);
1679 1680
	} else {
		index = ctx - ohci->ir_context_list;
1681 1682 1683
		control = IR_CONTEXT_ISOCH_HEADER;
		if (ohci->version >= OHCI_VERSION_1_1)
			control |= IR_CONTEXT_DUAL_BUFFER_MODE;
1684 1685 1686 1687 1688
		match = (tags << 28) | (sync << 8) | ctx->base.channel;
		if (cycle >= 0) {
			match |= (cycle & 0x07fff) << 12;
			control |= IR_CONTEXT_CYCLE_MATCH_ENABLE;
		}
1689

1690 1691
		reg_write(ohci, OHCI1394_IsoRecvIntEventClear, 1 << index);
		reg_write(ohci, OHCI1394_IsoRecvIntMaskSet, 1 << index);
1692
		reg_write(ohci, CONTEXT_MATCH(ctx->context.regs), match);
1693
		context_run(&ctx->context, control);
1694
	}
1695 1696 1697 1698

	return 0;
}

1699 1700 1701
static int ohci_stop_iso(struct fw_iso_context *base)
{
	struct fw_ohci *ohci = fw_ohci(base->card);
S
Stefan Richter 已提交
1702
	struct iso_context *ctx = container_of(base, struct iso_context, base);
1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717
	int index;

	if (ctx->base.type == FW_ISO_CONTEXT_TRANSMIT) {
		index = ctx - ohci->it_context_list;
		reg_write(ohci, OHCI1394_IsoXmitIntMaskClear, 1 << index);
	} else {
		index = ctx - ohci->ir_context_list;
		reg_write(ohci, OHCI1394_IsoRecvIntMaskClear, 1 << index);
	}
	flush_writes(ohci);
	context_stop(&ctx->context);

	return 0;
}

1718 1719 1720
static void ohci_free_iso_context(struct fw_iso_context *base)
{
	struct fw_ohci *ohci = fw_ohci(base->card);
S
Stefan Richter 已提交
1721
	struct iso_context *ctx = container_of(base, struct iso_context, base);
1722 1723 1724
	unsigned long flags;
	int index;

1725 1726
	ohci_stop_iso(base);
	context_release(&ctx->context);
1727
	free_page((unsigned long)ctx->header);
1728

1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742
	spin_lock_irqsave(&ohci->lock, flags);

	if (ctx->base.type == FW_ISO_CONTEXT_TRANSMIT) {
		index = ctx - ohci->it_context_list;
		ohci->it_context_mask |= 1 << index;
	} else {
		index = ctx - ohci->ir_context_list;
		ohci->ir_context_mask |= 1 << index;
	}

	spin_unlock_irqrestore(&ohci->lock, flags);
}

static int
1743 1744 1745 1746
ohci_queue_iso_transmit(struct fw_iso_context *base,
			struct fw_iso_packet *packet,
			struct fw_iso_buffer *buffer,
			unsigned long payload)
1747
{
S
Stefan Richter 已提交
1748
	struct iso_context *ctx = container_of(base, struct iso_context, base);
1749
	struct descriptor *d, *last, *pd;
1750 1751
	struct fw_iso_packet *p;
	__le32 *header;
1752
	dma_addr_t d_bus, page_bus;
1753 1754
	u32 z, header_z, payload_z, irq;
	u32 payload_index, payload_end_index, next_page_index;
1755
	int page, end_page, i, length, offset;
1756

1757 1758 1759 1760
	/*
	 * FIXME: Cycle lost behavior should be configurable: lose
	 * packet, retransmit or terminate..
	 */
1761 1762

	p = packet;
1763
	payload_index = payload;
1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781

	if (p->skip)
		z = 1;
	else
		z = 2;
	if (p->header_length > 0)
		z++;

	/* Determine the first page the payload isn't contained in. */
	end_page = PAGE_ALIGN(payload_index + p->payload_length) >> PAGE_SHIFT;
	if (p->payload_length > 0)
		payload_z = end_page - (payload_index >> PAGE_SHIFT);
	else
		payload_z = 0;

	z += payload_z;

	/* Get header size in number of descriptors. */
1782
	header_z = DIV_ROUND_UP(p->header_length, sizeof(*d));
1783

1784 1785 1786
	d = context_get_descriptors(&ctx->context, z + header_z, &d_bus);
	if (d == NULL)
		return -ENOMEM;
1787 1788

	if (!p->skip) {
1789
		d[0].control   = cpu_to_le16(DESCRIPTOR_KEY_IMMEDIATE);
1790 1791 1792
		d[0].req_count = cpu_to_le16(8);

		header = (__le32 *) &d[1];
1793 1794 1795 1796 1797
		header[0] = cpu_to_le32(IT_HEADER_SY(p->sy) |
					IT_HEADER_TAG(p->tag) |
					IT_HEADER_TCODE(TCODE_STREAM_DATA) |
					IT_HEADER_CHANNEL(ctx->base.channel) |
					IT_HEADER_SPEED(ctx->base.speed));
1798
		header[1] =
1799
			cpu_to_le32(IT_HEADER_DATA_LENGTH(p->header_length +
1800 1801 1802 1803 1804
							  p->payload_length));
	}

	if (p->header_length > 0) {
		d[2].req_count    = cpu_to_le16(p->header_length);
1805
		d[2].data_address = cpu_to_le32(d_bus + z * sizeof(*d));
1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817
		memcpy(&d[z], p->header, p->header_length);
	}

	pd = d + z - payload_z;
	payload_end_index = payload_index + p->payload_length;
	for (i = 0; i < payload_z; i++) {
		page               = payload_index >> PAGE_SHIFT;
		offset             = payload_index & ~PAGE_MASK;
		next_page_index    = (page + 1) << PAGE_SHIFT;
		length             =
			min(next_page_index, payload_end_index) - payload_index;
		pd[i].req_count    = cpu_to_le16(length);
1818 1819 1820

		page_bus = page_private(buffer->pages[page]);
		pd[i].data_address = cpu_to_le32(page_bus + offset);
1821 1822 1823 1824 1825

		payload_index += length;
	}

	if (p->interrupt)
1826
		irq = DESCRIPTOR_IRQ_ALWAYS;
1827
	else
1828
		irq = DESCRIPTOR_NO_IRQ;
1829

1830
	last = z == 2 ? d : d + z - 1;
1831 1832 1833
	last->control |= cpu_to_le16(DESCRIPTOR_OUTPUT_LAST |
				     DESCRIPTOR_STATUS |
				     DESCRIPTOR_BRANCH_ALWAYS |
1834
				     irq);
1835

1836
	context_append(&ctx->context, d, z, header_z);
1837 1838 1839

	return 0;
}
S
Stefan Richter 已提交
1840

1841
static int
1842 1843 1844 1845
ohci_queue_iso_receive_dualbuffer(struct fw_iso_context *base,
				  struct fw_iso_packet *packet,
				  struct fw_iso_buffer *buffer,
				  unsigned long payload)
1846 1847 1848 1849 1850 1851 1852
{
	struct iso_context *ctx = container_of(base, struct iso_context, base);
	struct db_descriptor *db = NULL;
	struct descriptor *d;
	struct fw_iso_packet *p;
	dma_addr_t d_bus, page_bus;
	u32 z, header_z, length, rest;
1853
	int page, offset, packet_count, header_size;
S
Stefan Richter 已提交
1854

1855 1856 1857 1858
	/*
	 * FIXME: Cycle lost behavior should be configurable: lose
	 * packet, retransmit or terminate..
	 */
1859 1860 1861 1862

	p = packet;
	z = 2;

1863 1864 1865 1866
	/*
	 * The OHCI controller puts the status word in the header
	 * buffer too, so we need 4 extra bytes per packet.
	 */
1867 1868 1869
	packet_count = p->header_length / ctx->base.header_size;
	header_size = packet_count * (ctx->base.header_size + 4);

1870
	/* Get header size in number of descriptors. */
1871
	header_z = DIV_ROUND_UP(header_size, sizeof(*d));
1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883
	page     = payload >> PAGE_SHIFT;
	offset   = payload & ~PAGE_MASK;
	rest     = p->payload_length;

	/* FIXME: make packet-per-buffer/dual-buffer a context option */
	while (rest > 0) {
		d = context_get_descriptors(&ctx->context,
					    z + header_z, &d_bus);
		if (d == NULL)
			return -ENOMEM;

		db = (struct db_descriptor *) d;
1884 1885
		db->control = cpu_to_le16(DESCRIPTOR_STATUS |
					  DESCRIPTOR_BRANCH_ALWAYS);
1886
		db->first_size = cpu_to_le16(ctx->base.header_size + 4);
1887 1888 1889 1890 1891 1892
		if (p->skip && rest == p->payload_length) {
			db->control |= cpu_to_le16(DESCRIPTOR_WAIT);
			db->first_req_count = db->first_size;
		} else {
			db->first_req_count = cpu_to_le16(header_size);
		}
1893
		db->first_res_count = db->first_req_count;
1894
		db->first_buffer = cpu_to_le32(d_bus + sizeof(*db));
S
Stefan Richter 已提交
1895

1896 1897 1898
		if (p->skip && rest == p->payload_length)
			length = 4;
		else if (offset + rest < PAGE_SIZE)
1899 1900 1901 1902
			length = rest;
		else
			length = PAGE_SIZE - offset;

1903 1904
		db->second_req_count = cpu_to_le16(length);
		db->second_res_count = db->second_req_count;
1905 1906 1907
		page_bus = page_private(buffer->pages[page]);
		db->second_buffer = cpu_to_le32(page_bus + offset);

1908
		if (p->interrupt && length == rest)
1909
			db->control |= cpu_to_le16(DESCRIPTOR_IRQ_ALWAYS);
1910

1911 1912 1913
		context_append(&ctx->context, d, z, header_z);
		offset = (offset + length) & ~PAGE_MASK;
		rest -= length;
1914 1915
		if (offset == 0)
			page++;
1916 1917
	}

1918 1919
	return 0;
}
1920

1921 1922 1923 1924 1925 1926 1927 1928
static int
ohci_queue_iso_receive_packet_per_buffer(struct fw_iso_context *base,
					 struct fw_iso_packet *packet,
					 struct fw_iso_buffer *buffer,
					 unsigned long payload)
{
	struct iso_context *ctx = container_of(base, struct iso_context, base);
	struct descriptor *d = NULL, *pd = NULL;
1929
	struct fw_iso_packet *p = packet;
1930 1931
	dma_addr_t d_bus, page_bus;
	u32 z, header_z, rest;
1932 1933
	int i, j, length;
	int page, offset, packet_count, header_size, payload_per_buffer;
1934 1935 1936 1937 1938 1939

	/*
	 * The OHCI controller puts the status word in the
	 * buffer too, so we need 4 extra bytes per packet.
	 */
	packet_count = p->header_length / ctx->base.header_size;
1940
	header_size  = ctx->base.header_size + 4;
1941 1942 1943 1944 1945

	/* Get header size in number of descriptors. */
	header_z = DIV_ROUND_UP(header_size, sizeof(*d));
	page     = payload >> PAGE_SHIFT;
	offset   = payload & ~PAGE_MASK;
1946
	payload_per_buffer = p->payload_length / packet_count;
1947 1948 1949

	for (i = 0; i < packet_count; i++) {
		/* d points to the header descriptor */
1950
		z = DIV_ROUND_UP(payload_per_buffer + offset, PAGE_SIZE) + 1;
1951
		d = context_get_descriptors(&ctx->context,
1952
				z + header_z, &d_bus);
1953 1954 1955
		if (d == NULL)
			return -ENOMEM;

1956 1957 1958 1959
		d->control      = cpu_to_le16(DESCRIPTOR_STATUS |
					      DESCRIPTOR_INPUT_MORE);
		if (p->skip && i == 0)
			d->control |= cpu_to_le16(DESCRIPTOR_WAIT);
1960 1961
		d->req_count    = cpu_to_le16(header_size);
		d->res_count    = d->req_count;
1962
		d->transfer_status = 0;
1963 1964
		d->data_address = cpu_to_le32(d_bus + (z * sizeof(*d)));

1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986
		rest = payload_per_buffer;
		for (j = 1; j < z; j++) {
			pd = d + j;
			pd->control = cpu_to_le16(DESCRIPTOR_STATUS |
						  DESCRIPTOR_INPUT_MORE);

			if (offset + rest < PAGE_SIZE)
				length = rest;
			else
				length = PAGE_SIZE - offset;
			pd->req_count = cpu_to_le16(length);
			pd->res_count = pd->req_count;
			pd->transfer_status = 0;

			page_bus = page_private(buffer->pages[page]);
			pd->data_address = cpu_to_le32(page_bus + offset);

			offset = (offset + length) & ~PAGE_MASK;
			rest -= length;
			if (offset == 0)
				page++;
		}
1987 1988 1989
		pd->control = cpu_to_le16(DESCRIPTOR_STATUS |
					  DESCRIPTOR_INPUT_LAST |
					  DESCRIPTOR_BRANCH_ALWAYS);
1990
		if (p->interrupt && i == packet_count - 1)
1991 1992 1993 1994 1995 1996 1997 1998
			pd->control |= cpu_to_le16(DESCRIPTOR_IRQ_ALWAYS);

		context_append(&ctx->context, d, z, header_z);
	}

	return 0;
}

1999 2000 2001 2002 2003 2004
static int
ohci_queue_iso(struct fw_iso_context *base,
	       struct fw_iso_packet *packet,
	       struct fw_iso_buffer *buffer,
	       unsigned long payload)
{
2005
	struct iso_context *ctx = container_of(base, struct iso_context, base);
2006 2007
	unsigned long flags;
	int retval;
2008

2009
	spin_lock_irqsave(&ctx->context.ohci->lock, flags);
2010
	if (base->type == FW_ISO_CONTEXT_TRANSMIT)
2011
		retval = ohci_queue_iso_transmit(base, packet, buffer, payload);
2012
	else if (ctx->context.ohci->version >= OHCI_VERSION_1_1)
2013
		retval = ohci_queue_iso_receive_dualbuffer(base, packet,
2014
							 buffer, payload);
2015
	else
2016
		retval = ohci_queue_iso_receive_packet_per_buffer(base, packet,
2017 2018
								buffer,
								payload);
2019 2020 2021
	spin_unlock_irqrestore(&ctx->context.ohci->lock, flags);

	return retval;
2022 2023
}

2024
static const struct fw_card_driver ohci_driver = {
2025 2026 2027 2028 2029 2030
	.name			= ohci_driver_name,
	.enable			= ohci_enable,
	.update_phy_reg		= ohci_update_phy_reg,
	.set_config_rom		= ohci_set_config_rom,
	.send_request		= ohci_send_request,
	.send_response		= ohci_send_response,
2031
	.cancel_packet		= ohci_cancel_packet,
2032
	.enable_phys_dma	= ohci_enable_phys_dma,
2033
	.get_bus_time		= ohci_get_bus_time,
2034 2035 2036 2037

	.allocate_iso_context	= ohci_allocate_iso_context,
	.free_iso_context	= ohci_free_iso_context,
	.queue_iso		= ohci_queue_iso,
2038
	.start_iso		= ohci_start_iso,
2039
	.stop_iso		= ohci_stop_iso,
2040 2041 2042 2043 2044 2045
};

static int __devinit
pci_probe(struct pci_dev *dev, const struct pci_device_id *ent)
{
	struct fw_ohci *ohci;
2046
	u32 bus_options, max_receive, link_speed;
2047
	u64 guid;
2048
	int err;
2049 2050
	size_t size;

2051
	ohci = kzalloc(sizeof(*ohci), GFP_KERNEL);
2052 2053 2054 2055 2056 2057 2058
	if (ohci == NULL) {
		fw_error("Could not malloc fw_ohci data.\n");
		return -ENOMEM;
	}

	fw_card_initialize(&ohci->card, &ohci_driver, &dev->dev);

2059 2060
	err = pci_enable_device(dev);
	if (err) {
2061
		fw_error("Failed to enable OHCI hardware.\n");
2062
		goto fail_put_card;
2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073
	}

	pci_set_master(dev);
	pci_write_config_dword(dev, OHCI1394_PCI_HCI_Control, 0);
	pci_set_drvdata(dev, ohci);

	spin_lock_init(&ohci->lock);

	tasklet_init(&ohci->bus_reset_tasklet,
		     bus_reset_tasklet, (unsigned long)ohci);

2074 2075
	err = pci_request_region(dev, 0, ohci_driver_name);
	if (err) {
2076
		fw_error("MMIO resource unavailable\n");
2077
		goto fail_disable;
2078 2079 2080 2081 2082
	}

	ohci->registers = pci_iomap(dev, 0, OHCI1394_REGISTER_SIZE);
	if (ohci->registers == NULL) {
		fw_error("Failed to remap registers\n");
2083 2084
		err = -ENXIO;
		goto fail_iomem;
2085 2086 2087 2088 2089 2090 2091 2092
	}

	ar_context_init(&ohci->ar_request_ctx, ohci,
			OHCI1394_AsReqRcvContextControlSet);

	ar_context_init(&ohci->ar_response_ctx, ohci,
			OHCI1394_AsRspRcvContextControlSet);

2093
	context_init(&ohci->at_request_ctx, ohci,
2094
		     OHCI1394_AsReqTrContextControlSet, handle_at_packet);
2095

2096
	context_init(&ohci->at_response_ctx, ohci,
2097
		     OHCI1394_AsRspTrContextControlSet, handle_at_packet);
2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112

	reg_write(ohci, OHCI1394_IsoRecvIntMaskSet, ~0);
	ohci->it_context_mask = reg_read(ohci, OHCI1394_IsoRecvIntMaskSet);
	reg_write(ohci, OHCI1394_IsoRecvIntMaskClear, ~0);
	size = sizeof(struct iso_context) * hweight32(ohci->it_context_mask);
	ohci->it_context_list = kzalloc(size, GFP_KERNEL);

	reg_write(ohci, OHCI1394_IsoXmitIntMaskSet, ~0);
	ohci->ir_context_mask = reg_read(ohci, OHCI1394_IsoXmitIntMaskSet);
	reg_write(ohci, OHCI1394_IsoXmitIntMaskClear, ~0);
	size = sizeof(struct iso_context) * hweight32(ohci->ir_context_mask);
	ohci->ir_context_list = kzalloc(size, GFP_KERNEL);

	if (ohci->it_context_list == NULL || ohci->ir_context_list == NULL) {
		fw_error("Out of memory for it/ir contexts.\n");
2113 2114
		err = -ENOMEM;
		goto fail_registers;
2115 2116 2117 2118 2119 2120 2121 2122 2123
	}

	/* self-id dma buffer allocation */
	ohci->self_id_cpu = dma_alloc_coherent(ohci->card.device,
					       SELF_ID_BUF_SIZE,
					       &ohci->self_id_bus,
					       GFP_KERNEL);
	if (ohci->self_id_cpu == NULL) {
		fw_error("Out of memory for self ID buffer.\n");
2124 2125
		err = -ENOMEM;
		goto fail_registers;
2126 2127 2128 2129 2130 2131 2132 2133
	}

	bus_options = reg_read(ohci, OHCI1394_BusOptions);
	max_receive = (bus_options >> 12) & 0xf;
	link_speed = bus_options & 0x7;
	guid = ((u64) reg_read(ohci, OHCI1394_GUIDHi) << 32) |
		reg_read(ohci, OHCI1394_GUIDLo);

2134 2135 2136
	err = fw_card_add(&ohci->card, max_receive, link_speed, guid);
	if (err < 0)
		goto fail_self_id;
2137

2138
	ohci->version = reg_read(ohci, OHCI1394_Version) & 0x00ff00ff;
2139
	fw_notify("Added fw-ohci device %s, OHCI version %x.%x\n",
2140
		  dev->dev.bus_id, ohci->version >> 16, ohci->version & 0xff);
2141
	return 0;
2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157

 fail_self_id:
	dma_free_coherent(ohci->card.device, SELF_ID_BUF_SIZE,
			  ohci->self_id_cpu, ohci->self_id_bus);
 fail_registers:
	kfree(ohci->it_context_list);
	kfree(ohci->ir_context_list);
	pci_iounmap(dev, ohci->registers);
 fail_iomem:
	pci_release_region(dev, 0);
 fail_disable:
	pci_disable_device(dev);
 fail_put_card:
	fw_card_put(&ohci->card);

	return err;
2158 2159 2160 2161 2162 2163 2164
}

static void pci_remove(struct pci_dev *dev)
{
	struct fw_ohci *ohci;

	ohci = pci_get_drvdata(dev);
2165 2166
	reg_write(ohci, OHCI1394_IntMaskClear, ~0);
	flush_writes(ohci);
2167 2168
	fw_core_remove_card(&ohci->card);

2169 2170 2171 2172
	/*
	 * FIXME: Fail all pending packets here, now that the upper
	 * layers can't queue any more.
	 */
2173 2174 2175

	software_reset(ohci);
	free_irq(dev->irq, ohci);
2176 2177 2178 2179 2180 2181 2182 2183
	dma_free_coherent(ohci->card.device, SELF_ID_BUF_SIZE,
			  ohci->self_id_cpu, ohci->self_id_bus);
	kfree(ohci->it_context_list);
	kfree(ohci->ir_context_list);
	pci_iounmap(dev, ohci->registers);
	pci_release_region(dev, 0);
	pci_disable_device(dev);
	fw_card_put(&ohci->card);
2184 2185 2186 2187

	fw_notify("Removed fw-ohci device.\n");
}

2188 2189 2190 2191 2192 2193 2194 2195 2196 2197
#ifdef CONFIG_PM
static int pci_suspend(struct pci_dev *pdev, pm_message_t state)
{
	struct fw_ohci *ohci = pci_get_drvdata(pdev);
	int err;

	software_reset(ohci);
	free_irq(pdev->irq, ohci);
	err = pci_save_state(pdev);
	if (err) {
2198
		fw_error("pci_save_state failed\n");
2199 2200 2201
		return err;
	}
	err = pci_set_power_state(pdev, pci_choose_state(pdev, state));
2202 2203
	if (err)
		fw_error("pci_set_power_state failed with %d\n", err);
2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216

	return 0;
}

static int pci_resume(struct pci_dev *pdev)
{
	struct fw_ohci *ohci = pci_get_drvdata(pdev);
	int err;

	pci_set_power_state(pdev, PCI_D0);
	pci_restore_state(pdev);
	err = pci_enable_device(pdev);
	if (err) {
2217
		fw_error("pci_enable_device failed\n");
2218 2219 2220
		return err;
	}

2221
	return ohci_enable(&ohci->card, NULL, 0);
2222 2223 2224
}
#endif

2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236
static struct pci_device_id pci_table[] = {
	{ PCI_DEVICE_CLASS(PCI_CLASS_SERIAL_FIREWIRE_OHCI, ~0) },
	{ }
};

MODULE_DEVICE_TABLE(pci, pci_table);

static struct pci_driver fw_ohci_pci_driver = {
	.name		= ohci_driver_name,
	.id_table	= pci_table,
	.probe		= pci_probe,
	.remove		= pci_remove,
2237 2238 2239 2240
#ifdef CONFIG_PM
	.resume		= pci_resume,
	.suspend	= pci_suspend,
#endif
2241 2242 2243 2244 2245 2246
};

MODULE_AUTHOR("Kristian Hoegsberg <krh@bitplanet.net>");
MODULE_DESCRIPTION("Driver for PCI OHCI IEEE1394 controllers");
MODULE_LICENSE("GPL");

2247 2248 2249 2250 2251
/* Provide a module alias so root-on-sbp2 initrds don't break. */
#ifndef CONFIG_IEEE1394_OHCI1394_MODULE
MODULE_ALIAS("ohci1394");
#endif

2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263
static int __init fw_ohci_init(void)
{
	return pci_register_driver(&fw_ohci_pci_driver);
}

static void __exit fw_ohci_cleanup(void)
{
	pci_unregister_driver(&fw_ohci_pci_driver);
}

module_init(fw_ohci_init);
module_exit(fw_ohci_cleanup);