fw-ohci.c 62.6 KB
Newer Older
1 2
/*
 * Driver for OHCI 1394 controllers
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
 *
 * Copyright (C) 2003-2006 Kristian Hoegsberg <krh@bitplanet.net>
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software Foundation,
 * Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
 */

21
#include <linux/compiler.h>
22
#include <linux/delay.h>
A
Andrew Morton 已提交
23
#include <linux/dma-mapping.h>
S
Stefan Richter 已提交
24
#include <linux/gfp.h>
25 26 27
#include <linux/init.h>
#include <linux/interrupt.h>
#include <linux/kernel.h>
A
Al Viro 已提交
28
#include <linux/mm.h>
29 30
#include <linux/module.h>
#include <linux/pci.h>
S
Stefan Richter 已提交
31
#include <linux/spinlock.h>
A
Andrew Morton 已提交
32

S
Stefan Richter 已提交
33
#include <asm/page.h>
34
#include <asm/system.h>
35

36 37 38 39
#ifdef CONFIG_PPC_PMAC
#include <asm/pmac_feature.h>
#endif

40
#include "fw-ohci.h"
41
#include "fw-transaction.h"
42

43 44 45 46 47 48 49 50 51 52 53 54 55
#define DESCRIPTOR_OUTPUT_MORE		0
#define DESCRIPTOR_OUTPUT_LAST		(1 << 12)
#define DESCRIPTOR_INPUT_MORE		(2 << 12)
#define DESCRIPTOR_INPUT_LAST		(3 << 12)
#define DESCRIPTOR_STATUS		(1 << 11)
#define DESCRIPTOR_KEY_IMMEDIATE	(2 << 8)
#define DESCRIPTOR_PING			(1 << 7)
#define DESCRIPTOR_YY			(1 << 6)
#define DESCRIPTOR_NO_IRQ		(0 << 4)
#define DESCRIPTOR_IRQ_ERROR		(1 << 4)
#define DESCRIPTOR_IRQ_ALWAYS		(3 << 4)
#define DESCRIPTOR_BRANCH_ALWAYS	(3 << 2)
#define DESCRIPTOR_WAIT			(3 << 0)
56 57 58 59 60 61 62 63 64 65

struct descriptor {
	__le16 req_count;
	__le16 control;
	__le32 data_address;
	__le32 branch_address;
	__le16 res_count;
	__le16 transfer_status;
} __attribute__((aligned(16)));

66 67 68 69 70 71 72 73 74 75 76 77 78 79
struct db_descriptor {
	__le16 first_size;
	__le16 control;
	__le16 second_req_count;
	__le16 first_req_count;
	__le32 branch_address;
	__le16 second_res_count;
	__le16 first_res_count;
	__le32 reserved0;
	__le32 first_buffer;
	__le32 second_buffer;
	__le32 reserved1;
} __attribute__((aligned(16)));

80 81 82 83
#define CONTROL_SET(regs)	(regs)
#define CONTROL_CLEAR(regs)	((regs) + 4)
#define COMMAND_PTR(regs)	((regs) + 12)
#define CONTEXT_MATCH(regs)	((regs) + 16)
84

85
struct ar_buffer {
86
	struct descriptor descriptor;
87 88 89
	struct ar_buffer *next;
	__le32 data[0];
};
90

91 92 93 94 95
struct ar_context {
	struct fw_ohci *ohci;
	struct ar_buffer *current_buffer;
	struct ar_buffer *last_buffer;
	void *pointer;
96
	u32 regs;
97 98 99
	struct tasklet_struct tasklet;
};

100 101 102 103 104
struct context;

typedef int (*descriptor_callback_t)(struct context *ctx,
				     struct descriptor *d,
				     struct descriptor *last);
105 106 107 108 109 110 111 112 113 114 115 116 117

/*
 * A buffer that contains a block of DMA-able coherent memory used for
 * storing a portion of a DMA descriptor program.
 */
struct descriptor_buffer {
	struct list_head list;
	dma_addr_t buffer_bus;
	size_t buffer_size;
	size_t used;
	struct descriptor buffer[0];
};

118
struct context {
S
Stefan Richter 已提交
119
	struct fw_ohci *ohci;
120
	u32 regs;
121
	int total_allocation;
S
Stefan Richter 已提交
122

123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146
	/*
	 * List of page-sized buffers for storing DMA descriptors.
	 * Head of list contains buffers in use and tail of list contains
	 * free buffers.
	 */
	struct list_head buffer_list;

	/*
	 * Pointer to a buffer inside buffer_list that contains the tail
	 * end of the current DMA program.
	 */
	struct descriptor_buffer *buffer_tail;

	/*
	 * The descriptor containing the branch address of the first
	 * descriptor that has not yet been filled by the device.
	 */
	struct descriptor *last;

	/*
	 * The last descriptor in the DMA program.  It contains the branch
	 * address that must be updated upon appending a new descriptor.
	 */
	struct descriptor *prev;
147 148 149

	descriptor_callback_t callback;

S
Stefan Richter 已提交
150
	struct tasklet_struct tasklet;
151 152
};

153 154 155 156 157 158
#define IT_HEADER_SY(v)          ((v) <<  0)
#define IT_HEADER_TCODE(v)       ((v) <<  4)
#define IT_HEADER_CHANNEL(v)     ((v) <<  8)
#define IT_HEADER_TAG(v)         ((v) << 14)
#define IT_HEADER_SPEED(v)       ((v) << 16)
#define IT_HEADER_DATA_LENGTH(v) ((v) << 16)
159 160 161

struct iso_context {
	struct fw_iso_context base;
162
	struct context context;
163
	int excess_bytes;
164 165
	void *header;
	size_t header_length;
166 167 168 169 170 171 172
};

#define CONFIG_ROM_SIZE 1024

struct fw_ohci {
	struct fw_card card;

173
	u32 version;
174 175 176 177
	__iomem char *registers;
	dma_addr_t self_id_bus;
	__le32 *self_id_cpu;
	struct tasklet_struct bus_reset_tasklet;
178
	int node_id;
179 180
	int generation;
	int request_generation;
181
	u32 bus_seconds;
182
	bool old_uninorth;
183

184 185 186 187
	/*
	 * Spinlock for accessing fw_ohci data.  Never call out of
	 * this driver with this lock held.
	 */
188 189 190 191 192 193 194 195 196 197 198 199
	spinlock_t lock;
	u32 self_id_buffer[512];

	/* Config rom buffers */
	__be32 *config_rom;
	dma_addr_t config_rom_bus;
	__be32 *next_config_rom;
	dma_addr_t next_config_rom_bus;
	u32 next_header;

	struct ar_context ar_request_ctx;
	struct ar_context ar_response_ctx;
200 201
	struct context at_request_ctx;
	struct context at_response_ctx;
202 203 204 205 206 207 208

	u32 it_context_mask;
	struct iso_context *it_context_list;
	u32 ir_context_mask;
	struct iso_context *ir_context_list;
};

A
Adrian Bunk 已提交
209
static inline struct fw_ohci *fw_ohci(struct fw_card *card)
210 211 212 213
{
	return container_of(card, struct fw_ohci, card);
}

214 215 216 217 218 219
#define IT_CONTEXT_CYCLE_MATCH_ENABLE	0x80000000
#define IR_CONTEXT_BUFFER_FILL		0x80000000
#define IR_CONTEXT_ISOCH_HEADER		0x40000000
#define IR_CONTEXT_CYCLE_MATCH_ENABLE	0x20000000
#define IR_CONTEXT_MULTI_CHANNEL_MODE	0x10000000
#define IR_CONTEXT_DUAL_BUFFER_MODE	0x08000000
220 221 222 223 224 225 226 227 228 229 230 231 232 233 234

#define CONTEXT_RUN	0x8000
#define CONTEXT_WAKE	0x1000
#define CONTEXT_DEAD	0x0800
#define CONTEXT_ACTIVE	0x0400

#define OHCI1394_MAX_AT_REQ_RETRIES	0x2
#define OHCI1394_MAX_AT_RESP_RETRIES	0x2
#define OHCI1394_MAX_PHYS_RESP_RETRIES	0x8

#define FW_OHCI_MAJOR			240
#define OHCI1394_REGISTER_SIZE		0x800
#define OHCI_LOOP_COUNT			500
#define OHCI1394_PCI_HCI_Control	0x40
#define SELF_ID_BUF_SIZE		0x800
235
#define OHCI_TCODE_PHY_PACKET		0x0e
236
#define OHCI_VERSION_1_1		0x010010
237

238 239
static char ohci_driver_name[] = KBUILD_MODNAME;

A
Adrian Bunk 已提交
240
static inline void reg_write(const struct fw_ohci *ohci, int offset, u32 data)
241 242 243 244
{
	writel(data, ohci->registers + offset);
}

A
Adrian Bunk 已提交
245
static inline u32 reg_read(const struct fw_ohci *ohci, int offset)
246 247 248 249
{
	return readl(ohci->registers + offset);
}

A
Adrian Bunk 已提交
250
static inline void flush_writes(const struct fw_ohci *ohci)
251 252 253 254 255 256 257 258 259 260 261 262 263
{
	/* Do a dummy read to flush writes. */
	reg_read(ohci, OHCI1394_Version);
}

static int
ohci_update_phy_reg(struct fw_card *card, int addr,
		    int clear_bits, int set_bits)
{
	struct fw_ohci *ohci = fw_ohci(card);
	u32 val, old;

	reg_write(ohci, OHCI1394_PhyControl, OHCI1394_PhyControl_Read(addr));
264
	flush_writes(ohci);
265 266 267 268 269 270 271 272 273 274 275 276 277 278 279
	msleep(2);
	val = reg_read(ohci, OHCI1394_PhyControl);
	if ((val & OHCI1394_PhyControl_ReadDone) == 0) {
		fw_error("failed to set phy reg bits.\n");
		return -EBUSY;
	}

	old = OHCI1394_PhyControl_ReadData(val);
	old = (old & ~clear_bits) | set_bits;
	reg_write(ohci, OHCI1394_PhyControl,
		  OHCI1394_PhyControl_Write(addr, old));

	return 0;
}

280
static int ar_context_add_page(struct ar_context *ctx)
281
{
282 283 284 285 286 287 288 289 290 291 292 293 294 295 296
	struct device *dev = ctx->ohci->card.device;
	struct ar_buffer *ab;
	dma_addr_t ab_bus;
	size_t offset;

	ab = (struct ar_buffer *) __get_free_page(GFP_ATOMIC);
	if (ab == NULL)
		return -ENOMEM;

	ab_bus = dma_map_single(dev, ab, PAGE_SIZE, DMA_BIDIRECTIONAL);
	if (dma_mapping_error(ab_bus)) {
		free_page((unsigned long) ab);
		return -ENOMEM;
	}

297
	memset(&ab->descriptor, 0, sizeof(ab->descriptor));
298 299 300
	ab->descriptor.control        = cpu_to_le16(DESCRIPTOR_INPUT_MORE |
						    DESCRIPTOR_STATUS |
						    DESCRIPTOR_BRANCH_ALWAYS);
301 302 303 304 305 306 307 308
	offset = offsetof(struct ar_buffer, data);
	ab->descriptor.req_count      = cpu_to_le16(PAGE_SIZE - offset);
	ab->descriptor.data_address   = cpu_to_le32(ab_bus + offset);
	ab->descriptor.res_count      = cpu_to_le16(PAGE_SIZE - offset);
	ab->descriptor.branch_address = 0;

	dma_sync_single_for_device(dev, ab_bus, PAGE_SIZE, DMA_BIDIRECTIONAL);

309
	ctx->last_buffer->descriptor.branch_address = cpu_to_le32(ab_bus | 1);
310 311 312
	ctx->last_buffer->next = ab;
	ctx->last_buffer = ab;

313
	reg_write(ctx->ohci, CONTROL_SET(ctx->regs), CONTEXT_WAKE);
314
	flush_writes(ctx->ohci);
315 316

	return 0;
317 318
}

319 320 321 322 323 324 325
#if defined(CONFIG_PPC_PMAC) && defined(CONFIG_PPC32)
#define cond_le32_to_cpu(v) \
	(ohci->old_uninorth ? (__force __u32)(v) : le32_to_cpu(v))
#else
#define cond_le32_to_cpu(v) le32_to_cpu(v)
#endif

326
static __le32 *handle_ar_packet(struct ar_context *ctx, __le32 *buffer)
327 328
{
	struct fw_ohci *ohci = ctx->ohci;
329 330 331
	struct fw_packet p;
	u32 status, length, tcode;

332 333 334
	p.header[0] = cond_le32_to_cpu(buffer[0]);
	p.header[1] = cond_le32_to_cpu(buffer[1]);
	p.header[2] = cond_le32_to_cpu(buffer[2]);
335 336 337 338 339

	tcode = (p.header[0] >> 4) & 0x0f;
	switch (tcode) {
	case TCODE_WRITE_QUADLET_REQUEST:
	case TCODE_READ_QUADLET_RESPONSE:
340
		p.header[3] = (__force __u32) buffer[3];
341
		p.header_length = 16;
342
		p.payload_length = 0;
343 344 345
		break;

	case TCODE_READ_BLOCK_REQUEST :
346
		p.header[3] = cond_le32_to_cpu(buffer[3]);
347 348 349 350 351
		p.header_length = 16;
		p.payload_length = 0;
		break;

	case TCODE_WRITE_BLOCK_REQUEST:
352 353 354
	case TCODE_READ_BLOCK_RESPONSE:
	case TCODE_LOCK_REQUEST:
	case TCODE_LOCK_RESPONSE:
355
		p.header[3] = cond_le32_to_cpu(buffer[3]);
356
		p.header_length = 16;
357
		p.payload_length = p.header[3] >> 16;
358 359 360 361
		break;

	case TCODE_WRITE_RESPONSE:
	case TCODE_READ_QUADLET_REQUEST:
362
	case OHCI_TCODE_PHY_PACKET:
363
		p.header_length = 12;
364
		p.payload_length = 0;
365 366
		break;
	}
367

368 369 370 371
	p.payload = (void *) buffer + p.header_length;

	/* FIXME: What to do about evt_* errors? */
	length = (p.header_length + p.payload_length + 3) / 4;
372
	status = cond_le32_to_cpu(buffer[length]);
373 374 375 376 377

	p.ack        = ((status >> 16) & 0x1f) - 16;
	p.speed      = (status >> 21) & 0x7;
	p.timestamp  = status & 0xffff;
	p.generation = ohci->request_generation;
378

379 380
	/*
	 * The OHCI bus reset handler synthesizes a phy packet with
381 382 383 384 385
	 * the new generation number when a bus reset happens (see
	 * section 8.4.2.3).  This helps us determine when a request
	 * was received and make sure we send the response in the same
	 * generation.  We only need this for requests; for responses
	 * we use the unique tlabel for finding the matching
386 387
	 * request.
	 */
388

389
	if (p.ack + 16 == 0x09)
S
Stefan Richter 已提交
390
		ohci->request_generation = (p.header[2] >> 16) & 0xff;
391
	else if (ctx == &ohci->ar_request_ctx)
392
		fw_core_handle_request(&ohci->card, &p);
393
	else
394
		fw_core_handle_response(&ohci->card, &p);
395

396 397
	return buffer + length + 1;
}
398

399 400 401 402 403 404 405 406 407 408 409 410 411 412
static void ar_context_tasklet(unsigned long data)
{
	struct ar_context *ctx = (struct ar_context *)data;
	struct fw_ohci *ohci = ctx->ohci;
	struct ar_buffer *ab;
	struct descriptor *d;
	void *buffer, *end;

	ab = ctx->current_buffer;
	d = &ab->descriptor;

	if (d->res_count == 0) {
		size_t size, rest, offset;

413 414
		/*
		 * This descriptor is finished and we may have a
415
		 * packet split across this and the next buffer. We
416 417
		 * reuse the page for reassembling the split packet.
		 */
418 419 420

		offset = offsetof(struct ar_buffer, data);
		dma_unmap_single(ohci->card.device,
421 422
			le32_to_cpu(ab->descriptor.data_address) - offset,
			PAGE_SIZE, DMA_BIDIRECTIONAL);
423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447

		buffer = ab;
		ab = ab->next;
		d = &ab->descriptor;
		size = buffer + PAGE_SIZE - ctx->pointer;
		rest = le16_to_cpu(d->req_count) - le16_to_cpu(d->res_count);
		memmove(buffer, ctx->pointer, size);
		memcpy(buffer + size, ab->data, rest);
		ctx->current_buffer = ab;
		ctx->pointer = (void *) ab->data + rest;
		end = buffer + size + rest;

		while (buffer < end)
			buffer = handle_ar_packet(ctx, buffer);

		free_page((unsigned long)buffer);
		ar_context_add_page(ctx);
	} else {
		buffer = ctx->pointer;
		ctx->pointer = end =
			(void *) ab + PAGE_SIZE - le16_to_cpu(d->res_count);

		while (buffer < end)
			buffer = handle_ar_packet(ctx, buffer);
	}
448 449 450
}

static int
451
ar_context_init(struct ar_context *ctx, struct fw_ohci *ohci, u32 regs)
452
{
453
	struct ar_buffer ab;
454

455 456 457
	ctx->regs        = regs;
	ctx->ohci        = ohci;
	ctx->last_buffer = &ab;
458 459
	tasklet_init(&ctx->tasklet, ar_context_tasklet, (unsigned long)ctx);

460 461 462 463 464
	ar_context_add_page(ctx);
	ar_context_add_page(ctx);
	ctx->current_buffer = ab.next;
	ctx->pointer = ctx->current_buffer->data;

465 466 467 468 469 470 471 472 473 474
	return 0;
}

static void ar_context_run(struct ar_context *ctx)
{
	struct ar_buffer *ab = ctx->current_buffer;
	dma_addr_t ab_bus;
	size_t offset;

	offset = offsetof(struct ar_buffer, data);
475
	ab_bus = le32_to_cpu(ab->descriptor.data_address) - offset;
476 477

	reg_write(ctx->ohci, COMMAND_PTR(ctx->regs), ab_bus | 1);
478
	reg_write(ctx->ohci, CONTROL_SET(ctx->regs), CONTEXT_RUN);
479
	flush_writes(ctx->ohci);
480
}
S
Stefan Richter 已提交
481

482 483 484 485 486 487 488 489 490 491 492 493 494 495 496
static struct descriptor *
find_branch_descriptor(struct descriptor *d, int z)
{
	int b, key;

	b   = (le16_to_cpu(d->control) & DESCRIPTOR_BRANCH_ALWAYS) >> 2;
	key = (le16_to_cpu(d->control) & DESCRIPTOR_KEY_IMMEDIATE) >> 8;

	/* figure out which descriptor the branch address goes in */
	if (z == 2 && (b == 3 || key == 2))
		return d;
	else
		return d + z - 1;
}

497 498 499 500 501 502
static void context_tasklet(unsigned long data)
{
	struct context *ctx = (struct context *) data;
	struct descriptor *d, *last;
	u32 address;
	int z;
503
	struct descriptor_buffer *desc;
504

505 506 507
	desc = list_entry(ctx->buffer_list.next,
			struct descriptor_buffer, list);
	last = ctx->last;
508
	while (last->branch_address != 0) {
509
		struct descriptor_buffer *old_desc = desc;
510 511
		address = le32_to_cpu(last->branch_address);
		z = address & 0xf;
512 513 514 515 516 517 518 519 520
		address &= ~0xf;

		/* If the branch address points to a buffer outside of the
		 * current buffer, advance to the next buffer. */
		if (address < desc->buffer_bus ||
				address >= desc->buffer_bus + desc->used)
			desc = list_entry(desc->list.next,
					struct descriptor_buffer, list);
		d = desc->buffer + (address - desc->buffer_bus) / sizeof(*d);
521
		last = find_branch_descriptor(d, z);
522 523 524 525

		if (!ctx->callback(ctx, d, last))
			break;

526 527 528 529 530 531 532 533 534 535
		if (old_desc != desc) {
			/* If we've advanced to the next buffer, move the
			 * previous buffer to the free list. */
			unsigned long flags;
			old_desc->used = 0;
			spin_lock_irqsave(&ctx->ohci->lock, flags);
			list_move_tail(&old_desc->list, &ctx->buffer_list);
			spin_unlock_irqrestore(&ctx->ohci->lock, flags);
		}
		ctx->last = last;
536 537 538
	}
}

539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572
/*
 * Allocate a new buffer and add it to the list of free buffers for this
 * context.  Must be called with ohci->lock held.
 */
static int
context_add_buffer(struct context *ctx)
{
	struct descriptor_buffer *desc;
	dma_addr_t bus_addr;
	int offset;

	/*
	 * 16MB of descriptors should be far more than enough for any DMA
	 * program.  This will catch run-away userspace or DoS attacks.
	 */
	if (ctx->total_allocation >= 16*1024*1024)
		return -ENOMEM;

	desc = dma_alloc_coherent(ctx->ohci->card.device, PAGE_SIZE,
			&bus_addr, GFP_ATOMIC);
	if (!desc)
		return -ENOMEM;

	offset = (void *)&desc->buffer - (void *)desc;
	desc->buffer_size = PAGE_SIZE - offset;
	desc->buffer_bus = bus_addr + offset;
	desc->used = 0;

	list_add_tail(&desc->list, &ctx->buffer_list);
	ctx->total_allocation += PAGE_SIZE;

	return 0;
}

573 574
static int
context_init(struct context *ctx, struct fw_ohci *ohci,
575
	     u32 regs, descriptor_callback_t callback)
576 577 578
{
	ctx->ohci = ohci;
	ctx->regs = regs;
579 580 581 582
	ctx->total_allocation = 0;

	INIT_LIST_HEAD(&ctx->buffer_list);
	if (context_add_buffer(ctx) < 0)
583 584
		return -ENOMEM;

585 586 587
	ctx->buffer_tail = list_entry(ctx->buffer_list.next,
			struct descriptor_buffer, list);

588 589 590
	tasklet_init(&ctx->tasklet, context_tasklet, (unsigned long)ctx);
	ctx->callback = callback;

591 592
	/*
	 * We put a dummy descriptor in the buffer that has a NULL
593
	 * branch address and looks like it's been sent.  That way we
594
	 * have a descriptor to append DMA programs to.
595
	 */
596 597 598 599 600 601
	memset(ctx->buffer_tail->buffer, 0, sizeof(*ctx->buffer_tail->buffer));
	ctx->buffer_tail->buffer->control = cpu_to_le16(DESCRIPTOR_OUTPUT_LAST);
	ctx->buffer_tail->buffer->transfer_status = cpu_to_le16(0x8011);
	ctx->buffer_tail->used += sizeof(*ctx->buffer_tail->buffer);
	ctx->last = ctx->buffer_tail->buffer;
	ctx->prev = ctx->buffer_tail->buffer;
602 603 604 605

	return 0;
}

606
static void
607 608 609
context_release(struct context *ctx)
{
	struct fw_card *card = &ctx->ohci->card;
610
	struct descriptor_buffer *desc, *tmp;
611

612 613 614 615
	list_for_each_entry_safe(desc, tmp, &ctx->buffer_list, list)
		dma_free_coherent(card->device, PAGE_SIZE, desc,
			desc->buffer_bus -
			((void *)&desc->buffer - (void *)desc));
616 617
}

618
/* Must be called with ohci->lock held */
619 620 621
static struct descriptor *
context_get_descriptors(struct context *ctx, int z, dma_addr_t *d_bus)
{
622 623 624 625 626 627 628 629 630
	struct descriptor *d = NULL;
	struct descriptor_buffer *desc = ctx->buffer_tail;

	if (z * sizeof(*d) > desc->buffer_size)
		return NULL;

	if (z * sizeof(*d) > desc->buffer_size - desc->used) {
		/* No room for the descriptor in this buffer, so advance to the
		 * next one. */
631

632 633 634 635 636 637 638 639 640 641
		if (desc->list.next == &ctx->buffer_list) {
			/* If there is no free buffer next in the list,
			 * allocate one. */
			if (context_add_buffer(ctx) < 0)
				return NULL;
		}
		desc = list_entry(desc->list.next,
				struct descriptor_buffer, list);
		ctx->buffer_tail = desc;
	}
642

643
	d = desc->buffer + desc->used / sizeof(*d);
644
	memset(d, 0, z * sizeof(*d));
645
	*d_bus = desc->buffer_bus + desc->used;
646 647 648 649

	return d;
}

650
static void context_run(struct context *ctx, u32 extra)
651 652 653
{
	struct fw_ohci *ohci = ctx->ohci;

654
	reg_write(ohci, COMMAND_PTR(ctx->regs),
655
		  le32_to_cpu(ctx->last->branch_address));
656 657
	reg_write(ohci, CONTROL_CLEAR(ctx->regs), ~0);
	reg_write(ohci, CONTROL_SET(ctx->regs), CONTEXT_RUN | extra);
658 659 660 661 662 663 664
	flush_writes(ohci);
}

static void context_append(struct context *ctx,
			   struct descriptor *d, int z, int extra)
{
	dma_addr_t d_bus;
665
	struct descriptor_buffer *desc = ctx->buffer_tail;
666

667
	d_bus = desc->buffer_bus + (d - desc->buffer) * sizeof(*d);
668

669 670 671
	desc->used += (z + extra) * sizeof(*d);
	ctx->prev->branch_address = cpu_to_le32(d_bus | z);
	ctx->prev = find_branch_descriptor(d, z);
672

673
	reg_write(ctx->ohci, CONTROL_SET(ctx->regs), CONTEXT_WAKE);
674 675 676 677 678 679
	flush_writes(ctx->ohci);
}

static void context_stop(struct context *ctx)
{
	u32 reg;
680
	int i;
681

682
	reg_write(ctx->ohci, CONTROL_CLEAR(ctx->regs), CONTEXT_RUN);
683
	flush_writes(ctx->ohci);
684

685
	for (i = 0; i < 10; i++) {
686
		reg = reg_read(ctx->ohci, CONTROL_SET(ctx->regs));
687 688 689 690
		if ((reg & CONTEXT_ACTIVE) == 0)
			break;

		fw_notify("context_stop: still active (0x%08x)\n", reg);
691
		mdelay(1);
692
	}
693
}
694

695 696 697
struct driver_data {
	struct fw_packet *packet;
};
698

699 700
/*
 * This function apppends a packet to the DMA queue for transmission.
701
 * Must always be called with the ochi->lock held to ensure proper
702 703
 * generation handling and locking around packet queue manipulation.
 */
704 705
static int
at_context_queue_packet(struct context *ctx, struct fw_packet *packet)
706 707
{
	struct fw_ohci *ohci = ctx->ohci;
708
	dma_addr_t d_bus, uninitialized_var(payload_bus);
709 710 711
	struct driver_data *driver_data;
	struct descriptor *d, *last;
	__le32 *header;
712
	int z, tcode;
713
	u32 reg;
714

715 716 717 718
	d = context_get_descriptors(ctx, 4, &d_bus);
	if (d == NULL) {
		packet->ack = RCODE_SEND_ERROR;
		return -1;
719 720
	}

721
	d[0].control   = cpu_to_le16(DESCRIPTOR_KEY_IMMEDIATE);
722 723
	d[0].res_count = cpu_to_le16(packet->timestamp);

724 725
	/*
	 * The DMA format for asyncronous link packets is different
726 727
	 * from the IEEE1394 layout, so shift the fields around
	 * accordingly.  If header_length is 8, it's a PHY packet, to
728 729
	 * which we need to prepend an extra quadlet.
	 */
730 731

	header = (__le32 *) &d[1];
732
	if (packet->header_length > 8) {
733 734 735 736 737
		header[0] = cpu_to_le32((packet->header[0] & 0xffff) |
					(packet->speed << 16));
		header[1] = cpu_to_le32((packet->header[1] & 0xffff) |
					(packet->header[0] & 0xffff0000));
		header[2] = cpu_to_le32(packet->header[2]);
738 739 740

		tcode = (packet->header[0] >> 4) & 0x0f;
		if (TCODE_IS_BLOCK_PACKET(tcode))
741
			header[3] = cpu_to_le32(packet->header[3]);
742
		else
743 744 745
			header[3] = (__force __le32) packet->header[3];

		d[0].req_count = cpu_to_le16(packet->header_length);
746
	} else {
747 748 749 750 751
		header[0] = cpu_to_le32((OHCI1394_phy_tcode << 4) |
					(packet->speed << 16));
		header[1] = cpu_to_le32(packet->header[0]);
		header[2] = cpu_to_le32(packet->header[1]);
		d[0].req_count = cpu_to_le16(12);
752 753
	}

754 755
	driver_data = (struct driver_data *) &d[3];
	driver_data->packet = packet;
756
	packet->driver_data = driver_data;
757

758 759 760 761 762 763 764 765 766 767 768 769 770
	if (packet->payload_length > 0) {
		payload_bus =
			dma_map_single(ohci->card.device, packet->payload,
				       packet->payload_length, DMA_TO_DEVICE);
		if (dma_mapping_error(payload_bus)) {
			packet->ack = RCODE_SEND_ERROR;
			return -1;
		}

		d[2].req_count    = cpu_to_le16(packet->payload_length);
		d[2].data_address = cpu_to_le32(payload_bus);
		last = &d[2];
		z = 3;
771
	} else {
772 773
		last = &d[0];
		z = 2;
774 775
	}

776 777 778
	last->control |= cpu_to_le16(DESCRIPTOR_OUTPUT_LAST |
				     DESCRIPTOR_IRQ_ALWAYS |
				     DESCRIPTOR_BRANCH_ALWAYS);
779

780 781
	/* FIXME: Document how the locking works. */
	if (ohci->generation != packet->generation) {
782 783 784
		if (packet->payload_length > 0)
			dma_unmap_single(ohci->card.device, payload_bus,
					 packet->payload_length, DMA_TO_DEVICE);
785 786 787 788 789
		packet->ack = RCODE_GENERATION;
		return -1;
	}

	context_append(ctx, d, z, 4 - z);
790

791
	/* If the context isn't already running, start it up. */
792
	reg = reg_read(ctx->ohci, CONTROL_SET(ctx->regs));
793
	if ((reg & CONTEXT_RUN) == 0)
794 795 796
		context_run(ctx, 0);

	return 0;
797 798
}

799 800 801
static int handle_at_packet(struct context *context,
			    struct descriptor *d,
			    struct descriptor *last)
802
{
803
	struct driver_data *driver_data;
804
	struct fw_packet *packet;
805 806
	struct fw_ohci *ohci = context->ohci;
	dma_addr_t payload_bus;
807 808
	int evt;

809 810 811
	if (last->transfer_status == 0)
		/* This descriptor isn't done yet, stop iteration. */
		return 0;
812

813 814 815 816 817
	driver_data = (struct driver_data *) &d[3];
	packet = driver_data->packet;
	if (packet == NULL)
		/* This packet was cancelled, just continue. */
		return 1;
818

819 820 821
	payload_bus = le32_to_cpu(last->data_address);
	if (payload_bus != 0)
		dma_unmap_single(ohci->card.device, payload_bus,
822 823
				 packet->payload_length, DMA_TO_DEVICE);

824 825
	evt = le16_to_cpu(last->transfer_status) & 0x1f;
	packet->timestamp = le16_to_cpu(last->res_count);
826

827 828 829 830 831
	switch (evt) {
	case OHCI1394_evt_timeout:
		/* Async response transmit timed out. */
		packet->ack = RCODE_CANCELLED;
		break;
832

833
	case OHCI1394_evt_flushed:
834 835 836 837
		/*
		 * The packet was flushed should give same error as
		 * when we try to use a stale generation count.
		 */
838 839
		packet->ack = RCODE_GENERATION;
		break;
840

841
	case OHCI1394_evt_missing_ack:
842 843 844 845
		/*
		 * Using a valid (current) generation count, but the
		 * node is not on the bus or not sending acks.
		 */
846 847
		packet->ack = RCODE_NO_ACK;
		break;
848

849 850 851 852 853 854 855 856 857
	case ACK_COMPLETE + 0x10:
	case ACK_PENDING + 0x10:
	case ACK_BUSY_X + 0x10:
	case ACK_BUSY_A + 0x10:
	case ACK_BUSY_B + 0x10:
	case ACK_DATA_ERROR + 0x10:
	case ACK_TYPE_ERROR + 0x10:
		packet->ack = evt - 0x10;
		break;
858

859 860 861 862
	default:
		packet->ack = RCODE_SEND_ERROR;
		break;
	}
863

864
	packet->callback(packet, &ohci->card, packet->ack);
865

866
	return 1;
867 868
}

869 870 871 872 873
#define HEADER_GET_DESTINATION(q)	(((q) >> 16) & 0xffff)
#define HEADER_GET_TCODE(q)		(((q) >> 4) & 0x0f)
#define HEADER_GET_OFFSET_HIGH(q)	(((q) >> 0) & 0xffff)
#define HEADER_GET_DATA_LENGTH(q)	(((q) >> 16) & 0xffff)
#define HEADER_GET_EXTENDED_TCODE(q)	(((q) >> 0) & 0xffff)
874 875 876 877 878 879 880

static void
handle_local_rom(struct fw_ohci *ohci, struct fw_packet *packet, u32 csr)
{
	struct fw_packet response;
	int tcode, length, i;

881
	tcode = HEADER_GET_TCODE(packet->header[0]);
882
	if (TCODE_IS_BLOCK_PACKET(tcode))
883
		length = HEADER_GET_DATA_LENGTH(packet->header[3]);
884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909
	else
		length = 4;

	i = csr - CSR_CONFIG_ROM;
	if (i + length > CONFIG_ROM_SIZE) {
		fw_fill_response(&response, packet->header,
				 RCODE_ADDRESS_ERROR, NULL, 0);
	} else if (!TCODE_IS_READ_REQUEST(tcode)) {
		fw_fill_response(&response, packet->header,
				 RCODE_TYPE_ERROR, NULL, 0);
	} else {
		fw_fill_response(&response, packet->header, RCODE_COMPLETE,
				 (void *) ohci->config_rom + i, length);
	}

	fw_core_handle_response(&ohci->card, &response);
}

static void
handle_local_lock(struct fw_ohci *ohci, struct fw_packet *packet, u32 csr)
{
	struct fw_packet response;
	int tcode, length, ext_tcode, sel;
	__be32 *payload, lock_old;
	u32 lock_arg, lock_data;

910 911
	tcode = HEADER_GET_TCODE(packet->header[0]);
	length = HEADER_GET_DATA_LENGTH(packet->header[3]);
912
	payload = packet->payload;
913
	ext_tcode = HEADER_GET_EXTENDED_TCODE(packet->header[3]);
914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938

	if (tcode == TCODE_LOCK_REQUEST &&
	    ext_tcode == EXTCODE_COMPARE_SWAP && length == 8) {
		lock_arg = be32_to_cpu(payload[0]);
		lock_data = be32_to_cpu(payload[1]);
	} else if (tcode == TCODE_READ_QUADLET_REQUEST) {
		lock_arg = 0;
		lock_data = 0;
	} else {
		fw_fill_response(&response, packet->header,
				 RCODE_TYPE_ERROR, NULL, 0);
		goto out;
	}

	sel = (csr - CSR_BUS_MANAGER_ID) / 4;
	reg_write(ohci, OHCI1394_CSRData, lock_data);
	reg_write(ohci, OHCI1394_CSRCompareData, lock_arg);
	reg_write(ohci, OHCI1394_CSRControl, sel);

	if (reg_read(ohci, OHCI1394_CSRControl) & 0x80000000)
		lock_old = cpu_to_be32(reg_read(ohci, OHCI1394_CSRData));
	else
		fw_notify("swap not done yet\n");

	fw_fill_response(&response, packet->header,
939
			 RCODE_COMPLETE, &lock_old, sizeof(lock_old));
940 941 942 943 944
 out:
	fw_core_handle_response(&ohci->card, &response);
}

static void
945
handle_local_request(struct context *ctx, struct fw_packet *packet)
946 947 948 949
{
	u64 offset;
	u32 csr;

950 951 952 953
	if (ctx == &ctx->ohci->at_request_ctx) {
		packet->ack = ACK_PENDING;
		packet->callback(packet, &ctx->ohci->card, packet->ack);
	}
954 955 956

	offset =
		((unsigned long long)
957
		 HEADER_GET_OFFSET_HIGH(packet->header[1]) << 32) |
958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977
		packet->header[2];
	csr = offset - CSR_REGISTER_BASE;

	/* Handle config rom reads. */
	if (csr >= CSR_CONFIG_ROM && csr < CSR_CONFIG_ROM_END)
		handle_local_rom(ctx->ohci, packet, csr);
	else switch (csr) {
	case CSR_BUS_MANAGER_ID:
	case CSR_BANDWIDTH_AVAILABLE:
	case CSR_CHANNELS_AVAILABLE_HI:
	case CSR_CHANNELS_AVAILABLE_LO:
		handle_local_lock(ctx->ohci, packet, csr);
		break;
	default:
		if (ctx == &ctx->ohci->at_request_ctx)
			fw_core_handle_request(&ctx->ohci->card, packet);
		else
			fw_core_handle_response(&ctx->ohci->card, packet);
		break;
	}
978 979 980 981 982

	if (ctx == &ctx->ohci->at_response_ctx) {
		packet->ack = ACK_COMPLETE;
		packet->callback(packet, &ctx->ohci->card, packet->ack);
	}
983
}
984

985
static void
986
at_context_transmit(struct context *ctx, struct fw_packet *packet)
987 988
{
	unsigned long flags;
989
	int retval;
990 991 992

	spin_lock_irqsave(&ctx->ohci->lock, flags);

993
	if (HEADER_GET_DESTINATION(packet->header[0]) == ctx->ohci->node_id &&
994
	    ctx->ohci->generation == packet->generation) {
995 996 997
		spin_unlock_irqrestore(&ctx->ohci->lock, flags);
		handle_local_request(ctx, packet);
		return;
998
	}
999

1000
	retval = at_context_queue_packet(ctx, packet);
1001 1002
	spin_unlock_irqrestore(&ctx->ohci->lock, flags);

1003 1004
	if (retval < 0)
		packet->callback(packet, &ctx->ohci->card, packet->ack);
1005

1006 1007 1008 1009 1010
}

static void bus_reset_tasklet(unsigned long data)
{
	struct fw_ohci *ohci = (struct fw_ohci *)data;
1011
	int self_id_count, i, j, reg;
1012 1013
	int generation, new_generation;
	unsigned long flags;
1014 1015
	void *free_rom = NULL;
	dma_addr_t free_rom_bus = 0;
1016 1017 1018

	reg = reg_read(ohci, OHCI1394_NodeID);
	if (!(reg & OHCI1394_NodeID_idValid)) {
1019
		fw_notify("node ID not valid, new bus reset in progress\n");
1020 1021
		return;
	}
1022 1023 1024 1025 1026 1027
	if ((reg & OHCI1394_NodeID_nodeNumber) == 63) {
		fw_notify("malconfigured bus\n");
		return;
	}
	ohci->node_id = reg & (OHCI1394_NodeID_busNumber |
			       OHCI1394_NodeID_nodeNumber);
1028

1029 1030
	/*
	 * The count in the SelfIDCount register is the number of
1031 1032
	 * bytes in the self ID receive buffer.  Since we also receive
	 * the inverted quadlets and a header quadlet, we shift one
1033 1034
	 * bit extra to get the actual number of self IDs.
	 */
1035 1036

	self_id_count = (reg_read(ohci, OHCI1394_SelfIDCount) >> 3) & 0x3ff;
1037
	generation = (cond_le32_to_cpu(ohci->self_id_cpu[0]) >> 16) & 0xff;
1038
	rmb();
1039 1040 1041 1042

	for (i = 1, j = 0; j < self_id_count; i += 2, j++) {
		if (ohci->self_id_cpu[i] != ~ohci->self_id_cpu[i + 1])
			fw_error("inconsistent self IDs\n");
1043 1044
		ohci->self_id_buffer[j] =
				cond_le32_to_cpu(ohci->self_id_cpu[i]);
1045
	}
1046
	rmb();
1047

1048 1049
	/*
	 * Check the consistency of the self IDs we just read.  The
1050 1051 1052 1053 1054 1055 1056 1057 1058
	 * problem we face is that a new bus reset can start while we
	 * read out the self IDs from the DMA buffer. If this happens,
	 * the DMA buffer will be overwritten with new self IDs and we
	 * will read out inconsistent data.  The OHCI specification
	 * (section 11.2) recommends a technique similar to
	 * linux/seqlock.h, where we remember the generation of the
	 * self IDs in the buffer before reading them out and compare
	 * it to the current generation after reading them out.  If
	 * the two generations match we know we have a consistent set
1059 1060
	 * of self IDs.
	 */
1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072

	new_generation = (reg_read(ohci, OHCI1394_SelfIDCount) >> 16) & 0xff;
	if (new_generation != generation) {
		fw_notify("recursive bus reset detected, "
			  "discarding self ids\n");
		return;
	}

	/* FIXME: Document how the locking works. */
	spin_lock_irqsave(&ohci->lock, flags);

	ohci->generation = generation;
1073 1074
	context_stop(&ohci->at_request_ctx);
	context_stop(&ohci->at_response_ctx);
1075 1076
	reg_write(ohci, OHCI1394_IntEventClear, OHCI1394_busReset);

1077 1078
	/*
	 * This next bit is unrelated to the AT context stuff but we
1079 1080 1081 1082
	 * have to do it under the spinlock also.  If a new config rom
	 * was set up before this reset, the old one is now no longer
	 * in use and we can free it. Update the config rom pointers
	 * to point to the current config rom and clear the
1083 1084
	 * next_config_rom pointer so a new udpate can take place.
	 */
1085 1086

	if (ohci->next_config_rom != NULL) {
1087 1088 1089 1090
		if (ohci->next_config_rom != ohci->config_rom) {
			free_rom      = ohci->config_rom;
			free_rom_bus  = ohci->config_rom_bus;
		}
1091 1092 1093 1094
		ohci->config_rom      = ohci->next_config_rom;
		ohci->config_rom_bus  = ohci->next_config_rom_bus;
		ohci->next_config_rom = NULL;

1095 1096
		/*
		 * Restore config_rom image and manually update
1097 1098
		 * config_rom registers.  Writing the header quadlet
		 * will indicate that the config rom is ready, so we
1099 1100
		 * do that last.
		 */
1101 1102 1103 1104 1105 1106 1107 1108
		reg_write(ohci, OHCI1394_BusOptions,
			  be32_to_cpu(ohci->config_rom[2]));
		ohci->config_rom[0] = cpu_to_be32(ohci->next_header);
		reg_write(ohci, OHCI1394_ConfigROMhdr, ohci->next_header);
	}

	spin_unlock_irqrestore(&ohci->lock, flags);

1109 1110 1111 1112
	if (free_rom)
		dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
				  free_rom, free_rom_bus);

1113
	fw_core_handle_bus_reset(&ohci->card, ohci->node_id, generation,
1114 1115 1116 1117 1118 1119
				 self_id_count, ohci->self_id_buffer);
}

static irqreturn_t irq_handler(int irq, void *data)
{
	struct fw_ohci *ohci = data;
1120
	u32 event, iso_event, cycle_time;
1121 1122 1123 1124
	int i;

	event = reg_read(ohci, OHCI1394_IntEventClear);

1125
	if (!event || !~event)
1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144
		return IRQ_NONE;

	reg_write(ohci, OHCI1394_IntEventClear, event);

	if (event & OHCI1394_selfIDComplete)
		tasklet_schedule(&ohci->bus_reset_tasklet);

	if (event & OHCI1394_RQPkt)
		tasklet_schedule(&ohci->ar_request_ctx.tasklet);

	if (event & OHCI1394_RSPkt)
		tasklet_schedule(&ohci->ar_response_ctx.tasklet);

	if (event & OHCI1394_reqTxComplete)
		tasklet_schedule(&ohci->at_request_ctx.tasklet);

	if (event & OHCI1394_respTxComplete)
		tasklet_schedule(&ohci->at_response_ctx.tasklet);

1145
	iso_event = reg_read(ohci, OHCI1394_IsoRecvIntEventClear);
1146 1147 1148 1149
	reg_write(ohci, OHCI1394_IsoRecvIntEventClear, iso_event);

	while (iso_event) {
		i = ffs(iso_event) - 1;
1150
		tasklet_schedule(&ohci->ir_context_list[i].context.tasklet);
1151 1152 1153
		iso_event &= ~(1 << i);
	}

1154
	iso_event = reg_read(ohci, OHCI1394_IsoXmitIntEventClear);
1155 1156 1157 1158
	reg_write(ohci, OHCI1394_IsoXmitIntEventClear, iso_event);

	while (iso_event) {
		i = ffs(iso_event) - 1;
1159
		tasklet_schedule(&ohci->it_context_list[i].context.tasklet);
1160 1161 1162
		iso_event &= ~(1 << i);
	}

1163 1164 1165
	if (unlikely(event & OHCI1394_postedWriteErr))
		fw_error("PCI posted write error\n");

1166 1167 1168 1169 1170 1171 1172
	if (unlikely(event & OHCI1394_cycleTooLong)) {
		if (printk_ratelimit())
			fw_notify("isochronous cycle too long\n");
		reg_write(ohci, OHCI1394_LinkControlSet,
			  OHCI1394_LinkControl_cycleMaster);
	}

1173 1174 1175 1176 1177 1178
	if (event & OHCI1394_cycle64Seconds) {
		cycle_time = reg_read(ohci, OHCI1394_IsochronousCycleTimer);
		if ((cycle_time & 0x80000000) == 0)
			ohci->bus_seconds++;
	}

1179 1180 1181
	return IRQ_HANDLED;
}

1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197
static int software_reset(struct fw_ohci *ohci)
{
	int i;

	reg_write(ohci, OHCI1394_HCControlSet, OHCI1394_HCControl_softReset);

	for (i = 0; i < OHCI_LOOP_COUNT; i++) {
		if ((reg_read(ohci, OHCI1394_HCControlSet) &
		     OHCI1394_HCControl_softReset) == 0)
			return 0;
		msleep(1);
	}

	return -EBUSY;
}

1198 1199 1200 1201 1202
static int ohci_enable(struct fw_card *card, u32 *config_rom, size_t length)
{
	struct fw_ohci *ohci = fw_ohci(card);
	struct pci_dev *dev = to_pci_dev(card->device);

1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245
	if (software_reset(ohci)) {
		fw_error("Failed to reset ohci card.\n");
		return -EBUSY;
	}

	/*
	 * Now enable LPS, which we need in order to start accessing
	 * most of the registers.  In fact, on some cards (ALI M5251),
	 * accessing registers in the SClk domain without LPS enabled
	 * will lock up the machine.  Wait 50msec to make sure we have
	 * full link enabled.
	 */
	reg_write(ohci, OHCI1394_HCControlSet,
		  OHCI1394_HCControl_LPS |
		  OHCI1394_HCControl_postedWriteEnable);
	flush_writes(ohci);
	msleep(50);

	reg_write(ohci, OHCI1394_HCControlClear,
		  OHCI1394_HCControl_noByteSwapData);

	reg_write(ohci, OHCI1394_LinkControlSet,
		  OHCI1394_LinkControl_rcvSelfID |
		  OHCI1394_LinkControl_cycleTimerEnable |
		  OHCI1394_LinkControl_cycleMaster);

	reg_write(ohci, OHCI1394_ATRetries,
		  OHCI1394_MAX_AT_REQ_RETRIES |
		  (OHCI1394_MAX_AT_RESP_RETRIES << 4) |
		  (OHCI1394_MAX_PHYS_RESP_RETRIES << 8));

	ar_context_run(&ohci->ar_request_ctx);
	ar_context_run(&ohci->ar_response_ctx);

	reg_write(ohci, OHCI1394_SelfIDBuffer, ohci->self_id_bus);
	reg_write(ohci, OHCI1394_PhyUpperBound, 0x00010000);
	reg_write(ohci, OHCI1394_IntEventClear, ~0);
	reg_write(ohci, OHCI1394_IntMaskClear, ~0);
	reg_write(ohci, OHCI1394_IntMaskSet,
		  OHCI1394_selfIDComplete |
		  OHCI1394_RQPkt | OHCI1394_RSPkt |
		  OHCI1394_reqTxComplete | OHCI1394_respTxComplete |
		  OHCI1394_isochRx | OHCI1394_isochTx |
1246 1247
		  OHCI1394_postedWriteErr | OHCI1394_cycleTooLong |
		  OHCI1394_cycle64Seconds | OHCI1394_masterIntEnable);
1248 1249 1250 1251 1252 1253

	/* Activate link_on bit and contender bit in our self ID packets.*/
	if (ohci_update_phy_reg(card, 4, 0,
				PHY_LINK_ACTIVE | PHY_CONTENDER) < 0)
		return -EIO;

1254 1255
	/*
	 * When the link is not yet enabled, the atomic config rom
1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272
	 * update mechanism described below in ohci_set_config_rom()
	 * is not active.  We have to update ConfigRomHeader and
	 * BusOptions manually, and the write to ConfigROMmap takes
	 * effect immediately.  We tie this to the enabling of the
	 * link, so we have a valid config rom before enabling - the
	 * OHCI requires that ConfigROMhdr and BusOptions have valid
	 * values before enabling.
	 *
	 * However, when the ConfigROMmap is written, some controllers
	 * always read back quadlets 0 and 2 from the config rom to
	 * the ConfigRomHeader and BusOptions registers on bus reset.
	 * They shouldn't do that in this initial case where the link
	 * isn't enabled.  This means we have to use the same
	 * workaround here, setting the bus header to 0 and then write
	 * the right values in the bus reset tasklet.
	 */

1273 1274 1275 1276 1277 1278 1279
	if (config_rom) {
		ohci->next_config_rom =
			dma_alloc_coherent(ohci->card.device, CONFIG_ROM_SIZE,
					   &ohci->next_config_rom_bus,
					   GFP_KERNEL);
		if (ohci->next_config_rom == NULL)
			return -ENOMEM;
1280

1281 1282 1283 1284 1285 1286 1287 1288 1289 1290
		memset(ohci->next_config_rom, 0, CONFIG_ROM_SIZE);
		fw_memcpy_to_be32(ohci->next_config_rom, config_rom, length * 4);
	} else {
		/*
		 * In the suspend case, config_rom is NULL, which
		 * means that we just reuse the old config rom.
		 */
		ohci->next_config_rom = ohci->config_rom;
		ohci->next_config_rom_bus = ohci->config_rom_bus;
	}
1291

1292
	ohci->next_header = be32_to_cpu(ohci->next_config_rom[0]);
1293 1294
	ohci->next_config_rom[0] = 0;
	reg_write(ohci, OHCI1394_ConfigROMhdr, 0);
1295 1296
	reg_write(ohci, OHCI1394_BusOptions,
		  be32_to_cpu(ohci->next_config_rom[2]));
1297 1298 1299 1300 1301
	reg_write(ohci, OHCI1394_ConfigROMmap, ohci->next_config_rom_bus);

	reg_write(ohci, OHCI1394_AsReqFilterHiSet, 0x80000000);

	if (request_irq(dev->irq, irq_handler,
1302
			IRQF_SHARED, ohci_driver_name, ohci)) {
1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314
		fw_error("Failed to allocate shared interrupt %d.\n",
			 dev->irq);
		dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
				  ohci->config_rom, ohci->config_rom_bus);
		return -EIO;
	}

	reg_write(ohci, OHCI1394_HCControlSet,
		  OHCI1394_HCControl_linkEnable |
		  OHCI1394_HCControl_BIBimageValid);
	flush_writes(ohci);

1315 1316 1317 1318
	/*
	 * We are ready to go, initiate bus reset to finish the
	 * initialization.
	 */
1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329

	fw_core_initiate_bus_reset(&ohci->card, 1);

	return 0;
}

static int
ohci_set_config_rom(struct fw_card *card, u32 *config_rom, size_t length)
{
	struct fw_ohci *ohci;
	unsigned long flags;
1330
	int retval = -EBUSY;
1331 1332 1333 1334 1335
	__be32 *next_config_rom;
	dma_addr_t next_config_rom_bus;

	ohci = fw_ohci(card);

1336 1337
	/*
	 * When the OHCI controller is enabled, the config rom update
1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383
	 * mechanism is a bit tricky, but easy enough to use.  See
	 * section 5.5.6 in the OHCI specification.
	 *
	 * The OHCI controller caches the new config rom address in a
	 * shadow register (ConfigROMmapNext) and needs a bus reset
	 * for the changes to take place.  When the bus reset is
	 * detected, the controller loads the new values for the
	 * ConfigRomHeader and BusOptions registers from the specified
	 * config rom and loads ConfigROMmap from the ConfigROMmapNext
	 * shadow register. All automatically and atomically.
	 *
	 * Now, there's a twist to this story.  The automatic load of
	 * ConfigRomHeader and BusOptions doesn't honor the
	 * noByteSwapData bit, so with a be32 config rom, the
	 * controller will load be32 values in to these registers
	 * during the atomic update, even on litte endian
	 * architectures.  The workaround we use is to put a 0 in the
	 * header quadlet; 0 is endian agnostic and means that the
	 * config rom isn't ready yet.  In the bus reset tasklet we
	 * then set up the real values for the two registers.
	 *
	 * We use ohci->lock to avoid racing with the code that sets
	 * ohci->next_config_rom to NULL (see bus_reset_tasklet).
	 */

	next_config_rom =
		dma_alloc_coherent(ohci->card.device, CONFIG_ROM_SIZE,
				   &next_config_rom_bus, GFP_KERNEL);
	if (next_config_rom == NULL)
		return -ENOMEM;

	spin_lock_irqsave(&ohci->lock, flags);

	if (ohci->next_config_rom == NULL) {
		ohci->next_config_rom = next_config_rom;
		ohci->next_config_rom_bus = next_config_rom_bus;

		memset(ohci->next_config_rom, 0, CONFIG_ROM_SIZE);
		fw_memcpy_to_be32(ohci->next_config_rom, config_rom,
				  length * 4);

		ohci->next_header = config_rom[0];
		ohci->next_config_rom[0] = 0;

		reg_write(ohci, OHCI1394_ConfigROMmap,
			  ohci->next_config_rom_bus);
1384
		retval = 0;
1385 1386 1387 1388
	}

	spin_unlock_irqrestore(&ohci->lock, flags);

1389 1390
	/*
	 * Now initiate a bus reset to have the changes take
1391 1392 1393
	 * effect. We clean up the old config rom memory and DMA
	 * mappings in the bus reset tasklet, since the OHCI
	 * controller could need to access it before the bus reset
1394 1395
	 * takes effect.
	 */
1396 1397
	if (retval == 0)
		fw_core_initiate_bus_reset(&ohci->card, 1);
1398 1399 1400
	else
		dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
				  next_config_rom, next_config_rom_bus);
1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418

	return retval;
}

static void ohci_send_request(struct fw_card *card, struct fw_packet *packet)
{
	struct fw_ohci *ohci = fw_ohci(card);

	at_context_transmit(&ohci->at_request_ctx, packet);
}

static void ohci_send_response(struct fw_card *card, struct fw_packet *packet)
{
	struct fw_ohci *ohci = fw_ohci(card);

	at_context_transmit(&ohci->at_response_ctx, packet);
}

1419 1420 1421
static int ohci_cancel_packet(struct fw_card *card, struct fw_packet *packet)
{
	struct fw_ohci *ohci = fw_ohci(card);
1422 1423 1424
	struct context *ctx = &ohci->at_request_ctx;
	struct driver_data *driver_data = packet->driver_data;
	int retval = -ENOENT;
1425

1426
	tasklet_disable(&ctx->tasklet);
1427

1428 1429
	if (packet->ack != 0)
		goto out;
1430

1431 1432 1433 1434
	driver_data->packet = NULL;
	packet->ack = RCODE_CANCELLED;
	packet->callback(packet, &ohci->card, packet->ack);
	retval = 0;
1435

1436 1437
 out:
	tasklet_enable(&ctx->tasklet);
1438

1439
	return retval;
1440 1441
}

1442 1443 1444 1445 1446
static int
ohci_enable_phys_dma(struct fw_card *card, int node_id, int generation)
{
	struct fw_ohci *ohci = fw_ohci(card);
	unsigned long flags;
1447
	int n, retval = 0;
1448

1449 1450 1451 1452
	/*
	 * FIXME:  Make sure this bitmask is cleared when we clear the busReset
	 * interrupt bit.  Clear physReqResourceAllBuses on bus reset.
	 */
1453 1454 1455 1456 1457 1458 1459 1460

	spin_lock_irqsave(&ohci->lock, flags);

	if (ohci->generation != generation) {
		retval = -ESTALE;
		goto out;
	}

1461 1462 1463 1464
	/*
	 * Note, if the node ID contains a non-local bus ID, physical DMA is
	 * enabled for _all_ nodes on remote buses.
	 */
1465 1466 1467 1468 1469 1470 1471

	n = (node_id & 0xffc0) == LOCAL_BUS ? node_id & 0x3f : 63;
	if (n < 32)
		reg_write(ohci, OHCI1394_PhyReqFilterLoSet, 1 << n);
	else
		reg_write(ohci, OHCI1394_PhyReqFilterHiSet, 1 << (n - 32));

1472 1473
	flush_writes(ohci);
 out:
1474
	spin_unlock_irqrestore(&ohci->lock, flags);
1475 1476
	return retval;
}
S
Stefan Richter 已提交
1477

1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490
static u64
ohci_get_bus_time(struct fw_card *card)
{
	struct fw_ohci *ohci = fw_ohci(card);
	u32 cycle_time;
	u64 bus_time;

	cycle_time = reg_read(ohci, OHCI1394_IsochronousCycleTimer);
	bus_time = ((u64) ohci->bus_seconds << 32) | cycle_time;

	return bus_time;
}

1491 1492 1493
static int handle_ir_dualbuffer_packet(struct context *context,
				       struct descriptor *d,
				       struct descriptor *last)
1494
{
1495 1496 1497
	struct iso_context *ctx =
		container_of(context, struct iso_context, context);
	struct db_descriptor *db = (struct db_descriptor *) d;
1498
	__le32 *ir_header;
1499
	size_t header_length;
1500 1501
	void *p, *end;
	int i;
1502

S
Stefan Richter 已提交
1503
	if (db->first_res_count != 0 && db->second_res_count != 0) {
1504 1505 1506 1507 1508 1509
		if (ctx->excess_bytes <= le16_to_cpu(db->second_req_count)) {
			/* This descriptor isn't done yet, stop iteration. */
			return 0;
		}
		ctx->excess_bytes -= le16_to_cpu(db->second_req_count);
	}
1510

1511 1512 1513 1514 1515 1516 1517
	header_length = le16_to_cpu(db->first_req_count) -
		le16_to_cpu(db->first_res_count);

	i = ctx->header_length;
	p = db + 1;
	end = p + header_length;
	while (p < end && i + ctx->base.header_size <= PAGE_SIZE) {
1518 1519
		/*
		 * The iso header is byteswapped to little endian by
1520 1521 1522
		 * the controller, but the remaining header quadlets
		 * are big endian.  We want to present all the headers
		 * as big endian, so we have to swap the first
1523 1524
		 * quadlet.
		 */
1525 1526
		*(u32 *) (ctx->header + i) = __swab32(*(u32 *) (p + 4));
		memcpy(ctx->header + i + 4, p + 8, ctx->base.header_size - 4);
1527
		i += ctx->base.header_size;
1528
		ctx->excess_bytes +=
S
Stefan Richter 已提交
1529
			(le32_to_cpu(*(__le32 *)(p + 4)) >> 16) & 0xffff;
1530 1531 1532
		p += ctx->base.header_size + 4;
	}
	ctx->header_length = i;
1533

1534 1535 1536
	ctx->excess_bytes -= le16_to_cpu(db->second_req_count) -
		le16_to_cpu(db->second_res_count);

1537
	if (le16_to_cpu(db->control) & DESCRIPTOR_IRQ_ALWAYS) {
1538 1539 1540
		ir_header = (__le32 *) (db + 1);
		ctx->base.callback(&ctx->base,
				   le32_to_cpu(ir_header[0]) & 0xffff,
1541
				   ctx->header_length, ctx->header,
1542
				   ctx->base.callback_data);
1543 1544
		ctx->header_length = 0;
	}
1545

1546
	return 1;
1547 1548
}

1549 1550 1551 1552 1553 1554
static int handle_ir_packet_per_buffer(struct context *context,
				       struct descriptor *d,
				       struct descriptor *last)
{
	struct iso_context *ctx =
		container_of(context, struct iso_context, context);
1555
	struct descriptor *pd;
1556
	__le32 *ir_header;
1557 1558
	void *p;
	int i;
1559

1560 1561 1562 1563 1564
	for (pd = d; pd <= last; pd++) {
		if (pd->transfer_status)
			break;
	}
	if (pd > last)
1565 1566 1567 1568
		/* Descriptor(s) not done yet, stop iteration */
		return 0;

	i   = ctx->header_length;
1569
	p   = last + 1;
1570

1571 1572
	if (ctx->base.header_size > 0 &&
			i + ctx->base.header_size <= PAGE_SIZE) {
1573 1574 1575 1576 1577 1578 1579 1580
		/*
		 * The iso header is byteswapped to little endian by
		 * the controller, but the remaining header quadlets
		 * are big endian.  We want to present all the headers
		 * as big endian, so we have to swap the first quadlet.
		 */
		*(u32 *) (ctx->header + i) = __swab32(*(u32 *) (p + 4));
		memcpy(ctx->header + i + 4, p + 8, ctx->base.header_size - 4);
1581
		ctx->header_length += ctx->base.header_size;
1582 1583
	}

1584 1585
	if (le16_to_cpu(last->control) & DESCRIPTOR_IRQ_ALWAYS) {
		ir_header = (__le32 *) p;
1586 1587 1588 1589 1590 1591 1592 1593 1594 1595
		ctx->base.callback(&ctx->base,
				   le32_to_cpu(ir_header[0]) & 0xffff,
				   ctx->header_length, ctx->header,
				   ctx->base.callback_data);
		ctx->header_length = 0;
	}

	return 1;
}

1596 1597 1598
static int handle_it_packet(struct context *context,
			    struct descriptor *d,
			    struct descriptor *last)
1599
{
1600 1601
	struct iso_context *ctx =
		container_of(context, struct iso_context, context);
S
Stefan Richter 已提交
1602

1603 1604 1605 1606
	if (last->transfer_status == 0)
		/* This descriptor isn't done yet, stop iteration. */
		return 0;

1607
	if (le16_to_cpu(last->control) & DESCRIPTOR_IRQ_ALWAYS)
1608 1609
		ctx->base.callback(&ctx->base, le16_to_cpu(last->res_count),
				   0, NULL, ctx->base.callback_data);
1610 1611

	return 1;
1612 1613
}

1614
static struct fw_iso_context *
1615
ohci_allocate_iso_context(struct fw_card *card, int type, size_t header_size)
1616 1617 1618
{
	struct fw_ohci *ohci = fw_ohci(card);
	struct iso_context *ctx, *list;
1619
	descriptor_callback_t callback;
1620
	u32 *mask, regs;
1621
	unsigned long flags;
1622
	int index, retval = -ENOMEM;
1623 1624 1625 1626

	if (type == FW_ISO_CONTEXT_TRANSMIT) {
		mask = &ohci->it_context_mask;
		list = ohci->it_context_list;
1627
		callback = handle_it_packet;
1628
	} else {
S
Stefan Richter 已提交
1629 1630
		mask = &ohci->ir_context_mask;
		list = ohci->ir_context_list;
1631 1632 1633 1634
		if (ohci->version >= OHCI_VERSION_1_1)
			callback = handle_ir_dualbuffer_packet;
		else
			callback = handle_ir_packet_per_buffer;
1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645
	}

	spin_lock_irqsave(&ohci->lock, flags);
	index = ffs(*mask) - 1;
	if (index >= 0)
		*mask &= ~(1 << index);
	spin_unlock_irqrestore(&ohci->lock, flags);

	if (index < 0)
		return ERR_PTR(-EBUSY);

S
Stefan Richter 已提交
1646 1647 1648 1649 1650
	if (type == FW_ISO_CONTEXT_TRANSMIT)
		regs = OHCI1394_IsoXmitContextBase(index);
	else
		regs = OHCI1394_IsoRcvContextBase(index);

1651
	ctx = &list[index];
1652
	memset(ctx, 0, sizeof(*ctx));
1653 1654 1655 1656 1657
	ctx->header_length = 0;
	ctx->header = (void *) __get_free_page(GFP_KERNEL);
	if (ctx->header == NULL)
		goto out;

1658
	retval = context_init(&ctx->context, ohci, regs, callback);
1659 1660
	if (retval < 0)
		goto out_with_header;
1661 1662

	return &ctx->base;
1663 1664 1665 1666 1667 1668 1669 1670 1671

 out_with_header:
	free_page((unsigned long)ctx->header);
 out:
	spin_lock_irqsave(&ohci->lock, flags);
	*mask |= 1 << index;
	spin_unlock_irqrestore(&ohci->lock, flags);

	return ERR_PTR(retval);
1672 1673
}

1674 1675
static int ohci_start_iso(struct fw_iso_context *base,
			  s32 cycle, u32 sync, u32 tags)
1676
{
S
Stefan Richter 已提交
1677
	struct iso_context *ctx = container_of(base, struct iso_context, base);
1678
	struct fw_ohci *ohci = ctx->context.ohci;
1679
	u32 control, match;
1680 1681
	int index;

1682 1683
	if (ctx->base.type == FW_ISO_CONTEXT_TRANSMIT) {
		index = ctx - ohci->it_context_list;
1684 1685 1686
		match = 0;
		if (cycle >= 0)
			match = IT_CONTEXT_CYCLE_MATCH_ENABLE |
1687
				(cycle & 0x7fff) << 16;
1688

1689 1690
		reg_write(ohci, OHCI1394_IsoXmitIntEventClear, 1 << index);
		reg_write(ohci, OHCI1394_IsoXmitIntMaskSet, 1 << index);
1691
		context_run(&ctx->context, match);
1692 1693
	} else {
		index = ctx - ohci->ir_context_list;
1694 1695 1696
		control = IR_CONTEXT_ISOCH_HEADER;
		if (ohci->version >= OHCI_VERSION_1_1)
			control |= IR_CONTEXT_DUAL_BUFFER_MODE;
1697 1698 1699 1700 1701
		match = (tags << 28) | (sync << 8) | ctx->base.channel;
		if (cycle >= 0) {
			match |= (cycle & 0x07fff) << 12;
			control |= IR_CONTEXT_CYCLE_MATCH_ENABLE;
		}
1702

1703 1704
		reg_write(ohci, OHCI1394_IsoRecvIntEventClear, 1 << index);
		reg_write(ohci, OHCI1394_IsoRecvIntMaskSet, 1 << index);
1705
		reg_write(ohci, CONTEXT_MATCH(ctx->context.regs), match);
1706
		context_run(&ctx->context, control);
1707
	}
1708 1709 1710 1711

	return 0;
}

1712 1713 1714
static int ohci_stop_iso(struct fw_iso_context *base)
{
	struct fw_ohci *ohci = fw_ohci(base->card);
S
Stefan Richter 已提交
1715
	struct iso_context *ctx = container_of(base, struct iso_context, base);
1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730
	int index;

	if (ctx->base.type == FW_ISO_CONTEXT_TRANSMIT) {
		index = ctx - ohci->it_context_list;
		reg_write(ohci, OHCI1394_IsoXmitIntMaskClear, 1 << index);
	} else {
		index = ctx - ohci->ir_context_list;
		reg_write(ohci, OHCI1394_IsoRecvIntMaskClear, 1 << index);
	}
	flush_writes(ohci);
	context_stop(&ctx->context);

	return 0;
}

1731 1732 1733
static void ohci_free_iso_context(struct fw_iso_context *base)
{
	struct fw_ohci *ohci = fw_ohci(base->card);
S
Stefan Richter 已提交
1734
	struct iso_context *ctx = container_of(base, struct iso_context, base);
1735 1736 1737
	unsigned long flags;
	int index;

1738 1739
	ohci_stop_iso(base);
	context_release(&ctx->context);
1740
	free_page((unsigned long)ctx->header);
1741

1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755
	spin_lock_irqsave(&ohci->lock, flags);

	if (ctx->base.type == FW_ISO_CONTEXT_TRANSMIT) {
		index = ctx - ohci->it_context_list;
		ohci->it_context_mask |= 1 << index;
	} else {
		index = ctx - ohci->ir_context_list;
		ohci->ir_context_mask |= 1 << index;
	}

	spin_unlock_irqrestore(&ohci->lock, flags);
}

static int
1756 1757 1758 1759
ohci_queue_iso_transmit(struct fw_iso_context *base,
			struct fw_iso_packet *packet,
			struct fw_iso_buffer *buffer,
			unsigned long payload)
1760
{
S
Stefan Richter 已提交
1761
	struct iso_context *ctx = container_of(base, struct iso_context, base);
1762
	struct descriptor *d, *last, *pd;
1763 1764
	struct fw_iso_packet *p;
	__le32 *header;
1765
	dma_addr_t d_bus, page_bus;
1766 1767
	u32 z, header_z, payload_z, irq;
	u32 payload_index, payload_end_index, next_page_index;
1768
	int page, end_page, i, length, offset;
1769

1770 1771 1772 1773
	/*
	 * FIXME: Cycle lost behavior should be configurable: lose
	 * packet, retransmit or terminate..
	 */
1774 1775

	p = packet;
1776
	payload_index = payload;
1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794

	if (p->skip)
		z = 1;
	else
		z = 2;
	if (p->header_length > 0)
		z++;

	/* Determine the first page the payload isn't contained in. */
	end_page = PAGE_ALIGN(payload_index + p->payload_length) >> PAGE_SHIFT;
	if (p->payload_length > 0)
		payload_z = end_page - (payload_index >> PAGE_SHIFT);
	else
		payload_z = 0;

	z += payload_z;

	/* Get header size in number of descriptors. */
1795
	header_z = DIV_ROUND_UP(p->header_length, sizeof(*d));
1796

1797 1798 1799
	d = context_get_descriptors(&ctx->context, z + header_z, &d_bus);
	if (d == NULL)
		return -ENOMEM;
1800 1801

	if (!p->skip) {
1802
		d[0].control   = cpu_to_le16(DESCRIPTOR_KEY_IMMEDIATE);
1803 1804 1805
		d[0].req_count = cpu_to_le16(8);

		header = (__le32 *) &d[1];
1806 1807 1808 1809 1810
		header[0] = cpu_to_le32(IT_HEADER_SY(p->sy) |
					IT_HEADER_TAG(p->tag) |
					IT_HEADER_TCODE(TCODE_STREAM_DATA) |
					IT_HEADER_CHANNEL(ctx->base.channel) |
					IT_HEADER_SPEED(ctx->base.speed));
1811
		header[1] =
1812
			cpu_to_le32(IT_HEADER_DATA_LENGTH(p->header_length +
1813 1814 1815 1816 1817
							  p->payload_length));
	}

	if (p->header_length > 0) {
		d[2].req_count    = cpu_to_le16(p->header_length);
1818
		d[2].data_address = cpu_to_le32(d_bus + z * sizeof(*d));
1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830
		memcpy(&d[z], p->header, p->header_length);
	}

	pd = d + z - payload_z;
	payload_end_index = payload_index + p->payload_length;
	for (i = 0; i < payload_z; i++) {
		page               = payload_index >> PAGE_SHIFT;
		offset             = payload_index & ~PAGE_MASK;
		next_page_index    = (page + 1) << PAGE_SHIFT;
		length             =
			min(next_page_index, payload_end_index) - payload_index;
		pd[i].req_count    = cpu_to_le16(length);
1831 1832 1833

		page_bus = page_private(buffer->pages[page]);
		pd[i].data_address = cpu_to_le32(page_bus + offset);
1834 1835 1836 1837 1838

		payload_index += length;
	}

	if (p->interrupt)
1839
		irq = DESCRIPTOR_IRQ_ALWAYS;
1840
	else
1841
		irq = DESCRIPTOR_NO_IRQ;
1842

1843
	last = z == 2 ? d : d + z - 1;
1844 1845 1846
	last->control |= cpu_to_le16(DESCRIPTOR_OUTPUT_LAST |
				     DESCRIPTOR_STATUS |
				     DESCRIPTOR_BRANCH_ALWAYS |
1847
				     irq);
1848

1849
	context_append(&ctx->context, d, z, header_z);
1850 1851 1852

	return 0;
}
S
Stefan Richter 已提交
1853

1854
static int
1855 1856 1857 1858
ohci_queue_iso_receive_dualbuffer(struct fw_iso_context *base,
				  struct fw_iso_packet *packet,
				  struct fw_iso_buffer *buffer,
				  unsigned long payload)
1859 1860 1861 1862 1863 1864 1865
{
	struct iso_context *ctx = container_of(base, struct iso_context, base);
	struct db_descriptor *db = NULL;
	struct descriptor *d;
	struct fw_iso_packet *p;
	dma_addr_t d_bus, page_bus;
	u32 z, header_z, length, rest;
1866
	int page, offset, packet_count, header_size;
S
Stefan Richter 已提交
1867

1868 1869 1870 1871
	/*
	 * FIXME: Cycle lost behavior should be configurable: lose
	 * packet, retransmit or terminate..
	 */
1872 1873 1874 1875

	p = packet;
	z = 2;

1876 1877 1878 1879
	/*
	 * The OHCI controller puts the status word in the header
	 * buffer too, so we need 4 extra bytes per packet.
	 */
1880 1881 1882
	packet_count = p->header_length / ctx->base.header_size;
	header_size = packet_count * (ctx->base.header_size + 4);

1883
	/* Get header size in number of descriptors. */
1884
	header_z = DIV_ROUND_UP(header_size, sizeof(*d));
1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896
	page     = payload >> PAGE_SHIFT;
	offset   = payload & ~PAGE_MASK;
	rest     = p->payload_length;

	/* FIXME: make packet-per-buffer/dual-buffer a context option */
	while (rest > 0) {
		d = context_get_descriptors(&ctx->context,
					    z + header_z, &d_bus);
		if (d == NULL)
			return -ENOMEM;

		db = (struct db_descriptor *) d;
1897 1898
		db->control = cpu_to_le16(DESCRIPTOR_STATUS |
					  DESCRIPTOR_BRANCH_ALWAYS);
1899
		db->first_size = cpu_to_le16(ctx->base.header_size + 4);
1900 1901 1902 1903 1904 1905
		if (p->skip && rest == p->payload_length) {
			db->control |= cpu_to_le16(DESCRIPTOR_WAIT);
			db->first_req_count = db->first_size;
		} else {
			db->first_req_count = cpu_to_le16(header_size);
		}
1906
		db->first_res_count = db->first_req_count;
1907
		db->first_buffer = cpu_to_le32(d_bus + sizeof(*db));
S
Stefan Richter 已提交
1908

1909 1910 1911
		if (p->skip && rest == p->payload_length)
			length = 4;
		else if (offset + rest < PAGE_SIZE)
1912 1913 1914 1915
			length = rest;
		else
			length = PAGE_SIZE - offset;

1916 1917
		db->second_req_count = cpu_to_le16(length);
		db->second_res_count = db->second_req_count;
1918 1919 1920
		page_bus = page_private(buffer->pages[page]);
		db->second_buffer = cpu_to_le32(page_bus + offset);

1921
		if (p->interrupt && length == rest)
1922
			db->control |= cpu_to_le16(DESCRIPTOR_IRQ_ALWAYS);
1923

1924 1925 1926
		context_append(&ctx->context, d, z, header_z);
		offset = (offset + length) & ~PAGE_MASK;
		rest -= length;
1927 1928
		if (offset == 0)
			page++;
1929 1930
	}

1931 1932
	return 0;
}
1933

1934 1935 1936 1937 1938 1939 1940 1941
static int
ohci_queue_iso_receive_packet_per_buffer(struct fw_iso_context *base,
					 struct fw_iso_packet *packet,
					 struct fw_iso_buffer *buffer,
					 unsigned long payload)
{
	struct iso_context *ctx = container_of(base, struct iso_context, base);
	struct descriptor *d = NULL, *pd = NULL;
1942
	struct fw_iso_packet *p = packet;
1943 1944
	dma_addr_t d_bus, page_bus;
	u32 z, header_z, rest;
1945 1946
	int i, j, length;
	int page, offset, packet_count, header_size, payload_per_buffer;
1947 1948 1949 1950 1951 1952

	/*
	 * The OHCI controller puts the status word in the
	 * buffer too, so we need 4 extra bytes per packet.
	 */
	packet_count = p->header_length / ctx->base.header_size;
1953
	header_size  = ctx->base.header_size + 4;
1954 1955 1956 1957 1958

	/* Get header size in number of descriptors. */
	header_z = DIV_ROUND_UP(header_size, sizeof(*d));
	page     = payload >> PAGE_SHIFT;
	offset   = payload & ~PAGE_MASK;
1959
	payload_per_buffer = p->payload_length / packet_count;
1960 1961 1962

	for (i = 0; i < packet_count; i++) {
		/* d points to the header descriptor */
1963
		z = DIV_ROUND_UP(payload_per_buffer + offset, PAGE_SIZE) + 1;
1964
		d = context_get_descriptors(&ctx->context,
1965
				z + header_z, &d_bus);
1966 1967 1968
		if (d == NULL)
			return -ENOMEM;

1969 1970 1971 1972
		d->control      = cpu_to_le16(DESCRIPTOR_STATUS |
					      DESCRIPTOR_INPUT_MORE);
		if (p->skip && i == 0)
			d->control |= cpu_to_le16(DESCRIPTOR_WAIT);
1973 1974
		d->req_count    = cpu_to_le16(header_size);
		d->res_count    = d->req_count;
1975
		d->transfer_status = 0;
1976 1977
		d->data_address = cpu_to_le32(d_bus + (z * sizeof(*d)));

1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999
		rest = payload_per_buffer;
		for (j = 1; j < z; j++) {
			pd = d + j;
			pd->control = cpu_to_le16(DESCRIPTOR_STATUS |
						  DESCRIPTOR_INPUT_MORE);

			if (offset + rest < PAGE_SIZE)
				length = rest;
			else
				length = PAGE_SIZE - offset;
			pd->req_count = cpu_to_le16(length);
			pd->res_count = pd->req_count;
			pd->transfer_status = 0;

			page_bus = page_private(buffer->pages[page]);
			pd->data_address = cpu_to_le32(page_bus + offset);

			offset = (offset + length) & ~PAGE_MASK;
			rest -= length;
			if (offset == 0)
				page++;
		}
2000 2001 2002
		pd->control = cpu_to_le16(DESCRIPTOR_STATUS |
					  DESCRIPTOR_INPUT_LAST |
					  DESCRIPTOR_BRANCH_ALWAYS);
2003
		if (p->interrupt && i == packet_count - 1)
2004 2005 2006 2007 2008 2009 2010 2011
			pd->control |= cpu_to_le16(DESCRIPTOR_IRQ_ALWAYS);

		context_append(&ctx->context, d, z, header_z);
	}

	return 0;
}

2012 2013 2014 2015 2016 2017
static int
ohci_queue_iso(struct fw_iso_context *base,
	       struct fw_iso_packet *packet,
	       struct fw_iso_buffer *buffer,
	       unsigned long payload)
{
2018
	struct iso_context *ctx = container_of(base, struct iso_context, base);
2019 2020
	unsigned long flags;
	int retval;
2021

2022
	spin_lock_irqsave(&ctx->context.ohci->lock, flags);
2023
	if (base->type == FW_ISO_CONTEXT_TRANSMIT)
2024
		retval = ohci_queue_iso_transmit(base, packet, buffer, payload);
2025
	else if (ctx->context.ohci->version >= OHCI_VERSION_1_1)
2026
		retval = ohci_queue_iso_receive_dualbuffer(base, packet,
2027
							 buffer, payload);
2028
	else
2029
		retval = ohci_queue_iso_receive_packet_per_buffer(base, packet,
2030 2031
								buffer,
								payload);
2032 2033 2034
	spin_unlock_irqrestore(&ctx->context.ohci->lock, flags);

	return retval;
2035 2036
}

2037
static const struct fw_card_driver ohci_driver = {
2038 2039 2040 2041 2042 2043
	.name			= ohci_driver_name,
	.enable			= ohci_enable,
	.update_phy_reg		= ohci_update_phy_reg,
	.set_config_rom		= ohci_set_config_rom,
	.send_request		= ohci_send_request,
	.send_response		= ohci_send_response,
2044
	.cancel_packet		= ohci_cancel_packet,
2045
	.enable_phys_dma	= ohci_enable_phys_dma,
2046
	.get_bus_time		= ohci_get_bus_time,
2047 2048 2049 2050

	.allocate_iso_context	= ohci_allocate_iso_context,
	.free_iso_context	= ohci_free_iso_context,
	.queue_iso		= ohci_queue_iso,
2051
	.start_iso		= ohci_start_iso,
2052
	.stop_iso		= ohci_stop_iso,
2053 2054 2055 2056 2057 2058
};

static int __devinit
pci_probe(struct pci_dev *dev, const struct pci_device_id *ent)
{
	struct fw_ohci *ohci;
2059
	u32 bus_options, max_receive, link_speed;
2060
	u64 guid;
2061
	int err;
2062 2063
	size_t size;

2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075
#ifdef CONFIG_PPC_PMAC
	/* Necessary on some machines if fw-ohci was loaded/ unloaded before */
	if (machine_is(powermac)) {
		struct device_node *ofn = pci_device_to_OF_node(dev);

		if (ofn) {
			pmac_call_feature(PMAC_FTR_1394_CABLE_POWER, ofn, 0, 1);
			pmac_call_feature(PMAC_FTR_1394_ENABLE, ofn, 0, 1);
		}
	}
#endif /* CONFIG_PPC_PMAC */

2076
	ohci = kzalloc(sizeof(*ohci), GFP_KERNEL);
2077 2078 2079 2080 2081 2082 2083
	if (ohci == NULL) {
		fw_error("Could not malloc fw_ohci data.\n");
		return -ENOMEM;
	}

	fw_card_initialize(&ohci->card, &ohci_driver, &dev->dev);

2084 2085
	err = pci_enable_device(dev);
	if (err) {
2086
		fw_error("Failed to enable OHCI hardware.\n");
2087
		goto fail_put_card;
2088 2089 2090 2091 2092 2093
	}

	pci_set_master(dev);
	pci_write_config_dword(dev, OHCI1394_PCI_HCI_Control, 0);
	pci_set_drvdata(dev, ohci);

2094 2095 2096 2097
#if defined(CONFIG_PPC_PMAC) && defined(CONFIG_PPC32)
	ohci->old_uninorth = dev->vendor == PCI_VENDOR_ID_APPLE &&
			     dev->device == PCI_DEVICE_ID_APPLE_UNI_N_FW;
#endif
2098 2099 2100 2101 2102
	spin_lock_init(&ohci->lock);

	tasklet_init(&ohci->bus_reset_tasklet,
		     bus_reset_tasklet, (unsigned long)ohci);

2103 2104
	err = pci_request_region(dev, 0, ohci_driver_name);
	if (err) {
2105
		fw_error("MMIO resource unavailable\n");
2106
		goto fail_disable;
2107 2108 2109 2110 2111
	}

	ohci->registers = pci_iomap(dev, 0, OHCI1394_REGISTER_SIZE);
	if (ohci->registers == NULL) {
		fw_error("Failed to remap registers\n");
2112 2113
		err = -ENXIO;
		goto fail_iomem;
2114 2115 2116 2117 2118 2119 2120 2121
	}

	ar_context_init(&ohci->ar_request_ctx, ohci,
			OHCI1394_AsReqRcvContextControlSet);

	ar_context_init(&ohci->ar_response_ctx, ohci,
			OHCI1394_AsRspRcvContextControlSet);

2122
	context_init(&ohci->at_request_ctx, ohci,
2123
		     OHCI1394_AsReqTrContextControlSet, handle_at_packet);
2124

2125
	context_init(&ohci->at_response_ctx, ohci,
2126
		     OHCI1394_AsRspTrContextControlSet, handle_at_packet);
2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141

	reg_write(ohci, OHCI1394_IsoRecvIntMaskSet, ~0);
	ohci->it_context_mask = reg_read(ohci, OHCI1394_IsoRecvIntMaskSet);
	reg_write(ohci, OHCI1394_IsoRecvIntMaskClear, ~0);
	size = sizeof(struct iso_context) * hweight32(ohci->it_context_mask);
	ohci->it_context_list = kzalloc(size, GFP_KERNEL);

	reg_write(ohci, OHCI1394_IsoXmitIntMaskSet, ~0);
	ohci->ir_context_mask = reg_read(ohci, OHCI1394_IsoXmitIntMaskSet);
	reg_write(ohci, OHCI1394_IsoXmitIntMaskClear, ~0);
	size = sizeof(struct iso_context) * hweight32(ohci->ir_context_mask);
	ohci->ir_context_list = kzalloc(size, GFP_KERNEL);

	if (ohci->it_context_list == NULL || ohci->ir_context_list == NULL) {
		fw_error("Out of memory for it/ir contexts.\n");
2142 2143
		err = -ENOMEM;
		goto fail_registers;
2144 2145 2146 2147 2148 2149 2150 2151 2152
	}

	/* self-id dma buffer allocation */
	ohci->self_id_cpu = dma_alloc_coherent(ohci->card.device,
					       SELF_ID_BUF_SIZE,
					       &ohci->self_id_bus,
					       GFP_KERNEL);
	if (ohci->self_id_cpu == NULL) {
		fw_error("Out of memory for self ID buffer.\n");
2153 2154
		err = -ENOMEM;
		goto fail_registers;
2155 2156 2157 2158 2159 2160 2161 2162
	}

	bus_options = reg_read(ohci, OHCI1394_BusOptions);
	max_receive = (bus_options >> 12) & 0xf;
	link_speed = bus_options & 0x7;
	guid = ((u64) reg_read(ohci, OHCI1394_GUIDHi) << 32) |
		reg_read(ohci, OHCI1394_GUIDLo);

2163 2164 2165
	err = fw_card_add(&ohci->card, max_receive, link_speed, guid);
	if (err < 0)
		goto fail_self_id;
2166

2167
	ohci->version = reg_read(ohci, OHCI1394_Version) & 0x00ff00ff;
2168
	fw_notify("Added fw-ohci device %s, OHCI version %x.%x\n",
2169
		  dev->dev.bus_id, ohci->version >> 16, ohci->version & 0xff);
2170
	return 0;
2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186

 fail_self_id:
	dma_free_coherent(ohci->card.device, SELF_ID_BUF_SIZE,
			  ohci->self_id_cpu, ohci->self_id_bus);
 fail_registers:
	kfree(ohci->it_context_list);
	kfree(ohci->ir_context_list);
	pci_iounmap(dev, ohci->registers);
 fail_iomem:
	pci_release_region(dev, 0);
 fail_disable:
	pci_disable_device(dev);
 fail_put_card:
	fw_card_put(&ohci->card);

	return err;
2187 2188 2189 2190 2191 2192 2193
}

static void pci_remove(struct pci_dev *dev)
{
	struct fw_ohci *ohci;

	ohci = pci_get_drvdata(dev);
2194 2195
	reg_write(ohci, OHCI1394_IntMaskClear, ~0);
	flush_writes(ohci);
2196 2197
	fw_core_remove_card(&ohci->card);

2198 2199 2200 2201
	/*
	 * FIXME: Fail all pending packets here, now that the upper
	 * layers can't queue any more.
	 */
2202 2203 2204

	software_reset(ohci);
	free_irq(dev->irq, ohci);
2205 2206 2207 2208 2209 2210 2211 2212
	dma_free_coherent(ohci->card.device, SELF_ID_BUF_SIZE,
			  ohci->self_id_cpu, ohci->self_id_bus);
	kfree(ohci->it_context_list);
	kfree(ohci->ir_context_list);
	pci_iounmap(dev, ohci->registers);
	pci_release_region(dev, 0);
	pci_disable_device(dev);
	fw_card_put(&ohci->card);
2213

2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226
#ifdef CONFIG_PPC_PMAC
	/* On UniNorth, power down the cable and turn off the chip clock
	 * to save power on laptops */
	if (machine_is(powermac)) {
		struct device_node *ofn = pci_device_to_OF_node(dev);

		if (ofn) {
			pmac_call_feature(PMAC_FTR_1394_ENABLE, ofn, 0, 0);
			pmac_call_feature(PMAC_FTR_1394_CABLE_POWER, ofn, 0, 0);
		}
	}
#endif /* CONFIG_PPC_PMAC */

2227 2228 2229
	fw_notify("Removed fw-ohci device.\n");
}

2230 2231 2232 2233 2234 2235 2236 2237 2238 2239
#ifdef CONFIG_PM
static int pci_suspend(struct pci_dev *pdev, pm_message_t state)
{
	struct fw_ohci *ohci = pci_get_drvdata(pdev);
	int err;

	software_reset(ohci);
	free_irq(pdev->irq, ohci);
	err = pci_save_state(pdev);
	if (err) {
2240
		fw_error("pci_save_state failed\n");
2241 2242 2243
		return err;
	}
	err = pci_set_power_state(pdev, pci_choose_state(pdev, state));
2244 2245
	if (err)
		fw_error("pci_set_power_state failed with %d\n", err);
2246

2247 2248 2249 2250 2251 2252 2253 2254 2255 2256
/* PowerMac suspend code comes last */
#ifdef CONFIG_PPC_PMAC
	if (machine_is(powermac)) {
		struct device_node *ofn = pci_device_to_OF_node(pdev);

		if (ofn)
			pmac_call_feature(PMAC_FTR_1394_ENABLE, ofn, 0, 0);
	}
#endif /* CONFIG_PPC_PMAC */

2257 2258 2259 2260 2261 2262 2263 2264
	return 0;
}

static int pci_resume(struct pci_dev *pdev)
{
	struct fw_ohci *ohci = pci_get_drvdata(pdev);
	int err;

2265 2266 2267 2268 2269 2270 2271 2272 2273 2274
/* PowerMac resume code comes first */
#ifdef CONFIG_PPC_PMAC
	if (machine_is(powermac)) {
		struct device_node *ofn = pci_device_to_OF_node(pdev);

		if (ofn)
			pmac_call_feature(PMAC_FTR_1394_ENABLE, ofn, 0, 1);
	}
#endif /* CONFIG_PPC_PMAC */

2275 2276 2277 2278
	pci_set_power_state(pdev, PCI_D0);
	pci_restore_state(pdev);
	err = pci_enable_device(pdev);
	if (err) {
2279
		fw_error("pci_enable_device failed\n");
2280 2281 2282
		return err;
	}

2283
	return ohci_enable(&ohci->card, NULL, 0);
2284 2285 2286
}
#endif

2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298
static struct pci_device_id pci_table[] = {
	{ PCI_DEVICE_CLASS(PCI_CLASS_SERIAL_FIREWIRE_OHCI, ~0) },
	{ }
};

MODULE_DEVICE_TABLE(pci, pci_table);

static struct pci_driver fw_ohci_pci_driver = {
	.name		= ohci_driver_name,
	.id_table	= pci_table,
	.probe		= pci_probe,
	.remove		= pci_remove,
2299 2300 2301 2302
#ifdef CONFIG_PM
	.resume		= pci_resume,
	.suspend	= pci_suspend,
#endif
2303 2304 2305 2306 2307 2308
};

MODULE_AUTHOR("Kristian Hoegsberg <krh@bitplanet.net>");
MODULE_DESCRIPTION("Driver for PCI OHCI IEEE1394 controllers");
MODULE_LICENSE("GPL");

2309 2310 2311 2312 2313
/* Provide a module alias so root-on-sbp2 initrds don't break. */
#ifndef CONFIG_IEEE1394_OHCI1394_MODULE
MODULE_ALIAS("ohci1394");
#endif

2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325
static int __init fw_ohci_init(void)
{
	return pci_register_driver(&fw_ohci_pci_driver);
}

static void __exit fw_ohci_cleanup(void)
{
	pci_unregister_driver(&fw_ohci_pci_driver);
}

module_init(fw_ohci_init);
module_exit(fw_ohci_cleanup);